Sample records for early triassic carbon

  1. Constraints on Early Triassic carbon cycle dynamics from paired organic and inorganic carbon isotope records

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Yu, M.; Lehrmann, D.; van de Schootbrugge, B.; Payne, J. L.

    2013-01-01

    Large δ13C excursions, anomalous carbonate precipitates, low diversity assemblages of small fossils, and evidence for marine euxinia in uppermost Permian and Lower Triassic strata bear more similarity to Neoproterozoic carbonates than to the remainders of the Permian and Triassic systems. Middle Triassic diversification of marine ecosystems coincided with the waning of anoxia and stabilization of the global carbon cycle, suggesting that environment-ecosystem linkages were important to biological recovery. However, the Earth system behavior responsible for these large δ13C excursions remains poorly constrained. Here we present a continuous Early Triassic δ13Corg record from south China and use it to test the extent to which Early Triassic excursions in δ13Ccarb record changes in the δ13C of marine dissolved inorganic carbon (DIC). Regression analysis demonstrates a significant positive correlation between δ13Corg and δ13Ccarb across multiple sections that span a paleoenvironmental gradient. Such a correlation is incompatible with diagenetic alteration because no likely mechanism will alter both δ13Corg and δ13Ccarb records in parallel and therefore strongly indicates a primary depositional origin. A simple explanation for this correlation is that a substantial portion of the preserved Corg was derived from the contemporaneous DIC pool, implying that the observed excursions reflect variation in the δ13C of the exogenic carbon reservoir (ocean, atmosphere, biomass). These findings support existing evidence that large δ13C excursions are primary and therefore strengthen the case that large-scale changes to the carbon cycle were mechanistically linked to the low diversity and small size of Early Triassic fossils. Associated sedimentary and biogeochemical phenomena further suggest that similar associations in Neoproterozoic and Cambrian strata may reflect the same underlying controls.

  2. Early Triassic fluctuations of the global carbon cycle: New evidence from paired carbon isotopes in the western USA basin

    NASA Astrophysics Data System (ADS)

    Caravaca, Gwénaël; Thomazo, Christophe; Vennin, Emmanuelle; Olivier, Nicolas; Cocquerez, Théophile; Escarguel, Gilles; Fara, Emmanuel; Jenks, James F.; Bylund, Kevin G.; Stephen, Daniel A.; Brayard, Arnaud

    2017-07-01

    In the aftermath of the catastrophic end-Permian mass extinction, the Early Triassic records recurrent perturbations in the carbon isotope signal, most notably during the Smithian and through the Smithian/Spathian Boundary (SSB; 1.5 myr after the Permian/Triassic boundary), which show some of the largest excursions of the Phanerozoic. The late Smithian also corresponds to major biotic turnovers and environmental changes, such as temperature fluctuations, that deeply impacted the recovery after the end-Permian mass extinction. Here we document the paired carbon isotope signal along with an analysis of the trace and major elements at the long-known Hot Springs section (southeastern Idaho, USA). This section records Early Triassic sediments from the Griesbachian-Dienerian up to the lower Spathian. We show that the organic and carbonate δ13C variations mirror the signals identified at a global scale. Particularly, the middle Smithian-SSB event represented by a negative-positive isotopic couplet is well identified and is not of diagenetic origin. We also document a positive excursion potentially corresponding to the Dienerian/Smithian Boundary. Observed Smithian-Spathian excursions are recorded similarly in both the organic and carbonate reservoirs, but the organic matter signal systematically shows unexpectedly dampened variations compared to its carbonate counterpart. Additionally, we show that variations in the net isotopic effect (i.e., Δ13C) probably resulted from a complex set of forcing parameters including either a mixing between terrestrial and marine organic matter depending on the evolution of the depositional setting, or variations in the biological fractionation. We establish that the Δ13C signal cannot be directly related to CO2-driven temperature variations at Hot Springs. Even though the carbon isotope signal mirrors the Early Triassic variations known at the global scale, the Hot Springs signal probably also reflects local influences on the carbon

  3. Recovery collapse coincident with ongoing carbon cycle perturbations following the Permian-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Petsios, E.; Bottjer, D. J.

    2016-12-01

    The Permian-Triassic mass extinction, the largest extinction of the Phanerozoic, is attributed to volcanic outgassing from the Siberian Traps and the resulting climate change. Ongoing volcanism in the Early Triassic is implicated for continued carbon cycle instability following the initial event, reflected in large inorganic carbon isotope excursions throughout the 5 Mya interval. Recent paleoecological studies have shown that timing of recovery from the extinction in the Early Triassic is highly complex, differing between regions, with documented cases of "early" recovery in some environments. The importance of specific environmental factors, such as oxygen levels and sea surface temperatures, in aiding or hindering recovery following the extinction is the topic of ongoing study. Here we present an ecological survey of marine benthic communities from the Lower Triassic Blacktail Creek outcrop of the Dinwoody Formation, correlated bed-for-bed with inorganic carbon isotope values. We observe incipient recovery as communities show increasing richness and evenness throughout the section, followed by a `collapse' with a return of high dominance, low richness fauna coincident with large δ13Ccarb shifts. We observe a statistically significant correlation between the magnitude of δ13Ccarb excursions and benthic community complexity over a stratigraphic section, implying a shared causal mechanism acting at the local scale. The globally correlatable nature of these observed carbon isotope shifts, as well as an absence of lithologic evidence for oxygen limitation, points to thermal stress brought on by pulses of volcanism as the shared cause between recovery collapse and carbon cycle perturbations. We propose that the "early" recovery at Blacktail Creek was truncated by recurrent greenhouse gas induced thermal spikes, highlighting the interplay of local and global environmental conditions in expediting or hindering Early Triassic recovery.

  4. New high precision U-Pb calibration of the late Early-Triassic (Smithian-Spathian Boundary, South China)

    NASA Astrophysics Data System (ADS)

    Widmann, Philipp; Leu, Marc; Goudemand, Nicolas; Schaltegger, Urs; Bucher, Hugo

    2017-04-01

    Following the Permian-Triassic mass extinction (PTME), the Early Triassic is characterized by large short-lived perturbations of the global carbon cycle associated with radiation and extinction pulses of the biota. More stable conditions resumed in the Middle Triassic (Anisian). The exact ages and duration of these short-lived but intense radiation-extinction events as well as carbon cycle perturbations are poorly constrained and a robust intercalibration of U-Pb dates, biochronozones and carbon isotope fluctuations is still lacking. An accurate and precise time frame is essential in order to quantify the dynamics of the underlying mechanistic processes and to assess the validity of the various explanatory scenarios. The most drastic Early Triassic extinction occurred at the Smithian-Spathian boundary (SSB) and is associated with a globally recognized sharp positive excursion of the marine d13C signal. Based on the most recently published ages for the Permian-Triassic boundary (251.938 ± 0.029 Ma, Baresel et al., 2016) and for the Early-Middle Triassic boundary (247.05 ± 0.16 Ma, Ovtcharova et al., 2015), we know the Early Triassic lasted 4.9 myr. However, neither the position of the SSB nor the durations of the major biotic and abiotic events around the SSB are constrained by radiometric dates. Here, we will present new high precision, chemical abrasion, isotope dilution, thermal ionization mass spectrometry (CA-ID-TIMS) U-Pb ages from single zircon crystals, sampled from closely spaced volcanic ash layers that bracket the SSB in the Nanpanjiang Basin (Guizhou province, South China). These ash layers are found in a mixed carbonate-siliciclastic, conodont-rich sedimentary succession (Luolou Formation) that is well calibrated biochronologically. We obtained best estimates of the ages of the SSB and associated events by applying Bayesian age modelling. References: Baresel, B., Bucher, H., Brosse, M., Cordey, F., Guodun, K., and Schaltegger, U., 2016. Precise age

  5. Palaeo-equatorial temperatures and carbon-cycle evolution at the Triassic- Jurassic boundary: A stable isotope perspective from shallow-water carbonates from the UAE

    NASA Astrophysics Data System (ADS)

    Honig, M. R.; John, C. M.

    2013-12-01

    The Triassic-Jurassic boundary was marked by global changes including carbon-cycle perturbations and the opening of the Atlantic Ocean. These changes were accompanied by one of the major extinction events of the Phanerozoic. The carbon-cycle perturbations have been recorded in carbon isotope curves from bulk carbonates, organic carbon and fossil wood in several Tethyan locations and have been used for chemostratigraphic purposes. Here we present data from shallow-marine carbonates deposited on a homoclinal Middle Eastern carbonate ramp (United Arab Emirates). Our site was located at the equator throughout the Late Triassic and the Early Jurassic, and this study provides the first constraints of environmental changes at the low-latitudes for the Triassic-Jurassic boundary. Shallow-marine carbonate depositional systems are extremely sensitive to palaeoenvironmental changes and their usefulness for chemostratigraphy is being debated. However, the palaeogeographic location of the studied carbonate ramp gives us a unique insight into a tropical carbonate factory at a time of severe global change. Stable isotope measurements (carbon and oxygen) are being carried out on micrite, ooids and shell material along the Triassic-Jurassic boundary. The stable isotope results on micrite show a prominent negative shift in carbon isotope values of approximately 2 ‰ just below the inferred position of the Triassic-Jurassic boundary. A similar isotopic trend is also observed across the Tethys but with a range of amplitudes (from ~2 ‰ to ~4 ‰). These results seem to indicate that the neritic carbonates from our studied section can be used for chemostratigraphic purposes, and the amplitudes of the carbon isotope shifts provide critical constraints on the magnitude of carbon-cycle perturbations at low latitudes across the Triassic-Jurassic boundary. Seawater temperatures across the Triassic-Jurassic boundary will be constrained using the clumped isotope palaeo-thermometer applied

  6. Importance of carbon isotopic data of the Permian-Triassic boundary layers in the Verkhoyansk region for the global correlation of the basal Triassic layer

    NASA Astrophysics Data System (ADS)

    Zakharov, Yu. D.; Biakov, A. S.; Richoz, S.; Horacek, M.

    2015-01-01

    This paper is dedicated to a global correlation of marine Permian-Triassic boundary layers on the basis of partially published and original data on the δ13Corg and δ13Ccarb values of the Suol section (Setorym River, South Verkhoyansk region). The section consists of six carbon isotopic intervals, which are easily distinguishable in the carbon isotopic curves for a series of Permian-Triassic reference sections of Eurasia and Northern America, including paleontologically described sections of Central Iran, Kashmir, and Southern China. This suggests that the Permian-Triassic boundary in the Suol section is close to the carbon isotopic minimum of interval IV. In light of new data, we suggest considering the upper part of the Late Permian Changhsingian Stage and the lower substage of the Early Triassic Induan Stage of Siberia in the volumes of the rank Otoceras concavum zone and the Tompophiceras pascoei and Wordieoceras decipiens zones, respectively. The O. concavum zone of the Verkhoyansk region probably corresponds to the Late Changhsingian Hypophiceras triviale zone of Greenland. The carbon isotopic intervals II, III, IV, and V in the Permian-Triassic boundary layers of the Verkhoyansk region traced in a series of the reference sections of Eurasia correspond, most likely, to intensification of volcanic activity at the end of the Late Changhsingian and to the first massive eruptions of Siberian traps at the end of the Changhsingian and the beginning of the Induan Stages. New data indicate the possible survival of ammonoids of the Otoceratoidea superfamily at the species level after mass extinction of organisms at the end of the Permian.

  7. Atmospheric Carbon Injection Linked to End-Triassic Mass Extinction

    NASA Astrophysics Data System (ADS)

    Ruhl, Micha; Bonis, Nina R.; Reichart, Gert-Jan; Damsté, Jaap S. Sinninghe; Kürschner, Wolfram M.

    2011-07-01

    The end-Triassic mass extinction (~201.4 million years ago), marked by terrestrial ecosystem turnover and up to ~50% loss in marine biodiversity, has been attributed to intensified volcanic activity during the break-up of Pangaea. Here, we present compound-specific carbon-isotope data of long-chain n-alkanes derived from waxes of land plants, showing a ~8.5 per mil negative excursion, coincident with the extinction interval. These data indicate strong carbon-13 depletion of the end-Triassic atmosphere, within only 10,000 to 20,000 years. The magnitude and rate of this carbon-cycle disruption can be explained by the injection of at least ~12 × 103 gigatons of isotopically depleted carbon as methane into the atmosphere. Concurrent vegetation changes reflect strong warming and an enhanced hydrological cycle. Hence, end-Triassic events are robustly linked to methane-derived massive carbon release and associated climate change.

  8. Atmospheric carbon injection linked to end-Triassic mass extinction.

    PubMed

    Ruhl, Micha; Bonis, Nina R; Reichart, Gert-Jan; Sinninghe Damsté, Jaap S; Kürschner, Wolfram M

    2011-07-22

    The end-Triassic mass extinction (~201.4 million years ago), marked by terrestrial ecosystem turnover and up to ~50% loss in marine biodiversity, has been attributed to intensified volcanic activity during the break-up of Pangaea. Here, we present compound-specific carbon-isotope data of long-chain n-alkanes derived from waxes of land plants, showing a ~8.5 per mil negative excursion, coincident with the extinction interval. These data indicate strong carbon-13 depletion of the end-Triassic atmosphere, within only 10,000 to 20,000 years. The magnitude and rate of this carbon-cycle disruption can be explained by the injection of at least ~12 × 10(3) gigatons of isotopically depleted carbon as methane into the atmosphere. Concurrent vegetation changes reflect strong warming and an enhanced hydrological cycle. Hence, end-Triassic events are robustly linked to methane-derived massive carbon release and associated climate change.

  9. Evidence for Late Permian-Upper Triassic ocean acidification from calcium isotopes in carbonate of the Kamura section in Japan

    NASA Astrophysics Data System (ADS)

    Ye, F.; Zhao, L., Sr.; Chen, Z. Q.; Wang, X.

    2017-12-01

    Calcium and carbon cycles are tightly related in the ocean, for example, through continental weathering and deposition of carbonate, thus, very important for exploring evolutions of marine environment during the earth history. The end-Permian mass extinction is the biggest biological disaster in the Phanerozoic and there are several studies talking about variations of calcium isotopes across the Permian-Triassic boundary (PTB). However, these studies are all from the Tethys regions (Payne et al., 2010; Hinojosa et al., 2012), while the Panthalassic Ocean is still unknown to people. Moreover, evolutions of the calcium isotopes during the Early to Late Triassic is also poorly studied (Blattler et al., 2012). Here, we studied an Uppermost Permian to Upper Triassic shallow water successions (Kamura section, Southwest Japan) in the Central Panthalassic Ocean. The Kamura section is far away from the continent without any clastic pollution, therefore, could preserved reliable δ44/40Cacarb signals. Conodont zonation and carbonate carbon isotope also provide precious time framework which is necessary for the explaining of the δ44/40Cacarb profile. In Kamura, δ44/40Cacarb and δ13Ccarb both exhibit negative excursions across the PTB, the δ44/40Cacarb value in the end-Permian is 1.0398‰ then abrupt decrease to the minimum value of 0.1524‰. CO2-driven global ocean acidification best explains the coincidence of the δ44/40Cacarb excursion with negative excursions in the δ13Ccarb of carbonates until the Early Smithian(N1a, N1b, N1c, P1, N2, P2). In the Middle and the Late Triassic, the δ44/40 Cacarb average approximately 1.1‰. During the Middle and Late Triassic, strong relationships between δ44/40Cacarb and δ13Ccarb are collapsed, indicating a normal pH values of the seawater in those time. The Siberian Trap volcanism probably played a significant role on the δ44/40Cacarb until the late Early Triassic. After that, δ44/40Cacarb was mostly controlled by carbonate

  10. Oceanographic Changes through the Early Triassic Crisis Interval

    NASA Astrophysics Data System (ADS)

    Algeo, T. J.

    2013-12-01

    Recent studies of diverse paleoceanographic proxies have provided the basis for reconstructing in some detail oceanographic changes during the end-Permian mass extinction and through the ~5-million-year-long Early Triassic crisis interval. Conodont δ18O records have demonstrated strong warming, to tropical sea-surface temperatures as high as 40oC, during the Griesbachian to Dienerian substages1-2. The crisis interval also was associated with major perturbations in the marine carbon and sulfur cycles. Three episodes of strong warming coincided with decreases in marine carbonate δ13C and marine sulfate δ34S 3, as well as increases in Δδ13Cvert4 and enhanced subaerial weathering fluxes5-6. Lower δ13Ccarb and δ34Ssulf values are indicative of more limited burial of reduced C and S in organic carbon and pyrite, consistent with declines in marine productivity and bacterial sulfate reduction3. Increased Δδ13Cvert is indicative of intensified stratification of the oceanic water column4, and increased subaerial weathering fluxes probably reflect higher soil reaction rates and possibly an intensified hydrologic cycle5-6. Collectively, these patterns are indicative of the globally integrated response of marine and terrestrial regimes to episodic perturbations in the form of extreme warming events1-2,7. These warming events may have been triggered by major volcanic eruptions8, as suggested by recent studies of volcanic ash layers9-10 and rare earth elements11 in South China P-Tr boundary sections. The ~2-million-year-long Early Triassic interval of extreme sea-surface temperatures came to an abrupt end around the Smithian-Spathian boundary1-2. Cooling coincided with a sharp decline in Δδ13Cvert due to stronger vertical overturning circulation4 and a major positive excursion in δ13Ccarb due to increased marine productivity related to greater mixing of nutrients into the ocean-surface layer12. The late Spathian was characterized by a final, weaker episode of sea

  11. Coupled organic and carbonate δ13C records of the late Triassic and early Jurassic in northern Italy: implications for carbon cycling during the aftermath of the end-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Bachan, A.; van de Schootbrugge, B.; Payne, J.

    2011-12-01

    A large protracted positive carbon isotope excursion has been observed in the lowermost Jurassic following the end-Triassic mass extinction. However, the lack of paired records from carbonate rocks (δ13Ccarb) and organic carbon (δ13Corg) and limited biostratigraphic constraints leave open the possibility that variations in δ13Ccarb and δ13Corg are not correlative and do not represent a shift in the δ13C of the global carbon pool. Consequently, the long term carbon cycle behavior following the end-Triassic mass extinction remains incompletely understood. Here we present the first extended, coupled δ13Ccarb and δ13Corg records of the uppermost Triassic and lowermost Jurassic from stratigraphic sections in the Lombardy Basin of northern Italy. The large positive excursion previously observed in the carbonates also occurs in the organics from the same samples, but with a smaller magnitude. Because few post-depositional mechanisms affect the isotopic composition of Ccarb and Corg in similar ways, the correspondence of the two curves presents strong support for a primary origin for the large positive isotopic excursion. The more muted response of the organics is consistent with variation in the fractionation between carbonates and organic carbon, mixing of contemporaneous organic matter with extrabasinal organic carbon of a constant isotopic composition, or some combination of the two. In either case, the occurrence of the positive excursion in multiple locations globally in both carbonates and organic matter is best explained by a change in the isotopic value of the global carbon reservoir. The elevated δ13C values and increased magnitude of the difference between the carbonates and organics is consistent with the predicted biogeochemical consequences of heightened pCO2. The coincidence of the extinction and carbon cycle disturbance with emplacement of the Central Atlantic Magmatic Province suggests that volatiles derived from its emplacement were the likely

  12. Redescription of Bellerophon asiaticus Wirth (Early Triassic: Gastropoda) from China, and a survey of Triassic Bellerophontacea.

    USGS Publications Warehouse

    Yochelson, E.Y.; Yin, Hongfu

    1985-01-01

    The bilaterally symmetrical gastropod Bellerophon asiaticus Wirth is redescribed from specimens collected in Guizhou Province, PRC. The species is reassigned to Retispira, a common late Paleozoic taxon. Retispira is another example of a Paleozoic gastropod genus that crossed the era boundary. Associated pelecypods that date these Guizhou occurrences as Early Triassic are well known species in PRC and are illustrated. Both Bellerophon and Euphemites probably occur in the Early Triassic, though the quality of illustrations leaves some uncertainty; the existence of Stachella in the Triassic is more problematic. There was no dramatic reduction of the Bellerophontacea from their abundance and diversity in the Permian. It may be a general phenomenon that most late Paleozoic family-level and many generic-level taxa of gastropods were unaffected by the late Permian 'crisis'. from Authors

  13. The lower Triassic microbiolites in Chaohu region, East China and their contribution to the early Triassic recovery

    NASA Astrophysics Data System (ADS)

    Jia, Zhihai; Zhang, Liwei; Hong, Tianqiu

    2010-05-01

    The lower Triassic is well preserved in Chaohu Region, Anhui Province, East China. It can be divided into Yinkeng Formation (80 meters thick, was formed during the Indian and early Smitian), Helongshan Formation (21 meters thick, was formed during the end Smithian) and Nanlinghu Formation (more than 157 meters thick, was formed during the Spathian) from bottom to top. It is mainly composed of carbonatites such as micrite limestones and nodular limestones, as well as shales and calcareous marls. The lower Triassic in this area has been well researched for more than a decade, and many fossils such as ammonites, bivalves, fishes, ichthyosaurus, conodonts, and ichnofossils have been found, but the microbiolites have been neglected. Microbiolites were mainly outcropped in the Helongshan Formaiton and the lower Nanlinghu Formation. In the lower Helongshan Formaiton, tens microbial mat layers and thin bedded calcareous marl layers formed cyclothems which have been named as nodular limstones. The thin-section observation of the microbial mats indicate that many films and thin-shell bivalve fragments deposited almost horizontally. In the upper Helongshan Formaiton, six microstromatolite bioherm layers were outcropped in the thin bedded calcareous marl layers. The diameter of the stromatolite column is about 2 millimeters, the bioherms are lenticular and no more than 3 centimeters thick in the central, their diameters change from 5 centimeters to 30 centimeters, calcareous marls were deposited around the bioherms, and many ammonoids, bivalves and burrows were found in such layers. The microfacies differentiation of the stromatolites such as the basement, reef core and the capping beds can be recognised clearly in thin sections. Several microstromatolite layers were outcropped in the micritic limestones with a stable thickness of 15 millimeters in the lower Nanlinghu Formation and the stromatolite column look like the ones in the Helongshan Formation. Few microbiolites have

  14. Wildfire Activity Across the Triassic-Jurassic Boundary in the Polish Basin: Evidence from New Fossil Charcoal & Carbon-isotope Data

    NASA Astrophysics Data System (ADS)

    Pointer, R.; Belcher, C.; Hesselbo, S. P.; Hodbod, M.; Pieńkowski, G.

    2017-12-01

    New fossil charcoal abundance and carbon-isotope data from two sedimentary cores provide new evidence of extreme environmental conditions in the Polish Basin during the Latest Triassic to Earliest Jurassic. Sedimentary cores from the Polish Basin provide an excellent record of terrestrial environmental conditions across the Triassic-Jurassic Boundary, a time of climatic extremes. Previous work has shown that the marine realm was affected by a large perturbation to the carbon cycle across the Triassic-Jurassic Boundary (manifested by large negative and positive carbon-isotope excursions) and limited records of charcoal abundance and organic geochemistry have indicated important changes in fire regime in the coeval ecosystems. Here we present two new carbon-isotope records generated from fossil plant matter across the Triassic-Jurassic boundary, and present new charcoal records. The charcoal abundance data confirm that there was variation in wildfire activity during the Late Triassic-Early Jurassic in the Polish Basin. Peaks in the number of fossil charcoal fragments present occur in both sedimentary cores, and increases in fossil charcoal abundance are linked to wildfires, signalling a short-lived rise in wildfire activity. Fossil charcoal abundance does not appear to be fully controlled by total organic matter content, depositional environment or bioturbation. We argue that increased wildfire activity is likely caused by an increase in ignition of plant material as a result of an elevated number of lightning strikes. Global warming (caused by a massive input of carbon into the atmosphere, as indicated by carbon-isotope data) can increase storm activity, leading to increased numbers of lightning strikes. Previous Triassic-Jurassic Boundary wildfire studies have found fossil charcoal abundance peaks at other northern hemisphere sites (Denmark & Greenland), and concluded that they represent increases in wildfire activity in the earliest Jurassic. Our new charcoal and

  15. Siderite deposits in northern Italy: Early Permian to Early Triassic hydrothermalism in the Southern Alps

    NASA Astrophysics Data System (ADS)

    Martin, Silvana; Toffolo, Luca; Moroni, Marilena; Montorfano, Carlo; Secco, Luciano; Agnini, Claudia; Nimis, Paolo; Tumiati, Simone

    2017-07-01

    We present a minero-petrographic, geochemical and geochronological study of siderite orebodies from different localities of the Southern Alps (northern Italy). Siderite occurs as veins cutting the Variscan basement and the overlying Lower Permian volcano-sedimentary cover (Collio Fm.), and as both veins and conformable stratabound orebodies in the Upper Permian (Verrucano Lombardo and Bellerophon Fms.) and Lower Triassic (Servino and Werfen Fms.) sedimentary sequences of the Lombardian and the Venetian Alps. All types of deposits show similar major- and rare-earth (REE)-element patterns, suggesting a common iron-mineralizing event. The compositions of coexisting siderite, Fe-rich dolomite and calcite suggest formation from hydrothermal fluids at relatively high temperature conditions (≥ 250 °C). Geochemical modelling, supported by REE analyses and by literature and new δ13C and δ18O isotopic data, suggests that fluids responsible for the formation of siderite in the Variscan basement and in the overlying Lower Permian cover were derived from dominant fresh water, which leached Fe and C from volcanic rocks (mainly rhyolites/rhyodacites) and organic carbon-bearing continental sediments. On the basis of U-Th-Pb microchemical dating of uraninite associated with siderite in the Val Vedello and Novazza deposits (Lombardian Alps), the onset of hydrothermalism is constrained to 275 ± 13 Ma (Early-Mid Permian), i.e., it was virtually contemporaneous to the plutonism and the volcanic-sedimentary cycle reported in the same area (Orobic Basin). The youngest iron-mineralizing event is represented by siderite veins and conformable orebodies hosted in Lower Triassic shallow-marine carbonatic successions. In this case, the siderite-forming fluids contained a seawater component, interacted with the underlying Permian successions and eventually replaced the marine carbonates at temperatures of ≥ 250 °C. The absence of siderite in younger rocks suggests an Early Triassic

  16. The Lower Triassic sedimentary and carbon isotope records from Tulong (South Tibet) and their significance for Tethyan palaeoceanography

    NASA Astrophysics Data System (ADS)

    Brühwiler, Thomas; Goudemand, Nicolas; Galfetti, Thomas; Bucher, Hugo; Baud, Aymon; Ware, David; Hermann, Elke; Hochuli, Peter A.; Martini, Rossanna

    2009-12-01

    The Lower Triassic sedimentary and carbonate/organic carbon isotope records from the Tulong area (South Tibet) are documented in their integrality for the first time. New age control is provided by ammonoid and conodont biostratigraphy. The basal Triassic series consists of Griesbachian dolomitic limestones, similar to the Kathwai Member in the Salt Range (Pakistan) and to the Otoceras Beds in Spiti (India). The overlying thin-bedded limestones of Dienerian age strongly resemble the Lower Ceratite Limestone of the Salt Range. They are followed by a thick series of dark green, silty shales of Dienerian-early Smithian age without fauna that strikingly resemble the Ceratite Marls of the Salt Range. This interval is overlain by thin-bedded, light grey fossil-rich limestones of middle to late Smithian age, resembling the Upper Ceratite Limestone of the Salt Range. These are followed by a shale interval of early Spathian age that has no direct counterpart in other Tethyan sections. Carbonate production resumes during the late early and middle Spathian with the deposition of red, bioclastic nodular limestone ("Ammonitico Rosso" type facies). Apart from its colour this facies is similar to the one of the Niti Limestone in Spiti and of the Spathian nodular limestone in Guangxi (South China). As in other Tethyan localities such as Spiti, the early-middle Anisian part of the Tulong section is strongly condensed and is characterized by grey, thin-bedded limestones with phosphatized ammonoids. As for many other Tethyan localities the carbon isotope record from Tulong is characterized by a late Griesbachian-Dienerian positive δ13C carb excursion (2‰), and a very prominent positive excursion (5‰) at the Smithian-Spathian boundary, thus confirming the well-documented perturbations of the global carbon cycle following the Permian-Triassic mass extinction event.

  17. Milankovitch and sub-Milankovitch cycles of the Early Triassic Daye Formation, South China and their geochronological and paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Wu, H.; Zhang, S.; Feng, Q.; Jiang, G.; Li, H.; Yang, T.

    2011-12-01

    The most profound mass extinction in the Phanerozoic occurred at the end of the Permian, with global loss of nearly 90% of marine invertebrate species and 70% of terrestrial vertebrate genera. Recent studies suggested that volcanisms represented by the Siberian Trap were most likely cause of the end-Permian extinction. The post-extinction periods in the Early Triassic was characterized by low biodiversity, reduced abundance and size of invertebrates, hiatus in coal deposition, anomalously high sediment fluxes, and large perturbations of the carbon cycle, which have been interpreted as the consequence of persistently unfavorable environmental conditions. However, the time framework for the Early Triassic geological, biological and geochemical events is traditionally established by conodont biostratigraphy, but the absolute duration of condont biozones are not well constrained. In this study, a rock magnetic cyclostratigraphy, based on high-resolution analysis (2440 samples) of magnetic susceptibility (MS) and anhysteretic remanent magnetization (ARM) intensity variations, was developed for the 55.1-m-thick, Early Triassic Daye Formation at the Daxiakou section, Hubei province in South China. The Daye Formation shows exceptionally well-preserved lithological cycles with alternations of thin-bedded mudstone, marl and limestone, which are closely tracked by the MS and ARM variations. Power spectral, wavelet and amplitude modulation (AM) analysis of the ARM and MS series reveal strong evidence for the presence of Milankovitch to sub-Milankovitch frequencies dominated by precession index signal and 4-5 ka cycles. Cycles expressed by variations in MS and ARM were likely controlled by the input of fine-grained detrital magnetite, which in turn may be driven by astronomically induced changes in monsoon intensity in the equatorial eastern Tethys during the Early Triassic greenhouse period. On the basis of the 100-ka tuning results, the astronomically constrained duration of

  18. Lethally Hot Temperatures During the Early Triassic Greenhouse

    NASA Astrophysics Data System (ADS)

    Sun, Yadong; Joachimski, Michael M.; Wignall, Paul B.; Yan, Chunbo; Chen, Yanlong; Jiang, Haishui; Wang, Lina; Lai, Xulong

    2012-10-01

    Global warming is widely regarded to have played a contributing role in numerous past biotic crises. Here, we show that the end-Permian mass extinction coincided with a rapid temperature rise to exceptionally high values in the Early Triassic that were inimical to life in equatorial latitudes and suppressed ecosystem recovery. This was manifested in the loss of calcareous algae, the near-absence of fish in equatorial Tethys, and the dominance of small taxa of invertebrates during the thermal maxima. High temperatures drove most Early Triassic plants and animals out of equatorial terrestrial ecosystems and probably were a major cause of the end-Smithian crisis.

  19. New carbon-isotope evidence from the Polish Basin for a major carbon-cycle perturbation at the Triassic-Jurassic Boundary

    NASA Astrophysics Data System (ADS)

    Pointer, Robyn; Hesselbo, Stephen; Littler, Kate; Pieńkowski, Grzegorz; Hodbod, Marta

    2016-04-01

    Carbon-isotope analysis of fossil plant material from a Polish core provides new evidence of a perturbation to the atmospheric carbon-cycle at the Triassic-Jurassic boundary (~201 Ma). The Triassic-Jurassic boundary was a time of extreme climate change which also coincided with the end-Triassic mass extinction. The new data will allow us to identify climatic changes in the Polish Basin across the Triassic-Jurassic boundary and evaluate these changes on a broader scale by comparison to data from other sites located around the world. The Niekłan borehole core, located in the southern Polish Basin, provides a ~200 metre-long terrestrial record spanning the Rhaetian and Hettangian, including the Triassic-Jurassic boundary (~208-199 Ma). The Niekłan core consists of interbedded fluvial and lacustrine sediments containing preserved plant material and thus provides an excellent opportunity to study both terrestrial palaeoenvironmental changes in the Polish Basin and perturbations in the carbon-cycle more broadly. Carbon-isotope analysis of macrofossil plant material and microscopic woody phytoclasts from the Niekłan core reveals a negative carbon-isotope excursion (CIE) of ~-3‰ at the end of the Rhaetian, before a gradual return to more positive values thereafter. The negative CIE suggests an injection of isotopically-light carbon into the atmosphere occurred just before the Triassic-Jurassic boundary. Likely sources of this carbon include volcanogenic gases, methane released from gas hydrates, or a combination of the two. The negative CIE seen in plant material at Niekłan is also recorded in a variety of geological materials from contemporaneous sites world-wide. These time-equivalent, but geographically separated, records indicate that the negative CIE recorded in the Niekłan plant material is the result of a regional or global carbon-cycle perturbation and is not merely a local signal. Future work will focus on using a range of palaeoenvironmental proxies in

  20. Early Triassic Marine Biotic Recovery: The Predators' Perspective

    PubMed Central

    Scheyer, Torsten M.; Romano, Carlo; Jenks, Jim; Bucher, Hugo

    2014-01-01

    Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis experienced by life on Earth, and the common paradigm persists that the biotic recovery from the extinction event was unusually slow and occurred in a step-wise manner, lasting up to eight to nine million years well into the early Middle Triassic (Anisian) in the oceans, and even longer in the terrestrial realm. Here we survey the global distribution and size spectra of Early Triassic and Anisian marine predatory vertebrates (fishes, amphibians and reptiles) to elucidate the height of trophic pyramids in the aftermath of the end-Permian event. The survey of body size was done by compiling maximum standard lengths for the bony fishes and some cartilaginous fishes, and total size (estimates) for the tetrapods. The distribution and size spectra of the latter are difficult to assess because of preservation artifacts and are thus mostly discussed qualitatively. The data nevertheless demonstrate that no significant size increase of predators is observable from the Early Triassic to the Anisian, as would be expected from the prolonged and stepwise trophic recovery model. The data further indicate that marine ecosystems characterized by multiple trophic levels existed from the earliest Early Triassic onwards. However, a major change in the taxonomic composition of predatory guilds occurred less than two million years after the end-Permian extinction event, in which a transition from fish/amphibian to fish/reptile-dominated higher trophic levels within ecosystems became apparent. PMID

  1. Early Triassic marine biotic recovery: the predators' perspective.

    PubMed

    Scheyer, Torsten M; Romano, Carlo; Jenks, Jim; Bucher, Hugo

    2014-01-01

    Examining the geological past of our planet allows us to study periods of severe climatic and biological crises and recoveries, biotic and abiotic ecosystem fluctuations, and faunal and floral turnovers through time. Furthermore, the recovery dynamics of large predators provide a key for evaluation of the pattern and tempo of ecosystem recovery because predators are interpreted to react most sensitively to environmental turbulences. The end-Permian mass extinction was the most severe crisis experienced by life on Earth, and the common paradigm persists that the biotic recovery from the extinction event was unusually slow and occurred in a step-wise manner, lasting up to eight to nine million years well into the early Middle Triassic (Anisian) in the oceans, and even longer in the terrestrial realm. Here we survey the global distribution and size spectra of Early Triassic and Anisian marine predatory vertebrates (fishes, amphibians and reptiles) to elucidate the height of trophic pyramids in the aftermath of the end-Permian event. The survey of body size was done by compiling maximum standard lengths for the bony fishes and some cartilaginous fishes, and total size (estimates) for the tetrapods. The distribution and size spectra of the latter are difficult to assess because of preservation artifacts and are thus mostly discussed qualitatively. The data nevertheless demonstrate that no significant size increase of predators is observable from the Early Triassic to the Anisian, as would be expected from the prolonged and stepwise trophic recovery model. The data further indicate that marine ecosystems characterized by multiple trophic levels existed from the earliest Early Triassic onwards. However, a major change in the taxonomic composition of predatory guilds occurred less than two million years after the end-Permian extinction event, in which a transition from fish/amphibian to fish/reptile-dominated higher trophic levels within ecosystems became apparent.

  2. Preliminary Earth System Modeling (cGENIE) of Paired Organic and Inorganic Carbon Isotope Records to Investigate Carbon Cycle Behavior During the Triassic-Jurassic Transition

    NASA Astrophysics Data System (ADS)

    Yager, J. A.; Stellmann, J. L.; West, A. J.; Corsetti, F. A.; Berelson, W.; Bottjer, D. J.; Rosas, S.

    2016-12-01

    The stable C isotope composition of marine carbonate and organic C yields information regarding major changes in global carbon cycling over geologic time. Excursions from baseline C isotope compositions during the Late Triassic and early Jurassic coincide with the end-Triassic mass extinction. Much remains to be understood about the global extent of these excursions, and about their causes. Here, we use observations from a record from Northern Peru (Levanto) to generate hypotheses concerning C cycle changes, focusing on comparison to other sections spanning the Triassic-Jurassic boundary. Our observations include a decoupling between organic and inorganic C isotopes in some records, broad similarities in the pattern of excursions between sections, and a potential offset between the major ocean basins (Tethys and Panthalassa) in both inorganic and organic C isotope records. We are currently adapting a spatially resolved Earth System Model (cGENIE) for this time period with the goal of using this model to explore possible mechanistic causes of these observations, aiming to tie the C isotope records to changes in global carbon cycle dynamics at the time.

  3. Early archosauromorph remains from the Permo-Triassic Buena Vista Formation of north-eastern Uruguay

    PubMed Central

    Velozo, Pablo; Meneghel, Melitta; Piñeiro, Graciela

    2015-01-01

    The Permo-Triassic archosauromorph record is crucial to understand the impact of the Permo-Triassic mass extinction on the early evolution of the group and its subsequent dominance in Mesozoic terrestrial ecosystems. However, the Permo-Triassic archosauromorph record is still very poor in most continents and hampers the identification of global macroevolutionary patterns. Here we describe cranial and postcranial bones from the Permo-Triassic Buena Vista Formation of northeastern Uruguay that contribute to increase the meagre early archosauromorph record from South America. A basioccipital fused to both partial exoccipitals and three cervical vertebrae are assigned to Archosauromorpha based on apomorphies or a unique combination of characters. The archosauromorph remains of the Buena Vista Formation probably represent a multi-taxonomic assemblage composed of non-archosauriform archosauromorphs and a ‘proterosuchid-grade’ animal. This assemblage does not contribute in the discussion of a Late Permian or Early Triassic age for the Buena Vista Formation, but reinforces the broad palaeobiogeographic distribution of ‘proterosuchid grade’ diapsids in Permo-Triassic beds worldwide. PMID:25737816

  4. Late Triassic tropical climate of Pangea: Carbon isotopic and other insights into the rise of dinosaurs

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Lindström, S.; Irmis, R. B.; Glasspool, I.; Schaller, M. F.; Dunlavey, M.; Nesbitt, S. J.; Smith, N. D.; Turner, A. H.

    2015-12-01

    The rarity and species-poor nature of early dinosaurs and their relatives at low paleolatitudes persisted for 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New environmental reconstructions from stable carbon isotope ratios of preserved organic matter (δ13Corg), atmospheric pCO2 data based on the δ13C of soil carbonate, palynological, and wildfire data from charcoal from early dinosaur-bearing strata at low paleolatitudes in western North America show that variations in δ13Corg and palynomorph ecotypes are tightly correlated, displaying large and high-frequency excursions. These variations occurred within an environment characterized by elevated and increasing atmospheric pCO2, pervasive wildfires, and rapidly fluctuating extreme climatic conditions. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions until the end-Triassic, the large-bodied, fast-growing tachymetabolic dinosaurian herbivores were not. We hypothesize that the greater resources required by the herbivores made it difficult from them to adapt to the unstable conditions at low paleolatitudes in the Late Triassic.

  5. New Early Jurassic Tetrapod Assemblages Constrain Triassic-Jurassic Tetrapod Extinction Event

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Shubin, N. H.; Anders, M. H.

    1987-08-01

    The discovery of the first definitively correlated earliest Jurassic (200 million years before present) tetrapod assemblage (Fundy basin, Newark Supergroup, Nova Scotia) allows reevaluation of the duration of the Triassic-Jurassic tetrapod extinction event. Present are tritheledont and mammal-like reptiles, prosauropod, theropod, and ornithischian dinosaurs, protosuchian and sphenosuchian crocodylomorphs, sphenodontids, and hybodont, semionotid, and palaeonisciform fishes. All of the families are known from Late Triassic and Jurassic strata from elsewhere; however, pollen and spore, radiometric, and geochemical correlation indicate an early Hettangian age for these assemblages. Because all ``typical Triassic'' forms are absent from these assemblages, most Triassic-Jurassic tetrapod extinctions occurred before this time and without the introduction of new families. As was previously suggested by studies of marine invertebrates, this pattern is consistent with a global extinction event at the Triassic-Jurassic boundary. The Manicouagan impact structure of Quebec provides dates broadly compatible with the Triassic-Jurassic boundary and, following the impact theory of mass extinctions, may be implicated in the cause.

  6. Molecular carbon isotope variations in core samples taken at the Permian-Triassic boundary layers in southern China

    NASA Astrophysics Data System (ADS)

    Wang, Ruiliang; Zhang, Shuichang; Brassell, Simon; Wang, Jiaxue; Lu, Zhengyuan; Ming, Qingzhong; Wang, Xiaomei; Bian, Lizeng

    2012-07-01

    Stable carbon isotope composition (δ13C) of carbonate sediments and the molecular (biomarker) characteristics of a continuous Permian-Triassic (PT) layer in southern China were studied to obtain geochemical signals of global change at the Permian-Triassic boundary (PTB). Carbonate carbon isotope values shifted toward positive before the end of the Permian period and then shifted negative above the PTB into the Triassic period. Molecular carbon isotope values of biomarkers followed the same trend at and below the PTB and remained negative in the Triassic layer. These biomarkers were acyclic isoprenoids, ranging from C15 to C40, steranes (C27 dominates) and terpenoids that were all significantly more abundant in samples from the Permian layer than those from the Triassic layer. The Triassic layer was distinguished by the dominance of higher molecular weight (waxy) n-alkanes. Stable carbon isotope values of individual components, including n-alkanes and acyclic isoprenoids such as phytane, isop-C25, and squalane, are depleted in δ13C by up to 8-10‰ in the Triassic samples as compared to the Permian. Measured molecular and isotopic variations of organic matter in the PT layers support the generally accepted view of Permian oceanic stagnation followed by a massive upwelling of toxic deep waters at the PTB. A series of large-scale (global) outgassing events may be associated with the carbon isotope shift we measured. This is also consistent with the lithological evidence we observed of white thin-clay layers in this region. Our findings, in context with a generally accepted stagnant Permian ocean, followed by massive upwelling of toxic deep waters might be the major causes of the largest global mass extinction event that occurred at the Permian-Triassic boundary.

  7. Carbon and oxygen isotope variations of the Middle-Late Triassic Al Aziziyah Formation, northwest Libya

    NASA Astrophysics Data System (ADS)

    Moustafa, Mohamed S. H.; Pope, Michael C.; Grossman, Ethan L.; Mriheel, Ibrahim Y.

    2016-06-01

    This study presents the δ13C and δ18O records from whole rock samples of the Middle-Late Triassic (Ladinian-Carnian) Al Aziziyah Formation that were deposited on a gently sloping carbonate ramp within the Jifarah Basin of Northwest Libya. The Al Aziziyah Formation consists of gray limestone, dolomite, and dolomitic limestone interbedded with shale. The Ghryan Dome and Kaf Bates sections were sampled and analyzed for carbon and oxygen isotope chemostratigraphy to integrate high-resolution carbon isotope data with an outcrop-based stratigraphy, to provide better age control of the Al Aziziyah Formation. This study also discusses the relation between the facies architecture of the Al Aziziyah Formation and the carbon isotope values. Seven stages of relative sea level rise and fall within the Ghryan Dome were identified based on facies stacking patterns, field observations and carbon stable isotopes. The Al Aziziyah Formation δ13C chemostratigraphic curve can be partially correlated with the Triassic global δ13C curve. This correlation indicates that the Al Aziziyah Formation was deposited during the Ladinian and early Carnian. No straight-forward relationship is seen between δ13C and relative sea level probably because local influences complicated systematic environmental and diagenetic isotopic effects associated with sea level change.

  8. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna

    PubMed Central

    Brayard, Arnaud; Krumenacker, L. J.; Botting, Joseph P.; Jenks, James F.; Bylund, Kevin G.; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A.; Thomazo, Christophe; Escarguel, Gilles

    2017-01-01

    In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage—the Paris Biota—from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200–million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era. PMID:28246643

  9. Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna.

    PubMed

    Brayard, Arnaud; Krumenacker, L J; Botting, Joseph P; Jenks, James F; Bylund, Kevin G; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A; Thomazo, Christophe; Escarguel, Gilles

    2017-02-01

    In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200-million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era.

  10. Using Triple Oxygen Isotope Analyses of Biogenic Carbonate to Reconstruct Early Triassic Ocean Oxygen Isotopic Values and Temperatures

    NASA Astrophysics Data System (ADS)

    Gibbons, J. A.; Sharp, Z. D.; Atudorei, V.

    2017-12-01

    The calcite-water triple oxygen isotope fractionation is used to determine isotopic equilibrium and ancient ocean oxygen isotopic values and temperatures. Unlike conventional δ18O analysis where the formation water's isotopic value is assumed, paired δ17O-δ18O measurements allow for the water's isotopic composition to be calculated because there is only one unique solution for equilibrium fractionation using Δ17O-δ18O values (where Δ17O=δ17O-0.528δ18O). To a first approximation, the calcite-water equilibrium fractionation factor, θ (where θ=ln17α/ln18α), varies with temperature by 0.00001/°. The calcite-water equilibrium fractionation line was determined at two temperatures, 30° and 0°, by using modern carbonate samples that formed in ocean water with a δ18O value of 0‰. The θ values for the 30° and 0° samples are 0.52515 and 0.52486, respectively. Oxygen values were measured using complete fluorination in nickel tubes with BrF5 as the reaction reagent. We calibrated all oxygen values to the SMOW-SLAP scale by measuring SMOW, SLAP, San Carlos olivine, NBS-18, NBS-19, and PDB. The triple oxygen isotope calcite-water equilibrium fractionation line was applied to well preserved Early Triassic ammonite shells from the Western United States. Based on paired δ17O-δ18O measurements, the samples did not form in equilibrium with an ice-free ocean with an oxygen isotopic value of -1‰ or the modern ocean value of 0‰. Assuming the calcite is still primary and formed in equilibrium with the ocean water, our data indicate that the δ18O value of the ocean in the early Triassic was 3-5‰ lower than modern. Samples from the Smithian thermal maximum formed in water 10° warmer than samples from after the thermal maximum. Paired δ17O-δ18O measurements of pristine ancient carbonates may provide a better understanding of past ocean conditions during climate change events.

  11. Examining early-diagenetic processes as a chief sink for carbonate in the aftermath of the Triassic-Jurassic crisis: Hettangian concretions of Muller Canyon, NV, USA

    NASA Astrophysics Data System (ADS)

    Ritterbush, K. A.; Loyd, S. J.; Corsetti, F. A.; Bottjer, D. J.; Berelson, W.

    2015-12-01

    Tectonic, climate, and biotic changes across the Triassic-Jurassic transition appear to have resulted in a "carbonate gap" in the rock record of many shallow marine environments. Ecological state changes documented in near-shore settings in both Tethys and Panthassa show an earliest Jurassic switch to sponge-dominated biosiliceous sedimentation regimes. The Sunrise Formation exposed in the Gabbs Valley Range of Nevada (USA) records a peculiar juxtaposition of Hettangian carbonate-rich strata that contain demosponge spicules as the primary bioclast. It is unclear 1) why biocalcifiers were not recorded in higher abundance in this near-shore back-arc basin setting; 2) why carbonates formed following a biosiliceous regime; and 3) what the lithology indicates about post-extinction marine geochemical dynamics. Detailed sedimentological, paleontological, and geochemical analyses were applied to a 20-m thick sequence of limestone and chert in the Muller Canyon area, which is the Auxiliary Stratotype for the Triassic/Jurassic boundary. Concretion anatomy, bioclast microfacies, and oxygen and carbon isotopic signatures all indicate the Hettangian limestones are chiefly diagenetic concretions that all formed very shallowly, some essentially at the sediment-water interface. We infer that local bottom waters and/or pore waters were supersaturated with respect to calcium carbonate and that this contributed to widespread concretion sedimentation independent of biomineralization. Ecological incumbency of the demosponge meadows may have been supported by concurrent augmentation of marine silica concentration and this apparently proved inhospitable to re-colonization of benthic biocalcifying macrofauna. Together the biotic and lithologic consequences of the extinction represent million-year scale ecological restructuring and highlight early diagenetic precipitation as a major sink in long-term regional carbonate cycling. Perhaps the widespread 'carbonate gap' is actually a gap in

  12. Footprints pull origin and diversification of dinosaur stem lineage deep into Early Triassic.

    PubMed

    Brusatte, Stephen L; Niedźwiedzki, Grzegorz; Butler, Richard J

    2011-04-07

    The ascent of dinosaurs in the Triassic is an exemplary evolutionary radiation, but the earliest phase of dinosaur history remains poorly understood. Body fossils of close dinosaur relatives are rare, but indicate that the dinosaur stem lineage (Dinosauromorpha) originated by the latest Anisian (ca 242-244 Ma). Here, we report footprints from the Early-Middle Triassic of Poland, stratigraphically well constrained and identified using a conservative synapomorphy-based approach, which shifts the origin of the dinosaur stem lineage back to the Early Olenekian (ca 249-251 Ma), approximately 5-9 Myr earlier than indicated by body fossils, earlier than demonstrated by previous footprint records, and just a few million years after the Permian/Triassic mass extinction (252.3 Ma). Dinosauromorph tracks are rare in all Polish assemblages, suggesting that these animals were minor faunal components. The oldest tracks are quadrupedal, a morphology uncommon among the earliest dinosauromorph body fossils, but bipedality and moderately large body size had arisen by the Early Anisian (ca 246 Ma). Integrating trace fossils and body fossils demonstrates that the rise of dinosaurs was a drawn-out affair, perhaps initiated during recovery from the Permo-Triassic extinction.

  13. Geomicrobiological perspective on the pattern and causes of the 5-million-year Permo/Triassic biotic crisis

    NASA Astrophysics Data System (ADS)

    Xie, Shucheng; Wang, Yongbiao

    2011-03-01

    The pattern and causes of Permo/Triassic biotic crisis were mainly documented by faunal and terrestrial plant records. We reviewed herein the geomicrobiological perspective on this issue based on the reported cyanobacterial record. Two episodic cyanobacterial blooms were observed to couple with carbon isotope excursions and faunal mass extinction at Meishan section, suggestive of the presence of at least two episodic biotic crises across the Permian-Triassic boundary (PTB). The two episodes of cyanobacterial blooms, carbon isotope excursions and faunal mass extinction were, respectively, identified in several sections of the world, inferring the presence of two global changes across the PTB. Close associations among the three records (cyanobacterial bloom, shift in carbon isotope composition, and faunal extinction) were subsequently observed in three intervals in the Early Triassic, the protracted recovery period as previously thought, inferring the occurrence of more episodes of global changes. Spatiotemporal association of cyanobacterial blooms with volcanic materials in South China, and probably in South-east Asia, infers their causal relationship. Volcanism is believed to trigger the biotic crisis in several ways and to cause the close association among microbial blooms, the carbon isotope excursions and faunal mass extinctions in four intervals from the latest Permian to the Early Triassic. The major episodes of the well-known Siberian flood eruption are proposed to be responsible for the extinctions in the Early Triassic, but their synchronicity with the end-Permian extinction awaits more precise dating data to confirm. Geomicrobial records are thus suggestive of a long-term episodic biotic crisis (at least four episodes) lasting from the latest Permian to the end of the Early Triassic, induced by the global volcanic eruptions and sea level changes during Pangea formation.

  14. Large vertical δ13CDIC gradients in Early Triassic seas of the South China craton: Implications for oceanographic changes related to Siberian Traps volcanism

    NASA Astrophysics Data System (ADS)

    Song, Huyue; Tong, Jinnan; Algeo, Thomas J.; Horacek, Micha; Qiu, Haiou; Song, Haijun; Tian, Li; Chen, Zhong-Qiang

    2013-06-01

    Vertical gradients in the δ13C of seawater dissolved inorganic carbon (Δδ13CDIC) can be estimated for paleomarine systems based on δ13Ccarb data from sections representing a range of depositional water depths. An analysis of eight Lower Triassic sections from the northern Yangtze Platform and Nanpanjiang Basin, representing water depths of ~ 50 to 500 m, allowed reconstruction of Δδ13CDIC in Early Triassic seas of the South China craton for seven time slices representing four negative (N) and three positive (P) carbon-isotope excursions: 8.5‰ (N1), 5.8‰ (P1), 3.5‰ (N2), 6.5‰ (P2), 7.8‰ (N3), - 1.9‰ (P3), and 2.2‰ (N4). These values are much larger than vertical δ13CDIC gradients in the modern ocean (~ 1-3‰) due to intensified stratification and reduced vertical mixing in Early Triassic seas. Peaks in Δδ13CDIC around the PTB (N1) and in the early to mid-Smithian (P2-N3) coincided with episodes of strong climatic warming, reduced marine productivity, and expanded ocean anoxia. The Dienerian-Smithian boundary marks the onset of a major mid-Early Triassic disturbance, commencing ~ 1 Myr after the latest Permian mass extinction, that we link to a second eruptive stage of the Siberian Traps. Inhospitable oceanic conditions generally persisted until the early Spathian, when strong climatic cooling caused re-invigoration of global-ocean circulation, leading to an interval of negative Δδ13CDIC values and a sharp increase in δ13Ccarb driven by upwelling of nutrient-rich deepwaters. These developments marked the end of the main eruptive stage of the Siberian Traps.

  15. Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany

    NASA Astrophysics Data System (ADS)

    Li, Mingsong; Ogg, James; Zhang, Yang; Huang, Chunju; Hinnov, Linda; Chen, Zhong-Qiang; Zou, Zhuoyan

    2016-05-01

    The timing of the end-Permian mass extinction and subsequent prolonged recovery during the Early Triassic Epoch can be established from astronomically controlled climate cycles recorded in continuous marine sedimentary sections. Astronomical-cycle tuning of spectral gamma-ray logs from biostratigraphically-constrained cyclic stratigraphy through marine sections at Meishan, Chaohu, Daxiakou and Guandao in South China yields an integrated time scale for the Early Triassic, which is consistent with scaling of magnetostratigraphy from climatic cycles in continental deposits of the Germanic Basin. The main marine mass extinction interval at Meishan is constrained to less than 40% of a 100-kyr (kilo-year) cycle (i.e., <40 kyr) and the sharp negative excursion in δ13C is estimated to have lasted <6 kyr. The sharp positive shift in δ13C from - 2 ‰ to 4‰ across the Smithian-Spathian boundary at Chaohu was completed in 50 kyr. The earliest marine reptiles in the Mesozoic at Chaohu that are considered to represent a significant recovery of marine ecosystems did not appear until 4.7 myr (million years) after the end-Permian extinction. The durations of the Griesbachian, Dienerian, Smithian and Spathian substages, including the uncertainty in placement of widely used conodont biostratigraphic datums for their boundaries, are 1.4 ± 0.1, 0.6 ± 0.1, 1.7 ± 0.1 and 1.4 ± 0.1 myr, implying a total span for the Early Triassic of 5.1 ± 0.1 myr. Therefore, relative to an assigned 251.902 ± 0.024 Ma for the Permian-Triassic boundary from the Meishan GSSP, the ages for these substage boundaries are 250.5 ± 0.1 Ma for base Dienerian, 249.9 ± 0.1 Ma for base Smithian (base of Olenekian stage), 248.2 ± 0.1 Ma for base Spathian, and 246.8 ± 0.1 Ma for the base of the Anisian Stage. This astronomical-calibrated timescale provides rates for the recurrent carbon isotope excursions and for trends in sedimentation accumulation through the Early Triassic of studied sections in South

  16. The Early to Middle Triassic continental-marine transition of NW Bulgaria: sedimentology, palynology and sequence stratigraphy

    NASA Astrophysics Data System (ADS)

    Ajdanlijsky, George; Götz, Annette E.; Strasser, André

    2018-04-01

    Sedimentary facies and cycles of the Triassic continental-marine transition of NW Bulgaria are documented in detail from reference sections along the Iskar river gorge between the villages of Tserovo and Opletnya. The depositional environments evolved from anastomosing and meandering river systems in the Petrohan Terrigenous Group to mixed fluvial and tidal settings in the Svidol Formation, and to peritidal and shallow-marine conditions in the Opletnya Member of the Mogila Formation. For the first time, the palynostratigraphic data presented here allow for dating the transitional interval and for the precise identification of a major sequence boundary between the Petrohan Terrigenous Group and the Svidol Formation (Iskar Carbonate Group). This boundary most probably corresponds to the major sequence boundary Ol4 occurring in the upper Olenekian of the Tethyan realm and thus enables interregional correlation. The identification of regionally traceable sequence boundaries based on biostratigraphic age control is a first step towards a more accurate stratigraphic correlation and palaeogeographic interpretation of the Early to early Middle Triassic in NW Bulgaria.

  17. Early Triassic alternative ecological states driven by anoxia, hyperthermals, and erosional pulses following the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Pietsch, C.; Petsios, E.; Bottjer, D. J.

    2015-12-01

    The end-Permian mass extinction, 252 million years ago, was the most devastating loss of biodiversity in Earth's history. Massive volcanic eruptions of the Siberian Traps and the concurrent burning of coal, carbonate, and evaporite deposits emplaced greenhouse and toxic gasses. Hyperthermal events of the surface ocean, up to 40°C, led to reduced gradient-driven ocean circulation which yielded extensive equatorial oxygen minimum zones. Today, anthropogenic greenhouse gas production is outpacing carbon input modeled for the end-Permian mass extinction, which suggests that modern ecosystems may yet experience a severe biotic crisis. The Early Triassic records the 5 million year aftermath of the end-Permian mass extinction and is often perceived as an interval of delayed recovery. We combined a new, high resolution carbon isotope record, sedimentological analysis, and paleoecological collections from the Italian Werfen Formation to fully integrate paleoenvironmental change with the benthic ecological response. We find that the marine ecosystem experienced additional community restructuring events due to subsequent hyperthermal events and pulses of erosion. The benthic microfauna and macrofauna both contributed to disaster communities that initially rebounded in the earliest Triassic. 'Disaster fauna' including microbialites, microconchids, foraminifera, and "flat clams" took advantage of anoxic conditions in the first ~500,000 years, dominating the benthic fauna. Later, in the re-oxygenated water column, opportunistic disaster groups were supplanted by a more diverse, mollusc-dominated benthic fauna and a complex ichnofauna. An extreme temperature run-up beginning in the Late Dienerian led to an additional hyperthermal event in the Late-Smithian which co-occurred with increased humidity and terrestrial run-off. Massive siliciclastic deposits replaced carbonate deposition which corresponds to the infaunalization of the benthic fauna. The disaster taxa dominated

  18. High sedimentation rates in the Early Triassic after latest Permian mass extinction: Carbonate production is main factor in non-Arctic regions

    NASA Astrophysics Data System (ADS)

    Horacek, Micha; Brandner, Rainer

    2016-04-01

    A substantial change in sedimentation rates towards higher values has been documented from the Late Permian to the Lower Triassic. Although it is assumed and also has been shown that the deposition of siliciclastic material increased in the Lower Triassic due to stronger erosion because of loss of land cover and increased chemical and physical weathering with extreme climate warming, the main sediment production occurred by marine carbonate production. Still, carbonate production might have been significantly influenced by weathering and erosion in the hinterland, as the transport of dust by storms into the ocean water probably was a main nutrient source for microbial carbonate producers, because "normal" nutrient supply by ocean circulation, i. e. upwelling was strongly reduced due to the elevated temperatures resulting in water-column stratification . Sediment accumulation was also clearly influenced by the paleo-geographic and latitudinal position, with lower carbonate production and sedimentation rates in moderate latitudes. The existence of a "boundary clay" and microbial carbonate mounds and layers in the immediate aftermath of the latest Permian mass extinction points towards a development from a short-timed acid ocean water - resulting in a carbonate production gap and the deposition of the boundary clay towards the deposition of the microbial mounds and layers due to the microbial production of micro-environments with higher alkalinity allowing the production of carbonate. After the return of the ocean water to normal alkalinity planktic production of carbonate resulted in a very high sedimentation rate, especially taking into account the absence of carbonate producing eukaryotic algae and animals.

  19. Early Triassic development of a foreland basin in the Canadian high Arctic: Implications for a Pangean Rim of Fire

    NASA Astrophysics Data System (ADS)

    Hadlari, Thomas; Dewing, Keith; Matthews, William A.; Alonso-Torres, Daniel; Midwinter, Derrick

    2018-06-01

    Following the amalgamation of Laurasia and Gondwana to form Pangea, some Triassic tectonic models show an encircling arc system called the "Pangean Rim of Fire". Here we show that the stratigraphy and Early Triassic detrital zircon provenance of the Sverdrup Basin in the Canadian Arctic is most consistent with deposition in a retro-arc foreland basin. Late Permian and Early Triassic volcanism was accompanied by relatively high rates of subsidence leading to a starved basin with volcanic input from a magmatic arc to the northwest. The mostly starved basin persisted through the Middle and Late Triassic with nearly continuous input of volcanic ash recorded as bentonites on the northwestern edge of the basin. In the latest Triassic it is interpreted that decreasing subsidence and a significant influx of sand-grade sediment when the arc was exhumed led to filling of the basin at the end of an orogenic cycle. Combined with other hints of Early Triassic arc activity along the western margin of Laurentia we propose that the Pangean Rim of Fire configuration spanned the entire Triassic. This proposed configuration represents the ring of external subduction zones that some models suggest are necessary for the breakup of supercontinents such as Pangea.

  20. The Sail-Backed Reptile Ctenosauriscus from the Latest Early Triassic of Germany and the Timing and Biogeography of the Early Archosaur Radiation

    PubMed Central

    Butler, Richard J.; Brusatte, Stephen L.; Reich, Mike; Nesbitt, Sterling J.; Schoch, Rainer R.; Hornung, Jahn J.

    2011-01-01

    Background Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3–247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. Methodology/Principal Findings We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the ‘sail’ of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Conclusions/Significance Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian–Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which

  1. The sail-backed reptile Ctenosauriscus from the latest Early Triassic of Germany and the timing and biogeography of the early archosaur radiation.

    PubMed

    Butler, Richard J; Brusatte, Stephen L; Reich, Mike; Nesbitt, Sterling J; Schoch, Rainer R; Hornung, Jahn J

    2011-01-01

    Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3-247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the 'sail' of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian-Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which appear to have been the first global radiation of archosaurs.

  2. Petrography and geochemistry of the Permian-Triassic boundary interval, Yangou section, South China: Implications for early Griesbachian seawater δ13CDIC gradient with depth

    NASA Astrophysics Data System (ADS)

    Li, Rong

    2017-04-01

    The carbon isotopic composition (δ13Ccarb) recorded in shelf carbonates has been widely used as a proxy for the isotopic composition (δ13CDIC) of surface ocean water to establish paleocean chemistry and circulation patterns. However, δ13Ccarb values do not necessarily preserve the δ13CDIC, due to post-depositional diagenetic alteration. In order to examine the early Griesbachian surface-to-deep δ13CDIC gradient with depth, the diagenetic features of the Permian-Triassic boundary interval (beds 18 to 35) from Yangou section, located in the Yangtze carbonate platform interior, South China, are delineated to compare with those of the slope GSSP Meishan section. The petrographic and geochemical observations show that the early Griesbachian carbonates in the Yangou section underwent pervasive dolomitization in its early diagenetic history. Three types of early replacement dolomites and one type of dolomite cement are present. The dolomite crystals display internal zonation, with high-Ca calcian dolomite (HCD) core being encased successively by calcite and an outermost Fe-rich HCD cortex. The initial dolomitization took place in anoxic seawater, and underwent subsequent diagenetic system involved with meteoric water. The two most negative δ13C values in claystones of Beds 21-3 and 35 are probably related to meteoric diagenesis. Above and/or below the meteorically influenced beds, the dolomite and calcite have uniformly positive δ13C values. The primary carbon isotopic compositions are probably preserved in the early Griesbachian carbonate from the platform Yangou section, which could probably be related to the poor formation of the outermost Fe-rich HCD cortex. Compared to the slope carbonate from the Meishan section, the platform carbonate from the Yangou section has lower primary δ13Ccarb values. It is estimated that the δ13CDIC gradient with depth between Yangou and Meishan is less than the previously suggested. The results highlight the need for evaluation

  3. Duration of and decoupling between carbon isotope excursions during the end-Triassic mass extinction and Central Atlantic Magmatic Province emplacement

    NASA Astrophysics Data System (ADS)

    Yager, Joyce A.; West, A. Joshua; Corsetti, Frank A.; Berelson, William M.; Rollins, Nick E.; Rosas, Silvia; Bottjer, David J.

    2017-09-01

    Changes in δ13Ccarb and δ13Corg from marine strata occur globally in association with the end-Triassic mass extinction and the emplacement of the Central Atlantic Magmatic Province (CAMP) during the break up of Pangea. As is typical in deep time, the timing and duration of these isotopic excursions has remained elusive, hampering attempts to link carbon cycle perturbations to specific processes. Here, we report δ13Ccarb and δ13Corg from Late Triassic and Early Jurassic strata near Levanto, Peru, where intercalated dated ash beds permit temporal calibration of the carbon isotope record. Both δ13Ccarb and δ13Corg exhibit a broad positive excursion through the latest Triassic into the earliest Jurassic. The first order positive excursion in δ13Corg is interrupted by a negative shift noted in many sections around the world coincident with the extinction horizon. Our data indicate that the negative excursion lasts 85 ± 25 kyrs, longer than inferred by previous studies based on cyclostratigraphy. A 260 ± 80 kyr positive δ13Corg shift follows, during which the first Jurassic ammonites appear. The overall excursion culminates in a return to pre-perturbation carbon isotopic values over the next 1090 ± 70 kyrs. Via chronologic, isotopic, and biostratigraphic correlation to other successions, we find that δ13Ccarb and δ13Corg return to pre-perturbation values as CAMP volcanism ceases and in association with the recovery of pelagic and benthic biota. However, the initiation of the carbon isotope excursion at Levanto predates the well-dated CAMP sills from North America, indicating that CAMP may have started earlier than thought based on these exposures, or that the onset of carbon cycle perturbations was not related to CAMP.

  4. Tethys- and Atlas-related deformations in the Triassic Basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J.S.; Moore, S.R.; Quarles, A.I.

    1995-08-01

    Petroleum provinces of Algeria can be divided into Paleozoic and Mesozoic domains. Paleozoic basins are located on the Gondwanaland paleo-continent where the last significant tectonic episode is ascribed to the Late Paleozoic Hercynian Orogeny. Mesozoic basins are located on the south margin of the Neo-Tethyan seaway. These basins were subject to varying degrees of contractional deformation during the Cenozoic Atlas Orogeny. The Triassic Basin of Algeria is a Tethyan feature located above portions of the Paleozoic Oued M`ya and Ghadames Basins. Paleozoic strata are deeply truncated at the Hercynian Unconformity on a broad arch between the older basins. This ismore » interpreted to reflect rift margin rebound during Carboniferous time. Continental Lower Triassic sediments were deposited in a series of northeast trending basins which opened as the Neo-Tethys basin propagated from east to west between Africa and Europe. Middle Triassic marine transgression from the east resulted in evaporate deposition persisting through the Early Jurassic. Passive margin subsidence associated with carbonate marine deposition continued through the Early Cretaceous. Several zones of coeval wrench deformation cross the Atlas and adjoining regions. In the Triassic Basin, inversion occurred before the end of the Early Cretaceous. This episode created discrete uplifts, where major hydrocarbon accumulations have been discovered, along northeast trending lineaments. During the Eocene, the main phase of the Atlas Orogeny produced low amplitude folding of Jurassic and Cretaceous sediments. The folds detach within the Triassic-Jurassic evaporate interval. Many of these folds have been tested without success, as the deeper reservoirs do not show structural closure.« less

  5. Recovery vs. Restructuring: Establishing Ecologic Patterns in Early and Middle Triassic Paleocommunities (Invited)

    NASA Astrophysics Data System (ADS)

    Fraiser, M.; Dineen, A.; Sheehan, P.

    2013-12-01

    Published data has been interpreted as indicating that marine ecological devastation following the end-Permian mass extinction was protracted and may have lasted 5 million years into the Middle Triassic (Anisian). However, a review of previous literature shows that understanding of biotic recovery is typically based on only a few components of the ecosystem, such as on taxonomic diversity, a single genus/phylum, or facies. Typically, paleocommunities are considered fully recovered when dominance and diversity are regained and normal ecosystem functioning has resumed. However, in addition to the biodiversity crash at the end of the Permian, taxonomic and ecologic structure also changed,with the extinction marking the faunal shift from brachiopod-rich Paleozoic Evolutionary Fauna (EF) to the mollusc-rich Modern EF. This suggests that the extreme reorganizational nature of the Triassic does not adhere to the standard definition of recovery, which is a return to previous conditions. Thus, we propose the term 'restructuring' to describe this interval, as Early and Middle Triassic communities might not exhibit the typical characteristics of a 'normal' Permian one. To more fully characterize Triassic ecologic restructuring, paleoecologists should take into account functional diversity and redundancy. We quantified functional richness and regularity in four different paleocommunities from classic Permian and Triassic sections. Functional richness was low in paleocommunities after the end-Permian mass extinction, but increased to high levels by the Middle Triassic. In contrast, functional regularity was low in the Middle Permian, but high in all the Triassic paleocommunities. The change from low to high functional regularity/redundancy at the P/T boundary may be a factor of the highly stressful Triassic environmental conditions (i.e. anoxia, hypercapnia), as high regularity in a community can boost survival in harsh environments. Parameters such as these will more

  6. Sedimentary record of subsidence pulse at the Triassic/Jurassic boundary interval in the Slovenian Basin (eastern Southern Alps)

    NASA Astrophysics Data System (ADS)

    Rožič, Boštjan; Jurkovšek, Tea Kolar; Rožič, Petra Žvab; Gale, Luka

    2017-08-01

    In the Alpine Realm the Early Jurassic is characterized by the disintegration and partial drowning of vast platform areas. In the eastern part of the Southern Alps (present-day NW Slovenia), the Julian Carbonate Platform and the adjacent, E-W extending Slovenian Basin underwent partial disintegration, drowning and deepening from the Pliensbachian on, whereas only nominal environmental changes developed on the large Dinaric (Friuli, Adriatic) Carbonate Platform to the south (structurally part of the Dinarides). These events, however, were preceded by an earlier - and as yet undocumented extensional event - that took place near the Triassic/Jurassic boundary. This paper provides evidence of an accelerated subsidence from four selected areas within the Slovenian Basin, which show a trend of eastwardly-decreasing deformation. In the westernmost (Mrzli vrh) section - the Upper Triassic platform-margin - massive dolomite is overlain by the earliest Jurassic toe-of-slope carbonate resediments and further, by basin-plain micritic limestone. Further east (Perbla and Liščak sections) the Triassic-Jurassic transition interval is marked by an increase in resedimented carbonates. We relate this to the increasing inclination and segmentation of the slope and adjacent basin floor. The easternmost (Mt. Porezen) area shows a rather monotonous, latest Triassic-Early Jurassic basinal sedimentation. However, changes in the thickness of the Hettangian-Pliensbachian Krikov Formation point to a tilting of tectonic blocks within the basin area. Lateral facies changes at the base of the formation indicate that the tilting occurred at and/or shortly after the Triassic/Jurassic boundary

  7. A gigantic nothosaur (Reptilia: Sauropterygia) from the Middle Triassic of SW China and its implication for the Triassic biotic recovery

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Hu, Shi-Xue; Rieppel, Olivier; Jiang, Da-Yong; Benton, Michael J.; Kelley, Neil P.; Aitchison, Jonathan C.; Zhou, Chang-Yong; Wen, Wen; Huang, Jin-Yuan; Xie, Tao; Lv, Tao

    2014-11-01

    The presence of gigantic apex predators in the eastern Panthalassic and western Tethyan oceans suggests that complex ecosystems in the sea had become re-established in these regions at least by the early Middle Triassic, after the Permian-Triassic mass extinction (PTME). However, it is not clear whether oceanic ecosystem recovery from the PTME was globally synchronous because of the apparent lack of such predators in the eastern Tethyan/western Panthalassic region prior to the Late Triassic. Here we report a gigantic nothosaur from the lower Middle Triassic of Luoping in southwest China (eastern Tethyan ocean), which possesses the largest known lower jaw among Triassic sauropterygians. Phylogenetic analysis suggests parallel evolution of gigantism in Triassic sauropterygians. Discovery of this gigantic apex predator, together with associated diverse marine reptiles and the complex food web, indicates global recovery of shallow marine ecosystems from PTME by the early Middle Triassic.

  8. A gigantic nothosaur (Reptilia: Sauropterygia) from the Middle Triassic of SW China and its implication for the Triassic biotic recovery.

    PubMed

    Liu, Jun; Hu, Shi-Xue; Rieppel, Olivier; Jiang, Da-Yong; Benton, Michael J; Kelley, Neil P; Aitchison, Jonathan C; Zhou, Chang-Yong; Wen, Wen; Huang, Jin-Yuan; Xie, Tao; Lv, Tao

    2014-11-27

    The presence of gigantic apex predators in the eastern Panthalassic and western Tethyan oceans suggests that complex ecosystems in the sea had become re-established in these regions at least by the early Middle Triassic, after the Permian-Triassic mass extinction (PTME). However, it is not clear whether oceanic ecosystem recovery from the PTME was globally synchronous because of the apparent lack of such predators in the eastern Tethyan/western Panthalassic region prior to the Late Triassic. Here we report a gigantic nothosaur from the lower Middle Triassic of Luoping in southwest China (eastern Tethyan ocean), which possesses the largest known lower jaw among Triassic sauropterygians. Phylogenetic analysis suggests parallel evolution of gigantism in Triassic sauropterygians. Discovery of this gigantic apex predator, together with associated diverse marine reptiles and the complex food web, indicates global recovery of shallow marine ecosystems from PTME by the early Middle Triassic.

  9. A gigantic nothosaur (Reptilia: Sauropterygia) from the Middle Triassic of SW China and its implication for the Triassic biotic recovery

    PubMed Central

    Liu, Jun; Hu, Shi-xue; Rieppel, Olivier; Jiang, Da-yong; Benton, Michael J.; Kelley, Neil P.; Aitchison, Jonathan C.; Zhou, Chang-yong; Wen, Wen; Huang, Jin-yuan; Xie, Tao; Lv, Tao

    2014-01-01

    The presence of gigantic apex predators in the eastern Panthalassic and western Tethyan oceans suggests that complex ecosystems in the sea had become re-established in these regions at least by the early Middle Triassic, after the Permian-Triassic mass extinction (PTME). However, it is not clear whether oceanic ecosystem recovery from the PTME was globally synchronous because of the apparent lack of such predators in the eastern Tethyan/western Panthalassic region prior to the Late Triassic. Here we report a gigantic nothosaur from the lower Middle Triassic of Luoping in southwest China (eastern Tethyan ocean), which possesses the largest known lower jaw among Triassic sauropterygians. Phylogenetic analysis suggests parallel evolution of gigantism in Triassic sauropterygians. Discovery of this gigantic apex predator, together with associated diverse marine reptiles and the complex food web, indicates global recovery of shallow marine ecosystems from PTME by the early Middle Triassic. PMID:25429609

  10. Trophic network models explain instability of Early Triassic terrestrial communities

    PubMed Central

    Roopnarine, Peter D; Angielczyk, Kenneth D; Wang, Steve C; Hertog, Rachel

    2007-01-01

    Studies of the end-Permian mass extinction have emphasized potential abiotic causes and their direct biotic effects. Less attention has been devoted to secondary extinctions resulting from ecological crises and the effect of community structure on such extinctions. Here we use a trophic network model that combines topological and dynamic approaches to simulate disruptions of primary productivity in palaeocommunities. We apply the model to Permian and Triassic communities of the Karoo Basin, South Africa, and show that while Permian communities bear no evidence of being especially susceptible to extinction, Early Triassic communities appear to have been inherently less stable. Much of the instability results from the faster post-extinction diversification of amphibian guilds relative to amniotes. The resulting communities differed fundamentally in structure from their Permian predecessors. Additionally, our results imply that changing community structures over time may explain long-term trends like declining rates of Phanerozoic background extinction PMID:17609191

  11. Early Late Triassic Subduction in the Northern Branch of Neotethys?: Petrological and Paleontological Constraints from the middle Carnian basalts in the Lycian Nappes

    NASA Astrophysics Data System (ADS)

    Sayit, K.; Göncüoglu, M. C.; Tekin, U. K.

    2015-12-01

    The Lycian Nappes, SW Anatolia, are represented by a stack of thrust sheets derived from the northern branch of Neotethys (i.e. Izmir-Ankara Ocean) and the northern margin of the Tauride-Anatolide platform. The Turunç Unit, which is now preserved within a tectonic slice of the Lycian Nappes, includes among others the Neotethys-derived basalt blocks with pelagic intra-pillow carbonate infillings of middle Carnian age (early Late Triassic). Here, we focus on the geochemistry of the Turunç basalts to shed light into their petrogenetic evolution within the Neotethyan framework. Immobile trace element systematics indicate that the Turunç lavas are sub-alkaline basalts, with geochemical signatures resembling to those generated above subduction zones. Detailed examination of the Turunç volcanics reveals two chemical groups. Both groups are variably enriched in Th and La relative to Nb, and exhibit depleted Zr and Hf contents relative to N-MORB. Of the two groups, however, Group 2 is more enriched in Th, but with a similar Nb content, which results in higher Th/Nb ratios (0.21-0.27) compared to those of Group 1 (0.08-0.11). Both groups reflect similar REE systematics; they display marked enrichment in LREE relative to HREE ([La/Yb]N = 4.8-8.9). Trace element characteristics of the Turunç basalts indicate that their mantle source has been modified by slab-derived component(s). Taking into account that the Turunc Unit includes no continent-derived detritus, we suggest that the Turunç lavas represent fragments of a Late Triassic island arc formed on the Neotethyan oceanic lithosphere. This may further imply that the Neotethyan oceanic lithosphere had already been formed by the early Late Triassic, thus suggesting a pre-early Late Triassic oceanization of the northern branch of Neotethys.

  12. Dobrogeria aegyssensis, a new early Spathian (Early Triassic) coelacanth from North Dobrogea (Romania)

    NASA Astrophysics Data System (ADS)

    Cavin, Lionel; Grădinaru, Eugen

    2014-06-01

    The Early Triassic witnessed the highest taxic diversity of coelacanths (or Actinistia), a clade with a single living genus today. This peak of diversity is accentuated here with the description of a new coelacanth discovered in the lower Spathian (Upper Olenekian, Lower Triassic) cropping out in the Tulcea Veche (Old Tulcea) promontory, in the city of Tulcea, in North Dobrogea, Romania. The bone remains were preserved in a block of limestone, which was chemically dissolved. The resulting 3D and matrix-free ossifications correspond mostly to elements of the skull and branchial apparatus. Posterior parietals, postparietal with associated prootic and basisphenoid allow a precise description of the neurocranium. Ossifications of the lower jaw, together with branchial and pectoral elements, complete the description of this coelacanth and support the coining of a new generic and specific name, Dobrogeria aegyssensis. A phylogenetic analysis of actinistians with the new species recovers clades which were found in most recent analyses, i.e. the Sasseniidae, the Laugiidae, the Coelacanthiformes, the Latimerioidei, the Mawsoniidae and the Latimeriidae, and identifies the new taxon as a non-latimerioid coelacanthiform.

  13. New Early Triassic trace fossil records from South China: implications for biotic recovery following the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Luo, M.; George, A. D.; Chen, Z.; Zhang, Y.

    2013-12-01

    New Early Triassic trace fossil assemblages are documented from the Susong and Tianshengqiao areas in South China to evaluate the mode and tempo of biotic recovery of epifaunal and infaunal organisms following the end-Permian mass extinction. The Susong succession is exposed in Anhui area of the Lower Yangtze region and comprises mudstone and carbonate facies that record overall shallowing from offshore to supratidal settings. The Tianshengqiao succession crops out in the Luoping area, Yuannan Province of the Upper Yangtze region, and consists of mixed carbonate and siliciclastic facies which were deposited in shallow marine to offshore settings. Bivalve and conodont biostratigraphy helps constrain the chronostratigraphic framework of the Lower Triassic successions in these two sections. Griesbachian to Dieneria ichnological records in both successions are characterized by low ichnodiversity, low ichnofabric indices (ii=1-2) and low bedding plane bioturbation indices (bpbi=1-2). Higher ii (ii= 3 and 4) corresponding to densely populated diminutive Skolithos in the Tianshengqiao succession suggest an opportunistic strategy during earliest Triassic deposition. Ichnological data from the Susong succession show an increase in ichnodiversity during the Smithian. A total of 12 ichnogenera including Arenicolites, Chondrites, Gyrochorte, Laevicyclus, Monocraterion, Palaeophycus, Phycodes, Plaolites, Thalassinoides, Treptichnus, Trichichnus and one problematic trace are identified. Ichnofabric indices (ii) and bpbi increase to moderate to high levels (ii = 4-5, bpbi= 3-5). Although complex traces such as Rhizocorallium are in Spathian strata in this section, the low levels of ichnodiversity, ichnofabric indices and diminutive Planolites suggest a decline in recovery. In the Tianshengqiao succession, ichnofabric indices exhibit a moderate to high value (ii= 3 to 5), however, only six ichnogenera are found and Planolites burrows are consistently small (average diameter at 3

  14. Early Triassic environmental dynamics and microbial development during the Smithian-Spathian transition (Lower Weber Canyon, Utah, USA)

    NASA Astrophysics Data System (ADS)

    Grosjean, Anne-Sabine; Vennin, Emmanuelle; Olivier, Nicolas; Caravaca, Gwénaël; Thomazo, Christophe; Fara, Emmanuel; Escarguel, Gilles; Bylund, Kevin G.; Jenks, James F.; Stephen, Daniel A.; Brayard, Arnaud

    2018-01-01

    The Early Triassic biotic recovery following the end-Permian mass extinction is well documented in the Smithian-Spathian Thaynes Group of the western USA basin. This sedimentary succession is commonly interpreted as recording harsh conditions of various shallow marine environments where microbial structures flourished. However, recent studies questioned the relevance of the classical view of long-lasting deleterious post-crisis conditions and suggested a rapid diversification of some marine ecosystems during the Early Triassic. Using field and microfacies analyses, we investigate a well-preserved Early Triassic marine sedimentary succession in Lower Weber Canyon (Utah, USA). The identification of microbial structures and their depositional settings provide insights on factors controlling their morphologies and distribution. The Lower Weber Canyon sediments record the vertical evolution of depositional environments from a middle Smithian microbial and dolosiliciclastic peritidal system to a late Smithian-early Spathian bioclastic, muddy mid ramp. The microbial deposits are interpreted as Microbially Induced Sedimentary Structures (MISS) that developed either (1) in a subtidal mid ramp where microbial wrinkles and chips are associated with megaripples characterizing hydrodynamic conditions of lower flow regime, or (2) in protected areas of inter- to subtidal inner ramp where they formed laminae and domal structures. Integrated with other published data, our investigations highlight that the distribution of these microbial structures was influenced by the combined effects of bathymetry, hydrodynamic conditions, lithology of the substrat physico-chemical characteristics of the depositional environment and by the regional relative sea-level fluctuations. Thus, we suggest that local environmental factors and basin dynamics primarily controlled the modalities of microbial development and preservation during the Early Triassic in the western USA basin.

  15. Synchrotron Reveals Early Triassic Odd Couple: Injured Amphibian and Aestivating Therapsid Share Burrow

    PubMed Central

    Fernandez, Vincent; Abdala, Fernando; Carlson, Kristian J.; Cook, Della Collins; Rubidge, Bruce S.; Yates, Adam; Tafforeau, Paul

    2013-01-01

    Fossorialism is a beneficial adaptation for brooding, predator avoidance and protection from extreme climate. The abundance of fossilised burrow casts from the Early Triassic of southern Africa is viewed as a behavioural response by many tetrapods to the harsh conditions following the Permo-Triassic mass-extinction event. However, scarcity of vertebrate remains associated with these burrows leaves many ecological questions unanswered. Synchrotron scanning of a lithified burrow cast from the Early Triassic of the Karoo unveiled a unique mixed-species association: an injured temnospondyl amphibian (Broomistega) that sheltered in a burrow occupied by an aestivating therapsid (Thrinaxodon). The discovery of this rare rhinesuchid represents the first occurrence in the fossil record of a temnospondyl in a burrow. The amphibian skeleton shows signs of a crushing trauma with partially healed fractures on several consecutive ribs. The presence of a relatively large intruder in what is interpreted to be a Thrinaxodon burrow implies that the therapsid tolerated the amphibian’s presence. Among possible explanations for such unlikely cohabitation, Thrinaxodon aestivation is most plausible, an interpretation supported by the numerous Thrinaxodon specimens fossilised in curled-up postures. Recent advances in synchrotron imaging have enabled visualization of the contents of burrow casts, thus providing a novel tool to elucidate not only anatomy but also ecology and biology of ancient tetrapods. PMID:23805181

  16. A New Species of Garjainia Ochev, 1958 (Diapsida: Archosauriformes: Erythrosuchidae) from the Early Triassic of South Africa

    PubMed Central

    Gower, David J.; Hancox, P. John; Botha-Brink, Jennifer; Sennikov, Andrey G.; Butler, Richard J.

    2014-01-01

    A new species of the erythrosuchid archosauriform reptile Garjainia Ochev, 1958 is described on the basis of disarticulated but abundant and well-preserved cranial and postcranial material from the late Early Triassic (late Olenekian) Subzone A of the Cynognathus Assemblage Zone of the Burgersdorp Formation (Beaufort Group) of the Karoo Basin of South Africa. The new species, G. madiba, differs from its unique congener, G. prima from the late Olenekian of European Russia, most notably in having large bony bosses on the lateral surfaces of the jugals and postorbitals. The new species also has more teeth and a proportionately longer postacetabular process of the ilium than G. prima. Analysis of G. madiba bone histology reveals thick compact cortices comprised of highly vascularized, rapidly forming fibro-lamellar bone tissue, similar to Erythrosuchus africanus from Subzone B of the Cynognathus Assemblage Zone. The most notable differences between the two taxa are the predominance of a radiating vascular network and presence of annuli in the limb bones of G. madiba. These features indicate rapid growth rates, consistent with data for many other Triassic archosauriforms, but also a high degree of developmental plasticity as growth remained flexible. The diagnoses of Garjainia and of Erythrosuchidae are addressed and revised. Garjainia madiba is the geologically oldest erythrosuchid known from the Southern Hemisphere, and demonstrates that erythrosuchids achieved a cosmopolitan biogeographical distribution by the end of the Early Triassic, within five million years of the end-Permian mass extinction event. It provides new insights into the diversity of the Subzone A vertebrate assemblage, which partially fills a major gap between classic ‘faunal’ assemblages from the older Lystrosaurus Assemblage Zone (earliest Triassic) and the younger Subzone B of the Cynognathus Assemblage Zone (early Middle Triassic). PMID:25386937

  17. High-resolution carbon isotope changes in the Permian-Triassic boundary interval, Chongqing, South China; implications for control and growth of earliest Triassic microbialites

    NASA Astrophysics Data System (ADS)

    Mu, Xinan; Kershaw, Steve; Li, Yue; Guo, Li; Qi, Yuping; Reynolds, Alan

    2009-11-01

    High-resolution δ 13C CARB analysis of the Permian-Triassic boundary (PTB) interval at the Laolongdong section, Beibei, near the city of Chongqing, south China, encompasses the latest Permian and earliest Triassic major facies changes in the South China Block (SCB). Microbialites form a distinctive unit in the lowermost 190 cm above the top of the Changhsing Formation (latest Permian) at Laolongdong, comparable to a range of earliest Triassic sites in low latitudes in the Tethyan area. The data show that declining values of δ 13C CARB, well-known globally, began at the base of the microbialite. High positive values (+3 to 4 ppt) of δ 13C CARB in the Late Permian are interpreted to indicate storage of 12C in the deep waters of a stratified ocean, that was released during ocean overturn in the earliest Triassic, contributing to the distinctive fall in isotope values; this interpretation has been stated by other authors and is followed here. The δ 13C CARB curve shows fluctuations within the microbialite unit, which are not reflected in the microbialite structure. Comparisons between microbialite branches and adjacent micritic sediment show little difference in δ 13C CARB, demonstrating that the microbialite grew in equilibrium with surrounding seawater. The Early Triassic microbialites are interpreted to be a response to upwelling of bicarbonate-rich poorly oxygenated water in low latitudes of Tethys Ocean, consistent with current ocean models for the PTB interval. However, the decline of δ 13C CARB may be due to a combination of processes, including productivity collapse resulting from mass extinction, return of deep water to ocean surface, oxidation of methane released from methane hydrate destabilisation, and atmospheric deterioration. Nevertheless, build-up of bicarbonate-rich anoxic deep waters may be expected as a result of the partial isolation of Tethys, due to continental geography; release of bicarbonate-rich deep water, by ocean upwelling, in the

  18. Relationships between carbon isotope evolution and variation of microbes during the Permian-Triassic transition at Meishan Section, South China

    NASA Astrophysics Data System (ADS)

    Luo, Genming; Huang, Junhuang; Xie, Shucheng; Wignall, Paul B.; Tang, Xinyan; Huang, Xianyu; Yin, Hongfu

    2010-06-01

    This paper investigates kerogen carbon isotopes, the difference between carbonate and kerogen carbon isotopes (Δ13Ccarb-kero = δ 13Ccarb - δ 13Ckero) and the difference between carbonate and n-C19 alkane compound-specific carbon isotopes (Δ13Ccarb- n-C19 = δ 13Ccarb - δ 13C n-C19) during the Permian-Triassic transition at Meishan, South China. The results show that kerogen carbon isotopes underwent both gradual and sharp shifts in beds 23-25 and 26-29, respectively. The differences between carbonate and organic carbon isotopes, both the Δ13Ccarb-kero and Δ13Ccarb- n-C19, which are mainly affected by CO2-fixing enzyme and pCO2, oscillated frequently during the Permian-Triassic transition. Both the variations of Δ13Ccarb- n-C19 and Δ13Ccarb-kero coupled with the alternation between cyanobacteria and green sulfur bacteria indicated by biomarkers. The episodic low values of Δ13Ccarb- n-C19 corresponded to episodic blooms of green sulfur bacteria, while the episodic high values of Δ13Ccarb- n-C19 corresponded to episodic blooms of cyanobacteria. The relationships between the variation of carbon isotopes and biota show that the microbes which flourished after the extinction of macroorganism affected the carbon isotope fractionation greatly. Combining the carbon isotope compositions and the pattern of size variation of the conodont Neogondolella, this paper supposes that anoxia of the photic zone at bed 24 was episodic and it would be caused by the degradation of terrigenous organic matters by sulfate reducing bacteria in the upper water column. Considered together with results from previous research, the high resolution variation of the biogeochemistry presents the sequence of the important geo-events during the Permian-Triassic crisis.

  19. Evolution of the carbon cycle and seawater temperature from the Triassic-Jurassic boundary to the Early Toarcian based on brachiopod geochemistry

    NASA Astrophysics Data System (ADS)

    Müller, Tamás; Tomašových, Adam

    2017-04-01

    The ecological crisis and extinction at the end of the Triassic coincides with several environmental perturbations such as global temperature rise, ocean acidification and carbon isotope anomalies, with a large observed negative carbon isotope excursion (CIE) in the Late Rhaetian as well. Followed by the ETE, the Early Jurassic was characterized by marked fluctuations of the global seawater temperature and carbon cycle. Carbon isotope records are showing positive and remarkable negative excursions. A particular example of these phenomena is connected to the Toarcian Oceanic Anoxic Event (TOAE). The δ13C record of the TOAE is showing a negative excursion of a high magnitude, suggesting the injection of large amount of light carbon into the ocean-atmosphere system, coinciding with rapid global warming and widespread anoxia. Beside the TOAE there are many other, smaller scale carbon isotope anomalies and environmental perturbations at the Sinemurian-Pliensbachian transition or at the Pliensbachian-Toarcian boundary. In our study, we provide new brachiopod δ13C, δ18O, and Mg/Ca data from the time interval starting in the Rhaetian till the end of the Early Toarcian. Considering the strong resistance of brachiopod shells against diagenesis, our aim is to reconstruct seawater temperature, seawater Mg/Ca, and carbon cycle evolution based on a reliable geochemical proxy database of the studied time interval. The samples have been collected from various localities across Europe achieving a good, at least ammonite subzone scale resolution for the Rhaetian stage and for the Lower Jurassic. The geochemical preservation of the shell material have been tested by several approaches. Thin-sections were made from the shells and analyzed by electron microprobe and ICP-OES to evaluate their preservation by assessing concentrations of Fe, Mn, Sr, and their ratios (Mn/Ca, Sr/Ca). Considering the various elemental composition data of fossil and recent brachiopods published by several

  20. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic

    NASA Astrophysics Data System (ADS)

    Song, Haijun; Wignall, Paul B.; Tong, Jinnan; Song, Huyue; Chen, Jing; Chu, Daoliang; Tian, Li; Luo, Mao; Zong, Keqing; Chen, Yanlong; Lai, Xulong; Zhang, Kexin; Wang, Hongmei

    2015-08-01

    New 87Sr/86Sr data based on 127 well-preserved and well-dated conodont samples from South China were measured using a new technique (LA-MC-ICPMS) based on single conodont albid crown analysis. These reveal a spectacular climb in seawater 87Sr/86Sr ratios during the Early Triassic that was the most rapid of the Phanerozoic. The rapid increase began in Bed 25 of the Meishan section (GSSP of the Permian-Triassic boundary, PTB), and coincided closely with the latest Permian extinction. Modeling results indicate that the accelerated rise of 87Sr/86Sr ratios can be ascribed to a rapid increase (>2.8×) of riverine flux of Sr caused by intensified weathering. This phenomenon could in turn be related to an intensification of warming-driven runoff and vegetation die-off. Continued rise of 87Sr/86Sr ratios in the Early Triassic indicates that continental weathering rates were enhanced >1.9 times compared to those of the Late Permian. Continental weathering rates began to decline in the middle-late Spathian, which may have played a role in the decrease of oceanic anoxia and recovery of marine benthos. The 87Sr/86Sr values decline gradually into the Middle Triassic to an equilibrium values around 1.2 times those of the Late Permian level, suggesting that vegetation coverage did not attain pre-extinction levels thereby allowing higher runoff.

  1. Depositional facies, environments and sequence stratigraphic interpretation of the Middle Triassic-Lower Cretaceous (pre-Late Albian) succession in Arif El-Naga anticline, northeast Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    El-Azabi, M. H.; El-Araby, A.

    2005-01-01

    The Middle Triassic-Lower Cretaceous (pre-Late Albian) succession of Arif El-Naga anticline comprises various distinctive facies and environments that are connected with eustatic relative sea-level changes, local/regional tectonism, variable sediment influx and base-level changes. It displays six unconformity-bounded depositional sequences. The Triassic deposits are divided into a lower clastic facies (early Middle Triassic sequence) and an upper carbonate unit (late Middle- and latest Middle/early Late Triassic sequences). The early Middle Triassic sequence consists of sandstone with shale/mudstone interbeds that formed under variable regimes, ranging from braided fluvial, lower shoreface to beach foreshore. The marine part of this sequence marks retrogradational and progradational parasequences of transgressive- and highstand systems tract deposits respectively. Deposition has taken place under warm semi-arid climate and a steady supply of clastics. The late Middle- and latest Middle/early Late Triassic sequences are carbonate facies developed on an extensive shallow marine shelf under dry-warm climate. The late Middle Triassic sequence includes retrogradational shallow subtidal oyster rudstone and progradational lower intertidal lime-mudstone parasequences that define the transgressive- and highstand systems tracts respectively. It terminates with upper intertidal oncolitic packstone with bored upper surface. The next latest Middle/early Late Triassic sequence is marked by lime-mudstone, packstone/grainstone and algal stromatolitic bindstone with minor shale/mudstone. These lower intertidal/shallow subtidal deposits of a transgressive-systems tract are followed upward by progradational highstand lower intertidal lime-mudstone deposits. The overlying Jurassic deposits encompass two different sequences. The Lower Jurassic sequence is made up of intercalating lower intertidal lime-mudstone and wave-dominated beach foreshore sandstone which formed during a short

  2. Triassic metasediments in the internal Dinarides (Kopaonik area, southern Serbia): stratigraphy, paleogeographic and tectonic significance

    NASA Astrophysics Data System (ADS)

    Schefer, Senecio; Egli, Daniel; Missoni, Sigrid; Bernoulli, Daniel; Fügenschuh, Bernhard; Gawlick, Hans-Jürgen; Jovanović, Divna; Krystyn, Leopold; Lein, Richard; Schmid, Stefan M.; Sudar, Milan N.

    2010-04-01

    Strongly deformed and metamorphosed sediments in the Studenica Valley and Kopaonik area in southern Serbia expose the easternmost occurrences of Triassic sediments in the Dinarides. In these areas, Upper Paleozoic terrigenous sediments are overlain by Lower Triassic siliciclastics and limestones and by Anisian shallow-water carbonates. A pronounced facies change to hemipelagic and distal turbiditic, cherty metalimestones (Kopaonik Formation) testifies a Late Anisian drowning of the former shallow-water carbonate shelf. Sedimentation of the Kopaonik Formation was contemporaneous with shallow-water carbonate production on nearby carbonate platforms that were the source areas of diluted turbidity currents reaching the depositional area of this formation. The Kopaonik Formation was dated by conodont faunas as Late Anisian to Norian and possibly extends into the Early Jurassic. It is therefore considered an equivalent of the grey Hallstatt facies of the Eastern Alps, the Western Carpathians, and the Albanides-Hellenides. The coeval carbonate platforms were generally situated in more proximal areas of the Adriatic margin, whereas the distal margin was dominated by hemipelagic/pelagic and distal turbiditic sedimentation, facing the evolving Neotethys Ocean to the east. A similar arrangement of Triassic facies belts can be recognized all along the evolving Meliata-Maliac-Vardar branch of Neotethys, which is in line with a ‘one-ocean-hypothesis’ for the Dinarides: all the ophiolites presently located southwest of the Drina-Ivanjica and Kopaonik thrust sheets are derived from an area to the east, and the Drina-Ivanjica and Kopaonik units emerge in tectonic windows from below this ophiolite nappe. On the base of the Triassic facies distribution we see neither argument for an independent Dinaridic Ocean nor evidence for isolated terranes or blocks.

  3. Anachronistic facies from a drowned Lower Triassic carbonate platform: Lower member of the Alwa Formation (Ba'id Exotic), Oman Mountains

    NASA Astrophysics Data System (ADS)

    Woods, Adam D.; Baud, Aymon

    2008-09-01

    The lower member of the Alwa Formation (Lower Olenekian), found within the Ba'id Exotic in the Oman Mountains (Sultanate of Oman), consists of ammonoid-bearing, pelagic limestones that were deposited on an isolated, drowned carbonate platform on the Neotethyan Gondwana margin. The strata contain a variety of unusual carbonate textures and features, including thrombolites, Frutexites-bearing microbialites that contain synsedimentary cements, matrix-free breccias surrounded by isopachous calcite cement, and fissures and cavities filled with large botryoidal cements. Thrombolites are found throughout the study interval, and occur as 0.5-1.0 m thick lenses or beds that contain laterally laterally-linked stromatactis cavities. The Frutexites-bearing microbialites occur less frequently, and also form lenses or beds, up to 30 cm thick; the microbialites may be laminated, and often developed on hardgrounds. In addition, the Frutexites-bearing microbialites also contain synsedimentary calcite cement crusts and botryoids (typically < 1 cm thick) that harbour layers or pockets of what appear to be bacterial sheaths and coccoids, and are indicative of biologically mediated precipitation of the cement bodies. Slumping following lithification led to fracturing of the limestone and the precipitation of large, botryoidal aragonite cements in fissures that cut across the primary fabric. Environmental conditions, specifically palaeoxygenation and the degree of calcium carbonate supersaturation, likely controlled whether the thrombolites (high level of calcium carbonate supersaturation associated with vertical mixing of water masses and dysoxic conditions) or Frutexites-bearing microbialites (low level of calcium carbonate supersaturation associated with anoxic conditions and deposition below a stable chemocline) formed. The results of this study point to continued environmental stress in the region during the Early Triassic that likely contributed to the uneven recovery from the

  4. An archosauromorph dominated ichnoassemblage in fluvial settings from the late Early Triassic of the Catalan Pyrenees (NE Iberian Peninsula).

    PubMed

    Mujal, Eudald; Fortuny, Josep; Bolet, Arnau; Oms, Oriol; López, José Ángel

    2017-01-01

    The vertebrate recovery after the end-Permian mass extinction can be approached through the ichnological record, which is much more abundant than body fossils. The late Olenekian (Early Triassic) tetrapod ichnoassemblage of the Catalan Pyrenean Basin is the most complete and diverse of this age from Western Tethys. This extensional basin, composed of several depocenters, was formed in the latest phases of the Variscan orogeny (Pangea breakup) and was infilled by braided and meandering fluvial systems of the red-beds Buntsandstein facies. Abundant and diverse tetrapod ichnites are recorded in these facies, including Prorotodactylus mesaxonichnus isp. nov. (tracks possibly produced by euparkeriids), cf. Rotodactylus, at least two large chirotheriid morphotypes (archosauriform trackmakers), Rhynchosauroides cf. schochardti, two other undetermined Rhynchosauroides forms, an undetermined Morphotype A (archosauromorph trackmakers) and two types of Characichnos isp. (swimming traces, here associated to archosauromorph trackmakers). The Pyrenean ichnoassemblage suggests a relatively homogeneous ichnofaunal composition through the late Early Triassic of Central Pangea, characterized by the presence of Prorotodactylus and Rotodactylus. Small archosauromorph tracks dominate and present a wide distribution through the different fluviatile facies of the Triassic Pyrenean Basin, with large archosaurian footprints being present in a lesser degree. Archosauromorphs radiated and diversified through the Triassic vertebrate recovery, which ultimately lead to the archosaur and dinosaur dominance of the Mesozoic.

  5. The Triassic-Jurassic Boundary Event at the Paleo-Equator: Evidence for Global Change from Carbonate Sedimentology and Chemostratigraphy, Ras Al Khaimah, UAE.

    NASA Astrophysics Data System (ADS)

    Al-Suwaidi, A. H.; Steuber, T.; Suarez, M. B.; Ge, Y.

    2015-12-01

    The Triassic­-Jurassic (T-J) transition was a time of significant environmental perturbation typically associated with CAMP volcanism and is considered to be one of the six major extinction events in Earth's history. This event was associated with large perturbations of the global carbon cycle, as recorded in the isotopic composition of marine carbonate and bulk organic carbon. This has been elsewhere associated with widespread ocean acidification and a major disruption in marine carbonate production in neritic and pelagic environments. A carbon-isotope record from a paleo-equatorial carbonate platform exposed in Ras Al Khaimah, United Arab Emirates (UAE), shows continuous shallow-water carbonate sedimentation across the Triassic­-Jurassic boundary, in contrast with other boundary sections from higher latitudes, where carbonate sedimentation is typically discontinuous. δ13C shows a 4‰ negative excursion in both bulk organic carbon and carbonate carbon followed by a positive excursion. The boundary in Ras Al Khaimah, is placed at the base of a thick oolite unit overlying limestones with abundant and diverse Rhaetian reefal biota. Deposition of fossiliferous limestones in this location persisted into the uppermost Rhaetian and through the initial negative carbon-isotope excursion. While characteristic late Triassic biota with originally aragonitic mineralogy disappears at the boundary, aragonite persists as the inferred original mineralogy of the earliest Jurassic ooids and occasional skeletal bioclasts. The evidence presented herein suggest equatorial seawater of Tethys appears to have remained aragonite-supersaturated across the boundary and extinction event in contrast to higher latitude depositional sequences raising questions about how widespread ocean acidification was and in what conditions it may be favoured.

  6. Repeated Carbon-Cycle Disturbances at the Permian-Triassic Boundary Separate two Mass Extinctions

    NASA Astrophysics Data System (ADS)

    Nicol, J. A.; Watson, L.; Claire, M.; Buick, R.; Catling, D. C.

    2004-12-01

    Non-marine organic matter in Permian-Triassic sediments from the Blue Mountains, eastern Australia shows seven negative δ13C excursions of up to 7%, terminating with a positive excursion of 4%. Fluctuations start at the late Permian Glossopteris floral extinction and continue until just above the palynological Permian-Triassic boundary, correlated with the peak of marine mass extinction. The isotopic fluctuations are not linked to changes in depositional setting, kerogen composition or plant community, so they evidently resulted from global perturbations in atmospheric δ13C and/or CO2. The pattern was not produced by a single catastrophe such as a meteorite impact, and carbon-cycle calculations indicate that gas release during flood-basalt volcanism was insufficient. Methane-hydrate melting can generate a single -7% shift, but cannot produce rapid multiple excursions without repeated reservoir regeneration and release. However, the data are consistent with repeated overturning of a stratified ocean, expelling toxic gases that promoted sequential mass extinctions in the terrestrial and marine realms.

  7. Carbon isotope records reveal synchronicity between carbon cycle perturbation and the "Carnian Pluvial Event" in the Tethys realm (Late Triassic)

    NASA Astrophysics Data System (ADS)

    Dal Corso, Jacopo; Gianolla, Piero; Newton, Robert J.; Franceschi, Marco; Roghi, Guido; Caggiati, Marcello; Raucsik, Béla; Budai, Tamás; Haas, János; Preto, Nereo

    2015-04-01

    In the early Late Triassic a period of increased rainfall, named the Carnian Pluvial Event (CPE), is evidenced by major lithological changes in continental and marine successions worldwide. The environmental change seems to be closely associated with a negative carbon isotope excursion that was identified in a stratigraphic succession of the Dolomites (Italy) but the temporal relationship between these phenomena is still not well defined. Here we present organic-carbon isotope data from Carnian deep-water stratigraphic sections in Austria and Hungary, and carbonate petrography of samples from a marginal marine section in Italy. A negative 2-4‰ δ13C shift is recorded by bulk organic matter in the studied sections and is coincident with a similar feature highlighted in higher plant and marine algal biomarker carbon-isotope records from the Dolomites (Italy), thus testifying to a global change in the isotopic composition of the reservoirs of the exchangeable carbon. Our new observations verify that sedimentological changes related to the CPE coincide with the carbon cycle perturbation and therefore occurred synchronously within the western Tethys. Consistent with modern observations, our results show that the injection of 13C-depleted CO2 into the Carnian atmosphere-ocean system may have been directly responsible for the increase in rainfall by intensifying the Pangaean mega-monsoon activity. The consequent increased continental weathering and erosion led to the transfer of large amounts of siliciclastics into the basins that were rapidly filled up, while the increased nutrient flux triggered the local development of anoxia. The new carbonate petrography data show that these changes also coincided with the demise of platform microbial carbonate factories and their replacement with metazoan driven carbonate deposition. This had the effect of considerably decreasing carbonate deposition in shallow water environments.

  8. An archosauromorph dominated ichnoassemblage in fluvial settings from the late Early Triassic of the Catalan Pyrenees (NE Iberian Peninsula)

    PubMed Central

    Fortuny, Josep; Bolet, Arnau; Oms, Oriol; López, José Ángel

    2017-01-01

    The vertebrate recovery after the end-Permian mass extinction can be approached through the ichnological record, which is much more abundant than body fossils. The late Olenekian (Early Triassic) tetrapod ichnoassemblage of the Catalan Pyrenean Basin is the most complete and diverse of this age from Western Tethys. This extensional basin, composed of several depocenters, was formed in the latest phases of the Variscan orogeny (Pangea breakup) and was infilled by braided and meandering fluvial systems of the red-beds Buntsandstein facies. Abundant and diverse tetrapod ichnites are recorded in these facies, including Prorotodactylus mesaxonichnus isp. nov. (tracks possibly produced by euparkeriids), cf. Rotodactylus, at least two large chirotheriid morphotypes (archosauriform trackmakers), Rhynchosauroides cf. schochardti, two other undetermined Rhynchosauroides forms, an undetermined Morphotype A (archosauromorph trackmakers) and two types of Characichnos isp. (swimming traces, here associated to archosauromorph trackmakers). The Pyrenean ichnoassemblage suggests a relatively homogeneous ichnofaunal composition through the late Early Triassic of Central Pangea, characterized by the presence of Prorotodactylus and Rotodactylus. Small archosauromorph tracks dominate and present a wide distribution through the different fluviatile facies of the Triassic Pyrenean Basin, with large archosaurian footprints being present in a lesser degree. Archosauromorphs radiated and diversified through the Triassic vertebrate recovery, which ultimately lead to the archosaur and dinosaur dominance of the Mesozoic. PMID:28423005

  9. Assessing the record and causes of Late Triassic extinctions

    USGS Publications Warehouse

    Tanner, L.H.; Lucas, S.G.; Chapman, M.G.

    2004-01-01

    Accelerated biotic turnover during the Late Triassic has led to the perception of an end-Triassic mass extinction event, now regarded as one of the "big five" extinctions. Close examination of the fossil record reveals that many groups thought to be affected severely by this event, such as ammonoids, bivalves and conodonts, instead were in decline throughout the Late Triassic, and that other groups were relatively unaffected or subject to only regional effects. Explanations for the biotic turnover have included both gradualistic and catastrophic mechanisms. Regression during the Rhaetian, with consequent habitat loss, is compatible with the disappearance of some marine faunal groups, but may be regional, not global in scale, and cannot explain apparent synchronous decline in the terrestrial realm. Gradual, widespread aridification of the Pangaean supercontinent could explain a decline in terrestrial diversity during the Late Triassic. Although evidence for an impact precisely at the boundary is lacking, the presence of impact structures with Late Triassic ages suggests the possibility of bolide impact-induced environmental degradation prior to the end-Triassic. Widespread eruptions of flood basalts of the Central Atlantic Magmatic Province (CAMP) were synchronous with or slightly postdate the system boundary; emissions of CO2 and SO2 during these eruptions were substantial, but the contradictory evidence for the environmental effects of outgassing of these lavas remains to be resolved. A substantial excursion in the marine carbon-isotope record of both carbonate and organic matter suggests a significant disturbance of the global carbon cycle at the system boundary. Release of methane hydrates from seafloor sediments is a possible cause for this isotope excursion, although the triggering mechanism and climatic effects of such a release remain uncertain. ?? 2003 Elsevier B.V. All rights reserved.

  10. Early Triassic wrinkle structures on land: stressed environments and oases for life

    NASA Astrophysics Data System (ADS)

    Chu, Daoliang; Tong, Jinnan; Song, Haijun; Benton, Michael J.; Bottjer, David J.; Song, Huyue; Tian, Li

    2015-06-01

    Wrinkle structures in rocks younger than the Permian-Triassic (P-Tr) extinction have been reported repeatedly in marine strata, but rarely mentioned in rocks recording land. Here, three newly studied terrestrial P-Tr boundary rock succession in North China have yielded diverse wrinkle structures. All of these wrinkles are preserved in barely bioturbated shore-shallow lacustrine siliciclastic deposits of the Liujiagou Formation. Conversely, both the lacustrine siliciclastic deposits of the underlying Sunjiagou Formation and the overlying Heshanggou Formation show rich bioturbation, but no wrinkle structures or other microbial-related structures. The occurrence of terrestrial wrinkle structures in the studied sections reflects abnormal hydrochemical and physical environments, presumably associated with the extinction of terrestrial organisms. Only very rare trace fossils occurred in the aftermath of the P-Tr extinction, but most of them were preserved together with the microbial mats. This suggests that microbial mats acted as potential oases for the surviving aquatic animals, as a source of food and oxygen. The new finds suggests that extreme environmental stresses were prevalent both in the sea and on land through most of the Early Triassic.

  11. Evolution of the Early Triassic marine depositional environment in the Croatian Dinarides

    NASA Astrophysics Data System (ADS)

    Aljinović, Dunja; Smirčić, Duje; Horacek, Micha; Richoz, Sylvain; Krystyn, Leopold; Kolar-Jurkovšek, Tea; Jurkovšek, Bogdan

    2014-05-01

    In the central part of the Dinarides in Croatia, the Early Triassic depositional sequence was investigated by means of litho-, bio- and chemostratigraphy at locality Plavno (ca. 1.000m thick). Conodont and δ13C-isotope analysis were a powerfull tool to determine stage and substage boundaries. The succession begins with the second conodont zone of the Griesbachian Isarcicella staeschei and I. isarcica with low δ13C-values and a steadily increase towards the Griesbachian-Dienerian boundary. Around that boundary a minor, short, negative excursion occurs. In the Dienerian the δ13C-values increase with a steepening of the slope towards the Dienerian-Smithian boundary. Around that boundary a maximum of +5o in shallow water carbonate occurs followed by a steep and continuous drop to low, often negative values in the Smithian. Just before the Smithian-Spathian boundary a steep rise to a second maximum is documented. It is followed by decline in the Spathian and a gentle increase to a rounded peak at the Spathian-Anisian boundary. In lithological sense Plavno succession has threefold division: 1) carbonates representing the oldest Early Triassic strata (early Griesbachian); 2) dominantly red clastics (shales, siltstones and sandstones) with intercalation of oncoid/ooid or bioclast rich grainstones (uppermost Griesbachian, Dienerian and Smithian) and 3) dominantly grey carbonaceous lime mudstones, marls and calcisiltites with ammonoids representing Spathian strata. In the oldest strata (Griesbachian) in macrocrystalline subhedral dolomites rare microspheres and foraminifers Earlandia and Cornuspira point to the stressful conditions related to the end Permian mass extinction. In the uppermost Griesbachian and Dienerian strata, within dominantly clastic deposition, rare coarse oncoliths with typical microbial cortices occur. Their presence fits to the interpretation of biotical-induced precipitation related to PTB extinction and can suggest still stressful condition. The

  12. Hg concentrations from Late Triassic and Early Jurassic sedimentary rocks: first order similarities and second order depositional and diagenetic controls

    NASA Astrophysics Data System (ADS)

    Yager, J. A.; West, A. J.; Bergquist, B. A.; Thibodeau, A. M.; Corsetti, F. A.; Berelson, W.; Bottjer, D. J.; Rosas, S.

    2016-12-01

    Mercury concentrations in sediments have recently gained prominence as a potential tool for identifying large igneous province (LIP) volcanism in sedimentary records. LIP volcanism coincides with several mass extinctions during the Phanerozoic, but it is often difficult to directly tie LIP activity with the record of extinction in marine successions. Here, we build on mercury concentration data reported by Thibodeau et al. (Nature Communications, 7:11147, 2016) from the Late Triassic and Early Jurassic of New York Canyon, Nevada, USA. Increases in Hg concentrations in that record were attributed to Central Atlantic Magmatic Province (CAMP) activity in association with the end-Triassic mass extinction. We expand the measured section from New York Canyon and report new mercury concentrations from Levanto, Peru, where dated ash beds provide a discrete chronology, as well as St. Audrie's Bay, UK, a well-studied succession. We correlate these records using carbon isotopes and ammonites and find similarities in the onset of elevated Hg concentrations and Hg/TOC in association with changes in C isotopes. We also find second order patterns that differ between sections and may have depositional and diagenetic controls. We will discuss these changes within a sedimentological framework to further understand the controls on Hg concentrations in sedimentary records and their implications for past volcanism.

  13. Triassic actinopterygian fishes: the recovery after the end-Permian crisis.

    PubMed

    Tintori, Andrea; Hitij, Tomaž; Jiang, Dayong; Lombardo, Cristina; Sun, Zuoyu

    2014-08-01

    In the last 15 years, the discovery of several new actinopterygian fish faunas from the Early and Middle Triassic of the Tethys, cast new light on the timing, speed and range of their recovery after the end-Permian crisis. In addition to several new taxa having been described, the stratigraphical and geographical record of many others have been greatly extended. In fact, most of the new fossiliferous sites are in southern China, thus at the Eastern end of the Tethys, and furthermore a few are somewhat older (Chaohu, Panxian, Luoping) than the major classical Western Tethys sites (Monte San Giorgio). Following these new finds, it is possible to have a better definition of the Triassic recovery stages. Indeed, after a quite short phase till the end of the Smithian (Olenekian, Early Triassic) in which a rather consistent fauna was present all around the Pangea coasts, a major radiation occurred in the Early-Middle Anisian after the new Middle Triassic fish fauna already appeared in the late Early Triassic, thus occuring well before what was previously supposed from the Alps localities. Furthermore, the new assemblages from southern China point to an early broader differentiation among the basal neopterygians rather than in the 'subholosteans', the group that was then dominant in the Western Tethys since the Late Anisian. It stands that during the Norian a new basal neopterygian radiation gave rise to several new branches that dominated the remaining part of the Mesozoic. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  14. The influence of seawater carbonate chemistry, mineralogy, and diagenesis on calcium isotope variations in Lower-Middle Triassic carbonate rocks

    DOE PAGES

    Lau, Kimberly V.; Maher, Kate; Brown, Shaun T.; ...

    2017-11-01

    The geological calcium cycle is linked to the geological carbon cycle through the weathering and burial of carbonate rocks. As a result, calcium (Ca) isotope ratios ( 44 Ca/ 40 Ca, expressed as δ 44/40 Ca) can help to constrain ancient carbon cycle dynamics if Ca cycle behavior can be reconstructed. But, the δ 44/40 Ca of carbonate rocks is influenced not only by the δ 44/40 Ca of seawater but also by diagenetic processes and fractionation associated with carbonate precipitation. In this study, we investigate the dominant controls on carbonate δ 44/40 Ca in Upper Permian to Middle Triassicmore » limestones (ca. 253 to 244 Ma) from south China and Turkey. This time interval is ideal for assessing controls on Ca isotope ratios in carbonate rocks because fluctuations in seawater δ 44/40 Ca may be expected based on several large carbon isotope (δ 13 C) excursions ranging from -2 to + 8‰. Parallel negative δ 13 C and δ 44/40 Ca excursions were previously identified across the end-Permian extinction horizon. Here, we find a second negative excursion in δ 44/40 Ca of ~ 0.2‰ within Lower Triassic strata in both south China and Turkey; however, this excursion is not synchronous between regions and thus cannot be interpreted to reflect secular change in the δ 44/40 Ca of global seawater. Additionally, δ 44/40 Ca values from Turkey are consistently 0.3‰ lower than contemporaneous samples from south China, providing further support for local or regional influences. By measuring δ 44/40 Ca and Sr concentrations ([Sr]) in two stratigraphic sections located at opposite margins of the Paleo-Tethys Ocean, we can determine whether the data represent global conditions (e.g., secular variations in the δ 44/40 Ca of seawater) versus local controls (e.g., original mineralogy or diagenetic alteration). The [Sr] and δ 44/40 Ca data from this study are best described statistically by a log-linear correlation that also exists in many previously published datasets of

  15. The influence of seawater carbonate chemistry, mineralogy, and diagenesis on calcium isotope variations in Lower-Middle Triassic carbonate rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Kimberly V.; Maher, Kate; Brown, Shaun T.

    The geological calcium cycle is linked to the geological carbon cycle through the weathering and burial of carbonate rocks. As a result, calcium (Ca) isotope ratios ( 44 Ca/ 40 Ca, expressed as δ 44/40 Ca) can help to constrain ancient carbon cycle dynamics if Ca cycle behavior can be reconstructed. But, the δ 44/40 Ca of carbonate rocks is influenced not only by the δ 44/40 Ca of seawater but also by diagenetic processes and fractionation associated with carbonate precipitation. In this study, we investigate the dominant controls on carbonate δ 44/40 Ca in Upper Permian to Middle Triassicmore » limestones (ca. 253 to 244 Ma) from south China and Turkey. This time interval is ideal for assessing controls on Ca isotope ratios in carbonate rocks because fluctuations in seawater δ 44/40 Ca may be expected based on several large carbon isotope (δ 13 C) excursions ranging from -2 to + 8‰. Parallel negative δ 13 C and δ 44/40 Ca excursions were previously identified across the end-Permian extinction horizon. Here, we find a second negative excursion in δ 44/40 Ca of ~ 0.2‰ within Lower Triassic strata in both south China and Turkey; however, this excursion is not synchronous between regions and thus cannot be interpreted to reflect secular change in the δ 44/40 Ca of global seawater. Additionally, δ 44/40 Ca values from Turkey are consistently 0.3‰ lower than contemporaneous samples from south China, providing further support for local or regional influences. By measuring δ 44/40 Ca and Sr concentrations ([Sr]) in two stratigraphic sections located at opposite margins of the Paleo-Tethys Ocean, we can determine whether the data represent global conditions (e.g., secular variations in the δ 44/40 Ca of seawater) versus local controls (e.g., original mineralogy or diagenetic alteration). The [Sr] and δ 44/40 Ca data from this study are best described statistically by a log-linear correlation that also exists in many previously published datasets of

  16. The evidence for ocean acidification across the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Martindale, R. C.; Greene, S. E.; Ritterbush, K. A.; Bottjer, D. J.; Corsetti, F. A.; Berelson, W.

    2012-12-01

    The end-Triassic extinction is one of the "Big Five" mass extinctions of the Phanerozoic and until recently no consensus regarding the cause of this extinction has been established. Over the last decade, a robust temporal correlation between the eruption of the Central Atlantic Magmatic Province (CAMP) and the end-Triassic extinction has been established. This correlation has led to the speculation that the release of CO2 and volatiles from the CAMP flood basalts induced a carbon cycle perturbation that acidified the Triassic oceans. It has also been suggested that an acidification event could have been the key mechanism that caused the end-Triassic marine ecosystem collapse. By combining observations and data from multiple fields such as volcanology, paleoceanography, chemostratigraphy, paleontology, and sedimentology, one can assess whether or not there was an ocean acidification event and to what degree it contributed to the extinction. The eruption of the CAMP flood basalts began at the very end of the Triassic period, albeit before the official Triassic-Jurassic (T-J) boundary, (defined as the first Jurassic ammonite). CAMP is one of the largest continental flood basalts of the Phanerozoic (2-4 million cubic km) and was emplaced extremely rapidly (<1.6-2 Myr) in three to five pulses (possibly hundreds to tens of thousands of years). The massive injection of CAMP CO2 and other volcanic volatiles over such a short period of time would have caused a major change in ocean carbonate chemistry and, if short enough in duration, could have caused significant declines in oceanic carbonate saturation state (an ocean acidification event), possibly even undersaturating parts of the surface ocean with respect to aragonite and calcite. Although the change in saturation state of the ocean is extremely difficult to detect or quantify in the rock record, there is a distinct paucity of primary carbonate sediments in the T-J boundary interval, consistent with an ocean

  17. Carbonate "Clumped" Isotope Determination of Seawater Temperature During the End-Triassic Extinction Event

    NASA Astrophysics Data System (ADS)

    Gammariello, R. T., Jr.; Petryshyn, V. A.; Ibarra, Y.; Greene, S. E.; Corsetti, F. A.; Bottjer, D. J.; Tripati, A.

    2014-12-01

    Stromatolites are laminated sedimentary structures that are commonly thought to be created by cyanobacteria, either through the trapping and binding of sediment, or through metabolically-induced precipitation. However, stromatolite formation is poorly understood. In general, stromatolite abundance was higher in the Proterozoic than the Phanerozoic, but notable increases in stromatolite abundance occur in association with Phanerozoic mass extinction events. Here, we focus on stromatolites from the latest Triassic Cotham Marble (United Kingdom) that are associated with the extinction interval. The end-Triassic mass extinction is coincident with large-scale volcanism in the Central Atlantic Magmatic Province (CAMP) and the associated breakup of Pangea. Some hypothesize that CAMP-associated increases in atmospheric CO2 led to a rise in global temperatures and ocean acidification that caused or enhanced the extinction. In order to quantify the role of climate change with respect to the end-Triassic mass extinction, we applied the carbonate "clumped" isotope paleothermometer to the well-preserved Cotham Marble stromatolites. The stromatolites were deposited in the shallow Tethys Sea, and today occur in several localities across the southwestern UK. The stromatolites alternate on the cm scale between laminated and dendrolitic microstructures and each was microdrilled for clumped isotope analysis. The two microstructures display different temperatures of formation, where the dendrolitic portions apparently grew under cooler conditions than laminated layers, and younger layers grew in cooler conditions than older layers. Our results suggest that temperature fluctuated and potentially trended towards amelioration of the warm temperatures during the deposition of the Cotham Marble.

  18. A new archosauriform (Reptilia: Diapsida) from the Manda beds (Middle Triassic) of southwestern Tanzania.

    PubMed

    Nesbitt, Sterling J; Butler, Richard J; Gower, David J

    2013-01-01

    Archosauria and their closest relatives, the non-archosaurian archosauriforms, diversified in the Early and Middle Triassic, soon after the end-Permian extinction. This diversification is poorly documented in most Lower and Middle Triassic rock sequences because fossils of early groups of archosauriforms are relatively rare compared to those of other amniotes. The early Middle Triassic (? late Anisian) Manda beds of southwestern Tanzania form an exception, with early archosaur skeletons being relatively common and preserved as articulated or associated specimens. The Manda archosaur assemblage is exceptionally diverse for the Middle Triassic. However, to date, no non-archosaurian archosauriforms have been reported from these rocks. Here, we name a new taxon, Asperoris mnyama gen. et sp. nov., from the Manda beds and thoroughly describe the only known specimen. The specimen consists of a well-preserved partial skull including tooth-bearing elements (premaxilla, maxilla), the nasal, partial skull roof, and several incomplete elements. All skull elements are covered in an autapomorphic highly rugose sculpturing. A unique combination of character states indicates that A. mnyama lies just outside Archosauria as a stem archosaur within Archosauriformes, but more precise relationships of A. mnyama relative to other early archosauriform clades (e.g., Erythrosuchidae) cannot be determined currently. Asperoris mnyama is the first confirmed non-archosaurian archosauriform from the Manda beds and increases the morphological and taxonomic diversity of early archosauriforms known from the Middle Triassic. The direct association of A. mnyama with species referable to Archosauria demonstrates that non-archosaurian archosauriforms were present during the rise and early diversification of Archosauria. Non-archosaurian archosauriforms and archosaurs co-occur in fossil reptile assemblages across Pangaea from the late Early Triassic to the end of the Late Triassic.

  19. Conodonts of the western Paleozoic and Triassic belt, Klamath Mountains, California and Oregon

    USGS Publications Warehouse

    Irwin, William P.; Wardlaw, Bruce R.; Kaplan, T.A.

    1983-01-01

    Conodonts were extracted from 32 samples of limestone and 5 samples of chert obtained from the Western Paleozoic and Triassic belt of the Klamath Mountains province. Triassic conodonts were found in 17 samples, and late Paleozoic conodonts in 7 samples. Conodonts of the remaining 13 samples cannot be dated more closely than early or middle Paleozoic through Triassic. The late Paleozoic conodonts are restricted to the North Fork and Hayfork terranes. The Hayfork terrane also contains Early, Middle, and Late Triassic conodonts; mostly Neogondolella. Conodonts from samples of the Rattlesnake Creek terrane and the northern undivided part of the belt are all Late Triassic and are generally Epigondolella. The conodont data support the concept that many of the limestone bodies are olistoliths or tectonic blocks in melange. Color alteration of the conodonts indicates that the rocks of the Western Paleozoic and Triassic belt have been heated to temperatures between 300 degrees and 500 degrees C during regional tectonism.

  20. Investigating A Unique Open Ocean Geochemical Record Of the End Triassic Mass Extinction from Panthalassa

    NASA Astrophysics Data System (ADS)

    Marroquín, S. M.; Gill, B. C.; Them, T. R., II; Trabucho-Alexandre, J. P.; Aberhan, M.; Owens, J. D.; Gröcke, D. R.; Caruthers, A. H.

    2017-12-01

    The end-Triassic mass extinction ( 201 Ma) was a time of intense disturbance for marine communities. This event is estimated to have produced as much as a loss of 80% of known marine species. The protracted interval of elevated extinction rates is also characterized by a major carbon cycle perturbation and potentially widespread oxygen deficiency within the oceans. While the causes of extinction and environmental feedbacks are still debated it is hypothesized to have been triggered by massive volcanism associated with the Central Atlantic Magmatic Province flood basalts. However, our understanding of the Latest Triassic-Earliest Jurassic interval is limited due to the lack of well-preserved stratigraphic successions outside of the Tethys Ocean (present day Europe), with most of the records from epicontinental and marginal marine settings. To expand our understanding of this critical interval, our study seeks to document biological and environmental changes elsewhere. Specifically, we document and reconstruct these changes in the equatorial Panthalassan Ocean. We will present new data from a sedimentary succession preserved in the Wrangell Mountains of Alaska that spans the Late Triassic through Early Jurassic. The sedimentary succession represents a mixed carbonate-siliciclastic ramp that was deposited at tropical latitudes, adjacent to an island arc in the open Panthalassan Ocean. This succession affords a unique view of open marine conditions, and also holds the potential for excellent temporal control as it contains abundant ash layers throughout, as well as, key ammonite and bivalve fossil occurrences that provide biostratigraphic control. We will present an integrated geochemical and paleontological record from this site using several geochemical proxies (carbon, δ13Ccarb and % total organic carbon, sulfur, δ34S, as well as pyrite contents and iron speciation) along with ammonite and bivalve occurrence data to reconstruct the record of environmental and

  1. The Permian–Triassic transition in Colorado

    USGS Publications Warehouse

    Hagadorn, James S.; Whitely, Karen R.; Lahey, Bonita L.; Henderson, Charles M.; Holm-Denoma, Christopher S.

    2016-01-01

    The Lykins Formation and its equivalents in Colorado are a stratigraphically poorly constrained suite of redbeds and intercalated stromatolitic carbonates, which is hypothesized to span the Permian-Triassic boundary. Herein we present a preliminary detrital zircon geochronology, new fossil occurrences, and δ13C chemostratigraphy for exposures along the Front Range and in southeastern Colorado, to refine understanding of the unit's age and depositional history.Detrital zircons from the uppermost Lykins Formation and an overlying eolianite consist of a complex and highly diverse primary and multi-cycle grain population transported from Laurentian and Gondwanan terranes, potentially both by wind and water. Youngest concordant zircons do not rule out deposition of the uppermost Lykins Formation during a portion of Early Triassic time. Conodonts from the lower Lykins Formation require Middle Permian (Guadalupian) deposition. Conodont alteration indices of 1 indicate the unit has a shallow burial history and is amenable to paleomagnetic inquiry. Conodonts, together with other vertebrate, invertebrate, microfossil, and trace fossils, suggest a very shallow to emergent marine origin for the unit's most substantial carbonates, and hint at a marine origin for the unit's intercalated gypsum-anhydrite members. Chemostratigraphy corroborates field evidence of emergence and karst development capping certain units, like the Forelle Limestone Member of the Lykins Formation, where potential sequence boundaries appear to be punctuated by a short-lived meteoric signature.Results presented here are a progress report of ongoing work in these successions. This field trip consists of a brief tour through exposures of the Lykins Formation, in which we will examine well-known localities as well as view new ones for which we seek insights.

  2. Paleogeographic regionalization of Triassic seas based on conodontophorids

    NASA Astrophysics Data System (ADS)

    Klets, T. V.

    2008-10-01

    Geographic differentiation of conodontophorids between northern and southern latitudes commenced in the Triassic since the early Induan. Cosmopolitan long-lived genera of predominantly smooth morphotypes without sculpturing were characteristic of high-latitude basins of the Panboreal Superrealm. Since the early Olenekian until the Carnian inclusive, this superrealm consisted of the Siberian Realm that extended over Northeast Asia and the Canada-Svalbard Realm that included the Svalbard Archipelago and northern regions of Canada. Throughout the Triassic period, conodontophorids characteristic of the Tethys-Panthalassa Superrealm spanning the Tethys and low-latitude zones of the Pacific were highly endemic, very diverse in taxonomic aspect, having well-developed sculpturing and tempos of morphological transformations. Distinctions between the Early-Middle Triassic conodontophorids from northern and southern zones were not as great as afterward, and their impoverished assemblages from southern Tethyan basins were close in some respects to the Boreal ones. Their habitat basins of that time can be grouped into the Mediterranean-Pacific and India-Pakistan realms. Hence, the extent of geographic differentiation of conodontophorids was not constant and gradually grew, as their taxonomic diversity was reducing in northern basins but relatively increasing in southern ones. The Panboreal e Tethys-Panthalassa superrealms of conodontophorids, which are most clearly recognizable, are close to first-rank paleobiochores (superrealms) established earlier for ammonoids and bivalve mollusks. Main factor that controlled geographic differentiation of Triassic conodontophorids was climatic zoning. Initially lower diversity of southern Tethyan assemblages points probably to relatively cooler water regime in the peri-Gondwanan part of the Tethys. The established patterns in geographic distribution of conodontophorids characterize most likely the real trend of their differentiation and

  3. A Middle Triassic pachypleurosaur (Diapsida: Eosauropterygia) from a restricted carbonate ramp in the Western Carpathians (Gutenstein Formation, Fatric Unit): paleogeographic implications

    NASA Astrophysics Data System (ADS)

    Čerňanský, Andrej; Klein, Nicole; Soták, Ján; Olšavský, Mário; Šurka, Juraj; Herich, Pavel

    2018-02-01

    An eosauropterygian skeleton found in the Middle Triassic (upper Anisian) Gutenstein Formation of the Fatric Unit (Demänovská dolina Valley, Low Tatra Mountains, Slovakia) represents the earliest known occurrence of marine tetrapods in the Western Carpathians. The specimen represents a partly articulated portion of the postcranial skeleton (nine dorsal vertebrae, coracoid, ribs, gastral ribs, pelvic girdle, femur and one zeugopodial element). It is assigned to the Pachypleurosauria, more precisely to the Serpianosaurus-Neusticosaurus clade based on the following combination of features: (1) small body size; (2) morphology of vertebrae, ribs and femur; (3) tripartite gastral ribs; and (4) microanatomy of the femur as revealed by μCT. Members of this clade were described from the epicontinental Germanic Basin and the Alpine Triassic (now southern Germany, Switzerland, Italy), and possibly from Spain. This finding shows that pachypleurosaur reptiles attained a broader geographical distribution during the Middle Triassic, with their geographical range reaching to the Central Western Carpathians. Pachypleurosaurs are often found in sediments formed in shallow, hypersaline carbonate-platform environments. The specimen found here occurs in a succession with vermicular limestones in a shallow subtidal zone and stromatolitic limestones in a peritidal zone, indicating that pachypleurosaurs inhabited hypersaline, restricted carbonate ramps in the Western Carpathians.

  4. Tetrapod localities from the Triassic of the SE of European Russia

    NASA Astrophysics Data System (ADS)

    Tverdokhlebov, Valentin P.; Tverdokhlebova, Galina I.; Surkov, Mikhail V.; Benton, Michael J.

    2003-01-01

    Fossil tetrapods (amphibians and reptiles) have been discovered at 206 localities in the Lower and Middle Triassic of the southern Urals area of European Russia. The first sites were found in the 1940s, and subsequent surveys, from the 1960s to the present day, have revealed many more. Broad-scale stratigraphic schemes have been published, but full documentation of the rich tetrapod faunas has not been presented before. The area of richest deposits covers some 900,000 km 2 of territory between Samara on the River Volga in the NW, and Orenburg and Sakmara in the SW. Continental sedimentary deposits, consisting of mudstones, siltstones, sandstones, and conglomerates deposited by rivers flowing off the Ural Mountain chain, span much of the Lower and Middle Triassic (Induan, Olenekian, Anisian, Ladinian). The succession is divided into seven successive svitas, or assemblages: Kopanskaya (Induan), Staritskaya, Kzylsaiskaya, Gostevskaya, and Petropavlovskaya (all Olenekian), Donguz (Anisian), and Bukobay (Ladinian). This succession, comprising up to 3.5 km of fluvial and lacustrine sediments, documents major climatic changes. At the beginning of the Early Triassic, arid-zone facies were widely developed, aeolian, piedmont and proluvium. These were replaced by fluvial facies, with some features indicating aridity. At the end of the Middle Triassic, deltaic and lacustrine-marsh formations were dominant, indicating more humid conditions. The succession of Early to Mid Triassic tetrapod faunas documents the recovery of life after the end-Permian mass extinction. The earliest faunas consist only of small, aquatic tetrapods, in low-diversity, low-abundance assemblages. Climbing the succession through the Early Triassic, more terrestrially adapted tetrapods appear, and larger herbivorous and carnivorous reptiles come to dominate in the Mid Triassic as ecosystems were rebuilt.

  5. Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle

    PubMed Central

    Irmis, Randall B.; Whiteside, Jessica H.

    2012-01-01

    During the end-Permian mass extinction, marine ecosystems suffered a major drop in diversity, which was maintained throughout the Early Triassic until delayed recovery during the Middle Triassic. This depressed diversity in the Early Triassic correlates with multiple major perturbations to the global carbon cycle, interpreted as either intrinsic ecosystem or external palaeoenvironmental effects. In contrast, the terrestrial record of extinction and recovery is less clear; the effects and magnitude of the end-Permian extinction on non-marine vertebrates are particularly controversial. We use specimen-level data from southern Africa and Russia to investigate the palaeodiversity dynamics of non-marine tetrapods across the Permo-Triassic boundary by analysing sample-standardized generic richness, evenness and relative abundance. In addition, we investigate the potential effects of sampling, geological and taxonomic biases on these data. Our analyses demonstrate that non-marine tetrapods were severely affected by the end-Permian mass extinction, and that these assemblages did not begin to recover until the Middle Triassic. These data are congruent with those from land plants and marine invertebrates. Furthermore, they are consistent with the idea that unstable low-diversity post-extinction ecosystems were subject to boom–bust cycles, reflected in multiple Early Triassic perturbations of the carbon cycle. PMID:22031757

  6. Integrative stratigraphy during extreme environmental changes and biotic recovery time: The Early Triassic in Indian Himalaya

    NASA Astrophysics Data System (ADS)

    Richoz, Sylvain; Krystyn, Leopold; Algeo, Thomas; Bhargava, Om

    2014-05-01

    The understanding of extreme environmental changes as major extinction events, perturbations of global biogeochemical cycles or rapid climate shifts is based on a precise timing of the different events. But especially in such moving environments exact correlations are difficult to establish what underlines the necessity of an integrated stratigraphy by using all tools at disposition. A Lower Triassic section at Mud in the Spiti Valley (Western Himalaya, India) is a candidate section for the GSSP of the Induan-Olenekian Boundary (IOB). The succession was deposited in a deep-shelf setting on the southern margin of the Neotethys Ocean. The section contains abundant fossils allowing a very precise regional biostratigraphy and displays no signs of sedimentary breaks. Analysis of pelagic faunas proves a significant, two-step radiation phase in ammonoids and conodonts close to the Induan-Olenekian boundary. These diversifications are coupled with a short-termed positive δ13Ccarb excursion of global evidence. The Spiti δ13Ccarb excursion displays, however, different amplitude and biostratigraphic position than in other relevant sections for this time interval. In this study, we analyzed δ13Ccarb, δ13Corg, and δ15Norg as well as major, trace, and REE concentrations for a 16-m-thick interval spanning the mid-Griesbachian to early Spathian substages, to better constrains the chain of events. Prior to the first radiation step, high difference gradient between the δ13Ccarb values of tempestite beds with shallow carbonate and carbonate originated in deeper water is interpreted as a sign of a stratified water column. This effect disappears with the onset of better oxygenated conditions at the time of the ammonoid-conodont radiation, which correspond as well to δ13Ccarb, δ13Corg and δ15Norg positive excursions. A decrease in Mo and U concentrations occurring at the same point suggests a shift toward locally less reducing conditions. The second step coincided with the

  7. High influx of carbon in walls of agglutinated foraminifers during the Permian-Triassic transition in global oceans

    USGS Publications Warehouse

    Nestell, Galina P.; Nestell, Merlynd K.; Ellwood, Brooks B.; Wardlaw, Bruce R.; Basu, Asish R.; Ghosh, Nilotpal; Phuong Lan, Luu Thi; Rowe, Harry D.; Hunt, Andrew G.; Tomkin, Jonathan H.; Ratcliffe, Kenneth T.

    2015-01-01

    The Permian–Triassic mass extinction is postulated to be related to the rapid volcanism that produced the Siberian flood basalt (Traps). Unrelated volcanic eruptions producing several episodes of ash falls synchronous with the Siberian Traps are found in South China and Australia. Such regional eruptions could have caused wildfires, burning of coal deposits, and the dispersion of coal fly ash. These eruptions introduced a major influx of carbon into the atmosphere and oceans that can be recognized in the wallstructure of foraminiferal tests present in survival populations in the boundary interval strata. Analysis of free specimens of foraminifers recovered from residues of conodont samples taken at aPermian–Triassic boundary section at Lung Cam in northern Vietnam has revealed the presence of a significant amount of elemental carbon, along with oxygen and silica, in their test wall structure, but an absence of calcium carbonate. These foraminifers, identified as Rectocornuspira kalhori, Cornuspira mahajeri, and Earlandia spp. and whose tests previously were considered to be calcareous, are confirmed to be agglutinated, and are now referred to as Ammodiscus kalhori and Hyperammina deformis. Measurement of the 207Pb/204Pb ratios in pyrite clusters attached to the foraminiferal tests confirmed that these tests inherited the Pb in their outer layer from carbon-contaminated seawater. We conclude that the source of the carbon could have been either global coal fly ash or forest fire-dispersed carbon, or a combination of both, that was dispersed into the Palaeo-Tethys Ocean immediately after the end-Permian extinction event.

  8. Astrochronology of the Anisian stage (Middle Triassic) at the Guandao reference section, South China

    NASA Astrophysics Data System (ADS)

    Li, Mingsong; Huang, Chunju; Hinnov, Linda; Chen, Weizhe; Ogg, James; Tian, Wei

    2018-01-01

    A high-precision global timescale for the Early and Middle Triassic is the key to understanding the nature, pattern and rates of biotic recovery following the end-Permian mass extinction. The Guandao section of Guizhou Province of South China is an important reference section for the magnetic polarity pattern, conodont datums, geochemical anomalies and interpreted temperature history through the Anisian (Middle Triassic). We analyzed the high-resolution gamma-ray and magnetic susceptibility series from the complete Anisian stage. Intensity variations are indicative of fluctuating terrestrial clay influxes showing strong signals that match predicted astronomical solutions for eccentricity and precession. Astronomical tuning of these series to interpreted 405-kyr long-eccentricity cycles yields a 5.3 Myr duration for the Anisian at Guandao. When combined with the astrochronology of the Early Triassic, then the projected age of the Anisian-Ladinian boundary relative to the base-Triassic date of 251.9 Ma is 241.5 ± 0.1 Ma. This provides a 10-Myr reference timescale for other key geological events, including conodont zones, geomagnetic polarity chrons, rates of marine carbon- and oxygen isotope excursions and global sea-level changes, that were associated with the repeated biotic crises and recovery episodes after the end-Permian mass extinction. The middle Anisian humid phase in ca. 244-244.5 Ma was probably a global event, which may have been linked to the middle Anisian warming event and sea-level change. Sea-level fluctuations at Guandao generally correlate with those in western Tethyan and Boreal regions in time, confirming sea-level changes during the Anisian were of eustatic origin.

  9. Disentangling Diagenesis From the Rock Record: An Example From the Permo-Triassic Wordie Creek Formation, East Greenland

    NASA Astrophysics Data System (ADS)

    Roberts, J.; Turchyn, A. V.; Wignall, P. B.; Newton, R. J.; Vane, C. H.

    2018-01-01

    The measurement of isotope ratios in sedimentary rocks deposited over geological time can provide key insights to past environmental change over important intervals in the past. However, it is important to be aware that secondary alteration can overprint the original isotopic records. We demonstrate this principle using high-resolution carbon, sulfur, and oxygen isotope measurements in organic carbon, pyrite, and carbonate minerals (δ13Corg, δ34Spyr, δ34SCAS, δ13Ccarb, and δ18Ocarb) and kerogen analyses (HI and OI) from the Wordie Creek Formation, East Greenland. These sediments were initially deposited across the Permo-Triassic transition, but as we will show, the carbonate record has been altered by interaction with meteoric water significantly after initial deposition. Comparison of the better preserved organic carbon and pyrite records with a proximal Permo-Triassic sequence reveals significant pyrite-sulfur isotope variability across the Permo-Triassic transition. This regional heterogeneity argues against basin-wide euxinia and instead suggests localized changes in sulfur fractionation in response to variations in organic carbon flux. This hypothesis can be used to explain seemingly inconsistent regional trends in other sulfur isotopes across the Permo-Triassic transition.

  10. Unappreciated diversification of stem archosaurs during the Middle Triassic predated the dominance of dinosaurs.

    PubMed

    Foth, Christian; Ezcurra, Martín D; Sookias, Roland B; Brusatte, Stephen L; Butler, Richard J

    2016-09-15

    Archosauromorpha originated in the middle-late Permian, radiated during the Triassic, and gave rise to the crown group Archosauria, a highly successful clade of reptiles in terrestrial ecosystems over the last 250 million years. However, scientific attention has mainly focused on the diversification of archosaurs, while their stem lineage (i.e. non-archosaurian archosauromorphs) has often been overlooked in discussions of the evolutionary success of Archosauria. Here, we analyse the cranial disparity of late Permian to Early Jurassic archosauromorphs and make comparisons between non-archosaurian archosauromorphs and archosaurs (including Pseudosuchia and Ornithodira) on the basis of two-dimensional geometric morphometrics. Our analysis recovers previously unappreciated high morphological disparity for non-archosaurian archosauromorphs, especially during the Middle Triassic, which abruptly declined during the early Late Triassic (Carnian). By contrast, cranial disparity of archosaurs increased from the Middle Triassic into the Late Triassic, declined during the end-Triassic extinction, but re-expanded towards the end of the Early Jurassic. Our study indicates that non-archosaurian archosauromorphs were highly diverse components of terrestrial ecosystems prior to the major radiation of archosaurs, including dinosaurs, while disparity patterns of the Ladinian and Carnian indicate a gradual faunal replacement of stem archosaurs by the crown group, including a short interval of partial overlap in morphospace during the Ladinian.

  11. The Carnian (Late Triassic) carbon isotope excursion: new insights from the terrestrial realm

    NASA Astrophysics Data System (ADS)

    Miller, Charlotte; Kürschner, Wolfram; Peterse, Francien; Baranyi, Viktoria; Reichart, Gert-Jan

    2016-04-01

    The geological record contains evidence for numerous pronounced perturbations in the global carbon cycle, some of which are associated with eruptions from large igneous provinces (LIP), and consequently, ocean acidification and mass extinction. In the Carnian (Late Triassic), evidence from sedimentology and fossil pollen points to a significant change in climate, resulting in biotic turnover: during a period termed the 'Carnian Pluvial Event' (CPE). Additionally, during the Carnian, large volumes of flood basalts were erupted from the Wrangellia LIP (western North America). Evidence from the marine realm suggests a fundamental relationship between the CPE, a global 'wet' period, and the injection of light carbon into the atmosphere from the LIP. Here we provide the first evidence from the terrestrial realm of a significant negative δ13C excursion through the CPE recorded in the sedimentary archive of the Wiscombe Park Borehole, Devon (UK). Both total organic matter and plant leaf waxes reflect a gradual carbon isotope excursion of ~-5‰ during this time interval. Our data provides evidence for the global nature of this isotope excursion, supporting the hypothesis that the excursion was likely the result of an injection of light carbon into the atmosphere from the Wrangellia LIP.

  12. Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Benton, Michael J.; Zhang, Qiyue; Hu, Shixue; Chen, Zhong-Qiang; Wen, Wen; Liu, Jun; Huang, Jinyuan; Zhou, Changyong; Xie, Tao; Tong, Jinnan; Choo, Brian

    2013-10-01

    The Triassic was a time of turmoil, as life recovered from the most devastating of all mass extinctions, the Permo-Triassic event 252 million years ago. The Triassic marine rock succession of southwest China provides unique documentation of the recovery of marine life through a series of well dated, exceptionally preserved fossil assemblages in the Daye, Guanling, Zhuganpo, and Xiaowa formations. New work shows the richness of the faunas of fishes and reptiles, and that recovery of vertebrate faunas was delayed by harsh environmental conditions and then occurred rapidly in the Anisian. The key faunas of fishes and reptiles come from a limited area in eastern Yunnan and western Guizhou provinces, and these may be dated relative to shared stratigraphic units, and their palaeoenvironments reconstructed. The Luoping and Panxian biotas, both from the Guanling Formation, are dated as Anisian (Pelsonian) on the basis of conodonts and radiometric dates, the former being slightly older than the latter. The Xingyi biota is from the Zhuganpo Formation, and is Ladinian or early Carnian, while the Guanling biota is from the overlying Xiaowa Formation, dated as Carnian. The first three biotas include extensive benthos and burrowing in the sediments, and they were located in restricted basins close to shore. Further, even though the Luoping and Panxian biotas are of similar age, their faunas differ significantly, reflecting perhaps palaeogeographically isolated basins. Between the time of the Xingyi and Guanling biotas, there was a major transgression, and the Guanling biota is entirely different in character from the other three, being dominated by pelagic forms such as large floating crinoids attached to logs, very large ichthyosaurs and thalattosaurs, and pseudoplanktonic bivalves, with no benthos and no burrowing. Phylogenetic study of the fishes and marine reptiles shows apparently explosive diversification among 20 actinopterygian lineages very early in the Early Triassic

  13. Middle-Upper Triassic and Middle Jurassic tetrapod track assemblages of southern Tunisia, Sahara Platform

    NASA Astrophysics Data System (ADS)

    Niedźwiedzki, Grzegorz; Soussi, Mohamed; Boukhalfa, Kamel; Gierliński, Gerard D.

    2017-05-01

    Three tetrapod track assemblages from the early-middle Mesozoic of southern Tunisia are reported. The strata exposed at the Tejra 2 clay-pit near the Medenine and Rehach site, located in the vicinity of Kirchaou, contain the first tetrapod tracks found in the Triassic of Tunisia. The Middle Jurassic (early Aalenian) dinosaur tracks are reported from the Mestaoua plain near Tataouine. In the Middle Triassic outcrop of the Tejra 2 clay-pit, tridactyl tracks of small and medium-sized dinosauromorphs, were discovered. These tracks represent the oldest evidence of dinosaur-lineage elements in the Triassic deposits of Tunisia. Similar tracks have been described from the Middle Triassic of Argentina, France and Morocco. An isolated set of the manus and pes of a quadrupedal tetrapod discovered in Late Triassic Rehach tracksite is referred to a therapsid tracemaker. The Middle Jurassic deposits of the Mestaoua plain reveal small and large tridactyl theropod dinosaur tracks (Theropoda track indet. A-C). Based on comparison with the abundant record of Triassic tetrapod ichnofossils from Europe and North America, the ichnofauna described here indicates the presence of a therapsid-dinosauromorph ichnoassociation (without typical Chirotheriidae tracks) in the Middle and Late Triassic, which sheds light on the dispersal of the Middle-Upper Triassic tetrapod ichnofaunas in this part of Gondwana. The reported Middle Jurassic ichnofauna show close similarities to dinosaur track assemblages from the Lower and Middle Jurassic of northwestern Africa, North America, Europe and also southeastern Asia. Sedimentological and lithostratigraphic data of each new tracksite have been defined on published data and new observations. Taken together, these discoveries present a tantalizing window into the evolutionary history of tetrapods from the Triassic and Jurassic of southern Tunisia. Given the limited early Mesozoic tetrapod record from the region, these discoveries are of both temporal and

  14. Authigenic Carbonate Fans from Lower Jurassic Marine Shales (Alberta, Canada)

    NASA Astrophysics Data System (ADS)

    Martindale, R. C.; Them, T. R., II; Gill, B. C.; Knoll, A. H.

    2016-12-01

    Authigenic aragonite seafloor fans are a common occurrence in Archean and Paleoproterozoic carbonates, as well as Neoproterozoic cap carbonates. Similar carbonate fans are rare in Phanerozoic strata, with the exception of two mass extinction events; during the Permo-Triassic and Triassic-Jurassic boundaries, carbonate fans formed at the sediment-water interface and within the sediment, respectively. These crystal fans have been linked to carbon cycle perturbations at the end of the Permian and Triassic periods driven by rapid flood volcanism. The Early Jurassic Toarcian Ocean Anoxic Event (T-OAE) is also correlated with the emplacement of a large igneous province, but biological consequences were more modest. We have identified broadly comparable fibrous calcite layers (2-10 cm thick) in Pliensbachian-Toarcian cores from Alberta, Canada. This work focuses on the geochemical and petrographic description of these fans and surrounding sediment in the context of the T-OAE. At the macroscale, carbonates exhibit a fan-like (occasionally cone-in-cone) structure and displace the sediment around them as they grew. At the microscale, the carbonate crystals (pseudomorphs of aragonite) often initiate on condensed horizons or shells. Although they grow in multiple directions (growth within the sediment), the predominant crystal growth direction is towards the sediment-water interface. Resedimentation of broken fans is evidence that crystal growth was penecontemporaneous with sedimentation. The carbon isotope composition of the fans (transects up bladed crystals) and elemental abundances within the layers support shallow subsurface, microbially mediated growth. The resemblance of these Early Jurassic fibrous calcite layers to those found at the end-Triassic and their paucity in the Phanerozoic record suggest that analogous processes occurred at both events. Nevertheless, the Pliensbachian-Toarcian carbonate fans occur at multiple horizons and while some are within the T

  15. Carbon isotope evidence for a vigorous biological pump in the wake of end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Yu, M.; Jost, A. B.; Payne, J.

    2009-12-01

    Ocean anoxia and euxinia have long been linked to the end-Permian mass extinction and the subsequent Early Triassic interval of delayed biotic recovery. This anoxic, sulfidic episode has been ascribed to both low- and high-productivity states in the marine water column, leaving the causes of euxinia and the mechanisms underlying delayed recovery poorly understood. To examine the nature of the end-Permian and Early Triassic biological production, we measured the carbon isotopic composition of carbonates from an exceptionally preserved carbonate platform in the Nanpanjiang Basin of south China. 13C of limestones from 5 stratigraphic sections displays a gradient of approximately 4‰ from shallow to deep water within the Lower Triassic. The limestones are systematically enriched in the platform interior relative to coeval slope and basin margin deposits by 2-4‰ at the peaks of correlative positive and negative δ13C excursions. This gradient subsequently collapses to less than 1‰ in the Middle Triassic, coincident with accelerated biotic recovery and cessation of δ13C excursions. Based on the relationship between δ18O and δ13C, trace metal analyses, and lithostratigraphic context, we conclude that the carbon isotope gradient is unlikely to reflect meteoric diagenesis, organic matter remineralization, or changes in the mixing ratio of sediment sources and minerals across the platform. Instead, we interpret the relatively depleted δ13C values toward the basin as reflecting DIC input from 13C-depleted deep waters during early diagenesis in a nutrient-rich, euxinic ocean. These observations suggest that a vigorous prokaryote-driven biological pump sustained Early Triassic ocean anoxia and inhibited recovery of animal ecosystems.

  16. CO2 and Amplification of Orbitally Forced Changes in the Hydrological Cycle across the end-Triassic extinction

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Schaller, M. F.; Palmer, M.; Milton, J. A.; Olsen, P. E.

    2016-12-01

    Models of increasing atmospheric pCO2 predict an intensification of the hydrological cycle coupled with warming, with an implied amplification of the effects of orbitally forced precipitation fluctuations. Supporting evidence exists for the Pleistocene, however such evidence has not yet been developed from ancient Mesozoic warm intervals that serve as partial analogues for greenhouse worlds. This study presents lithological, soil carbonate, and compound-specific hydrogen isotopic data (δD) from plant wax n-alkanes data from Late Triassic and Early Jurassic (pCO2values >1,000 ppm) marine and non-marine records from eastern North America and England with a particular emphasis on the end-Triassic mass extinction. In eastern North American Pangean rift basins, variance in lake level expression of the climatic precession cycle from lithology and compound-specific δD appears temporally linked to CO2 based on the soil carbonate proxy from the same strata. Cyclicity variance is high during times of high CO2 ( 4000 ppm) during most of the Late Triassic, drops precipitously as CO2 declines below 2,500 ppm during most of the Rhaetian, and dramatically increases when massive atmospheric CO2 increases ( 5,000 - 6,000 ppm) associated with the Central Atlantic Magmatic Province (and end-Triassic extinction) drove insolation-paced increases in precipitation. Cyclicity variance drops again as CO2 declines (<2,000 ppm) during the Jurassic. Preliminary data suggest significant variability in leaf wax δD corresponding to other environmental changes across the extinction interval. In addition, 87Sr/86Sr in marine strata (Tackett et al., 2014) tracks CO2 with a dramatic decrease from 0.70795 to 0.70765 suggesting a mechanistic link through weathering. Analyses of continuous paralic to marine samples, now underway, from the end-Triassic extinction and Triassic-Jurassic boundary interval at St. Audrie's Bay (Bristol Channel Basin) will test the generality of this pattern, in an area

  17. Triassic tetrapods from antarctica: evidence for continental drift.

    PubMed

    Elliot, D H; Colbert, E H; Breed, W J; Jensen, J A; Powell, J S

    1970-09-18

    During the austral summer of 1969-1970 bones of Lower Triassic vertebrates were excavated from coarse quartzose sandstones forming stream channel deposits of the Fremouw Formation at Coalsack Bluff, in the Transantarctic Mountains of Antarctica. This is the first assemblage of fossil tetrapods of significant geologic age to be found on the Antarctic Continent. The fossils include labyrinthodont amphibians, presumed thecodont reptiles, and therapsid reptiles, including the definitive genus, Lystrosaurus. This genus is typical of the Lower Triassic of southern Africa, and is also found in India and China. Lystrosaurus and associated vertebrates found in Antarctica were land-living animals: therefore their presence on the South Polar Continent would seem to indicate the contiguity of Antarctica, Africa, and India in Early Triassic times.

  18. Pollen and spores date origin of rift basins from Texas to nova scotia as early late triassic.

    PubMed

    Traverse, A

    1987-06-12

    Palynological studies of the nonmarine Newark Supergroup of eastern North America and of rift basins in the northern Gulf of Mexico facilitate correlation with well-dated marine sections of Europe. New information emphasizes the chronological link between the Newark basins and a Gulf of Mexico basin and their common history in the rifting of North America from Pangea. Shales from the subsurface South Georgia Basin are shown to be of late Karnian age (early Late Triassic). The known time of earliest sedimentation in the Culpeper Basin is extended from Norian (late Late Triassic) to mid-Karnian, and the date of earliest sedimentation in the Richmond and Deep River basins is moved to at least earliest Karnian, perhaps Ladinian. The subsurface Eagle Mills Formation in Texas and Arkansas has been dated palynologically as mid- to late Karnian. The oldest parts of the Newark Supergroup, and the Eagle Mills Formation, mostly began deposition in precursor rift basins that formed in Ladinian to early Karnian time. In the southern Newark basins, sedimentation apparently ceased in late Karnian but continued in the northern basins well into the Jurassic, until genesis of the Atlantic ended basin sedimentation.

  19. Influence of climate change and marine chemistry on ecological shifts following the Triassic/Jurassic mass extinction

    NASA Astrophysics Data System (ADS)

    Ritterbush, K. A.; West, A. J.; Berelson, W.; Rosas, S.; Bottjer, D. J.; Yager, J. A.; Corsetti, F. A.

    2014-12-01

    Two aspects of the Triassic/Jurassic transition that seem incongruous are increasing warming and increasing ecological dominance by siliceous sponges on shallow shelves. Warming is interpreted from proxy data showing increased atmospheric carbon dioxide concentrations associated with eruption pulses of the Central Atlantic Province (CAMP) basalts across rifting Pangea. Post-extinction ecological dominance by siliceous sponges is found in recent field investigations of Nevada and Peru, and literature on the Austrian Alps. Whereas evidence from the Panthalassan siliceous sponge ramps of the early Jurassic clearly records deposition on sub- and tropical shallow shelves (a warm environment), modern sponge occupations of comparable intensity exist only in deep and cold environments. Resolving this apparent contrast requires consideration of silica cycling. Silica is a limiting nutrient for siliceous sponges, and the post-extinction sponges of the earliest Jurassic show desmid spicule morphologies matching modern phenotypic indicators of high silica concentration. During the Triassic the major documented biosiliceous sink was radiolarian deep sea chert deposits despite a major species-level turnover at the extinction. Diatoms did not exist in the Triassic. A major alteration to silica cycling in the early Jurassic could have resulted from increased terrigenous supply for two reasons: increased atmospheric carbon dioxide would likely intensify continental weathering, and the extensive flood basalts produced an easily-weathered silica source. Simple box model calculations allow consideration of supply vs demand, and of the pace of possible changes. Potential weathering rates of silica are contrasted with recent published data on sponge silica sequestration, showing that the presence of the CAMP basalts alone could support increased sponge abundance across tropical carbonate shelves. Estimates of doubling and residence times in a simple one-box model show that the change in

  20. A history of early geologic research in the Deep River Triassic Basin, North Carolina

    USGS Publications Warehouse

    Clark, T.W.

    1998-01-01

    The Deep River Triassic basin has one of the longest recorded histories of geologic research in North Carolina. A quick perusal of nineteenth century geologic literature in North Carolina reveals the Deep River basin has received a tremendous amount of attention, second only, perhaps, to the gold deposits of the Carolina slate belt. While these early researchers' primary interests were coal deposits, many other important discoveries, observations, and hypotheses resulted from their investigations. This article highlights many of the important advances made by these early geo-explorers by trying to include information from every major geologic investigation made in the Deep River basin from 1820 to 1955. This article also provides as thorough a consolidated history as is possible to preserve the exploration history of the Deep River basin for future investigators.

  1. Discovery of a Triassic magmatic arc source for the Permo-Triassic Karakaya subduction complex, NW Turkey

    NASA Astrophysics Data System (ADS)

    Ayda Ustaömer, Petek; Ustaömer, Timur; Gerdes, Axel; Robertson, Alastair H. F.; Zulauf, Gernold

    2014-05-01

    The Permo-Triassic Karakaya Complex is well explained by northward subduction of Palaeotethys but until now no corresponding magmatic arc has been identified in the region. With the aim of determining the compositions and ages of the source units, ten sandstone samples were collected from the mappably distinct Ortaoba, Hodul, Kendirli and Orhanlar Units. Zircon grains were extracted from these sandstones and >1300 were dated by the U-Pb method and subsequently analysed for the Lu-Hf isotopic compositions by LA-MC-ICPMS at Goethe University, Frankfurt. The U-Pb-Hf isotope systematics are indicative of two different sediment provenances. The first, represented by the Ortaoba, Hodul and Kendirli Units, is dominated by igneous rocks of Triassic (250-220 Ma), Early Carboniferous-Early Permian (290-340 Ma) and Early to Mid-Devonian (385-400 Ma) ages. The second provenance, represented by the Orhanlar Unit, is indicative of derivation from a peri-Gondwanan terrane. In case of the first provenance, the Devonian and Carboniferous source rocks exibit intermediate eHf(t) values (-11 to -3), consistent with the formation at a continental margin where juvenile mantle-derived magmas mixed with (recycled) old crust having Palaeoproterozoic Hf model ages. In contrast, the Triassic arc magma exhibits higher eHf(t) values (-6 to +6), consistent with the mixing of juvenile mantle-derived melts with (recycled) old crust perhaps somewhat rejuvanated during the Cadomian period. We have therefore identified a Triassic magmatic arc as predicted by the interpretation of the Karakaya Complex as an accretionary complex related to northward subduction (Carboniferous and Devonian granites are already well documented in NW Turkey). Possible explanations for the lack of any outcrop of the source magmatic arc are that it was later subducted or the Karakaya Complex was displaced laterally from its source arc (both post 220 Ma). Strike-slip displacement (driven by oblique subduction?) can also

  2. Redescription of Bellerophon bittneri (Gastropoda: Triassic) from Wyoming.

    USGS Publications Warehouse

    Yochelson, E.L.; Boyd, D.W.; Wardlaw, B.

    1985-01-01

    Bellerophon bittneri Newell and Kummel is an Early Triassic bellerophontacean from the Dinwoody Formation in the Wind River Mountains. The available type material consists of one fair, but incomplete, external mold, which resembles a Bellerophon but is actually a Retispira. After repeated search, additional specimens were found at one locality in the southern Wind River Range of Wyoming; Retispira bittneri is redescribed from this new material. Like other Triassic bellerophontaceans, there is nothing unusual about the species apart from occurrence in the Mesozoic; it is clearly congeneric with Permian Retispira from underlying rocks. -Authors

  3. A carapace-like bony 'body tube' in an early triassic marine reptile and the onset of marine tetrapod predation.

    PubMed

    Chen, Xiao-hong; Motani, Ryosuke; Cheng, Long; Jiang, Da-yong; Rieppel, Olivier

    2014-01-01

    Parahupehsuchus longus is a new species of marine reptile from the Lower Triassic of Yuan'an County, Hubei Province, China. It is unique among vertebrates for having a body wall that is completely surrounded by a bony tube, about 50 cm long and 6.5 cm deep, comprising overlapping ribs and gastralia. This tube and bony ossicles on the back are best interpreted as anti-predatory features, suggesting that there was predation pressure upon marine tetrapods in the Early Triassic. There is at least one sauropterygian that is sufficiently large to feed on Parahupehsuchus in the Nanzhang-Yuan'an fauna, together with six more species of potential prey marine reptiles with various degrees of body protection. Modern predators of marine tetrapods belong to the highest trophic levels in the marine ecosystem but such predators did not always exist through geologic time. The indication of marine-tetrapod feeding in the Nanzhang-Yuan'an fauna suggests that such a trophic level emerged for the first time in the Early Triassic. The recovery from the end-Permian extinction probably proceeded faster than traditionally thought for marine predators. Parahupehsuchus has superficially turtle-like features, namely expanded ribs without intercostal space, very short transverse processes, and a dorsal outgrowth from the neural spine. However, these features are structurally different from their turtle counterparts. Phylogeny suggests that they are convergent with the condition in turtles, which has a fundamentally different body plan that involves the folding of the body wall. Expanded ribs without intercostal space evolved at least twice and probably even more among reptiles.

  4. Isotopic evidence bearing on Late Triassic extinction events, Queen Charlotte Islands, British Columbia, and implications for the duration and cause of the Triassic/Jurassic mass extinction

    USGS Publications Warehouse

    Ward, P.D.; Garrison, G.H.; Haggart, J.W.; Kring, D.A.; Beattie, M.J.

    2004-01-01

    Stable isotope analyses of Late Triassic to earliest Jurassic strata from Kennecott Point in the Queen Charlotte Islands, British Columbia, Canada shows the presence of two distinct and different organic carbon isotope anomalies at the Norian/Rhaetian and Rhaetian/Hettangian (=Triassic/Jurassic) stage boundaries. At the older of these boundaries, which is marked by the disappearance of the bivalve Monotis, the isotope record shows a series of short-lived positive excursions toward heavier values. Strata approaching this boundary show evidence of increasing anoxia. At the higher boundary, marked by the disappearance of the last remaining Triassic ammonites and over 50 species of radiolarians, the isotopic pattern consists of a series of short duration negative anomalies. The two events, separated by the duration of the Rhaetian age, comprise the end-Triassic mass extinction. While there is no definitive evidence as to cause, the isotopic record does not appear similar to that of the impact-caused Cretaceous/Tertiary boundary extinction. ?? 2004 Published by Elsevier B.V.

  5. The beginning of the Buntsandstein cycle (Early-Middle Triassic) in the Catalan Ranges, NE Spain: Sedimentary and palaeogeographic implications

    NASA Astrophysics Data System (ADS)

    Galán-Abellán, Belén; López-Gómez, José; Barrenechea, José F.; Marzo, Mariano; De la Horra, Raúl; Arche, Alfredo

    2013-10-01

    The Early-Middle Triassic siliciclastic deposits of the Catalan Ranges, NE Spain, are dominated by aeolian sediments indicating a predominance of arid climate during this time span, in sharp contrast with the coeval fluvial sediments found in the Castilian Branch of the Iberian Ranges, 300 km to the SW. The NE-SW-oriented Catalan Basin evolved during the Middle-Late Permian as the result of widespread extension in the Iberian plate. This rift basin was bounded by the Pyrenees, Ebro and Montalbán-Oropesa highs. The Permian-Early Triassic-age sediments of the Catalan Basin were deposited in three isolated subbasins (Montseny, Garraf, Prades), separated by intrabasinal highs, but linked by transversal NW-SE oriented faults. The three subbasins show evidence of diachronic evolution with different subsidence rates and differences in their sedimentary records. The Buntsandstein sedimentary cycle started in the late Early Triassic (Smithian-Spathian) in the central and southern domains (Garraf and Prades), with conglomerates of alluvial fan origin followed by fluvial and aeolian sandstones. Source area of the fluvial sediments was nearby Paleozoic highs to the north and west, in contrast with the far-away source areas of the fluvial sediments in the Iberian Ranges, to the SW. These fluvial systems were interacting with migrating aeolian dune fields located towards the S, which developed in the shadow areas behind the barriers formed by the Paleozoic highs. These highs were separating the subbasins under arid and semi-arid climate conditions. The dominating winds came from the east where the westernmost coast of the Tethys Sea was located, and periods of water run-off and fields of aeolian dunes development alternated. Some of the fluvial systems were probably evaporating as they were mixed into the interdune areas, never reaching the sea. From the end of the Smithian to the Spathian, the Catalan Basin and neighbour peri-Tethys basins of the present-day southern France

  6. Severest crisis overlooked—Worst disruption of terrestrial environments postdates the Permian–Triassic mass extinction

    PubMed Central

    Hochuli, Peter A.; Sanson-Barrera, Anna; Schneebeli-Hermann, Elke; Bucher, Hugo

    2016-01-01

    Generally Early Triassic floras are believed to be depauperate, suffering from protracted recovery following the Permian–Triassic extinction event. Here we present palynological data of an expanded East Greenland section documenting recovered floras in the basal Triassic (Griesbachian) and a subsequent fundamental floral turnover, postdating the Permian–Triassic boundary extinction by about 500 kyrs. This event is marked by a swap in dominating floral elements, changing from gymnosperm pollen-dominated associations in the Griesbachian to lycopsid spore-dominated assemblages in the Dienerian. This turnover coincides with an extreme δ13Corg negative shift revealing a severe environmental crisis, probably induced by volcanic outbursts of the Siberian Traps, accompanied by a climatic turnover, changing from cool and dry in the Griesbachian to hot and humid in the Dienerian. Estimates of sedimentation rates suggest that this environmental alteration took place within some 1000 years. Similar, coeval changes documented on the North Indian Margin (Pakistan) and the Bowen Basin (Australia) indicate the global extent of this crisis. Our results evidence the first profound disruption of the recovery of terrestrial environments about 500kyrs after the Permian–Triassic extinction event. It was followed by another crisis, about 1myrs later thus, the Early Triassic can be characterised as a time of successive environmental crises. PMID:27340926

  7. Late Triassic paleolatitude of the Qiangtang block: Implications for the closure of the Paleo-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Song, Peiping; Ding, Lin; Li, Zhenyu; Lippert, Peter C.; Yang, Tianshui; Zhao, Xixi; Fu, Jiajun; Yue, Yahui

    2015-08-01

    To better constrain the Late Triassic paleolatitude of the Qiangtang block and the closure of the Paleo-Tethys Ocean, a combined paleomagnetic and zircon U/Pb geochronological study has been conducted on the Upper Triassic Jiapila Formation volcanic rocks on the northern edge of the Qiangtang block of Central Tibet (34.1°N, 92.4°E). These rocks are dated to 204-213 Ma. Progressive thermal or alternating field demagnetization successfully isolated stable characteristic remanent magnetizations (ChRM) that pass both the fold and reversal tests, consistent with a primary magnetization. These are the first volcanic-based paleomagnetic results from pre-Cretaceous rocks of the Qiangtang block that appear to average secular variation well enough to yield a reliable paleolatitude estimate. Based on our new paleomagnetic data from Upper Triassic lavas, we conclude that the Late Triassic pole of the Qiangtang block was located at 64.0°N, 174.7°E, with A95 = 6.6 ° (N = 29). We compile published paleomagnetic data from the Qiangtang block to calculate a Late Triassic latitude for the Qiangtang block at 31.7 ± 3.0°N. The central Paleo-Tethys Ocean basin was located between the North China (NCB) and Tarim blocks to the north and the Qiangtang block to the south during Late Paleozoic-Early Mesozoic. A comparison of published Early Triassic paleopole from the Qiangtang block with the coeval paleopoles from the NCB and Tarim indicates that the Paleo-Tethys Ocean could not have closed during the Early Triassic and that its width was approximately ∼32-38° latitude (∼3500-4200 km). However, the comparison of our new combined Late Triassic paleomagnetic result with the Late Triassic poles of the NCB and Tarim, as well as numerous geological observations, indicates that the closure of the Paleo-Tethys Ocean at the longitude of the Qiangtang block most likely occurred during the Late Triassic.

  8. Long-term oceanic changes prior the end-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Clémence, Marie-Emilie; Mette, Wolfgang; Thibault, Nicolas; Korte, Christoph

    2014-05-01

    A number of potential causes and kill mechanisms have been proposed for the end-Triassic mass extinction such as palaeoclimatic and sea-level variations, massive volcanism and ocean acidification. Recent analysis of the stomatal index and density of fossil leaves and geochemical research on pedogenic carbonate nodules are suggestive of rising atmospheric CO2 concentration and fluctuating climate in the Rhaetian. It seems therefore probable that the end-Triassic event was preceded by large climatic fluctuations and environmental perturbations in the Rhaetian which might have partly affected the composition and diversity of the terrestrial and marine biota prior to the end-Triassic interval. The Northern Calcareous Alps (NCA) has long been favored for the study of the Rhaetian, since the GSSP of the Triassic/Jurassic (T/J) boundary and other important T/J sections are situated in this region. However, the most famous Rhaetian sections in the NCA are composed of carbonates from the Koessen Formation and were situated in a large isolated intraplatform Basin (the Eiberg Basin), bordered to the south-east by a well-developed coral reef in the NW of the Tethys border. Several Rhaetian sections composed of marls and shales of the Zlambach Formation were deposited at the same time on the other side of this reef, in the oceanic Halstatt Basin, which was in direct connection to the Tethys. Here, we present new results on sedimentology, stable isotope and trace element analysis of both intraplatform and oceanic basin deposits in the NCA. Intraplatform Rhaetian sections from the Koessen Formation bear a few minor intervals of shales with enrichments in organic matter, some of which are associated to carbon isotopic excursions. Oceanic sections from the Hallstatt Basin are characterized at the base by very cyclic marl-limestone alternations. Higher up in the section, sediments progressively turn into pure shale deposits and the top of the Formation is characterized by organic

  9. Influx of Dissolved Silica in Shallow Marine Environments in the Early Rhaetian (Late Triassic): Implications for Timing of Supercontinental Rifting

    NASA Astrophysics Data System (ADS)

    Tackett, L.

    2017-12-01

    The Rhaetian Stage of the Late Triassic terminated with a mass extinction, but the late Norian-early Rhaetian paleoecological and geochemical transitions and their relationship to events leading up to the End-Triassic mass extinction are poorly understood. To address this issue, presented here is a multi-proxy dataset from New York Canyon, Nevada (USA) relating isotope chemostratigraphy (Sr, C, O), shallow marine benthic macrofossils, and microfossils. At this Panthalassan locality the Norian-Rhaetian boundary is characterized by a negative strontium isotope excursion that facilitates correlation with Tethyan deposits. In sedimentary horizons immediately below and above this excursion, siliceous demosponge spicules (desmids) are abundant components of the microfossil populations, and silicification of calcareous microfossils becomes common. In the sedimentary beds marking the main excursion, hexactinellid sponge spicules are abundant. These results indicate a large input of dissolved silica in shallow marine environments, while the negative strontium values are consistent with increased seafloor spreading and hydrothermal vent activity or basalt weathering, either scenario being a plausible silica source for the typically silica-limited sponges that proliferated during this interval. The biosedimentary features observed across the Norian-Rhaetian boundary are similar to those observed in the earliest Jurassic in marine sections around the world following the End-Triassic mass extinction, but no clear biotic turnover is observed across the Norian-Rhaetian boundary in this succession. Thus, biosedimentary shifts across the Norian-Rhaetian boundary may add important geochemical context to the end-Triassic mass extinction event.

  10. Palaeogeographic evolution of the marine Middle Triassic marine Germanic Basin changements - With emphasis on the carbonate tidal flat and shallow marine habitats of reptiles in Central Pangaea

    NASA Astrophysics Data System (ADS)

    Diedrich, Cajus G.

    2009-01-01

    More than seventy-five vertebrate track-sites have been found in Central Europe in 243-246.5 m.y. old Triassic coastal intertidal to sabkha carbonates. In the western part of the very flat Triassic intracontinental Germanic Basin, the carbonate strata contain at least 22 laterally extensive track horizons (called megatracksites). In contrast, in the eastern part of the basin only six megatracksites extended to near the centre of the Basin during marine low stands. Marine ingression and the development of extensive coastal marine environments began during the Aegean (Anisian) stage. This incursion began in the region of the eastern Carpathian and Silesian gates and spread westward due to the development of a tectonically controlled intracratonic basin. The tectonic origin of this basin made it susceptible to tsunamis and submarine earthquakes, which constituted very dangerous hazards for coastal terrestrial and even marine reptiles. The shallow sea that spread across the Germanic Basin produced extensive tidal flats that at times formed extensive inter-peninsular bridges between the Rhenish and Bohemian Massifs. The presence of these inter-peninsular bridges explains the observed distribution and movement of reptiles along coastal Europe and the northern Tethys Seaway during the Middle Triassic epoch. Two small reptiles, probably Macrocnemus and Hescherleria, left millions of tracks and trackways known as Rhynchosauroides and Procolophonichnium in the Middle Triassic coastal intertidal zone. The great abundance of their tracks indicates that their trackmakers Macrocnemus and Hescherleria were permanent inhabitants of this environment. In sharp contrast, tracks of other large terrestrial reptiles are quite rare along the coastal margins of the Germanic Basin, for example the recently discovered archaeosaur tracks and trackways referable to Isochirotherium, which most probably were made by the carnivore Ticinosuchus. Smaller medium-sized predatory thecodont reptiles

  11. Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: evidence from a new genus and species, Grimmenodon aureum

    PubMed Central

    Stumpf, Sebastian; Ansorge, Jörg; Pfaff, Cathrin; Kriwet, Jürgen

    2017-01-01

    ABSTRACT A new genus and species of pycnodontiform fishes, Grimmenodon aureum, from marginal marine, marine-brackish lower Toarcian (Harpoceras exaratum ammonite subzone) clay deposits of Grimmen in northeastern Germany is described. The single specimen represents a diagnostic left prearticular dentition characterized by unique tooth arrangement and ornamentation patterns. Grimmenodon aureum, gen. et sp. nov., is the second unambiguously identified pycnodontiform species from the Early Jurassic, in addition to Eomesodon liassicus from the early Lower Jurassic of western Europe. We also report an indeterminate pycnodontiform tooth crown from the upper Pliensbachian (Pleuroceras apyrenum ammonite subzone) of the same site. The material expands the Early Jurassic range of pycnodontiforms significantly northwards and confirms their presence before and immediately following the onset of the Toarcian Oceanic Anoxic Event (T-OAE) in the marginal marine ecosystems south of the Fennoscandian Shield. Moreover, the new records indicate that the Early Jurassic diversity of pycnodontiform fishes was greater than previously assumed and probably equaled that of the Late Triassic. Therefore, it is hypothesized that the Triassic-Jurassic mass extinction event did not affect pycnodontiform fishes significantly. Micro-computed tomography was used to study the internal anatomy of the prearticular of Grimmenodon aureum, gen. et sp. nov. Our results show that no replacement teeth were formed within the tooth-bearing bone but rather were added posteriorly to functional teeth. http://zoobank.org/urn:lsid:zoobank.org:pub:A56BDE9C-40C4-4CFA-9C2E-F5FA35A66F2 Citation for this article: Stumpf, S., J. Ansorge, C. Pfaff, and J. Kriwet. 2017. Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: Evidence from a new genus and species, Grimmenodon aureum. Journal of Vertebrate Paleontology. DOI: 10

  12. Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: evidence from a new genus and species, Grimmenodon aureum.

    PubMed

    Stumpf, Sebastian; Ansorge, Jörg; Pfaff, Cathrin; Kriwet, Jürgen

    2017-07-04

    A new genus and species of pycnodontiform fishes, Grimmenodon aureum , from marginal marine, marine-brackish lower Toarcian ( Harpoceras exaratum ammonite subzone) clay deposits of Grimmen in northeastern Germany is described. The single specimen represents a diagnostic left prearticular dentition characterized by unique tooth arrangement and ornamentation patterns. Grimmenodon aureum , gen. et sp. nov., is the second unambiguously identified pycnodontiform species from the Early Jurassic, in addition to Eomesodon liassicus from the early Lower Jurassic of western Europe. We also report an indeterminate pycnodontiform tooth crown from the upper Pliensbachian ( Pleuroceras apyrenum ammonite subzone) of the same site. The material expands the Early Jurassic range of pycnodontiforms significantly northwards and confirms their presence before and immediately following the onset of the Toarcian Oceanic Anoxic Event (T-OAE) in the marginal marine ecosystems south of the Fennoscandian Shield. Moreover, the new records indicate that the Early Jurassic diversity of pycnodontiform fishes was greater than previously assumed and probably equaled that of the Late Triassic. Therefore, it is hypothesized that the Triassic-Jurassic mass extinction event did not affect pycnodontiform fishes significantly. Micro-computed tomography was used to study the internal anatomy of the prearticular of Grimmenodon aureum , gen. et sp. nov. Our results show that no replacement teeth were formed within the tooth-bearing bone but rather were added posteriorly to functional teeth. http://zoobank.org/urn:lsid:zoobank.org:pub:A56BDE9C-40C4-4CFA-9C2E-F5FA35A66F2 Citation for this article: Stumpf, S., J. Ansorge, C. Pfaff, and J. Kriwet. 2017. Early Jurassic diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after the end-Triassic extinction event: Evidence from a new genus and species, Grimmenodon aureum . Journal of Vertebrate Paleontology. DOI: 10.1080/02724634.2017.1344679.

  13. Triassic arc-derived detritus in the Triassic Karakaya accretionary complex was not derived from either the S Eurasian margin (Istanbul terrane) or the N Gondwana margin (Taurides)

    NASA Astrophysics Data System (ADS)

    Ustaömer, Timur; Ayda Ustaömer, Petek; Robertson, Alastair H. F.; Gerdes, Axel; Zulauf, Gernold

    2014-05-01

    We present new U-Pb zircon source age data for Upper Triassic sandstones of the Istanbul Terrane (S Eurasian margin) and also for Triassic sandstones of the Taurides (N Gondwana margin). The main aim is to detect and quantify the contribution of Triassic magmatism as detritus to either of these crustal blocks. This follows the recent discovery of a Triassic magmatic arc source for the Triassic sandstones of the Palaeotethyan Karakaya subduction-accretion complex (Ustaömer et al. 2013; this meeting). Carboniferous (Variscan) zircon grains also form a significant detrital population, plus several more minor populations. Six sandstone samples were studied, two from the İstanbul Terrane (Bakırlıkıran Formation of the Kocaeli Triassic Basin) and four from the Tauride Autochthon (latest Triassic Üzümdere Formation and Mid-Triassic Kasımlar Formations; Beyşehir region). Detrital zircon grains were dated by the laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS) U-Pb method at Goethe University, Frankfurt. Our results do not reveal Triassic detritus in the Üzümdere Formation. The U-Pb age of the analysed zircon grains ranges from 267 Ma to 3.2 Ga. A small fraction of Palaeozoic zircons are Permian (267 to 296 Ma), whereas the remainder are Early Palaeozoic. Ordovician grains (4%) form two age clusters, one at ca. 450 Ma and the other at ca. 474 Ma. Cambrian-aged grains dominate the zircon population, while the second largest population is Ediacaran (576 to 642 Ma). Smaller populations occur at 909-997 Ma, 827-839 Ma, 1.8-2.0 Ga and 2.4-2.6 Ga. The sandstones of the Kasımlar Formation have similar zircon age cluster to those of the somewhat younger Üzümdere Formation, ranging from 239 Ma to 2.9 Ga. A few grains gave Anisian ages. Cambrian zircon grains are less pronounced than in the Kasımlar Formation compared to the Üzümdere Formation. The detrital zircon record of Tauride sandstones, therefore, not indicates significant contribution

  14. Carbon and nitrogen isotopic compositions of alkyl porphyrins from the Triassic Serpiano oil shale

    NASA Technical Reports Server (NTRS)

    Chicarelli, M. I.; Hayes, J. M.; Popp, B. N.; Eckardt, C. B.; Maxwell, J. R.

    1993-01-01

    The carbon and nitrogen isotopic compositions of seven of the most abundant alkylporphyrins from the Serpiano oil shale (marine, Triassic) were determined. For the C31 and C32 butanoporphyrins, values of delta 13CPDB and delta 15NAIR averaged -24.0% and -3.1%. In contrast, the C31 and C32 methylpropanoporphyrins, DPEP, and a C30 13-nor etioporphyrin had delta 13C and delta 15N values averaging -27.5 and -3.3%, respectively. Carbon and nitrogen isotopic values for kerogen averaged -30.8 and -0.9, whereas those for total extract averaged -31.6, and -4.0%. The butanoporphyrins apparently derive from a biological source different from that giving rise to the other porphyrins, their 13C enrichment not being related to carbon isotopic fractionation accompanying diagenetic reactions. The delta 15N values for all the porphyrins indicate that the depletion of 15N observed in the kerogen is of primary origin. Consistent with the very high abundance of hopanoids and methyl hopanoids in the aliphatic hydrocarbon fraction, it is suggested that cyanobacterial fixation of N2 may have been the main cause of 15N depletion.

  15. Carbonate Minerals with Magnesium in Triassic Terebratula Limestone in the Term of Limestone with Magnesium Application as a Sorbent in Desulfurization of Flue Gases

    NASA Astrophysics Data System (ADS)

    Stanienda-Pilecki, Katarzyna

    2017-09-01

    This article presents the results of studies of Triassic (Muschelkalk) carbonate rock samples of the Terebratula Beds taken from the area of the Polish part of the Germanic Basin. It is the area of Opole Silesia. The rocks were studied in the term of possibility of limestone with magnesium application in desulfurization of flue gases executed in power plants. Characteristic features of especially carbonate phases including magnesium-low-Mg calcite, high-Mg calcite, dolomite and huntite were presented in the article. They were studied to show that the presence of carbonate phases with magnesium, especially high-Mg calcite makes the desulfurization process more effective. Selected rock samples were examined using a microscope with polarized, transmitted light, X-ray diffraction, microprobe measurements and FTIR spectroscopy. The results of studies show a domination of low magnesium calcite in the limestones of the Terebratula Beds. In some samples dolomite and lower amounts of high-Mg calcite occurred. Moreover, huntite was identified. The studies were very important, because carbonate phases like high-Mg calcite and huntite which occurred in rocks of the Triassic Terebratula Beds were not investigated in details by other scientists but they presence in limestone sorbent could influence the effectiveness of desulfurization process.

  16. A new stem group echinoid from the Triassic of China leads to a revised macroevolutionary history of echinoids during the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Thompson, Jeffrey R.; Hu, Shi-xue; Zhang, Qi-Yue; Petsios, Elizabeth; Cotton, Laura J.; Huang, Jin-Yuan; Zhou, Chang-yong; Wen, Wen; Bottjer, David J.

    2018-01-01

    The Permian-Triassic bottleneck has long been thought to have drastically altered the course of echinoid evolution, with the extinction of the entire echinoid stem group having taken place during the end-Permian mass extinction. The Early Triassic fossil record of echinoids is, however, sparse, and new fossils are paving the way for a revised interpretation of the evolutionary history of echinoids during the Permian-Triassic crisis and Early Mesozoic. A new species of echinoid, Yunnanechinus luopingensis n. sp. recovered from the Middle Triassic (Anisian) Luoping Biota fossil Lagerstätte of South China, displays morphologies that are not characteristic of the echinoid crown group. We have used phylogenetic analyses to further demonstrate that Yunnanechinus is not a member of the echinoid crown group. Thus a clade of stem group echinoids survived into the Middle Triassic, enduring the global crisis that characterized the end-Permian and Early Triassic. Therefore, stem group echinoids did not go extinct during the Palaeozoic, as previously thought, and appear to have coexisted with the echinoid crown group for at least 23 million years. Stem group echinoids thus exhibited the Lazarus effect during the latest Permian and Early Triassic, while crown group echinoids did not.

  17. Magnetostratigraphic correlations of Permian-Triassic marine-to-terrestrial sections from China

    USGS Publications Warehouse

    Glen, J.M.G.; Nomade, S.; Lyons, J.J.; Metcalfe, I.; Mundil, R.; Renne, P.R.

    2009-01-01

    We have studied three Permian–Triassic (PT) localities from China as part of a combined magnetostratigraphic, 40Ar/39Ar and U–Pb radioisotopic, and biostratigraphic study aimed at resolving the temporal relations between terrestrial and marine records across the Permo-Triassic boundary, as well as the rate of the biotic recovery in the Early Triassic. The studied sections from Shangsi (Sichuan Province), Langdai (Guihzou Province), and the Junggar basin (Xinjiang Province), span marine, paralic, and terrestrial PT environments, respectively. Each of these sections was logged in detail in order to place geochronologic, paleomagnetic, geochemical, conodont and palynologic samples within a common stratigraphic context. Here we present rock-magnetic, paleomagnetic and magnetostratigraphic results from the three localities.At Shangsi, northern Sichuan Province, we sampled three sections spanning Permo-Triassic marine carbonates. Magnetostratigraphic results from the three sections indicate that the composite section contains at least eight polarity chrons and that the PT boundary occurs within a normal polarity chron a short distance above the mass extinction level and a reversed-to-normal (R-N) polarity reversal. Furthermore, the onset of the Illawarra mixed interval lies below the sampled section indicating that the uppermost Permian Changhsingian and at least part of the Wuchiapingian stages postdate the end of the Kiaman Permo-Carboniferous Reversed Superchron.At Langdai, Guizhou Province, we studied magnetostratigraphy of PT paralic mudstone and carbonate sediments in two sections. The composite section spans an R-N polarity sequence. Section-mean directions pass a fold test at the 95% confidence level, and the section-mean poles are close to the mean PT pole for the South China block. Based on biostratigraphic constraints, the R-N transition recorded at Langdai is consistent with that at Shangsi and demonstrates that the PT boundary occurred within a normal

  18. Permo-Triassic radiolaria from the Semanggol Formation, northwest Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Jasin, Basir

    1997-02-01

    A total of 32 species of radiolaria were identified from 20 chert samples at eight localities of the Semanggol Formation in north and south Kedah. Three assemblages of Radiolaria were recognised representing the Early Permian Pseudoalbaillella scalprata m. rhombothoracata. Late Permian Albaillella levis, and Middle Triassic Triassocampe deweveri Assemblage-Zone. The Pseudoalbaillella scalprata m. rhombothoracata Assemblage-Zone is discovered from Bukit Kampung Yoi and Bukit Larek, north Kedah. The Albaillella levis Assemblage-Zone is recorded from Bukit Tok Bertanduk, north Kedah and Merbau Palas, south Kedah. The Triassocampe deweveri Assemblage-Zone is found from the Lanjut Malau area, north Kedah. The radiolarian assemblages indicate that the age of the chert sequence in the Semanggol Formation ranges from Early permian to Middle Triassic.

  19. Rock magnetism and magnetic fabric of the Triassic rocks from the West Spitsbergen Fold-and-Thrust Belt and its foreland

    NASA Astrophysics Data System (ADS)

    Dudzisz, Katarzyna; Szaniawski, Rafał; Michalski, Krzysztof; Chadima, Martin

    2018-03-01

    Magnetic fabric and magnetomineralogy of the Early Triassic sedimentary rocks, collected along the length of the West Spitsbergen Fold-and-Thrust Belt (WSFTB) and from subhorizontal beds on its foreland, is presented with the aim to compare magnetic mineralogy of these areas, determine the carriers of magnetic fabric and identify tectonic deformation reflected in the magnetic fabric. Magnetic mineralogy varies and only in part depends on the lithology. The magnetic fabric at all sampling sites is controlled by paramagnetic minerals (phyllosilicates and Fe-carbonates). In the fold belt, it reflects the low degree of deformation in a compressional setting with magnetic lineation parallel to fold axis (NW-SE). This is consistent with pure orthogonal compression model of the WSFTB formation, but it also agrees with decoupling model. Inverse fabric, observed in few sites, is carried by Fe-rich carbonates. In the WSFTB foreland, magnetic lineation reflects the Triassic paleocurrent direction (NE-SW). The alternation between normal and inverse magnetic fabric within the stratigraphic profile could be related to sedimentary cycles.

  20. A Middle Triassic thoracopterid from China highlights the evolutionary origin of overwater gliding in early ray-finned fishes

    PubMed Central

    Xu, Guang-Hui; Zhao, Li-Jun; Shen, Chen-Chen

    2015-01-01

    Gliding adaptations in thoracopterid flying fishes represent a remarkable case of convergent evolution of overwater gliding strategy with modern exocoetid flying fishes, but the evolutionary origin of this strategy was poorly known in the thoracopterids because of lack of transitional forms. Until recently, all thoracopterids, from the Late Triassic of Austria and Italy and the Middle Triassic of South China, were highly specialized ‘four-winged’ gliders in having wing-like paired fins and an asymmetrical caudal fin with the lower caudal lobe notably larger than the upper lobe. Here, we show that the new genus Wushaichthys and the previously alleged ‘peltopleurid’ Peripeltopleurus, from the Middle Triassic (Ladinian, 235–242 Ma) of South China and near the Ladinian/Anisian boundary of southern Switzerland and northern Italy, respectively, represent the most primitive and oldest known thoracopterids. Wushaichthys, the most basal thoracopterid, shows certain derived features of this group in the skull. Peripeltopleurus shows a condition intermediate between Wushaichthys and Thoracopterus in having a slightly asymmetrical caudal fin but still lacking wing-like paired fins. Phylogenetic studies suggest that the evolution of overwater gliding of thoracopterids was gradual in nature; a four-stage adaption following the ‘cranial specialization–asymmetrical caudal fin–enlarged paired fins–scale reduction’ sequence has been recognized in thoracopterid evolution. Moreover, Wushaichthys and Peripeltopleurus bear hooklets on the anal fin of supposed males, resembling those of modern viviparious teleosts. Early thoracopterids probably had evolved a live-bearing reproductive strategy. PMID:25568155

  1. Strangelove Ocean and Deposition of Unusual Shallow-Water Carbonates After the End-Permian Mass Extinction

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Caldeira, Ken

    2003-01-01

    The severe mass extinction of marine and terrestrial organisms at the end of the Permian Period (approx. 251 Ma) was accompanied by a rapid negative excursion of approx. 3 to 4 per mil in the carbon-isotope ratio of the global surface oceans and atmosphere that persisted for some 500,000 into the Early Triassic. Simulations with an ocean-atmosphere/carbon-cycle model suggest that the isotope excursion can be explained by collapse of ocean primary productivity (a Strangelove Ocean) and changes in the delivery and cycling of carbon in the ocean and on land. Model results also suggest that perturbations of the global carbon cycle resulting from the extinctions led to short-term fluctuations in atmospheric pCO2 and ocean carbonate deposition, and to a long-term (>1 Ma) decrease in sedimentary burial of organic carbon in the Triassic. Deposition of calcium carbonate is a major sink of river-derived ocean alkalinity and for CO2 from the ocean/atmosphere system. The end of the Permian was marked by extinction of most calcium carbonate secreting organisms. Therefore, the reduction of carbonate accumulation made the oceans vulnerable to a build-up of alkalinity and related fluctuations in atmospheric CO2. Our model results suggest that an increase in ocean carbonate-ion concentration should cause increased carbonate accumulation rates in shallow-water settings. After the end-Permian extinctions, early Triassic shallow-water sediments show an abundance of abiogenic and microbial carbonates that removed CaCO3 from the ocean and may have prevented a full 'ocean-alkalinity crisis' from developing.

  2. Associated skeletons of a new middle Triassic "Rauisuchia" from Brazil.

    PubMed

    França, Marco Aurélio G; Ferigolo, Jorge; Langer, Max C

    2011-05-01

    For more than 30 million years, in early Mesozoic Pangea, "rauisuchian" archosaurs were the apex predators in most terrestrial ecosystems, but their biology and evolutionary history remain poorly understood. We describe a new "rauisuchian" based on ten individuals found in a single locality from the Middle Triassic (Ladinian) Santa Maria Formation of southern Brazil. Nine articulated and associated skeletons were discovered, three of which have nearly complete skulls. Along with sedimentological and taphonomic data, this suggests that those highly successful predators exhibited some kind of intraspecific interaction. Other monotaxic assemblages of Triassic archosaurs are Late Triassic (Norian-Rhaetian) in age, approximately 10 million years younger than the material described here. Indeed, the studied assemblage may represent the earliest evidence of gregariousness among archosaurs, adding to our knowledge on the origin of a behavior pattern typical of extant taxa.

  3. Evolution of a Permo-Triassic sedimentary melange, Grindstone terrane, east-central Oregon

    USGS Publications Warehouse

    Blome, C.D.; Nestell, M.K.

    1991-01-01

    Perceives the Grindstone rocks to be a sedimentary melange composed of Paleozoic limestone slide and slump blocks that became detached from a carbonate shelf fringing a volcanic knoll or edifice in Late Permian to Middle Triassic time and were intermixed with Permian and Triassic slope to basinal clastic and volcaniclastic rocks in a forearc basin setting. Paleogeographic affinities of the Grindstone limestone faunas and volcaniclastic debris in the limestone and clastic rocks all indicate deposition in promixity to an island-arc system near the North American craton. -from Authors

  4. Upper Triassic limestones from the northern part of Japan: new insights on the Panthalassa Ocean and Hokkaido Island

    NASA Astrophysics Data System (ADS)

    Peyrotty, Giovan; Peybernes, Camille; Ueda, Hayato; Martini, Rossana

    2017-04-01

    In comparison with the well-known Tethyan domain, Upper Triassic limestones from the Panthalassa Ocean are still poorly known. However, these carbonates represent a unique opportunity to have a more accurate view of the Panthalassa Ocean during the Triassic. Their study will allow comparison and correlation of biotic assemblages, biostratigraphy, diagenesis, and depositional settings of different Triassic localities from Tethyan and Panthalassic domains. Moreover, investigation of these carbonates will provide data for taxonomic revisions and helps to better constrain palaeobiogeographic models. One of the best targets for the study of these carbonates is Hokkaido Island (north of Japan). Indeed, this island is a part of the South-North continuity of Jurassic to Paleogene accretionary complexes, going from the Philippines to Sakhalin Island (Far East Russia). Jurassic and Cretaceous accretionary complexes of Japan and Philippines contain Triassic mid-oceanic seamount carbonates from the western Panthalassa Ocean (Onoue & Sano, 2007; Kiessling & Flügel, 2000). They have been accreted either as isolated limestone slabs or as clasts and boulders, and are associated with mudstones, cherts, breccias and basaltic rocks. Two major tectonic units forming Hokkaido Island and containing Triassic limestones have been accurately explored and extensively sampled: the Oshima Belt (west Hokkaido) a Jurassic accretionary complex, and the Cretaceous Sorachi-Yezo Belt (central Hokkaido). The Sorachi-Yezo Belt is composed of Cretaceous accretionary complexes in the east and of Cretaceous clastic basin sediments deposited on a Jurassic basement in the west (Ueda, 2016), both containing Triassic limestones. The origin of this belt is still matter of debate especially because of its western part which is not in continuity with any other accretionary complex known in the other islands of Japan and also due to the lack of data in this region. One of the main goals of this study is to

  5. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Percival, Lawrence M. E.; Ruhl, Micha; Hesselbo, Stephen P.; Jenkyns, Hugh C.; Mather, Tamsin A.; Whiteside, Jessica H.

    2017-07-01

    The Central Atlantic Magmatic Province (CAMP) has long been proposed as having a causal relationship with the end-Triassic extinction event (˜201.5 Ma). In North America and northern Africa, CAMP is preserved as multiple basaltic units interbedded with uppermost Triassic to lowermost Jurassic sediments. However, it has been unclear whether this apparent pulsing was a local feature, or if pulses in the intensity of CAMP volcanism characterized the emplacement of the province as a whole. Here, six geographically widespread Triassic-Jurassic records, representing varied paleoenvironments, are analyzed for mercury (Hg) concentrations and Hg/total organic carbon (Hg/TOC) ratios. Volcanism is a major source of mercury to the modern environment. Clear increases in Hg and Hg/TOC are observed at the end-Triassic extinction horizon, confirming that a volcanically induced global Hg cycle perturbation occurred at that time. The established correlation between the extinction horizon and lowest CAMP basalts allows this sedimentary Hg excursion to be stratigraphically tied to a specific flood basalt unit, strengthening the case for volcanic Hg as the driver of sedimentary Hg/TOC spikes. Additional Hg/TOC peaks are also documented between the extinction horizon and the Triassic-Jurassic boundary (separated by ˜200 ky), supporting pulsatory intensity of CAMP volcanism across the entire province and providing direct evidence for episodic volatile release during the initial stages of CAMP emplacement. Pulsatory volcanism, and associated perturbations in the ocean-atmosphere system, likely had profound implications for the rate and magnitude of the end-Triassic mass extinction and subsequent biotic recovery.

  6. A Short-Snouted, Middle Triassic Phytosaur and its Implications for the Morphological Evolution and Biogeography of Phytosauria.

    PubMed

    Stocker, Michelle R; Zhao, Li-Jun; Nesbitt, Sterling J; Wu, Xiao-Chun; Li, Chun

    2017-04-10

    Following the end-Permian extinction, terrestrial vertebrate diversity recovered by the Middle Triassic, and that diversity was now dominated by reptiles. However, those reptilian clades, including archosaurs and their closest relatives, are not commonly found until ~30 million years post-extinction in Late Triassic deposits despite time-calibrated phylogenetic analyses predicting an Early Triassic divergence for those clades. One of these groups from the Late Triassic, Phytosauria, is well known from a near-Pangean distribution, and this easily recognized clade bears an elongated rostrum with posteriorly retracted nares and numerous postcranial synapomorphies that are unique compared with all other contemporary reptiles. Here, we recognize the exquisitely preserved, nearly complete skeleton of Diandongosuchus fuyuanensis from the Middle Triassic of China as the oldest and basalmost phytosaur. The Middle Triassic age and lack of the characteristically-elongated rostrum fill a critical morphological and temporal gap in phytosaur evolution, indicating that the characteristic elongated rostrum of phytosaurs appeared subsequent to cranial and postcranial modifications associated with enhanced prey capture, predating that general trend of morphological evolution observed within Crocodyliformes. Additionally, Diandongosuchus supports that the clade was present across Pangea, suggesting early ecosystem exploration for Archosauriformes through nearshore environments and leading to ease of dispersal across the Tethys.

  7. A Short-Snouted, Middle Triassic Phytosaur and its Implications for the Morphological Evolution and Biogeography of Phytosauria

    PubMed Central

    Stocker, Michelle R.; Zhao, Li-Jun; Nesbitt, Sterling J.; Wu, Xiao-Chun; Li, Chun

    2017-01-01

    Following the end-Permian extinction, terrestrial vertebrate diversity recovered by the Middle Triassic, and that diversity was now dominated by reptiles. However, those reptilian clades, including archosaurs and their closest relatives, are not commonly found until ~30 million years post-extinction in Late Triassic deposits despite time-calibrated phylogenetic analyses predicting an Early Triassic divergence for those clades. One of these groups from the Late Triassic, Phytosauria, is well known from a near-Pangean distribution, and this easily recognized clade bears an elongated rostrum with posteriorly retracted nares and numerous postcranial synapomorphies that are unique compared with all other contemporary reptiles. Here, we recognize the exquisitely preserved, nearly complete skeleton of Diandongosuchus fuyuanensis from the Middle Triassic of China as the oldest and basalmost phytosaur. The Middle Triassic age and lack of the characteristically-elongated rostrum fill a critical morphological and temporal gap in phytosaur evolution, indicating that the characteristic elongated rostrum of phytosaurs appeared subsequent to cranial and postcranial modifications associated with enhanced prey capture, predating that general trend of morphological evolution observed within Crocodyliformes. Additionally, Diandongosuchus supports that the clade was present across Pangea, suggesting early ecosystem exploration for Archosauriformes through nearshore environments and leading to ease of dispersal across the Tethys. PMID:28393843

  8. New stem-sauropodomorph (Dinosauria, Saurischia) from the Triassic of Brazil

    NASA Astrophysics Data System (ADS)

    Cabreira, Sergio F.; Schultz, Cesar L.; Bittencourt, Jonathas S.; Soares, Marina B.; Fortier, Daniel C.; Silva, Lúcio R.; Langer, Max C.

    2011-12-01

    Post-Triassic theropod, sauropodomorph, and ornithischian dinosaurs are readily recognized based on the set of traits that typically characterize each of these groups. On the contrary, most of the early members of those lineages lack such specializations, but share a range of generalized traits also seen in more basal dinosauromorphs. Here, we report on a new Late Triassic dinosaur from the Santa Maria Formation of Rio Grande do Sul, southern Brazil. The specimen comprises the disarticulated partial skeleton of a single individual, including most of the skull bones. Based on four phylogenetic analyses, the new dinosaur fits consistently on the sauropodomorph stem, but lacks several typical features of sauropodomorphs, showing dinosaur plesiomorphies together with some neotheropod traits. This is not an exception among basal dinosaurs, the early radiation of which is characterized by a mosaic pattern of character acquisition, resulting in the uncertain phylogenetic placement of various early members of the group.

  9. A Middle Triassic thoracopterid from China highlights the evolutionary origin of overwater gliding in early ray-finned fishes.

    PubMed

    Xu, Guang-Hui; Zhao, Li-Jun; Shen, Chen-Chen

    2015-01-01

    Gliding adaptations in thoracopterid flying fishes represent a remarkable case of convergent evolution of overwater gliding strategy with modern exocoetid flying fishes, but the evolutionary origin of this strategy was poorly known in the thoracopterids because of lack of transitional forms. Until recently, all thoracopterids, from the Late Triassic of Austria and Italy and the Middle Triassic of South China, were highly specialized 'four-winged' gliders in having wing-like paired fins and an asymmetrical caudal fin with the lower caudal lobe notably larger than the upper lobe. Here, we show that the new genus Wushaichthys and the previously alleged 'peltopleurid' Peripeltopleurus, from the Middle Triassic (Ladinian, 235-242 Ma) of South China and near the Ladinian/Anisian boundary of southern Switzerland and northern Italy, respectively, represent the most primitive and oldest known thoracopterids. Wushaichthys, the most basal thoracopterid, shows certain derived features of this group in the skull. Peripeltopleurus shows a condition intermediate between Wushaichthys and Thoracopterus in having a slightly asymmetrical caudal fin but still lacking wing-like paired fins. Phylogenetic studies suggest that the evolution of overwater gliding of thoracopterids was gradual in nature; a four-stage adaption following the 'cranial specialization-asymmetrical caudal fin-enlarged paired fins-scale reduction' sequence has been recognized in thoracopterid evolution. Moreover, Wushaichthys and Peripeltopleurus bear hooklets on the anal fin of supposed males, resembling those of modern viviparious teleosts. Early thoracopterids probably had evolved a live-bearing reproductive strategy. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery

    NASA Astrophysics Data System (ADS)

    Zhang, Guijie; Zhang, Xiaolin; Hu, Dongping; Li, Dandan; Algeo, Thomas J.; Farquhar, James; Henderson, Charles M.; Qin, Liping; Shen, Megan; Shen, Danielle; Schoepfer, Shane D.; Chen, Kefan; Shen, Yanan

    2017-02-01

    The end-Permian mass extinction represents the most severe biotic crisis for the last 540 million years, and the marine ecosystem recovery from this extinction was protracted, spanning the entirety of the Early Triassic and possibly longer. Numerous studies from the low-latitude Paleotethys and high-latitude Boreal oceans have examined the possible link between ocean chemistry changes and the end-Permian mass extinction. However, redox chemistry changes in the Panthalassic Ocean, comprising ˜85-90% of the global ocean area, remain under debate. Here, we report multiple S-isotopic data of pyrite from Upper Permian-Lower Triassic deep-sea sediments of the Panthalassic Ocean, now present in outcrops of western Canada and Japan. We find a sulfur isotope signal of negative Δ33S with either positive δ34S or negative δ34S that implies mixing of sulfide sulfur with different δ34S before, during, and after the end-Permian mass extinction. The precise coincidence of the negative Δ33S anomaly with the extinction horizon in western Canada suggests that shoaling of H2S-rich waters may have driven the end-Permian mass extinction. Our data also imply episodic euxinia and oscillations between sulfidic and oxic conditions during the earliest Triassic, providing evidence of a causal link between incursion of sulfidic waters and the delayed recovery of the marine ecosystem.

  11. Tectono-sedimentary evolution of the Permian-Triassic extension event in the Zagros basin (Iran): results from analogue modelling

    NASA Astrophysics Data System (ADS)

    Madani-kivi, M.; Zulauf, G.

    2015-12-01

    Since the 1970s, the largest oil and gas reservoirs have been discovered in the Permian-Early Triassic formationsin Saudi Arabia. Thus, this time period is important for the discovery of new oil reserves in Iran. The Arabian passivecontinental margin has undergone lithospheric extension during the Permian-Triassic, which led to the formation of theNeo-Tethys. The aim of this paper is to describe the development of the continental rift basin in the Zagros region basedon the tectono-sedimentological evolution. We have studied well-log data to specify the distribution of synrift depositsin the Zagros and have related this information to the modelling. Environmental changes indicated by various sedimentarysequences, from a siliciclastic basin to a carbonate platform setting, are described. The Cambrian Hormuz salt, whichoverlies the metamorphosed Precambrian basement, becomes effective as a basal detachment layer influencing the styleof overburden deformation during the Permian-Triassic extension event. We have investigated the formation of variousstructures linked to the presence or absence of the Hormuz layer by analogue modelling and relating these structures to theLate Palaeozoic sedimentation. Based on results of the analogue modelling, we argue that the basal detachment layer (Hormuzseries) has contributed to the various structural styles of the extensional basin development in the Fars domain and theLorestan domain.

  12. Permian-Early Triassic tectonics and stratigraphy of the Karoo Supergroup in northwestern Mozambique

    NASA Astrophysics Data System (ADS)

    Bicca, Marcos Müller; Philipp, Ruy Paulo; Jelinek, Andrea Ritter; Ketzer, João Marcelo Medina; dos Santos Scherer, Claiton Marlon; Jamal, Daúd Liace; dos Reis, Adriano Domingos

    2017-06-01

    The Gondwana continent was the base of great basin inception, sedimentation and magmatism throughout the Cambrian to Middle Jurassic periods. The northwestern Mozambique igneous and metamorphic basement assemblages host the NW-trending Moatize Minjova Basin, which has great economic potential for coal and gas mining. This rift basin was activated by an S-SW stress field during the Early Permian period, as constrained by regional and field scale structural data. Tectonically induced subsidence in the basin, from the reactivation of NW-SE and NNE-SSW regional structures is well recorded by faults, folds and synsedimentary fractures within the Early Late Permian Moatize Formation. NW-SE, N-S and NE-SW field structures consist of post-Karoo reactivation patterns related to a NNE-SSW extension produced by the Pangea breakup and early inception stages of the Great East African Rift System. The Early Late Permian sequences of the Moatize-Minjova Basin are composed of fluvial meandering, coal-bearing beds of the Moatize Formation, which comprises mostly floodplain, crevasse splay and fluvial channel lithofacies associations, deposited in a cyclic pattern. This sequence was overlapped by a multiple-story, braided fluvial plain sequence of the Matinde Formation (Late Permian - Early Triassic). Lithofacies associations in the Matinde Formation and its internal relationships suggest deposition of poorly channelized braided alluvial plain in which downstream and probably lateral accretion macroforms alternate with gravity flow deposits. NW paleoflow measurements suggest that Permian fluvial headwaters were located somewhere southeast of the study area, possibly between the African and Antarctic Precambrian highlands.

  13. Mercury anomalies as a proxy for large igneous province volicanism and effects on the carbon cycle in a U-Pb age-constrained section spanning the end-Triassic mass extinction, Levanto, Peru

    NASA Astrophysics Data System (ADS)

    Yager, J. A.; West, A. J.; Bergquist, B. A.; Thibodeau, A. M.; Corsetti, F. A.; Berelson, W.; Rosas, S.; Bottjer, D. J.

    2017-12-01

    Understanding the causes of the end-Triassic extinction and their potential relationship to Central Atlantic Magmatic Province (CAMP) volcanism necessitates careful correlation of carbon cycle records (largely from marine sections) and volcanism (largely from terrestrial successions) in a robust chronological framework. Here, we report stable carbon isotopes and mercury concentrations and isotopes from the Levanto section in Northern Peru as a putative proxy for CAMP (a large igneous province) in a marine section. Levanto represents deposition well below storm wave base and is lithologically homogenous before, during, and after the end-Triassic extinction interval, making it ideal for detailed chemostratigraphy. Furthermore, abundant intercalated ash beds allow us to correlate mercury concentrations in the marine record directly with CAMP basalt ages, providing a test of the correspondence of mercury anomalies with the eruption of CAMP volcanics. Age dating and C isotope analyses provide an opportunity to explore orbital tuning of the carbon isotope record and ground truth it with existing U-Pb ages from the section, a feature not available in any other marine sections examined to date. The abundance of U-Pb dated ashes in the Levanto section allows us to correlate orbital tuning with other basins, which lack absolute age control, providing a better understanding for the C cycle changes associated with the Triassic-Jurassic boundary.

  14. Absence of Suction Feeding Ichthyosaurs and Its Implications for Triassic Mesopelagic Paleoecology

    PubMed Central

    Motani, Ryosuke; Ji, Cheng; Tomita, Taketeru; Kelley, Neil; Maxwell, Erin; Jiang, Da-yong; Sander, Paul Martin

    2013-01-01

    Mesozoic marine reptiles and modern marine mammals are often considered ecological analogs, but the extent of their similarity is largely unknown. Particularly important is the presence/absence of deep-diving suction feeders among Mesozoic marine reptiles because this would indicate the establishment of mesopelagic cephalopod and fish communities in the Mesozoic. A recent study suggested that diverse suction feeders, resembling the extant beaked whales, evolved among ichthyosaurs in the Triassic. However, this hypothesis has not been tested quantitatively. We examined four osteological features of jawed vertebrates that are closely linked to the mechanism of suction feeding, namely hyoid corpus ossification/calcification, hyobranchial apparatus robustness, mandibular bluntness, and mandibular pressure concentration index. Measurements were taken from 18 species of Triassic and Early Jurassic ichthyosaurs, including the presumed suction feeders. Statistical comparisons with extant sharks and marine mammals of known diets suggest that ichthyosaurian hyobranchial bones are significantly more slender than in suction-feeding sharks or cetaceans but similar to those of ram-feeding sharks. Most importantly, an ossified hyoid corpus to which hyoid retractor muscles attach is unknown in all but one ichthyosaur, whereas a strong integration of the ossified corpus and cornua of the hyobranchial apparatus has been identified in the literature as an important feature of suction feeders. Also, ichthyosaurian mandibles do not narrow rapidly to allow high suction pressure concentration within the oral cavity, unlike in beaked whales or sperm whales. In conclusion, it is most likely that Triassic and Early Jurassic ichthyosaurs were ‘ram-feeders’, without any beaked-whale-like suction feeder among them. When combined with the inferred inability for dim-light vision in relevant Triassic ichthyosaurs, the fossil record of ichthyosaurs does not suggest the establishment of modern

  15. Corrected Late Triassic latitudes for continents adjacent to the North Atlantic.

    PubMed

    Kent, Dennis V; Tauxe, Lisa

    2005-01-14

    We use a method based on a statistical geomagnetic field model to recognize and correct for inclination error in sedimentary rocks from early Mesozoic rift basins in North America, Greenland, and Europe. The congruence of the corrected sedimentary results and independent data from igneous rocks on a regional scale indicates that a geocentric axial dipole field operated in the Late Triassic. The corrected paleolatitudes indicate a faster poleward drift of approximately 0.6 degrees per million years for this part of Pangea and suggest that the equatorial humid belt in the Late Triassic was about as wide as it is today.

  16. Additive effects of acidification and mineralogy on calcium isotopes in Triassic/Jurassic boundary limestones

    DOE PAGES

    Jost, Adam B.; Bachan, Aviv; van de Schootbrugge, Bas; ...

    2016-12-29

    The end-Triassic mass extinction coincided with a negative δ 13 C excursion, consistent with release of 13C-depleted CO 2 from the Central Atlantic Magmatic Province. However, the amount of carbon released and its effects on ocean chemistry are poorly constrained. The co upled nature of the carbon and calcium cycles allows calcium isotopes to be used for constraining carbon cycle dynamics and vice versa. We present a high-resolution calcium isotope (δ 44/40 Ca) record from 100 m of marine limestone spanning the Triassic/Jurassic boundary in two stratigraphic sections from northern Italy. Immediately above the extinction horizon and the associated negativemore » excursion in δ 13 C, δ 44/40 Ca decreases by ca. 0.8‰ in 20 m of section and then recovers to preexcursion values. Coupled numerical models of the geological carbon and calcium cycles demonstrate that this δ 44/40 Ca excursion is too large to be explained by changes to seawater δ 44/40 Ca alone, regardless of CO 2 injection volume and duration. Less than 20% of the δ 44/40 Ca excursion can be attributed to acidification. The remaining 80% likely reflects a higher proportion of aragonite in the original sediment, based largely on high concentrations of Sr in the samples. Our study demonstrates that coupled models of the carbon and calcium cycles have the potential to help distinguish contributions of primary seawater isotopic changes from local or diagenetic effects on the δ 44/40 Ca of carbonate sediments. Finally, differentiating between these effects is critical for constraining the impact of ocean acidification during the end-Triassic mass extinction, as well as for interpreting other environmental events in the geologic past.« less

  17. Additive effects of acidification and mineralogy on calcium isotopes in Triassic/Jurassic boundary limestones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jost, Adam B.; Bachan, Aviv; van de Schootbrugge, Bas

    The end-Triassic mass extinction coincided with a negative δ 13 C excursion, consistent with release of 13C-depleted CO 2 from the Central Atlantic Magmatic Province. However, the amount of carbon released and its effects on ocean chemistry are poorly constrained. The co upled nature of the carbon and calcium cycles allows calcium isotopes to be used for constraining carbon cycle dynamics and vice versa. We present a high-resolution calcium isotope (δ 44/40 Ca) record from 100 m of marine limestone spanning the Triassic/Jurassic boundary in two stratigraphic sections from northern Italy. Immediately above the extinction horizon and the associated negativemore » excursion in δ 13 C, δ 44/40 Ca decreases by ca. 0.8‰ in 20 m of section and then recovers to preexcursion values. Coupled numerical models of the geological carbon and calcium cycles demonstrate that this δ 44/40 Ca excursion is too large to be explained by changes to seawater δ 44/40 Ca alone, regardless of CO 2 injection volume and duration. Less than 20% of the δ 44/40 Ca excursion can be attributed to acidification. The remaining 80% likely reflects a higher proportion of aragonite in the original sediment, based largely on high concentrations of Sr in the samples. Our study demonstrates that coupled models of the carbon and calcium cycles have the potential to help distinguish contributions of primary seawater isotopic changes from local or diagenetic effects on the δ 44/40 Ca of carbonate sediments. Finally, differentiating between these effects is critical for constraining the impact of ocean acidification during the end-Triassic mass extinction, as well as for interpreting other environmental events in the geologic past.« less

  18. Upper triassic continental margin strata of the central alaska range: Implications for paleogeographic reconstruction

    USGS Publications Warehouse

    Till, A.B.; Harris, A.G.; Wardlaw, B.R.; Mullen, M.

    2007-01-01

    Reexamination of existing conodont collections from the central Alaska Range indicates that Upper Triassic marine slope and basin rocks range in age from at least as old as the late Carnian to the early middle Norian. The conodont assemblages typical of these rocks are generally cosmopolitan and do not define a distinct paleogeographic faunal realm. One collection, however, containsEpigondolella multidentata sensu Orchard 1991c, which appears to be restricted to western North American autochthonous rocks. Although paleogeographic relations cannot be determined with specificity, the present distribution of biofaces within the Upper Triassic sequence could not have been the result of simple accordion-style collapse of the Late Triassic margin.

  19. Recovery of Carbonate Ecosystems Following the End-Triassic Mass Extinction: Insights from Mercury Anomalies and Their Relationship to the Central Atlantic Magmatic Province

    NASA Astrophysics Data System (ADS)

    Corsetti, F. A.; Thibodeau, A. M.; Ritterbush, K. A.; West, A. J.; Yager, J. A.; Ibarra, Y.; Bottjer, D. J.; Berelson, W.; Bergquist, B. A.

    2015-12-01

    Recent high-resolution age dating demonstrates that the end-Triassic mass extinction overlapped with the eruption of the Central Atlantic Magmatic Province (CAMP), and the release of CO2 and other volatiles to the atmosphere has been implicated in the extinction. Given the potentially massive release of CO2, ocean acidification is commonly considered a factor in the extinction and the collapse of shallow marine carbonate ecosystems. However, the timing of global marine biotic recovery versus the CAMP eruptions is more uncertain. Here, we use Hg concentrations and Hg/TOC ratios as indicators of CAMP volcanism in continental shelf sediments, the primary archive of faunal data. In Triassic-Jurassic strata, Muller Canyon, Nevada, Hg and Hg/TOC levels are low prior to the extinction, rise sharply in the extinction interval, peak just prior to the appearance of the first Jurassic ammonite, and remain above background in association with a depauperate (low diversity) earliest Jurassic fauna. The return of Hg to pre-extinction levels is associated with a significant pelagic and benthic faunal recovery. We conclude that significant biotic recovery did not begin until CAMP eruptions ceased. Furthermore, the initial benthic recovery in the Muller Canyon section involves the expansion of a siliceous sponge-dominated ecosystem across shallow marine environments, a feature now known from other sections around the world (e.g., Peru, Morocco, Austria, etc.). Carbonate dominated benthic ecosystems (heralded by the return of abundant corals and other skeletal carbonates) did not recover for ~1 million years following the last eruption of CAMP, longer than the typical duration considered for ocean acidification events, implying other factors may have played a role in carbonate ecosystem dynamics after the extinction.

  20. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    PubMed

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.

  1. The Middle Triassic insect radiation revealed by isotopic age and iconic fossils from NW China

    NASA Astrophysics Data System (ADS)

    Zheng, Daran; Chang, Su-Chin; Wang, He; Fang, Yan; Wang, Jun; Feng, Chongqing; Xie, Guwei; Jarzembowski, Edmund A.; Zhang, Haichun; Wang, Bo

    2017-04-01

    Following the end-Permian mass extinction, the Triassic represented an important period witnessing the recovery and radiation of marine and terrestrial ecosystems. Terrestrial plants and vertebrates have been widely investigated; however the insects, the most diverse organisms on earth, remain enigmatic due to the rarity of Early-Middle Triassic fossils. Here we report new fossils from a Ladinian deposit dated at 238-237 Ma and a Carnian deposit in northwestern China, including the earliest definite caddisfly cases (Trichoptera) and water boatmen (Hemiptera), diverse polyphagan beetles (Coleoptera) and scorpionflies (Mecoptera). Our findings suggest that the Holometabola, comprising the majority of modern-day insect species, experienced an extraordinary diversification in the Middle Triassic and was already been dominant in some Middle and Late Triassic insect faunas, after the extinction of several ecologically dominant, Paleozoic insect groups in the latest Permian and earliest Triassic. This turnover is perhaps related to notable episodes of extreme warming and drying, leading to the eventual demise of coal-swamp ecosystems, evidenced by floral turnover during this interval. The forest revival during the Middle Triassic probably stimulated the rapid radiation and evolution of insects including some key aquatic lineages which built new associations that persist to the present day. Our results provide not only new insights into the early evolution of insect diversity and ecology, but also robust evidence for the view that the Triassic is the "Dawn of the Modern World". Besides, LA-ICP-MS U-Pb dating initially gave a late Ladinian age for the Tongchuan entomnfauna after the results: 237.41 ± 0.91 Ma and 238 ± 0.97 Ma. The age is in agreement with that of the marine Ladinian-Carnian boundary, representing a novel age constraint for the terrestrial strata near this boundary. This age can provide a calibration for marine and terrestrial correlation near Ladinian

  2. The end-Triassic mass extinction: A new correlation between extinction events and δ13C fluctuations from a Triassic-Jurassic peritidal succession in western Sicily

    NASA Astrophysics Data System (ADS)

    Todaro, Simona; Rigo, Manuel; Randazzo, Vincenzo; Di Stefano, Pietro

    2018-06-01

    A new δ13Ccarb curve was obtained from an expanded peritidal succession in western Sicily and was used to investigate the relationships between isotopic signatures and biological events on carbonate platforms across the Triassic-Jurassic boundary (TJB). The resulting curve shows two main negative carbon isotopic excursions (CIEs) that fit well with the "Initial" and "Main" CIEs that are recognized worldwide and linked to the End-Triassic Extinction (ETE). In the studied section, the first negative CIE marks the disappearance of the large megalodontids, which were replaced by small and thin-shelled specimens, while the "Main" CIE corresponds to the last occurrence (LO) of the megalodontids and, approximately 50 m upsection, to the total demise of the Rhaetian benthic foraminifer community. Upward, the carbon curve shows a positive trend (ca. +1‰) and a gradual recovery of the benthic communities after an approximately 10 m-thick barren interval populated only by the problematic alga Thaumatoporella parvovesiculifera. A comparison between the Mt. Sparagio δ13Ccarb curve and other coeval Ccarb and Corg curves from carbonate platform, ramp and deep basin successions indicates similar isotopic trends; however, the diverse magnitudes and responses of benthic communities confirm that the carbon cycle perturbations have been globally significant, and were influenced by external forces such as CAMP volcanism. The multiphase nature of the extinction pulses could have been caused by local environmental changes related to transgression/regression phenomena. Overall, this study adds new data and a new timing to the effect of the acidification process on carbon productivity and benthic communities in different environments across the TJB.

  3. A Basal Sauropodomorph (Dinosauria: Saurischia) from the Ischigualasto Formation (Triassic, Carnian) and the Early Evolution of Sauropodomorpha

    PubMed Central

    Martinez, Ricardo N.; Alcober, Oscar A.

    2009-01-01

    Background The earliest dinosaurs are from the early Late Triassic (Carnian) of South America. By the Carnian the main clades Saurischia and Ornithischia were already established, and the presence of the most primitive known sauropodomorph Saturnalia suggests also that Saurischia had already diverged into Theropoda and Sauropodomorpha. Knowledge of Carnian sauropodomorphs has been restricted to this single species. Methodology/Principal Findings We describe a new small sauropodomorph dinosaur from the Ischigualsto Formation (Carnian) in northwest Argentina, Panphagia protos gen. et sp. nov., on the basis of a partial skeleton. The genus and species are characterized by an anteroposteriorly elongated fossa on the base of the anteroventral process of the nasal; wide lateral flange on the quadrate with a large foramen; deep groove on the lateral surface of the lower jaw surrounded by prominent dorsal and ventral ridges; bifurcated posteroventral process of the dentary; long retroarticular process transversally wider than the articular area for the quadrate; oval scars on the lateral surface of the posterior border of the centra of cervical vertebrae; distinct prominences on the neural arc of the anterior cervical vertebra; distal end of the scapular blade nearly three times wider than the neck; scapular blade with an expanded posterodistal corner; and medial lamina of brevis fossa twice as wide as the iliac spine. Conclusions/Significance We regard Panphagia as the most basal sauropodomorph, which shares the following apomorphies with Saturnalia and more derived sauropodomorphs: basally constricted crowns; lanceolate crowns; teeth of the anterior quarter of the dentary higher than the others; and short posterolateral flange of distal tibia. The presence of Panphagia at the base of the early Carnian Ischigualasto Formation suggests an earlier origin of Sauropodomorpha during the Middle Triassic. PMID:19209223

  4. High precision time calibration of the Permian-Triassic boundary mass extinction event in a deep marine context

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Bagherpour, Borhan; Schaltegger, Urs

    2015-04-01

    To construct a revised and high resolution calibrated time scale for the Permian-Triassic boundary (PTB) we use (1) high-precision U-Pb zircon age determinations of a unique succession of volcanic ash layers interbedded with deep water fossiliferous sediments in the Nanpanjiang Basin (South China) combined with (2) accurate quantitative biochronology based on ammonoids, conodonts, radiolarians, and foraminifera and (3) tracers of marine bioproductivity (carbon isotopes) across the PTB. The unprecedented precision of the single grain chemical abrasion isotope-dilution thermal ionization mass spectrometry (CA-ID-TIMS) dating technique at sub-per mil level (radio-isotopic calibration of the PTB at the <100 ka level) now allows calibrating magmatic and biological timescales at resolution adequate for both groups of processes. Using these alignments allows (1) positioning the PTB in different depositional setting and (2) solving the age contradictions generated by the misleading use of the first occurrence (FO) of the conodont Hindeodus parvus, whose diachronous first occurrences are arbitrarily used for placing the base of the Triassic. This new age framework provides the basis for a combined calibration of chemostratigraphic records with high-resolution biochronozones of the Late Permian and Early Triassic. Here, we present new single grain U-Pb zircon data of volcanic ash layers from two deep marine sections (Dongpan and Penglaitan) revealing stratigraphic consistent dates over several volcanic ash layers bracketing the PTB. These analyses define weighted mean 206Pb/238U ages of 251.956±0.033 Ma (Dongpan) and 252.062±0.043 Ma (Penglaitan) for the last Permian ash bed. By calibration with detailed litho- and biostratigraphy new U-Pb ages of 251.953±0.038 Ma (Dongpan) and 251.907±0.033 Ma (Penglaitan) are established for the onset of the Triassic.

  5. Possible climate effects of the CAMP intrusive and extrusive activity and its influence on the end-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Marzoli, A.; Davies, J.; Valeriani, L.; Preto, N.; Cirilli, S.; Panfili, G.; Dal Corso, J.; Vasconcellos, E.; Ernesto, M.; Youbi, N.; Callegaro, S.

    2017-12-01

    The end-Triassic global climate changes were probably triggered by the emplacement of the CAMP (Central Atlantic magmatic province). Here we explore the possibility that CAMP intrusions triggered global warming, while CAMP eruptions triggered short-lived cooling events. The main phase of the end-Triassic environmental changes and mass extinction was marked by two carbon isotopic excursions (CIEs). Based on stratigraphic and geochronologic data, we show that the earliest CAMP intrusions were emplaced at ca. 201.6 Ma prior to the first CIE (Davies et al., 2017). The main phase of CAMP magmatism started during the first CIE at ca. 201.5 Ma and continued until the second CIE and the Triassic-Jurassic boundary (at ca. 201.3 Ma). In particular, intrusion of the over 1 million cubic km of basaltic sills in Amazonia (Brazil) and of widespread sills from North America and Africa occurred within this interval. Multidisciplinary analyses show that organic matter rich sediments close to the sills from Brazil, Morocco, and the USA underwent contact metamorphism and organic carbon depletion. Such process may have released large amounts of thermogenic gases (CO2 and CH4) leading to global perturbation of the carbon cycle and to global warming. The timing of CAMP volcanic eruptions is well constrained by combined geochronologic, stratigraphic and palynologic data. In Morocco, newly observed palynological assemblages for sediments at the top of the lava piles are nearly identical to those found at the base of the volcanic sequences. These new data combined with carbon isotopic data indicate that over 95% of the CAMP lava flows in Morocco erupted during a short time interval at the very beginning of the end-Triassic extinction interval. A similar scenario applies possibly to the lava flows from North America. CAMP basalts are quite sulfur rich (up to 1800 ppm) suggesting that CAMP eruptions emitted large amounts of SO2. Such emissions lead possibly to short-lived cooling events

  6. Preliminary Magnetostratigraphy of the Carnian to Early Norian (Late Triassic) Lower Chinle Group, Central and North-Central New Mexico

    NASA Astrophysics Data System (ADS)

    Zeigler, K. E.; Geissman, J. W.

    2006-12-01

    The Chama Basin of north-central New Mexico and the Zuni Mountains of central New Mexico contain several excellent outcrop exposures of the Upper Triassic Chinle Group. The Shinarump, Salitral and Poleo formations, which comprise the lower half of the Chinle Group, encompass the Carnian to early Norian stages of the Late Triassic, based on vertebrate biostratigraphy. Each of these units was sampled with a ~3m sampling interval at three localities in the Chama Basin and one locality in the Zuni Mountains. Sites spanning the gradational Shinarump/Salitral Formation contact yielded an in situ grand mean of D = 352.9°, I = 49.3°, α95 = 20.1°, k = 38.7. Sites in the El Cerrito Bed of the medial Salitral Formation yielded an in situ grand mean of D = 177.4°, I = 10.7°, α95 = 15.6°, k = 63.5. The Youngsville Member of the Salitral Formation and the Poleo Formation are exclusively of reverse polarity, with an in situ grand mean of D = 188.3°, I = 16.8°, α95 = 19.4°, k = 23.4 and D = 182.7°, I = -0.3°, α95 = 5.3°, k = 36.5 respectively. In general, the lower Chinle Group tends to be dominantly reversed polarity. The Shinarump Formation is noted for intense color mottling and the local occurrence of copper and uranium mineralization. The lower member of the Salitral Formation, the Piedra Lumbre Member, is often very mottled, with colors ranging from whites and yellows through reds, purples and blues that reflect intense pedogenic alteration of the sediments. The Youngsville Member is nearly uniformly brick red in color. However, several specimens from different sites in the Shinarump and both members of the Salitral Formation yielded incoherent magnetizations, suggesting that pedogenic alteration may have erased any original Late Triassic magnetization.

  7. Discovery of silicified lacustrine micro-fossils and stromatolites: Triassic-Jurassic Fundy Group, Nova Scotia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, B.

    A unique assemblage of silicified invertebrate and algal fresh-water lake fossils has been discovered in the Scots Bay Formation at the top of the Triassic-Jurassic Fundy Group of the Fundy Basin in Nova Scotia. This is important because the basins of the eastern North American Triassic-Jurassic rift system have not yielded many invertebrate and algal fossils. These new finds will contribute significantly to evolutionary, paleoecological and biostratigraphic studies of fresh-water Mesozoic deposits. Silicified fossils have been extracted from chert-bearing, mixed carbonate and siliciclastic lithologies. They include ostracodes, gastropods, rare bivalves, charaphytes (algae), stromatolites, and chert nodules cored with well-preserved woodymore » tissues of tree trunks. Possible algal filaments occur in the silicified stromatolites. This association of charaphytes, ostracodes, microscopic gastropods and stromatolites is found in carbonate lakes today. The Scots Bay Formation is probably a near-shore carbonate facies of the more widespread silicilastic lacustrine McCoy Brook Formation. The gastropods and ostracodes, studied by SEM, indicate a Jurassic age for the Scots bay Formation, confirming speculations based on other data.« less

  8. Terrestrial Origin of Viviparity in Mesozoic Marine Reptiles Indicated by Early Triassic Embryonic Fossils

    PubMed Central

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction. PMID:24533127

  9. Nitrogen isotope record of a perturbed paleoecosystem in the aftermath of the end-Triassic crisis, Doniford section, SW England

    NASA Astrophysics Data System (ADS)

    Paris, Guillaume; Beaumont, ValéRie; Bartolini, Annachiara; CléMence, Marie-Emilie; Gardin, Silvia; Page, Kevin

    2010-08-01

    The Triassic-Jurassic transition (TJ) is characterized by successive perturbations of the carbon cycle during a time of biotic disruption as recorded by the carbon isotopic composition of organic matter (δ13Corg). The nitrogen isotopic composition of sedimentary organic matter (δ15Norg) constitutes a key parameter to explore the functioning of the ecosystem during carbon cycle perturbations and biological crises, because it provide information on seawater redox conditions and/or nutrient cycling. Here we report the first continuous δ15Norg record across the TJ transition at the Doniford Bay section (Bristol Channel Basin, UK), combined with δ13Corg, kerogen typology and carbon (δ13Cmin) and oxygen (δ18Omin) isotopic composition of bulk carbonates. The end Triassic is characterized by a major negative excursion both in δ13Corg and δ13Cmin, very low TOC (Total Organic Carbon, wt%) and high δ15Norg values, associated with a sea level lowstand. A second δ13Corg negative excursion occurs during the lower Hettangian. This interval is characterized by phases of carbonate production increase alternated with phases of exceptional accumulations of type I organic matter (up to 12%) associated with lower δ15Norg and δ13Corg. This alternation likely reflects a succession of nutrient input increase to the basin leading to enhanced productivity and eutrophication, which promoted a primary production driven by organic-walled prokaryotic organisms. The following OM export increase generates anaerobic conditions within the basin. These events occur between periods of relatively good seawater column ventilation and nutrient recycling boosting the carbonate producer recovery. Ecosystems remain perturbed in the Bristol Channel Basin during the aftermath of the end-Triassic crisis.

  10. High precision time calibration of the Permo-Triassic boundary mass extinction by U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Schaltegger, Urs

    2014-05-01

    U-Pb dating using Chemical Abrasion, Isotope Dilution Thermal Ionization Mass Spectrometry (CA-ID-TIMS) is the analytical method of choice for geochronologists, who are seeking highest temporal resolution and a high degree of accuracy for single grains of zircon. The use of double-isotope tracer solutions, cross-calibrated and assessed in different EARTHTIME labs, coinciding with the reassessment of the uranium decay constants and further improvements in ion counting technology led to unprecedented precision better than 0.1% for single grain, and 0.05% for population ages, respectively. These analytical innovations now allow calibrating magmatic and biological timescales at resolution adequate for both groups of processes. To construct a revised and high resolution calibrated time scale for the Permian-Triassic boundary (PTB) we use (i) high-precision U-Pb zircon age determinations of a unique succession of volcanic ash beds interbedded with shallow to deep water fossiliferous sediments in the Nanpanjiang Basin (South China) combined with (ii) accurate quantitative biochronology based on ammonoids and conodonts and (iii) carbon isotope excursions across the PTB. Using these alignments allows (i) positioning the PTB in different depositional environments and (ii) solving age/stratigraphic contradictions generated by the index, water depth-controlled conodont Hindeodus parvus, whose diachronous first occurrences are arbitrarily used for placing the base of the Triassic. This new age framework provides the basis for a combined calibration of chemostratigraphic records with high-resolution biochronozones of the Late Permian and Early Triassic. Besides the general improvement of the radio-isotopic calibration of the PTB at the ±100 ka level, this will also lead to a better understanding of cause and effect relations involved in this mass extinction.

  11. Climatically driven biogeographic provinces of Late Triassic tropical Pangea.

    PubMed

    Whiteside, Jessica H; Grogan, Danielle S; Olsen, Paul E; Kent, Dennis V

    2011-05-31

    Although continents were coalesced into the single landmass Pangea, Late Triassic terrestrial tetrapod assemblages are surprisingly provincial. In eastern North America, we show that assemblages dominated by traversodont cynodonts are restricted to a humid 6° equatorial swath that persisted for over 20 million years characterized by "semiprecessional" (approximately 10,000-y) climatic fluctuations reflected in stable carbon isotopes and sedimentary facies in lacustrine strata. More arid regions from 5-20 °N preserve procolophonid-dominated faunal assemblages associated with a much stronger expression of approximately 20,000-y climatic cycles. In the absence of geographic barriers, we hypothesize that these variations in the climatic expression of astronomical forcing produced latitudinal climatic zones that sorted terrestrial vertebrate taxa, perhaps by excretory physiology, into distinct biogeographic provinces tracking latitude, not geographic position, as the proto-North American plate translated northward. Although the early Mesozoic is usually assumed to be characterized by globally distributed land animal communities due to of a lack of geographic barriers, strong provinciality was actually the norm, and nearly global communities were present only after times of massive ecological disruptions.

  12. Astronomical Constraints on the Duration of Early Jurassic Stages and Global Carbon Cycle and Climatic Perturbations

    NASA Astrophysics Data System (ADS)

    Ruhl, M.; Hesselbo, S. P.; Hinnov, L.; Jenkyns, H. C.; Storm, M.; Xu, W.; Riding, J. B.; Ullmann, C. V.

    2015-12-01

    The Early Jurassic (201.3 to 174.1 Ma) is bracketed by the end-Triassic mass extinction and global warming event, and the Toarcian-Aalenian shift to (global) icehouse conditions (McElwain et al., 1999; Hesselbo et al., 2002; Ruhl et al., 2011; Korte et al., in review). It is further marked by the early Toarcian Oceanic Anoxic Event (T-OAE), with possibly the largest exogenic carbon cycle perturbation of the Mesozoic and related perturbations in global geochemical cycles, climate and the environment, which are linked to large igneous province emplacement in the Karoo-Ferrar region (Jenkyns, 2010; Burgess et al., 2015). Furthermore, Early Jurassic continental rifting and the break-up of Pangaea and subsequent Early Jurassic opening of the Hispanic Corridor and Viking Strait respectively linked the equatorial Tethys Ocean to Eastern Panthalassa and the high-latitude Arctic Boreal realm. This initiated changes in (global) ocean currents and Earth's heat distribution and ultimately was followed by the opening of the proto-North Atlantic (Porter et al., 2013; Korte et al., in review). Here, we present high-resolution (sub-precession scale) elemental concentration data from the Mochras borehole (UK), which represents ~1300m of possibly the most complete and expanded lower Jurassic hemi-pelagic marine sedimentary archive known. We construct a floating ~9 Myr astronomical time-scale for the complete Early Jurassic Pliensbachian stage and biozones. Combined with radiometric and astrochronological constraints on early Jurassic stage boundaries, we construct a new Early Jurassic Time-Scale. With this we assess the duration and rate of change of early Jurassic global carbon cycle and climatic perturbations and we asses fundamental changes in the nature and expression of Early Jurassic long (100 - 1000 kyr) eccentricity cycles.

  13. A multistratigraphic approach to pinpoint the Permian-Triassic boundary in continental deposits: The Zechstein-Lower Buntsandstein transition in Germany

    NASA Astrophysics Data System (ADS)

    Scholze, Frank; Wang, Xu; Kirscher, Uwe; Kraft, Johannes; Schneider, Jörg W.; Götz, Annette E.; Joachimski, Michael M.; Bachtadse, Valerian

    2017-05-01

    The Central European Basin is very suitable for high-resolution multistratigraphy of Late Permian to Early Triassic continental deposits. Here the well exposed continuous transition of the lithostratigraphic Zechstein and Buntsandstein Groups of Central Germany was studied for isotope-chemostratigraphy (δ13Corg, δ13Ccarb, δ18Ocarb), major and trace element geochemistry, magnetostratigraphy, palynology, and conchostracan biostratigraphy. The analysed material was obtained from both classical key sections (abandoned Nelben clay pit, Caaschwitz quarries, Thale railway cut, abandoned Heinebach clay pit) and a recent drill core section (Caaschwitz 6/2012) spanning the Permian-Triassic boundary. The Zechstein-Buntsandstein transition of Central Germany consists of a complex sedimentary facies comprising sabkha, playa lake, aeolian, and fluvial deposits of predominantly red-coloured siliciclastics and intercalations of lacustrine oolitic limestones. The new data on δ13Corg range from - 28.7 to - 21.7 ‰ showing multiple excursions. Most prominent negative shifts correlate with intercalations of oolites and grey-coloured clayey siltstones, while higher δ13Corg values correspond to an onset of palaeosol overprint. The δ13Ccarb values range from - 9.7 to - 1.3 ‰ with largest variations recorded in dolomitic nodules from the Zechstein Group. In contrast to sedimentary facies shifts across the Zechstein-Buntsandstein boundary, major element values used as a proxy (CIA, CIA*, CIA-K) for weathering conditions indicate climatic stability. Trace element data used for a geochemical characterization of the Late Permian to Early Triassic transition in Central Germany indicate a decrease in Rb contents at the Zechstein-Buntsandstein boundary. New palynological data obtained from the Caaschwitz quarry section reveal occurrences of Late Permian palynomorphs in the Lower Fulda Formation, while Early Triassic elements were recorded in the upper part of the Upper Fulda Formation

  14. Age and microfacies of oceanic Upper Triassic radiolarite components from the Middle Jurassic ophiolitic mélange in the Zlatibor Mountains (Inner Dinarides, Serbia) and their provenance

    NASA Astrophysics Data System (ADS)

    Gawlick, Hans-Jürgen; Djerić, Nevenka; Missoni, Sigrid; Bragin, Nikita Yu.; Lein, Richard; Sudar, Milan; Jovanović, Divna

    2017-08-01

    Oceanic radiolarite components from the Middle Jurassic ophiolitic mélange between Trnava and Rožanstvo in the Zlatibor Mountains (Dinaridic Ophiolite Belt) west of the Drina-Ivanjica unit yield Late Triassic radiolarian ages. The microfacies characteristics of the radiolarites show pure ribbon radiolarites without crinoids or thin-shelled bivalves. Beside their age and the preservation of the radiolarians this points to a deposition of the radiolarites on top of the oceanic crust of the Neo-Tethys, which started to open in the Late Anisian. South of the study area the ophiolitic mélange (Gostilje-Ljubiš-Visoka-Radoševo mélange) contains a mixture of blocks of 1) oceanic crust, 2) Middle and Upper Triassic ribbon radiolarites, and 3) open marine limestones from the continental slope. On the basis of this composition we can conclude that the Upper Triassic radiolarite clasts derive either from 1) the younger parts of the sedimentary succession above the oceanic crust near the continental slope or, more convincingly 2) the sedimentary cover of ophiolites in a higher nappe position, because Upper Triassic ribbon radiolarites are only expected in more distal oceanic areas. The ophiolitic mélange in the study area overlies different carbonate blocks of an underlying carbonate-clastic mélange (Sirogojno mélange). We date and describe three localities with different Upper Triassic radiolarite clasts in a mélange, which occurs A) on top of Upper Triassic fore-reef to reefal limestones (Dachstein reef), B) between an Upper Triassic reefal limestone block and a Lower Carnian reef limestone (Wetterstein reef), and C) in fissures of an Upper Triassic lagoonal to back-reef limestone (Dachstein lagoon). The sedimentary features point to a sedimentary and not to a tectonic emplacement of the ophiolitic mélange (= sedimentary mélange) filling the rough topography of the topmost carbonate-clastic mélange below. The block spectrum of the underlying and slightly older

  15. An evaporite-based high-resolution sulfur isotope record of Late Permian and Triassic seawater sulfate

    NASA Astrophysics Data System (ADS)

    Bernasconi, Stefano M.; Meier, Irene; Wohlwend, Stephan; Brack, Peter; Hochuli, Peter A.; Bläsi, Hansruedi; Wortmann, Ulrich G.; Ramseyer, Karl

    2017-05-01

    Variations in the sulfur isotope composition of dissolved marine sulfate through time reflect changes in the global sulfur cycle and are intimately related to changes in the carbon and oxygen cycles. A large shift in the sulfur isotope composition of sulfate at the Permian/Triassic boundary has been recognized for long time and a number of studies were carried out to understand the causes and significance of this shift. However, data for the Middle and Late Triassic are very sparse and the stratigraphic evolution of the sulfur isotope composition of seawater is poorly constrained due to the small number of samples analyzed and/or due to the limited stratigraphic intervals studied. Moreover, in the last few years the Triassic timescale has significantly changed due to a wealth of new radiometric and stratigraphic data. In this study we show that for the Late Permian and the Triassic it is possible to obtain a precise reconstruction of the evolution of the sulfur cycle, for parts of it at sub-million year resolution, by analyzing exclusively gypsum and anhydrite deposits. We base our reconstruction on new data from the Middle and Late Triassic evaporites of Northern Switzerland and literature data from evaporites from Germany, Austria, Italy and the Middle East. We propose a revised correlation between the well-dated marine Tethyan sections in northern Italy and the evaporites from Northern Switzerland and from the Germanic Basin calibrated to the newest radiometric absolute age scale. This new correlation allows for a precise dating of the evaporites and constructing a composite sulfur isotope evolution of seawater sulfate from the latest Permian (Lopingian Epoch) to the Norian. We show that a rapid positive shift of approximately 24‰ at the Permian-Triassic boundary can be used to constrain seawater sulfate concentrations in the range of 2-6 mM, thus higher than previous estimates but with less rapid changes. Finally, we discuss two possible evolution scenarios

  16. Silicified wood from the Permian and Triassic of Antarctica: Tree rings from polar paleolatitudes

    USGS Publications Warehouse

    Ryberg, P.E.; Taylor, E.L.

    2007-01-01

    The mass extinction at the Permian-Triassic boundary produced a floral turnover in Gondwana in which Paleozoic seed ferns belonging to the Glossopteridales were replaced by corystosperm seed ferns and other seed plant groups in the Mesozoic. Secondary growth (wood production) in both plant groups provides information on plant growth in relation to environment in the form of permineralized tree rings. Techniques utilized to analyze extant wood can be used on fossil specimens to better understand the climate from both of these periods. Late Permian and early Middle Triassic tree rings from the Beardmore Glacier area indicate an environment where extensive plant growth occurred at polar latitudes (~80–85°S, Permian; ~75°S, Triassic). A rapid transition to dormancy in both the Permian and Triassic woods suggests a strong influence of the annual light/dark cycle within the Antarctic Circle on ring production. Latewood production in each ring was most likely triggered by the movement of the already low-angled sun below the horizon. The plants which produced the wood have been reconstructed as seasonally deciduous, based on structural and sedimentologic evidence. Although the Late Permian climate has been reconstructed as cold temperate and the Middle Triassic as a greenhouse, these differences are not reflected in tree ring anatomy or wood production in these plant fossils from the central Transantarctic Mountains.

  17. Anisian (Middle Triassic) marine ichnocoenoses from the eastern and western margins of the Kamdian Continent, Yunnan Province, SW China: Implications for the Triassic biotic recovery

    NASA Astrophysics Data System (ADS)

    Feng, Xueqian; Chen, Zhong-Qiang; Woods, Adam; Pei, Yu; Wu, Siqi; Fang, Yuheng; Luo, Mao; Xu, Yaling

    2017-10-01

    Two Anisian (Middle Triassic) marine ichnocoenoses are reported from the Boyun and Junmachang (JMC) sections located along the eastern and western margins of the Kamdian Continent, Yunnan Province, Southwest China, respectively. The Boyun ichnoassemblage is middle Anisian in age and is dominated by robust Rhizocorallium, while the JMC ichnoassemblage is of an early Anisian age and is characterized by the presence of Zoophycos. The ichnoassemblage horizons of the Boyun section represent an inner ramp environment, while the JMC section was likely situated in a mid-ramp setting near storm wave base as indicated by the presence of tempestites. The ichnofossil-bearing successions are usually highly bioturbated in both the Boyun (BI 3-5, BPBI 5) and JMC (BI 3-4, BPBI 3-4) sections. Three large, morphologically complicated ichnogenera: 1) Rhizocorallium; 2) Thalassinoides; and, 3) Zoophycos characterize the Anisian ichnocoenoses. Of these, Rhizocorallium has mean and maximum tube diameters up to 20.4 mm and 28 mm, respectively, while Thalassinoides mean and maximum tube diameters are 14.2 mm and 22 mm, respectively. Zoophycos is present in the early Anisian strata of the JMC section, and represents the oldest known occurrence of this ichnogenus following the latest Permian mass extinction. Similar to coeval ichnoassemblages elsewhere in the world, the Yunnan ichnocoenoses embrace a relatively low ichnodiversity, but their burrows usually penetrate deeply into the sediment, and include large and complex Rhizocorallium and Thalassinoides. All of these ichnologic features are indicative of recovery stage 4 after the latest Permian crisis. Anisian ichnoassemblages occur globally in six different habitat settings, and all show similar ecologic characteristics except for slightly different degrees of ichnotaxonomic richness, indicating that depositional environment is not a crucial factor shaping the recovery of the trace-makers, but may have an impact on their ichnodiversity

  18. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction

    PubMed Central

    Percival, Lawrence M. E.; Ruhl, Micha; Hesselbo, Stephen P.; Jenkyns, Hugh C.; Mather, Tamsin A.; Whiteside, Jessica H.

    2017-01-01

    The Central Atlantic Magmatic Province (CAMP) has long been proposed as having a causal relationship with the end-Triassic extinction event (∼201.5 Ma). In North America and northern Africa, CAMP is preserved as multiple basaltic units interbedded with uppermost Triassic to lowermost Jurassic sediments. However, it has been unclear whether this apparent pulsing was a local feature, or if pulses in the intensity of CAMP volcanism characterized the emplacement of the province as a whole. Here, six geographically widespread Triassic–Jurassic records, representing varied paleoenvironments, are analyzed for mercury (Hg) concentrations and Hg/total organic carbon (Hg/TOC) ratios. Volcanism is a major source of mercury to the modern environment. Clear increases in Hg and Hg/TOC are observed at the end-Triassic extinction horizon, confirming that a volcanically induced global Hg cycle perturbation occurred at that time. The established correlation between the extinction horizon and lowest CAMP basalts allows this sedimentary Hg excursion to be stratigraphically tied to a specific flood basalt unit, strengthening the case for volcanic Hg as the driver of sedimentary Hg/TOC spikes. Additional Hg/TOC peaks are also documented between the extinction horizon and the Triassic–Jurassic boundary (separated by ∼200 ky), supporting pulsatory intensity of CAMP volcanism across the entire province and providing direct evidence for episodic volatile release during the initial stages of CAMP emplacement. Pulsatory volcanism, and associated perturbations in the ocean–atmosphere system, likely had profound implications for the rate and magnitude of the end-Triassic mass extinction and subsequent biotic recovery. PMID:28630294

  19. Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction

    PubMed Central

    Whiteside, Jessica H.; Olsen, Paul E.; Eglinton, Timothy; Brookfield, Michael E.; Sambrotto, Raymond N.

    2010-01-01

    A leading hypothesis explaining Phanerozoic mass extinctions and associated carbon isotopic anomalies is the emission of greenhouse, other gases, and aerosols caused by eruptions of continental flood basalt provinces. However, the necessary serial relationship between these eruptions, isotopic excursions, and extinctions has never been tested in geological sections preserving all three records. The end-Triassic extinction (ETE) at 201.4 Ma is among the largest of these extinctions and is tied to a large negative carbon isotope excursion, reflecting perturbations of the carbon cycle including a transient increase in CO2. The cause of the ETE has been inferred to be the eruption of the giant Central Atlantic magmatic province (CAMP). Here, we show that carbon isotopes of leaf wax derived lipids (n-alkanes), wood, and total organic carbon from two orbitally paced lacustrine sections interbedded with the CAMP in eastern North America show similar excursions to those seen in the mostly marine St. Audrie’s Bay section in England. Based on these results, the ETE began synchronously in marine and terrestrial environments slightly before the oldest basalts in eastern North America but simultaneous with the eruption of the oldest flows in Morocco, a CO2 super greenhouse, and marine biocalcification crisis. Because the temporal relationship between CAMP eruptions, mass extinction, and the carbon isotopic excursions are shown in the same place, this is the strongest case for a volcanic cause of a mass extinction to date. PMID:20308590

  20. Sandstone provenance and U-Pb ages of detrital zircons from Permian-Triassic forearc sediments within the Sukhothai Arc, northern Thailand: Record of volcanic-arc evolution in response to Paleo-Tethys subduction

    NASA Astrophysics Data System (ADS)

    Hara, Hidetoshi; Kunii, Miyuki; Miyake, Yoshihiro; Hisada, Ken-ichiro; Kamata, Yoshihito; Ueno, Katsumi; Kon, Yoshiaki; Kurihara, Toshiyuki; Ueda, Hayato; Assavapatchara, San; Treerotchananon, Anuwat; Charoentitirat, Thasinee; Charusiri, Punya

    2017-09-01

    Provenance analysis and U-Pb dating of detrital zircons in Permian-Triassic forearc sediments from the Sukhothai Arc in northern Thailand clarify the evolution of a missing arc system associated with Paleo-Tethys subduction. The turbidite-dominant formations within the forearc sediments include the Permian Ngao Group (Kiu Lom, Pha Huat, and Huai Thak formations), the Early to earliest Late Triassic Lampang Group (Phra That and Hong Hoi formations), and the Late Triassic Song Group (Pha Daeng and Wang Chin formations). The sandstones are quartzose in the Pha Huat, Huai Thak, and Wang Chin formations, and lithic wacke in the Kiu Lom, Phra That, Hong Hoi and Pha Daeng formations. The quartzose sandstones contain abundant quartz, felsic volcanic and plutonic fragments, whereas the lithic sandstones contain mainly basaltic to felsic volcanic fragments. The youngest single-grain (YSG) zircon U-Pb age generally approximates the depositional age in the study area, but in the case of the limestone-dominant Pha Huat Formation the YSG age is clearly older. On the other hand, the youngest cluster U-Pb age (YC1σ) represents the peak of igneous activity in the source area. Geological evidence, geochemical signatures, and the YC1σ ages of the sandstones have allowed us to reconstruct the Sukhothai arc evolution. The initial Sukhothai Arc (Late Carboniferous-Early Permian) developed as a continental island arc. Subsequently, there was general magmatic quiescence with minor I-type granitic activity during the Middle to early Late Permian. In the latest Permian to early Late Triassic, the Sukhothai Arc developed in tandem with Early to Middle Triassic I-type granitic activity, Middle to Late Triassic volcanism, evolution of an accretionary complex, and an abundant supply of sediments from the volcanic rocks to the trench through a forearc basin. Subsequently, the Sukhothai Arc became quiescent as the Paleo-Tethys closed after the Late Triassic. In addition, parts of sediments of

  1. Palaeoclimatic conditions in the Late Triassic-Early Jurassic of southern Africa: A geochemical assessment of the Elliot Formation

    NASA Astrophysics Data System (ADS)

    Sciscio, Lara; Bordy, Emese M.

    2016-07-01

    The Triassic-Jurassic boundary marks a global faunal turnover event that is generally considered as the third largest of five major biological crises in the Phanerozoic geological record of Earth. Determining the controlling factors of this event and their relative contributions to the biotic turnover associated with it is on-going globally. The Upper Triassic and Lower Jurassic rock record of southern Africa presents a unique opportunity for better constraining how and why the biosphere was affected at this time not only because the succession is richly fossiliferous, but also because it contains important palaeoenvironmental clues. Using mainly sedimentary geochemical proxies (i.e., major, trace and rare earth elements), our study is the first quantitative assessment of the palaeoclimatic conditions during the deposition of the Elliot Formation, a continental red bed succession that straddles the Triassic-Jurassic boundary in southern Africa. Employing clay mineralogy as well as the indices of chemical alteration and compositional variability, our results confirm earlier qualitative sedimentological studies and indicate that the deposition of the Upper Triassic and Lower Jurassic Elliot Formation occurred under increasingly dry environmental conditions that inhibited chemical weathering in this southern part of Pangea. Moreover, the study questions the universal validity of those studies that suggest a sudden increase in humidity for the Lower Jurassic record and supports predictions of long-term global warming after continental flood basalt emplacement.

  2. Biostratigraphic reappraisal of the Lower Triassic Sanga do Cabral Supersequence from South America, with a description of new material attributable to the parareptile genus Procolophon

    NASA Astrophysics Data System (ADS)

    Dias-da-Silva, Sérgio; Pinheiro, Felipe L.; Stock Da-Rosa, Átila Augusto; Martinelli, Agustín G.; Schultz, Cesar L.; Silva-Neves, Eduardo; Modesto, Sean P.

    2017-11-01

    The Sanga do Cabral Supersequence (SCS), comprises the Brazilian Sanga do Cabral Formation (SCF) and the Uruguayan Buena Vista Formation (BVF). So far, the SCS has yielded temnospondyls, parareptiles, archosauromorphs, putative synapsids, and a number of indeterminate specimens. In the absence of absolute dates for these rocks, a biostratigraphic approach is necessary to establish the ages of the SCF and the BVF. It is well established that the SCF is Early Triassic mainly due to the presence of the widespread Gondwanan reptile Procolophon trigoniceps. Conversely, the age of the BVF is subject of great controversy, being regarded alternatively as Permian, Permo-Triassic, and Early Triassic. The BVF has yielded the definite procolophonid Pintosaurus magnidentis. Procolophonoidea is one of the most diverse and conspicuous terrestrial tetrapod groups of the Lower Triassic Lystrosaurus Assemblage Zone in the Karoo Basin of South Africa, which preserves tetrapods from the aftermath of the end-Permian extinction event. Based on a previous interpretation that the fauna of the BVF is Permian, and in the reinterpretation of disarticulated vertebrae from SCF with 'swollen' neural arches as belonging to either seymouriamorphs or diadectomorphs, it was recently suggested that at least part of the SCF is Permian in age, which prompted this comprehensive reevaluation of both SCS's faunal content and geology. Moreoever, new, strikingly large procolophonid specimens (skull, vertebra, and a mandibular fragment) from the SCF are described and referred to the genus Procolophon. The large procolophonid vertebra described here contradicts the recent hypothesis that similar specimens from the SCF belong to seymouriamorphs or diadectomorphs, because its morphology is consistent with that found in Procolophon. There is not a single diagnostic specimen that supports the inference of Permian levels in the SCS. Accordingly, because all diagnostic and biostratigraphically informative fossils

  3. Permian and Triassic microfloral assemblages from the Blue Nile Basin, central Ethiopia

    NASA Astrophysics Data System (ADS)

    Dawit, Enkurie L.

    2014-11-01

    Palynological investigation was carried out on surface samples from up to 400 m thick continental siliciclastic sediments, here referred to as “Fincha Sandstone”, in the Blue Nile Basin, central Ethiopia. One hundred sixty species were identified from 15 productive samples collected along a continuous road-cut exposure. Six informal palynological assemblage zones have been identified. These assemblage zones, in ascending order, are: “Central Ethiopian Permian Assemblage Zone - CEPAZ I”, earliest Permian (Asselian-Sakmarian); “CEPAZ II”, late Early Permian (Artinskian-Kungurian); CEPAZ III - Late Permian (Kazanian-Tatarian); “CETAZ IV”, Lower Triassic (Olenekian Induan); “CETAZ V”, Middle Triassic (Anisian Ladinian); “CETAZ VI”, Late Triassic (Carnian Norian). Tentative age ranges proposed herein are compared with faunally calibrated palynological zones in Gondwana. The overall composition and vertical distribution of miospores throughout the studied section reveals a wide variation both qualitatively and quantitatively. The high frequency of monosaccate pollen in CEPAZ I may reflect a Glossopterid-dominated upland flora in the earliest Permian. The succeeding zone is dominated by straite/taeniate disaccate pollen and polyplicates, suggesting a notable increase in diversity of glossopterids. The decline in the diversity of taeniate disaccate pollen and the concomitant rise in abundance of non-taeniate disaccates in CEPAZ III may suggest the decline in Glossopteris diversity, though no additional evidence is available to equate this change with End-Permian extinction. More diverse and dominant non-taeniate, disaccate, seed fern pollen assignable to FalcisporitesAlisporites in CETAZ IV may represent an earliest Triassic recovery flora. The introduction of new disaccate forms with thick, rigid sacci, such as Staurosaccites and Cuneatisporites, in CETAZ V and VI may indicate the emergence of new gymnospermous plants that might have favourably

  4. Permian-triassic paleogeography and stratigraphy of the west Netherlands basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speksnijder, A.

    1993-09-01

    During the Permian, the present West Netherlands basin (WNB) was situated at the southernmost margin of the southern Permian basin (SPB). The thickness of Rotilegende sandstones therefore is very much reduced in the WNB. The relatively thin deposits of the Fringe Zechstein in the WNB, however, also contrast strongly in sedimentary facies with thick evaporite/carbonate alternations in the main SPB to the north, although the classic cyclicity of Zechstein deposition still can be recognized. The Fringe Zechstein sediments are mainly siliciclastic and interfinger with both carbonates and anhydrites toward the evaporite basin. End members are thin clay layers that constitutemore » potential seals to underlying Rotliegende reservoirs and relatively thick sandstones (over 100 m net sand) in the western part of the WNB. Nevertheless, favorable reservoir/seal configurations in the Fringe Zechstein seem to be sparse because only minor hydrocarbon occurrences have been proven in the area to date. The situation is dramatically different for the Triassic in the WNB. The [open quotes]Bunter[close quotes] gas play comprises thick Fringe Buntsandstein sandstones (up to 250 m), vertically sealed by carbonates and anhydritic clays of the Muschelkalk and Keuper formations. The Bunter sandstones are largely of the same age as the classic Volpriehausen, Detfurth, and Hardegsen alluvial sand/shale alternations recognized elsewhere, but the upper onlapping transgressive sands and silts correlate with evaporitic clays of the Roet basin to the north. A total volume of 65 x 10[sup 9]m[sup 3] of gas has so far been found in the Triassic Bunter sandstones of the WNB.« less

  5. Facies analysis of Lofer cycles (Upper Triassic), in the Argolis Peninsula (Greece)

    NASA Astrophysics Data System (ADS)

    Pomoni-Papaioannou, F.

    The Upper Triassic carbonate sediments of Argolis Peninsula are part of the Upper Triassic-Lower Jurassic extensive and thick neritic carbonate formations (Pantokrator facies) that formed at the passive Pelagonian margin and are considered as Dachstein-type platform carbonates. Facies analysis of the Upper Triassic "Lofer-type" lagoonal-peritidal cycles in the Dhidimi area, proved that cycles, although mostly incomplete, were regressive shallowing-upward. The ideal elementary cyclothems are meter-scale in thickness and begin with a subtidal bed (Member C), represented by a peloidal dolostone with megalodonts (wackestone or packstone), being followed by a stromatolitic intertidal dolomitic mudstone and/or fenestral intertidal dolomitic mudstone (Member B) that is overlain by dolocrete (terrestrial stromatolites or pisoidic dolomite) or a supratidal "soil conglomerate" in red micritic matrix (Member A). Lofer-cycle boundaries are defined at the erosional surfaces and accordingly the Lofer cyclothems are unconformity-bounded units. Due to common post-depositional truncation of the subtidal and intertidal facies, the supratidal members prevail, being developed, in places, directly upon subaerial exposure surfaces (erosionally reduced cyclothems). Peritidal layers are characterized by a well-expressed lamination, sheet cracks, tepee structures, fenestral pores and karst dissolution cavities. The studied lagoonal-peritidal cycles are considered to have been deposited in a tidal-flat setting (inner platform), repeatedly exposed under subaerial conditions, in the context of a broader tropical rimmed platform. Although the studied area was tectonically active due to rift-activity and the autocyclic processes should also be taken in consideration, the great lateral correlatability of cycles, the facies shifting and the widespread erosion that resulted in superposition of supratidal-pedogenic facies directly upon subtidal members (subaerial erosional unconformity), indicating

  6. Climatically driven biogeographic provinces of Late Triassic tropical Pangea

    PubMed Central

    Whiteside, Jessica H.; Grogan, Danielle S.; Olsen, Paul E.; Kent, Dennis V.

    2011-01-01

    Although continents were coalesced into the single landmass Pangea, Late Triassic terrestrial tetrapod assemblages are surprisingly provincial. In eastern North America, we show that assemblages dominated by traversodont cynodonts are restricted to a humid 6° equatorial swath that persisted for over 20 million years characterized by “semiprecessional” (approximately 10,000-y) climatic fluctuations reflected in stable carbon isotopes and sedimentary facies in lacustrine strata. More arid regions from 5–20°N preserve procolophonid-dominated faunal assemblages associated with a much stronger expression of approximately 20,000-y climatic cycles. In the absence of geographic barriers, we hypothesize that these variations in the climatic expression of astronomical forcing produced latitudinal climatic zones that sorted terrestrial vertebrate taxa, perhaps by excretory physiology, into distinct biogeographic provinces tracking latitude, not geographic position, as the proto-North American plate translated northward. Although the early Mesozoic is usually assumed to be characterized by globally distributed land animal communities due to of a lack of geographic barriers, strong provinciality was actually the norm, and nearly global communities were present only after times of massive ecological disruptions. PMID:21571639

  7. Cranial Ontogeny of the Early Triassic Basal Cynodont Galesaurus planiceps.

    PubMed

    Jasinoski, Sandra C; Abdala, Fernando

    2017-02-01

    Ontogenetic changes in the skull and mandible of thirty-one specimens of Galesaurus planiceps, a basal non-mammaliaform cynodont from the Early Triassic of South Africa, are documented. The qualitative survey indicated eight changes in the craniomandibular apparatus occurred during growth, dividing the sample into three ontogenetic stages: juvenile, subadult, and adult. Changes in the temporal region, zygomatic arch, occiput, and mandible occurred during the transition from the subadult to adult stage at a basal skull length of 90 mm. At least four morphological and allometric differences divided the adult specimens into two morphs, indicating the presence of sexual dimorphism in Galesaurus. Differences include extensive lateral flaring of the zygomatic arches in the "male" morph resulting in a more anterior orientation of the orbits, and a narrower snout in the "female". This is the first record of sexual dimorphism in a basal cynodont, and the first time it is quantitatively documented in a non-mammaliaform cynodont. An ontogenetic comparison between Galesaurus and the more derived basal cynodont Thrinaxodon revealed differences in the timing and extent of sagittal crest development. In Galesaurus, the posterior sagittal crest, located behind the parietal foramen, developed relatively later in ontogeny, and the anterior sagittal crest rarely formed suggesting the anterior fibres of the temporalis were less developed than in Thrinaxodon. In contrast, craniomandibular features related to the masseters became more developed during the ontogeny of Galesaurus. The development of the adductor musculature appears to be one of the main factors influencing skull growth in these basal non-mammaliaform cynodonts. Anat Rec, 300:353-381, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. A Triassic plesiosaurian skeleton and bone histology inform on evolution of a unique body plan

    PubMed Central

    Wintrich, Tanja; Hayashi, Shoji; Houssaye, Alexandra; Nakajima, Yasuhisa; Sander, P. Martin

    2017-01-01

    Secondary marine adaptation is a major pattern in amniote evolution, accompanied by specific bone histological adaptations. In the aftermath of the end-Permian extinction, diverse marine reptiles evolved early in the Triassic. Plesiosauria is the most diverse and one of the longest-lived clades of marine reptiles, but its bone histology is least known among the major marine amniote clades. Plesiosaurians had a unique and puzzling body plan, sporting four evenly shaped pointed flippers and (in most clades) a small head on a long, stiffened neck. The flippers were used as hydrofoils in underwater flight. A wide temporal, morphological, and morphometric gap separates plesiosaurians from their closest relatives (basal pistosaurs, Bobosaurus). For nearly two centuries, plesiosaurians were thought to appear suddenly in the earliest Jurassic after the end-Triassic extinctions. We describe the first Triassic plesiosaurian, from the Rhaetian of Germany, and compare its long bone histology to that of later plesiosaurians sampled for this study. The new taxon is recovered as a basal member of the Pliosauridae, revealing that diversification of plesiosaurians was a Triassic event and that several lineages must have crossed into the Jurassic. Plesiosaurian histology is strikingly uniform and different from stem sauropterygians. Histology suggests the concurrent evolution of fast growth and an elevated metabolic rate as an adaptation to cruising and efficient foraging in the open sea. The new specimen corroborates the hypothesis that open ocean life of plesiosaurians facilitated their survival of the end-Triassic extinctions. PMID:29242826

  9. The Triassic reworking of the Yunkai massif (South China): EMP monazite and U-Pb zircon geochronologic evidence

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Hong; Liu, Yung-Hsin; Lee, Chi-Yu; Sano, Yuji; Zhou, Han-Wen; Xiang, Hua; Takahata, Naoto

    2017-01-01

    Geohistory of the Yunkai massif in South China Block is important in understanding the geodynamics for the build-up of this block during the Phanerozoic orogenies. To investigate this massif, we conduct EMP monazite and U-Pb zircon geochronological determinations on mineral inclusions and separate for seventeen samples in four groups, representing metamorphic rocks from core domain, the Gaozhou Complex (amphibolite facies, NE-striking) and the Yunkai Group (greenschist facies, NW-striking) of this massif and adjacent undeformed granites. Some EMP monazite ages are consistent with the NanoSIMS results. Monazite inclusions, mostly with long axis parallel to the cleavage of platy and elongated hosts, give distinguishable age results for NW- and NE-trending deformations at 244-236 Ma and 236-233 Ma, respectively. They also yield ages of 233-230 Ma for core domain gneissic granites and 232-229 Ma for undefomed granites. Combining U-Pb zircon ages of the same group, 245 Ma and 230 Ma are suggested to constrain the time of two phases of deformation. Aside from ubiquity of Triassic ages in studied rocks, ages of detrital monazite in the meta-sandstone match the major U-Pb zircon age clusters of the metamorphic rock that are largely concentrated at Neoproterozoic (1.0-0.9 Ga) and Early Paleozoic (444-431 Ma). Based on these geochronological data, Triassic is interpreted as representing the time for recrystallization of these host minerals on the Early Paleozoic protolith, and the also popular Neoproterozoic age is probably inherited. With this context, Yunkai massif is regarded as a strongly reactivated Triassic metamorphic terrain on an Early Paleozoic basement which had incorporated sediments with Neoproterozoic provenances. Triassic tectonic evolution of the Yunkai massif is suggested to have been controlled by converging geodynamics of the South China and Indochina Blocks as well as mafic magma emplacement related to the Emeishan large igneous province (E-LIP).

  10. Mayer Kangri metamorphic complexes in Central Qiangtang (Tibet, western China): implications for the Triassic-early Jurassic tectonics associated with the Paleo-Tethys Ocean

    NASA Astrophysics Data System (ADS)

    Wang, Yixuan; Liang, Xiao; Wang, Genhou; Yuan, Guoli; Bons, Paul D.

    2018-03-01

    The Mesozoic orogeny in Central Qiangtang Metamorphic Belt, northern Tibet, provides important insights into the geological evolution of the Paleo-Tethys Ocean. However, the Triassic-early Jurassic tectonics, particularly those associated with the continental collisionstage, remains poorly constrained. Here we present results from geological mapping, structural analysis, P-T data, and Ar-Ar geochronology of the Mayer Kangri metamorphic complex. Our data reveal an E-W-trending, 2 km wide dome-like structure associated with four successive tectonic events during the Middle Triassic and Early Jurassic. Field observations indicate that amphibolite and phengite schist complexes in this complex are separated from the overlying lower greenschist mélange by normal faulting with an evident dextral shearing component. Open antiform-like S2 foliation of the footwall phengite schist truncates the approximately north-dipping structures of the overlying mélange. Microtextures and mineral chemistry of amphibole reveal three stages of growth: Geothermobarometric estimates yield temperatures and pressures of 524 °C and 0.88 GPa for pargasite cores, 386 °C and 0.34 GPa for actinolite mantles, and 404 °C and 0.76 GPa for winchite rims. Peak blueschist metamorphism in the phengite schist occurred at 0.7-1.1 GPa and 400 °C. Our Ar-Ar dating of amphibole reveals rim-ward decreasing in age bands, including 242.4-241.2 Ma, ≥202.6-196.8, and 192.9-189.8 Ma. The results provide evidence for four distinct phases of Mesozoic tectonic evolution in Central Qiangtang: (1) northward oceanic subduction beneath North Qiangtang ( 244-220 Ma); (2) syn-collisional slab-break off (223-202 Ma); (3) early collisional extension driven by buoyant extrusion flow from depth ( 202.6-197 Ma); and (4) post-collision contraction and reburial (195.6-188.7 Ma).

  11. New Data on the Clevosaurus (Sphenodontia: Clevosauridae) from the Upper Triassic of Southern Brazil

    PubMed Central

    Hsiou, Annie Schmaltz; De França, Marco Aurélio Gallo; Ferigolo, Jorge

    2015-01-01

    The sphenodontian fossil record in South America is well known from Mesozoic and Paleogene deposits of Argentinean Patagonia, mainly represented by opisthodontians, or taxa closely related to the modern Sphenodon. In contrast, the Brazilian fossil record is restricted to the Caturrita Formation, Late Triassic of Rio Grande do Sul, represented by several specimens of Clevosauridae, including Clevosaurus brasiliensis Bonaparte and Sues, 2006. Traditionally, Clevosauridae includes several Late Triassic to Early Jurassic taxa, such as Polysphenodon, Brachyrhinodon, and Clevosaurus, the latter well-represented by several species. The detailed description of the specimen MCN-PV 2852 allowed the first systematic revision of most Clevosaurus species. Within Clevosauridae, Polysphenodon is the most basal taxon, and an IterPCR analysis revealed Brachrhynodon as a possible Clevosaurus; C. petilus, C. wangi, and C. mcgilli as possibly distinct taxonomic entities; and the South African Clevosaurus sp. is not closely related to C. brasiliensis. These data indicate the need of a deep phylogenetic review of Clevosauridae, in order to discover synapomorphic characters among the diversity of these Triassic/Jurassic sphenodontians. PMID:26355294

  12. Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism

    NASA Astrophysics Data System (ADS)

    van de Schootbrugge, B.; Quan, T. M.; Lindström, S.; Püttmann, W.; Heunisch, C.; Pross, J.; Fiebig, J.; Petschick, R.; Röhling, H.-G.; Richoz, S.; Rosenthal, Y.; Falkowski, P. G.

    2009-08-01

    One of the five largest mass extinctions of the past 600million years occurred at the boundary of the Triassic and Jurassic periods, 201.6million years ago. The loss of marine biodiversity at the time has been linked to extreme greenhouse warming, triggered by the release of carbon dioxide from flood basalt volcanism in the central Atlantic Ocean. In contrast, the biotic turnover in terrestrial ecosystems is not well understood, and cannot be readily reconciled with the effects of massive volcanism. Here we present pollen, spore and geochemical analyses across the Triassic/Jurassic boundary from three drill cores from Germany and Sweden. We show that gymnosperm forests in northwest Europe were transiently replaced by fern and fern-associated vegetation, a pioneer assemblage commonly found in disturbed ecosystems. The Triassic/Jurassic boundary is also marked by an enrichment of polycyclic aromatic hydrocarbons, which, in the absence of charcoal peaks, we interpret as an indication of incomplete combustion of organic matter by ascending flood basalt lava. We conclude that the terrestrial vegetation shift is so severe and wide ranging that it is unlikely to have been triggered by greenhouse warming alone. Instead, we suggest that the release of pollutants such as sulphur dioxide and toxic compounds such as the polycyclic aromatic hydrocarbons may have contributed to the extinction.

  13. Adaptations for marine habitat and the effect of Triassic and Jurassic predator pressure on development of decompression syndrome in ichthyosaurs

    NASA Astrophysics Data System (ADS)

    Rothschild, B. M.; Xiaoting, Z.; Martin, L. D.

    2012-06-01

    Decompression syndrome (caisson disease or the "the bends") resulting in avascular necrosis has been documented in mosasaurs, sauropterygians, ichthyosaurs, and turtles from the Middle Jurassic to Late Cretaceous, but it was unclear that this disease occurred as far back as the Triassic. We have examined a large Triassic sample of ichthyosaurs and compared it with an equally large post-Triassic sample. Avascular necrosis was observed in over 15 % of Late Middle Jurassic to Cretaceous ichthyosaurs with the highest occurrence (18 %) in the Early Cretaceous, but was rare or absent in geologically older specimens. Triassic reptiles that dive were either physiologically protected, or rapid changes of their position in the water column rare and insignificant enough to prevent being recorded in the skeleton. Emergency surfacing due to a threat from an underwater predator may be the most important cause of avascular necrosis for air-breathing divers, with relative frequency of such events documented in the skeleton. Diving in the Triassic appears to have been a "leisurely" behavior until the evolution of large predators in the Late Jurassic that forced sudden depth alterations contributed to a higher occurrence of bends.

  14. Adaptations for marine habitat and the effect of Triassic and Jurassic predator pressure on development of decompression syndrome in ichthyosaurs.

    PubMed

    Rothschild, B M; Xiaoting, Z; Martin, L D

    2012-06-01

    Decompression syndrome (caisson disease or the "the bends") resulting in avascular necrosis has been documented in mosasaurs, sauropterygians, ichthyosaurs, and turtles from the Middle Jurassic to Late Cretaceous, but it was unclear that this disease occurred as far back as the Triassic. We have examined a large Triassic sample of ichthyosaurs and compared it with an equally large post-Triassic sample. Avascular necrosis was observed in over 15% of Late Middle Jurassic to Cretaceous ichthyosaurs with the highest occurrence (18%) in the Early Cretaceous, but was rare or absent in geologically older specimens. Triassic reptiles that dive were either physiologically protected, or rapid changes of their position in the water column rare and insignificant enough to prevent being recorded in the skeleton. Emergency surfacing due to a threat from an underwater predator may be the most important cause of avascular necrosis for air-breathing divers, with relative frequency of such events documented in the skeleton. Diving in the Triassic appears to have been a "leisurely" behavior until the evolution of large predators in the Late Jurassic that forced sudden depth alterations contributed to a higher occurrence of bends.

  15. Detrital zircon provenance of the Late Triassic Songpan-Ganzi complex: Sedimentary record of collision of the North and South China blocks

    USGS Publications Warehouse

    Weislogel, A.L.; Graham, S.A.; Chang, E.Z.; Wooden, J.L.; Gehrels, G.E.; Yang, H.

    2006-01-01

    Using detrital zircon geochronology, turbidite deposystems fed from distinct sediment sources can be distinguished within the Songpan-Ganzi complex, a collapsed Middle to Late Triassic turbidite basin of central China. A southern Songpan-Ganzi deposystem initially was sourced solely by erosion of the Qinling-Dabie orogen during early Late Triassic time, then by Qinling-Dabie orogen, North China block, and South China block sources during middle to late Late Triassic time. A northern Songpan-Ganzi system was sourced by erosion of the Qinling-Dabie orogen and the North China block throughout its deposition. These separate deposystems were later tectonically amalgamated to form one complex and then uplifted as the eastern Tibet Plateau. ?? 2006 Geological Society of America.

  16. Late Triassic closure of the Paleo-Tethys Ocean in Central Tibet implied by paleomagnetism of Middle Triassic lavas from the Qiantang block

    NASA Astrophysics Data System (ADS)

    Song, P.; Lin, D.; Lippert, P. C.; Li, Z.

    2017-12-01

    The closure of the Paleo-Tethys Ocean is a major event not only in the tectonic history of the Tibetan Plateau that pre-conditioned the plateau for subsequent orogenic events, but also in the paleogeographic evolution of eastern Pangea. Final closure of this equatorial ocean, however, remains disputed, with ages ranging from the Late Permian to the Middle Cretaceous; this huge discrepancy is largely the result of the lack of high-quality paleomagnetic data and ambiguous stratigraphic data from Mesozoic rocks from Central Tibet. A recent Late Triassic paleopole derived from lavas of the Qiangtang block suggests that the Paleo-Tethys Ocean must have closed between Middle and Late Triassic (Song et al., EPSL 2015). We test this prediction with a paleomagnetic study of Middle Triassic lavas from the Qiangtang block. These lavas were previously dated to Middle Triassic (ca. 242-240 Ma) using zircon U-Pb geochonology. Rock magnetic experiments demonstrate that hematite and magnetite are the main carriers of remanence. Progressive thermal and alternating field demagnetization successfully isolated stable characteristic remanent magnetizations. Although these directions pass fold tests, suggesting a primary magnetization, we are conducting additional rock magnetic and petrographic studies to verify the primary nature of this magnetization. If these directions are primary, then they establish the first lava-based paleomagnetic pole of Middle Triassic age from the Qiangtang block. This pole was located at 63.4°N, 198.8°E, A95=4.1° (N=27) and yields a paleolatitude of 22.7±4.1°N at the reference point (33.5°N, 92.0°E). A comparison of our new Middle Triassic pole from the Qiangtang block with coeval paleopoles from the North China (NCB) and Tarim blocks indicates that the Paleo-Tethys Ocean was approximately 5-10° of latitude ( 550-1100 km) wide during the Middle Triassic. Within the context of our previous work that demonstrated the Qiangtang, NCB, and Tarim blocks

  17. The Triassic dicynodont Kombuisia (Synapsida, Anomodontia) from Antarctica, a refuge from the terrestrial Permian-Triassic mass extinction.

    PubMed

    Fröbisch, Jörg; Angielczyk, Kenneth D; Sidor, Christian A

    2010-02-01

    Fossils from the central Transantarctic Mountains in Antarctica are referred to a new species of the Triassic genus Kombuisia, one of four dicynodont lineages known to survive the end-Permian mass extinction. The specimens show a unique combination of characters only present in this genus, but the new species can be distinguished from the type species of the genus, Kombuisia frerensis, by the presence of a reduced but slit-like pineal foramen and the lack of contact between the postorbitals. Although incomplete, the Antarctic specimens are significant because Kombuisia was previously known only from the South African Karoo Basin and the new specimens extend the taxon's biogeographic range to a wider portion of southern Pangaea. In addition, the new finds extend the known stratigraphic range of Kombuisia from the Middle Triassic subzone B of the Cynognathus Assemblage Zone into rocks that are equivalent in age to the Lower Triassic Lystrosaurus Assemblage Zone, shortening the proposed ghost lineage of this taxon. Most importantly, the occurrence of Kombuisia and Lystrosaurus mccaigi in the Lower Triassic of Antarctica suggests that this area served as a refuge from some of the effects of the end-Permian extinction. The composition of the lower Fremouw Formation fauna implies a community structure similar to that of the ecologically anomalous Lystrosaurus Assemblage Zone of South Africa, providing additional evidence for widespread ecological disturbance in the extinction's aftermath.

  18. A Triassic to Cretaceous Sundaland-Pacific subduction margin in West Sarawak, Borneo

    NASA Astrophysics Data System (ADS)

    Breitfeld, H. Tim; Hall, Robert; Galin, Thomson; Forster, Margaret A.; BouDagher-Fadel, Marcelle K.

    2017-01-01

    Metamorphic rocks in West Sarawak are poorly exposed and studied. They were previously assumed to be pre-Carboniferous basement but had never been dated. New 40Ar/39Ar ages from white mica in quartz-mica schists reveal metamorphism between c. 216 to 220 Ma. The metamorphic rocks are associated with Triassic acid and basic igneous rocks, which indicate widespread magmatism. New U-Pb dating of zircons from the Jagoi Granodiorite indicates Triassic magmatism at c. 208 Ma and c. 240 Ma. U-Pb dating of zircons from volcaniclastic sediments of the Sadong and Kuching Formations confirms contemporaneous volcanism. The magmatic activity is interpreted to represent a Triassic subduction margin in westernmost West Sarawak with sediments deposited in a forearc basin derived from the magmatic arc at the Sundaland-Pacific margin. West Sarawak and NW Kalimantan are underlain by continental crust that was already part of Sundaland or accreted to Sundaland in the Triassic. One metabasite sample, also previously assumed to be pre-Carboniferous basement, yielded Early Cretaceous 40Ar/39Ar ages. They are interpreted to indicate resumption of subduction which led to deposition of volcaniclastic sediments and widespread magmatism. U-Pb ages from detrital zircons in the Cretaceous Pedawan Formation are similar to those from the Schwaner granites of NW Kalimantan, and the Pedawan Formation is interpreted as part of a Cretaceous forearc basin containing material eroded from a magmatic arc that extended from Vietnam to west Borneo. The youngest U-Pb ages from zircons in a tuff layer from the uppermost part of the Pedawan Formation indicate that volcanic activity continued until c. 86 to 88 Ma when subduction terminated.

  19. Facies architecture of a Triassic rift-related Silicic Volcano-Sedimentary succession in the Tethyan realm, Peonias subzone, Vardar (Axios) Zone, northern Greece; Regional implications

    NASA Astrophysics Data System (ADS)

    Asvesta, Argyro; Dimitriadis, Sarantis

    2010-06-01

    In northern Greece, along the western edge of the Paleozoic Vertiscos terrane (Serbomacedonian massif) and within the Peonias subzone - the eastern part of the Vardar (Axios) Zone - a Silicic Volcano-Sedimentary (SVS) succession of Permo(?)-Skythian to Mid Triassic age records the development of a faulted continental margin and the formation of rhyolitic volcanoes along a continental shelf fringed by neritic carbonate accumulations. It represents the early rifting extensional stages that eventually led to the opening of the main oceanic basin in the western part of the Vardar (Axios) Zone (the Almopias Oceanic Basin). Even though the SVS succession is deformed, altered, extensively silicified and metamorphosed in the low greenschist facies, primary textures, original contacts and facies relationships are recognized in some places allowing clues for the facies architecture and the depositional environment. Volcanic and sedimentary facies analysis has been carried out at Nea Santa and Kolchida rhyolitic volcanic centres. Pyroclastic facies, mostly composed of gas-supported lapilli tuffs and locally intercalated accretionary lapilli tuffs, built the early cones which were then overridden by rhyolitic aphyric and minor K-feldspar-phyric lava flows. The characteristics of facies, especially the presence of accretionary lapilli, imply subaerial to coastal emplacement at this early stage. The mature and final stages of volcanism are mostly represented by quartz-feldspar porphyry intrusions that probably occupied the vents. At Nea Santa area, the presence of resedimented hyaloclastite facies indicates subaqueous emplacement of rhyolitic lavas and/or lobes. Moreover, quartz-feldspar-phyric sills and a partly extrusive dome featuring peperites at their margins are inferred to have intruded unconsolidated, wet carbonate sediments of the overlying Triassic Neritic Carbonate Formation, in a shallow submarine environment. The dome had probably reached above wave-base as is

  20. Floral Assemblages and Patterns of Insect Herbivory during the Permian to Triassic of Northeastern Italy.

    PubMed

    Labandeira, Conrad C; Kustatscher, Evelyn; Wappler, Torsten

    2016-01-01

    ) increasingly was partitioned from Wuchiapingian to Ladinian. The Paleozoic plant with the richest herbivore component community, the coniferophyte Pseudovoltzia liebeana, harbored four damage types (DTs), whereas its Triassic parallel, the pteridosperm Scytophyllum bergeri housed 11 DTs, almost four times that of P. liebeana. Although generalized DTs of P. liebeana were similar to S. bergeri, there was expansion of Triassic specialized feeding types, including leaf mining. Permian-Triassic generalized herbivory remained relatively constant, but specialized herbivores more finely partitioned plant-host tissues via new feeding modes, especially in the Anisian. Insect-damaged leaf percentages for Dolomites Kungurian and Wuchiapingian floras were similar to those of lower Permian, north-central Texas, but only one-third that of southeastern Brazil. Global herbivore patterns for Early Triassic plant-insect interactions remain unknown.

  1. Floral Assemblages and Patterns of Insect Herbivory during the Permian to Triassic of Northeastern Italy

    PubMed Central

    Labandeira, Conrad C.; Kustatscher, Evelyn

    2016-01-01

    ) increasingly was partitioned from Wuchiapingian to Ladinian. The Paleozoic plant with the richest herbivore component community, the coniferophyte Pseudovoltzia liebeana, harbored four damage types (DTs), whereas its Triassic parallel, the pteridosperm Scytophyllum bergeri housed 11 DTs, almost four times that of P. liebeana. Although generalized DTs of P. liebeana were similar to S. bergeri, there was expansion of Triassic specialized feeding types, including leaf mining. Permian–Triassic generalized herbivory remained relatively constant, but specialized herbivores more finely partitioned plant-host tissues via new feeding modes, especially in the Anisian. Insect-damaged leaf percentages for Dolomites Kungurian and Wuchiapingian floras were similar to those of lower Permian, north-central Texas, but only one-third that of southeastern Brazil. Global herbivore patterns for Early Triassic plant–insect interactions remain unknown. PMID:27829032

  2. The oldest dinosaur? A Middle Triassic dinosauriform from Tanzania.

    PubMed

    Nesbitt, Sterling J; Barrett, Paul M; Werning, Sarah; Sidor, Christian A; Charig, Alan J

    2013-02-23

    The rise of dinosaurs was a major event in vertebrate history, but the timing of the origin and early diversification of the group remain poorly constrained. Here, we describe Nyasasaurus parringtoni gen. et sp. nov., which is identified as either the earliest known member of, or the sister-taxon to, Dinosauria. Nyasasaurus possesses a unique combination of dinosaur character states and an elevated growth rate similar to that of definitive early dinosaurs. It demonstrates that the initial dinosaur radiation occurred over a longer timescale than previously thought (possibly 15 Myr earlier), and that dinosaurs and their immediate relatives are better understood as part of a larger Middle Triassic archosauriform radiation. The African provenance of Nyasasaurus supports a southern Pangaean origin for Dinosauria.

  3. Sedimentology and ichnology of two Lower Triassic sections in South China: Implications for the biotic recovery following the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Luo, Mao; George, Annette D.; Chen, Zhong-Qiang

    2016-09-01

    Biotic recovery following the end-Permian mass extinction was investigated using trace fossil and facies analysis of two Lower-Middle Triassic sections in South China. The Susong section (Lower Yangtze Sedimentary Province) comprises a range of carbonate and mudstone facies that record overall shallowing from offshore to intertidal settings. The Tianshengqiao section (Upper Yangtze Sedimentary Province) consists of mixed carbonate and siliciclastic facies deposited in shallow marine to offshore settings. Griesbachian to Dienerian ichnological records in both sections are characterized by low ichnodiversity, low ichnofabric indices (1-2) and low bedding plane bioturbation indices (1-2). Higher ichnofabric indices (3 and 4), corresponding to a dense population of diminutive ichnotaxon, in the Tianshengqiao section suggest opportunistic infaunal biotic activity during the earliest Triassic. Ichnological data from the Susong section show an increase in ichnodiversity during the late Smithian with 11 ichnogenera identified and increased ichnofabric indices of 4-5 and bedding plane bioturbation indices of 3-5. Although complex traces such as Rhizocorallium are present in Spathian-aged strata in this section, low ichnodiversity and ichnofabric indices and diminutive Planolites suggest a decline in recovery. In the Tianshengqiao section, ichnofabric indices are moderate to high (3-5) although only six ichnogenera are present and Planolites burrows are consistently small in Smithian and Spathian strata. Complex traces, such as large Rhizocorallium and Thalassinoides, and large Planolites, did not appear until the Anisian. Ichnological results from both sections record the response of organisms to unfavourable environmental conditions although the Susong section shows earlier recovery during the Smithian prior to latest Smithian-Spathian decline. This decline may have resulted from a resurgence of euxinic to anoxic marine environment in various regions of South China

  4. Paleomagnetism and magnetic fabric of the Triassic rocks from Spitsbergen

    NASA Astrophysics Data System (ADS)

    Dudzisz, K.; Szaniawski, R.; Michalski, K.; Manby, G.

    2017-12-01

    Understanding the origin and directions of the natural remanent magnetization and the tectonic deformation pattern reflected in magnetic fabric is of importance for investigation of the West Spitsbergen Fold and Thrust Belt (WSFTB) and its foreland. Previous research carried out on Triassic rocks from the study area concluded that these rocks record a composite magnetization of both, normal and reverse polarity, consisting of a primary Triassic remanence that is overlapped by a secondary post-folding component. Standard paleomagnetic procedures were conducted in order to determine the remanence components and a low-field AMS was applied to assess the degree and pattern of deformation. The AMS results from the WSFTB reveal a magnetic foliation that parallels the bedding planes and a dominantly NNW-SSE oriented magnetic lineation that is sub-parallel to the regional fold axial trend. These results imply a low to moderate degree of deformation and a maximum strain orientation parallel to that of the fold belt. These data are consistent with an orthogonal convergence model for the WSFTB formation. In turn, the magnetic fabric on the undeformed foreland displays a distinct NNE-SSW orientation that we attribute to the paleocurrent direction. Rock-magnetic analyses reveal that the dominant ferrimagnetic carriers are magnetite and titanomagnetite. The Triassic rocks are characterised by complicated NRM patterns often with overlapping unblocking temperature spectra of particular components. The dominant magnetisation is characterised, however, by a steep inclination of 70-80º. The derived paleomagnetic direction from the WSFTB falls on the Jurassic - recent sector of the apparent polar wander path (APWP) of Baltica after tectonic unfolding. These data imply that at least some of the identified secondary components could have originated before the Eurekan folding event (K/Pg), for example, in Early Cretaceous time which corresponds to the period of rifting events on Barents

  5. Iterative Evolution in Triassic Gondolelloidea (Conodonta)

    NASA Astrophysics Data System (ADS)

    Murat Kilic, Ali; Plasencia, Pablo; Guex, Jean; Hirsch, Francis

    2017-04-01

    The phylogeny and distribution of Triassic gondolelloid conodont multi-elements reveals aspects of their natural history. In conodont phylogeny, taxonomy incorporates the morphologic riposte to temperature as well as to eustatic cycles, expressed in speciation, radiation and extinction as these are not fortuitous and evolution uses diverse strategies such as heterochrony (progenesis and neoteny) in response to stress generating events. Proteromorphosis (reappearance of ancestral morphs) and paedomorphosis (retention of juvenile traits) is a reaction to sublethal environmental stress. It is often followed by radiation of fully developed forms, in the recovery stage after extinction, timely matching transgressions. Evolutionary retrogradation (neoteny) during eustatic high stands often precedes extinction. This was the case of the Alaunian Mockina whereafter the ultimate Misikella brought no post-Rhaetian recovery. The Late Triassic, an extremely long time span of 37 Ma represents 70 % of the total length of the period. Evolutionary rebounds after quasi extinction of subfamily Neogondolellinae, by radiation, out of the single surviving genus Paragondolella: Julian Metapolygnathus and Mazzaella, and Tuvalian-Lacian Metapolygnathus-Carnepigondolella-Ancyrogondolella. The survival of the clade throughout Alaunian and Sevatian took place by successive retrogradations (proteromorphosis) of the Alaunian Mockina and Sevatian-Rhaetian Misikella, bringing no ultimate post-Rhaetian recovery. The cryptic gondolellid features, encoded in "neospathid" proteromorphs permitted the conodont survival throughout the entire Triassic, signaling Dienerian, Anisian, Ladinian, Carnian, and Norian crises, extreme and ultimately vain in the terminal Rhaetian. Key words: Triassic; Conodonts; Phylogeny; Evolution; Proteromorphosis.

  6. Palaeoenvironments and palaeotectonics of the arid to hyperarid intracontinental latest Permian- late Triassic Solway basin (U.K.)

    NASA Astrophysics Data System (ADS)

    Brookfield, Michael E.

    2008-10-01

    The late Permian to late Triassic sediments of the Solway Basin consist of an originally flat-lying, laterally persistent and consistent succession of mature, dominantly fine-grained red clastics laid down in part of a very large intracontinental basin. The complete absence of body or trace fossils or palaeosols indicates a very arid (hyperarid) depositional environment for most of the sediments. At the base of the succession, thin regolith breccias and sandstones rest unconformably on basement and early Permian rift clastics. Overlying gypsiferous red silty mudstones, very fine sandstones and thick gypsum were deposited in either a playa lake or in a hypersaline estuary, and their margins. These pass upwards into thick-bedded, multi-storied, fine- to very fine-grained red quartzo-felspathic and sublithic arenites in which even medium sand is rare despite channels with clay pebbles up to 30 cm in diameter. Above, thick trough cross-bedded and parallel laminated fine-grained aeolian sandstones (deposited in extensive barchanoid dune complexes) pass up into very thick, multicoloured mudstones, and gypsum deposited in marginal marine or lacustrine sabkha environments. The latter pass up into marine Lower Jurassic shales and limestones. Thirteen non-marine clastic lithofacies are arranged into five main lithofacies associations whose facies architecture is reconstructed where possible by analysis of large exposures. The five associations can be compared with the desert pavement, arid ephemeral stream, sabkha, saline lake and aeolian sand dune environments of the arid to hyperarid areas of existing intracontinental basins such as Lake Eyre and Lake Chad. The accommodation space in such basins is controlled by gradual tectonic subsidence moderated by large fluctuations in shallow lake extent (caused by climatic change and local variation) and this promotes a large-scale layer-cake stratigraphy as exemplified in the Solway basin. Here, the dominant fine-grained mature

  7. Time-scale calibration by U-Pb geochronology: Examples from the Triassic Period

    NASA Astrophysics Data System (ADS)

    Mundil, R.

    2009-05-01

    )) and the Early-Middle Triassic (Olenekian-Anisian) boundary (247.2 Ma, (8, 9)), resulting in a surprisingly short duration of the Early Triassic which has implications for the timing of biotic recovery and major changes in ocean chemistry during this time. Furthermore, the Anisian-Ladinian boundary is constrained to 242.0 Ma by new U-Pb and 40Ar/39Ar ages. Radio-isotopic ages for the Late Triassic are scarce and the only reliable and biostratigraphically controlled age is from an upper Carnian tuff dated to 230.9 Ma (10), yielding a duration of more than 35 Ma for the Late Triassic. The resulting time-scale is at odds with the most recent compilation (11) but arguably more accurate because it is entirely based on U-Pb analyses applied to closed-system zircons with uncertainties at the permil level or better. 1. T. E. Krogh, Geochimica et Cosmochimica Acta 37, 485 (1973); 2. T. E. Krogh, Geochimica et Cosmochimica Acta 46, 637 (1982); 3. J. M. Mattinson, Chemical Geology 220, 47 (2005); 4. R. Mundil, K. R. Ludwig, I. Metcalfe, P. R. Renne, Science 305, 1760 (2004); 5. U. Schaltegger, J. Guex, A. Bartolini, B. Schoene, M. Ovtcharova, Earth and Planetary Science Letters 267, 266 (2008); 6. R. Mundil, P. R. Renne, K. K. Min, K. R. Ludwig, in Eos Trans. AGU, Fall Meet. Suppl. (2006), vol. 87(52), pp. V21A-0543; 7. T. Galfetti et al., Earth and Planetary Science Letters 258, 593 (2007). 8. M. Ovtcharova et al., Earth and Planetary Science Letters 243, 463 (2006). 9. J. Ramezani et al., Earth and Planetary Science Letters 256, 244 (2007). 10. S. Furin et al., Geology 34, 1009 (2006); 11. J. G. Ogg, in A Geologic Time Scale 2004 F. M. Gradstein, J. G. Ogg, A. G. Smith, Eds. (University Press, Cambridge, 2004) pp. 271-306.

  8. The Lower Triassic Sorkh Shale Formation of the Tabas Block, east central Iran: Succesion of a failed-rift basin at the Paleotethys margin

    USGS Publications Warehouse

    Lasemi, Y.; Ghomashi, M.; Amin-Rasouli, H.; Kheradmand, A.

    2008-01-01

    The Lower Triassic Sorkh Shale Formation is a dominantly red colored marginal marine succession deposited in the north-south trending Tabas Basin of east central Iran. It is correlated with the unconformity-bounded lower limestone member of the Elika Formation of the Alborz Mountains of northern Iran. The Sorkh Shale is bounded by the pre-Triassic and post-Lower Triassic interregional unconformities and consists mainly of carbonates, sandstones, and evaporites with shale being a minor constituent. Detailed facies analysis of the Sorkh Shale Formation resulted in recognition of several genetically linked peritidal facies that are grouped into restricted subtidal, carbonate tidal flat, siliciclastic tidal flat, coastal plain and continental evaporite facies associations. These were deposited in a low energy, storm-dominated inner-ramp setting with a very gentle slope that fringed the Tabas Block of east central Iran and passed northward (present-day coordinates) into deeper water facies of the Paleotethys passive margin of northern Cimmerian Continent. Numerous carbonate storm beds containing well-rounded intraclasts, ooids and bioclasts of mixed fauna are present in the Sorkh Shale Formation of the northern Tabas Basin. The constituents of the storm beds are absent in the fair weather peritidal facies of the Sorkh Shale Formation, but are present throughout the lower limestone member of the Elika Formation. The Tabas Block, a part of the Cimmerian continent in east central Iran, is a rift basin that developed during Early Ordovician-Silurian Paleotethys rifting. Facies and sequence stratigraphic analyses of the Sorkh Shale Formation has revealed additional evidence supporting the Tabas Block as a failed rift basin related to the Paleotethys passive margin. Absence of constituents of the storm beds in the fair weather peritidal facies of the Sorkh Shale Formation, presence of the constituents of the storm beds in the fair weather facies of the Elika Formation (the

  9. Troglomorphism in the middle Triassic crinoids from Poland.

    PubMed

    Brom, Krzysztof R; Brachaniec, Tomasz; Salamon, Mariusz A

    2015-10-01

    In this paper, we document the Middle Triassic marine fauna recovered from the fissure/cave system of Stare Gliny (southern Poland) developed in the Devonian host dolomite. The fossils are mostly represented by in situ preserved and small-sized holdfasts of crinoids (Crinoidea) that are attached to the cave walls. Other fossils found in the cave infills include articulated brittle stars and brachiopods. Our findings constitute the oldest Mesozoic evidence for troglophile crinoids. We suggest that troglomorphism in these echinoderms was likely related to protection against predation, which underscores the magnitude of anti-predatory adaptations to increased predation pressure that occurred during the Early Mesozoic Marine Revolution.

  10. Large-scale sill emplacement in Brazil as a trigger for the end-Triassic crisis.

    PubMed

    Heimdal, Thea H; Svensen, Henrik H; Ramezani, Jahandar; Iyer, Karthik; Pereira, Egberto; Rodrigues, René; Jones, Morgan T; Callegaro, Sara

    2018-01-09

    The end-Triassic is characterized by one of the largest mass extinctions in the Phanerozoic, coinciding with major carbon cycle perturbations and global warming. It has been suggested that the environmental crisis is linked to widespread sill intrusions during magmatism associated with the Central Atlantic Magmatic Province (CAMP). Sub-volcanic sills are abundant in two of the largest onshore sedimentary basins in Brazil, the Amazonas and Solimões basins, where they comprise up to 20% of the stratigraphy. These basins contain extensive deposits of carbonate and evaporite, in addition to organic-rich shales and major hydrocarbon reservoirs. Here we show that large scale volatile generation followed sill emplacement in these lithologies. Thermal modeling demonstrates that contact metamorphism in the two basins could have generated 88,000 Gt CO 2 . In order to constrain the timing of gas generation, zircon from two sills has been dated by the U-Pb CA-ID-TIMS method, resulting in 206 Pb/ 238 U dates of 201.477 ± 0.062 Ma and 201.470 ± 0.089 Ma. Our findings demonstrate synchronicity between the intrusive phase and the end-Triassic mass extinction, and provide a quantified degassing scenario for one of the most dramatic time periods in the history of Earth.

  11. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds.

    PubMed

    Motani, Ryosuke; Chen, Xiao-hong; Jiang, Da-yong; Cheng, Long; Tintori, Andrea; Rieppel, Olivier

    2015-03-10

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic.

  12. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds

    PubMed Central

    Motani, Ryosuke; Chen, Xiao-hong; Jiang, Da-yong; Cheng, Long; Tintori, Andrea; Rieppel, Olivier

    2015-01-01

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic. PMID:25754468

  13. Sedimentological and Stratigraphic Associations of Earlandia Foraminifera; in the Early Triassic Succession of Khuff Carbonates; Central Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Adam, Ammar; Kaminski, Michael; Abdullatif, Osman

    2017-04-01

    This work reports the first discovery Earlandia foraminifera in the Triassic succession of the Middle East, within the Upper Khartam Member of the Khuff Formation. The study area is located in central Saudi Arabia where four outcrop localities were logged in detail for sedimentology and micropaleontology. More than 300 samples were collected for detailed sedimentological and micropaleontological analysis. Of these, only six samples recovered fossil Earlandia; these are dominantly observed in the interlaminated quartz-bearing recrystallized limestone lithofacies type. The Earlandia occur in associations with quartz grains, peloids, ooids, ostracods, bivalves, bryozoans, cephalopods, and stromatolites. The defined fossils of Earlandia are restricted to the lower fourth-order sequence of the Upper Khartam member; where non-skeletal grains (mostly oolitic grainstones) prevail. The skeletal grains along with the Earlandia occur as a thin (20 cm) transgressive lag. Furthermore, the regional occurrences of the Earlandia are consistent with the previously established high-frequency sequence stratigraphic scheme, therefore, the Earlandia could be used as a biomarker for regional biostratigraphic correlation and enhance the high-resolution sequence stratigraphic correlations of the Upper Khartam Member. Essentially, the detailed sedimentological and micropaleontological analysis (Earlandia foraminifera) indicates a plate-wide extensive shallow epeiric sea. The latter is gently dipping and sporadically connected to the open marine system.

  14. The Colorado Plateau Coring Project: A Continuous Cored Non-Marine Record of Early Mesozoic Environmental and Biotic Change

    NASA Astrophysics Data System (ADS)

    Irmis, Randall; Olsen, Paul; Geissman, John; Gehrels, George; Kent, Dennis; Mundil, Roland; Rasmussen, Cornelia; Giesler, Dominique; Schaller, Morgan; Kürschner, Wolfram; Parker, William; Buhedma, Hesham

    2017-04-01

    The early Mesozoic is a critical time in earth history that saw the origin of modern ecosystems set against the back-drop of mass extinction and sudden climate events in a greenhouse world. Non-marine sedimentary strata in western North America preserve a rich archive of low latitude terrestrial ecosystem and environmental change during this time. Unfortunately, frequent lateral facies changes, discontinuous outcrops, and a lack of robust geochronologic constraints make lithostratigraphic and chronostratigraphic correlation difficult, and thus prevent full integration of these paleoenvironmental and paleontologic data into a regional and global context. The Colorado Plateau Coring Project (CPCP) seeks to remedy this situation by recovering a continuous cored record of early Mesozoic sedimentary rocks from the Colorado Plateau of the western United States. CPCP Phase 1 was initiated in 2013, with NSF- and ICDP-funded drilling of Triassic units in Petrified Forest National Park, northern Arizona, U.S.A. This phase recovered a 520 m core (1A) from the northern part of the park, and a 240 m core (2B) from the southern end of the park, comprising the entire Lower-Middle Triassic Moenkopi Formation, and most of the Upper Triassic Chinle Formation. Since the conclusion of drilling, the cores have been CT scanned at the University of Texas - Austin, and split, imaged, and scanned (e.g., XRF, gamma, and magnetic susceptibility) at the University of Minnesota LacCore facility. Subsequently, at the Rutgers University Core Repository, core 1A was comprehensively sampled for paleomagnetism, zircon geochronology, petrography, palynology, and soil carbonate stable isotopes. LA-ICPMS U-Pb zircon analyses are largely complete, and CA-TIMS U-Pb zircon, paleomagnetic, petrographic, and stable isotope analyses are on-going. Initial results reveal numerous horizons with a high proportion of Late Triassic-aged primary volcanic zircons, the age of which appears to be a close

  15. A reappraisal of the Middle Triassic chirotheriid Chirotherium ibericus Navás, 1906 (Iberian Range NE Spain), with comments on the Triassic tetrapod track biochronology of the Iberian Peninsula

    PubMed Central

    Castanera, Diego; Gasca, José Manuel; Canudo, José Ignacio

    2015-01-01

    Triassic vertebrate tracks are known from the beginning of the 19th century and have a worldwide distribution. Several Triassic track ichnoassemblages and ichnotaxa have a restricted stratigraphic range and are useful in biochronology and biostratigraphy. The record of Triassic tracks in the Iberian Peninsula has gone almost unnoticed although more than 25 localities have been described since 1897. In one of these localities, the naturalist Longinos Navás described the ichnotaxon Chirotherium ibericus in 1906.The vertebrate tracks are in two sandy slabs from the Anisian (Middle Triassic) of the Moncayo massif (Zaragoza, Spain). In a recent revision, new, previously undescribed vertebrate tracks have been identified. The tracks considered to be C. ibericus as well as other tracks with the same morphology from both slabs have been classified as Chirotherium barthii. The rest of the tracks have been assigned to Chirotheriidae indet., Rhynchosauroides isp. and undetermined material. This new identification of C. barthii at the Navás site adds new data to the Iberian record of this ichnotaxon, which is characterized by the small size of the tracks when compared with the main occurrences of this ichnotaxon elsewhere. As at the Navás tracksite, the Anisian C. barthii-Rhynchosauroides ichnoassemblage has been found in other coeval localities in Iberia and worldwide. This ichnoassemblage belongs to the upper Olenekian-lower Anisian interval according to previous biochronological proposals. Analysis of the Triassic Iberian record of tetrapod tracks is uneven in terms of abundance over time. From the earliest Triassic to the latest Lower Triassic the record is very scarce, with Rhynchosauroides being the only known ichnotaxon. Rhynchosauroides covers a wide temporal range and gives poor information for biochronology. The record from the uppermost Lower Triassic to the Middle Triassic is abundant. The highest ichnodiversity has been reported for the Anisian with an

  16. The rise of the ruling reptiles and ecosystem recovery from the Permo-Triassic mass extinction.

    PubMed

    Ezcurra, Martín D; Butler, Richard J

    2018-06-13

    One of the key faunal transitions in Earth history occurred after the Permo-Triassic mass extinction ( ca 252.2 Ma), when the previously obscure archosauromorphs (which include crocodylians, dinosaurs and birds) become the dominant terrestrial vertebrates. Here, we place all known middle Permian-early Late Triassic archosauromorph species into an explicit phylogenetic context, and quantify biodiversity change through this interval. Our results indicate the following sequence of diversification: a morphologically conservative and globally distributed post-extinction 'disaster fauna'; a major but cryptic and poorly sampled phylogenetic diversification with significantly elevated evolutionary rates; and a marked increase in species counts, abundance, and disparity contemporaneous with global ecosystem stabilization some 5 million years after the extinction. This multiphase event transformed global ecosystems, with far-reaching consequences for Mesozoic and modern faunas. © 2018 The Author(s).

  17. Biostratigraphic restudy documents Triassic/Jurassic section in Georges Bank COST G-2 well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousminer, H.L.; Steinkraus, W.E.; Hall, R.E.

    1984-04-01

    In 1977, the COST G-2 well as drilled in Georges Bank, 132 mi (212 km) east of Nantucket Island to a total depth of 21,874 ft (6667 m). Biostratigraphic studies of 363 sidewall and conventional cores and 695 cutting samples resulted in a detailed zonation from the Late Jurassic to the present. Restudy of the original samples, as well as new preparations from previously unstudied core material, resulted in revision of the zonation of the Late Jurassic and older section. On the basis of our study of pollen and spores, dinoflagellates, nannofossils, and foraminifers, we revised the age sequence asmore » follows: 5856 ft (1785 m) Late Jurassic (Thithonian); 6000 ft (1829 m) Kimmeridgian; 6420 ft (1957 m) Oxfordian; 6818 ft (2078 m) Callovian; 8200 ft (2499 m) Bathonian; 9677 ft (2950 m) Bajocian; 14567 ft (4440 m) Norian (Late Triassic). Norian dinoflagellate cysts and Tasmanites sp. indicate that intermittent normal marine sedimentation was taking place on Georges Bank as early as Norian time, although most of the Triassic section (+14,500 ft or 4420 m to T.D.) interpreted as having been deposited under evaporitic sabkha-like conditions. The Norian dinoflagellates (Noricysta, Heibergella, Hebecysta, Suessia, Dapcodinium, and Rhombodella) include species common to both Arctic Canada and the Tethyan region, indicating a possible Late Triassic marine connection.« less

  18. The Triassic-Jurassic boundary in eastern North America

    NASA Technical Reports Server (NTRS)

    Olsen, P. E.; Comet, B.

    1988-01-01

    Rift basins of the Atlantic passive margin in eastern North America are filled with thousands of meters of continental rocks termed the Newark Supergroup which provide an unprecedented opportunity to examine the fine scale structure of the Triassic-Jurassic mass extinction in continental environments. Time control, vital to the understanding of the mechanisms behind mass extinctions, is provided by lake-level cycles apparently controlled by orbitally induced climate change allowing resolution at the less than 21,000 year level. Correlation with other provinces is provided by a developing high resolution magnetostratigraphy and palynologically-based biostratigraphy. A large number of at least local vertebrate and palynomorph extinctions are concentrated around the boundary with survivors constituting the earliest Jurassic assemblages, apparently without the introduction of new taxa. The palynofloral transition is marked by the dramatic elimination of a relatively high diversity Triassic pollen assemblage with the survivors making up a Jurassic assemblage of very low diversity overwhelmingly dominated by Corollina. Based principally on palynological correlations, the hypothesis that these continental taxonomic transitions were synchronous with the massive Triassic-Jurassic marine extinctions is strongly corroborated. An extremely rapid, perhaps catastrophic, taxonomic turnover at the Triassic-Jurassic boundary, synchronous in continental and marine realms is hypothesized and discussed.

  19. Early Mesozoic history and petroleum potential of formations in Wyoming and northern Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picard, M.D.

    1993-08-01

    During the Triassic and Jurassic, over what is now Wyoming and northern Utah, roughly equal amounts of sediment were being deposited in continental settings-lake, stream, and eolian-and in shallow-marine or deltaic-plain settings-delta, beach, marsh, tidal flat, and shallow shelf. Clastic rocks dominate. In order of decreasing abundance, the rocks are fine-grained clastics (siltstone, claystone, mudstone), sandstone, carbonates, evaporites, and claystone- and carbonate-pebble conglomerate. Approximately four-fifths of the succession contains red beds or variegated layers-purple, maroon, lavender, olive, green. Unconformities bound Jurassic formations in Wyoming-Nugget, Gypsum Spring, Sundance, and Morrison. Unconformities also bound the continental Upper Triassic section-unnamed red bed unit,more » Jelm, Popo Agie-separating it from the underlying shallow-marine formations-Dinwoody, Red Peak, Alcova, Crow Mountain. Within the marine sequence, an unconformity occurs at the top of the Alcova and, quite likely, shorter periods of erosion took place at the top and below the base of the sandy faces that underlies the Alcova. The postulate duration of the principal unconformities totals about 18 m.y., at least one-sixth of early Mesozoic time. The bulk of the remaining 80-100 m.y. may be represented by a large number of smaller unconformities. For the lower Mesozoic, as for most stratigraphic intervals, a few beds contain the story of what has taken place during the abyss of geologic time. Like other places in the world where evaporites occur in the Triassic, the Wyoming section produces little crude oil. No significant sequence in the early Mesozoic shows source-bed characteristics. The Crow Mountain Sandstone contains the best reservoirs. The Lower( ) Jurassic Nugget Sandstone produces the most oil and gas in the thrust belt of southwestern Wyoming and northern Utah. Cretaceous claystones below the thrusts contain the source beds.« less

  20. Triassic pollen date moroccan high atlas and the incipient rifting of pangea as middle carnian.

    PubMed

    Cousminer, H L; Manspeizer, W

    1976-03-05

    Palynomorphs from the High Atlas Mountains south of Marrakech define the Minutosaccus-Patinasporites Concurrent Range Zone, which is time-stratigraphically equivalent to the Swiss and English middle Keuper, type Carnian of Austria, and North American Triassic beds in Virginia, North Carolina, Pennsylvania, New Jersey, Texas, New Mexico, and Arizona, thus dating an early episode of continental rifting between Africa and North America.

  1. Permo Triassic unconformity-related Au-Pd mineralisation, South Devon, UK: new insights and the European perspective

    NASA Astrophysics Data System (ADS)

    Shepherd, Tom J.; Bouch, Jon E.; Gunn, Andrew G.; McKervey, John A.; Naden, Jonathan; Scrivener, Richard C.; Styles, Michael T.; Large, Duncan E.

    2005-07-01

    An integrated mineralogical-geochemical study of unconformity-related Au-Pd occurrences within and around the Permo Triassic basins of southwest England, UK, has confirmed the importance of low temperature (86±13°C), hydrothermal carbonate veins as hosts for the mineralisation. Fluid inclusion data for the carbonate gangue, supported by stable isotope (13C and 18O) and radiogenic (87Sr/86Sr) data, have identified three principal fluids: (1) a reducing calcic brine [>25 wt% salinity, <0.5 NaCl/(NaCl+CaCl2)] originating in the sub-unconformity basement and an expression of advanced mineral fluid interaction; (2) an oxidising sodic brine [~16 wt% salinity, >0.9 NaCl/(NaCl+CaCl2)] originating in the post-unconformity red beds under evaporitic conditions, and (3) an oxygenated, low salinity groundwater (<3 wt% salinity). The sodic brine is reasoned to be the parent metalliferous fluid and to have acquired its enrichment in Au and Pd by the leaching of immature sediments and intra-rift volcanic rocks within the local Permo Triassic basins. Metal precipitation is linked to the destabilisation of Au and Pd chloride complexes by either mixing with calcic brines, dilution by groundwaters or interaction with reduced lithologies. This explains the diversity of mineralised settings below and above the unconformity and their affinity with red bed brines. The paucity of sulphide minerals, the development of selenides (as ore minerals and as mineral inclusion in gold grains), the presence of rhodochrosite and manganoan calcites (up to 2.5 wt% Mn in calcite) and the co-precipitation of hematite and manganese oxides are consistent with the overall high oxidation state of the ore fluids. A genetic model is proposed linking Permo Triassic red beds, the mixing of oxidising and reducing brines, and the development of unconformity-related precious metal mineralisation. Comparison with other European Permo Triassic basins reveals striking similarities in geological setting, mineralogy

  2. Triassic structural and stratigraphic evolution of the Central German North Sea sector

    NASA Astrophysics Data System (ADS)

    Wolf, Marco; Jähne-Klingberg, Fabian

    2017-04-01

    The subsurface of the Central German North Sea sector is characterized by a complex sequence of tectonic events that span from the Permo-Carboniferous initiation of the Southern Permian Basin to the present day. The Triassic period is one of the most prominent stratigraphic intervals in this area due to alternating phases of relatively tectonic quiescence and intense tectonic activity with the development of grabens, salt-tectonics movements, various regional and local erosional events and strong local and regional changes in subsidence over time. The heterogeneous geological history led to complex structural and lithological patterns. The presented results are part of a comprehensive investigation of the Central German North Sea sector. It was carried out within the scope of the project TUNB (www.bgr.bund.de). The main goal was to enhance the understanding of the Triassic geological development in the area of interest due to detailed seismic interpretation of several hundred 2D seismic lines and as well 3D seismic data sets. A seismostratigraphic concept was used to interpret most formations of the Triassic resulting in a detailed subdivision of the Triassic unit. Depth and thickness maps for every stratigraphic unit and geological cross sections provided new insights regarding an overall basin evolution as well as the timing and mechanisms of rifting and salt-tectonics. New results concerning the evolution of the Keuper in the German North Sea and especially the Triassic evolution of the Horn Graben, as one of the major Triassic rift-structures in the North Sea, will be highlighted. We will show aspects of strong tectonic subsidence in the Horn Graben in the Lower Triassic. In parts of the study area, halotectonic movements started in the Upper Triassic, earlier than previously proposed. Besides mapping of regional seismic reflectors, distinct sedimentary features like fluvial channel systems of the Stuttgart formation (Middle Keuper) or subrosion-like structures

  3. Age and provenance of Triassic to Cenozoic sediments of West and Central Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Breitfeld, H. Tim; Galin, Thomson; Hall, Robert

    2015-04-01

    Sarawak is located on the northern edge of Sundaland in NW Borneo. West and Central Sarawak include parts of the Kuching and Sibu Zones. These contain remnants of several sedimentary basins with ages from Triassic to Cenozoic. New light mineral, heavy mineral and U-Pb detrital zircon ages show differences in provenance reflecting the tectonic evolution of the region. The oldest clastic sediments are Triassic (Sadong Formation and its deep marine equivalent Kuching Formation). They were sourced by a Triassic (Carnian to Norian) volcanic arc and reworked Paleoproterozoic detritus derived from Cathaysialand. The Upper Jurassic to Cretaceous Pedawan Formation is interpreted as forearc basin fill with distinctive zircon populations indicating subduction beneath present-day West Sarawak which initiated in the Late Jurassic. Subsequent subduction until the early Late Cretaceous formed the Schwaner Mountains magmatic arc. After collision of SW Borneo and other microcontinental fragments with Sundaland in the early Late Cretaceous, deep marine sedimentation (Pedawan Formation) ceased, and there was uplift forming the regional Pedawan-Kayan unconformity. Two episodes of extension followed and were responsible for basin development on land in West Sarawak from the latest Cretaceous onwards, probably in a pull-apart setting. The first episode is associated with sediments of the Kayan Group, deposited in the Latest Cretaceous (Maastrichtian) to Eocene, and the second episode with Upper Eocene sediments of the Ketungau Basin. Zircon ages indicate volcanic activity throughout the Early Cenozoic in NW Borneo, and inherited zircon ages indicate reworking of Triassic and Cretaceous rocks. A large deep marine basin, the Rajang Basin, was north of the Lupar Line Fault in Central Sarawak (Sibu Zone) from the Late Cretaceous to the Late Eocene. Zircons from sediments of the Rajang Basin indicate they have similar ages and provenance to contemporaneous terrestrial sediments of the Kayan

  4. Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms

    PubMed Central

    Baresel, Björn; Bucher, Hugo; Bagherpour, Borhan; Brosse, Morgane; Guodun, Kuang; Schaltegger, Urs

    2017-01-01

    New high-resolution U-Pb dates indicate a duration of 89 ± 38 kyr for the Permian hiatus and of 14 ± 57 kyr for the overlying Triassic microbial limestone in shallow water settings of the Nanpanjiang Basin, South China. The age and duration of the hiatus coincides with the Permian-Triassic boundary (PTB) and the extinction interval in the Meishan Global Stratotype Section and Point, and strongly supports a glacio-eustatic regression, which best explains the genesis of the worldwide hiatus straddling the PTB in shallow water records. In adjacent deep marine troughs, rates of sediment accumulation display a six-fold decrease across the PTB compatible with a dryer and cooler climate as indicated by terrestrial plants. Our model of the Permian-Triassic boundary mass extinction (PTBME) hinges on the synchronicity of the hiatus with the onset of the Siberian Traps volcanism. This early eruptive phase released sulfur-rich volatiles into the stratosphere, thus simultaneously eliciting a short-lived ice age responsible for the global regression and a brief but intense acidification. Abrupt cooling, shrunk habitats on shelves and acidification may all have synergistically triggered the PTBME. Subsequently, the build-up of volcanic CO2 induced a transient cool climate whose early phase saw the deposition of the microbial limestone. PMID:28262815

  5. Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Bagherpour, Borhan; Brosse, Morgane; Guodun, Kuang; Schaltegger, Urs

    2017-03-01

    New high-resolution U-Pb dates indicate a duration of 89 ± 38 kyr for the Permian hiatus and of 14 ± 57 kyr for the overlying Triassic microbial limestone in shallow water settings of the Nanpanjiang Basin, South China. The age and duration of the hiatus coincides with the Permian-Triassic boundary (PTB) and the extinction interval in the Meishan Global Stratotype Section and Point, and strongly supports a glacio-eustatic regression, which best explains the genesis of the worldwide hiatus straddling the PTB in shallow water records. In adjacent deep marine troughs, rates of sediment accumulation display a six-fold decrease across the PTB compatible with a dryer and cooler climate as indicated by terrestrial plants. Our model of the Permian-Triassic boundary mass extinction (PTBME) hinges on the synchronicity of the hiatus with the onset of the Siberian Traps volcanism. This early eruptive phase released sulfur-rich volatiles into the stratosphere, thus simultaneously eliciting a short-lived ice age responsible for the global regression and a brief but intense acidification. Abrupt cooling, shrunk habitats on shelves and acidification may all have synergistically triggered the PTBME. Subsequently, the build-up of volcanic CO2 induced a transient cool climate whose early phase saw the deposition of the microbial limestone.

  6. Triassic deposits of the Chukotka Arctic continental margin (sedimentary implications and detrital zircon data)

    NASA Astrophysics Data System (ADS)

    Tuchkova, Marianna; Sokolov, Sergey; Verzhbitsky, Vladimir

    2013-04-01

    Triassic clastic deposits of Chukotka are represented by rhythmic intercalation of sandstones, siltstones and mudstones. During the Triassic, sedimentation was represented by continental slope progradation. Detrital zircons from Triassic sedimentary rocks were collected for constrain its paleogeographic links to source terranes. Zircons populations from three Chukotka's samples are very similar, and youngest zircon ages show peaks at 236-255 Ma (Miller et al., 2006). Lower Triassic sandstones from the Chaun subterrane do not contain the young population 235-265 Ma that is characteristic of the Upper Triassic rocks from the Anyui subterrane and Wrangel Island. The young zircon population is missing also from the coeval Sadlerochit Group (Alaska) and Blind Fiord Formation of the Sverdrup basin (Miller et al., 2006; Omma et al., 2011). Our data of Triassic sandstones of Wrangel island demonstrate detrital zircons ages dominated by Middle Triassic (227-245 Ma), Carboniferous (309-332 Ma) and Paleoproterozoic (1808-2500 Ma) ages. The new data on Chukotka show that populations of detrital zircons from Chukotka, the Sverdrup basin, and Alaska, the Sadlerochit Mountains included, demonstrate greater similarity than it was previously thought. Consequently, it may be assumed that they originate from a single source situated in the north. The data on zircon age of gabbro-dolerite magmatism in eastern Chukotka (252 Ma. Ledneva et al., 2011) and K-Ar ages obtained for sills and small intrusive bodies (Geodynamics…, 2006) in Lower Triassic deposits allow the local provenance. The presence of products of synchronous magmatism and shallow-water facies in the Lower Triassic sequences confirm this assumption. At the same time, coeval zircons appear only in the Upper Triassic strata. It is conceivable that the young zircon population originates from intrusive, not volcanic rocks, which were subjected to erosion only in the Late Triassic. In our opinion, the assumption of the local

  7. The inverted Triassic rift of the Marrakech High Atlas: A reappraisal of basin geometries and faulting histories

    NASA Astrophysics Data System (ADS)

    Domènech, Mireia; Teixell, Antonio; Babault, Julien; Arboleya, Maria-Luisa

    2015-11-01

    The High Atlas of Morocco is an aborted rift developed during the Triassic-Jurassic and moderately inverted during the Cenozoic. The Marrakech High Atlas, with large exposures of basement and Triassic early syn-rift deposits, is ideal to investigate the geometries of the deepest parts of a rift, constituting a good analogue for pre-salt domains. It allows unraveling geometries and kinematics of the extensional and compressional structures and the influence that they exert over one another. A detailed structural study of the main Triassic basins and basin-margin faults of the Marrakech High Atlas shows that only a few rift faults were reactivated during the Cenozoic compressional stage in contrast to previous interpretations, and emphasizes that fault reactivation cannot be taken for granted in inverted rift systems. Preserved extensional features demonstrate a dominant dip-slip opening kinematics with strike-slip playing a minor role, at variance to models proposing a major strike-slip component along the main basin-bounding faults, including faults belonging to the Tizi n'Test fault zone. A new Middle Triassic paleogeographic reconstruction shows that the Marrakech High Atlas was a narrow and segmented orthogonal rift (sub-perpendicular to the main regional extension direction which was ~ NW-SE), in contrast to the central and eastern segments of the Atlas rift which developed obliquely. This difference in orientation is attributed to the indented Ouzellarh Precambrian salient, part of the West African Craton, which deflected the general rift trend in the area evidencing the major role of inherited lithospheric anisotropies in rift direction and evolution. As for the Cenozoic inversion, total orogenic shortening is moderate (~ 16%) and appears accommodated by basement-involved large-scale folding, and by newly formed shortcut and by-pass thrusting, with rare left-lateral strike-slip indicators. Triassic faults commonly acted as buttresses.

  8. Depositional evolution of permo-triassic karoo basins in Tanzania with reference to their economic potential

    NASA Astrophysics Data System (ADS)

    Kreuser, T.; Wopfner, H.; Kaaya, C. Z.; Markwort, S.; Semkiwa, P. M.; Aslandis, P.

    The Karoo basins of Tanzania contain in excess of 3000 m of sediments which were preserved in several NNE-NE striking half grabens or other structural basin conditions. They are all intracratonic basins, most of which filled with terrestrial sediments. In some basins situated nearer the coastal region short marine incursions occurred in the Late Permian. The Ruhuhu Rasin in SW Tanzania provides a typical depositional sequence of a Karoo basin in eastern Africa. Sedimentation commenced with glacigene deposits. These are of Late Carboniferous to Early Permian age and may be equated with other glacial successions in Africa and elsewhere in Gondwana. The glacigene beds are overlain by fluvial-deltaic coal-bearing deposits succeeded by arkoses and continental red beds. A transitionary formation of carbonaceous shales with impure coals gradually develops into thick lacustrine series which are topped by Late Permian bone bearing beds. The Triassic is characterized by a very thick fluvio-deltaic succession of siliciclastics resting with regional unconformity on the Permian. This Early Triassic sequence exhibits well-developed repetitive depositional cycles. Current azimuth measurements indicate fluctuating flow regimes in the Early Permian but relative stable source areas to the west of the basin later on. The depositional evolution of the Ruhuhu Basin is controlled by both tectonic and climatic factors. During basin evolution important energy resources were deposited such as considerable reserves of coal and source rocks of moderate potential for hydrocarbon generation. Uranium enrichment is observed in the Triassic arenaceous series where diagenetic alterations and subsequent cementation processes led to the formation of laumontite. Post Karoo dykes and plugs had only local effect on thermal evolution of potential source rocks. Enrichments of elements, i.e., Nb, Zr, Rb, Cr, and V present additional exploration targets. A comparison with the Karoo basins of the coastal

  9. Proliferation of MISS-related microbial mats following the end-Permian mass extinction in terrestrial ecosystems: Evidence from the Lower Triassic of the Yiyang area, Henan Province, North China

    NASA Astrophysics Data System (ADS)

    Tu, Chenyi; Chen, Zhong-Qiang; Retallack, Gregory J.; Huang, Yuangeng; Fang, Yuheng

    2016-03-01

    Microbially induced sedimentary structures (MISSs) are commonly present in siliciclastic shallow marine settings following the end-Permian mass extinction, but have been rarely reported in the post-extinction terrestrial ecosystems. Here, we present six types of well-preserved MISSs from the upper Sunjiagou Formation and lower Liujiagou Formation of Induan (Early Triassic) age in the Yiyang area, Henan Province, North China. These MISSs include: polygonal sand cracks, worm-like structures, wrinkle structures, sponge pore fabrics, gas domes, and leveled ripple marks. Microanalysis shows that these MISSs are characterized by thin clayey laminae and filamentous mica grains arranged parallel to bedding plane as well as oriented matrix supported quartz grains, which are indicative of biogenic origin. Facies analysis suggests that the MISS-hosting sediments were deposited in a fluvial sedimentary system during the Early Triassic, including lake delta, riverbeds/point bars, and flood plain paleoenvironments. Abundant MISSs from Yiyang indicate that microbes also proliferated in terrestrial ecosystems in the aftermath of the Permian-Triassic (P-Tr) biocrisis, like they behaved in marine ecosystems. Microbial blooms, together with dramatic loss of metazoans, may reflect environmental stress and degradation of terrestrial ecosystems or arid climate immediately after the severe Permian-Triassic ecologic crisis.

  10. Filling the Triassic Geochronologic Gap: A Continuous Cored Record of Continental Environmental Change in Western North America

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Kent, D. V.; Geissman, J. W.; Mundil, R.; Gehrels, G. E.; Irmis, R. B.; Whiteside, J. H.; Schaller, M. F.

    2013-12-01

    The Triassic Period (252.2-201.6 Ma) is bracketed by two mass extinctions, witnessed the evolution of the major groups of modern tetrapods, saw giant bolide impacts, and was typified by generally high atmospheric CO2 and a lack of ice at the poles. Testing hypotheses relevant to these major features of the Triassic, as well as problems related to the Earth system in general, requires temporally well-defined records of environmental and biotic change, especially in terrestrial environments, which until recently were lacking. The NSF and ICDP funded ~500 m long core at Petrified Forest National Park, scheduled to be drilled in Fall, 2013, is part of an interdisciplinary, multi-institutional, Colorado Plateau Coring Project, and is a major step towards providing a network of such records. The core will recover virtually the entire pre-Owl-Rock-Member Late Triassic age Chinle and underlying Early-Middle Triassic age Moenkopi formations. A core is required despite excellent outcrop and a long and distinguished history of study because of ambiguities in local correlation, a lack of constraints on the temporal duration and resolution of biotic events, and an inability to make clear global correlations. Specifically, by integrating a densely sampled paleomagnetic record with high-resolution radioisotopic ages in unquestioned superposition, the new core will allow us to test at least five sets of hypotheses: (1) were marine and continental biotic turnover events in the Late Triassic coupled? (2) was there high faunal provinciality during the existence of the supercontinent of Pangea?; (3) is the time scale of the Newark basin astronomically calibrated GPTS for the Triassic accurate, particularly for the Norian age part that is relevant for mapping the chaotic evolution of the Solar System, as well as global correlations?; (4) is the supposed Carnian-Norian boundary in the Chinle actually a late middle Norian extinction coinciding with the 215.5 Ma Manicouagan impact?; (5

  11. How was the Triassic Songpan-Ganzi basin filled? A provenance study

    USGS Publications Warehouse

    Enkelmann, E.; Weislogel, A.; Ratschbacher, L.; Eide, E.; Renno, A.; Wooden, J.

    2007-01-01

    The Triassic Songpan-Ganzi complex comprises >200,000 km2 of 5-15 km thick turbiditic sediments. Although surrounded by several magmatic and orogenic belts, the Triassic high- and ultrahigh-pressure Qinling-Tongbai-Hong'an-Dabie (QTHD) orogen, located several hundred kilometers to the east, was proposed as its major source. Middle to Late Triassic samples from the northern and southern Songpan-Ganzi complex, studied using detrital white mica 40Ar/39Ar ages, Si-in-white mica content, and detrital zircon U/Pb ages, suggest that the northern Songpan-Ganzi deposystem obtained detritus from the north: the north China block, east Kunlun, northern Qaidam, Qilian, and western Qinling; the southern Songpan-Ganzi deposystem was supplied from the northeasterly located Paleozoic QTHD area throughout the Ladinian and received detritus from the Triassic Hong'an-Dabie orogen during the Carnian, indicative of exhumation of the orogen at that time. The QTHD orogen fed the Norian samples in the southeastern southern Songpan-Ganzi deposystem, signifying long drainage channels along the western margin of the south China block. An additional supply from the Emeishan magmatic province and/or the Yidun arc is suggested by the paucity of white mica in the southern Songpan-Ganzi deposystem. Mica ages of Rhaetian sediments from the northwestern Sichuan basin best correlate with those of the Triassic QTHD orogen. Our Si-in-white mica data demonstrate that the high- and ultrahigh-pressure rocks of the Hong'an-Dabie Shan were not exposed in the Middle to Late Triassic. Copyright 2007 by the American Geophysical Union.

  12. A petrologic comparison of Triassic plutonism in the San Gabriel and Mule Mountains, southern California

    NASA Astrophysics Data System (ADS)

    Barth, Andrew P.; Tosdal, R. M.; Wooden, J. L.

    1990-11-01

    Triassic magmatism in the southwest U.S. Cordillera forms a semicontinuous magmatic arc extending from northwestern Nevada to southeastern California. Quartz monzodioritic and quartz monzonitic rocks and associated diorites and granites are widespread in southeastern California, and we suggest that these rocks represent exposure of a structurally deeper part of the Triassic arc, where it was emplaced into comparatively thick Proterozoic crust. Elemental and isotopic data suggest that Triassic quartz monzodiorites and quartz monzonites in the Mule and San Gabriel Mountains were derived from a relatively undepleted, nonradiogenic mafic lithospheric source, with virtually no upper crustal interaction. Very limited data for associated Triassic(?) diorites indicate a wide range in composition and a surprisingly radiogenic isotopic signature. Younger Triassic(?) granites record a strong geochemical signature of interaction with continental crust, including inherited zircon and high initial Sr ratios but comparatively less radiogenic Pb isotopic compositions. The major and trace element geochemistry of Late Triassic plutonic rocks in southeastern California is similar in many respects to alkalic components of the Triassic arc in the Mojave Desert. However, contemporaneous rocks farther north have a calc-alkalic signature, perhaps reflecting the variation in age and composition of lithosphere across which the Triassic arc was constructed.

  13. A petrologic comparison of Triassic plutonism in the San Gabriel and Mule Mountains, southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, A.P.; Tosdal, R.M.; Wooden, J.L.

    1990-11-10

    Triassic magmatism in the southwest US Cordillera forms a semicontinuous magmatic arc extending from northwestern Nevada to southeastern California. Quartz monzodioritic and quartz monzonitic rocks and associated diorites and granites are widespread in southeastern California, and the authors suggest that these rocks represent exposure of a structurally deeper part of the Triassic arc, where it was emplaced into comparatively thick Proterozoic crust. Elemental and isotopic data suggest that Triassic quartz monzodiorites and quartz monzonites in the Mule and San Gabriel Mountains were derived from a relatively undepleted, nonradiogenic mafic lithospheric source, with virtually no upper crustal interaction. Very limited datamore » for associated Triassic ( ) diorites indicate a wide range in composition and a surprisingly radiogenic isotopic signature. Younger Triassic( ) granites record a strong geochemical signature of interaction with continental crust, including inherited zircon and high initial Sr ratios but comparatively less radiogenic Pb isotopic compositions. The major and trace element geochemistry of Late Triassic plutonic rocks in southeastern California is similar in many respects to akalic components of the Triassic arc in the Mojave Desert. However, contemporaneous rocks farther north have a calc-alkalic signature, perhaps reflecting the variation in age and composition of lithosphere across which the Triassic arc was constructed.« less

  14. A Major Unconformity Between Permian and Triassic Strata at Cape Kekurnoi, Alaska Peninsula: Old and New Observations on Stratigraphy and Hydrocarbon Potential

    USGS Publications Warehouse

    Blodgett, Robert B.; Sralla, Bryan

    2008-01-01

    A major angular unconformity separates carbonates and shales of the Upper Triassic Kamishak Formation from an underlying unnamed sequence of Permian agglomerate, volcaniclastic rocks (sandstone), and limestone near Puale Bay on the Alaska Peninsula. For the first time, we photographically document the angular unconformity in outcrop, as clearly exposed in a seacliff ~1.3 mi (2.1 km) west of Cape Kekurnoi in the Karluk C?4 and C?5 1:63,360-scale quadrangles. This unconformity is also documented by examination of core chips, ditch cuttings, and (or) open-hole electrical logs in two deep oil-and-gas-exploration wells (Humble Oil & Refining Co.?s Bear Creek No. 1 and Standard Oil Co. of California?s Grammer No. 1) drilled along the Alaska Peninsula southwest of Puale Bay. A third well (Richfield Oil Corp.?s Wide Bay Unit No. 1), south of and structurally on trend with the other two wells, probed deeply into the Paleozoic basement, but Triassic strata are absent, owing to either a major unconformity or a large fault. Here we briefly review current and newly acquired data on Permian and Triassic rocks of the Puale Bay-Becharof Lake-Wide Bay area on the basis of an examination of surface and subsurface materials. The resulting reinterpretation of the Permian and Triassic stratigraphy has important economic ramifications for oil and gas exploration on the Alaska Peninsula and in the Cook Inlet basin. We also present a history of petroleum exploration targeting Upper Triassic reservoirs in the region.

  15. Geometry and kinematics of the Triassic rift basin in Jameson Land (East Greenland)

    NASA Astrophysics Data System (ADS)

    Guarnieri, Pierpaolo; Brethes, Anaïs.; Rasmussen, Thorkild M.

    2017-04-01

    The Triassic rift basin along the east Greenland margin described in this paper is represented by NE-SW trending basins and highs segmented by NW-SE trending transfer zones. Coarse-grained sediments along the eastern side of Jameson Land are shown to be hosted in half-graben structures belonging to the Carlsberg Fjord Basin that is bounded by NW dipping normal faults mapped and described after fieldwork in the Klitdal area in Liverpool Land. New aeromagnetic and electromagnetic data together with new drill cores allow the reinterpretation of available seismic lines showing the continuation of the Triassic rift basin toward the SW where it is buried under the Upper Triassic postrift sediments and the Jurassic successions of the Jameson Land Basin. The N-S trending Liverpool Land, interpreted as the boundary block of the Triassic basin, is shown to represent a structural high inherited from the Late Carboniferous tectonics and faulted during the Triassic rifting. The Carlsberg Fjord Basin and the Klitdal Fault System described in this paper should be seen as analogues to the Helgeland Basin in the Norwegian offshore that is bounded by the Ylvingen Fault Zone and to the Papa and West of Shetlands Basins that are bounded by the Spine Fault. The Triassic rift zone and transfer faults on both conjugate margins show a straightforward correlation with the trends of the initial spreading line and fracture zones of the northeast Atlantic indicating a possible inheritance of the Triassic rifting.

  16. New clade of enigmatic early archosaurs yields insights into early pseudosuchian phylogeny and the biogeography of the archosaur radiation

    PubMed Central

    2014-01-01

    Background The origin and early radiation of archosaurs and closely related taxa (Archosauriformes) during the Triassic was a critical event in the evolutionary history of tetrapods. This radiation led to the dinosaur-dominated ecosystems of the Jurassic and Cretaceous, and the high present-day archosaur diversity that includes around 10,000 bird and crocodylian species. The timing and dynamics of this evolutionary radiation are currently obscured by the poorly constrained phylogenetic positions of several key early archosauriform taxa, including several species from the Middle Triassic of Argentina (Gracilisuchus stipanicicorum) and China (Turfanosuchus dabanensis, Yonghesuchus sangbiensis). These species act as unstable ‘wildcards’ in morphological phylogenetic analyses, reducing phylogenetic resolution. Results We present new anatomical data for the type specimens of G. stipanicicorum, T. dabanensis, and Y. sangbiensis, and carry out a new morphological phylogenetic analysis of early archosaur relationships. Our results indicate that these three previously enigmatic taxa form a well-supported clade of Middle Triassic archosaurs that we refer to as Gracilisuchidae. Gracilisuchidae is placed basally within Suchia, among the pseudosuchian (crocodile-line) archosaurs. The approximately contemporaneous and morphologically similar G. stipanicicorum and Y. sangbiensis may be sister taxa within Gracilisuchidae. Conclusions Our results provide increased resolution of the previously poorly constrained relationships of early archosaurs, with increased levels of phylogenetic support for several key early pseudosuchian clades. Moreover, they falsify previous hypotheses suggesting that T. dabanensis and Y. sangbiensis are not members of the archosaur crown group. The recognition of Gracilisuchidae provides further support for a rapid phylogenetic diversification of crown archosaurs by the Middle Triassic. The disjunct distribution of the gracilisuchid clade in China and

  17. New clade of enigmatic early archosaurs yields insights into early pseudosuchian phylogeny and the biogeography of the archosaur radiation.

    PubMed

    Butler, Richard J; Sullivan, Corwin; Ezcurra, Martín D; Liu, Jun; Lecuona, Agustina; Sookias, Roland B

    2014-06-10

    The origin and early radiation of archosaurs and closely related taxa (Archosauriformes) during the Triassic was a critical event in the evolutionary history of tetrapods. This radiation led to the dinosaur-dominated ecosystems of the Jurassic and Cretaceous, and the high present-day archosaur diversity that includes around 10,000 bird and crocodylian species. The timing and dynamics of this evolutionary radiation are currently obscured by the poorly constrained phylogenetic positions of several key early archosauriform taxa, including several species from the Middle Triassic of Argentina (Gracilisuchus stipanicicorum) and China (Turfanosuchus dabanensis, Yonghesuchus sangbiensis). These species act as unstable 'wildcards' in morphological phylogenetic analyses, reducing phylogenetic resolution. We present new anatomical data for the type specimens of G. stipanicicorum, T. dabanensis, and Y. sangbiensis, and carry out a new morphological phylogenetic analysis of early archosaur relationships. Our results indicate that these three previously enigmatic taxa form a well-supported clade of Middle Triassic archosaurs that we refer to as Gracilisuchidae. Gracilisuchidae is placed basally within Suchia, among the pseudosuchian (crocodile-line) archosaurs. The approximately contemporaneous and morphologically similar G. stipanicicorum and Y. sangbiensis may be sister taxa within Gracilisuchidae. Our results provide increased resolution of the previously poorly constrained relationships of early archosaurs, with increased levels of phylogenetic support for several key early pseudosuchian clades. Moreover, they falsify previous hypotheses suggesting that T. dabanensis and Y. sangbiensis are not members of the archosaur crown group. The recognition of Gracilisuchidae provides further support for a rapid phylogenetic diversification of crown archosaurs by the Middle Triassic. The disjunct distribution of the gracilisuchid clade in China and Argentina demonstrates that early

  18. Abrupt Changes at the Permian/Triassic Boundary: Tempo of Events from High-Resolution Cyclostratigraphy

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Prokoph, A.; Adler, A. C.

    2000-01-01

    the nearby Reppwand outcrop section, the same faunal changes occurs over only 0.8 m or about 8,000 years, close to the limit of time-resolution induced by bioturbation and reworking in these sediments. The sharp negative global carbon-isotope shift took place within less than or equal to 40,000 yr, and the isotope excursions persisted for approximately 480,000 yr into the Early Triassic. The results indicate that the severe marine faunal event that marks the P/Tr boundary was very sudden, perhaps less than the resolution window in the GK-1 core, and suggest a catastrophic cause. The wavelet-analysis approach to high-resolution cyclostratigraphy can be applied to other P/Tr boundary sections, and when combined with precise absolute dating and magnetostratigraphic methods promises a significant increase in resolution in determining the correlation and tempo of the end-Permian extinctions and related events worldwide.

  19. The Early Mesozoic volcanic arc of western North America in northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Barboza-Gudiño, José Rafael; Orozco-Esquivel, María Teresa; Gómez-Anguiano, Martín; Zavala-Monsiváis, Aurora

    2008-02-01

    Volcanic successions underlying clastic and carbonate marine rocks of the Oxfordian-Kimmeridgian Zuloaga Group in northeastern Mexico have been attributed to magmatic arcs of Permo-Triassic and Early Jurassic ages. This work provides stratigraphic, petrographic geochronological, and geochemical data to characterize pre-Oxfordian volcanic rocks outcropping in seven localities in northeastern Mexico. Field observations show that the volcanic units overlie Paleozoic metamorphic rocks (Granjeno schist) or Triassic marine strata (Zacatecas Formation) and intrude Triassic redbeds or are partly interbedded with Lower Jurassic redbeds (Huizachal Group). The volcanic rocks include rhyolitic and rhyodacitic domes and dikes, basaltic to andesitic lava flows and breccias, and andesitic to rhyolitic pyroclastic rocks, including breccias, lapilli, and ashflow tuffs that range from welded to unwelded. Lower-Middle Jurassic ages (U/Pb in zircon) have been reported from only two studied localities (Huizachal Valley, Sierra de Catorce), and other reported ages (Ar/Ar and K-Ar in whole-rock or feldspar) are often reset. This work reports a new U/Pb age in zircon that confirms a Lower Jurassic (193 Ma) age for volcanic rocks exposed in the Aramberri area. The major and trace element contents of samples from the seven localities are typical of calc-alkaline, subduction-related rocks. The new geochronological and geochemical data, coupled with the lithological features and stratigraphic positions, indicate volcanic rocks are part of a continental arc, similar to that represented by the Lower-Middle Jurassic Nazas Formation of Durango and northern Zacatecas. On that basis, the studied volcanic sequences are assigned to the Early Jurassic volcanic arc of western North America.

  20. Groundwater table fluctuations recorded in zonation of microbial siderites from end-Triassic strata

    NASA Astrophysics Data System (ADS)

    Weibel, R.; Lindström, S.; Pedersen, G. K.; Johansson, L.; Dybkjær, K.; Whitehouse, M. J.; Boyce, A. J.; Leng, M. J.

    2016-08-01

    In a terrestrial Triassic-Jurassic boundary succession of southern Sweden, perfectly zoned sphaerosiderites are restricted to a specific sandy interval deposited during the end-Triassic event. Underlying and overlying this sand interval there are several other types of siderite micromorphologies, i.e. poorly zoned sphaerosiderite, spheroidal (ellipsoid) siderite, spherical siderite and rhombohedral siderite. Siderite overgrowths occur mainly as rhombohedral crystals on perfectly zoned sphaerosiderite and as radiating fibrous crystals on spheroidal siderite. Concretionary sparry, microspar and/or micritic siderite cement postdate all of these micromorphologies. The carbon isotope composition of the siderite measured by conventional mass spectrometry shows the characteristic broad span of data, probably as a result of multiple stages of microbial activity. SIMS (secondary ion mass spectrometry) revealed generally higher δ13C values for the concretionary cement than the perfectly zoned sphaerosiderite, spheroidal siderite and their overgrowths, which marks a change in the carbon source during burial. All the various siderite morphologies have almost identical oxygen isotope values reflecting the palaeo-groundwater composition. A pedogenic/freshwater origin is supported by the trace element compositions of varying Fe:Mn ratios and low Mg contents. Fluctuating groundwater is the most likely explanation for uniform repeated siderite zones of varying Fe:Mn ratios reflecting alternating physiochemical conditions and hostility to microbial life/activity. Bacterially mediated siderite precipitation likely incorporated Mn and other metal ions during conditions that are not favourable for the bacteria and continued with Fe-rich siderite precipitation as the physico-chemical conditions changed into optimal conditions again, reflecting the response to groundwater fluctuations.

  1. The origin and early radiation of dinosaurs

    NASA Astrophysics Data System (ADS)

    Brusatte, Stephen L.; Nesbitt, Sterling J.; Irmis, Randall B.; Butler, Richard J.; Benton, Michael J.; Norell, Mark A.

    2010-07-01

    Dinosaurs were remarkably successful during the Mesozoic and one subgroup, birds, remain an important component of modern ecosystems. Although the extinction of non-avian dinosaurs at the end of the Cretaceous has been the subject of intense debate, comparatively little attention has been given to the origin and early evolution of dinosaurs during the Late Triassic and Early Jurassic, one of the most important evolutionary radiations in earth history. Our understanding of this keystone event has dramatically changed over the past 25 years, thanks to an influx of new fossil discoveries, reinterpretations of long-ignored specimens, and quantitative macroevolutionary analyses that synthesize anatomical and geological data. Here we provide an overview of the first 50 million years of dinosaur history, with a focus on the large-scale patterns that characterize the ascent of dinosaurs from a small, almost marginal group of reptiles in the Late Triassic to the preeminent terrestrial vertebrates of the Jurassic and Cretaceous. We provide both a biological and geological background for early dinosaur history. Dinosaurs are deeply nested among the archosaurian reptiles, diagnosed by only a small number of characters, and are subdivided into a number of major lineages. The first unequivocal dinosaurs are known from the late Carnian of South America, but the presence of their sister group in the Middle Triassic implies that dinosaurs possibly originated much earlier. The three major dinosaur lineages, theropods, sauropodomorphs, and ornithischians, are all known from the Triassic, when continents were joined into the supercontinent Pangaea and global climates were hot and arid. Although many researchers have long suggested that dinosaurs outcompeted other reptile groups during the Triassic, we argue that the ascent of dinosaurs was more of a matter of contingency and opportunism. Dinosaurs were overshadowed in most Late Triassic ecosystems by crocodile-line archosaurs and

  2. The Permian-Triassic boundary & mass extinction in China

    USGS Publications Warehouse

    Metcalfe, I.; Nicoll, R.S.; Mundil, R.; Foster, C.; Glen, J.; Lyons, J.; Xiaofeng, W.; Cheng-Yuan, W.; Renne, P.R.; Black, L.; Xun, Q.; Xiaodong, M.

    2001-01-01

    The first appearance of Hindeodus parvus (Kozur & Pjatakova) at the Permian-Triassic (P-T) GSSP level (base of Bed 27c) at Meishan is here confirmed. Hindeodus changxingensis Wang occurs from Beds 26 to 29 at Meishan and appears to be restricted to the narrow boundary interval immediately above the main mass extinction level in Bed 25. It is suggested that this species is therefore a valuable P-T boundary interval index taxon. Our collections from the Shangsi section confirm that the first occurrence of Hindeodus parvus in that section is about 5 in above the highest level from which a typical Permian fauna is recovered. This may suggest that that some section may be missing at Meishan. The age of the currently defined Permian-Triassic Boundary is estimated by our own studies and a reassessment of previous worker's data at c. 253 Ma, slightly older than our IDTIMS 206Pb/238U age of 252.5 ??0.3 Ma for Bed 28, just 8 cm above the GSSP boundary (Mundil et al., 2001). The age of the main mass extinction, at the base of Bed 25 at Meishan, is estimated at slightly older than 254 Ma based on an age of >254 Ma for the Bed 25 ash. Regardless of the absolute age of the boundary, it is evident that the claimed <165,000 y short duration for the negative carbon isotope excursion at the P-T boundary (Bowring et al., 1998) cannot be confirmed. Purportedly extraterrestrial fullerenes at the boundary (Hecker et al., 2001) have equivocal significance due to their chronostratigraphic non-uniqueness and their occurrence in a volcanic ash.

  3. Provenance analysis and tectonic setting of the Triassic clastic deposits in Western Chukotka, Northeast Russia

    NASA Astrophysics Data System (ADS)

    Tuchkova, M. I.; Sokolov, S.; Kravchenko-Berezhnoy, I. R.

    2009-09-01

    The study area is part of the Anyui subterrane of the Chukotka microplate, a key element in the evolution of the Amerasia Basin, located in Western Chukotka, Northeast Russia. The subterrane contains variably deformed, folded and cleaved rhythmic Triassic terrigenous deposits which represent the youngest stage of widespread marine deposition which form three different complexes: Lower-Middle Triassic, Upper Triassic (Carnian) and Upper Triassic (Norian). All of the complexes are represented by rhythmic interbeds of sandstone, siltstone and mudstone. Macrofaunas are not numerous, and in some cases deposits are dated by analogy to, or by their relationship with, other units dated with macrofaunas. The deposits are composed of pelagic sediments, low-density flows, high-density flows, and shelf facies associations suggesting that sedimentation was controlled by deltaic progradation on a continental shelf and subsequent submarine fan sedimentation at the base of the continental slope. Petrographic study of the mineral composition indicates that the sandstones are lithic arenites. Although the Triassic sandstones appear similar in outcrop and by classification, the constituent rock fragments are of diverse lithologies, and change in composition from lower grade metamorphic rocks in the Lower-Middle Triassic to higher grade metamorphic rocks in the Upper Triassic. This change suggests that the Triassic deposits represent an unroofing sequence as the source of the clastic material came from more deeply buried rocks with time.

  4. Sodium storage in deep paleoweathering profiles beneath the Paleozoic-Triassic unconformity

    NASA Astrophysics Data System (ADS)

    Thiry, M.; Parcerisa, D.; Ricordel-Prognon, C.; Schmitt, J.-M.

    2009-04-01

    pink stage, with an increase in the amount and size of sericite and hematite inclusions. The latter causes the red coloration of the altered rocks. Regional layout Regional distribution of the alterations which affect the Carboniferous igneous and volcanic formations beneath the Jurassic sedimentary cover lead to associate these alterations to the Triassic unconformity. Besides, albitized facies show generally both topographic and regional arrangements, with more altered facies occurring in the mountain highs and in the external parts of the massifs and unaltered facies occurring in the river valleys and in the central parts of the massifs. Moreover, the haematite associated with these albitized basement rocks has been dated from Early Trias by means of paleomagnetism (Ricordel et al, 2007). From this layout and dating, it is deduced that albitization is related to the development of a deep weathering profile (up to 150 m deep) during a long-lasting exposure of the Triassic erosional unconformity (regolith). Geochemistry and paleoenvironmental setting It has to be highlighted that, this alteration may not behave like an "ordinary" weathering profile and occurred under unusual, or at least very specific, geological settings. The scale of the profiles (over 100 m depth) relates this alteration rather to a groundwater environment. The weak mobility of most chemical elements may point to a groundwater with very low outflows and deep water table. This may occur in very subdued landscape and in arid climatic conditions. It has also to be pointed that this alteration may have lasted for several 10's of Ma. Albite formation at low temperature may be envisioned consequently in alkaline, confined waters with sufficient concentrations of sodium and silica. Early attempts of modeling (Schmitt, 1994) have also indicated that a high Na+/K+ ratio is as well probably required. Petrographic data also indicate an import of sodium by the weathering solutions, without any clear enrichment

  5. Phylogenetic relationships of the triassic archaeosemionotus deecke (halecomorphi, ionoscopiformes) from the 'perledo fauna'.

    PubMed

    López-Arbarello, Adriana; Stockar, Rudolf; Bürgin, Toni

    2014-01-01

    The lagerstätten in the Monte San Giorgio have provided excellent fossils representing one of the most important windows to the marine life during the Triassic. Among these fossils, fishes are abundant and extraordinarily well preserved. Most of these fishes represent extinct lineages and were difficult to understand and classify during the early years after discovery. These difficulties usually led to a mixture of species under the same taxonomic name. This is the case of fishes referred to the genus Archaeosemionotus. The name bearing type of A. connectens, the type species of this genus, represents a basal halecomorph, but most other fishes referred to this genus represent basal ginglymodians. Therefore, we conducted this study to clarify the taxonomic status and phylogenetic relationships of A. connectens, which is a member of the family Furidae (Halecomorphi, Ionoscopiformes) representing the second cladistically supported evidence of ionoscopiforms in the Triassic and it is thus one of the two oldest reliable records of this group. Ionoscopiforms have a long stratigraphic range, though their fossil record is rather patchy. In our analysis, the sister taxon of Archaeosemionotus is Robustichthys from the Anisian of China, and they together form a clade with Furo, which is known from several localities ranging from the Early to the Late Jurassic. Other ionoscopiforms are so far known from the Kimmeridgian to the Albian and it is thus evident that recent efforts have concentrated on the later history of the group (Late Jurassic to Cretaceous). The phylogenetic relationships obtained for the Ionoscopiformes do not show a clear palaeobiogeographic pattern, but give important new insights into the origin, divergence date and early history of this clade.

  6. Evidence for prosauropod dinosaur gastroliths in the Bull Run Formation (Upper Triassic, Norian) of Virginia

    USGS Publications Warehouse

    Weems, Robert E.; Culp, Michelle J.; Wings, Oliver

    2007-01-01

    Definitive criteria for distinguishing gastroliths from sedimentary clasts are lacking for many depositional settings, and many reported occurrences of gastroliths either cannot be verified or have been refuted. We discuss four occurrences of gastrolith-like stones (category 6 exoliths) not found within skeletal remains from the Upper Triassic Bull Run Formation of northern Virginia, USA. Despite their lack of obvious skeletal association, the most parsimonious explanation for several characteristics of these stones is their prolonged residence in the gastric mills of large animals. These characteristics include 1) typical gastrolith microscopic surface texture, 2) evidence of pervasive surface wear on many of these stones that has secondarily removed variable amounts of thick weathering rinds typically found on these stones, and 3) a width/length-ratio modal peak for these stones that is more strongly developed than in any population of fluvial or fanglomerate stones of any age found in this region. When taken together, these properties of the stones can be explained most parsimoniously by animal ingestion and gastric-mill abrasion. The size of these stones indicates the animals that swallowed them were large, and the best candidate is a prosauropod dinosaur, possibly an ancestor of the Early Jurassic gastrolith-producing prosauropod Massospondylus or Ammosaurus.Skeletal evidence for Upper Triassic prosauropods is lacking in the Newark Supergroup basins; footprints (Agrestipus hottoni and Eubrontes isp.) from the Bull Run Formation in the Culpeper basin previously ascribed to prosauropods are now known to be underprints (Brachychirotherium parvum) of an aetosaur and underprints (Kayentapus minor) of a ceratosaur. The absence of prosauropod skeletal remains or footprints in all but the uppermost (upper Rhaetian) Triassic rocks of the Newark Supergroup is puzzling because prosauropod remains are abundant elsewhere in the world in Upper Triassic (Carnian

  7. Sequence stratigraphy of the Lower Triassic Sinbad Formation, San Rafael Swell, east-central, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodspeed, T.H.; Elrick, M.; Lucas, S.G.

    1993-04-01

    The Lower Triassic Sinbad Fm (20--30 m thick) in the San Rafael Swell of east-central Utah is high energy carbonate deposits that conformably overlie tidal flat/fluvial channel deposits of the Black Dragon Fm. The Torrey Fm conformably overlies the Sinbad Fm and consists primarily of siliciclastic tidal flat and fluvial deposits. Five facies (in ascending order) are characteristic of the Sinbad Fm: (1) bioturbated calcisiltite with calcite-replaced evaporite nodules and ripple laminations, (2) skeletal-oolitic-intraclastic packstone and grainstone, (3) slightly bioturbated, mechanically laminated, pelletal calcisiltite (5) trough cross-bedded, peloidal to oolitic grainstone, and (5) thin-bedded, skeletal-pelletal-oolitic grainstone with mud to wackestonemore » drapes. Regional facies relationships of the Sinbad Fm indicate initial deepening followed by shallowing. The skeletal-intraclastic packstone and grainstone facies represents maximum flooding. This facies thickens to the northwest and contains an open marine molluscan fauna of ammonites, bivalves, gastropods and scaphopods. The ammonites are indicative of the Tardus Zone of late Smithian age. Deposits above the maximum flooding zone (MFZ) are restricted foreshoal, pelletal calcisiltite, oolitic shoal, and backshoal skeletal-oolitic (with a restricted fauna of molluscs and ostracods) deposits. This shallowing-upward sequence represents the early HST. The Sinbad Fm represents the MFZ and early HST of a 150-m-thick depositional sequence of rocks with the Black Dragon FM representing the TST, and the Torrey Fm representing the late HST.« less

  8. Nitrogen isotope and trace metal analyses from the Mingolsheim core (Germany): Evidence for redox variations across the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Quan, Tracy M.; van de Schootbrugge, Bas; Field, M. Paul; Rosenthal, Yair; Falkowski, Paul G.

    2008-06-01

    The Triassic-Jurassic (T-J) boundary was one of the largest but least understood mass extinction events in the Phanerozoic. We measured bulk organic nitrogen and carbon isotopes and trace metal concentrations from a core near Mingolsheim (Germany) to infer paleoenvironmental conditions associated with this event. Poorly fossiliferous claystones across the boundary have relatively low δ15N values and low concentrations of redox-sensitive elements, characteristic of an oxic environment with significant terrestrial input. The Early Jurassic features enrichment in δ15N coincident with high redox-sensitive element concentrations, indicating an increase in water column denitrification and decreased oxygen concentrations. These redox state variations are concordant with shifts in abundance and species composition in terrestrial and marine microflora. We propose that the mass extinction at the T-J boundary was caused by a series of events resulting in a long period of stratification, deep-water hypoxia, and denitrification in this region of the Tethys Ocean basin.

  9. Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms

    NASA Astrophysics Data System (ADS)

    Baresel, Bjoern; Bucher, Hugo; Bagherpour, Borhan; Brosse, Morgane; Guodun, Kuang; Schaltegger, Urs

    2017-04-01

    High-precision U-Pb dating of single-zircon crystals by chemical abrasion-isotope dilution-thermal ionization mass spectrometry (CA-ID-TIMS) is applied to volcanic beds that are intercalated in sedimentary sequences across the Permian-Triassic boundary (PTB). By assuming that the zircon crystallization age closely approximate that of the volcanic eruption and subsequent deposition, U-Pb zircon geochronology is the preferred approach for dating abiotic and biotic events, such as the formational PTB and the Permian-Triassic boundary mass extinction (PTBME). We will present new U-Pb zircon dates for a series of volcanic ash beds in shallow-marine Permian-Triassic sections in the Nanpanjiang Basin, South China. These high-resolution U-Pb dates indicate a duration of 90 ± 38 kyr for the Permian sedimentary hiatus and a duration of 13 ± 57 kyr for the overlying Triassic microbial limestone in the shallow water settings of the Nanpanjiang pull apart Basin. The age and duration of the hiatus coincides with the formational PTB and the extinction interval in the Meishan Global Stratotype Section and Point, thus strongly supporting a glacio-eustatic regression, which best explains the genesis of the worldwide hiatus straddling the PTB in shallow water records. In adjacent deep marine troughs, rates of sediment accumulation display a six-fold decrease across the PTB compatible with a dryer and cooler climate during the Griesbachian as indicated by terrestrial plants. Our model of the PTBME hinges on the synchronicity of the hiatus with the onset of the Siberian Traps volcanism. This early eruptive phase likely released sulfur-rich volatiles into the stratosphere, thus simultaneously eliciting a short-lived ice age responsible for the global regression and a brief but intense acidification. Abrupt cooling, shrunk habitats on shelves and acidification may all have synergistically triggered the PTBME. Subsequently, the build-up of volcanic CO2 induced this transient cool

  10. The earliest mollusc dominated seep fauna from the Early Jurassic of Argentina

    NASA Astrophysics Data System (ADS)

    Kaim, Andrzej; Jenkins, Robert; Parent, Horacio; Garrido, Alberto; Moriya, Kazuhiro

    2015-04-01

    The earliest mollusc dominated seep fauna from the Early Jurassic of Argentina Andrzej Kaim, Robert G. Jenkins, Horacio Parent, Alberto C. Garrido The hydrocarbon seep deposits are known from Early Jurassic of Argentina since the report of Gomez-Perez (2003). The latter author identified very negative δ13C values (down to -33) and several fabrics typical for seep carbonates. Nevertheless she identified no macrofaunal assemblages apart from worm tubes. We re-visited the locality of Gomez-Perez (named here La Elina) and we were able to collect several molluscs associated with the seep carbonate. The most common and diversified are molluscs and worm tubes. We identified at least three species of gastropods, including the oldest-known species of neomphalids, lucinid and protobranch bivalves and numerous ammonoids. Unlike another known Early Jurassic seep from Oregon and the only Late Triassic seep (also from Oregon) there are no brachiopods associated with this seep. Therefore we consider the seep at La Elina as the oldest seep of modern aspect where the fauna is dominated by molluscs and not brachiopods.

  11. Position of the Triassic-Jurassic boundary and timing of the end-Triassic extinctions on land: Data from the Moenave Formation on the southern Colorado Plateau, USA

    USGS Publications Warehouse

    Lucas, S.G.; Tanner, L.H.; Donohoo-Hurley, L.; Geissman, J.W.; Kozur, H.W.; Heckert, A.B.; Weems, R.E.

    2011-01-01

    Strata of the Moenave Formation on and adjacent to the southern Colorado Plateau in Utah-Arizona, U.S.A., represent one of the best known and most stratigraphically continuous, complete and fossiliferous terrestrial sections across the Triassic-Jurassic boundary. We present a synthesis of new biostratigraphic and magnetostratigraphic data collected from across the Moenave Formation outcrop belt, which extends from the St. George area in southwestern Utah to the Tuba City area in northern Arizona. These data include palynomorphs, conchostracans and vertebrate fossils (including footprints) and a composite polarity record based on four overlapping magnetostratigraphic sections. Placement of the Triassic-Jurassic boundary in strata of the Moenave Formation has long been imprecise and debatable, but these new data (especially the conchostracans) allow us to place the Triassic-Jurassic boundary relatively precisely in the middle part of the Whitmore Point Member of the Moenave Formation, stratigraphically well above the highest occurrence of crurotarsan body fossils or footprints. Correlation to marine sections based on this placement indicates that major terrestrial vertebrate extinctions preceded marine extinctions across the Triassic-Jurassic boundary and therefore were likely unrelated to the Central Atlantic Magmatic Province (CAMP) volcanism. ?? 2011 Elsevier B.V.

  12. U-Pb Geochronology of non-marine Upper Triassic strata of the Colorado Plateau (western North America): implications for stratigraphic correlation and paleoenvironmental reconstruction

    NASA Astrophysics Data System (ADS)

    Rasmussen, C.; Mundil, R.; Irmis, R. B.; Keller, C. B.; Giesler, D.; Gehrels, G. E.

    2017-12-01

    The Triassic is a critical period in Earth history that witnessed the origin of modern ecosystems and frequent climate fluctuations, as well as major environmental events such as flood basalt volcanism and bolide impacts. The Chinle Formation contains a primary non-marine archive for past ecosystems in North America due to its fossil richness and well-studied sedimentology. Moreover, within these highly fossiliferous strata, a biotic turnover has been reported that has been hypothesized to coincide with one or more of the aforementioned environmental events. Unfortunately, few radioisotopic ages have been published for the Late Triassic, limiting our ability for lithological and paleoenvironmental correlations. In addition, the superposition of the Chinle Formation remains illusive due to frequent lateral facies changes and discontinuous outcrops across the Colorado Plateau. The 520 m long core 1A of the Colorado Plateau Coring Project from Petrified Forest National Park (PFNP) (Arizona) provides, for the first time, a continuous section of these early Mesozoic sedimentary strata. Many of the sand- and siltstones from this continuous succession throughout most of the Upper Triassic Chinle Formation contain euhedral zircons suitable for U-Pb analyses. We analyzed >300 crystals each from 10 samples using LA-ICPMS; these results indicated abundant Late Triassic crystals that appear to be closely associated with the depositional age of the host rock. We then selected the youngest grains from these samples to obtain precise CA-TIMS U-Pb single zircon ages in order to constrain the maximum depositional ages (using quantitative methods) of these formations. We are able to revise the proposed time scale (based on outcrop samples) for Upper Triassic strata at PFNP and evaluate whether the biotic turnover observed within the Sonsela Member of these strata coincides with the Manicouagan bolide impact event. This revised chronostratigraphic framework allows intercalibration

  13. Paleomagnetism of the Late Triassic Hound Island Volcanics: Revisited

    USGS Publications Warehouse

    Haeussler, Peter J.; Coe, Robert S.; Onstott, T.C.

    1992-01-01

    The collision and accretion of the Alexander terrane profoundly influenced the geologic history of Alaska and western Canada; however, the terrane's displacement history is only poorly constrained by sparse paleomagnetic studies. We studied the paleomagnetism of the Hound Island Volcanics in order to evaluate the location of the Alexander terrane in Late Triassic time. We collected 618 samples at 102 sites in and near the Keku Strait, Alaska, from the Late Triassic Hound Island Volcanics, the Permian Pybus Formation, and 23-Ma gabbroic intrusions. We found three components of magnetization in the Hound Island Volcanics. The high-temperature component (component A) resides in hematite and magnetite and was found only in highly oxidized lava flows in a geographically restricted area. We think it is primary, or acquired soon after eruption of the lavas, principally because the directions pass a fold test. The paleolatitude indicated by this component (19.2° ± 10.3°) is similar to those determined for various portions of Wrangellia, consistent with the geologic interpretation that the Alexander terrane was with the Wrangellia terrane in Late Triassic time. We found two overprint directions in the Hound Island Volcanics. Component B was acquired 23 m.y. ago due to intrusion of gabbroic dikes and sills. This interpretation is indicated by the similarity of upper-hemisphere directions in the Hound Island Volcanics to those in the gabbro. Component C, found in both the Hound Island Volcanics and the Permian Pybus Formation, is oriented northeast and down, fails a regional fold test, and was acquired after regional deformation around 90 to 100 Ma. This overprint direction yields a paleolatitude similar to, but slightly higher than, slightly older rocks from the Coast Plutonic Complex, suggesting that the Alexander terrane was displaced 17° in early Late Cretaceous time. The occurrence of these two separate overprinting events provides a satisfying explanation of the

  14. An organic record of terrestrial ecosystem collapse and recovery at the Triassic-Jurassic boundary in East Greenland

    NASA Astrophysics Data System (ADS)

    Williford, Kenneth H.; Grice, Kliti; Holman, Alexander; McElwain, Jennifer C.

    2014-02-01

    Terrestrial ecosystem collapse at the end of the Triassic Period coincided with a major mass extinction in the marine realm and has been linked to increasing atmospheric carbon dioxide, global warming, and fire activity. Extractable hydrocarbons in samples from the fluvial Triassic-Jurassic boundary section at Astartekløft, East Greenland were analyzed to investigate the molecular and isotopic organic record of biotic and environmental change during this event. Carbon isotopic compositions of individual plant wax lipids show a >4‰ negative excursion coinciding with peak extinction and a further decrease of 2‰ coinciding with peak pCO2 as estimated from the stomatal indices of fossil Gingkoales. An increase of ˜30‰ in the hydrogen isotopic compositions of the same plant wax lipids coincides with ecosystem collapse, suggesting that the biotic crisis was accompanied by strong hydrologic change. Concentrations of polycyclic aromatic hydrocarbons related to combustion also increase together with abrupt plant diversity loss and peak with fossil charcoal abundance and maximum plant turnover, supporting the role of fire in terrestrial extinctions. Anomalously high concentrations of a monoaromatic diterpenoid related to gymnosperm resin derivatives (and similar to dehydroabietane) occur uniquely in samples from the boundary bed, indicating that environmental stress factors leading to peak plant extinction stimulated increased resin production, and that plant resin derivatives may be effective biomarkers of terrestrial ecosystem stress.

  15. Eccentricity and obliquity paced carbon cycling in the Early Triassic and implications for post-extinction ecosystem recovery

    PubMed Central

    Fu, Wanlu; Jiang, Da-yong; Montañez, Isabel P.; Meyers, Stephen R.; Motani, Ryosuke; Tintori, Andrea

    2016-01-01

    The timing of marine ecosystem recovery following the End Permian Mass Extinction (EPME) remains poorly constrained given the lack of radiometric ages. Here we develop a high-resolution carbonate carbon isotope (δ13Ccarb) record for 3.20 million years of the Olenekian in South China that defines the astronomical time-scale for the critical interval of major evolutionary and oceanic events in the Spathian. δ13Ccarb documents eccentricity modulation of carbon cycling through the period and a strong obliquity signal. A shift in phasing between short and long eccentricity modulation, and amplification of obliquity, is nearly coincident with a 2% decrease in seawater δ13CDIC, the last of a longer-term stepped decrease through the Spathian. The mid-Spathian shift in seawater δ13CDIC to typical thermocline values is interpreted to record a major oceanic reorganization with global climate amelioration. Coincidence of the phasing shift with the first occurrence of marine reptiles (248.81 Ma), suggests that their invasion into the sea and the onset of a complex ecosystem were facilitated by restoration of deep ocean ventilation linked mechanistically to a change in the response of the oceanic carbon reservoir to astronomical forcing. Together these records place the first constraints on the duration of the post-extinction recovery to 3.35 myr. PMID:27292969

  16. Eccentricity and obliquity paced carbon cycling in the Early Triassic and implications for post-extinction ecosystem recovery.

    PubMed

    Fu, Wanlu; Jiang, Da-Yong; Montañez, Isabel P; Meyers, Stephen R; Motani, Ryosuke; Tintori, Andrea

    2016-06-13

    The timing of marine ecosystem recovery following the End Permian Mass Extinction (EPME) remains poorly constrained given the lack of radiometric ages. Here we develop a high-resolution carbonate carbon isotope (δ(13)Ccarb) record for 3.20 million years of the Olenekian in South China that defines the astronomical time-scale for the critical interval of major evolutionary and oceanic events in the Spathian. δ(13)Ccarb documents eccentricity modulation of carbon cycling through the period and a strong obliquity signal. A shift in phasing between short and long eccentricity modulation, and amplification of obliquity, is nearly coincident with a 2% decrease in seawater δ(13)CDIC, the last of a longer-term stepped decrease through the Spathian. The mid-Spathian shift in seawater δ(13)CDIC to typical thermocline values is interpreted to record a major oceanic reorganization with global climate amelioration. Coincidence of the phasing shift with the first occurrence of marine reptiles (248.81 Ma), suggests that their invasion into the sea and the onset of a complex ecosystem were facilitated by restoration of deep ocean ventilation linked mechanistically to a change in the response of the oceanic carbon reservoir to astronomical forcing. Together these records place the first constraints on the duration of the post-extinction recovery to 3.35 myr.

  17. Eccentricity and obliquity paced carbon cycling in the Early Triassic and implications for post-extinction ecosystem recovery

    NASA Astrophysics Data System (ADS)

    Fu, Wanlu; Jiang, Da-Yong; Montañez, Isabel P.; Meyers, Stephen R.; Motani, Ryosuke; Tintori, Andrea

    2016-06-01

    The timing of marine ecosystem recovery following the End Permian Mass Extinction (EPME) remains poorly constrained given the lack of radiometric ages. Here we develop a high-resolution carbonate carbon isotope (δ13Ccarb) record for 3.20 million years of the Olenekian in South China that defines the astronomical time-scale for the critical interval of major evolutionary and oceanic events in the Spathian. δ13Ccarb documents eccentricity modulation of carbon cycling through the period and a strong obliquity signal. A shift in phasing between short and long eccentricity modulation, and amplification of obliquity, is nearly coincident with a 2% decrease in seawater δ13CDIC, the last of a longer-term stepped decrease through the Spathian. The mid-Spathian shift in seawater δ13CDIC to typical thermocline values is interpreted to record a major oceanic reorganization with global climate amelioration. Coincidence of the phasing shift with the first occurrence of marine reptiles (248.81 Ma), suggests that their invasion into the sea and the onset of a complex ecosystem were facilitated by restoration of deep ocean ventilation linked mechanistically to a change in the response of the oceanic carbon reservoir to astronomical forcing. Together these records place the first constraints on the duration of the post-extinction recovery to 3.35 myr.

  18. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction.

    PubMed

    Zhang, Feifei; Romaniello, Stephen J; Algeo, Thomas J; Lau, Kimberly V; Clapham, Matthew E; Richoz, Sylvain; Herrmann, Achim D; Smith, Harrison; Horacek, Micha; Anbar, Ariel D

    2018-04-01

    Explaining the ~5-million-year delay in marine biotic recovery following the latest Permian mass extinction, the largest biotic crisis of the Phanerozoic, is a fundamental challenge for both geological and biological sciences. Ocean redox perturbations may have played a critical role in this delayed recovery. However, the lack of quantitative constraints on the details of Early Triassic oceanic anoxia (for example, time, duration, and extent) leaves the links between oceanic conditions and the delayed biotic recovery ambiguous. We report high-resolution U-isotope (δ 238 U) data from carbonates of the uppermost Permian to lowermost Middle Triassic Zal section (Iran) to characterize the timing and global extent of ocean redox variation during the Early Triassic. Our δ 238 U record reveals multiple negative shifts during the Early Triassic. Isotope mass-balance modeling suggests that the global area of anoxic seafloor expanded substantially in the Early Triassic, peaking during the latest Permian to mid-Griesbachian, the late Griesbachian to mid-Dienerian, the Smithian-Spathian transition, and the Early/Middle Triassic transition. Comparisons of the U-, C-, and Sr-isotope records with a modeled seawater PO 4 3- concentration curve for the Early Triassic suggest that elevated marine productivity and enhanced oceanic stratification were likely the immediate causes of expanded oceanic anoxia. The patterns of redox variation documented by the U-isotope record show a good first-order correspondence to peaks in ammonoid extinctions during the Early Triassic. Our results indicate that multiple oscillations in oceanic anoxia modulated the recovery of marine ecosystems following the latest Permian mass extinction.

  19. Phylogenetic Relationships of the Triassic Archaeosemionotus Deecke (Halecomorphi, Ionoscopiformes) from the ‘Perledo Fauna’

    PubMed Central

    López-Arbarello, Adriana; Stockar, Rudolf; Bürgin, Toni

    2014-01-01

    The lagerstätten in the Monte San Giorgio have provided excellent fossils representing one of the most important windows to the marine life during the Triassic. Among these fossils, fishes are abundant and extraordinarily well preserved. Most of these fishes represent extinct lineages and were difficult to understand and classify during the early years after discovery. These difficulties usually led to a mixture of species under the same taxonomic name. This is the case of fishes referred to the genus Archaeosemionotus. The name bearing type of A. connectens, the type species of this genus, represents a basal halecomorph, but most other fishes referred to this genus represent basal ginglymodians. Therefore, we conducted this study to clarify the taxonomic status and phylogenetic relationships of A. connectens, which is a member of the family Furidae (Halecomorphi, Ionoscopiformes) representing the second cladistically supported evidence of ionoscopiforms in the Triassic and it is thus one of the two oldest reliable records of this group. Ionoscopiforms have a long stratigraphic range, though their fossil record is rather patchy. In our analysis, the sister taxon of Archaeosemionotus is Robustichthys from the Anisian of China, and they together form a clade with Furo, which is known from several localities ranging from the Early to the Late Jurassic. Other ionoscopiforms are so far known from the Kimmeridgian to the Albian and it is thus evident that recent efforts have concentrated on the later history of the group (Late Jurassic to Cretaceous). The phylogenetic relationships obtained for the Ionoscopiformes do not show a clear palaeobiogeographic pattern, but give important new insights into the origin, divergence date and early history of this clade. PMID:25296174

  20. A chronostratigraphic assessment of the Moenave Formation, USA using C-isotope chemostratigraphy and detrital zircon geochronology: Implications for the terrestrial end Triassic extinction

    NASA Astrophysics Data System (ADS)

    Suarez, Celina A.; Knobbe, Todd K.; Crowley, James L.; Kirkland, James I.; Milner, Andrew R. C.

    2017-10-01

    The Late Triassic is a period of abrupt climate change associated with a disruption to the global carbon cycle usually ascribed to the emplacement of the Central Atlantic Magmatic Province (CAMP). Geochronologic, paleontologic, and geochemical studies have shown that the CAMP was likely the major factor for the end-Triassic extinction (ETE), however, difficulties correlating and dating terrestrial strata has left the nature of the terrestrial extinction in question. The lacustrine Whitmore Point Member (WPM) of the Moenave Formation is ideal for investigating these details because it is reported to be Late Triassic to Early Jurassic. However, currently there are conflicting age constraints between biostratigraphy and magnetostratigraphy. In this study we attempt to elucidate the ETE by incorporating C-isotope chemostratigraphy and detrital zircon geochronology. Detrital zircon geochronology suggests the upper part of the Dinosaur Canyon Member (DCM) is younger (201.33 ± 0.07/0.12/0.25 Ma) than the ETE (201.564 Ma) suggesting the ETE is in the middle to lower DCM, in agreement with track biostratigraphy (first occurrence of Eubrontes, Anomoepus, and Batrachopus). Meanwhile a distinct negative carbon isotope (NCIE) excursion (-5.5‰) occurs at the base of the WPM at Potter Canyon, AZ with a more subtle NCIE at the base of the WPM at Black Canyon, UT (-2.0‰) that may correlate to the initial NCIE at the ETE. However, the WPM NCIE is correlated to the preservation of organic C (relative %C) suggesting it may be either related to local lake productivity and biases in organic matter preservation or may be a negative CIE in the Jurassic Hettangian stage. With the addition of the detrital zircon data, we suggest the M2r reversal at the base of the WPM is a reversal in the Hettangian (the H24r, H25r, or H26r) and the ETE is within the DCM. Additional C-isotope analysis of the DCM is necessary to determine if the initial NCIE that is the hallmark of the ETE occurs in

  1. The terminal Permian in European Russia: Vyaznikovian Horizon, Nedubrovo Member, and Permian-Triassic boundary

    NASA Astrophysics Data System (ADS)

    Lozovsky, V. R.; Balabanov, Yu. P.; Karasev, E. V.; Novikov, I. V.; Ponomarenko, A. G.; Yaroshenko, O. P.

    2016-07-01

    The comprehensive analysis of the data obtained on terrestrial vertebrata, ostracods, entomologic fauna, megaflora, and microflora in deposits of the Vyaznikovian Horizon and Nedubrovo Member, as well as the paleomagnetic data measured in enclosing rocks, confirms heterogeneity of these deposits. Accordingly, it is necessary to distinguish these two stratons in the terminal Permian of the East European Platform. The combined sequence of Triassic-Permian boundary deposits in the Moscow Syneclise, which is considered to be the most complete sequence in the East European Platform, is as follows (from bottom upward): Vyatkian deposits; Vyaznikovian Horizon, including Sokovka and Zhukovo members; Nedubrovo Member (Upper Permian); Astashikha and Ryabi members of the Vokhmian Horizon (Lower Triassic). None of the sequences of Permian-Triassic boundary deposits known in the area of study characterizes this sequence in full volume. In the north, the Triassic deposits are underlain by the Nedubrovo Member; in the south (the Klyazma River basin), the sections are underlain by the Vyaznikovian Horizon. The Permian-Triassic boundary adopted in the General Stratigraphic Scale of Russia for continental deposits of the East European platform (the lower boundary of the Astashikha Member) is more ancient than the one adopted in the International Stratigraphic Chart. The same geological situation is observed in the German Basin and other localities where Triassic continental deposits are developed. The ways of solving this problem are discussed in this article.

  2. The Triassic upwelling system of Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Yurchenko, I.; Graham, S. A.

    2017-12-01

    The Middle to Upper Triassic Shublik Formation of Arctic Alaska is a laterally and vertically heterogeneous rock unit that has been analyzed both in outcrop and in the subsurface. The Shublik Formation sediments are distinguished by a characteristic set of lithologies that include glauconitic, phosphatic, organic-rich, and cherty facies consistent with a coastal upwelling zone deposition interpretation. It is often recognized by abundance of impressions and shells of distinctive Triassic bivalves. To understand main controls on lithofacies distributions, this study reviews and refines lithologic and paleoenvironmental interpretations of the Shublik Formation, and incorporates the newly acquired detailed geochemical analyses of two complete Shublik cores. This work focuses on organic geochemistry (analyses of biomarkers and diamondoids), chemostratigraphy (hand-held XRF), and iron speciation analysis to reconstruct paleoproductivity and redox conditions. Based on the available evidence, during Shublik deposition, an upwelling-influenced open shelf resulted in high nutrient supply that stimulated algal blooms leading to high net organic productivity, reduced water transparency, oxygen deficiency, and water column stratification. Evidence of such eutrophic conditions is indicated by the lack of photic benthic organisms, bioturbation and trace fossils, and dominance of the monospecific light-independent epibenthic bivalves. The flat, subcircular, thin shells of these carbonate-secreting organisms allowed them to adapt to dysoxic conditions, and float on soft, soupy, muddy substrate. The distinctive clay- and organic-rich facies with abundant bivalves occurred on the mid to outer stable broad shelf, and were deposited when organic productivity at times overlapped with periods of increased siliciclastic input controlled by sea level and changes in local sediment dispersal systems, and therefore are more spatially and temporally localized than the widespread clay

  3. Body Size Evolution in Conodonts from the Cambrian through the Triassic

    NASA Astrophysics Data System (ADS)

    Schaal, E. K.; Morgan, D. J.; Payne, J.

    2013-12-01

    The size of an organism exercises tremendous control over its physiology, life history, and ecology, yet the factors that influence body size evolution remain poorly understood. One major limitation is the lack of appropriate datasets spanning long intervals of evolutionary time. Here, we document size trends in conodonts (tooth-like microfossils from marine chordates) because they evolved rapidly and are known to change size during intervals of environmental change. By measuring photographs from the Catalogue of Conodonts (Ziegler 1982), we compiled a database of conodont P1 element measurements for 575 species and subspecies from the Cambrian through Triassic periods. Because tooth size correlates with body size in conodont animals and their extant relatives, conodont element length can serve as a proxy for the size of the conodont animal. We find that mean and maximum size across species increased during the early Paleozoic, peaked during the Devonian-Mississippian, and then generally decreased until conodonts went extinct at the end of the Triassic. We used regression analyses to compare conodont mean size trends to potential environmental predictors, such as changing atmospheric pO2, atmospheric pCO2, and sea level. Conodont size exhibited poor correlation with these environmental factors, suggesting that conodont evolution may have been more strongly influenced by other environmental covariates or ecological variables such as predation and competition.

  4. Provenance of upper Triassic sandstone, southwest Iberia (Alentejo and Algarve basins): tracing variability in the sources

    NASA Astrophysics Data System (ADS)

    Pereira, M. F.; Ribeiro, C.; Gama, C.; Drost, K.; Chichorro, M.; Vilallonga, F.; Hofmann, M.; Linnemann, U.

    2017-01-01

    Laser ablation ICP-MS U-Pb analyses have been conducted on detrital zircon of Upper Triassic sandstone from the Alentejo and Algarve basins in southwest Iberia. The predominance of Neoproterozoic, Devonian, Paleoproterozoic and Carboniferous detrital zircon ages confirms previous studies that indicate the locus of the sediment source of the late Triassic Alentejo Basin in the pre-Mesozoic basement of the South Portuguese and Ossa-Morena zones. Suitable sources for the Upper Triassic Algarve sandstone are the Upper Devonian-Lower Carboniferous of the South Portuguese Zone (Phyllite-Quartzite and Tercenas formations) and the Meguma Terrane (present-day in Nova Scotia). Spatial variations of the sediment sources of both Upper Triassic basins suggest a more complex history of drainage than previously documented involving other source rocks located outside present-day Iberia. The two Triassic basins were isolated from each other with the detrital transport being controlled by two independent drainage systems. This study is important for the reconstruction of the late Triassic paleogeography in a place where, later, the opening of the Central Atlantic Ocean took place separating Europe from North America.

  5. A Triassic aquatic protorosaur with an extremely long neck.

    PubMed

    Li, Chun; Rieppel, Olivier; LaBarbera, Michael C

    2004-09-24

    By Middle Triassic time, a number of reptile lineages had diversified in shallow epicontinental seas and intraplatform basins along the margins of parts of Pangea, including the giraffe-necked protorosaurid reptile Tanystropheus from the Western Tethys (Europe and the Middle East), which grew to approximately 5 to 6 m long. Here we report another long-necked fossil, Dinocephalosaurus, from southwestern China, recently collected in Middle Triassic marine deposits approximately 230 million years old. This taxon represents unambiguous evidence for a fully aquatic protorosaur. Its extremely elongated neck is explained as an adaptation for aquatic life, perhaps for an increase in feeding efficiency.

  6. Distal facies variability within the Upper Triassic part of the Otuk Formation in northern Alaska

    USGS Publications Warehouse

    Whidden, Katherine J.; Dumoulin, Julie A.; Whalen, M.T.; Hutton, E.; Moore, Thomas; Gaswirth, Stephanie

    2014-01-01

    The Triassic-Jurassic Otuk Formation is a potentially important source rock in allochthonous structural positions in the northern foothills of the Brooks Range in the North Slope of Alaska. This study focuses on three localities of the Upper Triassic (Norian) limestone member, which form a present-day, 110-km-long, east-west transect in the central Brooks Range. All three sections are within the structurally lowest Endicott Mountain allochthon and are interpreted to have been deposited along a marine outer shelf with a ramp geometry.The uppermost limestone member of the Otuk was chosen for this study in order to better understand lateral and vertical variability within carbonate source rocks, to aid prediction of organic richness, and ultimately, to evaluate the potential for these units to act as continuous (or unconventional) reservoirs. At each locality, 1 to 4 m sections of the limestone member were measured and sampled in detail to capture fine-scale features. Hand sample and thin section descriptions reveal four major microfacies in the study area, and one diagenetically recrystallized microfacies. Microfacies 1 and 2 are interpreted to represent redeposition of material by downslope transport, whereas microfacies 3 and 4 have high total organic carbon (TOC) values and are classified as primary depositional organofacies. Microfacies 3 is interpreted to have been deposited under primarily high productivity conditions, with high concentrations of radiolarian tests. Microfacies 4 was deposited under the lowest relative-oxygen conditions, but abundant thin bivalve shells indicate that the sediment-water interface was probably not anoxic.The Otuk Formation is interpreted to have been deposited outboard of a southwest-facing ramp margin, with the location of the three limestone outcrops likely in relatively close proximity during deposition. All three sections have evidence of transported material, implying that the Triassic Alaskan Basin was not a low-energy, deep

  7. Osmium isotope evidence for a large Late Triassic impact event

    PubMed Central

    Sato, Honami; Onoue, Tetsuji; Nozaki, Tatsuo; Suzuki, Katsuhiko

    2013-01-01

    Anomalously high platinum group element concentrations have previously been reported for Upper Triassic deep-sea sediments, which are interpreted to be derived from an extraterrestrial impact event. Here we report the osmium (Os) isotope fingerprint of an extraterrestrial impact from Upper Triassic chert successions in Japan. Os isotope data exhibit a marked negative excursion from an initial Os isotope ratio (187Os/188Osi) of ∼0.477 to unradiogenic values of ∼0.126 in a platinum group element-enriched claystone layer, indicating the input of meteorite-derived Os into the sediments. The timing of the Os isotope excursion coincides with both elevated Os concentrations and low Re/Os ratios. The magnitude of this negative Os isotope excursion is comparable to those found at Cretaceous–Paleogene boundary sites. These geochemical lines of evidence demonstrate that a large impactor (3.3–7.8 km in diameter) produced a global decrease in seawater 187Os/188Os ratios in the Late Triassic. PMID:24036603

  8. Formation of complex fibrous calcite veins in Upper Triassic strata of Wrangellia Terrain, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Al-Aasm, I. S.; Coniglio, M.; Desrochers, A.

    1995-12-01

    Fibrous calcite veins are ubiquitous throughout the thinly bedded, organic-rich Upper Triassic marine mdrocks of the Queen Charlotte Islands and their lateral equivalents on Vancouver Island. These veins show variable and complex morphologies and can be grouped into several types: (a) simple; (b) anastomosing or composite; (c) boxwork; and (4) polygonal network oriented normal to bedding. Field, petrographic, and geochemical evidence suggest that vein opening, resulting from hydraulic fracturing due to elevated pore-fluid pressures, was an early phenomenon and occurred prior to significant compaction of the host sediments. Calcite fibers in the veins are up to 30 mm long and commonly oriented perpendicular to the wall but locally display conical structures. Fibrous calcites, with the exception of those in boxwork veins, are generally non-ferroan and dull to very weakly orange luminescent. The boxwork calcites are ferroan, zoned and show dull luminescence with some bright rims. δ18O values range from -8.2 to -21.6‰ (PDB) and δ13C values range from 2.0 to -4.4‰ (PDB). Although some variations are present among the different morphological types of calcite veins, oxygen and carbon isotopic values display important variations when compared geographically. The most depleted oxygen and carbon isotopic values are those of boxwork calcite and they are associated with areas where the effects of early Mesozoic plutonism were most severe. Precipitation of boxwork fibrous calcites is interpreted to have been related to hydrothermal discharge into unconsolidated host sediment, rather than to later burial. Although the hydrothermal influence on the formation of vein calcite is related to geological events specific to the Wrangellia Terrain, this study provides an alternative mechanism for the generation of fibrous calcite veins and demonstrates the local importance of hydrothermal input in the evolution of pore-water chemistry.

  9. Astronomical tuning and magnetostratigraphy of the Upper Triassic Xujiahe Formation of South China and Newark Supergroup of North America: Implications for the Late Triassic time scale

    NASA Astrophysics Data System (ADS)

    Li, Mingsong; Zhang, Yang; Huang, Chunju; Ogg, James; Hinnov, Linda; Wang, Yongdong; Zou, Zhuoyan; Li, Liqin

    2017-10-01

    The time scale of the Late Triassic Epoch has a divergence of age models, especially for the durations of competing definitions for its Rhaetian Stage (uppermost Triassic). The astrochronology derived from relative depth of lacustrine-bearing clastic successions and astronomically tuned geomagnetic polarity time scale (APTS) of the Newark Supergroup of eastern North America provides a basis for the Late Triassic time scale. However, the Newark APTS has been challenged regarding its age scale and completeness; therefore an independent astronomical-tuned magnetic polarity zonation is required to verify the upper Newark APTS reference scale. We compiled a 6.5 million year (myr) APTS with magnetic stratigraphy from four sections of the lacustrine-fluvial, dinosaur-track-bearing Xujiahe Formation in the Sichuan Basin of South China that also has dating from detrital zircons and regional biostratigraphy. Variations in natural gamma-ray and magnetic susceptibility that reflect variable continental weathering in the source regions of the Xujiahe Formation are paced by Milankovitch cycles, especially the 100-kyr short eccentricity and 405-kyr long eccentricity. The cycle-tuned magnetostratigraphy of the Xujiahe Formation is compared directly via the magnetic-polarity zones to the depth ranks of the Newark Supergroup that are indicative of relative depths of lacustrine facies. The Sichuan APTS indicates that there is no significant hiatus between the sedimentary succession and the basalt flows at the top of the Newark Supergroup. The Sichuan APTS is compatible with the magnetostratigraphy from the candidate Global Boundary Stratotype Section and Point (GSSP) for the Norian-Rhaetian boundary interval at the Pignola-Abriola of South Italy, but does not extend downward to the proposed GSSP in Austria associated with the longer Rhaetian option. The earliest dinosaur tracks in China are from the middle of this Xujiahe Formation, therefore are implied to be middle Rhaetian in age

  10. Revision of the Dysmorphoptilidae (Hemiptera: Cicadomorpha: Prosboloidea) of the Queensland Triassic-Part 2.

    PubMed

    Lambkin, Kevin J

    2016-03-15

    The extinct hemipteran family Dysmorphoptilidae was a major component of the Triassic insect fauna of Queensland preserved at the Denmark Hill, Dinmore, Mount Crosby and Gayndah fossil insect sites. A total of 13 species have now been identified, of which eight species in five genera were examined in the first part of this revision. This second part revises the remaining five species in three genera. Eoscartoides Evans, 1956 (= Mesonirvana Evans, 1956, syn. nov.), comprising Eoscartoides bryani Evans, 1956 (= Mesonirvana abrupta Evans, 1956, syn. nov.) (Mount Crosby), Eoscartoides orthocladus (Tillyard, 1922) comb. nov. (Denmark Hill), and Eoscartoides dmitryi sp. nov. (Dinmore), is distinguished by a strongly developed arc-like strigil in the basal costal space, a very short stem of RA, and a deeply forked M1+2. The monotypic Eoscarterella Evans, 1956, with type species Eoscarterella media Evans, 1956 (Mount Crosby), has a strongly lobate tegmen with peculiar surface sculpture and M1+2 simple. Eoscartoides and Eoscarterella differ from most dysmorphoptilids in having more or less lobate tegmina with even margins (without the antero-apical emargination so typical of the family), as well as the early entry of RA1 into the costal margin and the associated extensive and antero-apically positioned RA2. These characters are also shared with two other dysmorphoptilids, the Australian Permian Belmontocarta Evans and an unnamed Triassic species from Kyrgyzstan, and the four thus form a distinct subgroup within the family. On the other hand, the monotypic Trifidella Evans, 1956 (= Alotrifidus Evans, 1956, syn. nov.), with type species Trifidella perfecta Evans, 1956 (= Alotrifidus interruptus Evans, 1956, syn. nov.) (Mount Crosby), is a more typical dysmorphoptilid with a distinct emargination, RA entering the margin much more apically, and RA2 of limited extent. Trifidella is presumably the sister of the Queensland Triassic Dysmorphoptiloides Evans, sharing the basal

  11. A new Late Triassic age for the Puesto Viejo Group (San Rafael depocenter, Argentina): SHRIMP U-Pb zircon dating and biostratigraphic correlations across southern Gondwana

    NASA Astrophysics Data System (ADS)

    Ottone, Eduardo G.; Monti, Mariana; Marsicano, Claudia A.; de la Fuente, Marcelo S.; Naipauer, Maximiliano; Armstrong, Richard; Mancuso, Adriana C.

    2014-12-01

    The Puesto Viejo Group crops out in the San Rafael Block, southwest Mendoza, at approximately 35° S and 68°20‧ W. It consists of the basal mainly grayish Quebrada de los Fósiles Formation (QF) overlying by the reddish Río Seco de la Quebrada Formation (RSQ). The basal unit includes both plant remains (pleuromeians and sphenopsids) and vertebrates (scattered fish scales, dicynodont synapsids and remains of an archosauriform). In contrast, the RSQ beds have yielded only tetrapods, although a more diverse fauna. The latter includes cynodonts as Cynognathus, Pascualognathus and Diademodon, and also dicynodonts (Vinceria and Kannemeyeria). Based on the assemblage of tetrapod taxa the bearing levels were correlated to the Cynognathus AZ of South Africa and thus referred to the Middle Triassic (Anisian). We obtained a SHRIMP 238U/206Pb age of 235.8 ± 2.0 Ma from a rhyolitic ignimbrite interdigitated between the QF and RSQ formations at the Quebrada de los Fósiles section. This new radiometric date for the Puesto Viejo Group suggests that the tetrapod fauna in the RSQ beds existed, instead, during the Late Triassic (early Carnian) some 10 Ma later than the currently accepted age. Two scenarios might explain our results: first, the Cynognathus AZ of South Africa is wrongly assigned to the lower Middle Triassic (Anisan) and should be considered younger in age, Late Triassic (Carnian); second, the relative age of the Cynognathus AZ of South Africa is correct but the inferred range of Cynognathus and Diademodon is incorrect as they were present during the Late Triassic (Carnian) at least in South America. In any case, this new date pose serious doubts about the validity of biostratigraphic correlations based solely on tetrapod taxa, a common practice for Triassic continental successions across Gondwana.

  12. The end-triassic mass extinction event

    NASA Technical Reports Server (NTRS)

    Hallam, A.

    1988-01-01

    The end-Triassic is the least studied of the five major episodes of mass extinction recognized in the Phanerozoic, and the Triassic-Jurassic boundary is not precisely defined in most parts of the world, with a paucity of good marine sections and an insufficiency of biostratigraphically valuable fossils. Despite these limitations it is clear that there was a significant episode of mass extinction, affecting many groups, in the Late Norian and the existing facts are consistent with it having taken place at the very end of the period. The best record globally comes from marine strata. There was an almost complete turnover of ammonites across the T-J boundary, with perhaps no more than one genus surviving. About half the bivalve genera and most of the species went extinct, as did many archaeogastropods. Many Paleozoic-dominant brachiopods also disappeared, as did the last of the conodonts. There was a major collapse and disappearance of the Alpine calcareous sponge. Among terrestrial biota, a significant extinction event involving tetrapods was recognized. With regard to possible environmental events that may be postulated to account for the extinctions, there is no evidence of any significant global change of climate at this time. The existence of the large Manicouagan crater in Quebec, dated as about late or end-Triassic, has led to the suggestion that an impact event might be implicated, but so far despite intensive search no unequivocal iridium anomaly or shocked quartz was discovered. On the other hand there is strong evidence for significant marine regression in many parts of the world. It is proposed therefore that the likeliest cause of the marine extinctions is severe reduction in habitat area caused either by regression of epicontinental seas, subsequent widespread anoxia during the succeeding transgression, or a combination of the two.

  13. Evolutionary and Ecological Sequelae of Mass Extinctions: Examples From the Continental Triassic-Jurassic Boundary

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Whiteside, J. H.

    2003-12-01

    after the boundary. Species flocks of semionotid fishes dominated earliest Jurassic giant rift lakes in eastern North America, but not Triassic or later Early Jurassic lakes in the same basins. Based on footprint data, it is quite possible that there were also species flocks of morphologically similar ceratosaurian theropod dinosaurs in the Early Jurassic.

  14. The development of the Middle Triassic tectonical controlled Germanic Basin of Central Europe and the palaeoenvironmental related distribution of marine and terrestrial reptiles

    NASA Astrophysics Data System (ADS)

    Diedrich, Cajus G.

    2010-05-01

    -Italy). Bolletino della Società Paleontologica Italiana, 41 (1), 37-40. Bachmann, G.H. and Aref, M.A.M., 2005. A seismite in Triassic gypsum deposits (Grabfeld Formation, Ladinian), Southwest Germany. Sedimentary Geology 180, 75-89. De Zanche, V. and Farabegoli, E. 1988. Anisian paleogeographic evolution in the Central-Western Southern Alps. Memoirs Scientifique Geologique 40, 399-411. Demathieu, G.R. 1985. Trace fossil assemblages in Middle Triassic marginal marine deposits, eastern border of the Massif Central, France. Societe Economie Paléontologie et Mineralogie, Special Publications, 35, 53-66. Diedrich, C. 2005. Actuopalaeontological trackway experiments with Iguana on intertidal flat carbonates of the Arabian Gulf - a comparison to fossil Rhynchosauroides tracks of Triassic carbonate tidal flat megatracksites in the European Germanic Basin. Senckenbergiana maritime, 35 (2), 203-220. Diedrich, C. 2008a. Millions of reptile tracks - Early to Middle Triassic carbonate tidal flat migration bridges of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 259, 410-423. Diedrich, C. 2008b. Palaeogeographic evolution of the marine Middle Triassic marine Germanic Basin changements - with emphasis on the carbonate tidal flat and shallow marine habitats of reptiles in Central Pangaea. Global and Planetary Change, 65 (2009), 27-55. Diedrich, C. 2009a. The vertebrates of the Anisian/Ladinian boundary (Middle Triassic) from Bissendorf (NW Germany) and their contribution to the anatomy, palaeoecology, and palaeobiogeography of the Germanic Basin reptiles. Palaeogeography, Palaeoclimatology, Palaeoecology, 273 (2009), 1-16. Diedrich, C. 2009b. Die Saurierspuren-Grabung im basalen Mittleren Muschelkalk (Anis, Mitteltrias) von Bernburg (Sachsen-Anhalt). Archäologie in Sachsen-Anhalt, Sonderband 2009, 1-62. Diedrich, 2010a. Palaeoecology of Placodus gigas (Reptilia) and other placodontids - macroalgae feeder of the Middle Triassic in the Germanic Basin of Central Europe and

  15. Suboxic conditions at the Permian-Triassic boundary in the NE Panthalassic Ocean suggest a different extinction mechanism compared to Paleotethys anoxia

    NASA Astrophysics Data System (ADS)

    Foriel, J.; Shen, Y.; Algeo, T. J.; Henderson, C. M.; Ward, P. D.

    2008-12-01

    The Permian-Triassic boundary marks the most important mass extinction event recorded in Earth history. Based on numerous studies of Permian-Triassic sites, most of them located around the Paleotethys, an anoxic event has been assumed to be the most likely killing mechanism. Here we present a high-resolution study of a Permian-Triassic section on the north- eastern shore of the Panthalassic Ocean. The Opal Creek shale section in SW Alberta was sampled over 40 m with a 50 cm resolution and at a 10 cm-scale around the extinction event; paleontological and geochemical data were collected. The extinction event is correlated by conodont biostratigraphy and a ~5‰ carbon isotope negative trend. The onset of suboxic/euxinic conditions is suggested by trace elements (V, Mo, U) and organic carbon data and a negative trend of non-acid volatile sulfur isotope data to a minimum of -31.2‰ just above the extinction horizon. However, this episode appears to be very short-lived as all geochemical tracers return to background values over a ~50 cm interval. Our results from the Opal Creek section seem to argue against the model of a prolonged euxinic ocean as seen in Paleotethys sections. Such discrepancy may be explained by contrasting geography and climate. The semi-closed, equatorial Paleotethys would have been much more prone to reaching euxinic conditions because of high continental nutrient delivery. On the open shore of the Panthalassic global ocean, with a much lower terrigenous input, lower temperatures and hence presumably lower bioproductivity, sustaining euxinia would have been difficult. In spite of the lack of evidence for strong prolonged anoxia, extinction does occur at Opal Creek, albeit at a lesser scale than in the Paleotethys, which may imply a different mechanism for the prolonged delay in biotic recovery.

  16. Impacts of the Central Atlantic Magmatic Province on the Terrestrial Carbon Cycle in Western Pangea

    NASA Astrophysics Data System (ADS)

    Knobbe, T.; Suarez, C. A.

    2014-12-01

    Carbon isotope analysis of bulk organic and inorganic carbon preserved in the lacustrine deposits of the late Triassic to Jurassic Moenave Formation were analyzed to construct a carbon isotope chemostratigraphic profile of western Pangea. Negative carbon isotope excursions (NCIE) are characteristic of the Late Triassic and are attributed to the effects of the Central Atlantic Magmatic Province (CAMP) on climate and the global C-cycle. The aerial extent of the CAMP basalts is the largest in Earth's history spanning four continents with an area of ~ 7 x 106 km2 and a volume of 3 to 11 x 106 km3. Carbon isotope and paleontological evidence has shown that the end Triassic extinction is near synchronous to the CAMP and likely spurred on the extinction event as well as an increase in global temperatures of 2 - 2.5°C. Global correlations of NCIEs between marine and terrestrial strata provide a connection between the CAMP basalts and the end-Triassic extinction. Preliminary data collected at Potter Canyon, Arizona reveal a 5.5 ‰ decrease in δ13Corganic and a 2.75‰ decrease in δ13Ccarbonate in the lower portion of the Whitmore Point Member. These NCIEs indicate the global carbon cycle perturbation caused by the CAMP is recorded in lacustrine sediments of the Whitmore Point Member in southern Utah and northern Arizona. Additional samples collected at high sampling frequencies at other locations in the Whitmore Point Member will corroborate the terrestrial impacts of the CAMP perturbation at these locations across the region. Correlation of NCIES associated with the CAMP and any identified microfossils of the Whitmore Point Member will also illustrate the global effects of increased atmospheric CO2 on the terrestrial environment and biota.

  17. 3D climate-carbon modelling of the early Earth

    NASA Astrophysics Data System (ADS)

    Charnay, B.; Le Hir, G.; Fluteau, F.; Forget, F.; Catling, D.

    2017-09-01

    We revisit the climate and carbon cycle of the early Earth at 3.8 Ga using a 3D climate-carbon model. Our resultsfavor cold or temperate climates with global mean temperatures between around 8°C (281 K) and 30°C (303 K) and with 0.1-0.36 bar of CO2 for the late Hadean and early Archean.

  18. Ophiuroids Discovered in the Middle Triassic Hypersaline Environment

    PubMed Central

    Salamon, Mariusz A.; Niedźwiedzki, Robert; Lach, Rafał; Brachaniec, Tomasz; Gorzelak, Przemysław

    2012-01-01

    Echinoderms have long been considered to be one of the animal phyla that is strictly marine. However, there is growing evidence that some recent species may live in either brackish or hypersaline environments. Surprisingly, discoveries of fossil echinoderms in non-(open)marine paleoenvironments are lacking. In Wojkowice Quarry (Southern Poland), sediments of lowermost part of the Middle Triassic are exposed. In limestone layer with cellular structures and pseudomorphs after gypsum, two dense accumulations of articulated ophiuroids (Aspiduriella similis (Eck)) were documented. The sediments with ophiuroids were formed in environment of increased salinity waters as suggested by paleontological, sedimentological, petrographical and geochemical data. Discovery of Triassic hypersaline ophiuroids invalidates the paleontological assumption that fossil echinoderms are indicators of fully marine conditions. Thus caution needs to be taken when using fossil echinoderms in paleoenvironmental reconstructions. PMID:23185442

  19. Lateral variations of carbonate platform facies and cycles: The Dachstein Limestone (Late Triassic, Northern Calcareous Alps, Austria)

    NASA Astrophysics Data System (ADS)

    Samankassou, Elias; Enos, Paul

    2017-04-01

    The driving mechanisms of cyclic patterns in shallow-water platform carbonates remain controversial. The focus of the present paper is to quantify lateral facies variations for a long stratigraphic record in an extensive, continuous, well-exposed cliff of the Dachstein platform that is composed, as many other Phanerozoic carbonate platforms, of peritidal deposits. We noted the lateral continuity of the beds to the degree permitted by the outcrop, generally a few tens or hundreds of meters; exceptionally up to 1.7 km. The study demonstrates the importance of quantification to evaluate origins of sedimentary cycles. The upper 885 m of the Triassic Dachstein platform limestone at Steinernes Meer, Saalfelden, Austria, includes 241 peritidal cycles overlain by 275 m of subtidal, non-cyclic and weakly cyclic limestone. Of 558 subtidal and intertidal beds measured, 121 (21.7%) disappear laterally. An additional 74 beds (13.3%) show significant (>10%) lateral variations in thickness. Mean thickness variation is 50%. Both lateral variations and discontinuities appear to lack a spatial vector. Disappearances toward the inferred platform interior (west), total 10.4% of the beds. East toward the inferred platform margin 11.3% of the beds disappear. Thickness changes occur in 6.6% of beds in each direction. The lack of lateral continuity of beds is consistent with a non-eustatic component to stratification. Erosion of intertidal intervals is the process that can be most readily documented. Erosion, transport, and non-uniform distribution of sediments, superposed on stratigraphic sequences driven by eustacy, are the likely processes which produced the complex, randomly recorded cycle patterns. Cycle duration may not be exclusively determined by Milankovitch processes, as suggested by the discrepancies in the cycle duration and interpretation among stratigraphers of the Dachstein, as well as other Phanerozoic carbonate platforms. Signals deduced from linearly measured sections

  20. Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic.

    PubMed

    Gueidan, Cécile; Ruibal, Constantino; de Hoog, G S; Schneider, Harald

    2011-10-01

    Non-lichenized rock-inhabiting fungi (RIF) are slow-growing melanized ascomycetes colonizing rock surfaces in arid environments. They possess adaptations, which allow them to tolerate extreme abiotic conditions, such as high UV radiations and extreme temperatures. They belong to two separate lineages, one consisting in the sister classes Dothideomycetes and Arthoniomycetes (Dothideomyceta), and the other consisting in the order Chaetothyriales (Eurotiomycetes). Because RIF often form early diverging groups in Chaetothyriales and Dothideomyceta, the ancestors of these two lineages were suggested to most likely be rock-inhabitants. The lineage of RIF related to the Chaetothyriales shows a much narrower phylogenetic spectrum than the lineage of RIF related to Dothideomyceta, suggesting a much more ancient origin for the latter. Our study aims at investigating the times of origin of RIF using a relaxed clock model and several fossil and secondary calibrations. Our results show that the RIF in Dothideomyceta evolved in the late Devonian, much earlier than the RIF in Chaetothyriales, which originated in the middle Triassic. The origin of the chaetothyrialean RIF correlates well with a period of recovery after the Permian-Triassic mass extinction and an expansion of arid landmasses. The period preceding the diversification of the RIF related to Dothideomyceta (Silurian--Devonian) is also characterized by large arid landmasses, but temperatures were much cooler than during the Triassic. The paleoclimate record provides a good explanation for the diversification of fungi subjected to abiotic stresses and adapted to life on rock surfaces in nutrient-poor habitats. Copyright © 2011 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  1. Determining the Central Atlantic Magmatic Province (CAMPS)'s Role in the Increased Flux of CO2 in the end-Triassic Mass Extinction

    NASA Astrophysics Data System (ADS)

    Srinivasan, P. S.; Bachan, A.; Stanford School of Earth Sciences Department of Paleobiology

    2011-12-01

    The Central Atlantic Magmatic Province (CAMP) is one of the largest flood basalt provinces known. Its empacement coincided with a period of major plant and animal extinctions-the end-Triassic mass extinction. It is postulated that the release of large amounts of carbon dioxide into the atmosphere from the volcanics was one of the causes of this mass extinction. However,the magnitude of impact on ocean chemistry, and timescales involved remain unclear. To determine CAMP's role in this increased flux of CO2, we studied the geochemistry of samples of rock from the Triassic-Jurassic boundary, in northern Italy. Specifically, by observing the ratios of carbon isotopes 12 and 13 in the organic carbon found in these limestone sedimentary rocks, we could determine the ratio of carbonate to organic burial fluxes globally. We drilled limestone rocks from two different sections in the Southern Alps-- Pozzo Glaciale and Val Adrara. Once they were drilled to a fine powder-like form, we acidified the CaCO3 with HCl to isolate the organic carbon. Then, the organic matter was cleaned to rid the acid, and eventually was placed into tin foil to be placed into the Elemental Analyzer, which determined the percent Carbon in each sample. We tested about 200 samples, and placed them into the Mass Spectrometer machine to determine the isotopic ratios of C12 and C13. According to the data, there was a positive excursion for both sample sets, which means that there was an increase in the amount of C13 in the organic matter. The duration of this excursion was at least a few hundred thousand years. This suggests a protracted increase in the burial flux of organic carbon globally, which is consistent with the hypothesized volcanically driven increase in CO2. This further bolsters the contention that CAMP was responsible, in part, for this mass extinction. By studying the earth's recovery from increased carbon fluxes in the past, we can predict the recovery path that our anthropogenically

  2. Early atmospheric detection of carbon dioxide from carbon capture and storage sites

    PubMed Central

    Pak, Nasrin Mostafavi; Rempillo, Ofelia; Norman, Ann-Lise; Layzell, David B.

    2016-01-01

    ABSTRACT The early atmospheric detection of carbon dioxide (CO2) leaks from carbon capture and storage (CCS) sites is important both to inform remediation efforts and to build and maintain public support for CCS in mitigating greenhouse gas emissions. A gas analysis system was developed to assess the origin of plumes of air enriched in CO2, as to whether CO2 is from a CCS site or from the oxidation of carbon compounds. The system measured CO2 and O2 concentrations for different plume samples relative to background air and calculated the gas differential concentration ratio (GDCR = −ΔO2/ΔCO2). The experimental results were in good agreement with theoretical calculations that placed GDCR values for a CO2 leak at 0.21, compared with GDCR values of 1–1.8 for the combustion of carbon compounds. Although some combustion plume samples deviated in GDCR from theoretical, the very low GDCR values associated with plumes from CO2 leaks provided confidence that this technology holds promise in providing a tool for the early detection of CO2 leaks from CCS sites.  Implications: This work contributes to the development of a cost-effective technology for the early detection of leaks from sites where CO2 has been injected into the subsurface to enhance oil recovery or to permanently store the gas as a strategy for mitigating climate change. Such technology will be important in building public confidence regarding the safety and security of carbon capture and storage sites. PMID:27111469

  3. Early atmospheric detection of carbon dioxide from carbon capture and storage sites.

    PubMed

    Pak, Nasrin Mostafavi; Rempillo, Ofelia; Norman, Ann-Lise; Layzell, David B

    2016-08-01

    The early atmospheric detection of carbon dioxide (CO2) leaks from carbon capture and storage (CCS) sites is important both to inform remediation efforts and to build and maintain public support for CCS in mitigating greenhouse gas emissions. A gas analysis system was developed to assess the origin of plumes of air enriched in CO2, as to whether CO2 is from a CCS site or from the oxidation of carbon compounds. The system measured CO2 and O2 concentrations for different plume samples relative to background air and calculated the gas differential concentration ratio (GDCR = -ΔO2/ΔCO2). The experimental results were in good agreement with theoretical calculations that placed GDCR values for a CO2 leak at 0.21, compared with GDCR values of 1-1.8 for the combustion of carbon compounds. Although some combustion plume samples deviated in GDCR from theoretical, the very low GDCR values associated with plumes from CO2 leaks provided confidence that this technology holds promise in providing a tool for the early detection of CO2 leaks from CCS sites. This work contributes to the development of a cost-effective technology for the early detection of leaks from sites where CO2 has been injected into the subsurface to enhance oil recovery or to permanently store the gas as a strategy for mitigating climate change. Such technology will be important in building public confidence regarding the safety and security of carbon capture and storage sites.

  4. The new Permian-Triassic paleomagnetic pole for the East European Platform corrected for inclination shallowing

    NASA Astrophysics Data System (ADS)

    Fetisova, A. M.; Veselovskiy, R. V.; Scholze, F.; Balabanov, Yu. P.

    2018-01-01

    The results of detailed paleomagnetic studies in seven Upper Permian and Lower Triassic reference sections of East Europe (Middle Volga and Orenburg region) and Central Germany are presented. For each section, the coefficient of inclination shallowing f (King, 1955) is estimated by the Elongation-Inclination (E-I) method (Tauxe and Kent, 2004) and is found to vary from 0.4 to 0.9. The paleomagnetic directions, corrected for the inclination shallowing, are used to calculate the new Late Permian-Early Triassic paleomagnetic pole for the East European Platform (N = 7, PLat = 52.1°, PLong = 155.8°, A95 = 6.6°). Based on this pole, the geocentric axial dipole hypothesis close to the Paleozoic/Mesozoic boundary is tested by the single plate method. The absence of the statistically significant distinction between the obtained pole and the average Permian-Triassic (P-Tr) paleomagnetic pole of the Siberian Platform and the coeval pole of the North American Platform corrected for the opening of the Atlantic (Shatsillo et al., 2006) is interpreted by us as evidence that 250 Ma the configuration of the magnetic field of the Earth was predominantly dipolar; i.e., the contribution of nondipole components was at most 10% of the main magnetic field. In our opinion, the hypothesis of the nondipolity of the geomagnetic field at the P-Tr boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), resulted from disregarding the effect of inclination shallowing in the paleomagnetic determinations from sedimentary rocks of "stable" Europe (the East European platform and West European plate).

  5. Basin geodynamics and sequence stratigraphy of Upper Triassic to Lower Jurassic deposits of Southern Tunisia

    NASA Astrophysics Data System (ADS)

    Carpentier, Cédric; Hadouth, Suhail; Bouaziz, Samir; Lathuilière, Bernard; Rubino, Jean-Loup

    2016-05-01

    Aims of this paper are to propose a geodynamic and sequential framework for the late Triassic and early Jurassic of and south Tunisia and to evidence the impact of local tectonics on the stratigraphic architecture. Facies of the Upper Triassic to Lower Jurassic of Southern Tunisia have been interpreted in terms of depositional environments. A sequential framework and correlation schemes are proposed for outcrops and subsurface transects. Nineteen middle frequency sequences inserted in three and a half low frequency transgression/regression cycles were evidenced. Despite some datation uncertainties and the unknown durations of Lower Jurassic cycles, middle frequency sequences appear to be controlled by eustasy. In contrast the tectonics acted as an important control on low frequency cycles. The Carnian flooding was certainly favored by the last stages of a rifting episode which started during the Permian. The regression accompanied by the formation of stacked angular unconformities and the deposition of lowstand deposits during the late Carnian and Norian occured during the uplift and tilting of the northern basin margins. The transpressional activity of the Jeffara fault system generated the uplift of the Tebaga of Medenine high from the late Carnian and led to the Rhaetian regional angular Sidi Stout Unconformity. Facies analysis and well-log correlations permitted to evidence that Rhaetian to Lower Jurassic Messaoudi dolomites correspond to brecciated dolomites present on the Sidi Stout unconformity in the North Dahar area. The Early-cimmerian compressional event is a possible origin for the global uplift of the northern African margin and Western Europe during the late Carnian and the Norian. During the Rhaetian and the early Jurassic a new episode of normal faulting occured during the third low frequency flooding. This tectonosedimentary evolution ranges within the general geodynamic framework of the north Gondwana margin controlled by the opening of both

  6. The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record.

    PubMed

    Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D

    2015-01-01

    We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian-Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record.

  7. The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record

    PubMed Central

    Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D.

    2015-01-01

    We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian–Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record. PMID:26083612

  8. Supradapedon revisited: geological explorations in the Triassic of southern Tanzania

    PubMed Central

    da Rosa, Átila A.S.; Montefeltro, Felipe C.

    2017-01-01

    The upper Triassic deposits of the Selous Basin in south Tanzania have not been prospected for fossil tetrapods since the middle of last century, when Gordon M. Stockley collected two rhynchosaur bone fragments from the so called “Tunduru beds”. Here we present the results of a field trip conducted in July 2015 to the vicinities of Tunduru and Msamara, Ruvuma Region, Tanzania, in search for similar remains. Even if unsuccessful in terms of fossil discoveries, the geological mapping conducted during the trip improved our knowledge of the deposition systems of the southern margin of the Selous Basin during the Triassic, allowing tentative correlations to its central part and to neighbouring basins. Moreover, we reviewed the fossil material previously collected by Gordon M. Stockley, confirming that the remains correspond to a valid species, Supradapedon stockleyi, which was incorporated into a comprehensive phylogeny of rhynchosaurs and found to represent an Hyperodapedontinae with a set of mostly plesiomorphic traits for the group. Data gathered form the revision and phylogenetic placement of Su. stockleyi helps understanding the acquisition of the typical dental traits of Late Triassic rhynchosaurs, corroborating the potential of hyperodapedontines as index fossils of the Carnian-earliest Norian. PMID:29152419

  9. An unusual archosaurian from the marine Triassic of China

    NASA Astrophysics Data System (ADS)

    Li, Chun; Wu, Xiao-Chun; Cheng, Yen-Nien; Sato, Tamaki; Wang, Liting

    2006-04-01

    A new Triassic archosaurian from China shows a number of aquatic specializations, of which the most striking is the extreme lateral compression of the long tail. Others that may also reflect aquatic adaptations include platelike scapula and coracoid, elongate neck with extremely long and slender ribs, and reduction of osteoderms. In contrast, its pelvic girdle and hind limb have no aquatic modifications. Anatomic features, taphonomy, and local geological data suggest that it may have lived in a coastal-island environment. This lifestyle, convergent with some Jurassic marine crocodyliforms that lived at least 40 million years later and the saltwater species of extant Crocodylus, contradicts with the prevailing view that Triassic archosaurians were restricted to nonmarine ecosystems. Its mosaic anatomy represents a previously unknown ecomorph within primitive archosaurians.

  10. The Timan-Pechora Basin province of northwest Arctic Russia; Domanik, Paleozoic total petroleum system

    USGS Publications Warehouse

    Lindquist, Sandra J.

    1999-01-01

    The Domanik-Paleozoic oil-prone total petroleum system covers most of the Timan-Pechora Basin Province of northwestern Arctic Russia. It contains nearly 20 BBOE ultimate recoverable reserves (66% oil). West of the province is the early Precambrian Eastern European craton margin. The province itself was the site of periodic Paleozoic tectonic events, culminating with the Hercynian Uralian orogeny along its eastern border. The stratigraphic record is dominated by Paleozoic platform and shelf-edge carbonates succeeded by Upper Permian to Triassic molasse siliciclastics that are locally present in depressions. Upper Devonian (Frasnian), deep marine shale and limestone source rocks ? with typically 5 wt % total organic carbon ? by middle Mesozoic time had generated hydrocarbons that migrated into reservoirs ranging in age from Ordovician to Triassic but most focused in Devonian and Permian rocks. Carboniferous structural inversions of old aulacogen borders, and Hercynian (Permian) to Early Cimmerian (Late Triassic to Early Jurassic) orogenic compression not only impacted depositional patterns, but also created and subsequently modified numerous structural traps within the province.

  11. High diversity, low disparity and small body size in plesiosaurs (Reptilia, Sauropterygia) from the Triassic-Jurassic boundary.

    PubMed

    Benson, Roger B J; Evans, Mark; Druckenmiller, Patrick S

    2012-01-01

    Invasion of the open ocean by tetrapods represents a major evolutionary transition that occurred independently in cetaceans, mosasauroids, chelonioids (sea turtles), ichthyosaurs and plesiosaurs. Plesiosaurian reptiles invaded pelagic ocean environments immediately following the Late Triassic extinctions. This diversification is recorded by three intensively-sampled European fossil faunas, spanning 20 million years (Ma). These provide an unparalleled opportunity to document changes in key macroevolutionary parameters associated with secondary adaptation to pelagic life in tetrapods. A comprehensive assessment focuses on the oldest fauna, from the Blue Lias Formation of Street, and nearby localities, in Somerset, UK (Earliest Jurassic: 200 Ma), identifying three new species representing two small-bodied rhomaleosaurids (Stratesaurus taylori gen et sp. nov.; Avalonnectes arturi gen. et sp. nov) and the most basal plesiosauroid, Eoplesiosaurus antiquior gen. et sp. nov. The initial radiation of plesiosaurs was characterised by high, but short-lived, diversity of an archaic clade, Rhomaleosauridae. Representatives of this initial radiation were replaced by derived, neoplesiosaurian plesiosaurs at small-medium body sizes during a more gradual accumulation of morphological disparity. This gradualistic modality suggests that adaptive radiations within tetrapod subclades are not always characterised by the initially high levels of disparity observed in the Paleozoic origins of major metazoan body plans, or in the origin of tetrapods. High rhomaleosaurid diversity immediately following the Triassic-Jurassic boundary supports the gradual model of Late Triassic extinctions, mostly predating the boundary itself. Increase in both maximum and minimum body length early in plesiosaurian history suggests a driven evolutionary trend. However, Maximum-likelihood models suggest only passive expansion into higher body size categories.

  12. A palaeoequatorial ornithischian and new constraints on early dinosaur diversification.

    PubMed

    Barrett, Paul M; Butler, Richard J; Mundil, Roland; Scheyer, Torsten M; Irmis, Randall B; Sánchez-Villagra, Marcelo R

    2014-09-22

    Current characterizations of early dinosaur evolution are incomplete: existing palaeobiological and phylogenetic scenarios are based on a fossil record dominated by saurischians and the implications of the early ornithischian record are often overlooked. Moreover, the timings of deep phylogenetic divergences within Dinosauria are poorly constrained owing to the absence of a rigorous chronostratigraphical framework for key Late Triassic-Early Jurassic localities. A new dinosaur from the earliest Jurassic of the Venezuelan Andes is the first basal ornithischian recovered from terrestrial deposits directly associated with a precise radioisotopic date and the first-named dinosaur from northern South America. It expands the early palaeogeographical range of Ornithischia to palaeoequatorial regions, an area sometimes thought to be devoid of early dinosaur taxa, and offers insights into early dinosaur growth rates, the evolution of sociality and the rapid tempo of the global dinosaur radiation following the end-Triassic mass extinction, helping to underscore the importance of the ornithischian record in broad-scale discussions of early dinosaur history. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Geochemical and palynological records for the end-Triassic Mass-Extinction Event in the NE Paris Basin (Luxemburg)

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Natascha; van de Schootbrugge, Bas; Thein, Jean; Fiebig, Jens; Franz, Sven-Oliver; Hanzo, Micheline; Colbach, Robert; Faber, Alain

    2016-04-01

    The End-Triassic mass-extinction event is one of the "big five" mass extinctions in Earth's history. Large scale flood basalt volcanism associated with the break-up of Pangaea, which resulted in the opening of the central Atlantic Ocean, is considered as the leading cause. In addition, an asteroid impact in Rochechouart (France; 201 ± 2 Ma) may have had a local influence on ecosystems and sedimentary settings. The Luxembourg Embayment, in the NE Paris Basin, offers a rare chance to study both effects in a range of settings from deltaic to lagoonal. A multidisciplinary study (sedimentology, geochemistry, palynology) has been carried out on a number of outcrops and cores that span from the Norian to lower Hettangian. Combined geochemical and palynological records from the Boust core drilled in the NE Paris Basin, provide evidence for paleoenvironmental changes associated with the end-Triassic mass-extinction event. The Triassic-Jurassic stratigraphy of the Boust core is well constrained by palynomorphs showing the disappaerance of typical Triassic pollen taxa (e.g. Ricciisporites tuberculates) and the occurrence of the marker species Polypodiisporites polymicroforatus within the uppermost Rhaetian, prior to the Hettangian dominance of Classopollis pollen. The organic carbon stable isotope record (δ13Corg) spanning the Norian to Hettangian, shows a series of prominent negative excursions within the middle Rhaetian, followed by a trend towards more positive values (approx -24 per mille) within the uppermost Rhaetian Argiles de Levallois Member. The lowermost Hettangian is characterized by a major negative excursion, reaching - 30 per mille that occurs in organic-rich sediments. This so-called "main negative excursion" is well-known from other locations, for example from Mariental in Northern Germany and from St Audrie's Bay in England, and Stenlille in Denmark. Based on redox-sensitive trace element records (V, Cr, Ni, Co, Th, U) the lowermost Hettangian in most of

  14. Multivariate analyses reveal a new assemblage of diverse and small archosauriforms (Reptilia, Diapsida) from the Upper Triassic of India

    NASA Astrophysics Data System (ADS)

    Shafi Bhat, Mohd; Ray, Sanghamitra; Mohan Datta, Pradipendra

    2017-04-01

    of the teeth collected from the Tiki Formation are similar to that of other known Late Triassic archosauriforms such as Protecovasaurus, Revueltosaurus, Pekinosaurus and Crosbysaurus Although more analyses are required for precise taxonomic identification, the current study highlights a large array of Late Triassic archosauriforms from India, which so far remained unknown. References: Hammer, O., Harper, D.A.T. 2006. Paleontological data analysis. Blackwell Publishing, Ltd., Malden, USA. Heckert, A.B. 2004. Late Triassic microvertebrates from the Upper Triassic Chinle Group (Otischalkian-Adamanian: Carnian), southwestern U.S.A.: New Mexico Museum of Natural History and Science Bulletin 27:1-170. Irmis, R.B., Parker, W.G., Nesbitt, S.J., Liu, J. 2007. Early ornithischian dinosaurs: the Triassic record. Historical Biology 19: 3-22.

  15. Testing the limits in a greenhouse ocean: Did low nitrogen availability limit marine productivity during the end-Triassic mass extinction?

    NASA Astrophysics Data System (ADS)

    Schoepfer, Shane D.; Algeo, Thomas J.; Ward, Peter D.; Williford, Kenneth H.; Haggart, James W.

    2016-10-01

    The end-Triassic mass extinction has been characterized as a 'greenhouse extinction', related to rapid atmospheric warming and associated changes in ocean circulation and oxygenation. The response of the marine nitrogen cycle to these oceanographic changes, and the extent to which mass extinction intervals represent a deviation in nitrogen cycling from other ice-free 'greenhouse' periods of Earth history, remain poorly understood. The well-studied Kennecott Point section in Haida Gwaii, British Columbia, Canada, was deposited in the open Panthalassic Ocean, and is used here as a test case to better understand changes in the nitrogen cycle and marine productivity from the pre-crisis greenhouse of the Rhaetian to the latest-Rhaetian crisis interval. We estimated marine productivity from the late Norian to the early Hettangian using TOC- and P-based paleoproductivity transform equations, and then compared these estimates to records of sedimentary nitrogen isotopes, redox-sensitive trace elements, and biomarker data. Major negative excursions in δ15N (to ≤ 0 ‰) correspond to periods of depressed marine productivity. During these episodes, the development of a stable pycnocline below the base of the photic zone suppressed vertical mixing and limited N availability in surface waters, leading to low productivity and increased nitrogen fixation, as well as ecological stresses in the photic zone. The subsequent shoaling of euxinic waters into the ocean surface layer was fatal for most Triassic marine fauna, although the introduction of regenerated NH4+ into the photic zone may have allowed phytoplankton productivity to recover. These results indicate that the open-ocean nitrogen cycle was influenced by climatic changes during the latest Triassic, despite having existed in a greenhouse state for over 50 million years previously, and that low N availability limited marine productivity for hundreds of thousands of years during the end-Triassic crisis.

  16. End-Triassic mass extinction started by intrusive CAMP activity.

    PubMed

    Davies, J H F L; Marzoli, A; Bertrand, H; Youbi, N; Ernesto, M; Schaltegger, U

    2017-05-31

    The end-Triassic extinction is one of the Phanerozoic's largest mass extinctions. This extinction is typically attributed to climate change associated with degassing of basalt flows from the central Atlantic magmatic province (CAMP). However, recent work suggests that the earliest known CAMP basalts occur above the extinction horizon and that climatic and biotic changes began before the earliest known CAMP eruptions. Here we present new high-precision U-Pb ages from CAMP mafic intrusive units, showing that magmatic activity was occurring ∼100 Kyr ago before the earliest known eruptions. We correlate the early magmatic activity with the onset of changes to the climatic and biotic records. We also report ages from sills in an organic rich sedimentary basin in Brazil that intrude synchronously with the extinction suggesting that degassing of these organics contributed to the climate change which drove the extinction. Our results indicate that the intrusive record from large igneous provinces may be more important for linking to mass extinctions than the eruptive record.

  17. End-Triassic mass extinction started by intrusive CAMP activity

    NASA Astrophysics Data System (ADS)

    Davies, J. H. F. L.; Marzoli, A.; Bertrand, H.; Youbi, N.; Ernesto, M.; Schaltegger, U.

    2017-05-01

    The end-Triassic extinction is one of the Phanerozoic's largest mass extinctions. This extinction is typically attributed to climate change associated with degassing of basalt flows from the central Atlantic magmatic province (CAMP). However, recent work suggests that the earliest known CAMP basalts occur above the extinction horizon and that climatic and biotic changes began before the earliest known CAMP eruptions. Here we present new high-precision U-Pb ages from CAMP mafic intrusive units, showing that magmatic activity was occurring ~100 Kyr ago before the earliest known eruptions. We correlate the early magmatic activity with the onset of changes to the climatic and biotic records. We also report ages from sills in an organic rich sedimentary basin in Brazil that intrude synchronously with the extinction suggesting that degassing of these organics contributed to the climate change which drove the extinction. Our results indicate that the intrusive record from large igneous provinces may be more important for linking to mass extinctions than the eruptive record.

  18. Temperature and Oxygenation of the Shallow Tethys During the End-Triassic Extinction Event.

    NASA Astrophysics Data System (ADS)

    Petryshyn, V.; Lalonde, S.; Greene, S. E.; Sansjofre, P.; Ibarra, Y.; Corsetti, F. A.; Bottjer, D. J.; Tripati, A.

    2016-12-01

    The end-Triassic mass extinction is one of the most severe biotic crises in Earth's history. It has been hypothesized that the extinction was triggered by the rapid emplacement of the Central Atlantic Magmatic Province (CAMP), a large igneous province related to the initial rifting Pangaea 200 million years ago. A massive amount of CO2 and other volatiles were released into the atmosphere due to CAMP volcanism, causing global climate changes and mass extinction. In the uppermost Triassic strata of the Lilstock Formation, southwest United Kingdom, the extinction horizon is well-preserved and marked by a notable deposit of stromatolitic carbonate known as the Cotham Marble (CM). The CM was deposited in the shallow Tethys sea between the paleocontinents of Laurasia and Gondwana, though the specific paleoenvironment (e.g. open ocean vs. restricted basin/lagoon) is debated. The CM alternates between two facies: a fine continuous laminated (L) facies, and dendritic (D) structures that are passively infilled. Clumped isotope paleothermometry of the microbialites reveals a distinct difference between L and D microfacies, with L portions forming at 30.1 ±4.5°C, and D portions forming at 15.2 ±2.1°C, which may suggest restriction during the growth of L facies. High-precision trace element data from weak leaching of carbonate reveal rare earth element (REE) spectra broadly similar to modern seawater, with positive La anomalies, supra-chondritic Y/Ho ratios, and mild light-to-heavy REE enrichment. Y/Ho ratios are similar between the two microfacies, suggesting that changes in basinal restriction may not have actually been an important factor. Unlike modern oxic seawater, the CM displays true positive Ce anomalies that are pronounced in L microfacies and weak-to-absent in D microfacies. The REE data point to variable ambient redox conditions characterized by water column anoxia during growth of D facies and perhaps even stratification during the growth of the L facies.

  19. Kerogen morphology and geochemistry at the Permian-Triassic transition in the Meishan section, South China: Implication for paleoenvironmental variation

    NASA Astrophysics Data System (ADS)

    Sawada, Ken; Kaiho, Kunio; Okano, Kazuki

    2012-08-01

    Detailed fluorescent microscopic observations and organic geochemical analyses for insoluble sedimentary organic matter (kerogens) are conducted on the end-Permian to earliest Triassic sediments in the Meishan section A of South China. The main objectives of the present study are to reconstruct variations of marine and terrestrial environments, and to evaluate bulk characteristics of terrestrial input in the palaeo-Tethys ocean for the Permian-Triassic boundary (PTB). Most of kerogens in the Meishan section are mainly composed of marine algae-derived amorphous organic matter, while terrestrial plant-derived amorphous organic matter is remarkably dominant in the mass extinction horizon reported previously. The relative abundances of marine organic matter may vary depending on marine production rather than terrestrial input in the palaeo-Tethys associated with changing terrestrial vegetation. We also identified aromatic furans as major compounds in kerogen pyrolysate of all layers. It is possible that sources of aromatic furans with alkyl group, fungi and lichen, proliferated as disaster biota in terrestrial ecosystem through the PTB. Higher abundances of herbaceous organic matter are observed in the layers above the mass extinction horizon. However, the conifer biomarker retene can be identified in kerogen pyrolysates of all layers. These results imply that the productions of herbaceous plants increased as dominant pioneer biota in early stage of recovery for terrestrial ecosystem after its collapse, but also that woody plant potentially continued to be produced in land area throughout the end-Permian and earliest-Triassic.

  20. Early Triassic change in the erosional level in the eastern part of the Bohemian Massif revealed by detrital garnet assemblages from the Buntsandstein siliciclastics of southern Poland

    NASA Astrophysics Data System (ADS)

    Kowal-Linka, Monika; Walczak, Klaudia

    2017-04-01

    Garnets, as constituents of various magmatic and metamorphic rocks, show different chemical compositions depending on the type of magma or primary rock, the temperature, and the pressure. This diversity of chemical compositions makes detrital garnets a very useful tool for provenance analysis and deciphering changes in erosional levels of source areas. Preliminary works reveal that the Lower and Middle Buntsandstein terrigenous and marine sandstones cropping out in southern Poland (50˚ 28'20"N, 18˚ 04'33"E and 50˚ 27'35"N, 18˚ 07'23"E) are characterized by very different heavy mineral assemblages (HMA) and types of detrital garnets. The aim of the research is to recognize the source areas and causes of these distinct variations using petrographic analysis, heavy mineral analysis, and electron probe microanalysis. During the Early Triassic, the area under study was located between two landmasses: the eastern margin of the Bohemian Massif (BM) to the west and Pre-Carpathian Land (PCL) to the east. Presently, the sampled area is situated ˜50 km from the NE margin of the BM, which consists of many garnet-bearing rocks and is a presumable source area for the examined grains. The PCL was hidden under the Carpathians during the Alpine orogeny and knowledge of its composition is very limited. Petrographic analysis shows that the older sandstones are red to rusty quartz arenites with a hematite-rich matrix and well-rounded grains (aeolian deposits). The younger sandstones are bicolored quartz wackes (dirty pink with grey patches) with a calcite matrix and angular to rounded grains (shallow marine deposits). The arenites contain zircon, tourmaline, and rutile grains accompanied by garnet, staurolite, apatite, and topaz. The opaque heavy minerals include ilmenite, ilmenite-rutile aggregates, magnetite and rarely chromian spinel. In contrast, the HMA from the wackes consist mostly of garnets, while the minerals listed above occur in subordinate amounts. The garnets from

  1. The origin and early evolution of dinosaurs.

    PubMed

    Langer, Max C; Ezcurra, Martin D; Bittencourt, Jonathas S; Novas, Fernando E

    2010-02-01

    The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as "all descendants of the most recent common ancestor of birds and Triceratops". Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and

  2. Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis.

    PubMed

    Kershaw, S; Crasquin, S; Li, Y; Collin, P-Y; Forel, M-B; Mu, X; Baud, A; Wang, Y; Xie, S; Maurer, F; Guo, L

    2012-01-01

    Permian-Triassic boundary microbialites (PTBMs) are thin (0.05-15 m) carbonates formed after the end-Permian mass extinction. They comprise Renalcis-group calcimicrobes, microbially mediated micrite, presumed inorganic micrite, calcite cement (some may be microbially influenced) and shelly faunas. PTBMs are abundant in low-latitude shallow-marine carbonate shelves in central Tethyan continents but are rare in higher latitudes, likely inhibited by clastic supply on Pangaea margins. PTBMs occupied broadly similar environments to Late Permian reefs in Tethys, but extended into deeper waters. Late Permian reefs are also rich in microbes (and cements), so post-extinction seawater carbonate saturation was likely similar to the Late Permian. However, PTBMs lack widespread abundant inorganic carbonate cement fans, so a previous interpretation that anoxic bicarbonate-rich water upwelled to rapidly increase carbonate saturation of shallow seawater, post-extinction, is problematic. Preliminary pyrite framboid evidence shows anoxia in PTBM facies, but interbedded shelly faunas indicate oxygenated water, perhaps there was short-term pulsing of normally saturated anoxic water from the oxygen-minimum zone to surface waters. In Tethys, PTBMs show geographic variations: (i) in south China, PTBMs are mostly thrombolites in open shelf settings, largely recrystallised, with remnant structure of Renalcis-group calcimicrobes; (ii) in south Turkey, in shallow waters, stromatolites and thrombolites, lacking calcimicrobes, are interbedded, likely depth-controlled; and (iii) in the Middle East, especially Iran, stromatolites and thrombolites (calcimicrobes uncommon) occur in different sites on open shelves, where controls are unclear. Thus, PTBMs were under more complex control than previously portrayed, with local facies control playing a significant role in their structure and composition. © 2011 Blackwell Publishing Ltd.

  3. Timing is everything - implications of a new correlation of Triassic-Jurassic boundary successions and the Central Atlantic Magmatic Province

    NASA Astrophysics Data System (ADS)

    Lindström, Sofie; van de Schootbrugge, Bas; Pedersen, Gunver K.; Alsen, Peter; Thibault, Nicolas; Hansen, Katrine H.; Dybkjær, Karen; Bjerrum, Christian J.; Nielsen, Lars Henrik

    2017-04-01

    Understanding mass extinctions requires a clear insight into the stratigraphy of boundary sections, which allows for long-distance correlations and correct distinction of the sequence of events. However, even after the ratification of a Global Stratotype Section and Point, global correlations of Triassic-Jurassic boundary (TJB) successions are hampered by the fact that many of the traditionally used fossil groups were severely affected by the end-Triassic mass extinction (ETE). Recently, a new correlation of key TJB successions in Europe, U.S.A. and Peru, based on a combination of biotic (palynology and ammonites), geochemical (δ13Corg) and radiometric (U/Pb ages) constraints, was presented. This new correlation has an impact on the causality and temporal development during the end-Triassic event, as it indicates that the bulk of the hitherto dated, high-titanium, quartz normalized volcanism of the Central Atlantic Magmatic Province (CAMP) preceded or was contemporaneous to the onset of the mass extinction. It further shows that the maximum phase of the mass extinction, which affected both the terrestrial and marine ecosystems, was associated with a major regression and repeated, enhanced earthquake activity in Europe. A subsequent transgression resulted in the formation of hiati or condensed successions in many areas in Europe. Later phases of volcanic activity of the CAMP, producing low titanium, quartz normalized and high-iron, quartz normalized basaltic rocks, continued close to the first occurrence of Jurassic ammonites and the defined TJB. This new correlations enables a reconstruction of the sequence of events; including records of e.g. pCO2 from soil carbonates and plant fossils, rare earth elements, biomarkers, charcoal, which allows an insight into the causality of this biotic crises.

  4. Distribution of Iridium in Upper Triassic-Lower Jurassic Strata of the Northern Calcareous Alps, Austria

    NASA Astrophysics Data System (ADS)

    Tanner, L. H.; Kyte, F. T.; Richoz, S.

    2014-12-01

    Samples from strata spanning the Triassic-Jurassic boundary in the classic sections at Kuhjoch and Kendlbach were studied by NAA to determine Ir levels, and the results compared to previously determined carbon isotope stratigraphy. Ir concentrations in the Kössen Formation are very low (< 10 pg/g), well below average crustal levels until the top of the formation, reaching levels of ~15 pg/g, in the T-bed at the top of the Eiberg Member. The Tiefengraben Member (Kendlbach Formation) is enriched in Ir in general relative to the strata below. The shift to higher levels is abrupt at the base of the member. Concentrations of 60 to 80 pg/g are typical through the entire thickness of the Schattwald Beds and into the gray Tiefengraben, peaking at 145 pg/g. Above 560 cm from the Tiefengraben base, concentrations decline gradually from 50 pg/g to ~30 pg/g. The analyses from the Kendlbach section compare well with those from Kuhjoch, with the same order of magnitude difference in Ir concentration between the Kössen and Kendlbach formations. The same range of Ir values (60 to 80 pg/g) is seen in the lower 200 cm of the Tiefengraben Member, with a significant decline seen above 220 cm. In both sections, the initial increase in Ir corresponds to the initial carbon isotope excursion, considered the peak extinction horizon, but otherwise there is no clear correlation to the C-isotope data. The positive shift to background δ13C values is not accompanied by any noticeable change in Ir, however. There do appear (at least visually) to be smaller parallel shifts in both δ13C and Ir, but the shifts are of smaller magnitude. The difference between the Ir concentration in the Kössen and Kendlbach formations levels has a strong lithologic control; levels are very low carbonate versus elevated levels in siliclastics, but variations within the Kendlbach Formation are independent of lithology. Although there is no obvious evidence of volcanic input in the sections studied, we consider

  5. Early diagenesis driven by widespread meteoric infiltration of a Central European carbonate ramp: A reinterpretation of the Upper Muschelkalk

    NASA Astrophysics Data System (ADS)

    Adams, Arthur; Diamond, Larryn W.

    2017-12-01

    Meteoric diagenesis of carbonate ramps is often difficult to interpret and can commonly be confused with other coinciding diagenetic processes. The Middle Triassic Upper Muschelkalk of Switzerland provides an insightful case in which the effects of several overprinting diagenetic environments, including matrix dolomitization, can be clearly unravelled. Previous studies suggested that diagenesis took place in connate marine waters, with later meteoric waters being invoked to explain recrystallization of dolomite. In this study, diagenetic analyses (C-O stable isotope ratios, thin-section point counting, cathodoluminescence and UV-fluorescence microscopy) of calcitic bioclastic samples have revealed that early diagenesis (pre-stylolitization) and the accompanying porosity evolution did not occur exclusively in the presence of marine fluids. Five sequential stages of diagenesis have been identified: marine, shallow burial, mixing-zone, meteoric and dolomitization. Marine diagenesis induced precipitation of bladed and inclusion-rich syntaxial cements that fluoresce strongly under UV-light. Both cements account for a mean 7.5 vol% reduction in the porosity of bioclastic beds. Shallow burial diagenesis likely induced mouldic porosity and associated fluorescent dog-tooth cementation. Based on light oxygen isotope and elevated strontium isotope ratios, matrix aragonite-calcite neomorphism is interpreted to have occurred in a mixture of marine and meteoric fluids. The combination of shallow burial and mixing-zone processes reduced porosity on average by 4.8 vol%. Evidence for subsequent meteoric diagenesis is found in abundant dog-tooth and blocky calcite cements that have mean δ18OVPDB of - 9.36‰ and no signs of recrystallization. These meteoric cements reduced porosity by a further 13.4 vol%. Percolation of meteoric water through the ramp was driven by hydraulic gradients on an adjacent basement high, which was exposed by a cycle of early Ladinian regressions

  6. Evolving Mantle Sources in Postcollisional Early Permian-Triassic Magmatic Rocks in the Heart of Tianshan Orogen (Western China)

    NASA Astrophysics Data System (ADS)

    Tang, Gong-Jian; Cawood, Peter A.; Wyman, Derek A.; Wang, Qiang; Zhao, Zhen-Hua

    2017-11-01

    Magmatism postdating the initiation of continental collision provides insight into the late stage evolution of orogenic belts including the composition of the contemporaneous underlying subcontinental mantle. The Awulale Mountains, in the heart of the Tianshan Orogen, display three types of postcollisional mafic magmatic rocks. (1) A medium to high K calc-alkaline mafic volcanic suite (˜280 Ma), which display low La/Yb ratios (2.2-11.8) and a wide range of ɛNd(t) values from +1.9 to +7.4. This suite of rocks was derived from melting of depleted metasomatized asthenospheric mantle followed by upper crustal contamination. (2) Mafic shoshonitic basalts (˜272 Ma), characterized by high La/Yb ratios (14.4-20.5) and more enriched isotope compositions (ɛNd(t) = +0.2 - +0.8). These rocks are considered to have been generated by melting of lithospheric mantle enriched by melts from the Tarim continental crust that was subducted beneath the Tianshan during final collisional suturing. (3) Mafic dikes (˜240 Ma), with geochemical and isotope compositions similiar to the ˜280 Ma basaltic rocks. This succession of postcollision mafic rock types suggests there were two stages of magma generation involving the sampling of different mantle sources. The first stage, which occurred in the early Permian, involved a shift from depleted asthenospheric sources to enriched lithospheric mantle. It was most likely triggered by the subduction of Tarim continental crust and thickening of the Tianshan lithospheric mantle. During the second stage, in the middle Triassic, there was a reversion to more asthenospheric sources, related to postcollision lithospheric thinning.

  7. Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau: Constraints from detrital zircon U-Pb ages and fission-track ages of the Triassic sedimentary sequence

    NASA Astrophysics Data System (ADS)

    Tang, Yan; Zhang, Yunpeng; Tong, Lili

    2018-01-01

    The Zoige depression is an important depocenter within the northeast Songpan-Ganzi flysch basin, which is bounded by the South China, North China and Qiangtang Blocks and forms the northeastern margin of the Tibetan Plateau. This paper discusses the sediment provenance and Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau, using the detrital zircon U-Pb ages and apatite fission-track data from the Middle to Late Triassic sedimentary rocks in the area. The U-Pb ages of the Middle to Late Triassic zircons range from 260-280 Ma, 429-480 Ma, 792-974 Ma and 1800-2500 Ma and represent distinct source region. Our new results demonstrate that the detritus deposited during the Middle Triassic (Ladinian, T2zg) primarily originated from the Eastern Kunlun and North Qinling Orogens, with lesser contributions from the North China Block. By the Late Triassic (early Carnian, T3z), the materials at the southern margin of the North China Block were generally transported westward to the basin along a river network that flowed through the Qinling region between the North China and South China Blocks: this interpretation is supported by the predominance of the bimodal distribution of 1.8 Ga and 2.5 Ga age peaks and a lack of significant Neoproterozoic zircon. Since the Late Triassic (middle Carnian, T3zh), considerable changes have occurred in the source terranes, such as the cessation of the Eastern Kunlun Orogen and North China Block sources and the rise of the northwestern margin of the Yangtze Block and South Qinling Orogen. These drastic changes are compatible with a model of a sustained westward collision between the South China and North China Blocks during the late Triassic and the clockwise rotation of the South China Block progressively closed the basin. Subsequently, orogeny-associated folds have formed in the basin since the Late Triassic (late Carnian), and the study area was generally subjected to uplifting and

  8. Evidence of volcanic induced environmental stress during the end-Triassic event

    NASA Astrophysics Data System (ADS)

    Lindström, Sofie; Sanei, Hamed; van de Schootbrugge, Bas; Krarup Pedersen, Gunver; Dybkjær, Karen; van der Weijst, Carolien; Hovedskov Hansen, Katrine

    2015-04-01

    The end-Triassic biotic crisis is generally explained by massive input of CO2 and/or methane to the atmosphere linked to the formation of the Central Atlantic Magmatic Province. Such massive volcanism can be compared to industrial pollution releasing large amounts of the greenhouse gases CO2 and SO2 to the atmosphere. Indeed, the fossil record provides evidence of major perturbations in the δ13C-record of both calcareous and organic material. In the marine realm loss of calcifying organisms provides evidence of ocean acidification due to the increased pCO2, while in the terrestrial realm physiological responses in fossil plants indicate intense global warming across the Triassic-Jurassic boundary. Changing climatic conditions is further indicated by charcoal records from Greenland, Denmark, Sweden and Poland showing increased wildfire activity. Increased reworking of palynological material and marked changes in fluvial style in terrestrial successions seem to indicate an increased hydrological cycle. Here we examine and compare two proxies, Mercury and palynology, that may both, each in their own way, indicate volcanic induced environmental stress. Mercury (Hg) is one of the most toxic elements on the planet, with volcanic emissions being the largest natural input to the Hg-cycle. The temporal distribution of Hg in relation to organic matter can provide evidence of atmospheric Hg loading on the marine ecosystem. In the terrestrial realm, pollen and spores are known to be sensitive bioindicators of atmospheric pollution and environmental stress. Quantitive abundances of aberrant, and thus probably non-viable, pollen and spores are often used to assess environmental impact on polluted sites today. We present, compare and discuss Hg and aberrant spore/pollen records from the stratigraphically well-constrained Triassic-Jurassic boundary succession at Stenlille in the Danish Basin, and the possible impact of these data on the interpretation of events during end-Triassic

  9. Palynofloral associations before and after the Permian-Triassic mass extinction, Kap Stosch, East Greenland

    NASA Astrophysics Data System (ADS)

    Schneebeli-Hermann, Elke; Hochuli, Peter A.; Bucher, Hugo

    2017-08-01

    The Permian-Triassic boundary (PTB) interval is known to document a major biodiversity crisis in the history of life. It is generally accepted that this crisis had a significant impact on marine invertebrates. The consequences for terrestrial ecosystems are still controversially discussed. Based on palynological analysis we present a high time resolution microfloral succession of the expanded Late Permian (Wuchiapingian)-Early Triassic (Dienerian) section from Kap Stosch, East Greenland. The quantitative distribution of palynomorphs (range charts and relative abundance data) allows for the differentiation of six distinct palynofloral associations. Ammonoids and conodonts provide independent age control for these assemblages. The Wuchiapingian association I, documented from the Ravnefjeld Formation, shows a typical Late Permian assemblage dominated by bisaccate and monosaccate pollen grains and Vittatina spp. It is separated from association II, present in the basal part of the Wordie Creek Formation, by an important hiatus. This association of Changhsingian or earliest Griesbachian age is characterised by the common occurrence of Ephedripites spp. and reduced abundance and diversity of Vittatina spp. Association III, dated as Griesbachian by the presence of ammonoids, is marked by high relative abundances of taeniate bisaccate pollen grains and high spore diversity. A distinct floral break occurs between the gymnosperm dominated Permian and Griesbachian floras and the lycopsid spore dominated Dienerian associations IV-VI. Ammonoid occurrences verify a Dienerian age for the latter associations. Association V is marked by the absence of non-taeniate bisaccate, striate monosaccate pollen grains, and Vittatina spp. Aratrisporites spp. a typical Triassic lycopsid spore occur consistently from this level onwards. Association VI is characterised by highest lycopsid spore abundances. Cluster analysis demonstrates that Griesbachian assemblages (associations II?-III) are

  10. A giant Late Triassic ichthyosaur from the UK and a reinterpretation of the Aust Cliff ‘dinosaurian’ bones

    PubMed Central

    De la Salle, Paul; Massare, Judy A.; Gallois, Ramues

    2018-01-01

    The largest reported ichthyosaurs lived during the Late Triassic (~235–200 million years ago), and isolated, fragmentary bones could be easily mistaken for those of dinosaurs because of their size. We report the discovery of an isolated bone from the lower jaw of a giant ichthyosaur from the latest Triassic of Lilstock, Somerset, UK. It documents that giant ichthyosaurs persisted well into the Rhaetian Stage, and close to the time of the Late Triassic extinction event. This specimen has prompted the reinterpretation of several large, roughly cylindrical bones from the latest Triassic (Rhaetian Stage) Westbury Mudstone Formation from Aust Cliff, Gloucestershire, UK. We argue here that the Aust bones, previously identified as those of dinosaurs or large terrestrial archosaurs, are jaw fragments from giant ichthyosaurs. The Lilstock and Aust specimens might represent the largest ichthyosaurs currently known. PMID:29630618

  11. Timing of the End-Triassic Extinctions on Land: the Moenave Formation on the Southern Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Lucas, S. G.; Tanner, L. H.; Geissman, J. W.; Hurley, L. L.; Kozur, H.; Heckert, A.; Kuerschner, W.; Weems, R.

    2010-12-01

    Strata of the Moenave Formation on and adjacent to the southern Colorado Plateau in Utah-Arizona, USA represent one of the best known and most stratigraphically continuous, complete and fossiliferous terrestrial sections across the Triassic-Jurassic boundary. We present here a synthesis of new biostratigraphic and magnetostratigraphic data collected from the Moenave Formation across the outcrop belt, which extends from the St. George area in southwestern Utah to the Tuba City area in northern Arizona. These include, palynomorphs, conchostracans and vertebrate fossils (including footprints) and a composite polarity record based on four magnetostratigraphic sections. Placement of the Triassic-Jurassic boundary in strata of the Moenave Formation has long been imprecise and debatable, but these new data (especially the conchostracan) allow us to place the Triassic-Jurassic boundary relatively precisely in the middle part of the Whitmore Point Member of the Moenave Formation. This placement supports the conclusion that terrestrial extinctions preceded marine extinctions across the Triassic-Jurassic boundary and likely were unrelated to CAMP volcanism.

  12. Source and Extent of Volcanic Ashes at the Permian-Triassic Boundary in South China and Its implications

    NASA Astrophysics Data System (ADS)

    Wang, M.; Zhong, Y. T.; Hou, Y. L.; He, B.

    2017-12-01

    Highly correlated with the Permian-Triassic Boundary (PTB) Mass Extinction in stratigraphic section, volcanic ashes around the P-T Boundary in South China have been suggested to be a likely cause of the PTB Mass Extinction. So the nature, source and extent of these volcanic ashes have great significance in figuring out the cause of the PTB Mass Extinction. In this study, we attempt to constrain the source and extent of the PTB volcanic ashes in South China by studying pyroclastic sedimentary rocks and the spatial distribution of tuffs and ashes in South China. The detrital zircons of tuffaceous sandstones from Penglaitan section yield an age spectrum peaked at 252Ma, with ɛHf(t) values varying from -20 to -5 ,and have Nb/Hf, Th/Nb and Hf/Th ratios similar to those from arc/orogenic-related settings. Coarse tuffaceous sandstones imply that their source is in limited distance. Those pyroclastic sedimentary rocks in Penglaitan are well correlated with the PTB volcanic ashes in Meishan GSSP section in stratigraphy. In the spatial distribution, pyroclastic sedimentary rocks and tuffs distribute only in southwest of South China, while finer volcanic ashes are mainly in the northern part. This spatial distribution suggests the source of tuffs and ashes was to the south or southwest of South China. Former studies especially that of Permian-Triassic magmatism in Hainan Island have supported the existence of a continental arc related to the subduction and closure of Palaeo-Tethys on the southwestern margin of South China during Permian to early Triassic. It is suggested that the PTB ashes possibly derived from this Paleo-Tethys continental arc. The fact that volcanic ashes haven't been reported or found in PTB stratum in North China or Northwest China implies a limited extent of the volcanism, which thus is too small to cause the PTB mass extinction.

  13. A large aberrant stem ichthyosauriform indicating early rise and demise of ichthyosauromorphs in the wake of the end-Permian extinction

    PubMed Central

    Jiang, Da-Yong; Motani, Ryosuke; Huang, Jian-Dong; Tintori, Andrea; Hu, Yuan-Chao; Rieppel, Olivier; Fraser, Nicholas C.; Ji, Cheng; Kelley, Neil P.; Fu, Wan-Lu; Zhang, Rong

    2016-01-01

    Contrary to the fast radiation of most metazoans after the end-Permian mass extinction, it is believed that early marine reptiles evolved slowly during the same time interval. However, emerging discoveries of Early Triassic marine reptiles are questioning this traditional view. Here we present an aberrant basal ichthyosauriform with a hitherto unknown body design that suggests a fast radiation of early marine reptiles. The new species is larger than coeval marine reptiles and has an extremely small head and a long tail without a fluke. Its heavily-built body bears flattened and overlapping gastral elements reminiscent of hupehsuchians. A phylogenetic analysis places the new species at the base of ichthyosauriforms, as the sister taxon of Cartorhynchus with which it shares a short snout with rostrally extended nasals. It now appears that ichthyosauriforms evolved rapidly within the first one million years of their evolution, in the Spathian (Early Triassic), and their true diversity has yet to be fully uncovered. Early ichthyosauromorphs quickly became extinct near the Early-Middle Triassic boundary, during the last large environmental perturbation after the end-Permian extinction involving redox fluctuations, sea level changes and volcanism. Marine reptile faunas shifted from ichthyosauromorph-dominated to sauropterygian-dominated composition after the perturbation. PMID:27211319

  14. Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins, North Carolina

    USGS Publications Warehouse

    Reid, Jeffrey C.; Milici, Robert C.

    2008-01-01

    This report presents an interpretation of the hydrocarbon source rock potential of the Triassic sedimentary rocks of the Deep River and Dan River basins, North Carolina, based on previously unpublished organic geochemistry data. The organic geochemical data, 87 samples from 28 drill holes, are from the Sanford sub-basin (Cumnock Formation) of the Deep River basin, and from the Dan River basin (Cow Branch Formation). The available organic geochemical data are biased, however, because many of the samples collected for analyses by industry were from drill holes that contained intrusive diabase dikes, sills, and sheets of early Mesozoic age. These intrusive rocks heated and metamorphosed the surrounding sediments and organic matter in the black shale and coal bed source rocks and, thus, masked the source rock potential that they would have had in an unaltered state. In places, heat from the intrusives generated over-mature vitrinite reflectance (%Ro) profiles and metamorphosed the coals to semi-anthracite, anthracite, and coke. The maximum burial depth of these coal beds is unknown, and depth of burial may also have contributed to elevated thermal maturation profiles. The organic geochemistry data show that potential source rocks exist in the Sanford sub-basin and Dan River basin and that the sediments are gas prone rather than oil prone, although both types of hydrocarbons were generated. Total organic carbon (TOC) data for 56 of the samples are greater than the conservative 1.4% TOC threshold necessary for hydrocarbon expulsion. Both the Cow Branch Formation (Dan River basin) and the Cumnock Formation (Deep River basin, Sanford sub-basin) contain potential source rocks for oil, but they are more likely to have yielded natural gas. The organic material in these formations was derived primarily from terrestrial Type III woody (coaly) material and secondarily from lacustrine Type I (algal) material. Both the thermal alteration index (TAI) and vitrinite reflectance data

  15. A new Triassic shortening-extrusion tectonic model for Central-Eastern Asia: Structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China)

    NASA Astrophysics Data System (ADS)

    Zhao, Pan; Faure, Michel; Chen, Yan; Shi, Guanzhong; Xu, Bei

    2015-09-01

    At the northern margin of the North China Block (NCB), the Xilamulun Fault (XMF) is a key belt to decipher the tectonic evolution of Central-Eastern Asia, as it records the Paleozoic final closure of the Paleo-Asian Ocean, and localizes a Late Triassic intracontinental deformation. In this study, structural analysis, 40Ar-39Ar dating, and paleomagnetic studies were performed to investigate the kinematics of the XMF and to further discuss its Triassic geodynamic significance in the Central-Eastern Asia framework after the Paleozoic Central Asian Orogenic evolution. The structural analyses reveal two phases of ductile deformation. The first one (D1), which displays N-verging and E-W trending folds, is related to the Early Paleozoic collisional event between the NCB and the Songliao-Hunshandake Block (SHB). The second phase (D2) displays a high-angle foliation and a pervasive sub-horizontal E-W stretching lineation with kinematic criteria indicative of dextral strike-slip shearing. The 40Ar-39Ar dating on mylonitic granite places the main shearing event around 227-209 Ma. This D2 shearing is coeval with that of the dextral strike-slip Bayan Obo-Chifeng Fault (BCF) and the Chicheng-Fengning-Longhua Fault to the south, which together constitute a dextral shearing fault system on the northern margin of the NCB during the Late Triassic. The paleomagnetic study performed on the Middle Permian Guangxingyuan pluton, located between the XMF and BCF, documents a local clockwise rotation of this pluton with respect to the NCB and SHB. Our multidisciplinary study suggests an NNW-SSE shortening and strike-slip shearing dominated tectonic setting on the northern margin of the NCB during the Late Triassic. Combining the contemporaneous dextral strike-slip movements of the XMF and BCF in northern China and the sinistral strike-slip movement of East Gobi Fault (EGF) in southeastern Mongolia with the large-scale tectonic framework, a Late Triassic NNW-SSE shortening-eastward extrusion

  16. A new Triassic shortening-extrusion tectonic model for Central-EasternAsia: Structural, geochronological and paleomagnetic investigations in the Xilamulun Fault (North China)

    NASA Astrophysics Data System (ADS)

    Zhao, Pan; Faure, Michel; Chen, Yan; Xu, Bei

    2017-04-01

    At the northern margin of the North China Block (NCB), the Xilamulun Fault (XMF) is a key belt to decipher the tectonic evolution of Central-Eastern Asia, as it records the Paleozoic final closure of the Paleo-Asian Ocean, and localizes a Late Triassic intracontinental deformation. In this study, structural analysis, 40Ar-39Ar dating, and paleomagnetic studies were performed to investigate the kinematics of the XMF and to further discuss its Triassic geodynamic significance in the Central-Eastern Asia framework after the Paleozoic Central Asian Orogenic evolution. The structural analyses reveal two phases of ductile deformation. The first one (D1), which displays N-verging and E-W trending folds, is related to the Early Paleozoic collisional event between the NCB and the Songliao-Hunshandake Block (SHB). The second phase (D2) displays a high-angle foliation and a pervasive sub-horizontalE-W stretching lineation with kinematic criteria indicative of dextral strike-slip shearing. The 40Ar-39Ar dating on mylonitic granite places the main shearing event around 227-209 Ma. This D2 shearing is coeval with that of the dextral strike-slip Bayan Obo-Chifeng Fault (BCF) and the Chicheng-Fengning-Longhua Fault to the south, which together constitute a dextral shearing fault system on the northern margin of the NCB during the Late Triassic. The paleomagnetic study performed on the Middle Permian Guangxingyuan pluton, located between the XMF and BCF, documents a local clockwise rotation of this pluton with respect to the NCB and SHB. Our multidisciplinary study suggests anNNW-SSE shortening and strike-slip shearing dominated tectonic setting on the northern margin of the NCB during the Late Triassic. Combining the contemporaneous dextral strike-slip movements of the XMF and BCF in northern China and the sinistral strike-slip movement of East Gobi Fault (EGF) in southeastern Mongolia with the large-scale tectonic framework, a Late Triassic NNW-SSE shortening-eastward extrusion

  17. Pennsylvanian and Early Permian paleogeography of east-central California: Implications for the shape of the continental margin and the timing of continental truncation

    NASA Astrophysics Data System (ADS)

    Stone, Paul; Stevens, Calvin H.

    1988-04-01

    Pennsylvanian and Early Permian paleogeographic features in east-central California include a southeast-trending carbonate shelf edge and turbidite basin that we infer paralleled a segment of the western margin of the North American continent. This segment of the continental margin was oblique to an adjoining segment on the north that trended southwestward across Nevada into easternmost California. We propose that the southeast-trending segment of the margin originated by tectonic truncation of the originally longer southwest-trending segment in Early or Middle Pennsylvanian to late Early Permian time, significantly earlier than a previously hypothesized Late Permian or Early Triassic continental truncation event. We interpret the truncating structure to have been a sinistral transform fault zone along which a continental fragment was removed and carried southeastward into the Caborca-Hermosillo region of northern Mexico, where it is now represented by exposures of Late Proterozoic and Paleozoic miogeoclinal rocks.

  18. Integrated multi-stratigraphic study of the Coll de Terrers late Permian-Early Triassic continental succession from the Catalan Pyrenees (NE Iberian Peninsula): A geologic reference record for equatorial Pangaea

    NASA Astrophysics Data System (ADS)

    Mujal, Eudald; Fortuny, Josep; Pérez-Cano, Jordi; Dinarès-Turell, Jaume; Ibáñez-Insa, Jordi; Oms, Oriol; Vila, Isabel; Bolet, Arnau; Anadón, Pere

    2017-12-01

    The most severe biotic crisis on Earth history occurred during the Permian-Triassic (PT) transition around 252 Ma. Whereas in the marine realm such extinction event is well-constrained, in terrestrial settings it is still poorly known, mainly due to the lack of suitable complete sections. This is utterly the case along the Western Tethys region, located at Pangaea's equator, where terrestrial successions are typically build-up of red beds often characterised by a significant erosive gap at the base of the Triassic strata. Henceforth, documenting potentially complete terrestrial successions along the PT transition becomes fundamental. Here, we document the exceptional Coll de Terrers area from the Catalan Pyrenees (NE Iberian Peninsula), for which a multidisciplinary research is conducted along the PT transition. The red-bed succession, located in a long E-W extended narrow rift system known as Pyrenean Basin, resulted from a continuous sedimentary deposition evolving from meandering (lower Upper Red Unit) to playa-lake/ephemeral lacustrine (upper Upper Red Unit) and again to meandering settings (Buntsandstein facies). Sedimentary continuity is suggested by preliminary cyclostratigraphic analysis that warrants further analysis. Our combined sedimentological, mineralogical and geochemical data infer a humid-semiarid-humid climatic trend across the studied succession. The uppermost Permian strata, deposited under an orbitally controlled monsoonal regime, yields a relatively diverse ichnoassemblage mainly composed of tetrapod footprints and arthropod trace fossils. Such fossils indicate appropriate life conditions and water presence in levels that also display desiccation structures. These levels alternate with barren intervals formed under dry conditions, being thus indicative of strong seasonality. All these features are correlated with those reported elsewhere in Gondwana and Laurasia, and suggest that the Permian-Triassic boundary might be recorded somewhere around

  19. Permian-Triassic Tethyan realm reorganization: Implications for the outward Pangea margin

    NASA Astrophysics Data System (ADS)

    Riel, Nicolas; Jaillard, Etienne; Martelat, Jean-Emmanuel; Guillot, Stéphane; Braun, Jean

    2018-01-01

    We present a new conceptual model to explain the first order Permian-Triassic evolution of the whole > 30 000 km long Pangea margin facing the Panthalassa ocean. Compilation of available geological, geochemical, geochronogical and paleomagnetic data all along this system allowed us to distinguish three part of the margin: western Laurentia, western Gondwana and eastern Gondwana. These segments record distinct tectonic and magmatic events, which all occur synchronously along the whole margin and correlate well with the main geodynamic events of this period, i.e. subduction of the Paleotethys mid-ocean ridge at 310-280 Ma, opening of the Neotethys at 280-260 Ma, counterclockwise rotation of Pangea at 260-230 Ma and closure of the Paleotethys at 230-220 Ma. Between 260 and 230 Ma, the reorganization of the Tethyan realm triggered the up to 35° rotation of Pangea around an Euler pole located in northernmost South America. This implied both an increase and a decrease of the convergence rate between the margin and the Panthalassa ocean, north and south of the Euler pole, respectively. Thus, the Permian-Triassic Pangean margin was marked: in western Laurentia by marginal sea closure, in western Gondwana by widespread bimodal magmatic and volcanic activity, in eastern Gondwana by transpressive orogenic phase. Therefore, we propose that the Permian-Triassic evolution of the outward margin of Pangea was controlled by the Tethyan realm reorganization.

  20. First 'Rauisuchian' archosaur (Pseudosuchia, Loricata) for the Middle Triassic Santacruzodon assemblage zone (Santa Maria Supersequence), Rio Grande do Sul State, Brazil.

    PubMed

    Lacerda, Marcel B; Schultz, Cesar L; Bertoni-Machado, Cristina

    2015-01-01

    The 'Rauisuchia' are a group of Triassic pseudosuchian archosaurs that displayed a near worldwide distribution. In Brazil, their fossils are found only in the Santa Maria Formation (Paraná Basin) of the Rio Grande do Sul State, specifically in the Middle Triassic Dinodontosaurus assemblage zone (AZ) and the Late Triassic Hyperodapedon AZ (Rauisuchus tiradentes). Between these two cenozones is the Santacruzodon AZ (Middle Triassic), whose record was, until now, restricted to non-mammalian cynodonts and the proterochampsian Chanaresuchus bonapartei. Here we present the first occurrence of a rauisuchian archosaur for this cenozone, from the Schoenstatt outcrop, located near the city of Santa Cruz do Sul and propose a new species, based on biostratigraphical evidence and a comparative osteological analysis.

  1. Partitioned transpression in the Triassic Aghdarband basin: evidence for a Cimmerian deformation in NE IRAN:

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Zanchetta, Stefano; Balini, Marco; Ghassemi, Mohammad Reza

    2014-05-01

    The Lower-Middle Triassic Aghdarband Basin, NE Iran, consists of a strongly deformed arc-related marine succession deposited along the southern margin of Eurasia (Turan domain) in a highly mobile tectonic context. The marine deposits are unconformably covered by Upper Triassic continental beds, marking the Cimmerian collision of Iran with Eurasia. The Aghdarband Basin is a key-area for the study of the Cimmerian events, as the Triassic units were severely folded and thrust short time after the collision and were unconformably covered by the gently deformed Middle Jurassic succession which seals the Cimmerian structures. The Triassic deposits form a north-verging thrust stack interacting with an important left-lateral strike-slip shear zone exposed in the northernmost part of the basin. Transpressional structures as strike-slip faults and vertical folds are here associated with high angle reverse faults forming intricate positive flower structures. Systematic asymmetry of major and parasitic folds, as well as their geometrical features indicate that they generated in a left-lateral transpressional regime roughly coeval to thrust imbrication to the south, as a consequence of a marked strain partitioning. Aim of this presentation is to describe in detail the deformational structures of the Aghdarband region, based on structural mapping and detailed original mesoscopic field analyses, resuming from the excellent work performed in the '70s by Ruttner (1991). Our work is focused on the pre mid-Jurassic structures which can be related to the final stages of the Cimmerian deformation resulting from the oblique collision of the Iranian microplate with the southern margin of Eurasia, the so-called Turan domain. We will finally discuss the kinematic significance of the Late Triassic oblique convergence zone of Aghdarband in the frame of strain partitioning in transpressional deformation. Structural weakness favouring strain partitioning can be related to inversion of syn

  2. Divergent response of the neritic carbonate factory to environmental changes during the Early Bajocian Event

    NASA Astrophysics Data System (ADS)

    Bodin, Stephane; Hönig, Martin; Krencker, Francois-Nicolas; Danisch, Jan; Kabiri, Lahcen

    2017-04-01

    The Early Bajocian witnessed a global environmental perturbation, characterized by faunal and floral turnovers and a positive carbon isotope excursion. In Italy, this environmental perturbation coincided with an eutrophication event and a carbonate crisis, but this has so far not been adequately reported from other settings, leaving doubt about the extent and nature of these phenomena. Here, we are reporting on an extensive neritic carbonate factory demise that occurs in the upper Lower Bajocian of the Central High Atlas of Morocco, more precisely in the upper Propinquans - lower Humphriesianum Zones. This demise coincided with the acme of the global carbon isotope perturbation, recorded by a 3‰ positive carbon isotope excursion in the bulk organic matter of Morocco. Recovery of the neritic carbonate system occurs during the Early to Late Bajocian transition. The duration of the neritic carbonate factory demise was therefore in the order of 1 Myr. Furthermore, we observe that the Lower Bajocian of Morocco is relatively enriched in arenitic siliciclastic deposits, suggesting increased weathering and nutrient levels along the northwestern margin of Africa during the Early Bajocian. However, comparison with neighboring European basins highlights the non-uniqueness and different timing of the response of shallow-water carbonates to the Early Bajocian environmental perturbations, as some regions present no sign of carbonate factory crisis. Hence, we postulate that local factors were important in mediating the response of neritic carbonate factories to this global environmental perturbation. We notably highlight the role of large Early Bajocian sea-level fluctuation as a trigger for carbonate factory change and demise in Morocco. Indeed, in the Central High Atlas Basin, transgressive intervals are seeing the development of a mud-dominated carbonate factory whereas regressive intervals are associated with grain-dominated carbonate factory. We speculate that the

  3. Sea level reconstructions and non-marine sedimentation at the Triassic-Jurassic boundary: southwestern margin of the Neotethys in the Salt Range, Pakistan

    NASA Astrophysics Data System (ADS)

    Iqbal, Shahid; Wagreich, Michael

    2016-04-01

    The environmental changes during the Triassic-Jurassic boundary interval and the associated mass extinction event are still strongly debated. Sea-level reconstruction records during this interval reveal an end-Triassic global regression event. Erosion and karstification at the top of Triassic sediments, and Lower Jurassic fluvial channels with reworked Triassic clasts indicate widespread regression in the European basins. Laterite at the top of the Triassic, and quartzose conglomerates/sandstones at the base of the Jurassic indicate a fluvial/terrestrial onset in Iran and Afghanistan. Abrupt emergence, erosion and facies dislocation, from the Triassic dolomites (Kingriali Formation) to Lower Jurassic fluvial/continental quartzose conglomerates/pebbly sandstones (Datta Formation) occur in the Tethyan Salt Range of Pakistan. Sedimentological analyses indicate marine regression and emergence under tropical-subtropical conditions (Greenhouse conditions) and negates the possibility of glacial influence in this region. Field evidences indicate the presence of an undulatory surface at the base of the Jurassic and a high (Sargodha High) is present south of the Salt Range Thrust, the southern boundary of the basin. Furthermore, geophysical data (mostly seismic sections) in different parts of the basin display normal faults in the basement. These features are interpreted as horst and graben structures at the Triassic-Jurassic boundary in the Kohat-Potwar Plateau. The Lower Jurassic Datta Formation appears to have been deposited in an overall graben fill settings. Similar normal faults and graben fill geometries are observed on seismic sections in Tanzania, Mozambique, Madagascar and other regions of the southeastern margin of the African Plate and are related to the Karoo rift system. To summarize, the basement normal faults and the graben fill features at the Triassic-Jurassic boundary in the Kohat-Potwar Plateau can be correlated to similar features common in the Karoo

  4. Provenance of Permian-Triassic Gondwana Sequence Units Accreted to the Banda Arc: Constraints from U/Pb and Hf Analysis of Zircons and Igneous Geochemistry

    NASA Astrophysics Data System (ADS)

    Flores, J. A.; Spencer, C. J.; Harris, R. A.; Hoiland, C.

    2011-12-01

    Analysis of zircons from Australian affinity Permo-Triassic units of the Timor region yield age distributions with large peaks at 230-400 Ma and 1750-1900 Ma (n=435). Similar zircon age peaks are also found in rocks from NE Australia and the eastern Cimmerian block. It is likely that these terranes, which are now widely separated, were once part of the northern edge of Gondwana near what is now the NW margin of Australia. The Cimmerian Block was removed from Gondwana during Early Permian rifting and initiation of the Neo-Tethys Ocean. Hf analysis of zircon from the Aileu Complex in Timor and Kisar shows bimodal (juvenial and evolved) magmatism in the Gondwana Sequence of NW Australia at ~300 Ma. The magmatic event produced basalt with rift valley and ocean floor geochemical affinities, and rhyolite. Similar rock types and isotopic signatures are also found in Permo-Triassic igneous units throughout the Cimmerian continental block. The part of the Cimmerian Block with zircon distributions most like the Gondwana Sequence of NW Australia is the terranes of northern Tibet and Malaysia. The large 1750-1900 Ma zircon peak is much more wide spread, and appears in terranes from Baoshan (SW China) to Borneo. The Permo-Triassic rocks of the Timor region fill syn-rift intracratonic basins that successfully rifted in the Jurassic to form the NW margin of Australia. This passive continental margin first entered the Sunda Trench in the Timor region at around 8 Ma causing the Permo-Triassic rocks to accrete to the edge of the Asian Plate and emerge as a series of mountainous islands in the young collision zone. Eventually, the Australian continental margin will collide with the southern edge of the Asian plate and these Gondwana terranes will rejoin. However, it may be difficult to reconstruct the various ventures of they made over the past 300 Ma.

  5. The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542-520 Ma) Yangtze platform

    NASA Astrophysics Data System (ADS)

    Jiang, Ganqing; Wang, Xinqiang; Shi, Xiaoying; Xiao, Shuhai; Zhang, Shihong; Dong, Jin

    2012-02-01

    The early Cambrian (ca. 542-520 Ma) strata in South China record two prominent negative carbonate carbon isotope (δ13Ccarb) excursions of early Nemakit-Daldynian (N-D) and early Tommotian ages. Across each of these excursions, carbonate and organic carbon isotopes (δ13Ccarb and δ13Corg) are strongly decoupled. Regional correlation across a shelf-to-basin transect shows lateral heterogeneity of δ13Corg during the early-middle N-D but more homogenized δ13Corg values across the basin during the late N-D and Tommotian. The temporal and lateral variations in δ13Corg suggest that decoupled δ13Ccarb and δ13Corg across the N-D δ13Ccarb excursion were possibly caused by diagenetic alteration of organic matter and/or amplification of detrital organic carbon isotope signature in low-TOC carbonates. In contrast, decoupled δ13Ccarb and δ13Corg of the upper N-D and Tommotian were likely resulted from chemoautotrophic-methanotrophic biomass contribution to TOC in organic-rich black shale and carbonates. The decoupled δ13Ccarb-δ13Corg pattern from the lower N-D strata (ca. 542 Ma) shows striking similarities with those from the basal (ca. 635 Ma) and upper (ca. 551 Ma) Doushantuo Formation. In all three cases, decoupled δ13Ccarb-δ13Corg are seen in organic-poor carbonates (TOC ≤ 0.1‰) and coupled δ13Ccarb-δ13Corg occur in organic-rich black shale and carbonates at the end of the negative δ13Ccarb excursion. These similarities suggest that the shift from decoupled to coupled δ13Ccarb-δ13Corg has no causal link with the terminal oxidation of a large oceanic DOC reservoir. Given the pervasive anoxia/euxinia in Ediacaran-early Cambrian oceans, local DOC-rich environments may have been common, but a large oceanic DOC reservoir capable of buffering the δ13C of marine organic matter requires independent evidence.

  6. Understanding Late Triassic low latitude terrestrial ecosystems: new insights from the Colorado Plateau Coring Project (CPCP)

    NASA Astrophysics Data System (ADS)

    Irmis, R. B.; Olsen, P. E.; Parker, W.; Rasmussen, C.; Mundil, R.; Whiteside, J. H.

    2017-12-01

    The Chinle Formation of southwestern North America is a key paleontological archive of low paleolatitude non-marine ecosystems that existed during the Late Triassic hothouse world. These strata were deposited at 5-15°N latitude, and preserve extensive plant, invertebrate, and vertebrate fossil assemblages, including early dinosaurs; these organisms lived in an unpredictably fluctuating semi-arid to arid environment with very high atmospheric pCO2. Despite this well-studied fossil record, a full understanding of these ecosystems and their integration with other fossil assemblages globally has been hindered by a poor understanding of the Chinle Formation's age, duration, and sedimentation rates. Recently, the CPCP recovered a 520m continuous core through this formation from the northern portion of Petrified Forest National Park (PEFO) in northern Arizona, USA. This core has provided a plethora of new radioisotopic and magnetostratigraphic data from fresh, unweathered samples in unambiguous stratigraphic superposition. These constraints confirm that virtually all fossil-bearing horizons in Chinle outcrops in the vicinity of PEFO are Norian in age. Furthermore, they indicate that the palynomorph zone II and Adamanian vertebrate biozone are at least six million years long, whereas the overlying palynomorph zone III and Revueltian vertebrate biozone persisted for at least five million years, with the boundary between 216-214 Ma. This confirms that the rich late Adamanian-early Revueltian vertebrate fossil assemblages, where dinosaurs are exclusively rare, small-bodied carnivorous theropods, are contemporaneous with higher latitude assemblages in Europe, South America, and Africa where large-bodied herbivorous sauropodomorph dinosaurs are common. The age constraints also confirm that several palynomorph biostratigraphic ranges in the Chinle Formation differ from those of the same taxa in eastern North American (Newark Supergroup) and Europe. These data are consistent

  7. Syntectonic emplacement of the Triassic biotite-syenogranite intrusions in the Taili area, western Liaoning, NE China: Insights from petrogenesis, rheology and geochronology

    NASA Astrophysics Data System (ADS)

    Li, Weimin; Liu, Yongjiang; Jin, Wei; Neubauer, Franz; Zhao, Yingli; Liang, Chenyue; Wen, Quanbo; Feng, Zhiqiang; Li, Jing; Liu, Qing

    2017-05-01

    deduce much higher strain rates in the center (1.26 × 10-11-2.24 × 10-9 s-1) than at the margin (9.07 × 10-12-1.31 × 10-9 s-1) of the pluton. These observations are interpreted by the rheological behavior of magma during the magmatic ;pipe; flow. The adakitic source melts ascended through the conduits along weak NE-trending sinistral shear zones, and emplaced at the shallower depth of ∼16 km before Early Jurassic (∼190 Ma). The biotite-syenogranites were still in a semisolid state, when garnet-bearing granitic aplites injected at ∼220 Ma. This stage records elongate (constrictional) strain under the sinistral shear stresses, particularly in quartz grains occurring in the margin of intrusions. In combination with previous studies, an exhumation rate of the NCC's Archean basement (from ∼25 km to ∼11 km in depth) is calculated as initial low exhumation rate of ∼4.0 mm/kyr from Neoarchean to Late Triassic, and subsequent a rapid exhumation process of ∼63 mm/kyr between Late Triassic to Early Cretaceous. All the results presented here allow us to consider the geodynamic evolution of the eastern NCC and constrain the onset of lithospheric thinning and cratonic destruction of the NCC as early as Middle Triassic (∼240 Ma) triggered by the amalgamation of adjacent blocks. It developed prosperously since Late Triassic, due to the oblique subduction of the Paleo-Pacific Plate.

  8. First 'Rauisuchian' archosaur (Pseudosuchia, Loricata) for the Middle Triassic Santacruzodon Assemblage Zone (Santa Maria Supersequence), Rio Grande do Sul State, Brazil

    PubMed Central

    Lacerda, Marcel B.; Schultz, Cesar L.; Bertoni-Machado, Cristina

    2015-01-01

    The ‘Rauisuchia’ are a group of Triassic pseudosuchian archosaurs that displayed a near worldwide distribution. In Brazil, their fossils are found only in the Santa Maria Formation (Paraná Basin) of the Rio Grande do Sul State, specifically in the Middle Triassic Dinodontosaurus assemblage zone (AZ) and the Late Triassic Hyperodapedon AZ (Rauisuchus tiradentes). Between these two cenozones is the Santacruzodon AZ (Middle Triassic), whose record was, until now, restricted to non-mammalian cynodonts and the proterochampsian Chanaresuchus bonapartei. Here we present the first occurrence of a rauisuchian archosaur for this cenozone, from the Schoenstatt outcrop, located near the city of Santa Cruz do Sul and propose a new species, based on biostratigraphical evidence and a comparative osteological analysis. PMID:25714091

  9. A bird-like skull in a Triassic diapsid reptile increases heterogeneity of the morphological and phylogenetic radiation of Diapsida

    NASA Astrophysics Data System (ADS)

    Pritchard, Adam C.; Nesbitt, Sterling J.

    2017-10-01

    The Triassic Period saw the first appearance of numerous amniote lineages (e.g. Lepidosauria, Archosauria, Mammalia) that defined Mesozoic ecosystems following the end Permian Mass Extinction, as well as the first major morphological diversification of crown-group reptiles. Unfortunately, much of our understanding of this event comes from the record of large-bodied reptiles (total body length > 1 m). Here we present a new species of drepanosaurid (small-bodied, chameleon-like diapsids) from the Upper Triassic Chinle Formation of New Mexico. Using reconstructions of micro-computed tomography data, we reveal the three-dimensional skull osteology of this clade for the first time. The skull presents many archaic anatomical traits unknown in Triassic crown-group reptiles (e.g. absence of bony support for the external ear), whereas other traits (e.g. toothless rostrum, anteriorly directed orbits, inflated endocranium) resemble derived avian theropods. A phylogenetic analysis of Permo-Triassic diapsids supports the hypothesis that drepanosaurs are an archaic lineage that originated in the Permian, far removed from crown-group Reptilia. The phylogenetic position of drepanosaurids indicates the presence of archaic Permian clades among Triassic small reptile assemblages and that morphological convergence produced a remarkably bird-like skull nearly 100 Myr before one is known to have emerged in Theropoda.

  10. A bird-like skull in a Triassic diapsid reptile increases heterogeneity of the morphological and phylogenetic radiation of Diapsida

    PubMed Central

    Nesbitt, Sterling J.

    2017-01-01

    The Triassic Period saw the first appearance of numerous amniote lineages (e.g. Lepidosauria, Archosauria, Mammalia) that defined Mesozoic ecosystems following the end Permian Mass Extinction, as well as the first major morphological diversification of crown-group reptiles. Unfortunately, much of our understanding of this event comes from the record of large-bodied reptiles (total body length > 1 m). Here we present a new species of drepanosaurid (small-bodied, chameleon-like diapsids) from the Upper Triassic Chinle Formation of New Mexico. Using reconstructions of micro-computed tomography data, we reveal the three-dimensional skull osteology of this clade for the first time. The skull presents many archaic anatomical traits unknown in Triassic crown-group reptiles (e.g. absence of bony support for the external ear), whereas other traits (e.g. toothless rostrum, anteriorly directed orbits, inflated endocranium) resemble derived avian theropods. A phylogenetic analysis of Permo-Triassic diapsids supports the hypothesis that drepanosaurs are an archaic lineage that originated in the Permian, far removed from crown-group Reptilia. The phylogenetic position of drepanosaurids indicates the presence of archaic Permian clades among Triassic small reptile assemblages and that morphological convergence produced a remarkably bird-like skull nearly 100 Myr before one is known to have emerged in Theropoda. PMID:29134065

  11. A bird-like skull in a Triassic diapsid reptile increases heterogeneity of the morphological and phylogenetic radiation of Diapsida.

    PubMed

    Pritchard, Adam C; Nesbitt, Sterling J

    2017-10-01

    The Triassic Period saw the first appearance of numerous amniote lineages (e.g. Lepidosauria, Archosauria, Mammalia) that defined Mesozoic ecosystems following the end Permian Mass Extinction, as well as the first major morphological diversification of crown-group reptiles. Unfortunately, much of our understanding of this event comes from the record of large-bodied reptiles (total body length > 1 m). Here we present a new species of drepanosaurid (small-bodied, chameleon-like diapsids) from the Upper Triassic Chinle Formation of New Mexico. Using reconstructions of micro-computed tomography data, we reveal the three-dimensional skull osteology of this clade for the first time. The skull presents many archaic anatomical traits unknown in Triassic crown-group reptiles (e.g. absence of bony support for the external ear), whereas other traits (e.g. toothless rostrum, anteriorly directed orbits, inflated endocranium) resemble derived avian theropods. A phylogenetic analysis of Permo-Triassic diapsids supports the hypothesis that drepanosaurs are an archaic lineage that originated in the Permian, far removed from crown-group Reptilia. The phylogenetic position of drepanosaurids indicates the presence of archaic Permian clades among Triassic small reptile assemblages and that morphological convergence produced a remarkably bird-like skull nearly 100 Myr before one is known to have emerged in Theropoda.

  12. Re-Os Geochronology Pins Age and Os Isotope Composition of Middle Triassic Black Shales and Seawater, Barents Sea and Spitsbergen (Svalbard)

    NASA Astrophysics Data System (ADS)

    Xu, G.; Hannah, J. L.; Bingen, B.; Stein, H. J.; Yang, G.; Zimmerman, A.; Weitschat, W.; Weiss, H. M.

    2008-12-01

    Absolute age control throughout the Triassic is extraordinarily sparse. Two "golden spikes" have been added recently (http://www.stratigraphy.org/cheu.pdf) within the otherwise unconstrained Triassic, but ages of stage boundaries remain controversial. Here we report two Re-Os isochrons for Anisian (Middle Triassic) black shales from outcrop in western Svalbard and drill core from the Svalis Dome about 600 km to the SE in the Barents Sea. Black shales of the Blanknuten Member, Botneheia Formation, from the type section at Botneheia, western Spitsbergen (Svalbard), have total organic carbon (TOC) contents of 2.6 to 6.0 wt%. Rock-Eval data suggest moderately mature (Tmax = 440-450° C) Type II-III kerogens (Hydrogen Index (HI) = 232-311 mg HC/g TOC). Re-Os data yield a well-constrained Model 3 age of 241 Ma and initial 187Os/188Os (Osi) of 0.83 (MSWD = 16, n = 6). Samples of the possibly correlative Steinkobbe Formation from IKU core hole 7323/07-U-04 into the Svalis Dome in the Barents Sea (at about 73°30'N, 23°15'E) have TOC contents of 1.4 to 2.4%. Rock-Eval data suggest immature (Tmax = 410-430°) Type II-III kerogens (HI = 246-294 mg HC/g TOC). Re-Os data yield a precise Model 1 age of 239 Ma and Osi of 0.776 (MSWD = 0.2, n = 5). The sampled section of Blanknuten shale underlies a distinctive Frechitas (formerly Ptychites) layer, and is therefore assumed to be middle Anisian. The Steinkobbe core was sampled at 99-100 m, just above the Olenekian-Anisian transition. It is therefore assumed to be lower Anisian. The two isochron ages overlap within uncertainty, and fall within constraints provided by biozones and the current ICS-approved stage boundary ages. The Re-Os ages support the correlation of the Botneheia and Steinkobbe formations. The nearly identical Osi ratios suggest regional homogeneity of seawater and provide new information for the Os seawater curve, marking a relatively high 187Os/188Os ratio during profound ocean anoxia in the Middle Triassic.

  13. Unusual intraosseous fossilized soft tissues from the Middle Triassic Nothosaurus bone

    NASA Astrophysics Data System (ADS)

    Surmik, Dawid; Rothschild, Bruce M.; Pawlicki, Roman

    2017-04-01

    Fossilized soft tissues, occasionally found together with skeletal remains, provide insights to the physiology and functional morphology of extinct organisms. Herein, we present unusual fossilized structures from the cortical region of bone identified in isolated skeletal remains of Middle Triassic nothosaurs from Upper Silesia, Poland. The ribbed or annuli-shaped structures have been found in a sample of partially demineralized coracoid and are interpreted as either giant red blood cells or as blood vessel walls. The most probable function is reinforcing the blood vessels from changes of nitrogen pressure in air-breathing diving reptiles. These structures seem to have been built of extensible muscle layers which prevent the vessel damage during rapid ascent. Such suspected function presented here is parsimonious with results of previous studies, which indicate rarity of the pathological modification of bones associated with decompression syndrome in Middle Triassic nothosaurs.

  14. δ 13C evidence that high primary productivity delayed recovery from end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Meyer, K. M.; Yu, M.; Jost, A. B.; Kelley, B. M.; Payne, J. L.

    2011-02-01

    Euxinia was widespread during and after the end-Permian mass extinction and is commonly cited as an explanation for delayed biotic recovery during Early Triassic time. This anoxic, sulfidic episode has been ascribed to both low- and high-productivity states in the marine water column, leaving the causes of euxinia and the mechanisms underlying delayed recovery poorly understood. Here we use isotopic analysis to examine the changing chemical structure of the water column through the recovery interval and thereby better constrain paleoproductivity. The δ 13C of limestones from 5 stratigraphic sections in south China displays a negative gradient of approximately 4‰ from shallow-to-deep water facies within the Lower Triassic. This intense gradient declines within Spathian and lowermost Middle Triassic strata, coincident with accelerated biotic recovery and carbon cycle stabilization. Model simulations show that high nutrient levels and a vigorous biological pump are required to sustain such a large gradient in δ 13C, indicating that Early Triassic ocean anoxia and delayed recovery of benthic animal ecosystems resulted from too much productivity rather than too little.

  15. Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis.

    PubMed

    Dunhill, Alexander M; Wills, Matthew A

    2015-08-11

    Rates of extinction vary greatly through geological time, with losses particularly concentrated in mass extinctions. Species duration at other times varies greatly, but the reasons for this are unclear. Geographical range correlates with lineage duration amongst marine invertebrates, but it is less clear how far this generality extends to other groups in other habitats. It is also unclear whether a wide geographical distribution makes groups more likely to survive mass extinctions. Here we test for extinction selectivity amongst terrestrial vertebrates across the end-Triassic event. We demonstrate that terrestrial vertebrate clades with larger geographical ranges were more resilient to extinction than those with smaller ranges throughout the Triassic and Jurassic. However, this relationship weakened with increasing proximity to the end-Triassic mass extinction, breaking down altogether across the event itself. We demonstrate that these findings are not a function of sampling biases; a perennial issue in studies of this kind.

  16. A high resolution magnetostratigraphic profile across the Permian-Triassic boundary in the Southern Sydney Basin, eastern Australia

    NASA Astrophysics Data System (ADS)

    Belica, M. E.; Tohver, E.; Nicoll, R.; Denyszyn, S. W.; Pisarevsky, S.; George, A. D.

    2016-12-01

    The Permian-Triassic boundary (PTB) is associated with the largest mass extinction in Phanerozoic geologic history. Despite several decades of intense study, there is ongoing debate regarding the exact timing of extinction and the global correlation of marine and terrestrial P-T sections. The terrestrial record is hampered by a lack of index fossils; however, magnetostratigraphy offers an opportunity for correlation because it relies on the global synchronicity of magnetic reversals. A magnetostratigraphic profile across the Permian-Triassic boundary has been obtained from a stratigraphically continuous terrestrial section in the Southern Sydney Basin of eastern Australia. The 60 m section is located within the Narrabeen Group, which consists of fluvial to lacustrine sandstones and mudstones. Paleomagnetic samples were collected at one meter intervals to determine a detailed reversal record. Samples were stepwise thermally demagnetized to isolate a primary remanence, and magnetic susceptibility was measured in the field at 30 cm intervals with values ranging from -0.047-2.50 (10-3 SI units). Three normal and three reverse magnetozones were detected after removal of a low temperature overprint, and the results show good agreement with the Global Magnetic Polarity Timescale as well as marine Permian-Triassic sections where the PTB is well constrained. Furthermore, a reverse polarity subchron has been identified within the normal magnetozone spanning the PTB similar to results published from the Netherlands and China. The magnetic stratigraphy suggests that the Narrabeen Group was deposited during the late Changhsingian to early Induan, and provides a revised placement of the PTB in the lower Wombarra Claystone. Integration of the magnetostratigraphy with existing isotopic datasets suggests that the terrestrial extinction in eastern Australia occurred 7.5 m below the PTB in the Changhsingian Coalcliff Sandstone. A tuff within a coal seam underlying the Coalcliff

  17. Bone microstructure and the evolution of growth patterns in Permo-Triassic therocephalians (Amniota, Therapsida) of South Africa

    PubMed Central

    Botha-Brink, Jennifer

    2014-01-01

    Therocephalians were a speciose clade of nonmammalian therapsids whose ecological diversity and survivorship of the end-Permian mass extinction offer the potential to investigate the evolution of growth patterns across the clade and their underlying influences on post-extinction body size reductions, or ‘Lilliput effects’. We present a phylogenetic survey of limb bone histology and growth patterns in therocephalians from the Middle Permian through Middle Triassic of the Karoo Basin, South Africa. Histologic sections were prepared from 80 limb bones representing 11 genera of therocephalians. Histologic indicators of skeletal growth, including cortical vascularity (%CV) and mean primary osteon diameters (POD), were evaluated in a phylogenetic framework and assessed for correlations with other biologically significant variables (e.g., size and robusticity). Changes in %CV and POD correlated strongly with evolutionary changes in body size (i.e., smaller-bodied descendants tended to have lower %CV than their larger-bodied ancestors across the tree). Bone wall thickness tended to be high in early therocephalians and lower in the gracile-limbed baurioids, but showed no general correlation with cross-sectional area or degree of vascularity (and, thus, growth). Clade-level patterns, however, deviated from previously studied within-lineage patterns. For example, Moschorhinus, one of few therapsid genera to have survived the extinction boundary, demonstrated higher %CV in the Triassic than in the Permian despite its smaller size in the extinction aftermath. Results support a synergistic model of size reductions for Triassic therocephalians, influenced both by within-lineage heterochronic shifts in survivor taxa (as reported in Moschorhinus and the dicynodont Lystrosaurus) and phylogenetically inferred survival of small-bodied taxa that had evolved short growth durations (e.g., baurioids). These findings mirror the multi-causal Lilliput patterns described in marine faunas

  18. Characterization of the Triassic Newark Basin of New York and New Jersey for geologic storage of carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Daniel J.

    The Newark Basin is a Triassic-aged rift basin underlying densely populated, industrialized sections of New York, New Jersey and Pennsylvania. The Basin is an elongate half-graben encompassing an area of more than 7,510 square-kilometers (2,900 square-miles), and could represent a key storage component for commercial scale management of carbon dioxide emissions via geologic sequestration. The project team first acquired published reports, surface and subsurface maps, and seismic data, which formed the basis for a three-dimensional model framework for the northern end of the Basin incorporating stratigraphic, hydrologic, and water quality data. Field investigations included drilling, coring, and logging of two stratigraphic test borings in Clarkstown, NY (Exit 14 Tandem Lot Well No. 1), drilled to a depth of 2,099 meters (6,885 feet); and Palisades, NY (Lamont-Doherty Earth Observatory Test Well No. 4) drilled to a depth of 549 meters (1,802 feet). Two two-dimensional seismic reflection data lines arrayed perpendicularly were acquired by Schlumberger/WesternGeco to help characterize the structure and stratigraphy and as part of pre-drilling field screening activities for the deep stratigraphic borehole. A total of 47 meters (155 feet) of continuous whole core was recovered from the Tandem Lot boring from depths of 1,393 meters (4,570 feet) to 1,486 meters (4,877 feet). Twenty-five horizontal rotary cores were collected in mudstones and sandstones in the surface casing hole and fifty-two cores were taken in various lithologies in the deep borehole. Rotary core plugs were analyzed by Weatherford Laboratories for routine and advanced testing. Rotary core plug trim end thin sections were evaluated by the New York State Museum for mineralogical analysis and porosity estimation. Using core samples, Lawrence Berkley National Laboratory designed and completed laboratory experiments and numerical modeling analyses to characterize the dissolution and reaction of carbon

  19. What do we really know about early diagenesis of non-marine carbonates?

    NASA Astrophysics Data System (ADS)

    De Boever, Eva; Brasier, Alexander T.; Foubert, Anneleen; Kele, Sándor

    2017-11-01

    Non-marine carbonate rocks including cave, spring, stream, calcrete and lacustrine-palustrine sediments, are susceptible to early diagenetic processes. These can profoundly alter the carbonate fabric and affect paleoclimatic proxies. This review integrates recent insights into diagenesis of non-marine carbonates and in particular the variety of early diagenetic processes, and presents a conceptual framework to address them. With ability to study at smaller and smaller scales, down to nanometers, one can now observe diagenesis taking place the moment initial precipitates have formed, and continuing thereafter. Diagenesis may affect whole rocks, but it typically starts in nano- and micro-environments. The potential for diagenetic alteration depends on the reactivity of the initial precipitate, commonly being metastable phases like vaterite, Ca-oxalates, hydrous Mg-carbonates and aragonite with regard to the ambient fluid. Furthermore, organic compounds commonly play a crucial role in hosting these early transformations. Processes like neomorphism (inversion and recrystallization), cementation and replacement generally result in an overall coarsening of the fabric and homogenization of the wide range of complex, primary microtextures. If early diagenetic modifications are completed in a short time span compared to the (annual to millennial) time scale of interest, then recorded paleoenvironmental signals and trends could still acceptably reflect original, depositional conditions. However, even compact, non-marine carbonate deposits may behave locally and temporarily as open systems to crystal-fluid exchange and overprinting of one or more geochemical proxies is not unexpected. Looking to the future, relatively few studies have examined the behaviour of promising geochemical records, such as clumped isotope thermometry and (non-conventional) stable isotopes, in well-constrained diagenetic settings. Ongoing and future in-vitro and in-situ experimental approaches will

  20. From Permo-Triassic lithospheric thinning to Jurassic rifting at the Adriatic margin: Petrological and geochronological record in Valtournenche (Western Italian Alps)

    NASA Astrophysics Data System (ADS)

    Manzotti, Paola; Rubatto, Daniela; Darling, James; Zucali, Michele; Cenki-Tok, Bénédicte; Engi, Martin

    2012-08-01

    Slices of polycyclic metasediments (marbles and meta-cherts) are tectonically amalgamated with the polydeformed basement of the Dent Blanche tectonic system along a major Alpine shear zone in the Western Alps (Becca di Salé area, Valtournenche Valley). A combination of techniques (structural analysis at various scales, metamorphic petrology, geochronology and trace element geochemistry) was applied to determine the age and composition of accessory phases (titanite, allanite and zircon) and their relation to major minerals. The results are used to reconstruct the polyphase structural and metamorphic histories, comprising both pre-Alpine and Alpine cycles. The pre-Alpine evolution is associated with low-pressure high-temperature metamorphism related to Permo-Triassic lithospheric thinning. In meta-cherts, microtextural relations indicate coeval growth of allanite and garnet during this stage, at ~ 300 Ma. Textures of zircon also indicate crystallisation at HT conditions; ages scatter from 263 to 294 Ma, with a major cluster of data at ~ 276 Ma. In impure marble, U-Pb analyses of titanite domains (with variable Al and F contents) yield apparent 206Pb/238U dates range from Permian to Jurassic. Chemical and isotopic data suggest that titanite formed at Permian times and was then affected by (extension-related?) fluid circulation during the Triassic and Jurassic, which redistributed major elements (Al and F) and partially opened the U-Pb system. The Alpine cycle lead to early blueschist facies assemblages, which were partly overprinted under greenschist facies conditions. The strong Alpine compressional overprint disrupted the pre-Alpine structural imprint and/or reactivated earlier structures. The pre-Alpine metamorphic record, preserved in these slices of metasediments, reflects the onset of the Permo-Triassic lithospheric extension to Jurassic rifting.

  1. Spectroscopic Studies on Organic Matter from Triassic Reptile Bones, Upper Silesia, Poland

    PubMed Central

    Surmik, Dawid; Boczarowski, Andrzej; Balin, Katarzyna; Dulski, Mateusz; Szade, Jacek; Kremer, Barbara; Pawlicki, Roman

    2016-01-01

    Fossil biomolecules from an endogenous source were previously identified in Cretaceous to Pleistocene fossilized bones, the evidence coming from molecular analyses. These findings, however, were called into question and an alternative hypothesis of the invasion of the bone by bacterial biofilm was proposed. Herewith we report a new finding of morphologically preserved blood-vessel-like structures enclosing organic molecules preserved in iron-oxide-mineralized vessel walls from the cortical region of nothosaurid and tanystropheid (aquatic and terrestrial diapsid reptiles) bones. These findings are from the Early/Middle Triassic boundary (Upper Roetian/Lowermost Muschelkalk) strata of Upper Silesia, Poland. Multiple spectroscopic analyses (FTIR, ToF-SIMS, and XPS) of the extracted "blood vessels" showed the presence of organic compounds, including fragments of various amino acids such as hydroxyproline and hydroxylysine as well as amides, that may suggest the presence of collagen protein residues. Because these amino acids are absent from most proteins other than collagen, we infer that the proteinaceous molecules may originate from endogenous collagen. The preservation of molecular signals of proteins within the "blood vessels" was most likely made possible through the process of early diagenetic iron oxide mineralization. This discovery provides the oldest evidence of in situ preservation of complex organic molecules in vertebrate remains in a marine environment. PMID:26977600

  2. Spectroscopic Studies on Organic Matter from Triassic Reptile Bones, Upper Silesia, Poland.

    PubMed

    Surmik, Dawid; Boczarowski, Andrzej; Balin, Katarzyna; Dulski, Mateusz; Szade, Jacek; Kremer, Barbara; Pawlicki, Roman

    2016-01-01

    Fossil biomolecules from an endogenous source were previously identified in Cretaceous to Pleistocene fossilized bones, the evidence coming from molecular analyses. These findings, however, were called into question and an alternative hypothesis of the invasion of the bone by bacterial biofilm was proposed. Herewith we report a new finding of morphologically preserved blood-vessel-like structures enclosing organic molecules preserved in iron-oxide-mineralized vessel walls from the cortical region of nothosaurid and tanystropheid (aquatic and terrestrial diapsid reptiles) bones. These findings are from the Early/Middle Triassic boundary (Upper Roetian/Lowermost Muschelkalk) strata of Upper Silesia, Poland. Multiple spectroscopic analyses (FTIR, ToF-SIMS, and XPS) of the extracted "blood vessels" showed the presence of organic compounds, including fragments of various amino acids such as hydroxyproline and hydroxylysine as well as amides, that may suggest the presence of collagen protein residues. Because these amino acids are absent from most proteins other than collagen, we infer that the proteinaceous molecules may originate from endogenous collagen. The preservation of molecular signals of proteins within the "blood vessels" was most likely made possible through the process of early diagenetic iron oxide mineralization. This discovery provides the oldest evidence of in situ preservation of complex organic molecules in vertebrate remains in a marine environment.

  3. Contrasting microbial community changes during mass extinctions at the Middle/Late Permian and Permian/Triassic boundaries

    NASA Astrophysics Data System (ADS)

    Xie, Shucheng; Algeo, Thomas J.; Zhou, Wenfeng; Ruan, Xiaoyan; Luo, Genming; Huang, Junhua; Yan, Jiaxin

    2017-02-01

    Microbial communities are known to expand as a result of environmental deterioration during mass extinctions, but differences in microbial community changes between extinction events and their underlying causes have received little study to date. Here, we present a systematic investigation of microbial lipid biomarkers spanning ∼20 Myr (Middle Permian to Early Triassic) at Shangsi, South China, to contrast microbial changes associated with the Guadalupian-Lopingian boundary (GLB) and Permian-Triassic boundary (PTB) mass extinctions. High-resolution analysis of the PTB crisis interval reveals a distinct succession of microbial communities based on secular variation in moretanes, 2-methylhopanes, aryl isoprenoids, steranes, n-alkyl cyclohexanes, and other biomarkers. The first episode of the PTB mass extinction (ME1) was associated with increases in red algae and nitrogen-fixing bacteria along with evidence for enhanced wildfires and elevated soil erosion, whereas the second episode was associated with expansions of green sulfur bacteria, nitrogen-fixing bacteria, and acritarchs coinciding with climatic hyperwarming, ocean stratification, and seawater acidification. This pattern of microbial community change suggests that marine environmental deterioration was greater during the second extinction episode (ME2). The GLB shows more limited changes in microbial community composition and more limited environmental deterioration than the PTB, consistent with differences in species-level extinction rates (∼71% vs. 90%, respectively). Microbial biomarker records have the potential to refine our understanding of the nature of these crises and to provide insights concerning possible outcomes of present-day anthropogenic stresses on Earth's ecosystems.

  4. Persistence of carbon release events through the peak of early Eocene global warmth

    NASA Astrophysics Data System (ADS)

    Kirtland Turner, Sandra; Sexton, Philip F.; Charles, Christopher D.; Norris, Richard D.

    2014-10-01

    The Early Eocene Climatic Optimum (53-50 million years ago) was preceded by approximately six million years of progressive global warming. This warming was punctuated by a series of rapid hyperthermal warming events triggered by the release of greenhouse gases. Over these six million years, the carbon isotope record suggests that the events became more frequent but smaller in magnitude. This pattern has been suggested to reflect a thermodynamic threshold for carbon release that was more easily crossed as global temperature rose, combined with a decrease in the size of carbon reservoirs during extremely warm conditions. Here we present a continuous, 4.25-million-year-long record of the stable isotope composition of carbonate sediments from the equatorial Atlantic, spanning the peak of early Eocene global warmth. A composite of this and pre-existing records shows that the carbon isotope excursions that identify the hyperthermals exhibit continuity in magnitude and frequency throughout the approximately 10-million-year period covering the onset, peak and termination of the Early Eocene Climate Optimum. We suggest that the carbon cycle processes behind these events, excluding the largest event, the Palaeocene-Eocene Thermal Maximum (about 56 million years ago), were not exceptional. Instead, we argue that the hyperthermals may reflect orbital forcing of the carbon cycle analogous to the mechanisms proposed to operate in the cooler Oligocene and Miocene.

  5. Integrated geophysical study of the Triassic salt bodies' geometry and evolution in central Tunisia

    NASA Astrophysics Data System (ADS)

    Azaiez, Hajer; Amri, Dorra Tanfous; Gabtni, Hakim; Bedir, Mourad; Soussi, Mohamed

    2008-01-01

    A comprehensive study, integrating gravity, magnetic and seismic reflection data, has been used to resolve the complex Triassic salt body geometry and evolution in central Tunisia. Regional seismic lines across the study area show a detachment level in the Upper Triassic evaporites, associated with chaotic seismic facies below the Souinia, Majoura, and Mezzouna structures. The Jurassic and Lower Cretaceous seismic horizons display pinching-outs and onlapping around these structures. A stack-velocity section confirms the existence of a high-velocity body beneath the Souinia Mountain. Regional gravity and magnetic profiles in this area were elaborated from ETAP (the Tunisian Firm of Petroleum Activities) measure stations. These profiles were plotted following the same layout from the west (Souinia) to the east (Mezzouna), across the Majoura and Kharrouba mountains. They highlight associated gravity and magnetic negative anomalies. These gravity and magnetic data coupled to the reflection seismic data demonstrate that, in the Souinia, Majoura, and El Hafey zones, the Triassic salt reaches a salt pillow and a salt-dome stage, without piercing the cover. These stages are expressed by moderately low gravity anomalies. On the other hand, in the Mezzouna area (part of the North-South Axis), the Triassic salt had pierced its cover during the Upper Cretaceous and the Tertiary, reaching a more advanced stage as a salt diapir and salt wall. These stages express important low gravity and magnetic anomalies. These results confirm the model of Tanfous et al. (2005) of halokinetic movements by fault intrusions inducing, from the west to the east, structures at different stages of salt pillow, salt dome, and salt diapir.

  6. Geomorphological stability of Permo-Triassic albitized profiles - case study of the Montseny-Guilleries High (NE Iberia)

    NASA Astrophysics Data System (ADS)

    Parcerisa, D.; Casas, L.; Franke, C.; Gomez-Gras, D.; Lacasa, G.; Nunez, J. A.; Thiry, M.

    2010-05-01

    Massif paleoalteration profiles (≥ 200 m) occur in the upper parts of the Montseny-Guilleries High (NE Catalan Coastal Ranges). The profiles consist of hard albitized-chloritized-hematized facies in the lower part and softer kaolinized-hematized facies in the upper part of the section. Preliminary paleomagnetic data show Triassic ages for both, the albitized and the kaolinized parts, and point to a surficial formation altered under oxidising conditions. Similar paleoalteration profiles have already been described and dated to Triassic ages elsewhere in Europe [Schmitt, 1992; Ricordel et al., 2007; Parcerisa et al., 2009]. These Permian-Triassic alterations are following a succession of different mineral transformations from the top to the base of the profile: 1) Red facies are defined by an increase in the amount and size of haematite crystals leading to the red colour of the rocks. The increase on haematite content is pervasively affecting the whole rock and is accompanied by the kaolinitization of the feldspars. 2) Pink facies: here, the granite shows an uniform pink colouration, which is mainly due to the albitization of the primary Ca-bearing plagioclases, accompanied by a precipitation of minute haematite, sericite, and calcite crystals inside the albite. Additionally primary biotite is fully chloritized. The pink granites are much more resistant to the present-day weathering than the "unaltered" facies at the base of the profile. 3) Spotted facies is characterized by a partial alteration of the rock, which caused a pink-screened aspect to the rock. The alteration developed along the fractures and is less well developed or absent in the non-fractured zones. In the pink-screened facies, the plagioclases are partially albitized and contain numerous hematite inclusions. Biotites are usually almost entirely chloritized. 4) Unaltered facies: These granites are coloured white to greyish, containing plagioclase and K-feldspar that do not show any trace of

  7. Palaeomagnetism of the Early Permian Mount Leyshon Intrusive Complex and Tuckers Igneous Complex, North Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Clark, D. A.; Lackie, M. A.

    2003-06-01

    This study provides reliable, precisely defined and well-dated Early Permian (286 +/- 6 Ma) palaeomagnetic poles for Australia from the Mount Leyshon Intrusive Complex (MLIC) and the Tuckers Igneous Complex (TIC). Both complexes are associated with prominent negative magnetic anomalies, indicating the presence of rocks carrying stable remanence of reverse polarity, with a Koenigsberger ratio greater than unity. The characteristic remanence carried by the intrusive phases and by locally remagnetized, contact-metamorphosed host rocks is always of reverse polarity, consistent with acquisition during the Permo-Carboniferous (Kiaman) Reverse Superchron. The corresponding palaeopoles confirm that Australia occupied high latitudes in the Early Permian. The pole positions are: MLIC: lat. = 43.2 °S, long. = 137.3 °E dp = 6.0°, dm = 6.4° Q= 6; TIC: lat. = 47.5 °S, long. = 143.0 °E, dp = 6.0°, dm = 6.6° Q= 6. Permian palaeomagnetic overprinting is detectable at considerable distances from the MLIC (2-3 km), well beyond the zone of visible alteration. The primary nature of the Early Permian palaeomagnetic signature is established by full baked contact/aureole tests at both localities. Other new data from Australia are consistent with the poles reported here. Comparison of the Australian, African and South American Apparent Polar Wander Paths (APWP) suggests that mean Permian and Triassic poles from West Gondwana, particularly from South America, are biased by remagnetization in the Jurassic-Cretaceous and that the Late Palaeozoic-Mesozoic APWP for Gondwana is best defined by Australian data. The Australian APWP exhibits substantial movement through the Mesozoic. Provided only that the time-averaged palaeofield was zonal, the Early Triassic palaeomagnetic data from Australia provide an important palaeogeographic constraint that the south geographic pole was within, or very close to, SE Australia around 240 Ma. The new Early Permian poles are apparently more consistent

  8. The roles of ecological first principles and evolutionary contingency in unraveling ecosystem response and reconstruction during the Permian-Triassic transition.

    NASA Astrophysics Data System (ADS)

    Roopnarine, P. D.; Weik, A.; Dineen, A.; Angielczyk, K.

    2016-12-01

    The Permian-Triassic mass extinction (PTME) is the most severe mass extinction recorded in Earth's history. Effects on the biosphere were complicated and often contradictory, e.g. selective species extinctions and exceptional species survival; prolonged miniaturization of some Early Triassic clades but rapid increases of size in others; and both simplified and complex trophic structures in various E. Triassic ecosystems. Here we present the results of a new generalized model of paleocommunity global stability (number of species capable of persistent coexistence in the absence of external perturbation), suggesting that community dynamics in response to species extinction, and the addition of new species in the aftermath of the PTME, is best understood as a complex outcome of predictable community dynamics and contingent, unpredictable evolutionary pathways. We applied the model to the best known PTME transitional terrestrial ecosystem, the Karoo Basin of South Africa. The model verifies previous claims that global stability scales negatively with increasing species richness and the strength of interspecific interactions. We also show that global stability scales negatively with intrinsic population growth rates. Taxon-rich Permian communities could therefore have persisted only under a restricted range of those parameters. Communities during three phases of the PTME, however, exhibited greater global stability than would be predicted from the pre-PTME communities. Those communities could therefore have maintained relative stabilities under a broader range of parameters, implying that species could have adapted by modifying life history and ecological traits with lesser negative consequences to community stability. The earliest post-PTME community with increased species richness, however, was less stable than would be predicted from pre-PTME communities. In both the extinction and aftermath communities, nonlinear deviations from the general scaling of stability

  9. Sedimentary organic matter characterization of the Triassic-Jurassic boundary GSSP at Kuhjoch (Austria)

    NASA Astrophysics Data System (ADS)

    Ruhl, M.; Veld, H.; Kürschner, W. M.

    2010-03-01

    The Triassic-Jurassic (T-J) boundary interval coincides with enhanced extinction rates in the marine realm and pronounced changes in terrestrial ecosystems on the continents. It is further marked by distinct negative excursions in the δ13C org and δ13C carb signature that may represent strong perturbations of the global carbon cycle. We present integrated geochemical, stable-isotope and palynological data from the Kuhjoch section, the Global boundary Stratotype Section and Point (GSSP) for the base of the Jurassic (Northern Calcareous Alps, Austria). We show that the initial carbon isotope excursion (CIE), coinciding with the marine extinction interval and the formation of black shales in the western Tethys Eiberg Basin, is marked by only minor changes in kerogen type, which is mainly of terrestrial origin. Increased Total Organic Carbon (TOC) concentrations of 9% at the first half of the initial CIE coincide with Hydrogen Index (HI) values of over 600 mg HC/g TOC. The high correlation (with R2 = 0.93) between HI values and terrestrial Cheirolepidiaceaen conifer pollen suggests a terrestrial source for the hydrogen enriched organic compounds. The lack of major changes in source of the sedimentary organic matter suggests that changes in the δ13C org composition are genuine and represent true disturbances of the global C-cycle. The sudden decrease in total inorganic carbon (TIC) concentrations likely represents the onset of a biocalcification crisis. It coincides with a 4.5‰ negative shift in δ13C org values and possibly corresponds to the onset of CAMP related volcanic activity. The second half of the initial CIE is marked by the dramatic increase of green algae remains in the sediment. The simultaneous increase of the C org/N tot ratio suggests increased marine primary production at the final stage of black shale formation.

  10. The Late Triassic bivalve Monotis in accreted terranes of Alaska

    USGS Publications Warehouse

    Silberling, Norman J.; Grant-Mackie, J. A.; Nichols, K.M.

    1997-01-01

    Late Triassic bivalves of the genus Monotis occur in at least 16 of the lithotectonic terranes and subterranes that together comprise nearly all of Alaska, and they also occur in the Upper Yukon region of Alaska where Triassic strata are regarded as representing non-accretionary North America. On the basis of collections made thus far, 14 kinds of Monotis that differ at the species or subspecies level can be recognized from alaska. These are grouped into the subgenera Monotis (Monotis), M. (Pacimonotis), M. (Entomonotis), and M. (Eomonotis). In places, Monotis shells of one kind or another occur in rock-forming abundance. On the basis of superpositional data from Alaska, as well as from elsewhere in North America and Far Eastern Russia, at least four distince biostratigraphic levels can be discriminated utilizing Monotis species. Different species of M. (Eomonotis) characterize two middle Norian levels, both probably within the supper middle Norian Columbianus Ammonite Zone. Two additional levels are recognized in the lower upper Norian Cordilleranus Ammonite Zone utilizing species of M. (Monotis) or M. (Entomonotis), both of which subgenera are restricted to the late Norian. An attached-floating mode of life is commonly attributed to Monotis; thus, these bivalves would have been pseudoplanktonic surface dwellers that were sensitive to surface-water temperature and paleolatitude. Distinctly different kinds of Monotis occur at different paleolatitudes along the Pacific and Arctic margins of the North American craton inboard of the accreted terranes. Comparison between thse craton-bound Monotis faunas and those of the Alaskan terranes in southern Alaska south of the Denali fault were paleoequatorial in latitude during Late Triassic time. Among these terranes, the Alexander terrane was possibly in the southern hemisphere at that time. Terranes of northern Alaska, on the other hand, represent middle, possibly high-middle, northern paleolatitudes.

  11. Utilizing borehole electrical images to interpret lithofacies of fan-delta: A case study of Lower Triassic Baikouquan Formation in Mahu Depression, Junggar Basin, China

    NASA Astrophysics Data System (ADS)

    Yuan, Rui; Zhang, Changmin; Tang, Yong; Qu, Jianhua; Guo, Xudong; Sun, Yuqiu; Zhu, Rui; Zhou, Yuanquan (Nancy)

    2017-11-01

    Large-scale conglomerate fan-delta aprons were typical deposits on the slope of Mahu Depression during the Early Triassic. Without outcrops, it is difficult to study the lithofacies only by examining the limited cores from the main oil-bearing interval of the Baikouquan Formation. Borehole electrical imaging log provides abundant high-resolution geologic information that is obtainable only from real rocks previously. Referring to the lithology and sedimentary structure of cores, a case study of fan-deltas in the Lower Triassic Baikouquan Formation of the Mahu Depression presents a methodology for interpreting the complicated lithofacies utilizing borehole electrical images. Eleven types of lithologies and five types of sedimentary structures are summarized in borehole electrical images. The sediments are fining upward from gravel to silt and clay in the Baikouquan Formation. Fine-pebbles and granules are the main deposits in T1b1 and T1b2, but sandstones, siltstones and mudstones are more developed in T1b3. The main sedimentary textures are massive beddings, cross beddings and scour-and-fill structures. Parallel and horizontal beddings are more developed in T1b3 relatively. On integrated analysis of the lithology and sedimentary structure, eight lithofacies from electrical images, referred to as image lithofacies, is established for the fan-deltas. Granules to coarse-pebbles within massive beddings, granules to coarse-pebbles within cross and parallel beddings, siltstones within horizontal and massive beddings are the most developed lithofacies respectively in T1b1, T1b2 and T1b3. It indicates a gradual rise of the lake level of Mahu depression during the Early Triassic, with the fan-delta aprons retrograding towards to the margin of the basin. Therefore, the borehole electrical imaging log compensate for the limitation of cores of the Baikouquan Formation, providing an effective new approach to interpret the lithofacies of fan-delta.

  12. Oxygen isotopes suggest elevated thermometabolism within multiple Permo-Triassic therapsid clades

    PubMed Central

    Rey, Kévin; Amiot, Romain; Fourel, François; Abdala, Fernando; Fluteau, Frédéric; Jalil, Nour-Eddine; Liu, Jun; Rubidge, Bruce S; Smith, Roger MH; Steyer, J Sébastien; Viglietti, Pia A; Wang, Xu; Lécuyer, Christophe

    2017-01-01

    The only true living endothermic vertebrates are birds and mammals, which produce and regulate their internal temperature quite independently from their surroundings. For mammal ancestors, anatomical clues suggest that endothermy originated during the Permian or Triassic. Here we investigate the origin of mammalian thermoregulation by analysing apatite stable oxygen isotope compositions (δ18Op) of some of their Permo-Triassic therapsid relatives. Comparing of the δ18Op values of therapsid bone and tooth apatites to those of co-existing non-therapsid tetrapods, demonstrates different body temperatures and thermoregulatory strategies. It is proposed that cynodonts and dicynodonts independently acquired constant elevated thermometabolism, respectively within the Eucynodontia and Lystrosauridae + Kannemeyeriiformes clades. We conclude that mammalian endothermy originated in the Epicynodontia during the middle-late Permian. Major global climatic and environmental fluctuations were the most likely selective pressures on the success of such elevated thermometabolism. DOI: http://dx.doi.org/10.7554/eLife.28589.001 PMID:28716184

  13. Tracking the migration of the Indian continent using the carbonate clumped isotope technique on Phanerozoic soil carbonates

    PubMed Central

    Ghosh, Prosenjit; Vasiliev, Mikhail V.; Ghosh, Parthasarathi; Sarkar, Soumen; Ghosh, Sampa; Yamada, Keita; Ueno, Yuichiro; Yoshida, Naohiro; Poulsen, Christopher J.

    2016-01-01

    Approximately 140 million years ago, the Indian plate separated from Gondwana and migrated by almost 90° latitude to its current location, forming the Himalayan-Tibetan system. Large discrepancies exist in the rate of migration of Indian plate during Phanerozoic. Here we describe a new approach to paleo-latitudinal reconstruction based on simultaneous determination of carbonate formation temperature and δ18O of soil carbonates, constrained by the abundances of 13C-18O bonds in palaeosol carbonates. Assuming that the palaeosol carbonates have a strong relationship with the composition of the meteoric water, δ18O carbonate of palaeosol can constrain paleo-latitudinal position. Weighted mean annual rainfall δ18O water values measured at several stations across the southern latitudes are used to derive a polynomial equation: δ18Ow = −0.006 × (LAT)2 − 0.294 × (LAT) − 5.29 which is used for latitudinal reconstruction. We use this approach to show the northward migration of the Indian plate from 46.8 ± 5.8°S during the Permian (269 M.y.) to 30 ± 11°S during the Triassic (248 M.y.), 14.7 ± 8.7°S during the early Cretaceous (135 M.y.), and 28 ± 8.8°S during the late Cretaceous (68 M.y.). Soil carbonate δ18O provides an alternative method for tracing the latitudinal position of Indian plate in the past and the estimates are consistent with the paleo-magnetic records which document the position of Indian plate prior to 135 ± 3 M.y. PMID:26931069

  14. Tectonothermal evolution of the Triassic flysch in the Bayan Har Orogen, Tibetan plateau

    NASA Astrophysics Data System (ADS)

    Wang, Hejing; Rahn, Meinert; Zhou, Jian

    2018-01-01

    The Bayan Har Orogen comprises a major part of the "Qingzang-Dianxi fold region" in western China. It preserves important information of the tectono-thermal evolution covering the time span from the closure of the Paleo-Tethys Ocean up to the formation of the Himalayas. Low temperature metamorphic indicators, such as mineral assemblages, illite "crystallinity" (IC), chlorite "crystallinity" (CC), illite polytype, b-cell dimension of K-white micas, geothermometry of selected minerals were analyzed. The values of Kübler index (KI) of the Triassic flysch in the Bayan Har Orogen range from 0.23-1.63°Δ2θ while Árkai index (ÁI) in a range of 0.21-0.60°Δ2θ. Iso-thermal zones mapped with KI describe a pair of anchizones and an anchiregion within the Bayan Har Orogen: the "Giant Yushu Anchizone" in the southwest (extending > 750 km long and 100 km wide), the "Zaling-Eling-Lakes Anchizone" in the center (about 150 km long and 40 km wide) and the "Xing-Tong-Zhe Anchiregion" in the northeast (covering an area of roughly 60,000 km2). They are separated by diagenetic zones. Peak metamorphic conditions are estimated around 280-330 °C and a low to intermediate (N. New Hampshire) pressure type. A slight change with increasing then decreasing pressure was observed from SW to NE. The relationship between anchimetamorphic pattern of Triassic flysch and large-scale folds and faults indicates syn- to post structural metamorphism. Compression at the end of the Triassic, induced by the interaction of the Tarim, North China and Indian blocks caused the closure of the Paleo-Tethys Ocean and led to the folding of the Triassic flysch within the Paleo-Tethys Ocean basin. Anchimetamorphism may have been caused by crustal thickening of > 10 km due to an accretionary wedge setting and a temperature increase in those rocks due to burial. Such a regional metamorphic pattern would provide important information for reconstruction of palaeotectonic-palaeogeograph and the evolutionary history

  15. The early cretaceous evolution of carbonate platforms from northern Oman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masse, J.P.; Borgomano, J.; Maskiry, S.Al.

    1993-09-01

    In northern Oman (Jebel Akhdar and foothills) Hauterivian to early Aptian shallow carbonate platforms are widely extending and pass laterally to slope and basin environments in the Nakhl zone. Progradational geometries are identified in that zone where significant correlation between thickness and sediment types supports a prominent tectonic control. The platform records four main sedimentary breaks (drowning events). Early Barremian (lower Lekhwair Formation), Late Barremian (basal Kharaib Formation), lowermost early Aptian (upper Kharaib Formation) and middle Aptian (Shuaiba-Al Hassanat formations boundary). The late Aptian-early Albian hiatus (pre-Nahr Umr unconformity) is regarded as an early Albian tectonically driven erosion. In themore » Nakhl zone, coral-rudist limestones of late Aptian-early Albian (lower Al Hassanat Formation) document an east-west ribbon platform, the southward extension of which was obscured by the middle Albian erosions and rudist limestones of middle to late Albian (upper Al Hassanat Formation), a lateral equivalent of the Nahr Umr circa littoral shaly sediments, document an east-west-trending linear platform. The foregoing points out a northward progradation coeval with a southward transgressive major trend for the Hauterivian-early Aptian interval, a faulted margin corresponding with the Nakhl zone active during the Aptian-Albian, a late Aptian ribbon platform coeval with the Bab basin initiation southward, a regional uplifting and truncation during the early-Albian (Austrian phase), whereas shallow-water carbonates are still forming at the edge of the former platform, and an active linear platform at the northern edge of the Nahr Umr basin, the corresponding drowning contemporaneous with the onset of the Cenomanian platform eastward.« less

  16. Re-evaluation of temperature of replacement dolomitization in the Triassic Latemar platform with clumped isotope thermometry

    NASA Astrophysics Data System (ADS)

    Müller, Inigo Andreas; Rodriguez-Blanco, Juan D.; Storck, Julian-Christopher; Benning, Liane G.; Wilson, Edith N.; Brack, Peter; Bernasconi, Stefano M.

    2017-04-01

    The Triassic Latemar platform shows different types of dolomitization styles including features such as dolomitized zones around basaltic dykes and patchy reddish or greyish dolomitization features in the central part of the platform. The processes leading to this partial dolomitization are still debated. Different geochemical tools were applied to determine the formation temperature of the patchy dolomite phases, thereby microthermometry on fluid inclusions and clumped isotope thermometry revealed significantly different temperature ranges (100 to 200 °C vs. 40 to 80 °C, from Wilson et al., 1990 and Ferry et al., 2011, respectively). We re-evaluated the origin of these patchy dolomites at Latemar using a new dolomite-specific clumped isotope temperature calibration based on dolomites synthetized in the laboratory at different temperatures. We directly compare the clumped isotope temperatures of patchy dolomites from Latemar with those obtained on the same samples by fluid inclusion microthermometry. With the new dolomite specific clumped isotope temperature calibration it is possible to determine more precisely the dolomite formation temperature and the oxygen isotope composition of the fluid source. Both are critical parameters for better constraining the origin of different dolomite fabrics on the Earth's surface and in ancient sediments. E.N. Wilson, L.A. Hardie and O.M. Phillips, 1990. Dolomitization front geometry, fluid flow patterns, and the origin of massive dolomite: the Triassic Latemar buildup, northern Italy. American Journal of Science 290, 741-796. J.M. Ferry, B.H. Passey, C. Vasconcelos and J.M. Eiler, 2011. Formation of dolomite at 40-80 °C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. Geology 39, 571-574.

  17. A hyper-robust sauropodomorph dinosaur ilium from the Upper Triassic-Lower Jurassic Elliot Formation of South Africa: Implications for the functional diversity of basal Sauropodomorpha

    NASA Astrophysics Data System (ADS)

    McPhee, Blair W.; Choiniere, Jonah N.

    2016-11-01

    It has generally been held that the locomotory habits of sauropodomorph dinosaurs moved in a relatively linear evolutionary progression from bipedal through "semi-bipedal" to the fully quadrupedal gait of Sauropoda. However, there is now a growing appreciation of the range of locomotory strategies practiced amongst contemporaneous taxa of the latest Triassic and earliest Jurassic. Here we present on the anatomy of a hyper-robust basal sauropodomorph ilium from the Late Triassic-Early Jurassic Elliot Formation of South Africa. This element, in addition to highlighting the unexpected range of bauplan diversity throughout basal Sauropodomorpha, also has implications for our understanding of the relevance of "robusticity" to sauropodomorph evolution beyond generalized limb scaling relationships. Possibly representing a unique form of hindlimb stabilization during phases of bipedal locomotion, the autapomorphic morphology of this newly rediscovered ilium provides additional insight into the myriad ways in which basal Sauropodomorpha managed the inherited behavioural and biomechanical challenges of increasing body-size, hyper-herbivory, and a forelimb primarily adapted for use in a bipedal context.

  18. High-resolution stratigraphic analyses of Permian-Triassic core material recovered in central Spitsbergen

    NASA Astrophysics Data System (ADS)

    Sleveland, Arve; Planke, Sverre; Zuchuat, Valentin; Franeck, Franziska; Svensen, Henrik; Midtkandal, Ivar; Hammer, Øyvind; Twitchett, Richard; Deltadalen Study Group

    2017-04-01

    The Siberian Traps voluminous igneous activity is considered a likely trigger for the Permian-Triassic global extinction event. However, documented evidence of the Siberian Traps environmental effects decreases away from the centre of volcanic activity in north-central Russia. Previous research on the Permian-Triassic boundary (PTB) mostly relies on field observations, and resolution has thus depended on outcrop quality. This study reports on two 90 m cored sedimentary successions intersecting the PTB in Deltadalen, Svalbard, providing high-quality material to a comprehensive documentation of the stratigraphic interval. Sequence stratigraphic concepts are utilised to help constrain the Permian-Triassic basin development models in Svalbard and the high-Arctic region. The cored sections are calibrated with outcrop data from near the drill site. One core has been systematically described and scanned using 500-μm and 200-μm resolution XRF, hyperspectral imagery and microfocus CT (latter only on selected core sections). The base of both cores represents the upper 15 m of the Permian Kapp Starostin Formation, which is dominated by green glauconitic sandstones with spiculitic cherts, and exhibit various degrees of bioturbation. The Kapp Starostin Formation is in turn sharply overlain by 2 m of heavily reworked sand- and mudstones, extensively bioturbated, representing the base of the lower Triassic Vikinghøgda Formation. These bioturbated units are conformably overlain by 9 m of ash-bearing laminated black shale where signs of biological activity both on micro- and macro-scale are limited, and is thus interpreted to have recorded the Permian-Triassic extinction interval. Descriptive sedimentology and sequence stratigraphic concepts reveal the onset of relative sea level rise at the Vikinghøgda Formation base. The disappearance of bioturbation and extensive presence of pyrite in the overlying laminated black shale of the Vikinghøgda Formation suggest near anoxic

  19. Wildfires in the Triassic of Gondwana Paraná Basin

    NASA Astrophysics Data System (ADS)

    Cardoso, Daiane dos Santos; Mizusaki, Ana Maria Pimentel; Guerra-Sommer, Margot; Menegat, Rualdo; Barili, Rosalia; Jasper, André; Uhl, Dieter

    2018-03-01

    This first report of wildfires from an association of facies containing a Dicroidium flora is made from the Upper Triassic (Carnian age) in the southern part of the Paraná Basin (Santa Maria Supersequence, Rio Grande do Sul state). The geographical extension of the Dicroidium plant assemblage is augmented in Brazilian Gondwana. Field work followed by organic petrography (inertinite reflectance), scanning electron microscopy (SEM) and field emission gun scanning electron microscopy (FEG-SEM), revealed charcoal presence in a section located in Pinheiro Machado town. Macroscopic charcoal is represented by three-dimensional wood specimens assigned to gymnosperms, with coniferous affinities and by flattened, thin, elongated remains corresponding to rachises of Dicroidium. Average reflectance values between 2.80 and 6.61 %Ro measured in the macroscopic charcoals evidence high temperature burning processes, involving fires both in the crown and in the crown-surface interface. The occurrence of charcoal in distinct and subsequent facies of the studied section indicates wildfires, which affected hinterland, meso-xerophyllous coniferous assemblages and marginal hygro-mesophyllous Dicroidium-like assemblages. The integration of results from the charcoal analyses is consistent with an atmospheric oxygen content higher than 18.5% and fuel enough to generate wildfires during the Triassic of Gondwana.

  20. Geochronologic evidence of a large magmatic province in northern Patagonia encompassing the Permian-Triassic boundary

    NASA Astrophysics Data System (ADS)

    Luppo, Tomás; López de Luchi, Mónica G.; Rapalini, Augusto E.; Martínez Dopico, Carmen I.; Fanning, Christopher M.

    2018-03-01

    The Los Menucos Complex (northern Patagonia) consists of ∼6 km thick succession of acidic and intermediate volcanic and pyroclastic products, which has been traditionally assigned to the Middle/Late Triassic. New U/Pb (SHRIMP) zircon crystallization ages of 257 ± 2 Ma at the base, 252 ± 2 Ma at an intermediate level and 248 ± 2 Ma near the top of the sequence, indicate that this volcanic event took place in about 10 Ma around the Permian-Triassic boundary. This volcanism can now be considered as the effusive terms of the neighboring and coeval La Esperanza Plutono-Volcanic Complex. This indicates that the climax of activity of a large magmatic province in northern Patagonia was coetaneous with the end-Permian mass extinctions. Likely correlation of La Esperanza- Los Menucos magmatic province with similar volcanic and plutonic rocks across other areas of northern Patagonia suggest a much larger extension than previously envisaged for this event. Its age, large volume and explosive nature suggest that the previously ignored potential role that this volcanism might have played in climatic deterioration around the Permian-Triassic boundary should be investigated.

  1. A new high-precision 40Ar/39Ar age for the Rochechouart impact structure: At least 5 Ma older than the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin E.; Mark, Darren F.; Lee, Martin R.; Simpson, Sarah L.

    2017-08-01

    The Rochechourt impact structure in south-central France, with maximum diameter of 40-50 km, has previously been dated to within 1% uncertainty of the Triassic-Jurassic boundary, at which time 30% of global genera became extinct. To evaluate the temporal relationship between the impact and the Triassic-Jurassic boundary at high precision, we have re-examined the structure's age using multicollector ARGUS-V 40Ar/39Ar mass spectrometry. Results from four aliquots of impact melt are highly reproducible, and yield an age of 206.92 ± 0.20/0.32 Ma (2σ, full analytical/external uncertainties). Thus, the Rochechouart impact structure predates the Triassic-Jurassic boundary by 5.6 ± 0.4 Ma and so is not temporally linked to the mass extinction. Rochechouart has formerly been proposed to be part of a multiple impact event, but when compared with new ages from the other purported "paired" structures, the results provide no evidence for synchronous impacts in the Late Triassic. The widespread Central Atlantic Magmatic Province flood basalts remain the most likely cause of the Triassic-Jurassic mass extinction.

  2. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years.

    PubMed

    Whiteside, Jessica H; Lindström, Sofie; Irmis, Randall B; Glasspool, Ian J; Schaller, Morgan F; Dunlavey, Maria; Nesbitt, Sterling J; Smith, Nathan D; Turner, Alan H

    2015-06-30

    A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ(13)Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic.

  3. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years

    NASA Astrophysics Data System (ADS)

    Whiteside, Jessica H.; Lindström, Sofie; Irmis, Randall B.; Glasspool, Ian J.; Schaller, Morgan F.; Dunlavey, Maria; Nesbitt, Sterling J.; Smith, Nathan D.; Turner, Alan H.

    2015-06-01

    A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ13Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic.

  4. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years

    PubMed Central

    Whiteside, Jessica H.; Lindström, Sofie; Irmis, Randall B.; Glasspool, Ian J.; Schaller, Morgan F.; Dunlavey, Maria; Nesbitt, Sterling J.; Smith, Nathan D.; Turner, Alan H.

    2015-01-01

    A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10–15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ13Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic. PMID:26080428

  5. New Evidence for opening of the Black Sea; U-Pb analysis of detrital zircons and paleocurrent measurements of the Early Cretaceous turbidites

    NASA Astrophysics Data System (ADS)

    Akdoğan, Remziye; Okay, Aral I.; Sunal, Gürsel; Tari, Gabor; Kylander-Clark, Andrew R. C.

    2015-04-01

    Shelf to submarine turbidite fan deposits of the Early Cretaceous crop out over a large area along the southern coast of the Black Sea. Early Cretaceous turbidites have a thickness of over 2000 meters in the Central Pontides. The shelf of this turbidite basin, represented by shallow marine clastics and carbonates, crops out along the Black Sea coast between Zonguldak and Amasra. Paleocurrent directions in the Lower Cretaceous turbidites were measured in 90 localities using mostly flute and groove casts and to a lesser extend cross-beds. At the eastern part of the basin, the paleocurrents were from north to south. It is scattered in the west of the basin, however, the main paleocurrent directions were from the north. Detrital zircons were analyzed using LA-ICP-MS in eleven samples from the turbiditic sandstones and two samples from the shelf sandstones. Four samples are from the western part (two samples from shelf sediments), four samples from the central part and five samples from the eastern part of the Lower Cretaceous basin. 1085 of 1348 zircon analyses are concordant with rates of 95-105% and the zircon ages range between 141 ± 4 Ma (Berriasian) and 3469 ± 8 Ma (Paleoarchean). 22% of the detrital zircon ages are Paleoproterozoic, 20% Archean, 16% Carboniferous, 13% Neoproterozoic, 8% Permian, 6% Triassic, 5% Mesoproterozoic and 11% other ages. In the western part of the basin the Carboniferous zircons constitute the main population with a less dominant peak at Ordovician, Cambrian and Late Neoproterozoic. The zircons from the center of the basin show scattered distribution with dominant populations in the Triassic, Permian, Carboniferous, Silurian, Paleoproterozoic, Early Neoproterozoic-Late Mesoproterozoic, and minor peak at Late Neoarchean. On the other hand, zircons from the eastern most part of the basin, show dominant peaks in the Paleoproterozoic, Mesoarchean and Permian with minor peaks in Triassic, Carboniferous and Silurian. Anatolia and the Balkans

  6. Early rifting deposition: examples from carbonate sequences of Sardinia (Cambrian) and Tuscany (Triassic-Jurassic), Italy: an analogous tectono-sedimentary and climatic context

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cocozza, T.; Gandin, A.

    Lower Cambrian Ceroide Limestone (Sardinia) and Lower Jurassic Massiccio Limestone (Tuscany) belong to sequences deposited in analogous tectono-sedimentary context: the former linked to the Caledonian Sardic Phase, the latter to the Alpine Orogeny. Both units consist of massive pure limestone characterized by marginal and lagoonal sequences repeatedly interfingering in the same geological structure. This distribution indicates a morphology of the platforms composed of banks (marginal facies) and shallow basins (lagoonal facies) comparable with a Bahamian complex. Dolomitization affects patchily the massive limestone bodies, and karstic features, breccias, and sedimentary dikes occur at their upper boundary. Both units overlie early dolomitemore » and evaporites (sabkha facies) containing siliciclastic intercalations in their lower and/or upper part and are unconformably covered by open-shelf red (hematitic), nodular limestone Ammonitico Rosso facies). The sedimentary evolution of the two sequences appears to have been controlled by synsedimentary tectonics whose major effects are the end of the terrigenous input, the bank-and-basin morphology of the platform, the irregular distribution of the dolomitization, and the nodular fabric of the overlying facies. The end of the Bahamian-type system is marked by the karstification of the emerged blocks and is followed by their differential sinking and burial under red-nodular facies. From a geodynamic viewpoint, sequences composed of Bahamian-like platform carbonates followed by Ammonitico Rosso facies imply deposition along continental margins subjected to block-faulting during an extensional regime connected with the beginning of continental rifting. Moreover, the variation from sabkha to Bahamian conditions suggests the drifting of the continent from arid to humid, tropical areas.« less

  7. Stratigraphic distribution, taphonomy and paleoenvironments of Spinicaudata in the Triassic and Jurassic of the Paraná Basin

    NASA Astrophysics Data System (ADS)

    Jenisch, Alan Gregory; Lehn, Ilana; Gallego, Oscar Florencio; Monferran, Mateo Daniel; Horodyski, Rodrigo Scalise; Faccini, Ubiratan Ferrucio

    2017-12-01

    exoskeletons is likely a function of parameters, e.g., the transport duration, the distance from life position, and the magnitude of events causing their final burial. Within the observed species, the recognition of Eustheria minuta in the stratigraphic level of the Passo das Tropas creek corroborates an age for these deposits between the late Middle Triassic and early Upper Triassic. The presence of a new form, likely related to the family Fushunograptidae in sediments from the Caturrita Formation, suggests a Jurassic age for these deposits.

  8. New mayfly genera from the Middle Triassic of Poland and their evolutionary and paleogeographic implications (Ephemerida: Litophlebiidae, Vogesonymphidae).

    PubMed

    Sinitshenkova, Nina D; Aristov, Daniil S; Wegierek, Piotr; Żyła, Dagmara

    2015-04-24

    Two new mayfly genera and species from the Triassic deposits of the Pałęgi area (southeast Poland) are described. This is the first description of aquatic insects from the Pałęgi locality. Triassolitophlebia palegica gen. et sp. nov. (Litophlebiidae) is established on the basis of an isolated forewing. This is the first finding of this family in the Northern Hemisphere, known previously only from the Molteno Formation (South Africa). This is also the first mayfly family from the Triassic which has been found in both Hemispheres, providing additional evidence of the presumed similarity of aquatic insect faunas in the Southern and Northern Hemispheres during the Triassic. The consistent wing venation of ancient mayflies with homonomous wings could be evidence that they originated from the same ancestor. The second new mayfly, Palegonympha triassica gen. et sp. nov. (Vogesonymphidae), is described on the basis of a single fossil nymph (imprint of the exuviae) and indicates the similarity of the Pałęgi arthropod assemblage to that described from the Middle Triassic of France. The presence of a mayfly nymph in the last instar stage suggests not only that the Pałęgi deposit represents a fluvial environment with well-oxygenated and limpid water but also that these conditions lasted long enough to allow for such development.

  9. Follow the Carbon: Isotopic Labeling Studies of Early Earth Aerosol.

    PubMed

    Hicks, Raea K; Day, Douglas A; Jimenez, Jose L; Tolbert, Margaret A

    2016-11-01

    Despite the faint young Sun, early Earth might have been kept warm by an atmosphere containing the greenhouse gases CH 4 and CO 2 in mixing ratios higher than those found on Earth today. Laboratory and modeling studies suggest that an atmosphere containing these trace gases could lead to the formation of organic aerosol haze due to UV photochemistry. Chemical mechanisms proposed to explain haze formation rely on CH 4 as the source of carbon and treat CO 2 as a source of oxygen only, but this has not previously been verified experimentally. In the present work, we use isotopically labeled precursor gases and unit-mass resolution (UMR) and high-resolution (HR) aerosol mass spectrometry to examine the sources of carbon and oxygen to photochemical aerosol formed in a CH 4 /CO 2 /N 2 atmosphere. UMR results suggest that CH 4 contributes 70-100% of carbon in the aerosol, while HR results constrain the value from 94% to 100%. We also confirm that CO 2 contributes approximately 10% of the total mass to the aerosol as oxygen. These results have implications for the geochemical interpretations of inclusions found in Archean rocks on Earth and for the astrobiological potential of other planetary atmospheres. Key Words: Atmosphere-Early Earth-Planetary atmospheres-Carbon dioxide-Methane. Astrobiology 16, 822-830.

  10. The Inception of the Colorado Plateau Coring Project: Filling the Triassic Geochronologic Gap and Providing a Continuous Record of Continental Environmental Change in Western Equatorial Pangea

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Olsen, P. E.; Kent, D. V.; Irmis, R. B.; Gehrels, G. E.; Mundil, R.; Parker, W.; Bachmann, G. H.; Kurschner, W. M.; Sha, J.

    2014-12-01

    The Triassic Period was punctuated by two of the largest Phanerozoic mass-extinctions and witnessed the evolution of elements of the modern biota and the advent of the age of dinosaurs. A rich archive of biotic and environmental changes on land for the early Mesozoic is on the Colorado Plateau, which despite over 100 years of study still remains poorly calibrated in time and poorly registered to other global records. Over 15 years ago, a diverse team of scientists began to develop the concept of a multi-phase, long term Colorado Plateau Coring Project (CPCP). Planning involved two major meetings (DOSECC/NSFICDP supported in Fall, 2007, St. George, UT; and International Continental Drilling Program (ICDP) supported in Spring, 2009, Albuquerque, NM). The National Park Service embraced the concept of Phase One drilling at Petrified Forest National Park (PFNP) in northern Arizona, which exposes one of the most famous and best studied successions of the continental Triassic on Earth, and the Phase One target was decided. Most drilling operation costs were secured from ICDP in Summer, 2010. In late 2013, following more recent NSF support, the research team, utilizing Ruen Drilling Inc., drilled a continuous ~530 m core (60o plunge) through the entire section of Triassic strata (Chinle and Moenkopi fms.) in the north end and a ~240 m core (75o plunge) in lower Chinle and all Moenkopi strata at the south end of the PFNP. Our continuous sampling will place this record in a reliable quantitative and exportable time scale, as a reference section in which magnetostratigraphic, geochronologic, environmental, and paleontologic data are registered to a common thickness scale with unambiguous superposition using pristine samples. The cores are being scanned at the High Resolution X-ray Computed Tomography Facility at UT Austin. They will be transported to the LacCore National Lacustrine Core Facility at U Minnesota, where they will be split, imaged, and scanned for several

  11. Late Permian Forest Composition And Climate Revealed From High-Resolution Carbon Isotopes In Fossil Tree Rings

    NASA Astrophysics Data System (ADS)

    Gulbranson, E.; Isbell, J. L.; Taylor, E. L.; Ryberg, P. E.; Taylor, T. N.

    2012-12-01

    Late Permian forests from Antarctica are one of a few examples of polar forest biomes in Earth history. We present a paleoforestry and geochemical study of three contemporaneous Late Permian fossil forests and geochemical analysis of fossil wood specimens from the Permian-Triassic contact in Antarctica. Late Permian paleoforestry analysis suggests that these forests responded to disturbance in exactly the opposite manner as compared to modern boreal forests, with forest thinning and loss of understory vegetation occurring towards areas of disturbance. New high-resolution carbon isotope data from 6 permineralized stumps, 32 tree rings studied in total, indicate that these forests were mixed evergreen and deciduous, but dominated by deciduous trees. Moreover, intra-tree ring and ring-to-ring variation of δ13C values suggest that the Late Permian polar climate maintained wet winters, with precipitation in the austral winter being a factor of three greater than the austral summer. Such seasonality in precipitation implies the development of a temperate-like climate at polar latitudes following the demise of the late Paleozoic ice age. High-resolution carbon isotopes in tree rings in a stratigraphic succession of Late Permian fossil wood to fossil wood at the Permian-Triassic contact indicates that Antarctica experienced a change in precipitation patterns around the time of the Permian-Triassic boundary, marked by intervals of pronounced drying juxtaposed against wetter conditions.

  12. The early diagenetic and PETROphysical behaviour of recent cold-water CARbonate mounds in Deep Environments (PETROCARDE)

    NASA Astrophysics Data System (ADS)

    Foubert, Anneleen; Pirlet, Hans; Thierens, Mieke; de Mol, Ben; Henriet, Jean-Pierre; Swennen, Rudy

    2010-05-01

    Sub-recent cold-water carbonate mounds localized in deeper slope settings on the Atlantic continental margins cannot be any longer neglected in the study of carbonate systems. They clearly play a major role in the dynamics of mixed siliciclastic-carbonate and/or carbonate-dominated continental slopes. Carbonate accumulation rates of cold-water carbonate mounds are about 4 to 12 % of the carbonate accumulation rates of tropical shallow-water reefs but exceed the carbonate accumulation rates of their slope settings by a factor of 4 to 12 (Titschack et al., 2009). These findings emphasize the importance of these carbonate factories as carbonate niches on the continental margins. The primary environmental architecture of such carbonate bodies is well-characterized. However, despite proven evidences of early diagenesis overprinting the primary environmental record (e.g. aragonite dissolution) (Foubert & Henriet, 2009), the extent of early diagenetic and biogeochemical processes shaping the petrophysical nature of mounds is until now not yet fully understood. Understanding (1) the functioning of a carbonate mound as biogeochemical reactor triggering early diagenetic processes and (2) the impact of early diagenesis on the petrophysical behaviour of a carbonate mound in space and through time are necessary (vital) for the reliable prediction of potential late diagenetic processes. Approaching the fossil carbonate mound record, through a profound study of recent carbonate bodies is innovative and will help to better understand processes observed in the fossil mound world (such as cementation, brecciation, fracturing, etc…). In this study, the 155-m high Challenger mound (Porcupine Seabight, SW of Ireland), drilled during IODP Expedition 307 aboard the R/V Joides Resolution (Foubert & Henriet, 2009), and mounds from the Gulf of Cadiz (Moroccan margin) will be discussed in terms of early diagenetic processes and petrophysical behaviour. Early differential diagenesis

  13. Fullerenes and interplanetary dust at the Permian-Triassic boundary.

    PubMed

    Poreda, Robert J; Becker, Luann

    2003-01-01

    We recently presented new evidence that an impact occurred approximately 250 million years ago at the Permian-Triassic boundary (PTB), triggering the most severe mass extinction in the history of life on Earth. We used a new extraterrestrial tracer, fullerene, a third carbon carrier of noble gases besides diamond and graphite. By exploiting the unique properties of this molecule to trap noble gases inside of its caged structure (helium, neon, argon), the origin of the fullerenes can be determined. Here, we present new evidence for fullerenes with extraterrestrial noble gases in the PTB at Graphite Peak, Antarctica, similar to PTB fullerenes from Meishan, China and Sasayama, Japan. In addition, we isolated a (3)He-rich magnetic carrier phase in three fractions from the Graphite Peak section. The noble gases in this magnetic fraction were similar to zero-age deep-sea interplanetary dust particles (IDPs) and some magnetic grains isolated from the Cretaceous-Tertiary boundary. The helium and neon isotopic compositions for both the bulk Graphite Peak sediments and an isolated magnetic fraction from the bulk material are consistent with solar-type gases measured in zero-age deep-sea sediments and point to a common source, namely, the flux of IDPs to the Earth's surface. In this instance, the IDP noble gas signature for the bulk sediment can be uniquely decoupled from fullerene, demonstrating that two separate tracers are present (direct flux of IDPs for (3)He vs. giant impact for fullerene).

  14. Structural changes of marine communities over the Permian-Triassic transition: Ecologically assessing the end-Permian mass extinction and its aftermath

    NASA Astrophysics Data System (ADS)

    Chen, Zhong-Qiang; Tong, Jinnan; Liao, Zhuo-Ting; Chen, Jing

    2010-08-01

    The Permian/Triassic (P/Tr) transition is ecologically assessed based on examining 23 shelly communities from five shallow platform, ramp and shelf basin facies Permian-Triassic boundary (PTB) sections in South China. The shelly communities have undergone two major collapses coinciding with the two episodes of the end-Permian mass extinction. The first P/Tr extinction event devastated shelly communities in all types of settings to some extent. The basin communities have been more severely impacted than both platform and ramp communities. The survival faunas have rebounded more rapidly in shallow niches than in relatively deep habitats. The second P/Tr crisis destroyed the survival communities in shallow setting and had little impact on the basin communities in terms of community structures. The early Griesbachian communities are overall low-diversity and high-dominance. The governorship switch from brachiopods to bivalves in marine communities has been facilitated by two pulses of the end-Permian mass extinction and the whole takeover process took about 200 ka across the P/Tr boundary. Bivalve ecologic takeover initially occurred immediately after the first P/Tr extinction in shallow water habitats and was eventually completed in all niches after the second P/Tr event. Some post-extinction communities have the irregular rarefaction curves due to the unusual community structures rather than sampling intensities.

  15. New holostean fishes (Actinopterygii: Neopterygii) from the Middle Triassic of the Monte San Giorgio (Canton Ticino, Switzerland)

    PubMed Central

    Bürgin, Toni; Furrer, Heinz; Stockar, Rudolf

    2016-01-01

    The new neopterygian genus Ticinolepis, including two new species T. longaeva and T. crassidens is described from Middle Triassic carbonate platform deposits of the Monte San Giorgio. The anatomy of this fish shows a mosaic of halecomorph and ginglymodian characters and, thus, the new taxon probably represents a basal holostean. During the latest Anisian to earliest Ladinian the two new species coexisted in the intraplatform basin represented by the uppermost Besano Formation, but only T. longaeva sp. nov. inhabited the more restricted basin represented by the Ladinian Meride Limestone (except for the Kalkschieferzone). The more widely distributed type species shows interesting patterns of intraspecific variation including ontogenetic changes and morphological variation over time. The second species presents anatomical features that strongly indicate a strictly durophagous diet. The different distribution of the species is interpreted as a result of habitat partitioning and different adaptability to palaeoenvironmental changes. PMID:27547543

  16. Large-Diameter Burrows of the Triassic Ischigualasto Basin, NW Argentina: Paleoecological and Paleoenvironmental Implications

    PubMed Central

    Colombi, Carina E.; Fernández, Eliana; Currie, Brian S.; Alcober, Oscar A.; Martínez, Ricardo; Correa, Gustavo

    2012-01-01

    Large-diameter ichnofossils comprising three morphotypes have been identified in the Upper Triassic Ischigualasto and Los Colorados formations of northwestern Argentina. These burrows add to the global record of the early appearance of fossorial behavior during early Mesozoic time. Morphotypes 1 and 2 are characterized by a network of tunnels and shafts that can be assigned to tetrapod burrows given similarities with previously described forms. However, differences in diameter, overall morphology, and stratigraphic occurrence allow their independent classification. Morphotype 3 forms a complex network of straight branches that intersect at oblique angles. Their calcareous composition and surface morphology indicate these structures have a composite biogenic origin likely developed due to combined plant/animal interactions. The association of Morphotypes 1 and 2 with fluvial overbank lithologies deposited under an extremely seasonal arid climate confirms interpretations that the early appearance of burrowing behavior was employed by vertebrates in response to both temperature and moisture-stress associated with seasonally or perpetually dry Pangean paleoclimates. Comparisons of burrow morphology and biomechanical attributes of the abundant paleovertebrate fauna preserved in both formations permit interpretations regarding the possible burrow architects for Morphotypes 1 and 2. In the case of the Morphotype 1, the burrow constructor could be one of the small carnivorous cynodonts, Ecteninion or Probelesodon. Assigning an architect for Morphotype 2 is more problematic due to mismatches between the observed burrow morphology and the size of the known Los Colorados vertebrates. PMID:23227195

  17. Mineralogy and fluid inclusions study of carbonate-hosted Mississippi valley-type Ain Allega Pb-Zn-Sr-Ba ore deposit, Northern Tunisia

    NASA Astrophysics Data System (ADS)

    Abidi, R.; Slim-Shimi, N.; Somarin, A.; Henchiri, M.

    2010-05-01

    The Ain Allega Pb-Zn-Sr-Ba ore deposit is located in the flysch zone on the Eastern edge of the Triassic diapir of Jebel Hamra. It is part of the extrusive Triassic evaporate formation along the Ghardimaou-Cape Serrat faults. The ore body consists of argilic-dolomite breccias surrounded by argilo-gypsum Triassic formation, which forms the hanging wall of the deposit, and rimmed by the Paleocene marls. The ore minerals show a cap-rock type mineralization with different styles particularly impregnation in dolomite, cement of breccias, replacement ore and open space filling in the dissolution cavities and fractures. Ore minerals include sphalerite, galena, marcasite and pyrite. Principal gangue minerals are composed of barite, celestite, calcite, dolomite and quartz. The ore minerals are hosted by the Triassic carbonate rocks which show hydrothermal alteration, dissolution and brecciation. X-ray - crystallographic study of barite-celestite mineral series shows that pure barite and celestite are the abundant species, whereas strontianiferous barite (85-96.5% BaSO 4) and barian-celestite (95% SrSO 4) are minor. Primary and secondary mono-phase (liquid only) fluid inclusions are common in celestite. Microthermometric analyses in two-phases (liquid and vapour) fluid inclusions suggest that gangue and ore minerals were precipitated by a low-temperature (180 °C) saline (16.37 wt.% NaCl equivalent) solution originated possibly from a basinal brine with some input from magmatic or metamorphic fluid. Based on geology, mineralogy, texture and fluid characteristics, the Ain Allega deposit is classified as a carbonate-hosted Mississippi valley-type deposit.

  18. Jurassic cooling ages in Paleozoic to early Mesozoic granitoids of northeastern Patagonia: 40Ar/39Ar, 40K-40Ar mica and U-Pb zircon evidence

    NASA Astrophysics Data System (ADS)

    Martínez Dopico, Carmen I.; Tohver, Eric; López de Luchi, Mónica G.; Wemmer, Klaus; Rapalini, Augusto E.; Cawood, Peter A.

    2017-10-01

    U-Pb SHRIMP zircon crystallization ages and Ar-Ar and K-Ar mica cooling ages for basement rocks of the Yaminué and Nahuel Niyeu areas in northeastern Patagonia are presented. Granitoids that cover the time span from Ordovician to Early Triassic constitute the main outcrops of the western sector of the Yaminué block. The southern Yaminué Metaigneous Complex comprises highly deformed Ordovician and Permian granitoids crosscut by undeformed leucogranite dikes (U-Pb SHRIMP zircon age of 254 ± 2 Ma). Mica separates from highly deformed granitoids from the southern sector yielded an Ar-Ar muscovite age of 182 ± 3 Ma and a K-Ar biotite age of 186 ± 2 Ma. Moderately to highly deformed Permian to Early Triassic granitoids made up the northern Yaminué Complex. The Late Permian to Early Triassic (U-Pb SHRIMP zircon age of 252 ± 6 Ma) Cabeza de Vaca Granite of the Yaminué block yielded Jurassic mica K-Ar cooling ages (198 ± 2, 191 ± 1, and 190 ± 2 Ma). At the boundary between the Yaminué and Nahuel Niyeu blocks, K-Ar muscovite ages of 188 ± 3 and 193 ± 5 Ma were calculated for the Flores Granite, whereas the Early Permian Navarrete granodiorite, located in the Nahuel Niyeu block, yielded a K-Ar biotite age of 274 ± 4 Ma. The Jurassic thermal history is not regionally uniform. In the supracrustal exposures of the Nahuel Niyeu block, the Early Permian granitoids of its western sector as well as other Permian plutons and Ordovician leucogranites located further east show no evidence of cooling age reset since mica ages suggest cooling in the wake of crystallization of these intrusive rocks. In contrast, deeper crustal levels are inferred for Permian-Early Triassic granitoids in the Yaminué block since cooling ages for these rocks are of Jurassic age (198-182 Ma). Jurassic resetting is contemporaneous with the massive Lower Jurassic Flores Granite, and the Marifil and Chon Aike volcanic provinces. This intraplate deformational pulse that affected northeastern

  19. End-Permian mass extinction and palaeoenvironmental changes in Neotethys: Evidence from an oceanic carbonate section in southwestern Tibet

    NASA Astrophysics Data System (ADS)

    Shen, Shu-zhong; Cao, Chang-qun; Zhang, Yi-chun; Li, Wen-zhong; Shi, G. R.; Wang, Yue; Wu, Ya-sheng; Ueno, K.; Henderson, C. M.; Wang, Xiang-dong; Zhang, Hua; Wang, Xiao-juan; Chen, Jun

    2010-08-01

    This paper documents a new Permian-Triassic carbonate sequence which recorded the end-Permian mass extinction in the isolated oceanic setting of Neotethys in southwestern Tibet, China. The sequence is over 350 m thick and consists of the Gyanyima and the Lower Lanchengquxia formations in ascending order. The Lopingian (Late Permian) Gyanyima Formation is composed of fossiliferous reddish carbonates dominated by Colaniella grainstone and reef facies including fenestrate/sponge/coral framestone and bafflestone. 156 species are recognized from the Lopingian Gyanyima Formation. Composite ranges of brachiopods, ostracods, rugose corals and foraminifers at the Gyanyima Section suggest that evolution and diversification of Permian marine organisms continued to the end-Permian preceding a major faunal extinction close to the Permian-Triassic boundary (PTB), coincident with a 2-3‰ negative shift of δ13C carb. The timing and accelerating extinction pattern and the negative δ13C carb excursion are largely comparable with those reported from many previously-documented sections on continental shelf environments. Based on a detailed lithofacies analysis, the latest Permian reefal facies is sharply replaced by ostracod/crinoid packstone/grainstone with abrupt abundant occurrences of Early Triassic conodonts at the Gyanyima Section. This is then followed by thrombolitic microbialite, stromatolite, packstone containing abundant spherical microbes, and bivalve/ammonoid packstone of tidal and intertidal facies. This distinct lithofacies and biofacies shift would, therefore, suggest a dramatic faunal community and environmental change across the PTB. Distinct palaeoclimate fluctuations through the P- T interval are also indicated by the alternation of warm- and cool-water faunas through the uppermost part of the succession. The lower part of the Gyanyima Formation is characterized by a warm condition as indicated by Cathaysian-dominated fossils. This was then followed by a mild

  20. The role of land-marine teleconnections in the tropical proximal Permian-Triassic Marine Zone, Levant Basin, Israel: Insights from stable isotope pairing

    NASA Astrophysics Data System (ADS)

    Korngreen, D.; Zilberman, T.

    2017-07-01

    Three Late Permian - early Middle Triassic successions (Avdat 1, Pleshet 1 and David 1 boreholes, Levant Basin, Israel), located in relatively proximal and distal order from land within a broad tropical mixed carbonate/siliciclastic open marine zone, were studied using carbonate and organic matter contents (organic and inorganic carbon) in order to demonstrate the degree of effect of the land-marine teleconnection on the isotopic signatures at the depositional environment. The δ13Ccarb profiles exhibit sequential negative/positive fluctuations, which are correlatable with the reported worldwide sequential negative-shift events, enabled further stratigraphic division of the successions to stages and sub-stages. The successions changed their relative siliciclastic content relative to the degree of influence of each terrestrial influx source (eastern or southern), an outcome of humid up to extreme aridization hinterland exchanges, actually recording the expansion or contraction of the paleo-ITCZ. The δ18O profiles exhibited a range of values (- 5‰ to - 7.5‰ on average) typical to the western NeoTethys and similar to the reported worldwide climate trends with three major warming periods: (I) Late Permian to the PTB; (II) Late Dienerian - most of the Smithian; (III) early-mid Anisian, and two relatively cool periods: Griesbachian-Dienerian and Late Smithian - Spathian, but each of the three periods exhibiting short respites with the opposite trend. The δ13Ccarb, δ18Ocarb and the δ13Corg profiles of the proximal position consistently differ in magnitude from the distal ones, assuming a high contribution and involvement of meteoric water rich in terrestrial OM derived from the nearby supercontinent and affecting also the original water δ18Oseawater value (calculated to about - 3‰),which seemingly should be applied on the entire western Tethys seaway. During times of associations with maximum ITCZ contraction, the δ13Corg values of - 31‰ to - 33‰ in the

  1. The emergence and early evolution of biological carbon-fixation.

    PubMed

    Braakman, Rogier; Smith, Eric

    2012-01-01

    The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology, making it more

  2. A New Look at the Magnetostratigraphy and Paleomagnetism of the Upper Triassic to Lower Jurassic Moenave Formation, St. George Area, Southwestern Utah.

    NASA Astrophysics Data System (ADS)

    Donohoo-Hurley, L. L.; Geissman, J. W.; Lucas, S. G.; Roy, M.

    2006-12-01

    Paleomagnetic data from rocks exposed on and off the Colorado Plateau provide poles that young westward during the Late Triassic (to about 52^{O} E longitude) and young eastward during the Early Jurassic. This pattern has been used to posit the existence of a J-1 cusp in the North American APW path at the Triassic- Jurassic boundary (TJB), at about 199.6 Ma. Considerable debate has focused on the morphology and placement of the J-1 cusp due to poorly exposed and/or incompletely sampled sections, debates about the magnitude of Colorado Plateau rotation, and disagreements regarding stratigraphic relationships. Red beds of the Whitmore Point (~25 m of mostly lacustrine deposits) and Dinosaur Canyon (~55 m of hematitic fluvial sandstones and siltstones) members of the Moenave Formation (MF) are inferred to have been deposited across the TJB based on palynostratigraphy and vertebrate biostratigraphy. Two previously unsampled sections (Leeds and Warner Valley) of the MF are well exposed near St. George, Utah, and located in the transition zone that defines the western boundary of the Colorado Plateau. Preliminary data from samples collected from the Whitmore Point and Dinosaur Canyon members yield exclusively normal polarity magnetizations, which is consistent with previous studies and the normal polarity TJB magnetozone. Thermal demagnetization response suggests that the remanence is carried mainly in hematite. The degree of hematite pigmentation varies in both sections, and several Leeds sites show a weak overprint component that unblocks by 400^{O}-450^{O} C, with a higher unblocking temperature components, consistent with an Early Triassic Late Jurassic age that fully unblock around 670^{O}-680^{O} C. Individual beds (treated as specific sites) in part of the Dinosaur Canyon Member yield site mean directions with declinations between about 020 and 030, and may define the easternmost position (i.e. 60-50^{O} E latitude) of the NAMAPW path and thus the approximate the

  3. Evaluating Uranium Isotopes in Carbonates and Implications for Reconstructing Marine Paleoredox Conditions

    NASA Astrophysics Data System (ADS)

    Aharony, Ofer; Gubser, Steven S.; Maldacena, Juan; Ooguri, Hirosi; Oz, Yaron

    2016-12-01

    Uranium isotope ratios (238U/235U, reported as δ238U) have emerged as a promising proxy for marine redox conditions. This proxy relies on isotopic fractionation that occurs during reduction of soluble U(VI) to insoluble U(IV), wherein 238U is preferentially reduced and incorporated via authigenic processes into anoxic sediments, leaving the residual seawater U and resulting carbonates 238U-depleted. Because carbonates are generally well preserved in the rock record, they are useful archives of seawater chemistry throughout Earth history, including δ238U. In principle, the long residence time of U in the ocean permits quantitative inferences of global paleoredox conditions using carbonate δ238U records. To assess the performance of the proxy, we compile all published δ238U measurements from carbonate rocks and sediments, which span the Cryogenian through the modern. The potential for δ238U to serve as a quantitative, global paleoredox proxy is supported by reproducible trends across depositional environments and paleogeographic regions in the Cryogenian non-glacial interlude and across the Permian-Triassic and Triassic-Jurassic boundaries, although carbonates deposited in deeper waters (>200 m) may be subject to local effects. Using a box model, we highlight the key levers associated with seawater δ238U and the timescales of such variability. Like all sedimentary archives, carbonate rocks are prone to diagenetic alteration and additional controls that cause δ238U in carbonates to deviate from global seawater values. Specifically, the U isotopic composition of carbonate sediments can be influenced by diagenesis, carbonate mineralogy, dolomitization, detrital input, local organic matter deposition, and pore water chemistry. We evaluate indicators of these factors in the context of a diagenetic model to assess the sensitivity of carbonate δ238U to local syndepositional or post-depositional processes. These results improve the framework for interpreting

  4. Tetrapod distribution and temperature rise during the Permian–Triassic mass extinction

    PubMed Central

    2018-01-01

    The Permian–Triassic mass extinction (PTME) had an enormous impact on life in three ways: by substantially reducing diversity, by reshuffling the composition of ecosystems and by expelling life from the tropics following episodes of intense global warming. But was there really an ‘equatorial tetrapod gap', and how long did it last? Here, we consider both skeletal and footprint data, and find a more complex pattern: (i) tetrapods were distributed both at high and low latitudes during this time; (ii) there was a clear geographic disjunction through the PTME, with tetrapod distribution shifting 10–15° poleward; and (iii) there was a rapid expansion phase across the whole of Pangea following the PTME. These changes are consistent with a model of generalized migration of tetrapods to higher latitudinal, cooler regions, to escape from the superhot equatorial climate in the earliest Triassic, but the effect was shorter in time scale, and not as pronounced as had been proposed. In the recovery phase following the PTME, this episode of forced range expansion also appears to have promoted the emergence and radiation of entirely new groups, such as the archosaurs, including the dinosaurs. PMID:29321300

  5. Tetrapod distribution and temperature rise during the Permian-Triassic mass extinction.

    PubMed

    Bernardi, Massimo; Petti, Fabio Massimo; Benton, Michael J

    2018-01-10

    The Permian-Triassic mass extinction (PTME) had an enormous impact on life in three ways: by substantially reducing diversity, by reshuffling the composition of ecosystems and by expelling life from the tropics following episodes of intense global warming. But was there really an 'equatorial tetrapod gap', and how long did it last? Here, we consider both skeletal and footprint data, and find a more complex pattern: (i) tetrapods were distributed both at high and low latitudes during this time; (ii) there was a clear geographic disjunction through the PTME, with tetrapod distribution shifting 10-15° poleward; and (iii) there was a rapid expansion phase across the whole of Pangea following the PTME. These changes are consistent with a model of generalized migration of tetrapods to higher latitudinal, cooler regions, to escape from the superhot equatorial climate in the earliest Triassic, but the effect was shorter in time scale, and not as pronounced as had been proposed. In the recovery phase following the PTME, this episode of forced range expansion also appears to have promoted the emergence and radiation of entirely new groups, such as the archosaurs, including the dinosaurs. © 2018 The Authors.

  6. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments

    NASA Astrophysics Data System (ADS)

    Higgins, J. A.; Blättler, C. L.; Lundstrom, E. A.; Santiago-Ramos, D. P.; Akhtar, A. A.; Crüger Ahm, A.-S.; Bialik, O.; Holmden, C.; Bradbury, H.; Murray, S. T.; Swart, P. K.

    2018-01-01

    Shallow-water carbonate sediments constitute the bulk of sedimentary carbonates in the geologic record and are widely used archives of Earth's chemical and climatic history. One of the main limitations in interpreting the geochemistry of ancient carbonate sediments is the potential for post-depositional diagenetic alteration. In this study, we use paired measurements of calcium (44Ca/40Ca or δ44Ca) and magnesium (26Mg/24Mg or δ26Mg) isotope ratios in sedimentary carbonates and associated pore-fluids as a tool to understand the mineralogical and diagenetic history of Neogene shallow-water carbonate sediments from the Bahamas and southwest Australia. We find that the Ca and Mg isotopic composition of bulk carbonate sediments at these sites exhibits systematic stratigraphic variability that is related to both mineralogy and early marine diagenesis. The observed variability in bulk sediment Ca isotopes is best explained by changes in the extent and style of early marine diagenesis from one where the composition of the diagenetic carbonate mineral is determined by the chemistry of the fluid (fluid-buffered) to one where the composition of the diagenetic carbonate mineral is determined by the chemistry of the precursor sediment (sediment-buffered). Our results indicate that this process, together with variations in carbonate mineralogy (aragonite, calcite, and dolomite), plays a fundamental and underappreciated role in determining the regional and global stratigraphic expressions of geochemical tracers (δ13C, δ18O, major, minor, and trace elements) in shallow-water carbonate sediments in the geologic record. Our results also provide evidence that a large shallow-water carbonate sink that is enriched in 44Ca can explain the mismatch between the δ44/40Ca value of rivers and deep-sea carbonate sediments and call into question the hypothesis that the δ44/40Ca value of seawater depends on the mineralogy of primary carbonate precipitations (e.g. 'aragonite seas' and

  7. Corrected Paleolatitudes for Pangea in the Early Mesozoic

    NASA Astrophysics Data System (ADS)

    Kent, D.; Tauxe, L.

    2004-12-01

    A series of continental basins that developed during rifting of the Pangea supercontinent in the early Mesozoic are now distributed along the margins of the North Atlantic and their preserved contents (mainly redbeds and CAMP basalts) have often been targets of paleomagnetic studies. A continuous record of paleolatitudinal drift and a geomagnetic polarity time scale for ~35 Myr of the Late Triassic and earliest Jurassic have been derived from several of the basins in eastern North America and provide a precise spatio-temporal framework for detailed paleogeographic analysis. However, reported paleomagnetic directions from Jameson Land in East Greenland are anomalously shallow with respect to coeval sections in North America, a discrepancy that is too large to be explained by uncertainties in the reconstruction of Greenland to North America. Therefore, either the magnetizations of the Jameson Land (and perhaps other early Mesozoic rift basin) sediments are biased by inclination error or the Late Triassic time-averaged field included significant nondipole (axial octupole) contributions. According to a new statistical geomagnetic field model (Tauxe and Kent, 2004) constrained by paleomagnetic data from young lava flows, these two phenomena result in very different distributions of paleomagnetic directions, providing a basis to diagnose and correct for inclination error in sufficiently large paleomagnetic datasets. The resulting congruence of independent data from sedimentary and igneous rocks ranging over thousands of kilometers and 10s of millions of years can be taken as strong support that a geocentric axial dipole field similar to the last 5 Myr was operative more than 200 Myr ago. The corrected paleolatitudes indicate a faster rate of poleward motion of this sector of Pangea and broader continental climate belts in the Late Triassic and earliest Jurassic.

  8. Revision of the biostratigraphy of the Chatham Group (Upper Triassic), Deep River basin, North Carolina, USA

    USGS Publications Warehouse

    Litwin, R.J.; Ash, S.R.

    1993-01-01

    Paleontological evidence from the Upper Triassic Chatham Group in the three subbasins of the Deep River basin (North Carolina, USA) supports a significant revision of the ages assigned to most of this non-marine continental sedimentary sequence. This study confirms an early(?) or mid-Carnian age in the Sanford subbasin for the base of the Pekin Formation, the lowest unit of the Chatham Group. However, diagnostic late Carnian palynomorphs have been recovered from coals in the lower part of the Cumnock Formation in the Sanford subbasin, and from a sample of the Cumnock Formation equivalent in the Wadesboro subbasin. Plant megafossils and fossil verebrates from rocks in the Sanford subbasin also support a late Carnian age for the Cumnock Formation and its equivalents. The overlying Sanford Formation, which has not yet been dated paleontologically, probably includes beds of Norian age, as over 1000 m of strata may be present between the Cumnock Formation coals (dated here as late Carnian) and the top of the Sanford Formation. This chronostratigraphic interval appears similar to, but slightly longer than, that preserved in the Dan River-Danville and Davie County basins 100 km to the northwest. Our evidence, therefore, indicates that the Chatham Group was deposited over a much longer time interval [early(?) to mid-Carnian through early Norian] than previously was believed. ?? 1993.

  9. Middle Triassic molluscan fossils of biostratigraphic significance from the Humboldt Range, northwestern Nevada

    USGS Publications Warehouse

    Silberling, Norman J.; Nichols, K.M.

    1982-01-01

    Cephalopods and bivalves of the genus Daonella occur at certain levels throughout the Middle Triassic section in the Humboldt Range, northwestern Nevada. These fossiliferous strata are assigned to the Fossil Hill Member and upper member of the Prida Formation, which here forms the oldest part of the Star Peak Group. The distribution and abundance of fossils within the section is uneven, partly because of original depositional patterns within the dominantly calcareous succession and partly because of diagenetic secondary dolomitization and hydrothermal metamorphism in parts of the range.Lower and middle Anisian fossil localities are restricted to the northern part of the range and are scattered, so that only three demonstrably distinct stratigraphic levels are represented. Cephalopods from these localities are characteristic of the Caurus Zone and typify the lower and upper parts of the Hyatti Zone, a new zonal unit whose faunas have affinity with those from the older parts of the Varium Zone in Canada.The upper Anisian and lowermost Ladinian, as exposed in the vicinity of Fossil Hill in the southern part of the range, are extremely fossiliferous. Cephalopod and Daonella shells form a major component of many of the limestone interbeds in the calcareous fine-grained clastic section here. Stratigraphically controlled bedrock collections representing at least 20 successive levels have been made from the Fossil Hill area, which is the type locality for the Rotelliformis, Meeki, and Occidentalis Zones of the upper Anisian and the Subasperum Zone of the lower Ladinian. Above the Subasperum Zone fossils are again scarce; upper Ladinian faunas representing the Daonella lommeli beds occur at only a few places in the upper member of the Prida Formation.Although unevenly fossiliferous, the succession of Middle Triassic cephalopod and Daonella faunas in the Humboldt Range is one of the most complete of any known in the world. Newly collected faunas from this succession provide

  10. Environmental change during the Late Berriasian - Early Valanginian: a prelude to the late Early Valanginian carbon-isotope event?

    NASA Astrophysics Data System (ADS)

    Morales, Chloé; Schnyder, Johann; Spangenberg, Jorge; Adatte, Thierry; Westermann, Stephane; Föllmi, Karl

    2010-05-01

    The Valanginian period is well known for a positive excursion in marine and terrestrial δ13C records, which has been interpreted as the consequence of a major perturbation in the global carbon cycle (Lini et al., 1992; Erba et al., 2004). In contrast to the positive δ13C excursions of the Early Aptian and latest Cenomanian, marine organic-rich sediments have only been recognized from a few localities (van de Schootbrugge et al., 2003; Reboulet et al., 2003; Gröcke et al., 2005; Westermann et al., in press). The δ13C excursion began in the late Early Valanginian (campylotoxus ammonite zone) and gradually ended during the Late Valanginian. It is associated with a phase of widespread carbonate-platform drowning on the shelf (Föllmi et al., 1994) and a decline in calcareous nannofossils in the pelagic realm (Erba et al., 2004). As a triggering mechanism, numerous authors invoke the formation of the Parañà-Etendeka flood basalt. The correlation of this episode with the Valanginian δ13C event depends, however, on the absolute ages attributed to the Valanginian stage. The recent geological timescale by Ogg et al. (2008) shows that the major eruptional phase occurred during the Late Valanginian. This may imply that the late Early Valanginian δ13C event resulted from a combination of different factors. Important paleoenvironmental change occurred already in the latest Berriasian and earliest Valanginian, prior to the positive δ13C excursion. An increase in nutrient input near the onset of the δ13C excursion (campylotoxus ammonite zone), which may be considered as a trigger of the carbon cycle perturbation, has been identified in different studies, (Hennig, 2003; Duchamp-Alphonse et al., 2007; Bornemann & Mutterlose, 2008). Heterozoan faunal associations became dominant since the Early Valanginian on the northern Tethyan Helvetic platform and may indicate the beginning of sea-water eutrophication (Föllmi et al., 2007). Clay assemblages in the Tethys and Western

  11. Chronostratigraphy and hydrocarbon habitat associated with the Jurassic carbonates of Abu Dhabi, United Arab Emirates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsharahan, A.S.; Whittle, G.L.

    1995-08-01

    Deposition of Jurassic epeiric shelf carbonates and evaporates were controlled by epeirogenic movement and sea level fluctuations which formed an excellent combination of source rocks, reservoirs and seats in Abu Dhabi. At the end of the Triassic, a relative drop in sea level, caused by eustatic sea level lowering in conjunction with minor tectonic uplift, resulted in non-deposition or erosion. In the Toarcian, deposition of carbonates and terrigenous, clastics produced the Marrat Formation. In the mid-Aalenian, a drop in sea level eroded much of the Marrat and some of the Triassic in offshore U.A.E. The deposition of the Hamlah Formationmore » followed, under neritic, well-oxygenated conditions. The Middle Jurassic was characterized by widespread, normal marine shelf carbonates which formed the cyclic Izhara and Araej formations (reservoirs). In the Upper Jurassic, the carbonate shelf became differentiated into a broad shelf with a kerogen-rich intrashelf basin, formed in response to a eustatic rise coupled with epeirogenic downwarping and marine flooding. The intrashelf basin fill of muddy carbonate sediments constitutes the Diyab Formation and its onshore equivalent, the Dukhan Formation (source rocks). In the late Upper Jurassic, the climate became more arid and cyclic deposition of carbonates and evaporates prevailed, forming alternating peritidal anhydrite, dolomite and limestone in the Arab Formation (reservoir). Arid conditions continued into the Tithonian, fostering the extensive anhydrite of the Hith Formation (seal) in a sabkha/lagoonal setting on the shallow peritidal platform, the final regressive supratidal stage of this major depositional cycle.« less

  12. Parallel δ 13C and Conifer Physiognomic Trends Across the Triassic-Jurassic Boundary

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Olsen, P. E.; Sambrotto, R. N.; Cornet, B.

    2003-12-01

    The Triassic-Jurassic mass extinction event ( ˜200 Ma) had a profound effect on biotic evolution, and herein we describe trends in cheirolepidaceous conifer leaf physiognomy from the Pangean tropics (present northeastern USA) that at least broadly parallel a negative δ 13C excursion recorded in the same strata. The physiognomic changes appear at an abrupt (<10 ky) negative carbon isotope excursion (1) synchronous with a previously described palynological extinction level, fern spike, and Ir anomaly (2), and continue through a prolonged negative excursion, lasting 900 ky (through all three CAMP basaltic extrusive events), encompassing most of the Hettangian age. The physiognomic changes seen in the cheirolepidaceous conifer leafy shoot forms Brachyphyllum and Pagiophyllum through the δ 13C excursions include primarily the development of microphyllous leaves with thickened cuticle and sunken papillate stomata (3). These floral modifications are consistent with intense thermal stress plausibly due to very high atmospheric CO2 concentrations and corroborate McElwain's (4) thermal damage hypothesis for the Triassic-Jurassic transition that was originally based on different plant taxa from the higher Pangean latitudes in present Greenland and Sweden. Subsequently, a 2- to 5-fold increase in the area of leafy shoots in strata of latest Hettangian age suggest a return to lower thermal stress levels perhaps due to lower CO2, despite the fact that eastern North America continued to drift into more arid latitudes. The floral physiognomic changes associated with the negative δ 13C excursion and likely very elevated CO2 levels is in many ways a microcosm of the Mesozoic in which the dominance of cheiroleps apparently overlaps with the highest CO2 levels of the Mesozoic (5). References. (1) Whiteside JH, Olsen PE, Sambrotto RN. 2003. Geol. Soc. Amer. Abst. Prog. (in press). (2) Olsen PE et al., Science 296:1305-1307 (3) Cornet B. 1989. in Olsen PE, Schlische RW, Gore PJW

  13. Hydrodynamic framework of Saharan Triassic aquifers in South Tunisia and Algeria

    NASA Astrophysics Data System (ADS)

    Dhia, H. Ben; Chiarelli, A.

    The main characteristics of the lower Triassic in the Saharan part of Tunisia are presented. This first study of the aquifer is made possible because of data available from numerous petroleum wells that exist in the region. The results show that the reservoir is of importance for either geothermal energy recovering or human water needs; especially since its salinity lies in the range 2 g/l to 60 g/l. Along the Tunisian-Llibyan frontier, because of its pressure and salinity (<3 g/l), the aquifer can be used for regional needs. The study also shows that the salinity gradient (SE-NW) increases orthogonally to the runoff direction (SW-NE). This phenomenon was unexpected and it is necessary to consider the aquifer in its regional North African framework and to include its Algerian part to understand it; when the salinity and potentiometric maps include both countries, a regional pattern is evident. Furthermore, a correspondence is noted between the salinity variations and the percentage of detritic elements in the reservoir. Salinity increases toward the NW, while the detritic elements decrease in that direction. Zones with salt content lower than 5 g/l seem to be related to good reservoirs and shales, that are rich in sands, and carbonates. The aquifer water supply is primarily linked to gravity flow and secondarily to compaction flow.

  14. Footprints of large theropod dinosaurs and implications on the age of Triassic biotas from Southern Brazil

    NASA Astrophysics Data System (ADS)

    da Silva, Rafael Costa; Barboni, Ronaldo; Dutra, Tânia; Godoy, Michel Marques; Binotto, Raquel Barros

    2012-11-01

    Dinosaur footprints found in an outcrop of the Caturrita Formation (Rio Grande do Sul State, Southern Brazil), associated with a diverse and well preserved record of fauna and flora, reopen the debate about its exclusive Triassic age. The studied footprints were identified as Eubrontes isp. and are interpreted as having been produced by large theropod dinosaurs. The morphological characteristics and dimensions of the footprints are more derived than those commonly found in the Carnian-Norian, and are more consistent with those found during the Rhaetian-Jurassic. The trackmaker does not correspond to any type of dinosaur yet known from Triassic rocks of Brazil. Recent studies with the paleofloristic content of this unit also support a more advanced Rhaetian or even Jurassic age for this unit.

  15. Reconstruction of a saline, lacustrine carbonate system (Priabonian, St-Chaptes Basin, SE France): Depositional models, paleogeographic and paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Lettéron, Alexandre; Hamon, Youri; Fournier, François; Séranne, Michel; Pellenard, Pierre; Joseph, Philippe

    2018-05-01

    A 220-m thick carbonate-dominated succession has been deposited in shallow-water, saline lake environments during the early to middle Priabonian (MP17A-MP18 mammal zones) in the Saint-Chaptes Basin (south-east France). The palaeoenvironmental, paleoclimatic and palaeogeographic significance of such saline lake carbonates has been deciphered on the basis of a multi-proxy analyses including: 1) depositional and diagenetic features; 2) biological components (molluscs, benthic foraminifera, characean gyrogonites, spores and pollens); 3) carbon and oxygen stable isotopes; 4) trace elements; and 5) clay mineralogy. Five stages of lacustrine system evolution have been identified: 1) fresh-water closed lake under dry climate (unit U1); 2) fresh to brackish water lacustrine deltaic system with a mixed carbonate-siliciclastic sedimentation under relatively wet climatic conditions (unit U2); 3) salt-water lacustrine carbonate system under humid climatic setting (unit U3); 4) evaporitic lake (unit U4); and 5) closed lake with shallow-water carbonate sedimentation under subtropical to Mediterranean climate with dry seasons (unit U5). Upper Eocene aridification is evidenced to have started as early as the earliest Priabonian (unit U1: MP17A mammal zone). A change from humid to dryer climatic conditions is recorded between units U3 and U4. The early to middle Priabonian saline lake is interpreted as an athalassic (inland) lake that have been transiently connected with neighboring salt lakes influenced by seawater and/or fed with sulfates deriving from recycling of evaporites. Maximum of connection with neighboring saline lakes (Mormoiron Basin, Camargue and Central grabens, Hérault Basin) likely occurred during unit U3 and at the base of unit U5. The most likely sources of salts of these adjacent basins are: 1) Triassic evaporites derived from salt-diapirs (Rhône valley) or from paleo-outcrops located east of the Durance fault or offshore in the Gulf of Lion; or 2) marine

  16. Determining the Cause of the Late Triassic Adamanian-Revueltian Vertebrate Faunal Turnover in Western North America: Climate Change, Bolide Impact, or no Extinction at All?

    NASA Astrophysics Data System (ADS)

    Martz, J. W.

    2016-12-01

    The Triassic was one of the most critical intervals in terrestrial vertebrate history, during which both adaptive radiation and extinction played roles in shaping the future of Mesozoic ecosystems. In recent years, it has become increasingly clear that the transition from the globally diverse ecosystems of the Triassic to the more uniformly dinosaur-dominated ecosystems of the later Mesozoic was complex, involving a variety of environmental changes on both local and global levels. The Adamanian-Revueltian faunal turnover is a putative faunal turnover event identified in the Upper Triassic Chinle Formation of the western United States which involved a decline in diversity among crocodylian-line archosaurs and the extinction of several taxa coincident with the appearance or increase in abundance of other taxa. Careful lithostratigraphic and biostratigraphic work in Petrified Forest National Park in northern Arizona has identified the stratigraphic horizon at which this turnover is likely to have occurred, and sedimentology and improved radioisotopic calibration indicates that the turnover was early Alaunian (middle Norian) and at least roughly coincident with both the Manicouagan bolide impact and an abrupt shift towards a more arid climate in the western United States. However, testing the reality of the turnover and its coincidence with particular environmental changes requires the application of statistical methods highly dependent on the sample sizes and stratigraphic distribution of vertebrate fossils. The problem is exacerbated by the fact that for some vertebrates, the turnover is characterized by changes in abundance rather than range termination, which is more difficult to evaluate statistically, and that some fossils can only be assigned to higher taxa. Moreover, radioisotopic calibration of the putative turnover horizon is coarse, suggesting that correlating faunal turnovers to distant events is more difficult than correlating them to local environmental

  17. Conodont biostratigraphy of the Permian-Triassic boundary sequence at Lung Cam, Vietnam

    USGS Publications Warehouse

    Wardlaw, Bruce R.; Nestell, Merlynd K.; Nestell, Galina P.; Ellwood, Brooks B.; Lan, Luu Thi Phuong

    2015-01-01

    The occurrences of a few specimens of Clarkina and many specimens of Hindeodus at the Permian-Triassic boundary section at Lung Cam, Vietnam allow accurate graphic correlation to the P-T boundary stratotype at Meishan, China. One species of Clarkina, ten species and two subspecies of Hindeodus, and the apparatuses of Hindeodus latidentatus and Merrillina ultima are described and illustrated.

  18. Early Results from the NASA Orbiting Carbon Observatory-2 (OCO-2)

    NASA Astrophysics Data System (ADS)

    Crisp, David; Eldering, Annmarie

    2015-04-01

    The Orbiting Carbon Observatory-2 (OCO-2) is NASA's first satellite designed to collect the measurements needed to estimate the column-averaged carbon dioxide (CO2) dry air mole fraction, XCO2, with the sensitivity, accuracy, and resolution needed to characterize the CO2 sources and sinks on regional scales over the globe. OCO-2 was successfully launched from Vandenberg Air Force Base in California on July 2, 2014 and joined the 705-km Afternoon Constellation (A-Train) on August 3, 2014. The three-channel imaging grating spectrometer was then cooled to its operating temperatures and a comprehensive series of characterization and calibration activities were initiated. Since early October 2014, the observatory has been routinely collecting almost 1 million soundings over the sunlit hemisphere each day. Early cloud screening results indicate that 15-30% of these measurements may be sufficiently cloud free to yield precise estimates of XCO2. Initial deliveries of calibrated, geo-located OCO-2 spectra to the NASA Goddard Earth Science Data and Information Services Center (GES DISC) began on December 30, 2014. Preliminary estimates of XCO2 retrieved from these data are currently being validated against observations from the Total Carbon Column Observing Network (TCCON) and other standards. Routine deliveries XCO2 and other products, including surface pressure and chlorophyll fluorescence, to the GES DISC are expected to begin before the end of March, 2015. This presentation will summarize the status of the OCO-2 mission and the coverage, resolution, and accuracy of its early results.

  19. Origin and tectonic evolution of upper Triassic Turbidites in the Indo-Burman ranges, West Myanmar

    NASA Astrophysics Data System (ADS)

    Yao, Wei; Ding, Lin; Cai, Fulong; Wang, Houqi; Xu, Qiang; Zaw, Than

    2017-11-01

    The Pane Chaung Formation is exposed in the Indo-Burman Ranges, and has been involved in collision between the Indian Plate and West Burma Block. However, controversies exist over the provenance and paleogeographic reconstruction of the Pane Chaung Formation. This study presents new petrographical and detrital zircon Usbnd Pb ages and Hf isotopic data from the Pane Chaung Formation in Rakhine Yoma and Chin Hills, west Myanmar. The depositional age of the Pane Chaung Formation is Late Triassic, indicated by the Carnian-Norian Halobia fossils and maximum depositional ages between 233.0 ± 2.5 Ma and 206.2 ± 1.8 Ma. Upper Triassic sandstones contain 290-200 Ma detrital zircons, εHf(t) values of - 6 to 11 and TDMC of 1.6 to 0.6 Ga, interpreted to be derived from West Papua region. The most abundant zircon age population of 750-450 Ma is derived from Pan-African orogenic belts in Australia. Zircons of 1250-900 Ma age were derived from the Grenvillian orogen in Australia. Archean zircons are interpreted to be derived from the Yilgarn and Pilbara cratons in Western Australia. Detrital zircon ages of the Pane Chaung Formation are distinct from similar aged strata in Indochina and Sibumasu, but comparable to NW Australia (Carnarvon Basin) and Greater India (Langjiexue Formation). It is suggested that the Pane Chaung Formation was deposited in a Late Triassic submarine fan along the northern margin of Australia.

  20. Permian-Triassic thermal anomaly of the active margin of South America as a result of plate kinematics reorganization

    NASA Astrophysics Data System (ADS)

    Riel, Nicolas; Jaillard, Etienne; Guillot, Stéphane; Martelat, Jean-Emmanuel; Braun, Jean

    2013-04-01

    From Permian to Triassic times, tectonic plate reorganization provoked Pangaea breakup, counterclockwise rotation of Gondwana, closing of the Paleo-Tethys Ocean and opening of the Neo-Tethys oceanic realm. Meanwhile, the switch from arc volcanism to widespread S-type magmatism along the western South American active margin around 275-265 Ma is symptomatic of the onset of a large-scale Permian-Triassic thermal anomaly (PTTA)affecting the whole margin. Here we report metamorphic and U-Pb geochronological results from the El Oro metamorphic complex in the forearc zone of southwestern Ecuador, which recorded the last step, at 230-225 Ma, of the PTTA. The change in the drift direction of Gondwana from north to east at ca. 270 Ma was related to plate reorganization and provoked the verticalization of the subducted Panthalassa slab. As the slab verticalized, strong heat advection produced a high heat flow beneath the active margin inducing the development of a huge thermal anomaly responsible for the PTTA, which lasted 30 Ma. This voluminous magmatic activity culminated at the Permian-Triassic boundary, and may have contributed to the degradation of life conditions on the Earth surface.

  1. Geological history of the west Libyan offshore and adjoining regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benniran, M.M.; Taleb, T.M.; McCrossan, R.G.

    1988-08-01

    The continental margin of the African plate north of Libya is separated from the Saharan platform to the south by a major Variscan fault system running along the coastline. The structural evolution of three sedimentary basins within the margin is discussed. The Jeffara basin, onshore western Libya-southern Tunisia, formed as a right-lateral pull-part late in the Variscan event. When the strike-slip motion ceased in the Late Permian, the basin continued to subside thermally. The Sabratah (Tripolitanian) basin, offshore western Libya-southern Tunisia, and the Benghazi basin in the Sirte rise were both formed as left-lateral pull-aparts in the Late Triassic-Early Jurassic.more » From the Middle Jurassic to the present they have subsided thermally. Onshore the lower Mesozoic is characterized by continental and nearshore clastics, separated by an evaporite sequence of Late Triassic-Early Jurassic age. Offshore this sequence is thought to grade northward into open marine carbonates. Uplift along the edge of the Saharan platform during the Early Cretaceous sourced coarse clastics, which grade northward into a thick sequence of shallow-water carbonates. Throughout the Late Cretaceous and early Tertiary, high-energy carbonates were deposited around the flanks of the Sabratah basin, grading into deeper-water, fine-grained clastics and carbonates toward the center of the basin. The late Tertiary succession is dominated by clastics derived from the growing Tellian Atlas to the northwest. During the Mesozoic and Tertiary a thick sequence of carbonates was deposited on the Pelagian platform to the north of the Sabratah basin. Periodically the platform was exposed subaerially.« less

  2. Carbon Cycle Dynamics through the Early Eocene Climatic Optimum: Orbital Couplings to Lacustrine Cycling

    NASA Astrophysics Data System (ADS)

    Rosengard, S. Z.; Grogan, D. S.; Whiteside, J. H.; van Keuren, M.; Musher, D.

    2010-12-01

    The early Eocene represents the most recent hothouse climate state of Earth history, a period during which Earth’s surface temperatures warmed and reached a steady peak at the Early Eocene Climatic Optimum (EECO), 53.5-50 Ma. Interspersed through the primary warming interval were several hyperthermals, or rapid peaks in surface temperature and pulses of carbon dioxide into the atmosphere, followed by rapid declines, lasting 10^4 to 10^5 years. Various hypotheses have been offered to explain the climatic triggers during the hothouse interval, including changes in ocean circulation, methane release from hydrates, volcanism, and turnover of terrestrial organic matter, implicating various couplings and feedbacks in the global carbon cycle. The present study investigates the prevailing changes in carbon cycle dynamics that occurred during a specific subinterval of the Early Eocene Climatic Optimum. We sampled a carbon-rich 300-ft ( 1100 kyr) section of lacustrine Green River Formation sediments from the TOSCO core in the Uinta Basin at a one-foot resolution for organic carbon content and δ^{13}C. The compiled data comprise a high-resolution profile of total organic carbon and isotopic organic carbon composition through the section, showing cyclic patterns that we hypothesize reflect orbital signals. Bulk isotopic carbon and shale oil measurements from an earlier Fischer Assay across TOSCO’s entire 1030-ft core were then filtered using the expected frequency of a 23-kyr precession cycle. The overlaid cycles reveal δ^{13}C and oil content to be anti-phase through the 300-ft section, except for an interval of 50 feet (180 kyr) from the Mahogany Zone to the B-groove of the core, where the two measurements are in-phase. Given that shale oil, a proxy for lake primary productivity and carbon burial, and δ^{13}C typically correlate inversely, this short, 180-kyr interval of in-phase variation suggests a significant alteration in the local carbon cycle. These preliminary

  3. A new stem-neopterygian fish from the Middle Triassic of China shows the earliest over-water gliding strategy of the vertebrates.

    PubMed

    Xu, Guang-Hui; Zhao, Li-Jun; Gao, Ke-Qin; Wu, Fei-Xiang

    2013-01-07

    Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought.

  4. Detrital zircon U-Pb geochronology of Cambrian to Triassic miogeoclinal and eugeoclinal strata of Sonora, Mexico

    USGS Publications Warehouse

    Gehrels, G.E.; Stewart, John H.

    1998-01-01

    One hundred and eighty two individual detrital zircon grains from Cambrian through Permian miogeoclinal strata, Ordovician eugeoclinal rocks, and Triassic post-orogenic sediments in northwestern Sonora have been analyzed. During Cambrian, Devonian, Permian, and Triassic time, most zircons accumulating along this part of the Cordilleran margin were shed from 1.40-1.45 and 1.62-1.78 Ga igneous rocks that are widespread in the southwestern United States and northwestern Mexico. Zircons with ages of approximately 1.11 Ga are common in Cambrian strata and were apparently shed from granite bodies near the sample site. The sources of 225-280 Ma zircons in our Triassic sample are more problematic, as few igneous rocks of these ages are recognized in northwestern Mexico. Such sources may be present but unrecognized, or the grains could have been derived from igneous rocks of the appropriate ages to the northwest in the Mojave Desert region, to the east in Chihuahua and Coahuila, or to the south in accreted(?) arc-type terranes. Because the zircon grains in our Cambrian and Devonian to Triassic samples could have accumulated in proximity to basement rocks near their present position or in the Death Valley region of southern California, our data do not support or refute the existence of the Mojave-Sonora megashear. Ordovician strata of both miogeoclinal and eugeoclinal affinity are dominated by >1.77 Ga detrital zircons, which are considerably older than most basement rocks in the region. Zircon grains in the miogeoclinal sample were apparently derived from the Peace River arch area of northwestern Canada and transported southward by longshore currents. The eugeoclinal grains may also have come from the Peace River arch region, with southward transport by either sedimentary or tectonic processes, or they may have been shed from off-shelf slivers of continents (perhaps Antarctica?) removed from the Cordilleran margin during Neoproterozoic rifting. It is also possible that the

  5. New material and revision of Melanorosaurus thabanensis, a basal sauropodomorph from the Upper Triassic of Lesotho

    PubMed Central

    Allain, Ronan

    2016-01-01

    Melanorosaurus is a genus of basal sauropodomorph that currently includes two species from Southern Africa. In this paper, we redescribe the holotype femur of Melanorosaurus thabanensis from the Elliot Formation of Lesotho, as well as associated remains. The stratigraphic position of this taxon is reviewed, and it is clear that it comes from the Lower Elliot Formation being, therefore, Late Triassic in age, and not Early Jurassic as originally described. The knowledge of the anatomy of the basal sauropodomorph of Thabana Morena is enhanced by the description of six new skeletal elements from the type locality. The femur and the ilium from Thabana Morena are diagnostic and characterized by unusual proportions. The first phylogenetic analysis including both this specimen and Melanorosaurus is conducted. This analysis leads to the conclusion that the femur described in the original publication of Melanorosaurus thabanensis can no longer be referred to Melanorosaurus. For these reasons, we hereby create Meroktenos gen. nov. to encompass Meroktenos thabanensis comb. nov. PMID:26855874

  6. Origin of the Permian-Triassic komatiites, northwestern Vietnam

    NASA Astrophysics Data System (ADS)

    Hanski, Eero; Walker, Richard J.; Huhma, Hannu; Polyakov, Gleb V.; Balykin, Pavel A.; Tran Trong Hoa; Ngo Thi Phuong

    Rare examples of Phanerozoic komatiites are found in the Song Da zone, NW Vietnam. These komatiites were erupted through continental crust and may belong to the SE extension of the Permo-Triassic Emeishan volcanic province located in SW China. They provide a good opportunity to study the source characteristics of starting plume magmas in a continental flood basalt province. Erupted on late-Permian carbonate rocks, the komatiitic rocks are interbedded with low-Ti olivine basalts. Basaltic komatiites display pyroxene spinifex textures, while more magnesian rocks (MgO up to 32 wt.%) are porphyritic, containing a single, cognate population of euhedral to elongated olivine phenocrysts with Fo up to 93.0%. This suggests a highly magnesian parental magma with 22-23 wt.% MgO. In terms of major and minor elements, the komatiites are similar to the ca. 89 Ma old Gorgona Island komatiites of Colombia. The Song Da komatiites are also strongly light-rare-earth-element- (LREE) depleted (CeN/YbN 0.30-0.62) and have unfractionated heavy rare earth element (HREE) patterns. The komatiites have high Os concentrations (up to 7.0 ppb), low but variable Re/Os ratios, and define an isochron with an age of 270+/-21 Ma, and an initial 188Os/187Os ratio of 0.12506+/- 0.00041 (γOs=+0.02+/-0.40). The Os isotopic systematics of the komatiites show no effects of crustal contamination. In contrast, their initial ɛNd values range from +3 to +8, reflecting varying but generally small degrees of contamination with Proterozoic sialic basement material. Associated low-Ti basalts have low initial ɛNd values (-0.8 to -7.5), high initial γOs values (>=15), flat or LREE-enriched REE patterns, and Nb-Ta depletion. These characteristics are also attributed to variable extents of crustal contamination.

  7. New Insights into Early Cenozoic Carbon Cycling: Continental Ecosystem Response to Orbital Forcing in the Lacustrine Green River Formation (Western US) at the Conclusion of the Early Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Musher, D.; Grogan, D. S.; Whiteside, J. H.

    2010-12-01

    A series of extreme warming events, known as hyperthermals, interrupted the equable climate conditions predominant during the early Cenozoic hothouse. In marine sediments, these hyperthermals are marked by prominent negative carbon isotope excursions, indicative of dramatic and abrupt changes in the global exogenic carbon pool, as well as carbonate dissolution horizons and benthic foraminiferal extinctions. Hyperthermals are well documented in the marine record, but it is less clear how patterns of global carbon cycling manifested in early Cenozoic terrestrial environments, although some studies have documented amplified excursions relative to that of the marine record. The lacustrine Eocene Green River Formation of Utah is an excellent system for studying the continental environmental context of global carbon cycle dynamics during this time. These sediments span a ~15 Myr time interval, including the entire Early Eocene Climatic Optimum (EECO) and the transition to the long-term Cenozoic cooling trend. To investigate the relationship between the continental carbon record and global carbon cycling, climate, and orbital forcing, we studied a detailed section from the P-4 core drilled in the Uinta Basin bracketing the famous “Mahogany Bed”, a petroliferous layer of oil shale recording a period of enhanced productivity and carbon burial near the end of the EECO. Our carbon isotope measurements of high molecular weight n-alkanes across this boundary suggest a stable global carbon cycle and climate regime persisting ~400 kyr at the terminal EECO. Frequency spectra of published oil yield and gamma ray data from this section reveal concentrated power at Milankovitch frequencies, permitting the assembly of a robust age model. In concert with radioisotopic age control, our orbital chronology allows for comparison of our carbon cycle record to early Eocene astronomical solutions. We show that the Mahogany Bed corresponds to strong minima in short and long eccentricity

  8. Radiolarian biochronology of upper Anisian to upper Ladinian (Middle Triassic) blocks and tectonic slices of volcano-sedimentary successions in the Mersin Mélange, southern Turkey: New insights for the evolution of Neotethys

    NASA Astrophysics Data System (ADS)

    Tekin, U. Kagan; Bedi, Yavuz; Okuyucu, Cengiz; Göncüoglu, M. Cemal; Sayit, Kaan

    2016-12-01

    The Mersin Ophiolitic Complex located in southern Turkey comprises two main structural units; the Mersin Mélange, and a well-developed ophiolite succession with its metamorphic sole. The Mersin Mélange is a sedimentary complex including blocks and tectonic slices of oceanic litosphere and continental crust in different sizes. Based on different fossil groups (Radiolaria, Conodonta, Foraminifera and Ammonoidea), the age of these blocks ranges from Early Carboniferous to early Late Cretaceous. Detailed fieldwork in the central part of the Mersin Mélange resulted in identification of a number of peculiar blocks of thick basaltic pillow-and massive lava sequences alternating with pelagic-clastic sediments and radiolarian cherts. The oldest ages obtained from the radiolarian assemblages from the pelagic sediments transitional to the volcano-sedimentary succession in some blocks are middle to late Late Anisian. These pelagic sediments are overlain by thick sandstones of latest Anisian to middle Early Ladinian age. In some blocks, sandstones are overlain by clastic and pelagic sediments with lower Upper to middle Upper Ladinian radiolarian fauna. Considering the litho- and biostratigraphical data from Middle Triassic successions in several blocks in the Mersin Mélange, it is concluded that they correspond mainly to the blocks/slices of the Beysehir-Hoyran Nappes, which were originated from the southern margin of the Neotethyan Izmir-Ankara Ocean. As the pre-Upper Anisian basic volcanics are geochemically evaluated as back-arc basalts, this new age finding suggest that a segment of the Izmir-Ankara branch of the Neotethys was already open prior to Middle Triassic and was the site of intraoceanic subduction.

  9. Paleomagnetism and Magnetostratigraphy of Upper Permian to Lower Triassic (?) Beaufort Group Strata at Bethulie, Karoo Basin, Free State Province, South Africa

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Gastaldo, R. A.; Neveling, J.; Makubalo, S.

    2017-12-01

    A multifaceted approach to understand the timing of interpreted environmental changes during the Late Permian to possibly Early Triassic (?) time in the Beaufort Group strata of the Karoo Basin includes work to establish robust magnetic polarity records for sections previously interpreted to encompass end-Permian extinction events. Demonstrating the preservation of an early-acquired remanence (RM) in Karoo strata is required for a robust magnetostratigraphy. Yet, this is challenging due to thermochemical effects related to the Early Jurassic (ca. 183 Ma) Karoo Large Igneous Province (LIP), and the NE to SW increase in burial diagenesis attending Cape Fold Belt tectonism. Documentation of a primary RM in these strata, which appears to be preserved in some areas, requires careful laboratory- and field-based assessment. We report data from 53 sites collected at the well-studied Bethulie section, Free State Province, in which several <2 m wide Karoo LIP dikes crop out. We obtained 7-10+ independent samples per individual horizon to assess ChRM uniformity. Strata well-removed from dikes yield both normal and reverse polarity ChRM. It is always the case that the first-removed RM is a NNW seeking, moderate to steep negative-inclination ChRM (normal polarity); NRM intensities are typically 1 to 5 mA/m. Sites BT15 and BT21, which are located in strata lying some 4 m below the often-cited "event bed" interval inferred to be the terrestrial expression of the Permian/Triassic boundary, is dominated by a well-defined reverse RM with a normal overprint RM unblocked below 400oC, implying elevated temperatures (i.e., 100 to 250oC+) for ca. 1 Ma (+/-). Contact tests are positive but complicated. Host strata collected in distances equal to or less than 1-2 dike widths from the intrusions have been thermally remagnetized and demonstrate high NRM intensities (> 50 mA/m). Collectively, we interpret these data to indicate that any ChRM, with the exception of those from host strata in

  10. Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney basin system, eastern Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, J.C.; Bai, G.P.; Hamilton, P.J.

    1995-07-03

    Dawsonite, NaAlCO{sub 3}(OH){sub 2}, is widespread as a cement, replacement, and cavity filling in Permo-Triassic sedimentary rocks of the Bowen-Gunnedah-Sydney basin system eastern Australia. The origin of dawsonite in these rocks was studied by petrographic and stable isotope analysis. Dawsonite {delta}{sup 13}C (PDB) values range from {minus}4.0 to +4.1{per_thousand} and are remarkably consistent throughout the Bowen-Gunnedah-Sydney basin system. These values indicate either a marine carbonate or magmatic source for carbon in the dawsonite. A magmatic carbon source is considered more likely on the basis that (1) evidence of and the cause for widespread marine carbonate dissolution in the sedimentary successionsmore » are not apparent, (2) dawsonite is widespread in both marine and nonmarine facies, (3) the region has been the site of major igneous activity, (4) other dawsonite deposits of similar carbon isotopic composition are linked to igneous activity, and (5) magmatic CO{sub 2} accumulations are known in parts of the Bowen-Gunnedah-Sydney basin system. The timing of igneous activity in the Bowen Basin constrains the timing of dawsonite formation in the Bowen-Gunnedah-Sydney basin system to the Tertiary, consistent with textural relationships, which indicate that dawsonite formed late during the burial history of the Permo-triassic sequences. The distribution and interpreted origin of dawsonite implies magmatic CO{sub 2} seepage in the Bowen-Gunnedah-Sydney basin system on a continental scale.« less

  11. Early Mesozoic rift basin architecture and sediment routing system in the Moroccan High Atlas

    NASA Astrophysics Data System (ADS)

    Perez, N.; Teixell, A.; Gomez, D.

    2016-12-01

    Late Permian to Triassic extensional systems associated with Pangea breakup governed the structural framework and rift basin architecture that was inherited by Cenozoic High Atlas Mountains in Morocco. U-Pb detrital zircon geochronologic and mapping results from Permo-Triassic deposits now incorporated into the High Atlas Mountains provide new constraints on the geometry and interconnectivity among synextensional depocenters. U-Pb detrital zircon data provide provenance constraints of Permo-Triassic deposits, highlighting temporal changes in sediment sources and revealing the spatial pattern of sediment routing along the rift. We also characterize the U-Pb detrital zircon geochronologic signature of distinctive interfingering fluvial, tidal, and aeolian facies that are preferentially preserved near the controlling normal faults. These results highlight complex local sediment mixing patterns potentially linked to the interplay between fault motion, eustatic, and erosion/transport processes. We compare our U-Pb geochronologic results with existing studies of Gondwanan and Laurentian cratonic blocks to investigate continent scale sediment routing pathways, and with analogous early Mesozoic extensional systems situated in South America (Mitu basin, Peru) and North America (Newark Basin) to assess sediment mixing patterns in rift basins.

  12. Carbon isotope fractionation of sapropelic organic matter during early diagenesis

    USGS Publications Warehouse

    Spiker, E. C.; Hatcher, P.G.

    1984-01-01

    Study of an algal, sapropelic sediment from Mangrove Lake, Bermuda shows that the mass balance of carbon and stable carbon isotopes in the major organic constituents is accounted for by a relatively straightforward model of selective preservation during diagenesis. The loss of 13C-enriched carbohydrates is the principal factor controlling the intermolecular mass balance of 13C in the sapropel. Results indicate that labile components are decomposed leaving as a residual concentrate in the sediment an insoluble humic substance that may be an original biochemical component of algae and associated bacteria. An overall decrease of up to about 4??? in the ?? 13C values of the organic matter is observed as a result of early diagenesis. ?? 1984.

  13. Tectonic evolution of the Songpan Garzê and adjacent areas (NE Tibet) from Triassic to Present : a synthesis.

    NASA Astrophysics Data System (ADS)

    Roger, F.; Jolivet, M.; Malavieille, J.

    2009-04-01

    The 12th May 2008 Wenchuan earthquake in the Longmen Shan occurred on a large thrust fault largely inherited from an Indosinian structure itself probably controlled by an older structural heritage of the South China block continental margin. Within the whole northeast Tibet region, such a structural inheritance has had a major impact on the Tertiary deformation. It appears of primary importance to assess the pre-Tertiary tectonic evolution of the main blocks involved to understand the actual deformation in the eastern edge of Tibet. Over the past decades, the Proterozoic to Cenozoic tectonic, metamorphic and geochronologic history of the Longmen Shan and Songpan Garzê area have been largely studied. We present a synthesis of the tectonic evolution of the Songpan Garzê fold and thrust belt from Triassic to present. The Songpan-Garzê belt was formed during closure of a wide oceanic basin filled with a thick (5 to 15 km) sequence of Triassic flyschoid sediments [10]. Closure of the basin due to Triassic subduction involved strong shortening, intense folding and faulting of the Triassic series. A large-scale décollement, that presently outcrops along the eastern boundary of the belt (Danba area), allowed the growth of a wide and thick accretionary wedge [9]. It develops in the Paleozoic and Triassic series and separates the accretionary prism from an autochthonous crystalline basement [5, 12, 6] which shares many similarities with the basement of the Yangtze Craton (0.7-0.9 Ga). To the north and northwest, below the thickened Triassic series of the belt, the composition (oceanic or continental) of the basement remains unknown. During the Indosinian orogeny the emplacement of orogenic granites (220 - 150 Ma) was associated to crustal thickening [12, 13, 17, 15]. The isotopic composition of granitoids shows that their magma source were predominantly derived from melting of the proterozoic basement with varying degrees of sedimentary material and negligible mantle

  14. Pre-breakup geology of the Gulf of Mexico-Caribbean: Its relation to Triassic and Jurassic rift systems of the region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartok, P.

    1993-02-01

    A review of the pre-breakup geology of west-central Pangea, comprised of northern South America, Gulf of Mexico and West Africa, combined with a study of the Mesozoic rift trends of the region confirms a relation between the rift systems and the underlying older grain of deformation. The pre-breakup analysis focuses attention on the Precambrian, Early Paleozoic and Late Paleozoic tectonic events affecting the region and assumes a Pindell fit. Two Late Precambrian orogenic belts are observed in the west central Pangea. Along the northern South American margin and Yucatan a paleo northeast trending Pan-African aged fold belt is documented. Amore » second system is observed along West Africa extending from the High Atlas to the Mauritanides and Rockelides. During the Late Paleozoic, renewed orogenic activity, associated with the Gondwana/Laurentia suture, affected large segments of west central Pangea. The general trend of the system is northeast-southwest and essentially parallels the Gyayana Shield, West African, and eastern North American cratons. Mesozoic rifting closely followed either the Precambrian trends or the Late Paleozoic orogenic belt. The Triassic component focuses along the western portions of the Gulf of Mexico continuing into eastern Mexico and western South America. The Jurassic rift trend followed along the separation between Yucatan and northern South America. At Lake Maracaibo the Jurassic rift system eventually overlaps the Triassic rifts. The Jurassic rift resulted in the [open quotes]Hispanic Corridor[close quotes] that permitted Tethyan and Pacific marine faunas to mix at a time when the Gulf of Mexico underwent continental sedimentation.« less

  15. Vertical groundwater flow in Permo-Triassic sediments underlying two cities in the Trent River Basin (UK)

    NASA Astrophysics Data System (ADS)

    Taylor, R. G.; Cronin, A. A.; Trowsdale, S. A.; Baines, O. P.; Barrett, M. H.; Lerner, D. N.

    2003-12-01

    The vertical component of groundwater flow that is responsible for advective penetration of contaminants in sandstone aquifers is poorly understood. This lack of knowledge is of particular concern in urban areas where abstraction disrupts natural groundwater flow regimes and there exists an increased density of contaminant sources. Vertical hydraulic gradients that control vertical groundwater flow were investigated using bundled multilevel piezometers and a double-packer assembly in dedicated boreholes constructed to depths of between 50 and 92 m below ground level in Permo-Triassic sediments underlying two cities within the Trent River Basin of central England (Birmingham, Nottingham). The hydrostratigraphy of the Permo-Triassic sediments, indicated by geophysical logging and hydraulic (packer) testing, demonstrates considerable control over observed vertical hydraulic gradients and, hence, vertical groundwater flow. The direction and magnitude of vertical hydraulic gradients recorded in multilevel piezometers and packers are broadly complementary and range, within error, from +0.1 to -0.7. Groundwater is generally found to flow vertically toward transmissive zones within the hydrostratigraphical profile though urban abstraction from the Sherwood Sandstone aquifer also influences observed vertical hydraulic gradients. Bulk, downward Darcy velocities at two locations affected by abstraction are estimated to be in the order of several metres per year. Consistency in the distribution of hydraulic head with depth in Permo-Triassic sediments is observed over a one-year period and adds support the deduction of hydrostratigraphic control over vertical groundwater flow.

  16. Carbon dioxide warming of the early Earth

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1997-01-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.

  17. Carbon dioxide warming of the early Earth.

    PubMed

    Arrhenius, G

    1997-02-01

    Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.

  18. A new stem-neopterygian fish from the Middle Triassic of China shows the earliest over-water gliding strategy of the vertebrates

    PubMed Central

    Xu, Guang-Hui; Zhao, Li-Jun; Gao, Ke-Qin; Wu, Fei-Xiang

    2013-01-01

    Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought. PMID:23118437

  19. Remagnetization mechanisms in Triassic red beds from South China

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaoxia; Liu, Qingsong; Dekkers, Mark J.; Zhao, Xiang; Roberts, Andrew P.; Yang, Zhenyu; Jin, Chunsheng; Liu, Jianxing

    2017-12-01

    Paleogeographic reconstructions based on paleomagnetic data rely on the reliability of the natural remanent magnetization (NRM) as a primary geomagnetic signal. Remagnetizations, however, can be common in many rock types, including late Paleozoic and Mesozoic red beds, and they complicate paleogeographic interpretations. Extracting the primary NRM from partially remagnetized rocks, and understanding the remagnetization mechanism are important in these contexts. We carried out a systematic paleomagnetic study of red bed samples from the Triassic Huangmaqing Formation, Nanjing (32.0°N, 118.9°E), South China. Two NRM components carried by secondary and primary hematite are isolated in 47 of the 94 samples studied, where the latter component has a direction in stratigraphic coordinates of D = 29.2 °, I = 34.6 ° (α95 = 10.9 °, 47 samples from 6 sites) that yields a paleopole of λ = 60.8°N, ϕ = 228.1°E, dp / dm = 12.5 / 7.2, which is consistent with Triassic pole positions for the South China Block. A secondary chemical remanent magnetization (CRM) (D = 227.1 °, I = 80.8 °, α95 = 7.3 °) is documented in all 94 samples from 10 sites and is carried by pigmentary hematite that is inferred to have been generated by magnetite oxidation during orogenic activity. This secondary component has steep inclinations and is interpreted to have been influenced by a combination of the remanence carried by original parent magnetite, the orogenic stress field, and the prevailing geomagnetic field direction during deformation. This CRM direction is recorded commonly by red beds from the South China Block, and is significant for regional tectonic studies in the area.

  20. Reworked calcretes: their significance in the reconstruction of alluvial sequences (Permian and Triassic, Minorca, Balearic Islands, Spain)

    NASA Astrophysics Data System (ADS)

    Gómez-Gras, D.; Alonso-Zarza, A. M.

    2003-05-01

    The Permian and Triassic of Minorca (Balearic Islands) consists of a 670-m-thick, red, alluvial succession that includes in situ calcrete profiles and reworked calcrete material. In the Permian succession, the calcretes vary from laminar forms developed on the Carboniferous basement to weakly developed nodular calcretes in fluvial sediments. The palaeosols in the Triassic are mostly dolomitic, and the profiles reach up to Stage III of soil development (Spec. Pap.-Geol. Surv. Am. 203, (1995) 1). The clasts, formed through reworking of the palaeosol profiles, are about 0.5-10 cm across and include mosaics of calcite/dolomite crystals, brecciated clasts, rhizolith fragments, and aggregates of clay and/or silt. These clasts appear in three different types of deposits. Type 1 corresponds to lenticular bodies that fill small scour surfaces, and consists only of intraformational conglomerates. These deposits are interpreted as ephemeral channels and sheet-floods that represent the interfluvial drainage systems that captured only the precipitation falling on the alluvial plain. Type 2 includes sand dune 3-D bodies with flat bottoms and convex tops. These bodies are about 20 cm high and 2 m wide, and were formed by floodwaters that flowed down the levees of the major streams. Type 3 channel deposits contain reworked calcretes and extrabasinal clasts, which overlie erosive surfaces and are found in layers within cross-bedded sandstones and conglomerates. These are interpreted as channel-floor lag deposits of major channels that entered from distant uplands and drained the alluvial plain. Variations in the aggradation rates of the floodplain resulted in five different infill stages. In the lowstand to early transgressive interval, as in stages I (P1) and IV (B1), the fluvial deposits filled palaeovalleys; calcretes and reworked calcrete deposits were of difficult formation (apart from terraces) and preservation. Accommodation space was at its greatest in the transgressive

  1. Exceptional appendage and soft-tissue preservation in a Middle Triassic horseshoe crab from SW China.

    PubMed

    Hu, Shixue; Zhang, Qiyue; Feldmann, Rodney M; Benton, Michael J; Schweitzer, Carrie E; Huang, Jinyuan; Wen, Wen; Zhou, Changyong; Xie, Tao; Lü, Tao; Hong, Shuigen

    2017-10-26

    Horseshoe crabs are classic "living fossils", supposedly slowly evolving, conservative taxa, with a long fossil record back to the Ordovician. The evolution of their exoskeleton is well documented by fossils, but appendage and soft-tissue preservation is extremely rare. Here we analyse details of appendage and soft-tissue preservation in Yunnanolimulus luopingensis, a Middle Triassic (ca. 244 million years old) horseshoe crab from Yunnan Province, SW China. The remarkable preservation of anatomical details including the chelicerae, five pairs of walking appendages, opisthosomal appendages with book gills, muscles, and fine setae permits comparison with extant horseshoe crabs. The close anatomical similarity between the Middle Triassic horseshoe crabs and their recent analogues documents anatomical conservatism for over 240 million years, suggesting persistence of lifestyle. The occurrence of Carcinoscorpius-type claspers on the first and second walking legs in male individuals of Y. luopingensis indicates that simple chelate claspers in males are plesiomorphic for horseshoe crabs, and the bulbous claspers in Tachypleus and Limulus are derived.

  2. Inclination Shallowing in the Permian/Triassic Boundary Sedimentary Sections of the East European Platform: the New Paleomagnetic Pole and its Significance for GAD Hypothesis

    NASA Astrophysics Data System (ADS)

    Veselovskiy, R. V.; Fetisova, A. M.; Balabanov, Y.

    2017-12-01

    One of the key challenges which are traditionally encountered in studying the paleomagnetism of terrigenous sedimentary strata is the necessity to allow for the effect of shallowing of paleomagnetic inclinations which takes place under the compaction of the sediment at the early stages of diagenesis and most clearly manifests itself in the case of midlatitude sedimentation. Traditionally, estimating the coefficient of inclination flattening (f) implies routine re-deposition experiments and studying their magnetic anisotropy (Kodama, 2012), which is not possible in every standard paleomagnetic laboratory. The Elongation-Inclination (E/I) statistical method for estimating the coefficient of inclination shallowing, which was recently suggested in (Tauxe and Kent, 2004), does not require the investigation of the rock material in a specially equipped laboratory but toughens the requirements on the paleomagnetic data and, primarily, regarding the volume of the data, which significantly restricts the possibilities of the post factum estimation and correction for inclination shallowing. We present the results of the paleomagnetic reinvestigation of the some key sections of the Upper Permian and Lower Triassic rocks located on the East European Platform. The obtained paleomagnetic data allowed us to estimate the coefficient of inclination shallowing by the E/I method and calculate a new P-Tr paleomagnetic pole for Europe. The absence of a statistically significant difference between the mean Siberian, European and North American Permian-Triassic paleomagnetic poles allow us to conclude that 252 Ma the configuration of the Earth's magnetic field was predominantly dipole. We believe that the assumption of the non-dipolarity of the geomagnetic field at the Permian-Triassic boundary, which has been repeatedly discussed in recent decades (Van der Voo and Torsvik, 2001; Bazhenov and Shatsillo, 2010; Veselovskiy and Pavlov, 2006), arose due to the failure to take into account the

  3. A warm or a cold early Earth? New insights from a 3-D climate-carbon model

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Le Hir, Guillaume; Fluteau, Frédéric; Forget, François; Catling, David C.

    2017-09-01

    Oxygen isotopes in marine cherts have been used to infer hot oceans during the Archean with temperatures between 60 °C (333 K) and 80 °C (353 K). Such climates are challenging for the early Earth warmed by the faint young Sun. The interpretation of the data has therefore been controversial. 1D climate modeling inferred that such hot climates would require very high levels of CO2 (2-6 bars). Previous carbon cycle modeling concluded that such stable hot climates were impossible and that the carbon cycle should lead to cold climates during the Hadean and the Archean. Here, we revisit the climate and carbon cycle of the early Earth at 3.8 Ga using a 3D climate-carbon model. We find that CO2 partial pressures of around 1 bar could have produced hot climates given a low land fraction and cloud feedback effects. However, such high CO2 partial pressures should not have been stable because of the weathering of terrestrial and oceanic basalts, producing an efficient stabilizing feedback. Moreover, the weathering of impact ejecta during the Late Heavy Bombardment (LHB) would have strongly reduced the CO2 partial pressure leading to cold climates and potentially snowball Earth events after large impacts. Our results therefore favor cold or temperate climates with global mean temperatures between around 8 °C (281 K) and 30 °C (303 K) and with 0.1-0.36 bar of CO2 for the late Hadean and early Archean. Finally, our model suggests that the carbon cycle was efficient for preserving clement conditions on the early Earth without necessarily requiring any other greenhouse gas or warming process.

  4. Shifting locus of carbonate sedimentation and the trajectory of Paleozoic pCO2

    NASA Astrophysics Data System (ADS)

    Husson, J. M.; Peters, S. E.

    2016-12-01

    The burial of calcium carbonate is a determinant of planetary habitability, dictated by CO2 input to the surface environment and rates of chemical weathering. An important source of CO2 is the metamorphism of carbon-bearing sediments, which is responsive to the locus of sedimentation. For example, deep sea sediments are prone to recycling as sea floor is consumed at convergent margins; by contrast, sediments deposited on continental crust can be stable for billions of years.The predominant feature in the empirical sedimentary rock record, as measured by Macrostrat (https://macrostrat.org) and global geological syntheses, is a step-wise increase in continental sedimentation at the Neoproterozoic-Paleozoic transition. Although early Paleozoic carbonate volumes are sufficient to account for a CO2 flux 5x greater than present, Proterozoic continental burial fluxes were likely below the modern estimate. This observation implies that most carbonate sedimentation in the Proterozoic took place on the deep sea floor. The establishment of persistent, widespread continental flooding during the Paleozoic shifted the locus of carbonate sedimentation to continental interiors. A major implication of this shift is that CO2 flux declined during the Paleozoic as carbonate-laden Precambrian seafloor was metamorphosed and recycled. This prediction is consistent with independent proxy records and our model for Phanerozoic carbonate burial. An important corollary is that as carbonate-rich Precambrian seafloor was progressively destroyed, the carbonate content of deep sea sediments decreased concordantly because Paleozoic continents effectively captured global alkalinity fluxes. This process culminated near the Permian/Triassic, with metamorphic CO2 flux at a Phanerozoic minimum and the global ocean uniquely unbuffered against acidification. Such a condition could enhance the environmental effects of transient CO2 injections. Because the mid-Mesozoic appearance of pelagic calcifiers and

  5. Warming early Mars with carbon dioxide clouds that scatter infrared radiation.

    PubMed

    Forget, F; Pierrehumbert, R T

    1997-11-14

    Geomorphic evidence that Mars was warm enough to support flowing water about 3.8 billion years ago presents a continuing enigma that cannot be explained by conventional greenhouse warming mechanisms. Model calculations show that the surface of early Mars could have been warmed through a scattering variant of the greenhouse effect, resulting from the ability of the carbon dioxide ice clouds to reflect the outgoing thermal radiation back to the surface. This process could also explain how Earth avoided an early irreversible glaciation and could extend the size of the habitable zone on extrasolar planets around stars.

  6. Development of a high resolution chemostratigraphy for the Late Triassic-Early Jurassic Newark Basin

    NASA Astrophysics Data System (ADS)

    Kinney, S.; Olsen, P. E.; Chang, C.

    2017-12-01

    The 6.7 km of continuous core recovered from the paleo-tropical Triassic-Jurassic Newark rift basin during the Newark Basin Coring Project (NBCP) has provided a wealth of data since the conclusion of drilling 25 years ago. These cores comprise the longest ( 30 Myr) continuously-cored record of orbitally-paced environmental change and have informed our understanding in several different areas including tropical climate change, history of CO­2, mass extinctions, the geological time scale, and solar system dynamics. Despite the utility of NBCP cores for these endeavors, a critical missing dataset is a comprehensive characterization of their geochemical variations relevant to paleoenvironmental and paleoclimatic interests, largely a consequence of the cost of analyses at an appropriate resolution using conventional techniques. With the advent of new technology permitting the rapid acquisition of reliable geochemical data, such limitations may no longer be an obstacle for constructing a high-resolution chemostratigraphic record for the NBCP. We present the results of a proof-of-concept study using both ICP-MS-calibrated scanning ITRAX XRF and handheld Laser Induced Breakdown Spectroscopy (LIBS) using the SciAps Z-300. We will show elemental abundances at resolutions as high as 500 mm obtained using these methods from correlative sections of the Titusville and Nursery cores (Lockatong Fm.). These sections are sufficiently long to capture orbital variations and include the range of lithologies present throughout the entire section. Our preliminary results are consistent with previous, semi-quantitative means (e.g., depth ranks) of assessing Milankovitch-scale orbital variations and are also consistent with core and hole geophysical data, demonstrating that these methods can acquire meaningful geochemical data from the entire NBCP. With continued work, we aim to provide an objective characterization of orbitally-paced lake level cyclicity using geochemical proxy

  7. Footwall progradation in syn-rift carbonate platform-slope systems (Early Jurassic, Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Fabbi, Simone; Santantonio, Massimo

    2012-12-01

    The so-called Umbria-Marche Domain of Northern Apennines represents a vast depositional system, also stretching across the Adriatic Sea subsurface, that was characterized by dominantly pelagic sedimentation through most of its Jurassic to Oligocene/Early Miocene history. The pelagic succession is underlain by Hettangian shallow-water carbonates (Calcare Massiccio Fm.), constituting a regional carbonate platform that was subjected to tectonic extension due to rifting of the Adria/African Plate in the earliest Jurassic. While tectonic subsidence of the hangingwalls drove the drowning of the platform around the Hettangian/Sinemurian boundary, the production of benthic carbonate on footwall blocks continued parallel to faulting, through a sequence of facies that was abruptly terminated by drowning and development of condensed pelagites in the early Pliensbachian. By then rifting had ceased, so that the Pliensbachian to Early Cretaceous hangingwall deposits represent a post-rift basin-fill succession onlapping the tectonically-generated escarpment margins of the highs. During the early phases of syndepositional faulting, the carbonate factories of footwall blocks were still temporarily able to fill part of the accommodation space produced by the normal faults by prograding into the incipient basins. In this paper we describe for the first time a relatively low-angle (< 10°) clinoform bed package documenting such an ephemeral phase of lateral growth of a carbonate factory. The clinoforms are sigmoidal, and form low-relief (maximum 5-7 m) bodies representing a shallow-water slope that was productive due to development of a Lithocodium-dominated factory. Continued faulting and hangingwall subsidence then decoupled the slope from the platform top, halting the growth of clinoforms and causing the platform margin to switch from accretionary to bypass mode as the pre-rift substrate became exposed along a submarine fault escarpment. The downfaulted clinoform slope was then

  8. Evolution of Northeastern Mexico during the early Mesozoic: potential areas for research and exploration José Rafael Barboza-Gudiño

    NASA Astrophysics Data System (ADS)

    Barboza-Gudiño, R.

    2013-05-01

    The lower Mesozoic succession of central and northeastern Mexico was deposited in a late Paleozoic-early Mesozoic remnant basin, formed at the westernmost culmination of the Ouachita-Marathon geosuture, after closure of the Rheic Ocean. Triassic fluvial deposits of El Alamar Formation (El Alamar River) are distributed in Tamaulipas and Nuevo Leon as remnants of a continental succession deposited close to the western margin of equatorial Pangea, such fluvial systems flowed to the ocean, located to the west and contributed to construction of the so-called Potosí submarine fan (Zacatecas Formation). Petrographic, geochemical, and detrital zircon geochronology studies indicate that both, marine and continental Triassic successions, come from a continental block and partially from a recycled orogen, showing grenvillian (900-1300 Ma) and Pan-African (500-700 Ma) zircon age populations, typical for peri-gondwanan blocks, in addition to zircons from the Permo-Triassic East Mexico arc (240-280 Ma). The absence of detrital zircons from the southwestern North American craton, represent a strong argument against left lateral displacement of Mexico to the southwest during the Jurassic up to their actual position, as proposed by the Mojave-Sonora megashear hypothesis. Towards the end of the Triassic or in earliest Jurassic time, began the subduction along the western margin of Pangea, which causes deformation of the Late Triassic Zacatecas Formation and subsequent magmatism in the continental Jurassic arc known as "Nazas Arc ", whose remnants are now exposed in central- to northeastern Mexico. Wide distributed in northern Mexico occurred also deposition of a red bed succession, overlying or partially interstratified with the Early to Middle Jurassic volcanic rocks of the Nazas Formation. To the west and southwest, such redbeds change transitionally to marine and marginal sedimentary facies which record sedimentation at the ancient paleo-pacific margin of Mexico (La Boca and

  9. The African cynodont Aleodon (Cynodontia, Probainognathia) in the Triassic of southern Brazil and its biostratigraphic significance

    PubMed Central

    Kammerer, Christian F.; Melo, Tomaz P.; Paes Neto, Voltaire D.; Ribeiro, Ana Maria; Da-Rosa, Átila A. S.; Schultz, Cesar L.; Soares, Marina Bento

    2017-01-01

    In this contribution we report the first occurrence of the enigmatic African probainognathian genus Aleodon in the Middle-early Late Triassic of several localities from the state of Rio Grande do Sul in southern Brazil. Aleodon is unusual among early probainognathians in having transversely-expanded postcanine teeth, similar to those of gomphodont cynognathians. This genus was previously known from the Manda Beds of Tanzania and the upper Omingonde Formation of Namibia. The Brazilian record of this genus is based upon multiple specimens representing different ontogenetic stages, including three that were previously referred to the sectorial-toothed probainognathian Chiniquodon theotonicus. We propose a new species of Aleodon (A. cromptoni sp. nov.) based on the specimens from Brazil. Additionally, we tentatively refer one specimen from the upper Omingonde Formation of Namibia to this new taxon, strengthening biostratigraphic correlations between these strata. Inclusion of A. cromptoni in a phylogenetic analysis of eucynodonts recovers it as the sister-taxon of A. brachyrhamphus within the family Chiniquodontidae. The discovery of numerous specimens of Aleodon among the supposedly monospecific Chiniquodon samples of Brazil raises concerns about chiniquodontid alpha taxonomy, particularly given the extremely broad geographic distribution of Chiniquodon. The discovery of Brazilian Aleodon and new records of the traversodontid Luangwa supports the hypothesis that at least two subzones can be recognized in the Dinodontosaurus Assemblage Zone. PMID:28614355

  10. Extreme Modification of the Tetrapod Forelimb in a Triassic Diapsid Reptile.

    PubMed

    Pritchard, Adam C; Turner, Alan H; Irmis, Randall B; Nesbitt, Sterling J; Smith, Nathan D

    2016-10-24

    The tetrapod forelimb is one of the most versatile structures in vertebrate evolution, having been co-opted for an enormous array of functions. However, the structural relationships between the bones of the forelimb have remained largely unchanged throughout the 375 million year history of Tetrapoda, with a radius and ulna made up of elongate, paralleling shafts contacting a series of shorter carpal bones. These features are consistent across nearly all known tetrapods, suggesting that the morphospace encompassed by these taxa is limited by some sort of constraint(s). Here, we report on a series of three-dimensionally preserved fossils of the small-bodied (<1 m) Late Triassic diapsid reptile Drepanosaurus, from the Chinle Formation of New Mexico, USA, which dramatically diverge from this pattern. Along with the crushed type specimen from Italy, these specimens have a flattened, crescent-shaped ulna with a long axis perpendicular to that of the radius and hyperelongate, shaft-like carpal bones contacting the ulna that are proximodistally longer than the radius. The second digit supports a massive, hooked claw. This condition has similarities to living "hook-and-pull" digging mammals and demonstrates that specialized, modern ecological roles had developed during the Triassic Period, over 200 million years ago. The forelimb bones in Drepanosaurus represent previously unknown morphologies for a tetrapod and, thus, a dramatic expansion of known tetrapod forelimb morphospace. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Paleomagnetic and AMS study of Permian and Triassic rocks from the Hronic Nappe and Paleogene rocks from the Central Carpathian Paleogene Basin, Western Carpathians

    NASA Astrophysics Data System (ADS)

    Márton, Emö; Madzin, Jozef; Bučová, Jana; Grabowski, Jacek; Plašienka, Dušan; Aubrecht, Roman

    2017-04-01

    The Hronic (Choč) units form the highest cover nappe system of the Central Western Carpathians which was emplaced over the Fatric (Krížna) nappe system during the Late Cretaceous. The Permian (red beds and lava flows) and Triassic (sediments) rocks, the main targets of our study, were affected only by diagenetic or very low-grade, burial-related recrystallization and were tilted and transported together. The pre-late Cretaceous sequence is overlapped by Paleogene mainly flysch sequences. Three laboratories (Bratislava, Budapest and Warsaw) were involved in standard paleomagnetic processing and AMS measurements of the samples, while Curie-points were determined in Budapest. The site/locality mean paleomagnetic directions obtained were significantly different from the local direction of the present Earth magnetic field, indicating the long term stability of the paleomagnetic signal. The magnetic fabrics varied from un-oriented to dominantly schistose with well-defined lineations. The latter were normally subhorizontal, although subvertical maxima also occurred among the Triassic sediments. Shallow inclinations, after tilt corrections, suggest near-equatorial position for most of the Permian and Lower Triassic, while around 20°N for the Middle-Upper Triassic localities. The paleomagnetic declinations are interpreted in terms of CW tectonic rotations, which are normally larger for the Permian than for the Triassic samples, although there are some differences within the same age groups. This may be attributed to differential movements during nappe emplacement or subsequent tectonic disturbances. For two localities from the Paleogene cover sequence of the Hronic units, close to the main sampling area (Low Tatra Mts) of the present study documented fairly large CCW rotations, thus obtained additional evidence for the general CCW rotation of the Central Western Carpathians during the Cenozoic. Thus, we conclude that the Cenozoic CCW rotation was pre-dated by large CW

  12. Three stages in the Late Paleozoic to Triassic magmatism of southwestern Gondwana, and the relationships with the volcanogenic events in coeval basins

    NASA Astrophysics Data System (ADS)

    Sato, Ana María; Llambías, Eduardo J.; Basei, Miguel A. S.; Castro, Carlos E.

    2015-11-01

    The intermediate to acid Choiyoi Magmatic Province is the most conspicuous feature along the Late Paleozic continental margin of southwestern Gondwana, and is generally regarded as the possible source for the widespread ash fall deposits interlayered with sedimentary sequences in the adjacent Gondwana basins. The Choiyoi magmatism is geologically constrained between the early Permian San Rafael orogenic phase and the Triassic extensional Huarpica phase in the region of Argentine Frontal Cordillera, Precordillera and San Rafael Block. In order to better assess the Choiyoi magmatism in Argentine Frontal Cordillera, we obtained 6 new LA-ICPMS U-Pb ages between 278.8 ± 3.4 Ma and 252.5 ± 1.9 Ma from plutonic rocks of the Colangüil Batholith and an associated volcanic rock. The global analysis of age data compiled from Chilean and Argentine Late Paleozoic to Triassic outcrops allows us to identify three stages of magmatism: (1) pre-Choiyoi orogenic magmatism, (2) Choiyoi magmatism (286-247 Ma), and (3) post-Choiyoi magmatism related to extensional tectonics. In the Choiyoi stage is there an eastward shift and expansion of the magmatism to the southeast, covering an extensive region that defines the Choiyoi magmatic province. On the basis of comparison with the ages from volcanogenic levels identified in the coeval Gondwana basins, we propose: (a) The pre-Choiyoi volcanism from the Paganzo basin (320-296 Ma) probably has a local source in addition to the Frontal Cordillera region. (b) The pre-Choiyoi and Choiyoi events identified in the Paraná basin (304-275 Ma) are likely to have their source in the Chilean Precordillera. (c) The early stage of the Choiyoi magmatism found in the Sauce Grande basin (284-281 Ma) may have come from the adjacent Las Matras to Chadileuvú blocks. (d) The pre-Choiyoi and Choiyoi events in the Karoo basins (302-253 Ma) include the longest Choiyoi interval, and as a whole bear the best resemblance to the age records along the Chilean and

  13. Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China

    NASA Astrophysics Data System (ADS)

    Sun, Y. D.; Wignall, P. B.; Joachimski, M. M.; Bond, D. P. G.; Grasby, S. E.; Lai, X. L.; Wang, L. N.; Zhang, Z. T.; Sun, S.

    2016-06-01

    The Carnian Humid Episode (CHE), also known as the Carnian Pluvial Event, and associated biotic changes are major enigmas of the Mesozoic record in western Tethys. We show that the CHE also occurred in eastern Tethys (South China), suggestive of a much more widespread and probably global climate perturbation. Oxygen isotope records from conodont apatite indicate a double-pulse warming event. The CHE coincided with an initial warming of 4 °C. This was followed by a transient cooling period and then a prolonged ∼7 °C warming in the later Carnian (Tuvalian 2). Carbon isotope perturbations associated with the CHE of western Tethys occurred contemporaneously in South China, and mark the start of a prolonged period of carbon cycle instability that persisted until the late Carnian. The dry-wet transition during the CHE coincides with the negative carbon isotope excursion and the temperature rise, pointing to an intensification of hydrologic cycle activities due to climatic warming. While carbonate platform shutdown in western Tethys is associated with an influx of siliciclastic sediment, the eastern Tethyan carbonate platforms are overlain by deep-water anoxic facies. The transition from oxygenated to euxinic facies was via a condensed, manganiferous carbonate (MnO content up to 15.1 wt%), that records an intense Mn shuttle operating in the basin. Significant siliciclastic influx in South China only occurred after the CHE climatic changes and was probably due to foreland basin development at the onset of the Indosinian Orogeny. The mid-Carnian biotic crisis thus coincided with several phenomena associated with major extinction events: a carbonate production crisis, climate warming, δ13 C oscillations, marine anoxia, biotic turnover and flood basalt eruptions (of the Wrangellia Large Igneous Province).

  14. Evidence of photosymbiosis in Palaeozoic tabulate corals.

    PubMed

    Zapalski, Mikolaj K

    2014-01-22

    Coral reefs form the most diverse of all marine ecosystems on the Earth. Corals are among their main components and owe their bioconstructing abilities to a symbiosis with algae (Symbiodinium). The coral-algae symbiosis had been traced back to the Triassic (ca 240 Ma). Modern reef-building corals (Scleractinia) appeared after the Permian-Triassic crisis; in the Palaeozoic, some of the main reef constructors were extinct tabulate corals. The calcium carbonate secreted by extant photosymbiotic corals bears characteristic isotope (C and O) signatures. The analysis of tabulate corals belonging to four orders (Favositida, Heliolitida, Syringoporida and Auloporida) from Silurian to Permian strata of Europe and Africa shows these characteristic carbon and oxygen stable isotope signatures. The δ(18)O to δ(13)C ratios in recent photosymbiotic scleractinians are very similar to those of Palaeozoic tabulates, thus providing strong evidence of such symbioses as early as the Middle Silurian (ca 430 Ma). Corals in Palaeozoic reefs used the same cellular mechanisms for carbonate secretion as recent reefs, and thus contributed to reef formation.

  15. Community stability and selective extinction during the Permian-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Roopnarine, Peter D.; Angielczyk, Kenneth D.

    2015-10-01

    The fossil record contains exemplars of extreme biodiversity crises. Here, we examined the stability of terrestrial paleocommunities from South Africa during Earth's most severe mass extinction, the Permian-Triassic. We show that stability depended critically on functional diversity and patterns of guild interaction, regardless of species richness. Paleocommunities exhibited less transient instability—relative to model communities with alternative community organization—and significantly greater probabilities of being locally stable during the mass extinction. Functional patterns that have evolved during an ecosystem's history support significantly more stable communities than hypothetical alternatives.

  16. Diet and mobility in Early Medieval Bavaria: a study of carbon and nitrogen stable isotopes.

    PubMed

    Hakenbeck, Susanne; McManus, Ellen; Geisler, Hans; Grupe, Gisela; O'Connell, Tamsin

    2010-10-01

    This study investigates patterns of mobility in Early Medieval Bavaria through a combined study of diet and associated burial practice. Carbon and nitrogen isotope ratios were analyzed in human bone samples from the Late Roman cemetery of Klettham and from the Early Medieval cemeteries of Altenerding and Straubing-Bajuwarenstrasse. For dietary comparison, samples of faunal bone from one Late Roman and three Early Medieval settlement sites were also analyzed. The results indicate that the average diet was in keeping with a landlocked environment and fairly limited availability of freshwater or marine resources. The diet appears not to have changed significantly from the Late Roman to the Early Medieval period. However, in the population of Altenerding, there were significant differences in the diet of men and women, supporting a hypothesis of greater mobility among women. Furthermore, the isotopic evidence from dietary outliers is supported by "foreign" grave goods and practices, such as artificial skull modification. These results reveal the potential of carbon and nitrogen isotope analysis for questions regarding migration and mobility. © 2010 Wiley-Liss, Inc.

  17. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra

    PubMed Central

    Lindaas, Jakob; Benmergui, Joshua; Luus, Kristina A.; Chang, Rachel Y.-W.; Daube, Bruce C.; Euskirchen, Eugénie S.; Karion, Anna; Miller, John B.; Miller, Scot M.; Parazoo, Nicholas C.; Randerson, James T.; Sweeney, Colm; Thoning, Kirk; Veraverbeke, Sander; Miller, Charles E.; Wofsy, Steven C.

    2017-01-01

    High-latitude ecosystems have the capacity to release large amounts of carbon dioxide (CO2) to the atmosphere in response to increasing temperatures, representing a potentially significant positive feedback within the climate system. Here, we combine aircraft and tower observations of atmospheric CO2 with remote sensing data and meteorological products to derive temporally and spatially resolved year-round CO2 fluxes across Alaska during 2012–2014. We find that tundra ecosystems were a net source of CO2 to the atmosphere annually, with especially high rates of respiration during early winter (October through December). Long-term records at Barrow, AK, suggest that CO2 emission rates from North Slope tundra have increased during the October through December period by 73% ± 11% since 1975, and are correlated with rising summer temperatures. Together, these results imply increasing early winter respiration and net annual emission of CO2 in Alaska, in response to climate warming. Our results provide evidence that the decadal-scale increase in the amplitude of the CO2 seasonal cycle may be linked with increasing biogenic emissions in the Arctic, following the growing season. Early winter respiration was not well simulated by the Earth System Models used to forecast future carbon fluxes in recent climate assessments. Therefore, these assessments may underestimate the carbon release from Arctic soils in response to a warming climate. PMID:28484001

  18. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra.

    PubMed

    Commane, Róisín; Lindaas, Jakob; Benmergui, Joshua; Luus, Kristina A; Chang, Rachel Y-W; Daube, Bruce C; Euskirchen, Eugénie S; Henderson, John M; Karion, Anna; Miller, John B; Miller, Scot M; Parazoo, Nicholas C; Randerson, James T; Sweeney, Colm; Tans, Pieter; Thoning, Kirk; Veraverbeke, Sander; Miller, Charles E; Wofsy, Steven C

    2017-05-23

    High-latitude ecosystems have the capacity to release large amounts of carbon dioxide (CO 2 ) to the atmosphere in response to increasing temperatures, representing a potentially significant positive feedback within the climate system. Here, we combine aircraft and tower observations of atmospheric CO 2 with remote sensing data and meteorological products to derive temporally and spatially resolved year-round CO 2 fluxes across Alaska during 2012-2014. We find that tundra ecosystems were a net source of CO 2 to the atmosphere annually, with especially high rates of respiration during early winter (October through December). Long-term records at Barrow, AK, suggest that CO 2 emission rates from North Slope tundra have increased during the October through December period by 73% ± 11% since 1975, and are correlated with rising summer temperatures. Together, these results imply increasing early winter respiration and net annual emission of CO 2 in Alaska, in response to climate warming. Our results provide evidence that the decadal-scale increase in the amplitude of the CO 2 seasonal cycle may be linked with increasing biogenic emissions in the Arctic, following the growing season. Early winter respiration was not well simulated by the Earth System Models used to forecast future carbon fluxes in recent climate assessments. Therefore, these assessments may underestimate the carbon release from Arctic soils in response to a warming climate.

  19. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra

    NASA Astrophysics Data System (ADS)

    Commane, Róisín; Lindaas, Jakob; Benmergui, Joshua; Luus, Kristina A.; Chang, Rachel Y.-W.; Daube, Bruce C.; Euskirchen, Eugénie S.; Henderson, John M.; Karion, Anna; Miller, John B.; Miller, Scot M.; Parazoo, Nicholas C.; Randerson, James T.; Sweeney, Colm; Tans, Pieter; Thoning, Kirk; Veraverbeke, Sander; Miller, Charles E.; Wofsy, Steven C.

    2017-05-01

    High-latitude ecosystems have the capacity to release large amounts of carbon dioxide (CO2) to the atmosphere in response to increasing temperatures, representing a potentially significant positive feedback within the climate system. Here, we combine aircraft and tower observations of atmospheric CO2 with remote sensing data and meteorological products to derive temporally and spatially resolved year-round CO2 fluxes across Alaska during 2012-2014. We find that tundra ecosystems were a net source of CO2 to the atmosphere annually, with especially high rates of respiration during early winter (October through December). Long-term records at Barrow, AK, suggest that CO2 emission rates from North Slope tundra have increased during the October through December period by 73% ± 11% since 1975, and are correlated with rising summer temperatures. Together, these results imply increasing early winter respiration and net annual emission of CO2 in Alaska, in response to climate warming. Our results provide evidence that the decadal-scale increase in the amplitude of the CO2 seasonal cycle may be linked with increasing biogenic emissions in the Arctic, following the growing season. Early winter respiration was not well simulated by the Earth System Models used to forecast future carbon fluxes in recent climate assessments. Therefore, these assessments may underestimate the carbon release from Arctic soils in response to a warming climate.

  20. Carbon isotopic evidence for photosynthesis in Early Cambrian oceans

    NASA Astrophysics Data System (ADS)

    Surge, Donna M.; Savarese, Michael; Dodd, J. Robert; Lohmann, Kyger C.

    1997-06-01

    Were the first metazoan reefs ecologically similar to modern tropical reefs, enabling them to persist under oligotrophic conditions? We tested the hypothesis of ecological similarity by employing a geochemical approach. Petrography, cathodoluminescence, trace elements, and stable isotope analyses of primary precipitates of the Lower Cambrian Ajax Limestone, South Australia, indicate preservation of original C isotopic composition. All primary carbonate components exhibit C isotopic values similar to the composition of inorganically precipitated fibrous marine cements, suggesting that archaeocyaths and the calcimicrobe Epiphyton precipitated skeletal carbonate in equilibrium with ambient seawater in the absence of vital effects. Such data do not support the contention that archaeocyaths possessed photosymbionts. However, a +0.55‰ shift in δ13C occurs in reefs developed under shallower-water conditions relative to deeper reefs. This shift suggests the stratification of primary production in Early Cambrian oceans. The pattern is similar to that seen in the modern ocean, whereby significant photosynthesis modulates the C isotopic composition of the photic zone.

  1. Geochemical evidences for palaeoclimatic fluctuations at the Triassic-Jurassic boundary: southwestern margin of the Neotethys in the Salt Range, Pakistan

    NASA Astrophysics Data System (ADS)

    Iqbal, Shahid; Wagreich, Michael; Jan, Irfanullah; Kürschner, Wolfram Michael; Gier, Susanne

    2017-04-01

    The Triassic-Jurassic boundary interval reveals a change from warm-arid to a warm and humid climate in the Tethyan domain. Sea-level reconstruction records across the European basins during this interval reveal an end-Triassic global regression event and is linked to the Central Atlantic Magmatic Province (CAMP) activity and Pangaea breakup. In the Tethyan Salt Range of Pakistan a succession of Upper Triassic dolomites/green-black mudstones (Kingriali Formation), overlying quartzose sandstone, mudstones, laterites and Lower Jurassic conglomerates/pebbly sandstones (Datta Formation) provides information on the palaeoclimatic evolution of the area. Preliminary palynological results from the mudstones indicate a Rhaetian age for the Kingriali Formation and a Hettangian age for the Datta Formation. X-ray diffraction (XRD) analysis of the mudstones (upper part of the Kingriali Formation) indicates the presence of mainly illite while kaolinite is a minor component. The kaolinite content, a reflection of the advanced stage of chemical weathering and hence warm-humid conditions, increases up-section in the overlying sandstone-mudstone succession. The overlying laterite-bauxite horizons lack illite/smectite and are entirely composed of kaolinite, boehmite and haematite. At places these kaolinite rich horizons are mined in the area (Western Salt Range). The bulk rock geochemistry of the succession confirms a similar trend. The Chemical Index of Alteration (CIA) displays an increasing trend from the Upper Triassic shales (CIA 75-80) through the overlying sandstones/mudstones-laterites to the overlying quartz rich sandstones and mudstones (CIA 90-97). The overall results for the succession reveal an increasing chemical maturity trend (increase in the intensity of chemical weathering) from Rhaetian to Hettangian thereby supporting a change from warm-arid to a warm-humid palaeoclimate, probably extreme greenhouse conditions.

  2. Records of Triassic volcanism in Pangean Great Lakes, and implications for reconstructing the distal effects of Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Percival, L.; Kinney, S.; Olsen, P. E.; Mather, T. A.; Philpotts, A.

    2017-12-01

    Documentation of the precise timing of volcanic eruptions in sedimentary records is key for linking volcanic activity to both historical and geological episodes of environmental change. Deposition of tuffs in sediments, and sedimentary enrichment of trace metals linked to igneous processes, are both commonly used for such correlations. In particular, sedimentary mercury (Hg) enrichments have been used as a marker for volcanic activity from Large Igneous Provinces (LIPs) to support their link to episodes of major climate change and mass extinction in the geological record. However, linking such enrichments to a specific eruption or eruption products is often challenging or impossible. In this study, the mercury records from two exactly contemporaneous latest Triassic-earliest Jurassic rift lakes are presented. Both sedimentary records feature igneous units proposed to be related to the later (Early Jurassic) stages of volcanism of the Central Atlantic Magmatic Province (CAMP). These CAMP units include a small tuff unit identified by thin-section petrology and identified at 10 localities over a distance of over 200 km, and a major CAMP basalt flow overlying this tuff (and dated at 200.916±0.064 Ma) which is also known across multiple sedimentary basins in both North America and Morocco and is thought to have been emplaced about 120 kyr after the tuff. A potential stratigraphic correlation between Hg enrichments and the igneous units is considered, and compared to the established records of mercury enrichments from the latest Triassic that are thought to be coeval with the earlier stages of CAMP volcanism. Investigating the Hg records of sedimentary successions containing tuffs and basalt units is an important step for demonstrating whether the mercury emissions from specific individual volcanic eruptions in the deep past can be identified in the geological record, and are thus important tools for interpreting the causes of associated past geological events, such as

  3. Stratigraphy and structure along the Pensacola Arch/Conecuh Embayment margin in northwest Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, J.G.

    1993-03-01

    Stratigraphic and structural analysis of deep borehole data along the Pensacola Arch/Conecuh Embayment margin in eastern Santa Rosa County, Florida reveals a northeast-trending basement normal fault that is downthrown to the northwest. The fault functioned as a border fault of a half-graben (or graben ) that developed during continental rifting of Pangea in the Late Triassic and Early Jurassic. The upthrown or horst block was a paleotopographic high that formed the southeastern boundary of the Middle to Late Jurassic Conecuh Embayment. A second, younger basement fault trends approximately perpendicular to the half-graben border fault. Late Triassic synrift continental sediments, depositedmore » on the downthrown block of the half-graben, pinch-out abruptly to the southeast pre-Mesozoic Suwannee Basin basement. The border fault is located approximately where the Triassic sedimentary wedge pinches out. Middle to Upper Jurassic drift-stage strata of the Conecuh embayment progressively onlap the post-rift unconformity toward the southeast. Upper Jurassic Smackover Formation carbonates and evaporites apparently overstep Triassic deposits and rest directly on Suwannee Basin quartzitic sandstone near their depositional limit at the Pensacola Arch. The Smackover Formation thins significantly toward the southeast in association with the Triassic pinch-out and half-graben border fault. The pinch-out trend of the Smackover Formation suggests a northeast-southwest orientation for the Triassic border fault and supports a horst-block origin for the Pensacola Arch.« less

  4. The Pangaean megamonsoon - evidence from the Upper Triassic Chinle Formation, Colorado Plateau

    USGS Publications Warehouse

    Dubiel, R.F.; Totman, Parrish J.; Parrish, J.M.; Good, S.C.

    1991-01-01

    The Chinle was deposited between about 5?? to 15??N paleolatitude in the western equatorial region of Pangaea, a key area for documenting the effects of the monsoonal climate. This study summarizes sedimentological and paleontologic data from the Chinle Formation on the Colorado Plateau and integrates that data with paleoclimatic models. The evidence for abundant moisture and seasonality attest to the reversal of equatorial flow and support the hypothesis that the Triassic Pangaean climate was dominated by monsoonal circulation. -from Authors

  5. A new herrerasaurid (Dinosauria, Saurischia) from the Upper Triassic Ischigualasto Formation of northwestern Argentina.

    PubMed

    Alcober, Oscar A; Martinez, Ricardo N

    2010-10-19

    Herrerasauridae comprises a basal clade of dinosaurs best known from the Upper Triassic of Argentina and Brazil, which have yielded remains of Herrerasaurus ischigualastensis and Staurikosaurus pricei, respectively. Systematic opinion regarding the position of Herrerasauridae at the base of Dinosauria has varied. Here we describe a new herrerasaurid, Sanjuansaurus gordilloi gen. n., sp. n., based on a partial skeleton from Carnian-age strata of the the Upper Triassic Ischigualasto Formation of northwestern Argentina. The new taxon is diagnosed by numerous features, including long, band-shaped and posterolaterally oriented transverse process on the posterior cervical vertebrae; neural spines of the sixth to eighth dorsal vertebrae, at least, bearing acute anterior and posterior processes; scapula and coracoid with everted lateral margins of the glenoid; and short pubis (63% of the femoral length). Phylogenetic analysis placed Sanjuansaurus within a monophyletic Herrerasauridae, at the base of Theropoda and including Herrerasaurus and Staurikosaurus. The presence of Sanjuansaurus at the base of the Ischigualasto Formation, along with other dinosaurs such as Herrerasaurus, Eoraptor, Panphagia, and Chromogisaurus suggests that saurischian dinosaurs in southwestern Pangea were already widely diversified by the late Carnian rather than increasing in diversity across the Carnian-Norian boundary.

  6. A middle Permian ophiolite fragment in Late Triassic greenschist- to blueschist-facies rocks in NW Turkey: An earlier pulse of suprasubduction-zone ophiolite formation in the Tethyan belt

    NASA Astrophysics Data System (ADS)

    Topuz, Gültekin; Okay, Aral I.; Schwarz, Winfried H.; Sunal, Gürsel; Altherr, Rainer; Kylander-Clark, Andrew R. C.

    2018-02-01

    The Eastern Mediterranean region within the Tethyan belt is characterised by two main pulses of suprasubduction-zone ophiolite formation during the Early-Middle Jurassic and Late Cretaceous. Despite vast exposures of the Permo-Triassic accretionary complexes, related suprasubduction-zone ophiolites and the timing of subduction initiation leading to the formation of Permo-Triassic accretionary complexes are unknown so far. Here we report on a 40 km long and 0.3 to 1.8 km wide metaophiolite fragment within transitional greenschist- to blueschist-facies oceanic rocks from NW Turkey. The metaophiolite fragment is made up mainly of serpentinite and minor dykes or stocks of strongly sheared metagabbro with mineral assemblages involving actinolite/winchite, chlorite, epidote, albite, titanite and phengite. The metagabbro displays (i) variable CaO and MgO contents, (ii) anomalously high Mg# (= 100 ∗ molar MgO/(MgO + FeOtot)) of 75-88, and (iii) positive Eu anomalies, together with low contents of incompatible elements such as Ti, P and Zr, suggesting derivation from former plagioclase cumulates. The serpentinites comprise serpentine, ± chlorite, ± talc, ± calcite and relict Cr-Al spinel surrounded by ferrichromite to magnetite. Relict Cr-Al spinels are characterised by (i) Cr/(Cr + Al) ratios of 0.45-0.56 and Mg/(Mg + Fe2 +) ratio of 0.76-0.22, (ii) variable contents of ZnO and MnO, and (iii) extremely low TiO2 contents. Zn and Mn contents are probably introduced into Cr-Al spinels during greenschist- to blueschist metamorphism. Compositional features of the serpentinite such as (i) Ca- and Al-depleted bulk compositions, (ii) concave U-shaped, chondrite-normalised rare earth element patterns (REE) with enrichment of light and heavy REEs, imply that serpentinites were probably derived from depleted peridotites which were refertilised by light rare earth element enriched melts in a suprasubduction-zone mantle wedge. U-Pb dating on igneous zircons from three metagabbro

  7. Climate Cycling on Early Mars Caused by the Carbonate-Silicate Cycle

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.; Batalha, N. E.; Haqq-Misra, J. D.; Kopparapu, R.

    2016-12-01

    For decades, scientists have tried to explain the evidence for fluvial activity on early Mars, but a consensus has yet to emerge regarding the mechanism for producing it. One hypothesis suggests early Mars was warmed by a thick greenhouse atmosphere [1]. Another suggests early Mars was generally cold but was warmed occasionally by impacts or by episodes of enhanced volcanism [2,3], with warming possibly extended by cirrus clouds [4]. These latter hypotheses struggle to produce the amounts of rainfall needed to form the martian valleys, but are consistent with inferred low rates of weathering compared to Earth. We suggest that both schools of thought are partly correct. Mars experienced dramatic climate cycles with extended periods of glaciation punctuated by warm periods lasting up to 10 Myr [5]. Cycles of repeated glaciation and deglaciation occurred because stellar insolation was low, and because CO2 outgassing could not keep pace with CO2 consumption by silicate weathering followed by deposition of carbonates. In order to deglaciate early Mars, substantial outgassing of molecular hydrogen from Mars' reduced crust and mantle was also required, as our own climate model is unable to do this without adding some greenhouse warming from H2 [6,7]. Our hypothesis can be tested by future Mars exploration that better establishes the time scale for valley formation. References: [1] Pollack JB, Kasting JF, Richardson SM, Poliakoff K. 1987. Icarus 71: 203-24 [2] Halevy I, Head JW. 2014. Nature Geoscience 7: 865-8 [3] Segura TL, Toon OB, Colaprete A, Zahnle K. 2002. Science 298: 1977-80 [4] Urata RA, Toon OB. 2013. Icarus 226: 229-50 [5] Batalha NE, Kopparapu RK, Haqq-Misra JD, Kasting JF. submitted. Climate cycling on early Mars caused by the carbonate-silicate cycle. EPSL [6] Ramirez RM, Kopparapu R, Zugger ME, Robinson TD, Freedman R, Kasting JF. 2014. Nature Geosci 7: 59-63 [7] Batalha N, Domagal-Goldman SD, Ramirez R, Kasting JF. 2015. Icarus 258: 337-49

  8. Rethinking Controls on the Long-Term Cenozoic Carbonate Compensation Depth: Case Studies across Late Paleocene - Early Eocene Warming and Late Eocene - Early Oligocene Cooling

    NASA Astrophysics Data System (ADS)

    Greene, S. E.; Ridgwell, A. J.; Schmidt, D. N.; Kirtland Turner, S.; Paelike, H.; Thomas, E.

    2014-12-01

    The carbonate compensation depth (CCD) is the depth below which negligible calcium carbonate is preserved in marine sediments. The long-term position of the CCD is often considered to be a powerful constraint on palaeoclimate and atmospheric CO2 concentration due to the requirement that carbonate burial balance riverine weathering over long timescales. The requirement that weathering and burial be in balance is clear, but it is less certain that burial compensates for changes in weathering via shoaling or deepening of the CCD. Because most carbonate burial occurs well above the CCD , changes in weathering fluxes may be primarily accommodated by increasing or decreasing carbonate burial at shallower depths, i.e., at or near the lysocline, the depth range over which carbonate dissolution markedly increases. Indeed, recent earth system modelling studies have suggested that the position of the CCD is relatively insensitive to changes in atmospheric pCO2. Additionally, studies have questioned the nature and strength of the relationship between the CCD, carbonate saturation state in the water column, and lysocline. To test the relationship between palaeoclimate and the location of the CCD, we reconstructed the global, long-term CCD behaviour across major Cenozoic climate transitions: the late Paleocene - early Eocene long-term warming trend (study interval ~58 to 49 Ma) and the late Eocene - early Oligocene cooling and glaciation (study interval ~38 to 27 Ma). We use Earth system modelling (GENIE) to explore the links between atmospheric pCO2 and the CCD, isolating and teasing apart the roles of total dissolved inorganic carbon, temperature, circulation, and productivity in determining the CCD.

  9. Heterogeneous Rates of Molecular Evolution and Diversification Could Explain the Triassic Age Estimate for Angiosperms.

    PubMed

    Beaulieu, Jeremy M; O'Meara, Brian C; Crane, Peter; Donoghue, Michael J

    2015-09-01

    Dating analyses based on molecular data imply that crown angiosperms existed in the Triassic, long before their undisputed appearance in the fossil record in the Early Cretaceous. Following a re-analysis of the age of angiosperms using updated sequences and fossil calibrations, we use a series of simulations to explore the possibility that the older age estimates are a consequence of (i) major shifts in the rate of sequence evolution near the base of the angiosperms and/or (ii) the representative taxon sampling strategy employed in such studies. We show that both of these factors do tend to yield substantially older age estimates. These analyses do not prove that younger age estimates based on the fossil record are correct, but they do suggest caution in accepting the older age estimates obtained using current relaxed-clock methods. Although we have focused here on the angiosperms, we suspect that these results will shed light on dating discrepancies in other major clades. ©The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Early land use and centennial scale changes in lake-water organic carbon prior to contemporary monitoring.

    PubMed

    Meyer-Jacob, Carsten; Tolu, Julie; Bigler, Christian; Yang, Handong; Bindler, Richard

    2015-05-26

    Organic carbon concentrations have increased in surface waters across parts of Europe and North America during the past decades, but the main drivers causing this phenomenon are still debated. A lack of observations beyond the last few decades inhibits a better mechanistic understanding of this process and thus a reliable prediction of future changes. Here we present past lake-water organic carbon trends inferred from sediment records across central Sweden that allow us to assess the observed increase on a centennial to millennial time scale. Our data show the recent increase in lake-water carbon but also that this increase was preceded by a landscape-wide, long-term decrease beginning already A.D. 1450-1600. Geochemical and biological proxies reveal that these dynamics coincided with an intensification of human catchment disturbance that decreased over the past century. Catchment disturbance was driven by the expansion and later cessation of widespread summer forest grazing and farming across central Scandinavia. Our findings demonstrate that early land use strongly affected past organic carbon dynamics and suggest that the influence of historical landscape utilization on contemporary changes in lake-water carbon levels has thus far been underestimated. We propose that past changes in land use are also a strong contributing factor in ongoing organic carbon trends in other regions that underwent similar comprehensive changes due to early cultivation and grazing over centuries to millennia.

  11. Plate tectonic controls on atmospheric CO2 levels since the Triassic.

    PubMed

    Van Der Meer, Douwe G; Zeebe, Richard E; van Hinsbergen, Douwe J J; Sluijs, Appy; Spakman, Wim; Torsvik, Trond H

    2014-03-25

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based on reconstructions of ocean floor production for the last 150 My and indirectly, through sea level inversion before 150 My. Here we quantitatively estimate CO2 degassing by reconstructing lithosphere subduction evolution, using recent advances in combining global plate reconstructions and present-day structure of the mantle. First, we estimate that since the Triassic (250-200 My) until the present, the total paleosubduction-zone length reached up to ∼200% of the present-day value. Comparing our subduction-zone lengths with previously reconstructed ocean-crust production rates over the past 140 My suggests average global subduction rates have been constant, ∼6 cm/y: Higher ocean-crust production is associated with longer total subduction length. We compute a strontium isotope record based on subduction-zone length, which agrees well with geological records supporting the validity of our approach: The total subduction-zone length is proportional to the summed arc and ridge volcanic CO2 production and thereby to global volcanic degassing at plate boundaries. We therefore use our degassing curve as input for the GEOCARBSULF model to estimate atmospheric CO2 levels since the Triassic. Our calculated CO2 levels for the mid Mesozoic differ from previous modeling results and are more consistent with available proxy data.

  12. Plate tectonic controls on atmospheric CO2 levels since the Triassic

    PubMed Central

    Van Der Meer, Douwe G.; Zeebe, Richard E.; van Hinsbergen, Douwe J. J.; Sluijs, Appy; Spakman, Wim; Torsvik, Trond H.

    2014-01-01

    Climate trends on timescales of 10s to 100s of millions of years are controlled by changes in solar luminosity, continent distribution, and atmosphere composition. Plate tectonics affect geography, but also atmosphere composition through volcanic degassing of CO2 at subduction zones and midocean ridges. So far, such degassing estimates were based on reconstructions of ocean floor production for the last 150 My and indirectly, through sea level inversion before 150 My. Here we quantitatively estimate CO2 degassing by reconstructing lithosphere subduction evolution, using recent advances in combining global plate reconstructions and present-day structure of the mantle. First, we estimate that since the Triassic (250–200 My) until the present, the total paleosubduction-zone length reached up to ∼200% of the present-day value. Comparing our subduction-zone lengths with previously reconstructed ocean-crust production rates over the past 140 My suggests average global subduction rates have been constant, ∼6 cm/y: Higher ocean-crust production is associated with longer total subduction length. We compute a strontium isotope record based on subduction-zone length, which agrees well with geological records supporting the validity of our approach: The total subduction-zone length is proportional to the summed arc and ridge volcanic CO2 production and thereby to global volcanic degassing at plate boundaries. We therefore use our degassing curve as input for the GEOCARBSULF model to estimate atmospheric CO2 levels since the Triassic. Our calculated CO2 levels for the mid Mesozoic differ from previous modeling results and are more consistent with available proxy data. PMID:24616495

  13. Sedimentology of the Essaouira Basin (Meskala Field) in context of regional sediment distribution patterns during upper Triassic pluvial events

    NASA Astrophysics Data System (ADS)

    Mader, Nadine K.; Redfern, Jonathan; El Ouataoui, Majid

    2017-06-01

    Upper Triassic continental clastics (TAGI: Trias Argilo-Greseux Inferieur) in the Essaouira Basin are largely restricted to the subsurface, which has limited analysis of the depositional environments and led to speculation on potential provenance of the fluvial systems. Facies analysis of core from the Meskala Field onshore Essaouira Basin is compared with tentatively time-equivalent deposits exposed in extensive outcrops in the Argana Valley, to propose a process orientated model for local versus regional sediment distribution patterns in the continuously evolving Moroccan Atlantic rift during Carnian to Norian times. The study aims to unravel the climatic overprint and improve the understanding of paleo-climatic variations along the Moroccan Atlantic margin to previously recognised Upper Triassic pluvial events. In the Essaouira Basin, four facies associations representing a progressive evolution from proximal to distal facies belts in a continental rift were established. Early ephemeral braided river systems are succeeded by a wet aeolian sandflat environment with a strong arid climatic overprint (FA1). This is followed by the onset of perennial fluvial deposits with extensive floodplain fines (FA2), accompanied by a distinct shift in fluvial style, suggesting increase in discharge and related humidity, either locally or in the catchment area. The fluvial facies transitions to a shallow lacustrine or playa lake delta environment (FA3), which exhibits cyclical abandonment. The delta is progressively overlain by a terminal playa with extensive, mottled mudstones (FA4), interpreted to present a return from cyclical humid-arid conditions to prevailing aridity in the basin. In terms of regional distribution and sediment source provenance, paleocurrent data from Carnian to Norian deposits (T5 to T8 member) in the Argana Valley suggest paleoflow focused towards the S and SW, not directed towards the Meskala area in the NW as previously suggested. A major depo

  14. Investigating the Early Carbon Cycle Using Carbonaceous Inclusions and Dissolved Carbon in Detrital Zircon

    NASA Astrophysics Data System (ADS)

    Bell, E. A.; Boehnke, P.; Harrison, M.; Mao, W. L.

    2015-12-01

    Because the terrestrial rock record extends only to ~4 Ga and older materials thus far identified are limited to detrital zircons, information about volatile abundances and cycles on early Earth is limited. Carbon, for instance, plays an important role not only in the modern biosphere but also in deep recycling of materials between the crust and mantle. We are investigating the record of carbon abundance and origin in Hadean zircons from Jack Hills (W. Australia) using two main approaches. First, carbon may partition into the zircon structure at trace levels during crystallization from a magma, and better understanding of this partitioning behavior will allow for zircon's use as a monitor of magmatic carbon contents. We have measured carbon abundances in zircon from a variety of igneous rocks (gabbro; I-, A-, and S-type granitoids) via SIMS and found that although abundances are typically low (average raw 12C/30Si ~ 1x10-6), S-type granite zircons can reach a factor of 1000 over this background. Around 10% of Hadean zircons investigated show similar enrichments, consistent with other evidence for the derivation of many Jack Hills zircons from S-type granitoids and with the establishment of modern-level carbon abundances in the crust by ca. 4.2 Ga. Diamond and graphite inclusions reported in the Jack Hills zircons by previous studies proved to be contamination by polishing debris, leaving the true abundance of these materials in the population uncertain. On a second front, we have identified and investigated primary carbonaceous inclusions in these zircons. From a population of over 10,000 Jack Hills zircons, we identified one concordant 4.10±0.01 Ga zircon that contains primary graphite inclusions (so interpreted due to their enclosure in a crack-free zircon host as shown by transmission X-ray microscopy and their crystal habit). Their δ13CPDB of -24±5‰ is consistent with a biogenic origin and, in the absence of a likely inorganic mechanism to produce such a

  15. Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits

    NASA Astrophysics Data System (ADS)

    Smith, Abigail M.; Nelson, Campbell S.

    2003-10-01

    Cool-water shelf carbonates differ from tropical carbonates in their sources, modes, and rates of deposition, geochemistry, and diagenesis. Inorganic precipitation, marine cementation, and sediment accumulation rates are absent or slow in cool waters, so that temperate carbonates remain longer at or near the sea bed. Early sea-floor processes, occurring between biogenic calcification and ultimate deposition, thus take on an important role, and there is the potential for considerable taphonomic loss of skeletal information into the fossilised record of cool-water carbonate deposits. The physical breakdown processes of dissociation, breakage, and abrasion are mediated mainly by hydraulic regime, and are always destructive. Impact damage reduces the size of grains, removes structure and therefore information, and ultimately may transform skeletal material into anonymous particles. Abrasion is highly selective amongst and within taxa, their skeletal form and structure strongly influencing resistance to mechanical breakdown. Dissolution and precipitation are the end-members of a two-way chemical equilibrium operating in sea water. In cool waters, inorganic precipitation is rare. There is conflicting opinion about the importance of diagenetic dissolution of carbonate skeletons on the temperate sea floor, but test maceration and early loss of aragonite in particular are reported. Dissolution may relate to undersaturated acidic pore waters generated locally by a combination of microbial metabolisation of organic matter, strong bioturbation, and oxidation of solid phase sulphides immediately beneath the sea floor in otherwise very slowly accumulating skeletal deposits. Laboratory experiments demonstrate that surface-to-volume ratio and skeletal mineralogy are both important in determining skeletal resistance to dissolution. Biological processes on the sea floor include encrustation and bioerosion. Encrustation, a constructive process, may be periodic or seasonal, and can be

  16. Synchronization of the astronomical time scales in the Early Toarcian: A link between anoxia, carbon-cycle perturbation, mass extinction and volcanism

    NASA Astrophysics Data System (ADS)

    Ait-Itto, Fatima-Zahra; Martinez, Mathieu; Price, Gregory D.; Ait Addi, Abdellah

    2018-07-01

    The Late Pliensbachian-Early Toarcian is a pivotal time in the Mesozoic era, marked by pronounced carbon-isotope excursions, biotic crises and major climatic and oceanographic changes. Here we present new high-resolution carbon-isotope and magnetic-susceptibility measurements from an expanded hemipelagic Late Pliensbachian-Early Toarcian section from the Middle Atlas Basin (Morocco). Our new astronomical calibration allows the construction of an orbital time scale based on the 100-kyr eccentricity cycle. The Early Toarcian Polymorphum Zone contains 10 to 10.5 repetitions of the 100-kyr eccentricity both in the carbon-isotope and the magnetic-susceptibility data, leading to an average duration of 1.00 ± 0.08 myr. We also show that the Late Pliensbachian-Early Toarcian global carbon-cycle perturbation has an average duration of 0.24 ± 0.02 myr. These durations are comparable to previous astrochronological time scales provided for this time interval in the most complete sections of the Tethyan area, and longer than what has been provided in condensed sections. Anchoring this framework on published radiometric ages and astrochronological time scales, we estimate that the carbon-cycle perturbation of the Late Pliensbachian-Early Toarcian corresponds with the early phase of the Karoo and Chonke Aike large igneous provinces. Likewise, our new age constraints confirm that the Toarcian oceanic anoxic event is synchronous to the main phase of the Ferrar volcanic activity. Thus, these successive and short phases of the volcanic activity may have been at the origin of the successive phases of the mass extinctions observed in marine biotas in the Pliensbachian and Toarcian times.

  17. The origin of high hydrocarbon groundwater in shallow Triassic aquifer in Northwest Guizhou, China.

    PubMed

    Liu, Shan; Qi, Shihua; Luo, Zhaohui; Liu, Fangzhi; Ding, Yang; Huang, Huanfang; Chen, Zhihua; Cheng, Shenggao

    2018-02-01

    Original high hydrocarbon groundwater represents a kind of groundwater in which hydrocarbon concentration exceeds 0.05 mg/L. The original high hydrocarbon will significantly reduce the environment capacity of hydrocarbon and lead environmental problems. For the past 5 years, we have carried out for a long-term monitoring of groundwater in shallow Triassic aquifer in Northwest Guizhou, China. We found the concentration of petroleum hydrocarbon was always above 0.05 mg/L. The low-level anthropogenic contamination cannot produce high hydrocarbon groundwater in the area. By using hydrocarbon potential, geochemistry and biomarker characteristic in rocks and shallow groundwater, we carried out a comprehensive study in Dalongjing (DLJ) groundwater system to determine the hydrocarbon source. We found a simplex hydrogeology setting, high-level water-rock-hydrocarbon interaction and obviously original hydrocarbon groundwater in DLJ system. The concentration of petroleum hydrocarbon in shallow aquifer was found to increase with the strong water-rock interaction. Higher hydrocarbon potential was found in the upper of Guanling formation (T 2 g 3 ) and upper of Yongningzhen formation (T 1 yn 4 ). Heavily saturated carbon was observed from shallow groundwater, which presented similar distribution to those from rocks, especially from the deeper groundwater. These results indicated that the high concentrations of original hydrocarbon in groundwater could be due to the hydrocarbon release from corrosion and extraction out of strata over time.

  18. Spatial coincidence and similar geochemistry of Late Triassic and Eocene-Oligocene magmatism in the Andes of northern Chile: evidence from the MMH porphyry type Cu-Mo deposit, Chuquicamata District

    NASA Astrophysics Data System (ADS)

    Zentilli, Marcos; Maksaev, Victor; Boric, Ricardo; Wilson, Jessica

    2018-04-01

    The MMH porphyry type copper-molybdenum deposit in northern Chile is the newest mine in the Chuquicamata District, one of largest copper concentrations on Earth. Mineralized Eocene-Oligocene porphyry intrusions are hosted by essentially barren Triassic granodiorites. Despite a century of exploitation, geologists still have problems in the mine distinguishing the Triassic granodiorite from the most important ore-carrying Eocene porphyries in the district. To resolve the problem, internally consistent high-quality geochemical analyses of the Triassic and Tertiary intrusives were carried out: explaining the confusion, they show that the rock units in question are nearly identical in composition and thus respond equally to hydrothermal alteration. In detail, the only difference in terms of chemical composition is that the main Eocene-Oligocene porphyries carry relatively less Fe and Ni. Unexpectedly, the mineralized Eocene-Oligocene porphyries have consistently less U and Th than other Tertiary intrusions in the district, a characteristic that may be valuable in exploration. The supergiant copper-molybdenum deposits in the Central Andes were formed within a narrow interval between 45 and 31 Ma, close to 7% of the 200 My duration of "Andean" magmatism, which resulted from subduction of oceanic lithosphere under South America since the Jurassic. Although recent work has shown that subduction was active on the margin since Paleozoic times, pre-Andean (pre-Jurassic) "Gondwanan" magmatism is often described as being very different, having involved crustal melting and the generation of massive peraluminous rhyolites and granites. This study shows that the indistinguishable Late Triassic and Eocene-Oligocene intrusions occupy the same narrow NS geographic belt in northern Chile. If it is accepted that magma character may determine the potential to generate economic Cu-Mo deposits, then Late Triassic volcano-plutonic centres in the same location in the South American margin

  19. Changing palaeoenvironments and tetrapod populations in the Daptocephalus Assemblage Zone (Karoo Basin, South Africa) indicate early onset of the Permo-Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Viglietti, Pia A.; Smith, Roger M. H.; Rubidge, Bruce S.

    2018-02-01

    Important palaeoenvironmental differences are identified during deposition of the latest Permian Daptocephalus Assemblage Zone (DaAZ) of the South African Beaufort Group (Karoo Supergoup), which is also divided into a Lower and Upper subzone. A lacustrine floodplain facies association showing evidence for higher water tables and subaqueous conditions on the floodplains is present in Lower DaAZ. The change to well-drained floodplain facies association in the Upper DaAZ is coincident with a faunal turnover as evidenced by the last appearance of the dicynodont Dicynodon lacerticeps, the therocephalian Theriognathus microps, the cynodont Procynosuchus delaharpeae, and first appearance of the dicynodont Lystrosaurus maccaigi within the Ripplemead member. Considering the well documented 3-phased extinction of Karoo tetrapods during the Permo-Triassic Mass Extinction (PTME), the facies transition between the Lower and Upper DaAZ represents earlier than previously documented palaeoenvironmental changes associated with the onset of this major global biotic crisis.

  20. Altered carbon cycling and coupled changes in Early Cretaceous weathering patterns: Evidence from integrated carbon isotope and sandstone records of the western Tethys

    NASA Astrophysics Data System (ADS)

    Wortmann, Ulrich Georg; Herrle, Jens Olaf; Weissert, Helmut

    2004-03-01

    In this study we investigate if a major perturbation of the Early Cretaceous carbon cycle was accompanied by altered weathering and erosion rates. The large Aptian carbon isotope anomaly records the response of the biosphere to widespread volcanic activity and probably resulting changes in atmospheric pCO2 levels. Elevated pCO2 levels should also result in an accelerated hydrological cycle and increased silicate weathering, creating a negative feedback loop removing CO2 from the atmosphere. We propose to interpret the widespread occurrence of quartz sandstones in the Tethys-Atlantic seaway as a result of altered weathering and erosion rates in the wake of the Aptian carbon cycle excursion. We challenge the traditional notion that these are 'flysch' deposits associated with Early Cretaceous orogenic movements in the western Tethys. We propose that these sandstones were most likely part of a large conveyor belt system, acting along the Iberian and European margin of the Tethys seaway. Using chemostratigraphic correlations, we show that the activity of this system was only short-lived and coeval with changes in coastal ecology and the Aptian carbon cycle perturbations. We tentatively relate the existence of this system to a transient climate regime, characterized by fluctuating pCO2 levels.

  1. Effectiveness of potassium carbonate sesquihydrate to increase dietary cation-anion difference in early lactation cows.

    PubMed

    Harrison, J; White, R; Kincaid, R; Block, E; Jenkins, T; St-Pierre, N

    2012-07-01

    The effect of additional dietary potassium in early lactation dairy cows was evaluated with the addition of potassium carbonate sesquihydrate, which increased dietary K from 1.3 to 2.1% of dry matter (DM) from wk 3 to 12 of lactation. Cows fed potassium carbonate sesquihydrate in the form of DCAD Plus (Church & Dwight Co. Inc., Princeton, NJ) had increased DM intake, milk fat percentage and yield, energy-corrected milk, and efficiency of milk production per unit of DM intake. Milk fat of cows fed higher dietary K had a lower concentration of trans fatty acids, suggesting a role for potassium carbonate sesquihydrate in the rumen in the biohydrogenation processes converting linoleic to stearic acid. Cows fed the diet with 2.1% K had greater apparent balance of K, and no effects were noted on the concentration of blood Mg or amount of fecal Mg. The data support the feeding of greater amounts of K in the early lactation cow. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Boreal earliest Triassic biotas elucidate globally depauperate hard substrate communities after the end-Permian mass extinction.

    PubMed

    Zatoń, Michał; Niedźwiedzki, Grzegorz; Blom, Henning; Kear, Benjamin P

    2016-11-08

    The end-Permian mass extinction constituted the most devastating biotic crisis of the Phanerozoic. Its aftermath was characterized by harsh marine conditions incorporating volcanically induced oceanic warming, widespread anoxia and acidification. Bio-productivity accordingly experienced marked fluctuations. In particular, low palaeolatitude hard substrate communities from shallow seas fringing Western Pangaea and the Tethyan Realm were extremely impoverished, being dominated by monogeneric colonies of filter-feeding microconchid tubeworms. Here we present the first equivalent field data for Boreal hard substrate assemblages from the earliest Triassic (Induan) of East Greenland. This region bordered a discrete bio-realm situated at mid-high palaeolatitude (>30°N). Nevertheless, hard substrate biotas were compositionally identical to those from elsewhere, with microconchids encrusting Claraia bivalves and algal buildups on the sea floor. Biostratigraphical correlation further shows that Boreal microconchids underwent progressive tube modification and unique taxic diversification concordant with changing habitats over time. We interpret this as a post-extinction recovery and adaptive radiation sequence that mirrored coeval subequatorial faunas, and thus confirms hard substrate ecosystem depletion as a hallmark of the earliest Triassic interval globally.

  3. Boreal earliest Triassic biotas elucidate globally depauperate hard substrate communities after the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Zatoń, Michał; Niedźwiedzki, Grzegorz; Blom, Henning; Kear, Benjamin P.

    2016-11-01

    The end-Permian mass extinction constituted the most devastating biotic crisis of the Phanerozoic. Its aftermath was characterized by harsh marine conditions incorporating volcanically induced oceanic warming, widespread anoxia and acidification. Bio-productivity accordingly experienced marked fluctuations. In particular, low palaeolatitude hard substrate communities from shallow seas fringing Western Pangaea and the Tethyan Realm were extremely impoverished, being dominated by monogeneric colonies of filter-feeding microconchid tubeworms. Here we present the first equivalent field data for Boreal hard substrate assemblages from the earliest Triassic (Induan) of East Greenland. This region bordered a discrete bio-realm situated at mid-high palaeolatitude (>30°N). Nevertheless, hard substrate biotas were compositionally identical to those from elsewhere, with microconchids encrusting Claraia bivalves and algal buildups on the sea floor. Biostratigraphical correlation further shows that Boreal microconchids underwent progressive tube modification and unique taxic diversification concordant with changing habitats over time. We interpret this as a post-extinction recovery and adaptive radiation sequence that mirrored coeval subequatorial faunas, and thus confirms hard substrate ecosystem depletion as a hallmark of the earliest Triassic interval globally.

  4. First early Mesozoic amber in the Western Hemisphere

    USGS Publications Warehouse

    Litwin, R.J.; Ash, S.R.

    1991-01-01

    Detrital amber pebbles and granules have been discovered in Upper Triassic strata on the Colorado Plateau. Although amber previously has been reported from Pennsylvanian, Jurassic, Cretaceous, and Tertiary strata, we know of no other reported Triassic occurrence in North America or the Western Hemisphere. The new discovered occurrences of amber are at two localities in the lower part of the Petrified Forest Member of the Upper Triassic Chinle Formation in Petrified Forest National Park, Arizona. The paper coals and carbonaceous paper shales containing the amber also contain fossil palynomorph assemblages that indicate a late Carnian age for these occurrences. -Authors

  5. New Paleomagnetic Data from Upper Permian and Lower Triassic Volcanic Sequences from Hua Binh, Quynh Nhai, and Thuan Chau Localities, Northwest Veitnam and Their Bearing on the Accretion History of Southeast Asia

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Chi, C. T.

    2015-12-01

    New paleomagnetic data from Upper Permian to Lower Triassic volcanic rocks sampled in NW Vietnam provide more quantitative constraints on the paleogeographic setting of crustal elements that comprise the Song Da Terrane, east of the Song Ma suture, between the South China block (SCB) and north Indochina. These include results from 12 sites (125 samples) from basalts of the Vien Nam Formation, exposed at Hoa Binh Dam; eight sites (74 samples) from basalts of the Cam Thuy Formation near Thuan Chau; and 19 sites (198 samples) from andesites and basalts of the Vien Nam Formation near Quynh Nhai. The collection is limited by the quality of exposures and quantity of independent flows. Most sites yield interpretable magnetizations in progressive demagnetization, and the response implies that characteristic remanent magnetization (ChRM) components are carried by low-titanium magnetite or hematite, or a combination of both; these are isolated from secondary components. Rock magnetic data and petrography support the retention of an early-acquired thermoremanent magnetization in most sites. The Vien Nam Formation mafic volcanic rocks yield a grand mean, in geographic coordinates, of D=33.8o, I=-28.4o ( a95 = 9.5o, k =30.3, N=9 accepted sites), and a pole position at Lat=41.1N, Long=239.8E and a paleolatitude at ~15o S during the Late Permian to Early Triassic. Permian basalts of the Cam Thuy Formation provide a grand mean, corrected for structural tilt, of D=216.1o, I=+10.5o, a95=8.9o, k=107.8, and N= 4, with a pole position at Lat=45.6N, Long=226.8E. Volcanic rocks at the Quynh Nhai locality likely yield the most robust paleofield determination, as the data set is of dual polarity and passes a reversal test. The tilt corrected grand mean (normal polarity) is D=48.3o, I=-10.0o, a95=8.0o, k=27.7, N = 13, and this in turn yields an inferred paleomagnetic pole at Lat=35.7N, Long=217.4E, and a paleolatitude of 5.1oS for the late Permian. Compared with the Late Permian-Early

  6. A Middle Triassic stem-turtle and the evolution of the turtle body plan.

    PubMed

    Schoch, Rainer R; Sues, Hans-Dieter

    2015-07-30

    The origin and early evolution of turtles have long been major contentious issues in vertebrate zoology. This is due to conflicting character evidence from molecules and morphology and a lack of transitional fossils from the critical time interval. The ∼220-million-year-old stem-turtle Odontochelys from China has a partly formed shell and many turtle-like features in its postcranial skeleton. Unlike the 214-million-year-old Proganochelys from Germany and Thailand, it retains marginal teeth and lacks a carapace. Odontochelys is separated by a large temporal gap from the ∼260-million-year-old Eunotosaurus from South Africa, which has been hypothesized as the earliest stem-turtle. Here we report a new reptile, Pappochelys, that is structurally and chronologically intermediate between Eunotosaurus and Odontochelys and dates from the Middle Triassic period (∼240 million years ago). The three taxa share anteroposteriorly broad trunk ribs that are T-shaped in cross-section and bear sculpturing, elongate dorsal vertebrae, and modified limb girdles. Pappochelys closely resembles Odontochelys in various features of the limb girdles. Unlike Odontochelys, it has a cuirass of robust paired gastralia in place of a plastron. Pappochelys provides new evidence that the plastron partly formed through serial fusion of gastralia. Its skull has small upper and ventrally open lower temporal fenestrae, supporting the hypothesis of diapsid affinities of turtles.

  7. Structural complexity at and around the Triassic-Jurassic GSSP at Kuhjoch, Northern Calcareous Alps, Austria

    NASA Astrophysics Data System (ADS)

    Palotai, M.; Pálfy, J.; Sasvári, Á.

    2017-10-01

    One of the key requirements for a Global Stratotype Section and Point (GSSP) is the absence of tectonic disturbance. The GSSP for the Triassic-Jurassic system boundary was recently defined at Kuhjoch, Northern Calcareous Alps, Austria. New field observations in the area of the Triassic-Jurassic boundary GSSP site demonstrate that the overturned, tight, and almost upright Karwendel syncline was formed at semibrittle deformation conditions, confirmed by axial planar foliation. Tight to isoclinal folds at various scales were related to a tectonic transport to the north. Brittle faulting occurred before and after folding as confirmed by tilt tests (the rotation of structural data by the average bedding). Foliation is ubiquitous in the incompetent units, including the Kendlbach Formation at the GSSP. A reverse fault (inferred to be formed as a normal fault before folding) crosscuts the GSSP sections, results in the partial tectonic omission of the Schattwald Beds, and thus makes it impossible to measure a complete and continuous stratigraphic section across the whole Kendlbach Formation. Based on these observations, the Kuhjoch sections do not fulfil the specific requirement for a GSSP regarding the absence of tectonic disturbances near boundary level.

  8. Vertebrate biochronology of late Triassic red beds in New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, A.P.

    1989-09-01

    Four vertebrate biochrons can be recognized in Late Triassic strata of New Mexico: (A) Metoposaurus-Rutiodon-Desmatosuchus-Calyptosuchus-Placerias occurs in the Los Esteros member of the Santa Rosa formation near Lamy and is less well known from the lower Petrified Forest Member of the Chinle Formation near San Ysidro, at Mesa del Oro, near Fort Wingate, at Ojo Huelos, and in the Joyita hills. (B) Anaschisma-Belodon-Typothorax-Desmatosuchus-Paratypothorax occurs in the lower Bull Canyon formation in Bull Canyon and near Tucumcari, in the Trujillo Formation near Tucumcari, and possibly in the Travesser Formation of the Dry Cimarron valley, the Petrified Forest Member near Carthage, andmore » the Garita Creek formation near Lamy and Conchas Lake. (C) Anaschisma-Belodon-Typothorax occurs in the upper Bull Canyon formation in Bull Canyon, in the upper Petrified Forest Member near San Ysidro, at Ghost Ranch, near Albuquerque (Correo Sandstone Bed), and possibly in the Sloan Canyon Formation of the Dry Cimarron valley. (D) Anaschisma-new phytosaur, cf. Typothorax-new sphenosuchian, occurs in the Redonda Formation near Tucumcari. The biochronologic ranges of significant vertebrate taxa within New Mexico follow: metoposaurs - Metoposaurus (A-B ), Anaschisma (B-D); phytosuars - Rutiodon (A), Belodon (B-C), new taxon (D); aetosaurs - Calyptosuchus (A), Desmatosuchus (A-B), Paratypothorax (B), Typothorax (B-D ); rauisuchians - Postosuchus (A-B), Chatterjeea (B-C); sphenosuchians - new taxon 1 (A), Hesperosuchus (B), new taxon 2 (D); dinosaurs - ornithischians (B), Coelophysis (C), other theropods (B-C); therapsids - Placerias (A), Pseudotriconodon (C). Biochron A may be Carnian in age, whereas biochrons B-D are probably early to middle ( ) Norian.« less

  9. Impact of diagenesis and low grade metamorphosis on Triassic sabkha dolomite δ26Mg

    NASA Astrophysics Data System (ADS)

    Immenhauser, A.; Geske, A.; Richter, D.; Buhl, D.; Niedermayr, A.

    2012-12-01

    Dolomite is a common rock forming mineral in the geological record but its value as archive of ancient seawater δ26Mg signatures and their variations in time are at present underexplored. Unknown factors include the sensitivity of δ26Mg ratio to processes in the diagenetic and low grade metamorphic domain. Here, we document and discusses the first detailed δ26Mg data set from early diagenetic and burial dolomites. Samples come from the Upper Triassic Hauptdolomit (Dolomia Principale; The Dolomites, Italy) and include coeval dolmicrites that underwent differential burial diagenesis in a temperature range between about 100 and more than 350°C. As indicated by dolmicrite 87/86Sr ratios, sabkha calcian D1 dolomites precipitated from evaporated seawater and stabilized at an early diagenetic stage to D2 dolomites analysed here. With increasing burial temperature, dolomite δ26Mg ratio scatter in the data set decreases with increasing Mg/Ca ratio and degree of order. Specifically, δ26Mg ratio variability is reduced from ~0.7‰ at burial temperatures beneath 100°C to about ~0.2‰ at temperatures in excess of 350°C, respectively, with mean δ26Mg values ranging constantly near -1.9‰. This suggests that, at least for the rock buffered system investigated here, dolmicrite δ26Mg proxy data are conservative and preserve near pristine values even at elevated burial temperatures. At present, the main element of uncertainty is the Mg-isotope fractionation factor between (evaporated) seawater and dolomite. A possible solution to this problem includes the compilation of a data from modern sabkha environments including pore water and calcian dolomite δ26Mg isotope signatures.

  10. Osteology of a new specimen of Macrocnemus aff. M. fuyuanensis (Archosauromorpha, Protorosauria) from the Middle Triassic of Europe: potential implications for species recognition and paleogeography of tanystropheid protorosaurs

    NASA Astrophysics Data System (ADS)

    Jaquier, Vivien P.; Fraser, Nicholas C.; Furrer, Heinz; Scheyer, Torsten M.

    2017-11-01

    Over the past two decades, a wealth of marine and terrestrial reptiles, including protorosaurian archosauromorphs, has been described from Triassic shales and limestone layers in southern China. Recovered from the eastern margin of the Tethys Ocean, these forms often show remarkable similarities to taxa that were previously known and described from Europe, i.e., the western Tethyan margin. One protorosaurian that is known from the western and the eastern Tethyan province is the genus Macrocnemus, with currently three recognized species: 1) M. bassanii from the Middle Triassic Besano Formation and Meride Limestone (late Anisian – early Ladinian), UNESCO World Heritage Site Monte San Giorgio, Ticino, Switzerland; 2) M. obristi from the Prosanto Formation (early Ladinian) of the Ducan area, Grisons, Switzerland; and 3) M. fuyuanensis from the Falang Formation (Ladinian), Yunnan Province, southern China. Recently a new specimen, PIMUZ T 1559, from the upper Besano Formation at Meride, Ticino, Switzerland, was prepared, revealing a disarticulated skeleton which includes most of the cranium and lower jaw, pre-caudal vertebral column and ribs, the forelimbs, and girdle elements. Unambiguously assignable to the genus Macrocnemus, it evinces particularly gracile elongated cervical ribs, as well as a humerus/radius ratio that is comparable only to that of M. fuyuanensis from southern China. Based on this feature we tentatively recognize the new specimen as M. aff. fuyuanensis from Europe. The position and exquisite preservation of the clavicle and interclavicle in this specimen allows a revision of the shoulder girdle of Macrocnemus when articulated, which also has implications for closely related protorosaurian taxa, such as the long-necked Tanystropheus. Furthermore, differences in the shape and morphology of the interclavicle including pointed wing-like lateral processes and a short, fusiform caudal process represent rare discrete characters that allow separation of the

  11. Absolute Plate Motion Control Since the Triassic from the Cocos Slab and its Associated Subduction Record in Mexico

    NASA Astrophysics Data System (ADS)

    Boschman, L.; Van Hinsbergen, D. J. J.; Langereis, C. G.; Molina-Garza, R. S.; Kimbrough, D. L.; Spakman, W.

    2017-12-01

    A positive wave speed anomaly interpreted as the Cocos slab stretches from the uppermost mantle at the Middle America trench in the west, to the lowermost mantle below the Atlantic in the east. The length and continuity of this slab indicates long-lived, uninterrupted eastward subduction of the attached Cocos Plate and its predecessor, the Farallon Plate. The geological record of Mexico contains Triassic to present day evidence of subduction, of which the post-Late Cretaceous phase is of continental margin-style. Interpretations of the pre-Upper Cretaceous subduction-related rock assemblages are under debate, and vary from far-travelled exotic intra-oceanic island arc character to in-situ extended continental margin origin. We present new paleomagnetic data that show that Triassic, Jurassic and Cretaceous subduction-related rocks from the Vizcaíno Peninsula and the Guerrero terrane have a paleolatitudinal plate motion history that is equal to that of the North American continent. This suggests that these rock assemblages were part of the overriding plate and were perhaps only separated from the North American continent by temporal fore- or back-arc spreading. The entire Triassic-present day subduction record, and hence, reconstructed trench location, can therefore be linked to the Cocos slab, which provides control on longitudinal plate motion of North America since the time of Pangea. Compared to the latest state of the art mantle frames, in which longitudes are essentially unconstrained for pre-Cretaceous times, our reconstructed absolute position of North America requires a significant westward longitudinal shift for Mesozoic times.

  12. Dioctahedral Phyllosilicates Versus Zeolites and Carbonates Versus Zeolites Competitions as Constraints to Understanding Early Mars Alteration Conditions

    NASA Astrophysics Data System (ADS)

    Viennet, Jean-Christophe; Bultel, Benjamin; Riu, Lucie; Werner, Stephanie C.

    2017-11-01

    Widespread occurrence of Fe,Mg-phyllosilicates has been observed on Noachian Martian terrains. Therefore, the study of Fe,Mg-phyllosilicate formation, in order to characterize early Martian environmental conditions, is of particular interest to the Martian community. Previous studies have shown that the investigation of Fe,Mg-smectite formation alone helps to describe early Mars environmental conditions, but there are still large uncertainties in terms of pH range, oxic/anoxic conditions, etc. Interestingly, carbonates and/or zeolites have also been observed on Noachian surfaces in association with the Fe,Mg-phyllosilicates. Consequently, the present study focuses on the dioctahedral/trioctahedral phyllosilicate/carbonate/zeolite formation as a function of various CO2 contents (100% N2, 10% CO2/90% N2, and 100% CO2), from a combined approach including closed system laboratory experiments for 3 weeks at 120°C and geochemical simulations. The experimental results show that as the CO2 content decreases, the amount of dioctahedral clay minerals decreases in favor of trioctahedral minerals. Carbonates and dioctahedral clay minerals are formed during the experiments with CO2. When Ca-zeolites are formed, no carbonates and dioctahedral minerals are observed. Geochemical simulation aided in establishing pH as a key parameter in determining mineral formation patterns. Indeed, under acidic conditions dioctahedral clay minerals and carbonate minerals are formed, while trioctahedral clay minerals are formed in basic conditions with a neutral pH value of 5.98 at 120°C. Zeolites are favored from pH ≳ 7.2. The results obtained shed new light on the importance of dioctahedral clay minerals versus zeolites and carbonates versus zeolites competitions to better define the aqueous alteration processes throughout early Mars history.

  13. Building the Next Generation of Earth Scientists: the Deep Carbon Observatory Early Career Scientist Workshops

    NASA Astrophysics Data System (ADS)

    Pratt, K.; Fellowes, J.; Giovannelli, D.; Stagno, V.

    2016-12-01

    Building a network of collaborators and colleagues is a key professional development activity for early career scientists (ECS) dealing with a challenging job market. At large conferences, young scientists often focus on interacting with senior researchers, competing for a small number of positions in leading laboratories. However, building a strong, international network amongst their peers in related disciplines is often as valuable in the long run. The Deep Carbon Observatory (DCO) began funding a series of workshops in 2014 designed to connect early career researchers within its extensive network of multidisciplinary scientists. The workshops, by design, are by and for early career scientists, thus removing any element of competition and focusing on peer-to-peer networking, collaboration, and creativity. The successful workshops, organized by committees of early career deep carbon scientists, have nucleated a lively community of like-minded individuals from around the world. Indeed, the organizers themselves often benefit greatly from the leadership experience of pulling together an international workshop on budget and on deadline. We have found that a combination of presentations from all participants in classroom sessions, professional development training such as communication and data management, and field-based relationship building and networking is a recipe for success. Small groups within the DCO ECS network have formed; publishing papers together, forging new research directions, and planning novel and ambitious field campaigns. Many DCO ECS also have come together to convene sessions at major international conferences, including the AGU Fall Meeting. Most of all, there is a broad sense of camaraderie and accessibility within the DCO ECS Community, providing the foundation for a career in the new, international, and interdisciplinary field of deep carbon science.

  14. Sentinel Lymph Node Detection Using Carbon Nanoparticles in Patients with Early Breast Cancer

    PubMed Central

    Lu, Jianping; Zeng, Yi; Chen, Xia; Yan, Jun

    2015-01-01

    Purpose Carbon nanoparticles have a strong affinity for the lymphatic system. The purpose of this study was to evaluate the feasibility of sentinel lymph node biopsy using carbon nanoparticles in early breast cancer and to optimize the application procedure. Methods Firstly, we performed a pilot study to demonstrate the optimized condition using carbon nanoparticles for sentinel lymph nodes (SLNs) detection by investigating 36 clinically node negative breast cancer patients. In subsequent prospective study, 83 patients with clinically node negative breast cancer were included to evaluate SLNs using carbon nanoparticles. Another 83 SLNs were detected by using blue dye. SLNs detection parameters were compared between the methods. All patients irrespective of the SLNs status underwent axillary lymph node dissection for verification of axillary node status after the SLN biopsy. Results In pilot study, a 1 ml carbon nanoparticles suspension used 10–15min before surgery was associated with the best detection rate. In subsequent prospective study, with carbon nanoparticles, the identification rate, accuracy, false negative rate was 100%, 96.4%, 11.1%, respectively. The identification rate and accuracy were 88% and 95.5% with 15.8% of false negative rate using blue dye technique. The use of carbon nanoparticles suspension showed significantly superior results in identification rate (p = 0.001) and reduced false-negative results compared with blue dye technique. Conclusion Our study demonstrated feasibility and accuracy of using carbon nanoparticles for SLNs mapping in breast cancer patients. Carbon nanoparticles are useful in SLNs detection in institutions without access to radioisotope. PMID:26296136

  15. Late Triassic paleomagnetic result from the Baoshan Terrane, West Yunnan of China: Implication for orientation of the East Paleotethys suture zone and timing of the Sibumasu-Indochina collision

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Huang, Baochun; Yan, Yonggang; Zhang, Donghai

    2015-11-01

    In order to better understand the paleogeographic position of the Baoshan Terrane in the northernmost part of the Sibumasu Block during formation of the Pangea supercontinent, a paleomagnetic study has been conducted on Late Triassic basaltic lavas from the southern part of the Baoshan Terrane in the West Yunnan region of Southwest China. Following detailed rock magnetic investigations and progressive thermal demagnetization, stable characteristic remanent magnetizations (ChRMs) were successfully isolated from Late Triassic Niuhetang lava flows. The ChRMs are of dual polarity and pass fold and reversal tests with magnetic carriers dominated by magnetite and subordinate oxidation-induced hematite; we thus interpret them as a primary remanence. This new paleomagnetic result indicates that the Baoshan Terrane was located at low paleolatitudes of ∼15°N in the Northern Hemisphere during Late Triassic times. Together with available paleomagnetic data from the Baoshan Terrane and surrounding areas, a wider paleomagnetic comparison supports the view that the East Paleotethys Ocean separated the Sibumasu and Indochina blocks and closed no later than Late Triassic times. We argue that the currently approximately north-to-south directed Changning-Menglian suture zone is very likely to have been oriented nearly east-to-west at the time of the Sibumasu-Indochina collision.

  16. Tectonics and hydrocarbon potential of the Barents Megatrough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baturin, D.; Vinogradov, A.; Yunov, A.

    1991-08-01

    Interpretation of geophysical data shows that the geological structure of the Eastern Barents Shelf, named Barents Megatrough (BM), extends sublongitudinally almost from the Baltic shield to the Franz Josef Land archipelago. The earth crust within the axis part of the BM is attenuated up to 28-30 km, whereas in adjacent areas its thickness exceeds 35 km. The depression is filled with of more than 15 km of Upper Paleozoic, Mesozoic, and Cenozoic sediments overlying a folded basement of probable Caledonian age. Paleozoic sediments, with exception of the Upper Permian, are composed mainly of carbonates and evaporites. Mesozoic-Cenozoic sediments are mostlymore » terrigenous. The major force in the development of the BM was due to extensional tectonics. Three rifting phases are recognizable: Late Devonian-Early Carboniferous, Early Triassic, and Jurassic-Early Cretaceous. The principal features of the geologic structure and evolution of the BM during the late Paleozoic-Mesozoic correlate well with those of the Sverdup basin, Canadian Arctic. Significant quantity of Late Jurassic-Early Cretaceous basaltic dikes and sills were intruded within Triassic sequence during the third rifting phase. This was probably the main reason for trap disruption and hydrocarbon loss from Triassic structures. Lower Jurassic and Lower Cretaceous reservoir sandstones are most probably the main future objects for oil and gas discoveries within the BM. Upper Jurassic black shales are probably the main source rocks of the BM basin, as well as excellent structural traps for hydrocarbon fluids from the underlying sediments.« less

  17. Influence of carbon dioxide clouds on early martian climate.

    PubMed

    Mischna, M A; Kasting, J F; Pavlov, A; Freedman, R

    2000-06-01

    Recent studies have shown that clouds made of carbon dioxide ice may have warmed the surface of early Mars by reflecting not only incoming solar radiation but upwelling IR radiation as well. However, these studies have not treated scattering self-consistently in the thermal IR. Our own calculations, which treat IR scattering properly, confirm these earlier calculations but show that CO2 clouds can also cool the surface, especially if they are low and optically thick. Estimating the actual effect of CO2 clouds on early martian climate will require three-dimensional models in which cloud location, height, and optical depth, as well as surface temperature and pressure, are determined self-consistently. Our calculations further confirm that CO2 clouds should extend the outer boundary of the habitable zone around a star but that there is still a finite limit beyond which above-freezing surface temperatures cannot be maintained by a CO2-H2O atmosphere. For our own Solar System, the absolute outer edge of the habitable zone is at approximately 2.4 AU.

  18. Recovery and diversification of marine communities following the late Permian mass extinction event in the western Palaeotethys

    NASA Astrophysics Data System (ADS)

    Foster, William J.; Sebe, Krisztina

    2017-08-01

    The recovery of benthic invertebrates following the late Permian mass extinction event is often described as occurring in the Middle Triassic associated with the return of Early Triassic Lazarus taxa, increased body sizes, platform margin metazoan reefs, and increased tiering. Most quantitative palaeoecological studies, however, are limited to the Early Triassic and the timing of the final phase of recovery is rarely quantified. Here, quantitative abundance data of benthic invertebrates were collected from the Middle Triassic (Anisian) succession of the Mecsek Mountains (Hungary), and analysed with univariate and multivariate statistics to investigate the timing of recovery following the late Permian mass extinction. These communities lived in a mixed siliciclastic-carbonate ramp setting on the western margin of the Palaeotethys Ocean. The new data presented here is combined with the previously studied Lower Triassic succession of the Aggtelek Karst (Hungary), which records deposition of comparable facies and in the same region of the Palaeotethys Ocean. The Middle Triassic benthic fauna can be characterised by three distinct ecological states. The first state is recorded in the Viganvár Limestone Formation representing mollusc-dominated communities restricted to above wave base, which are comparable to the lower and mid-Spathian Szin Marl Formation faunas. The second state is recorded in the Lapis Limestone Formation and records extensive bioturbation that is not limited to wave base and is comparable to the upper Spathian Szinpetri Limestone Formation. The third ecological state occurs in the Zuhánya Limestone Formation which was deposited in the Pelsonian Binodosus Zone, and has a more 'Palaeozoic' structure with sessile brachiopods dominating assemblages for the first time in the Mesozoic. The return of community-level characteristics to pre-extinction levels and the diversification of invertebrates suggests that the final stages of recovery and the radiation

  19. Cyclo-, magneto-, and bio-stratigraphic constraints on the duration of the CAMP event and its relationship to the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Olsen, Paul E.; Kent, Dennis V.; Et-Touhami, Mohammed; Puffer, John

    Early Mesozoic tholeiitic flood basalts of the Central Atlantic Magmatic Province (CAMP) are interbedded throughout much of their extent with cyclical lacustrine strata, allowing Milankovitch calibration of the duration of the extrusive episode. This cyclostratigraphy extends from the Newark basin of the northeastern US, where it was first worked out, to Nova Scotia and Morocco and constrains the outcropping extrusive event to less than 600 ky in duration, beginning roughly 20 ky after the Triassic-Jurassic boundary, and to within one pollen and spore zone and one vertebrate biochron. Based principally on the well-known Newark astronomically calibrated magnetic polarity time scale with new additions from the Hartford basin, the rather large scatter in recent radiometric dates from across CAMP (>10 m.y. ), centering on about ˜200 m.y., is not likely to be real. Rather, the existing paleomagnetic data from both intrusive and extrusive rocks suggest emplacement of nearly all the CAMP within less than 3 m.y. of nearly entirely normal polarity. The very few examples of reversed magnetizations suggest that some CAMP activity probably occurred just prior to the Triassic-Jurassic boundary. Published paleomagnetic and 40Ar/39Ar data from the Clubhouse Crossroads Basalt are reviewed and with new paleomagnetic data suggest that alteration and possible core misorientation could be responsible for the apparent differences with the CAMP. The Clubhouse Crossroads Basalt at the base of the Coastal Plain of South Carolina and Georgia provides a link to the volumetrically massive volcanic wedge of seaward dipping reflectors present in the subsurface off the southeastern US that may be part of the same igneous event, suggesting that the CAMP marks the formation of the oldest Atlantic oceanic crust.

  20. New insights into the early stages of silica-controlled barium carbonate crystallisation

    NASA Astrophysics Data System (ADS)

    Eiblmeier, Josef; Schürmann, Ulrich; Kienle, Lorenz; Gebauer, Denis; Kunz, Werner; Kellermeier, Matthias

    2014-11-01

    Recent work has demonstrated that the dynamic interplay between silica and carbonate during co-precipitation can result in the self-assembly of unusual, highly complex crystal architectures with morphologies and textures resembling those typically displayed by biogenic minerals. These so-called biomorphs were shown to be composed of uniform elongated carbonate nanoparticles that are arranged according to a specific order over mesoscopic scales. In the present study, we have investigated the circumstances leading to the continuous formation and stabilisation of such well-defined nanometric building units in these inorganic systems. For this purpose, in situ potentiometric titration measurements were carried out in order to monitor and quantify the influence of silica on both the nucleation and early growth stages of barium carbonate crystallisation in alkaline media at constant pH. Complementarily, the nature and composition of particles occurring at different times in samples under various conditions were characterised ex situ by means of high-resolution electron microscopy and elemental analysis. The collected data clearly evidence that added silica affects carbonate crystallisation from the very beginning (i.e. already prior to, during, and shortly after nucleation), eventually arresting growth on the nanoscale by cementation of BaCO3 particles within a siliceous matrix. Our findings thus shed light on the fundamental processes driving bottom-up self-organisation in silica-carbonate materials and, for the first time, provide direct experimental proof that silicate species are responsible for the miniaturisation of carbonate crystals during growth of biomorphs, hence confirming previously discussed theoretical models for their formation mechanism.Recent work has demonstrated that the dynamic interplay between silica and carbonate during co-precipitation can result in the self-assembly of unusual, highly complex crystal architectures with morphologies and textures

  1. Chronology of Fluctuating Sea Levels since the Triassic

    NASA Astrophysics Data System (ADS)

    Haq, Bilal U.; Hardenbol, Jan; Vail, Peter R.

    1987-03-01

    Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic frame-work. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented.

  2. Geochemistry of a Triassic dyke swarm in the North Patagonian Massif, Argentina. Implications for a postorogenic event of the Permian Gondwanide orogeny

    NASA Astrophysics Data System (ADS)

    González, Santiago N.; Greco, Gerson A.; González, Pablo D.; Sato, Ana M.; Llambías, Eduardo J.; Varela, Ricardo

    2016-10-01

    Permo-Triassic magmatism is widespread in the eastern North Patagonian Massif and has been related to the Gondwanide orogeny. Although a magmatic arc setting is widely accepted for the Permian plutonic rocks, the origin and geotectonic setting for the Triassic plutonic and volcanic rocks are still unknown. A NW-SE Triassic dyke swarm composed of andesites and latites with minor rhyolites was previously described in the Sierra Grande - Rincon de Paileman area. The dyke swarm was associated with extensional tectonics which was linked to a postorogenic process. In this paper we present new geochemical data of the rocks that form the swarm. Trachyandesites and rhyolites were separated based on their geochemical characteristics. Both groups may be considered originated from different sources. On the other hand, the content of incompatible elements (LILE and HFSE) indicates a strong relation between the swarm and an active continental margin. The samples also show a transitional signature between continental-arc and postcollisional or anorogenic settings. The new geochemical data on the dyke swarm support the idea of a magmatism that was linked to a postorogenic extensional tectonic regime related to a continental magmatic arc. Such an extension started in the Paleopacific margin of Pangea during the Anisian and might indicate the beginning of the Pangea break-up.

  3. Palaeogeography of Late Triassic red-beds in Singapore and the Indosinian Orogeny

    NASA Astrophysics Data System (ADS)

    Oliver, Grahame; Prave, Anthony

    2013-10-01

    A red-bed facies of the Upper Triassic Jurong Formation has been logged on Sentosa Island, Singapore. An overall coarsening and thickening-upward pattern is well developed. The lower part of the section is dominated by purple-red, massive to finely laminated illite-smectite-kaolin-rich mudstones containing thin, discontinuous lenses of fine sandstone marked by low-angle lamination and small ripples. One dinosaur-like foot print has been discovered in a loose block of red mudstone. It is concluded that this is a lacustrine sequence and it is proposed to name the lake, Lake Sentosa. The upper part of the sequence consists of flat-laminated to trough cross-bedded medium-grained sandstone and granule to cobble conglomerates alternating with purple-red mudstone. The mudstone-sandstone packages are arranged in decametre-scale coarsening-upward cycles. The channelling and decimetre-scale cross-bedding characterising the sandstone and conglomeratic beds is evidence for deposition by flashy fluvial flood processes, possibly feeding into the lake as a fresh water delta. One possible dinosaur trackway in granule size conglomerate has been located. Detrital zircon U-Pb ages vary from 2.7 Ba to 209 Ma with significant populations at ˜245 Ma and 220 Ma. These ages throw light on the timing of the Indosinian Orogeny. The molasse red-beds of the Jurong Formation were deposited in a half graben formed in the hangingwall of the Bukit Timah Fault when central Peninsular Malaysia went into extension following the climax of the Indosinian Orogeny in the Late Triassic.

  4. Picrite "Intelligence" from the Middle-Late Triassic Stikine arc: Composition of mantle wedge asthenosphere

    NASA Astrophysics Data System (ADS)

    Milidragovic, D.; Zagorevski, A.; Weis, D.; Joyce, N.; Chapman, J. B.

    2018-05-01

    Primitive, near-primary arc magmas occur as a volumetrically minor ≤100 m thick unit in the Canadian Cordillera of northwestern British Columbia, Canada. These primitive magmas formed an olivine-phyric, picritic tuff near the base of the Middle-Late Triassic Stuhini Group of the Stikine Terrane (Stikinia). A new 40Ar/39Ar age on hornblende from a cross-cutting basaltic dyke constrains the tuff to be older than 221 ± 2 Ma. An 87Sr/86Sr isochron of texturally-unmodified tuff samples yields 212 ± 25 Ma age, which is interpreted to represent syn-depositional equilibration with sea-water. Parental trace element magma composition of the picritic tuff is strongly depleted in most incompatible trace elements relative to MORB and implies a highly depleted ambient arc mantle. High-precision trace element and Hf-Nd-Pb isotopic analyses indicate an origin by mixing of a melt of depleted ambient asthenosphere with ≤2% of subducted sediment melt. Metasomatic addition of non-conservative incompatible elements through melting of subducted Panthalassa Ocean floor sediments accounts for the arc signature of the Stuhini Group picritic tuff, enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE) and high field strength elements (HFSE), and anomalous enrichment in Pb. The inferred Panthalassan sediments are similar in composition to the Neogene-Quaternary sediments of the modern northern Cascadia Basin. The initial Hf isotopic composition of the picritic tuff closely approximates that of the ambient Middle-Late Triassic asthenosphere beneath Stikinia and is notably less radiogenic than the age-corrected Hf isotopic composition of the Depleted (MORB) Mantle reservoir (DM or DMM). This suggests that the ambient asthenospheric mantle end-member experienced melt depletion (F ≤ 0.05) a short time before picrite petrogenesis. The mantle end-member in the source of the Stuhini Group picritic tuff is isotopically similar to the mantle source of

  5. Application of U-Pb ID-TIMS dating to the end-Triassic global crisis: testing the limits on precision and accuracy in a multidisciplinary whodunnit (Invited)

    NASA Astrophysics Data System (ADS)

    Schoene, B.; Schaltegger, U.; Guex, J.; Bartolini, A.

    2010-12-01

    The ca. 201.4 Ma Triassic-Jurassic boundary is characterized by one of the most devastating mass-extinctions in Earth history, subsequent biologic radiation, rapid carbon cycle disturbances and enormous flood basalt volcanism (Central Atlantic Magmatic Province - CAMP). Considerable uncertainty remains regarding the temporal and causal relationship between these events though this link is important for understanding global environmental change under extreme stresses. We present ID-TIMS U-Pb zircon geochronology on volcanic ash beds from two marine sections that span the Triassic-Jurassic boundary and from the CAMP in North America. To compare the timing of the extinction with the onset of the CAMP, we assess the precision and accuracy of ID-TIMS U-Pb zircon geochronology by exploring random and systematic uncertainties, reproducibility, open-system behavior, and pre-eruptive crystallization of zircon. We find that U-Pb ID-TIMS dates on single zircons can be internally and externally reproducible at 0.05% of the age, consistent with recent experiments coordinated through the EARTHTIME network. Increased precision combined with methods alleviating Pb-loss in zircon reveals that these ash beds contain zircon that crystallized between 10^5 and 10^6 years prior to eruption. Mineral dates older than eruption ages are prone to affect all geochronologic methods and therefore new tools exploring this form of “geologic uncertainty” will lead to better time constraints for ash bed deposition. In an effort to understand zircon dates within the framework of a magmatic system, we analyzed zircon trace elements by solution ICPMS for the same volume of zircon dated by ID-TIMS. In one example we argue that zircon trace element patterns as a function of time result from a mix of xeno-, ante-, and autocrystic zircons in the ash bed, and approximate eruption age with the youngest zircon date. In a contrasting example from a suite of Cretaceous andesites, zircon trace elements

  6. Basanite-nephelinite suite from early Kilauea: Carbonated melts of phlogopite-garnet peridotite at Hawaii's leading magmatic edge

    USGS Publications Warehouse

    Sisson, T.W.; Kimura, Jun-Ichi; Coombs, M.L.

    2009-01-01

    A basanite-nephelinite glass suite from early submarine Kilauea defines a continuous compositional array marked by increasing concentrations of incompatible components with decreasing SiO2, MgO, and Al2O3. Like peripheral and post-shield strongly alkalic Hawaiian localities (Clague et al. in J Volcanol Geotherm Res 151:279-307, 2006; Dixon et al. in J Pet 38:911-939, 1997), the early Kilauea basanite-nephelinite glasses are interpreted as olivine fractionation products from primary magnesian alkalic liquids. For early Kilauea, these were saturated with a garnet-phlogopite-sulfide peridotite assemblage, with elevated dissolved CO2 contents responsible for the liquids' distinctly low-SiO2 concentrations. Reconstructed primitive liquids for early Kilauea and other Hawaiian strongly alkalic localities are similar to experimental 3 GPa low-degree melts of moderately carbonated garnet lherzolite, and estimated parent magma temperatures of 1,350-1,400??C (olivine-liquid geothermometry) match the ambient upper mantle geotherm shortly beneath the base of the lithosphere. The ???3 GPa source regions were too hot for stable crystalline carbonate and may have consisted of ambient upper mantle peridotite containing interstitial carbonate-silicate or carbonatitic liquid, possibly (Dixon et al. in Geochem Geophys Geosyst 9(9):Q09005, 2008), although not necessarily, from the Hawaiian mantle plume. Carbonate-enriched domains were particularly susceptible to further melting upon modest decompression during upward lithospheric flexure beneath the advancing Hawaiian Arch, or by conductive heating or upward drag by the Hawaiian mantle plume. The early Kilauea basanite-nephelinite suite has a HIMU-influenced isotopic character unlike other Hawaiian magmas (Shimizu et al. in EOS Tran Amer Geophys Union 82(47): abstr V12B-0962, 2001; Shimizu et al. in Geochim Cosmochim Acta 66(15A):710, 2002) but consistent with oceanic carbonatite involvement (Hoernle et al. in Contrib Mineral Petrol

  7. Basanite-nephelinite suite from early Kilauea: carbonated melts of phlogopite-garnet peridotite at Hawaii's leading magmatic edge

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Kimura, J.-I.; Coombs, M. L.

    2009-12-01

    A basanite-nephelinite glass suite from early submarine Kilauea defines a continuous compositional array marked by increasing concentrations of incompatible components with decreasing SiO2, MgO, and Al2O3. Like peripheral and post-shield strongly alkalic Hawaiian localities (Clague et al. in J Volcanol Geotherm Res 151:279-307, 2006; Dixon et al. in J Pet 38:911-939, 1997), the early Kilauea basanite-nephelinite glasses are interpreted as olivine fractionation products from primary magnesian alkalic liquids. For early Kilauea, these were saturated with a garnet-phlogopite-sulfide peridotite assemblage, with elevated dissolved CO2 contents responsible for the liquids’ distinctly low-SiO2 concentrations. Reconstructed primitive liquids for early Kilauea and other Hawaiian strongly alkalic localities are similar to experimental 3 GPa low-degree melts of moderately carbonated garnet lherzolite, and estimated parent magma temperatures of 1,350-1,400°C (olivine-liquid geothermometry) match the ambient upper mantle geotherm shortly beneath the base of the lithosphere. The ~3 GPa source regions were too hot for stable crystalline carbonate and may have consisted of ambient upper mantle peridotite containing interstitial carbonate-silicate or carbonatitic liquid, possibly (Dixon et al. in Geochem Geophys Geosyst 9(9):Q09005, 2008), although not necessarily, from the Hawaiian mantle plume. Carbonate-enriched domains were particularly susceptible to further melting upon modest decompression during upward lithospheric flexure beneath the advancing Hawaiian Arch, or by conductive heating or upward drag by the Hawaiian mantle plume. The early Kilauea basanite-nephelinite suite has a HIMU-influenced isotopic character unlike other Hawaiian magmas (Shimizu et al. in EOS Tran Amer Geophys Union 82(47): abstr V12B-0962, 2001; Shimizu et al. in Geochim Cosmochim Acta 66(15A):710, 2002) but consistent with oceanic carbonatite involvement (Hoernle et al. in Contrib Mineral Petrol

  8. Paleozoic and mesozoic evolution of East-Central California

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Dunne, G.C.; Greene, D.C.; Walker, J.D.; Swanson, B.J.

    1997-01-01

    East-central California, which encompasses an area located on the westernmost part of sialic North America, contains a well-preserved record of Paleozoic and Mesozoic tectonic events that reflect the evolving nature of the Cordilleran plate margin to the west. After the plate margin was formed by continental rifting in the Neoproterozoic, sediments comprising the Cordilleran miogeocline began to accumulate on the subsiding passive margin. In east-central California, sedimentation did not keep pace with subsidence, resulting in backstepping of a series of successive carbonate platforms throughout the early and middle Paleozoic. This phase of miogeoclinal development was brought to a close by the Late Devonian-Early Mississippian Antler orogeny, during the final phase of which oceanic rocks were emplaced onto the continental margin. Subsequent Late Mississippian-Pennsylvanian faulting and apparent reorientation of the carbonate platform margin are interpreted to have been associated with truncation of the continental plate on a sinistral transform fault zone. In the Early Permian, contractional deformation in east-central California led to the development of a narrow, uplifted thrust belt flanked by marine basins in which thick sequences of deep-water strata accumulated. A second episode of contractional deformation in late Early Permian to earliest Triassic time widened and further uplifted the thrust belt and produced the recently identified Inyo Crest thrust, which here is correlated with the regionally significant Last Chance thrust. In the Late Permian, about the time of the second contractional episode, extensional faulting created shallow sedimentary basins in the southern Inyo Mountains. In the El Paso Mountains to the south, deformation and plutonism record the onset of subduction and arc magmatism in late Early Permian to earliest Triassic time along this part of the margin. Tectonism had ceased in most of east-central California by middle to late Early

  9. Carbon-isotope stratigraphy of Early Cretaceous (Urgonian) shoal-water deposits: Diachronous changes in carbonate-platform production in the north-western Tethys

    NASA Astrophysics Data System (ADS)

    Huck, S.; Heimhofer, U.; Immenhauser, A.; Weissert, H.

    2013-05-01

    Carbonate platforms are highly sensitive ecological systems that typically show rapid and characteristic response modes to environmental and climatic changes acting both on a regional scale and global scale. A widely accepted hypothesis proposes that the Late Barremian stepwise establishment of the Urgonian carbonate platform on the Northern Tethyan shelf was related to a gradual change from predominantly humid towards more arid greenhouse conditions. This climate change resulted in the reorganisation of the carbonate platform ecosystem from heterozoan towards photozoan-dominated assemblages and a decrease of organic-matter burial in Tethyan and Boreal basins. In order to decipher the palaeoenvironmental and climatic boundary conditions of these major changes in neritic and pelagic settings, a precise chronostratigraphy of Urgonian carbonate platform evolution is needed. Here, we provide an integrated stratigraphic framework of Lower Barremian to Lower Aptian Urgonian carbonate platform sections (Cluses, Forclaz) located at the northern rim of the Tethys (Subalpine Chains, ESE France), with special focus on sedimentological analyses and high-resolution carbon-isotope stratigraphy. A characteristic Barremian-Aptian carbon-isotope pattern permits precise platform-to-basin correlation with cyclostratigraphic and ammonite-dated pelagic and hemipelagic Tethyan sections in the Vocontian Trough (Angles/Combe-Lambert/Glaise) and Umbria Marche Basin (Gorgo a Cerbara). Similar to Helvetic shoal-water settings, the carbonate platform in the Subalpine Chains experienced a gradual transition from heterozoan- to photozoan-dominated ecosystems. This biogenic pattern points to a gradual change of the carbonate platform after the so-called "Early Barremian crisis" towards an oligotrophic rimmed platform system (Urgonian Limestone Formation). According to the chronostratigraphy of Urgonian carbonate platform evolution in the Subalpine Chains established here, the installation of a

  10. Facies interfingering and synsedimentary tectonics on late Ladinian-early Carnian carbonate platforms (Dolomites, Italy)

    NASA Astrophysics Data System (ADS)

    Keim, Lorenz; Brandner, Rainer

    2001-11-01

    A stratigraphic model for carbonate platform evolution in the Dolomites during the late Ladinian-early Carnian is presented. New light on pre-Raibl growth of individual carbonate platforms of the western Dolomites was shed by biostratigraphic data combined with a revised lithostratigraphy. At the Schlern, Langkofel and Sella, the carbonate factory (Upper Schlern Dolomite) remained productive into the lowermost Carnian (Cordevolian = Aon Zone), and caused a levelling-out of the former steep platform-to-basin relief. In the eastern Dolomites, platforms were producing till basal Julian 2 (Austriacum Zone). At the Sella and Langkofel, the sedimentation pattern after deposition of the Upper Schlern Dolomite was strongly influenced by synsedimentary tectonics. A first phase of extensional tectonics led to local fissures, block-tilting, graben structures and breccia deposits. Composition and fabric of the reworked clasts argue for local-source sediments and short transport distances. The extensional structures are sealed by sediments of Lower Carnian age. Two facies belts (Schlernplateau beds and Dürrenstein Dolomite), which interfinger at the western side of the Sella, reflect the shallow marine environment with terrigenous-volcanoclastic input in the western Dolomites. A second generation of breccias at the Sella documents local fracturing of the Dürrenstein and Upper Schlern Dolomite. Depositional environments across the western and eastern Dolomites were largely dependent on differential subsidence. The sediments of early Carnian age on top of the Schlern platform are a few metres thick only, whereas, in the eastern Dolomite, up to 400-m-thick carbonate sediments ('Richthofen reef' and Settsass platform) were deposited. The most incomplete stratigraphic record is present at the Mendel platform in the west, where Ladinian volcanics are unconformably overlain by late Carnian 'Raibl beds'. The increase in sediment thickness towards the eastern Dolomites becomes partly

  11. The Evolution of the Tethysides during the Medial to Late Triassic

    NASA Astrophysics Data System (ADS)

    Saǧdıç, Nurbike G.; Celâl Şengör, A. M.

    2016-04-01

    The Triassic is a time of widespread rifting within the future Alpides of the circum-Mediterranean countries. However, this rifting had little to do with the later, Sinemurian-Hettangian rifting that penetrated the Tethyan realm from the Atlantic Ocean. The eastern part of the rifting occurred south of the Palaeo-Tethys and seems to have been related to stretching above its extensional arc. Evidence for his stretching is seen in the Karakaya-Pelagonian-Pindos- Meliata-Hallstatt zones and the Eastern Mediterranean. The Eastern Mediterranean is separated from the other extensional zones by a Mikrasian continental fragment that had begun separating from Gondwana-Land already during the Permian. The rifting propagated eastward along the Carpathians (Transylvanian Nappes) and the Eastern and the Southern Alps from where it entered the future Provençal chains and finally the Pyrenees where evaporites were laid down in extensional basins. In the south, an area of rifting went from the Eastern Mediterranean into the High Atlas thus delimiting an Iberapulian continental fragment. The Iberapulian fragment became divided into an Iberian and an Apulian parts later during the Hettangian-Sinemurian rifting that also invaded the earlier extensional areas in the Atlas. The extension directions during the medial and late Triassic are controlled by the tectonics of the eastern end of the Palaeo-Tethys. Along its northern margin, i.e., along the Scythides, right-lateral motion dominated. Along the northern margin of the Mikrasian fragment subduction was nearly head-on (slightly oblique so as to impose a slight right-lateral motion along the arc), but the stretching along the Karakaya rift zones was probably orthogonal because of the similarly orthogonal stretching in the Eastern Mediterrarean. The kinematics is dependent on what sort of motion is imposed onto the Palaeo-Tethyan plate (s) along its (their) northern margin and the direction of stretching in the Eastern Mediterranean

  12. Permo-Triassic vertebrate extinctions: A program

    NASA Technical Reports Server (NTRS)

    Olson, E. C.

    1988-01-01

    Since the time of the Authors' study on this subject, a great deal of new information has become available. Concepts of the nature of extinctions have changed materially. The Authors' conclusion that a catastrophic event was not responsible for the extinction of vertebrates has modified to the extent that hypotheses involving either the impact of a massive extra-terrestrial body or volcanism provide plausible but not currently fully testable hypotheses. Stated changes resulted in a rapid decrease in organic diversity, as the ratio of origins of taxa to extinctions shifted from strongly positive to negative, with momentary equilibrium being reached at about the Permo-Triassic boundary. The proximate causes of the changes in the terrestrial biota appear to lie in two primary factors: (1) strong climatic changes (global mean temperatures, temperature ranges, humidity) and (2) susceptibility of the dominant vertebrates (large dicynodonts) and the glossopteris flora to disruption of the equlibrium of the world ecosystem. The following proximate causes have been proposed: (1) rhythmic fluctuations in solar radiation, (2) tectonic events as Pangea assembled, altering land-ocean relationships, patterns of wind and water circulation and continental physiography, (3) volcanism, and (4) changes subsequent to impacts of one or more massive extra terrestrial objects, bodies or comets. These hypotheses are discussed.

  13. The elemental geochemistry of Lower Triassic shallow-marine carbonates from central Saudi Arabia: Implications for redox conditions in the immediate aftermath of the latest Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Eltom, Hassan A.; Abdullatif, Osman M.; Babalola, Lamidi O.

    2018-03-01

    The southern margin of the Tethys Ocean was occupied by a broad, shallow continental shelf during the Permian-Triassic boundary interval, with the area of present-day Saudi Arabia located from 10° to 30° south of the paleo-equator. The strata deposited in modern Saudi Arabia in the aftermath of the latest Permian mass extinction (LPME) are dominated by oolitic microbialite limestone (OML), which are overlain by skeletal oolitic limestones (SOL) capped by dolostones and dolomitic limestones (DDL). This succession reflects changes in depositional setting, which can be potentially tied to redox conditions using redox sensitive trace elements and rare earth elements (REEs). Statistical analyses reveals that trace elements and REEs are associated with detrital material, and possibly with diagenetic minerals as well. Proxies such as the Y/Ho, Pr/Pr*, Smn/Ybn, Lan/Smn and Lan/Ybn ratios indicate that REEs do not record a seawater-like pattern, and cannot be used as redox indicator. The presence of a normal marine fauna implies oxic conditions during deposition of the DDL and SOL units. However, the OML unit, which represents the immediate aftermath of LPME, lacks both a normal marine fauna and reliable geochemical signals, making it difficult to infer redox conditions in the depositional environment. Similar to published data from sections that reflect shallow marine condition in the LPME of the Tethys Ocean, chemical index of alteration values are consistently high throughout the study succession, suggesting globally intense chemical weathering in the aftermath of the LPME. As a result, geochemical redox proxies in shallow marine carbonates of the Tethys Ocean are likely to be contaminated by detrital material that have been generated by chemical weathering, and thus, other methods are required to determine depositional redox conditions.

  14. A brief exegesis of End Triassic Extinction issues

    NASA Astrophysics Data System (ADS)

    Whiteside, J. H.; Grice, K.; Fox, C.; Kent, D. V.; Olsen, P. E.; Irmis, R. B.

    2017-12-01

    Recent reports of environmental proxy records through the end-Triassic extinction (ETE), in some cases coupled with high-resolution geochronologic data, provide new insights into cause and effect. For example, the emplacement of vast volumes of basalt in the Central Atlantic Magmatic Province (CAMP) are temporally associated with carbon isotopic excursions (CIEs), indications of widespread oceanic euxinia, distinct regional and perhaps very abrupt global sea level change, massive changes in atmospheric CO2, and the proliferation of "disaster" species, both on land and ocean. In the least, these indicate major disruptions in how the Earth works. However some striking and critical issues remain unresolved at a very basic level. Most important are the uncertainties in the stratigraphic relationships of marine extinctions to the various environmental proxy sections, particularly the GSSP for the base Hettangian in Austria, and the UK sections (notably St. Audrie's Bay). Here, the sequence of sporomorph and marine "invertebrate" turnover occurs in different order relative to the proxy record and lithostratigraphy. Thus the sequence of environmental events are, at present, of uncertain relationship to the extinction. Second, it is unclear what processes the various CIEs reflect in different environments; the canonical initial isotopic excursion in the UK, demonstrably correlatable over a huge area, was recorded in a lake in a restricted basin, unlike the isotopic data from surrounding marine strata. Could some CIEs in non-marine basins be diagenetic in nature, caused by the contact effects of overlying basalts? Finally, how does the clear and dramatic tropical non-marine record of the ETE, precisely located relative to the CAMP, relate to the marine record of the ETE, particularly at higher latitudes, where continental biotic turnover is not nearly as dramatic? Do these records correlate in a sufficiently tight temporal interval such that causation can be inferred? These

  15. Two types of bone necrosis in the Middle Triassic Pistosaurus longaevus bones: the results of integrated studies

    NASA Astrophysics Data System (ADS)

    Surmik, Dawid; Rothschild, Bruce M.; Dulski, Mateusz; Janiszewska, Katarzyna

    2017-07-01

    Avascular necrosis, diagnosed on the basis of either a specific pathological modification of the articular surfaces of bone or its radiologic appearance in vertebral centra, has been recognized in many Mesozoic marine reptiles as well as in present-day marine mammals. Its presence in the zoological and paleontologic record is usually associated with decompression syndrome, a disease that affects secondarily aquatic vertebrates that could dive. Bone necrosis can also be caused by infectious processes, but it differs in appearance from decompression syndrome-associated aseptic necrosis. Herein, we report evidence of septic necrosis in the proximal articular surface of the femur of a marine reptile, Pistosaurus longaevus, from the Middle Triassic of Poland and Germany. This is the oldest recognition of septic necrosis associated with septic arthritis in the fossil record so far, and the mineralogical composition of pathologically altered bone is described herein in detail. The occurrence of septic necrosis is contrasted with decompression syndrome-associated avascular necrosis, also described in Pistosaurus longaevus bone from Middle Triassic of Germany.

  16. Depositional environments and cyclo- and chronostratigraphy of uppermost Carboniferous-Lower Triassic -lacustrine deposits, southern Bogda Mountains, NW China - A terrestrfluvialial paleoclimatic record of mid-latitude NE Pangea

    USGS Publications Warehouse

    Yang, W.; Feng, Q.; Liu, Yajing; Tabor, N.; Miggins, D.; Crowley, J.L.; Lin, J.; Thomas, S.

    2010-01-01

    Two uppermost Carboniferous–Lower Triassic fluvial–lacustrine sections in the Tarlong–Taodonggou half-graben, southern Bogda Mountains, NW China, comprise a 1834 m-thick, relatively complete sedimentary and paleoclimatic record of the east coast of mid-latitude NE Pangea. Depositional environmental interpretations identified three orders (high, intermediate, and low) of sedimentary cycles. High-order cycles (HCs) have five basic types, including fluvial cycles recording repetitive changes of erosion and deposition and lacustrine cycles recording repetitive environmental changes associated with lake expansion and contraction. HCs are grouped into intermediate-order cycles (ICs) on the basis of systematic changes of thickness, type, and component lithofacies of HCs. Nine low-order cycles (LCs) are demarcated by graben-wide surfaces across which significant long-term environmental changes occurred. A preliminary cyclostratigraphic framework provides a foundation for future studies of terrestrial climate, tectonics, and paleontology in mid-latitude NE Pangea.Climate variabilities at the intra-HC, HC, IC, and LC scales were interpreted from sedimentary and paleosol evidence. Four prominent climatic shifts are present: 1) from the humid–subhumid to highly-variable subhumid–semiarid conditions at the beginning of Sakamarian; 2) from highly-variable subhumid–semiarid to humid–subhumid conditions across the Artinskian-Capitanian unconformity; 3) from humid–subhumid to highly-variable subhumid–semiarid conditions at early Induan; and 4) from the highly-variable subhumid–semiarid to humid–subhumid conditions across the Olenekian-Anisian unconformity. The stable humid–subhumid condition from Lopingian to early Induan implies that paleoclimate change may not have been the cause of the end-Permian terrestrial mass extinction. A close documentation of the pace and timing of the extinction and exploration of other causes are needed. In addition, the

  17. Conodont succession and reassessment of major events around the Permian-Triassic boundary at the Selong Xishan section, southern Tibet, China

    NASA Astrophysics Data System (ADS)

    Yuan, Dong-Xun; Zhang, Yi-Chun; Shen, Shu-Zhong

    2018-02-01

    A major discrepancy for the age of the Selong Group from middle Cisuralian (Early Permian) to Changhsingian resulted from previous reports of Sakmarian, Kungurian and Guadalupian (Middle Permian) conodonts and Lopingian (Late Permian) brachiopods. Recently, Cisuralian and Guadalupian conodonts were reported again from the Selong Group and the basal part of the Kangshare Formation at the Selong section, but the age discrepancy remains. We present our conodont materials based on large samples collected from the Selong Group and our interpretation based on identifications using a sample population approach. Three conodont zones are recognized in our re-investigation of the upper part of the Selong Group. They include the Vjalovognathus sp., the Mesogondolella hendersoni, and the M. sheni zones, in ascending order. These zones are overlain by the basal Triassic Hindeodus parvus Zone and the Otoceras woodwardi Zone. Our reassessment of conodonts reported by previous studies from Selong and nearby sections suggest that all specimens consistently point to a Lopingian age; the upper part of the Selong Group is latest Changhsingian in age based on the presence of Clarkina orchardi and Mesogondolella sheni. Previously reported early Cisuralian and Guadalupian conodonts are misidentified using a form species concept. A hiatus may be present at the erosional surface between the Selong Group and the Waagenites Bed of the basal part of the Kangshare Formation. However, the hiatus is minimal because conodont and brachiopod assemblages above and below this surface are very similar, and it results from a latest Changhsingian transgression just before the extinction that follows a global latest Changhsingian regression. There is a distinct rapid end-Permian mass extinction at Selong within the Waagenites Bed, as indicated by the disappearances of all benthic brachiopods, rugose corals and Permian bryozoans. The burst of Clarkina species in the Waagenites Bed and throughout the

  18. Distribution and Origin of Iridium in Upper Triassic-Lower Jurassic Continental Strata of the Fundy, Deerfield and Hartford Basins, Newark Supergroup

    NASA Astrophysics Data System (ADS)

    Tanner, L. H.; Kyte, F. T.

    2015-12-01

    To date, elevated Ir levels in continental sediments proximal to the Triassic-Jurassic boundary (TJB) have been reported only from Upper Triassic strata of the Newark and Fundy basins, below the basal extrusive units of the Central Atlantic Magmatic Province. We report here the first occurrence of elevated Ir above the oldest volcanic units, as well as additional horizons of Ir enrichment from other basins of the Newark Supergroup. In the Fundy Basin (Nova Scotia, Canada), lacustrine sediments of the Scots Bay Member of the McCoy Brook Formation that directly overlie the North Mountain Basalt contain Ir up to 413 pg/g in fish-bearing strata very close to the palynological TJB. Higher in the formation the strata lack significant Ir enrichment. Similarly, sedimentary strata from between flows of North Mount Basalt show no Ir appreciable enrichment. The Deerfield Basin (Massachusetts) extension of the Hartford Basin contains only one CAMP extrusive unit, the Lower Jurassic Deerfield Basalt. Very modest Ir enrichment, up to 90 pg/g, occurs in the Fall River Beds of the Sugarloaf Formation, several meters below the basalt, and up to 70 pg/g in the Turners Falls Formation less than 2 meters above the basalt. The uppermost New Haven Formation (Upper Triassic) at the Silver Ridge locality (Guilford, CT) in the Hartford Basin contains abundant plant debris, but no evidence of elevated Ir. At the Clathopteris locality to the north (Holyoke, MA), potentially correlative strata that are fine grained and rich in plant remains have Ir enriched to 542 pg/g, an order of magnitude higher than in the coarser-grained strata in direct stratigraphic contact. The high-Ir beds also have elevated REEs relative to other Hartford Basin samples, although there is no evidence of HREE enrichment. We consider the basalts of the Central Atlantic Magmatic Province, widely accepted as the driver of Late Triassic extinctions, as the origin of the elevated Ir levels in the Newark Supergroup.

  19. Newly discovered Late Triassic Baqing eclogite in central Tibet indicates an anticlockwise West-East Qiangtang collision.

    PubMed

    Zhang, Yu-Xiu; Jin, Xin; Zhang, Kai-Jun; Sun, Wei-Dong; Liu, Jian-Ming; Zhou, Xiao-Yao; Yan, Li-Long

    2018-01-17

    The Triassic eclogite-bearing central Qiangtang metamorphic belt (CQMB) in the northern Tibetan Plateau has been debated whether it is a metamorphic core complex underthrust from the Jinsha Paleo-Tethys or an in-situ Shuanghu suture. The CQMB is thus a key issue to elucidate the crustal architecture of the northern Tibetan Plateau, the tectonics of the eastern Tethys, and the petrogenesis of Cenozoic high-K magmatism. We here report the newly discovered Baqing eclogite along the eastern extension of the CQMB near the Baqing town, central Tibet. These eclogites are characterized by the garnet + omphacite + rutile + phengite + quartz assemblages. Primary eclogite-facies metamorphic pressure-temperature estimates yield consistent minimum pressure of 25 ± 1 kbar at 730 ± 60 °C. U-Pb dating on zircons that contain inclusions (garnet + omphacite + rutile + phengite) gave eclogite-facies metamorphic ages of 223 Ma. The geochemical continental crustal signature and the presence of Paleozoic cores in the zircons indicate that the Baqing eclogite formed by continental subduction and marks an eastward-younging anticlockwise West-East Qiangtang collision along the Shuanghu suture from the Middle to Late Triassic.

  20. A new marine reptile from the Triassic of China, with a highly specialized feeding adaptation.

    PubMed

    Cheng, Long; Chen, Xiao-Hong; Shang, Qing-Hua; Wu, Xiao-Chun

    2014-03-01

    The Luoping fauna (Anisian, Middle Triassic) is probably the oldest of Triassic faunas in Guizhou-Yunnan area, China. The reptilian assemblage is comprised of ichthyosaurs, a number of sauropterygians (pachypleurosaur-like forms), saurosphargids, protorosaurs, and archosauriforms. Here, we report on a peculiar reptile, newly found in this fauna. Its dentition is fence or comb-like and bears more than 175 pleurodont teeth in each ramus of the upper and lower jaws, tooth crown is needle-like distally and blade-shaped proximally; its rostrum strongly bends downward and the anterior end of its mandible expands both dorsally and ventrally to form a shovel-headed structure; and its ungual phalanges are hoof-shaped. The specializations of the jaws and dentition indicate that the reptile may have been adapted to a way of bottom-filter feeding in water. It is obvious that such delicate teeth are not strong enough to catch prey, but were probably used as a barrier to filter microorganisms or benthic invertebrates such as sea worms. These were collected by the specialized jaws, which may have functioned as a shovel or pushdozer (the mandible) and a grasper or scratcher (the rostrum). Our preliminary analysis suggests that the new reptile might be more closely related to the Sauropterygia than to other marine reptiles.

  1. A new marine reptile from the Triassic of China, with a highly specialized feeding adaptation

    NASA Astrophysics Data System (ADS)

    Cheng, Long; Chen, Xiao-Hong; Shang, Qing-Hua; Wu, Xiao-Chun

    2014-03-01

    The Luoping fauna (Anisian, Middle Triassic) is probably the oldest of Triassic faunas in Guizhou-Yunnan area, China. The reptilian assemblage is comprised of ichthyosaurs, a number of sauropterygians (pachypleurosaur-like forms), saurosphargids, protorosaurs, and archosauriforms. Here, we report on a peculiar reptile, newly found in this fauna. Its dentition is fence or comb-like and bears more than 175 pleurodont teeth in each ramus of the upper and lower jaws, tooth crown is needle-like distally and blade-shaped proximally; its rostrum strongly bends downward and the anterior end of its mandible expands both dorsally and ventrally to form a shovel-headed structure; and its ungual phalanges are hoof-shaped. The specializations of the jaws and dentition indicate that the reptile may have been adapted to a way of bottom-filter feeding in water. It is obvious that such delicate teeth are not strong enough to catch prey, but were probably used as a barrier to filter microorganisms or benthic invertebrates such as sea worms. These were collected by the specialized jaws, which may have functioned as a shovel or pushdozer (the mandible) and a grasper or scratcher (the rostrum). Our preliminary analysis suggests that the new reptile might be more closely related to the Sauropterygia than to other marine reptiles.

  2. Triassic salt sheets of Mezzouna, Central Tunisia: New comments on Late Cretaceous halokinesis and geodynamic evolution of the northern African margin

    NASA Astrophysics Data System (ADS)

    Dhahri, Ferid; Boukadi, Noureddine

    2017-05-01

    Two discrete Triassic salt sheets have been discovered within the Coniacian-Santonian series near the salt wall of Mezzouna, central Tunisia. The structure and the lithology of these sheets suggest two halokinetic episodes giving respectively 1) Triassic evaporitic rocks flows over a sloped basin floor resulting in probable salt glacier, and 2) redeposition of erosional debris from the nearby salt wall of Mezzouna, transported and then deposited next to the wall. This finding is used to precise the halokinetic events and the geodynamic evolution of the northern African margin near the Pelagian block between southeastern Tunisia and Tripolitania during Late Cretaceous. A discussion of the halokinesis-related structures is also attempted with emphasize of their genetic mechanisms and temporal development as inferred from geological mapping and new field data.

  3. Analogue modelling on the interaction between shallow magma intrusion and a strike-slip fault: Application on the Middle Triassic Monzoni Intrusive Complex (Dolomites, Italy)

    NASA Astrophysics Data System (ADS)

    Michail, Maria; Coltorti, Massimo; Gianolla, Piero; Riva, Alberto; Rosenau, Matthias; Bonadiman, Costanza; Galland, Olivier; Guldstrand, Frank; Thordén Haug, Øystein; Rudolf, Michael; Schmiedel, Tobias

    2017-04-01

    The southwestern part of the Dolomites in Northern Italy has undergone a short-lived Ladinian (Middle Triassic) tectono-magmatic event, forming a series of significant magmatic features. These intrusive bodies deformed and metamorphosed the Permo-Triassic carbonate sedimentary framework. In this study we focus on the tectono-magmatic evolution of the shallow shoshonitic Monzoni Intrusive Complex of this Ladinian event (ca 237 Ma), covering an area of 20 km^2. This NW-SE elongated intrusive structure (5 km length) shows an orogenic magmatic affinity which is in contrast to the tectonic regime at the time of intrusion. Strain analysis shows anorogenic transtensional displacement in accordance with the ENE-WSW extensional pattern in the central Dolomites during the Ladinian. Field interpretations led to a detailed description of the regional stratigraphic sequence and the structural features of the study area. However, the geodynamic context of this magmatism and the influence of the inherited strike-slip fault on the intrusion, are still in question. To better understand the specific natural prototype and the general mechanisms of magma emplacement in tectonically active areas, we performed analogue experiments defined by, but not limited to, first order field observations. We have conducted a systematic series of experiments in different tectonic regimes (static conditions, strike-slip, transtension). We varied the ratio of viscous to brittle stresses between magma and country rock, by injecting Newtonian fluids both of high and low viscosity (i.e. silicone oil/vegetable oil) into granular materials of varying cohesion (sand, silica flour, glass beads). The evolving surface and side view of the experiments were monitored by photogrammetric techniques for strain analyses and topographic evolution. In our case, the combination of the results from field and analogue experiments brings new insights regarding the tectonic regime, the geometry of the intrusive body, and

  4. Multiple sulfur-isotopic evidence for a shallowly stratified ocean following the Triassic-Jurassic boundary mass extinction

    NASA Astrophysics Data System (ADS)

    Luo, Genming; Richoz, Sylvain; van de Schootbrugge, Bas; Algeo, Thomas J.; Xie, Shucheng; Ono, Shuhei; Summons, Roger E.

    2018-06-01

    The cause of the Triassic-Jurassic (Tr-J) boundary biotic crisis, one of the 'Big Five' mass extinctions of the Phanerozoic, remains controversial. In this study, we analyzed multiple sulfur-isotope compositions (δ33S, δ34S and δ36S) of pyrite and Spy/TOC ratios in two Tr-J successions (Mariental, Mingolsheim) from the European Epicontinental Seaway (EES) in order to better document ocean-redox variations during the Tr-J transition. Our results show that upper Rhaetian strata are characterized by 34S-enriched pyrite, low Spy/TOC ratios, and values of Δ33Spy (i.e., the deviation from the mass-dependent array) lower than that estimated for contemporaneous seawater sulfate, suggesting an oxic-suboxic depositional environment punctuated by brief anoxic events. The overlying Hettangian strata exhibit relatively 34S-depleted pyrite, high Δ33Spy, and Spy/TOC values, and the presence of green sulfur bacterial biomarkers indicate a shift toward to euxinic conditions. The local development of intense marine anoxia thus postdated the Tr-J mass extinction, which does not provide support for the hypothesis that euxinia was the main killing agent at the Tr-J transition. Sulfur and organic carbon isotopic records that reveal a water-depth gradient (i.e., more 34S-, 13C-depleted with depth) in combination with Spy/TOC data suggest that the earliest Jurassic EES was strongly stratified, with a chemocline located at shallow depths just below storm wave base. Shallow oceanic stratification may have been a factor for widespread deposition of black shales, a large positive shift in carbonate δ13C values, and a delay in the recovery of marine ecosystems following the Tr-J boundary crisis.

  5. The restricted gemuk group: A triassic to lower cretaceous succession in southwestern alaska

    USGS Publications Warehouse

    Miller, M.L.; Bradley, D.C.; Bundtzen, T.K.; Blodgett, R.B.; Pessagno, E.A.; Tucker, R.D.; Harris, A.G.

    2007-01-01

    oldest grain is 292 Ma. The youngest zircons are probably not much older than the sandstone itself. Point counts of restricted Gemuk Group sandstones yield average ratios of 24/29/47 for Q/F/L, 15/83/2 for Ls/Lv/Lm, and 41/48/11 for Qm/P/K. In the field, sandstones of the restricted Gemuk Group are not easily distinguished from sandstones of the overlying Upper Cretaceous turbidite-dominated Kuskokwim Group. Petrographically, however, the restricted Gemuk Group has modal K-feldspar, whereas the Kuskokwim Group generally does not (average Qm/P/K of 64/36/0). Some K-feldspar-bearing graywacke that was previously mapped as Kuskokwim Group (Cady et al., 1955) is here reassigned to the restricted Gemuk Group. Major- and trace element geochemistry of shales from the restricted Gemuk Group and the Kuskokwim Group show distinct differences. The chemical index of alteration (CIA) is distinctly higher forshales of the Kuskokwim Group than for those of the restricted Gemuk Group, suggesting more intense weathering during deposition of the Kuskokwim Group. The restricted Gemuk Group represents an estimated 90-100 m.y. of deep-water sedimentation, first accompanied by submarine volcanism and later by nearby explosive arc activity. Two hypotheses are presented for the tectonic setting. One model that needs additional testing is that the restricted Gemuk Group consists of imbricated oceanic plate stratigraphy. Based on available information, our preferred model is that it was deposited in a back-arc, intra-arc, or forearc basin that was subsequently deformed. The terrane affinity of the restricted Gemuk Group is uncertain. The rocks of this area were formerly assigned to the Hagemeister subterrane of the Togiak terrane-a Late Triassic to Early Cretaceous arc-but our data show this to be a poor match. None of the other possibilities (e.g., Nukluk and Tikchik subterranes of the Goodnews terrane) is viable; hence, the terrane subdivision and distribution in southwestern Alaska may need

  6. Late Triassic granitic rocks of the Central Qiangtang Orogenic Belt, northern Tibet: tracing crustal thickening through post-collisional silicic magmatism

    NASA Astrophysics Data System (ADS)

    Wu, H.; Chen, J.

    2017-12-01

    The Central Qiangtang Orogenic Belt (CQOB) was formed through Triassic continental collision between the Southern and Northern Qiangtang terranes. Numerous granitic intrusions occur along the CQOB, forming a Late Triassic granitic belt that stretches 1000 km from west to east. This Central Qiangtang granitic belt was believed to constitute most of the CQOB. Therefore, the CQOB thus provides a typical composite orogen for the study of relationships between granitoid magmatism and orogenic processes. Recently, many studies have been carried out, and the close relationship of the magmatic belt with the evolutionary history of the CQOB is well established. Late Triassic intrusive rocks are widely exposed in the Riwanchaka area of Central Qiangtang, northern Tibet. In this study, new U-Pb zircon ages reveal that Late Triassic magmatism in Riwanchaka took place at ca 225-205 Ma, coeval with exhumation of the metamorphic rocks in Central Qiangtang. Our new and previously published data enable us to correlate the subduction-related volcanic arc rocks in the Riwanchaka area to a post-collisional extension setting related to slab break-off during northward subduction of the Paleo-Tethys Ocean seafloor. Geochemical characteristics suggested that the samples from CQOB can be divided into low-Sr/Y granitoids (LSG) and high-Sr/Y granitoids (HSG). The LSG are normal calc-alkaline I-type granitoids, characterized by varying major and trace element contents indicative of partial melting of ancient mafic lower crust. The HSG are characterized by high Sr/Y ratios and (La/Yb)N (chondrite-normalized) ratios. These signatures indicate that the HSG were derived by partial melting of garnet-bearing thickened lower crust. The crustal structure and evolution of the CQOB are considered on the basis of available data and variations in Sr/Y, La/Yb, and Hf isotopic ratios. Temporal geochemical and Hf isotopic changes, diagnostic of crustal thickening, indicate that the CQOB was greatly

  7. A Re-Examination of the Bedout High, Offshore Canning Basin, Western Australia - Possible Impact Site for the Permian-Triassic Mass Extinction Event?

    NASA Astrophysics Data System (ADS)

    Becker, L.; Nicholson, C.; Poreda, R. J.

    2002-12-01

    The Bedout High, located offshore Canning basin in Western Australia, is an unusual structure and its origin remains problematic. K-Ar dating of volcanic samples encountered at total depth in the Lagrange-1 exploration well indicated an age of about 253+/-5 Ma consistent with the Permian-Triassic boundary event. Gorter (PESA News, pp. 33-34, 1996) speculates that the Bedout High is the uplifted core (30 km) of a circular feature, some 220 km across, formed by the impact of a large bolide (cometary or asteroidal) with the Earth near the end-Permian. Accepting a possible impact origin for the Bedout structure, with the indicated dimensions, would have had profound effects on global climate as well as significant changes in lithotratigraphic, biostratigraphic and chemostratigraphic indicators as seen in several Permian-Triassic boundary locations worldwide. In this work, we re-examine some of the structural data previously presented by Gorter (1996) using some additional seismic lines. We have also evaluated several impact tracers including iridium, shocked quartz, productivity collapse, helium-3, chromium-53 and fullerenes with trapped noble gases from some Permian-Triassic boundary sites in the Tethys and Circum-Pacific regions. Our findings suggest that the Bedout structure is a good candidate for an oceanic impact at the end Permian, triggering the most severe mass extinction in the history of life on Earth.

  8. Pre-, syn-, and postcollisional stratigraphic framework and provenance of upper triassic-upper cretaceous strata in the northwestern talkeetna mountains, alaska

    USGS Publications Warehouse

    Hampton, B.A.; Ridgway, K.D.; O'Neill, J. M.; Gehrels, G.E.; Schmidt, J.; Blodgett, R.B.

    2007-01-01

    Mesozoic strata of the northwestern Talkeetna Mountains are located in a regional suture zone between the allochthonous Wrangellia composite terrane and the former Mesozoic continental margin of North America (i.e., the Yukon-Tanana terrane). New geologic mapping, measured stratigraphic sections, and provenance data define a distinct three-part stratigraphy for these strata. The lowermost unit is greater than 290 m thick and consists of Upper Triassic-Lower Jurassic mafic lavas, fossiliferous limestone, and a volcaniclastic unit that collectively we informally refer to as the Honolulu Pass formation. The uppermost 75 m of the Honolulu Pass formation represent a condensed stratigraphic interval that records limited sedimentation over a period of up to ca. 25 m.y. during Early Jurassic time. The contact between the Honolulu Pass formation and the overlying Upper Jurassic-Lower Cretaceous clastic marine strata of the Kahiltna assemblage represents a ca. 20 m.y. depositional hiatus that spans the Middle Jurassic and part of Late Jurassic time. The Kahiltna assemblage may to be up to 3000 m thick and contains detrital zircons that have a robust U-Pb peak probability age of 119.2 Ma (i.e., minimum crystallization age/maximum depositional age). These data suggest that the upper age of the Kahiltna assemblage may be a minimum of 10-15 m.y. younger than the previously reported upper age of Valanginian. Sandstone composition (Q-43% F-30% L-27%-Lv-71% Lm-18% Ls-11%) and U-Pb detrital zircon ages suggest that the Kahiltna assemblage received igneous detritus mainly from the active Chisana arc, remnant Chitina and Talkeetna arcs, and Permian-Triassic plutons (Alexander terrane) of the Wrangellia composite terrane. Other sources of detritus for the Kahiltna assemblage were Upper Triassic-Lower Jurassic plutons of the Taylor Mountains batholith and Devonian-Mississippian plutons; both of these source areas are part of the Yukon-Tanana terrane. The Kahiltna assemblage is overlain

  9. Carbon cycle perturbations recorded by δ13C of bulk organic matter: the Carnian Pluvial Event in the Dolomites, northern Italy

    NASA Astrophysics Data System (ADS)

    Preto, Nereo; Breda, Anna; Dal Corso, Jacopo; Rigo, Manuel; Roghi, Guido; Spötl, Christoph

    2015-04-01

    A period of increased rainfall occurred in the Carnian (Late Triassic), known as Carnian Pluvial Event (CPE), which is evidenced by major lithological changes in continental and marine successions at tropical latitudes. Increased continental weathering and erosion led to the supply of large amounts of siliciclastics into the marginal basins of the Tethys. Seawater anoxia is also observed locally in semi-restricted basins. Simultaneously, microbial factories on high-relief carbonate platforms were replaced by metazoan factories, forming low-relief carbonate ramps and mixed low-gradient shelves. This environmental change has been shown to be closely associated with a negative carbon isotope excursion. A negative δ13C shift is recorded by bulk organic matter in the Milieres section (central Dolomites) and parallels a coeval excursion in carbon-isotope records of higher plant and marine algal biomarker, thus testifying a global change in the isotopic composition of carbon dioxide in the atmosphere and of dissolved inorganic carbon (DIC) in the ocean. This isotopic excursion was identified in organic carbon records throughout the western Tethys, but so far could not be reproduced convincingly using carbon isotope records from carbonate. A long carbon isotope record was produced from bulk organic matter of the early to late Carnian Milieres - Dibona section in the Dolomites, northern Italy. Carbon isotope analyses of carbonate (limestone and dolomite) were also obtained. This new carbon isotope record illustrates the structure of this complex carbon cycle perturbation related to the CPE. But while sharp carbon isotope oscillations are evident in the bulk organic carbon record, there is no evidence of a similar pattern in carbonate record. It can be shown that the carbon isotope record of carbonates is influenced by fractionation and diagenetic processes that completely obliterated the original δ13C signal. We conclude that the Carnian carbonates of the Dolomites do not

  10. The first 50Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity.

    PubMed

    Brusatte, Stephen L; Benton, Michael J; Ruta, Marcello; Lloyd, Graeme T

    2008-12-23

    The evolutionary radiation of dinosaurs in the Late Triassic and Early Jurassic was a pivotal event in the Earth's history but is poorly understood, as previous studies have focused on vague driving mechanisms and have not untangled different macroevolutionary components (origination, diversity, abundance and disparity). We calculate the morphological disparity (morphospace occupation) of dinosaurs throughout the Late Triassic and Early Jurassic and present new measures of taxonomic diversity. Crurotarsan archosaurs, the primary dinosaur 'competitors', were significantly more disparate than dinosaurs throughout the Triassic, but underwent a devastating extinction at the Triassic-Jurassic boundary. However, dinosaur disparity showed only a slight non-significant increase after this event, arguing against the hypothesis of ecological release-driven morphospace expansion in the Early Jurassic. Instead, the main jump in dinosaur disparity occurred between the Carnian and Norian stages of the Triassic. Conversely, dinosaur diversity shows a steady increase over this time, and measures of diversification and faunal abundance indicate that the Early Jurassic was a key episode in dinosaur evolution. Thus, different aspects of the dinosaur radiation (diversity, disparity and abundance) were decoupled, and the overall macroevolutionary pattern of the first 50Myr of dinosaur evolution is more complex than often considered.

  11. Stable carbon isotope fractionation in the search for life on early Mars

    NASA Technical Reports Server (NTRS)

    Rothschild, L. J.; Desmarais, D.

    1989-01-01

    The utility of measurements of C-13/C-12 ratios in organic vs inorganic deposits for searching for signs of life on early Mars is considered. It is suggested that three assumptions are necessary. First, if there was life on Mars, it caused the fractionation of carbon isotopes in analogy with past biological activity on earth. Second, the fractionation would be detectable. Third, if a fractionation would be observed, there exist no abiotic explanations for the observed fractionation pattern.

  12. Triassic North American paleodrainage networks and sediment dispersal of the Chinle Formation: A quantitative approach utilizing detrital zircons

    NASA Astrophysics Data System (ADS)

    Blum, M. D.; Umbarger, K.

    2017-12-01

    The Triassic Chinle Formation is a fluvial succession deposited in a backarc setting across the present-day Colorado Plateau of the southwestern United States. Existing studies have proposed various mechanisms responsible for the unique stratigraphic architecture and depositional sequences of the Chinle. However, these studies lack necessary age control to correlate stratigraphic patterns with contemporaneous mechanisms. This study will collect new samples for detrital zircon analysis, as well as upgrade existing samples (to n=300) from Dickinson and Gehrels (2008), to improve the resolution of Triassic sediment provenance from source-to-sink. The improved dataset allows appraisal of the multiple provenance terranes that contributed to the Chinle depositional system to delineate and reconstruct paleodrainage patterns. The additional samples will be collected systematically from the base of the Chinle, and vertically throughout the section to capture a regional story of how the continental scale drainage reorganized through time. U-Pb ages of detrital zircons will be utilized to provide quantitative fingerprinting information to constrain interpretations for the origin and transport history of the Chinle fluvial succession in time and space.

  13. Geochronology and geochemistry of late Paleozoic-early Mesozoic igneous rocks of the Erguna Massif, NE China: Implications for the early evolution of the Mongol-Okhotsk tectonic regime

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xu, Wen-Liang; Wang, Feng; Tang, Jie; Zhao, Shuo; Guo, Peng

    2017-08-01

    We undertook geochemical and geochronological studies on late Paleozoic-early Mesozoic igneous rocks from the Erguna Massif with the aim of constraining the early evolution of the Mongol-Okhotsk tectonic regime. Zircon crystals from nine representative samples are euhedral-subhedral, display oscillatory growth zoning, and have Th/U values of 0.14-6.48, indicating a magmatic origin. U-Pb dating of zircon using SIMS and LA-ICP-MS indicates that these igneous rocks formed during the Late Devonian (∼365 Ma), late Carboniferous (∼303 Ma), late Permian (∼256 Ma), and Early-Middle Triassic (246-238 Ma). The Late Devonian rhyolites, together with coeval A-type granites, formed in an extensional environment related to the northwestwards subduction of the Heihe-Nenjiang oceanic plate. Their positive εHf(t) values (+8.4 to +14.4) and Hf two-stage model ages (TDM2 = 444-827 Ma) indicate they were derived from a newly accreted continental crustal source. The late Carboniferous granodiorites are geochemically similar to adakites, and their εHf(t) values (+10.4 to +12.3) and Hf two-stage model ages (TDM2 = 500-607 Ma) suggest they were sourced from thickened juvenile lower crustal material, this thickening may be related to the amalgamation of the Erguna-Xing'an and Songnen-Zhangguangcai Range massifs. Rocks of the late Permian to Middle Triassic suite comprise high-K calc-alkaline monzonites, quartz monzonites, granodiorites, and monzogranites. These rocks are relatively enriched in light rare earth elements and large ion lithophile elements, and depleted in heavy rare earth elements and high field strength elements. They were emplaced, together with coeval porphyry-type ore deposits, along an active continental margin where the Mongol-Okhotsk oceanic plate was subducting beneath the Erguna Massif.

  14. Pink salmon ( Oncorhynchus gorbuscha) marine survival rates reflect early marine carbon source dependency

    NASA Astrophysics Data System (ADS)

    Kline, Thomas C., Jr.; Boldt, Jennifer L.; Farley, Edward V., Jr.; Haldorson, Lewis J.; Helle, John H.

    2008-05-01

    Marine survival rate (the number of adult salmon returning divided by the number of salmon fry released) of pink salmon runs propagated by Prince William Sound, Alaska (PWS) salmon hatcheries is highly variable resulting in large year-to-year run size variation, which ranged from ∼20 to ∼50 million during 1998-2004. Marine survival rate was hypothesized to be determined during their early marine life stage, a time period corresponding to the first growing season after entering the marine environment while they are still in coastal waters. Based on the predictable relationships of 13C/ 12C ratios in food webs and the existence of regional 13C/ 12C gradients in organic carbon, 13C/ 12C ratios of early marine pink salmon were measured to test whether marine survival rate was related to food web processes. Year-to-year variation in marine survival rate was inversely correlated to 13C/ 12C ratios of early marine pink salmon, but with differences among hatcheries. The weakest relationship was for pink salmon from the hatchery without historic co-variation of marine survival rate with other PWS hatcheries or wild stocks. Year-to-year variation in 13C/ 12C ratio of early marine stage pink salmon in combination with regional spatial gradients of 13C/ 12C ratio measured in zooplankton suggested that marine survival was driven by carbon subsidies of oceanic origin (i.e., oceanic zooplankton). The 2001 pink salmon cohort had 13C/ 12C ratios that were very similar to those found for PWS carbon, i.e., when oceanic subsidies were inferred to be nil, and had the lowest marine survival rate (2.6%). Conversely, the 2002 cohort had the highest marine survival (9.7%) and the lowest mean 13C/ 12C ratio. These isotope patterns are consistent with hypotheses that oceanic zooplankton subsidies benefit salmon as food subsidies, or as alternate prey for salmon predators. Oceanic subsidies are manifestations of significant exchange of material between PWS and the Gulf of Alaska. Given

  15. Sequence stratigraphy of the Triassic in the Barentsz Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skjold, L.JU.; Van Veen, P.M.; Gjelberg, J.

    1990-05-01

    A regional study of the Triassic in the Barentsz Sea (20-32{degree}E, 71-74{degree}N) revealed sequences that correlate seismically for hundreds of kilometers. Recent offshore drilling results enabled them to establish a biostratigraphic time framework. Comparisons with information from onshore outcrops (such as the Svalbard Archipelago) aided the piecing together of these superregional sequences. Seismic character analysis identified three units with composite progradational patterns (Induan, Olenekian, and Anisian). Fluvial, deltaic, and marine deposits can be distinguished and located relative to the paleocoastlines. Corresponding downlap surfaces suggest the development of condensed intervals, predicted to consist of organic-rich source rocks, as was later confirmedmore » by drilling. Regional predictions based on this sequence-stratigraphic approach have proved valuable when correlating and evaluating well information. The sequences identified also help define third-order sea level curves for the area; these improve published curves thought to have global significance.« less

  16. Aberrant Classopollis pollen reveals evidence for unreduced (2n) pollen in the conifer family Cheirolepidiaceae during the Triassic-Jurassic transition.

    PubMed

    Kürschner, Wolfram M; Batenburg, Sietske J; Mander, Luke

    2013-10-07

    Polyploidy (or whole-genome doubling) is a key mechanism for plant speciation leading to new evolutionary lineages. Several lines of evidence show that most species among flowering plants had polyploidy ancestry, but it is virtually unknown for conifers. Here, we study variability in pollen tetrad morphology and the size of the conifer pollen type Classopollis extracted from sediments of the Triassic-Jurassic transition, 200 Ma. Classopollis producing Cheirolepidiaceae were one of the most dominant and diverse groups of conifers during the Mesozoic. We show that aberrant pollen Classopollis tetrads, triads and dyads, and the large variation in pollen size indicates the presence of unreduced (2n) pollen, which is one of the main mechanisms in modern polyploid formation. Polyploid speciation may explain the high variability of growth forms and adaptation of these conifers to different environments and their resistance to extreme growth conditions. We suggest that polyploidy may have also reduced the extinction risk of these conifers during the End-Triassic biotic crisis.

  17. Permo-Triassic arc-like granitoids along the northern Lancangjiang zone, eastern Tibet: Age, geochemistry, Sr-Nd-Hf isotopes, and tectonic implications

    NASA Astrophysics Data System (ADS)

    Wang, Xinyu; Wang, Shifeng; Wang, Chao; Tang, Wenkun

    2018-05-01

    Large volumes of Permo-Triassic granitoids are exposed along the Northern Lancangjiang zone, eastern Tibet, and these rocks provide insights into the tectonic evolution of the Paleo-Tethys Ocean. We conducted detailed geological fieldwork and geochemical analysis of the Xiaochangdu and Kagong plutons that crop out along the Northern Lancangjiang magmatic belt. Zircon U-Pb data constrain the emplacement of the Xiaochangdu quartz diotites to between 263 and 257 Ma, and the Kagong granites and diorites to between 234 and 232 Ma. The Xiaochangdu quartz diorites are enriched in light rare earth (LREE) and large ion lithophile elements (LILE), depleted in high field strength elements (HFSE), have low (87Sr/86Sr)i ratios, and near-positive εNd(t) (-0.26 to 1.58) and εHf(t) (0.68-8.83) values, similar to typical subduction- related mantle-derived arc magmas. They are also characterized by high Al2O3 concentrations and low Nb/U (3.48-7.59) and Ce/Pb (3.22-4.86) ratios, indicating that their mantle source was modified by subducted pelagic sediments; Coeval granites and diorites from the Kagong pluton exhibit low A/CNK values, high LREE/HREE (heavy rare earth element) ratios, enrichment in LILE, and depletion in HFSE, also characteristic of typical arc magmas. Their variable SiO2 contents (57%- 75%), (87Sr/86Sr)i ratios, and εNd(t) (1.02-4.49) and εHf(t) (2.52-6.93) values, and relatively high zircon saturation temperatures (721-827 °C), suggest underplating of mantle-derived mafic melts beneath the lower crust. Their magmatic evolution can be explained using a MASH model. In combination with regional geological studies, our geochemical and geochronological results suggest that the late Permian Xiaochangdu and Late Triassic Kagong arc-like granitoids represent a section of a Permo-Triassic magmatic arc that was associated with the eastward subduction of the Paleo-Tethys oceanic slab beneath the Northern Qiangtang-Changdu terrane. Combined with other geological evidence

  18. A terrestrial Eocene stack: tying terrestrial lake ecology to marine carbon cycling through the Early Eocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Grogan, D. S.; Whiteside, J. H.; Musher, D.; Rosengard, S. Z.; Vankeuren, M. A.; Pancost, R. D.

    2010-12-01

    The lacustrine Green River Formation is known to span ≥15 million years through the early-middle Eocene, and recent work on radioisotopic dating has provided a framework on which to build ties to the orbitally-tuned marine Eocene record. Here we present a spliced stack of Fischer assay data from drilled cores of the Green River Formation that span both an East-West and a North-South transect of the Uinta Basin of Utah. Detailed work on two cores demonstrate that Fischer assay measurements covary with total organic carbon and bulk carbon isotopes, allowing us to use Fisher assay results as a representative carbon cycling proxy throughout the stack. We provide an age model for this core record by combining radioisotopic dates of tuff layers with frequency analysis of Fischer assay measurements. Identification of orbital frequencies tied directly to magnetochrons through radioisotopic dates allows for a direct comparison of the terrestrial to the marine Eocene record. Our analysis indicates that the marker beds used to correlate the stack cores represent periods of enhanced lake productivity and extreme carbon burial; however, unlike the hyperthermal events that are clearly marked in the marine Eocene record, the hydrocarbon-rich "Mahogany Bed" period of burial does not correspond to a clear carbon isotope excursion. This suggests that the terrestrial realm may have experienced extreme ecological responses to relatively small perturbations in the carbon cycle during the Early Eocene Climatic Optimum. To investigate the ecological responses to carbon cycle perturbations through the hydrocarbon rich beds, we analyzed a suite of microbial biomarkers, finding evidence for cyanobacteria, dinoflagellates, and potentially green sulfur bacteria. These taxa indicate fluctuating oxic/anoxic conditions in the lake during abrupt intervals of carbon burial, suggesting a lake biogeochemical regime with no modern analogues.

  19. Geochemical characteristics and early diagenesis of recent carbonate mound sediments in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Hamaekers, Helen; Foubert, Anneleen; Wienberg, Claudia; Hebbeln, Dierk; Swennen, Rudy

    2010-05-01

    Cold-water coral carbonate mounds occur in patches along the continental margin of the North Atlantic Ocean, from northern Norway down to Mauretania. Recent research has been focused on carbonate mounds in the Gulf of Cadiz, especially along the Moroccan margin. The Pen Duick, the Renard and the Vernadsky carbonate mound provinces in the Gulf of Cádiz are only some of the mound provinces which have been the subject of several recent research projects (Foubert et al., 2008; Wienberg et al., 2009). No living scleractinians could be found on top of those carbonate mounds. During cruise 64PE284 of RV Pelagia, gravity cores have been taken through carbonate mounds in the Carbonate Mound Provinces (CMP) SE of Yuma mud volcano and N of Meknes mud volcano. These cores have been analysed by several methods such as Magnetic Susceptibility (MS), X-Ray Fluorescence (XRF), Inductive Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and X-Ray Diffraction (XRD) to determine the geochemical characteristics of carbonate mounds, which can be used to quantify the effects of early diagenetic processes which may have altered the palaeo-environmental characteristics of the carbonate mounds. Dating has been done with 14C and U/Th methods pointing to mound growth phases being restricted to glacial periods. XRF and ICP-OES measurements give both qualitative and quantitative data of the chemical composition of the core. The main elements that have been analysed are Ca, Si, Fe, Sr, Al, K, Mg, Ti. According to the trend they follow, they can be devided in two groups, representative for the two encountered fraction types. These two fraction types (biogenic carbonate-rich fraction and terrigenous silicate-rich fraction) can be coupled to interglacial/glacial palaeo-environmental conditions. XRD measurements give an overview of the mineralogical composition of the cores. Thin sections, analysed by cathodeluminescence and classical optical petrography, and micro-CT scans are used to

  20. Paleomagnetic evidence for a Tertiary not Triassic age for rocks in the lower part of the Grober-Fuqua #1 well, southeastern Albuquerque Basin, New Mexico

    USGS Publications Warehouse

    Hudson, M.R.; Grauch, V.J.S.

    2003-01-01

    A sedimentary sequence penetrated in the lower part of the Grober-Fuqua #1 well in the southeastern Albuquerque Basin has previously been interpreted as either Triassic or Eocene in age. Paleomagnetic study of three specimens from two core fragments yielded a 54.5?? mean inclination of remanent magnetization relative to bedding. This inclination is like that expected in Tertiary time and is distinct from an expected low-angle Triassic inclination. Although the data are very few, when considered in combination with stratigraphic relations and the presence of a gravity low in this southeastern part of the basin, the paleomagnetic evidence favors a Tertiary age for strata in the lower part of the Grober-Fuqua #1 well.