Sample records for early universe bulk

  1. Particle physics in the very early universe

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1981-01-01

    Events in the very early big bang universe in which elementary particle physics effects may have been dominant are discussed, with attention to the generation of a net baryon number by way of grand unification theory, and emphasis on the possible role of massive neutrinos in increasing current understanding of various cosmological properties and of the constraints placed on neutrino properties by cosmology. It is noted that when grand unification theories are used to describe very early universe interactions, an initially baryon-symmetrical universe can evolve a net baryon excess of 10 to the -9th to 10 to the -11th per photon, given reasonable parameters. If neutrinos have mass, the bulk of the mass of the universe may be in the form of leptons, implying that the form of matter most familiar to physical science may not be the dominant form of matter in the universe.

  2. Bulk viscous quintessential inflation

    NASA Astrophysics Data System (ADS)

    Haro, Jaume; Pan, Supriya

    In a spatially-flat Friedmann-Lemaître-Robertson-Walker universe, the incorporation of bulk viscous process in general relativity leads to an appearance of a nonsingular background of the universe that both at early and late times depicts an accelerated universe. These early and late scenarios of the universe can be analytically calculated and mimicked, in the context of general relativity, by a single scalar field whose potential could also be obtained analytically where the early inflationary phase is described by a one-dimensional Higgs potential and the current acceleration is realized by an exponential potential. We show that the early inflationary universe leads to a power spectrum of the cosmological perturbations which match with current observational data, and after leaving the inflationary phase, the universe suffers a phase transition needed to explain the reheating of the universe via gravitational particle production. Furthermore, we find that at late times, the universe enters into the de Sitter phase that can explain the current cosmic acceleration. Finally, we also find that such bulk viscous-dominated universe attains the thermodynamical equilibrium, but in an asymptotic manner.

  3. Cosmological QCD phase transition in steady non-equilibrium dissipative Hořava–Lifshitz early universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodadi, M., E-mail: M.Khodadi@sbu.ac.ir; Sepangi, H.R., E-mail: hr-sepangi@sbu.ac.ir

    We study the phase transition from quark–gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 1–10 μs old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Hořava–Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann–Robertson–Walker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigatemore » the effects of the running coupling constants of Hořava–Lifshitz gravity, λ, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (ξ)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively. -- Highlights: •In this paper we have studied quark–hadron phase transition in the early universe in the context of the Hořava–Lifshitz model. •We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively.« less

  4. Viscous cosmology for early- and late-time universe

    NASA Astrophysics Data System (ADS)

    Brevik, Iver; Grøn, Øyvind; de Haro, Jaume; Odintsov, Sergei D.; Saridakis, Emmanuel N.

    From a hydrodynamicist’s point of view the inclusion of viscosity concepts in the macroscopic theory of the cosmic fluid would appear most natural, as an ideal fluid is after all an abstraction (exluding special cases such as superconductivity). Making use of modern observational results for the Hubble parameter plus standard Friedmann formalism, we may extrapolate the description of the universe back in time up to the inflationary era, or we may go to the opposite extreme and analyze the probable ultimate fate of the universe. In this review, we discuss a variety of topics in cosmology when it is enlarged in order to contain a bulk viscosity. Various forms of this viscosity, when expressed in terms of the fluid density or the Hubble parameter, are discussed. Furthermore, we consider homogeneous as well as inhomogeneous equations of state. We investigate viscous cosmology in the early universe, examining the viscosity effects on the various inflationary observables. Additionally, we study viscous cosmology in the late universe, containing current acceleration and the possible future singularities, and we investigate how one may even unify inflationary and late-time acceleration. Finally, we analyze the viscosity-induced crossing through the quintessence-phantom divide, we examine the realization of viscosity-driven cosmological bounces, and we briefly discuss how the Cardy-Verlinde formula is affected by viscosity.

  5. On some universal features of the holographic quantum complexity of bulk singularities

    NASA Astrophysics Data System (ADS)

    Bolognesi, Stefano; Rabinovici, Eliezer; Roy, Shubho R.

    2018-06-01

    We perform a comparative study of the time dependence of the holographic quantum complexity of some space like singular bulk gravitational backgrounds. This is done by considering the two available notions of complexity, one that relates it to the maximal spatial volume and the other that relates it to the classical action of the Wheeler-de Witt patch. We calculate and compare the leading and the next to leading terms and find some universal features. The complexity decreases towards the singularity for both definitions, for all types of singularities studied. In addition the leading terms have the same quantitative behavior for both definitions in restricted number of cases and the behaviour itself is different for different singular backgrounds. The quantitative details of the next to leading terms, such as their specific form of time dependence, are found not to be universal. They vary between the different cases and between the different bulk definitions of complexity. We also address some technical points inherent to the calculation.

  6. Phase space analysis for anisotropic universe with nonlinear bulk viscosity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Mumtaz, Saadia

    2018-06-01

    In this paper, we discuss phase space analysis of locally rotationally symmetric Bianchi type I universe model by taking a noninteracting mixture of dust like and viscous radiation like fluid whose viscous pressure satisfies a nonlinear version of the Israel-Stewart transport equation. An autonomous system of equations is established by defining normalized dimensionless variables. In order to investigate stability of the system, we evaluate corresponding critical points for different values of the parameters. We also compute power-law scale factor whose behavior indicates different phases of the universe model. It is found that our analysis does not provide a complete immune from fine-tuning because the exponentially expanding solution occurs only for a particular range of parameters. We conclude that stable solutions exist in the presence of nonlinear model for bulk viscosity with different choices of the constant parameter m for anisotropic universe.

  7. The Early Retirees of Canadian Universities.

    ERIC Educational Resources Information Center

    Jefferson, Anne L.

    Because an option for early retirement in Canadian Universities has created a need to know more about the vacancies early retirement creates and the potential to fill these vacancies, a survey of 15 representative universities was conducted. The sample included institutions of faculty numbering less than 100 to institutions of faculty numbering…

  8. DMR 'Map of the Early Universe.'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    DMR 'Map of the Early Universe.' This false-color image shows tiny variations in the intensity of the cosmic microwave background measured in four years of observations by the Differential Microwave Radiometers on NASA's Cosmic Background Explorer (COBE). The cosmic microwave background is widely believed to be a remnant of the Big Bang; the blue and red spots correspond to regions of greater or lesser density in the early Universe. These 'fossilized' relics record the distribution of matter and energy in the early Universe before the matter became organized into stars and galaxies. While the initial discovery of variations in the intensity of the CMB (made by COBE in 1992) was based on a mathematical examination of the data, this picture of the sky from the full four-year mission gives an accurate visual impression of the data. The features traced in this map stretch across the visible Universe: the largest features seen by optical telescopes, such as the 'Great Wall' of galaxies, would fit neatly within the smallest feature in this map. (See Bennett et al. 1996, ApJ, 464, L1 and references therein for details.)

  9. WMAP - A Glimpse of the Early Universe

    NASA Technical Reports Server (NTRS)

    Wollack, Edward

    2009-01-01

    The early Universe was incredibly hot, dense, and homogeneous. A powerful probe of this time is provided by the relic radiation which we refer to today as the Cosmic Microwave Background (CMB). Images produced from this light contain the earliest glimpse of the Universe after the "Big Bang" and the signature of the evolution of its contents. By exploiting these clues, precise constraints on the age, mass density, and geometry of the early Universe can be derived. The history of this intriguing cosmological detective story will be reviewed. Recent results from NASA's Wilkinson Microwave Anisotropy Probe (WMAP) will be presented.

  10. Bulk flow in the combined 2MTF and 6dFGSv surveys

    NASA Astrophysics Data System (ADS)

    Qin, Fei; Howlett, Cullan; Staveley-Smith, Lister; Hong, Tao

    2018-07-01

    We create a combined sample of 10 904 late- and early-type galaxies from the 2MTF and 6dFGSv surveys in order to accurately measure bulk flow in the local Universe. Galaxies and groups of galaxies common between the two surveys are used to verify that the difference in zero-points is <0.02 dex. We introduce a maximum likelihood estimator (ηMLE) for bulk flow measurements that allows for more accurate measurement in the presence of non-Gaussian measurement errors. To calibrate out residual biases due to the subtle interaction of selection effects, Malmquist bias and anisotropic sky distribution, the estimator is tested on mock catalogues generated from 16 independent large-scale GiggleZ and SURFS simulations. The bulk flow of the local Universe using the combined data set, corresponding to a scale size of 40 h-1 Mpc, is 288 ± 24 km s-1 in the direction (l, b) = (296 ± 6°, 21 ± 5°). This is the most accurate bulk flow measurement to date, and the amplitude of the flow is consistent with the Λ cold dark matter expectation for similar size scales.

  11. Bulk flow in the combined 2MTF and 6dFGSv surveys

    NASA Astrophysics Data System (ADS)

    Qin, Fei; Howlett, Cullan; Staveley-Smith, Lister; Hong, Tao

    2018-04-01

    We create a combined sample of 10,904 late and early-type galaxies from the 2MTF and 6dFGSv surveys in order to accurately measure bulk flow in the local Universe. Galaxies and groups of galaxies common between the two surveys are used to verify that the difference in zero-points is <0.02 dex. We introduce a new maximum likelihood estimator (ηMLE) for bulk flow measurements which allows for more accurate measurement in the presence non-Gaussian measurement errors. To calibrate out residual biases due to the subtle interaction of selection effects, Malmquist bias and anisotropic sky distribution, the estimator is tested on mock catalogues generated from 16 independent large-scale GiggleZ and SURFS simulations. The bulk flow of the local Universe using the combined data set, corresponding to a scale size of 40 h-1 Mpc, is 288 ± 24 km s-1 in the direction (l, b) = (296 ± 6°, 21 ± 5°). This is the most accurate bulk flow measurement to date, and the amplitude of the flow is consistent with the ΛCDM expectation for similar size scales.

  12. The Toy model: Understanding the early universe

    NASA Astrophysics Data System (ADS)

    Fisher, Peter H.; Price, Richard H.

    2018-04-01

    In many branches of science, progress is being made by taking advantage of insights from other branches of science. Cosmology, the structure and evolution of the universe, is certainly an area that is currently beset by problems in understanding. We show here that the scientific insights from the studies of early childhood development, in particular, those of Piaget, give a new way of looking at the early universe. This new approach can not only be invaluable in undergraduate teaching, but can even be the basis of semi-quantitative predictions.

  13. WMAP - A Portrait of the Early Universe

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.

    2008-01-01

    A host of astrophysical observations suggest that early Universe was incredibly hot, dense, and homogeneous. A powerful probe of this time is provided by the relic radiation which we refer to today as the Cosmic Microwave Background (CMB). Images produced from this light contain the earliest glimpse of the Universe after the 'Big Bang' and the signature of the evolution of its contents. By exploiting these clues, constraints on the age, mass density, and geometry of the early Universe can be derived. A brief history of the evolution of the microwave radiometer systems and map making approaches used in advancing these aspects our understanding of cosmological will be reviewed. In addition, an overview of the results from NASA's Wilkinson Microwave Anisotropy (WMAP) will be presented.

  14. Connecting QGP-Heavy Ion Physics to the Early Universe

    NASA Astrophysics Data System (ADS)

    Rafelski, Johann

    2013-10-01

    We discuss properties and evolution of quark-gluon plasma in the early Universe and compare to laboratory heavy ion experiments. We describe how matter and antimatter emerged from a primordial soup of quarks and gluons. We focus our discussion on similarities and differences between the early Universe and the laboratory experiments.

  15. Shocks in the Early Universe.

    PubMed

    Pen, Ue-Li; Turok, Neil

    2016-09-23

    We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations of the kind observed on very large scales today, it also leads to the production of shocks in the radiation fluid of the very early Universe. Shocks cause departures from local thermal equilibrium as well as create vorticity and gravitational waves. For a scale-invariant spectrum and standard model physics, shocks form for temperatures 1  GeVUniverse as early as 10^{-30}  sec after the big bang.

  16. Water Emission from Early Universe

    NASA Astrophysics Data System (ADS)

    Jarugula, Sreevani; Vieira, Joaquin

    2017-06-01

    The study of dusty star forming galaxies (DSFGs) is important to understand galaxy assembly in early universe. A bulk of star formation at z ˜ 2-3 takes place in DSFGs but are obscured by dust in optical/UV. However, they are extremely bright in far infrared (FIR) and submillimeter with infrared luminosities of 10^{11} - 10^{13} L_{⊙}. ALMA, with its high spatial and spectral resolution, has opened up a new window to study molecular lines, which are vital to our understanding of the excitation and physical processes in the galaxy. Carbon monoxide (CO) being the second most abundant and bright molecule after hydrogen (H_{2}), is an important tracer of star forming potential. Besides CO, water (H_{2}O) is also abundant and it's line strength is comparable to high-J CO lines in high redshift Ultra Luminous Infrared Galaxies (ULIRGs). Studies have shown H_{2}O to directly trace the FIR field and hence the star forming regions. Moreover, L_{H_{2}O}/L_{IR} ratio is nearly constant for five of the most important water lines and does not depend on the presence of AGN implying that H_{2}O is one of the best tracers of star forming regions (SFRs). This incredible correlation holds for nearly five orders of magnitude in luminosity and observed in both local and high redshift luminous infrared galaxies. In this talk, I will discuss the importance of H_{2}O in tracing FIR field and show the preliminary results of resolved water emission from three high-redshift gravitationally lensed South Pole Telescope (SPT) sources obtained from ALMA cycle 3 and cycle 4. These sources are among the first H_{2}O observations with resolved spatial scales ˜ 1 kpc and will prove to be important for ALMA and galaxy evolution studies.

  17. Exact solutions of bulk viscous with string cloud attached to strange quark matter for higher dimensional FRW universe in Lyra geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Çağlar, Halife, E-mail: hlfcglr@gmail.com; Aygün, Sezgin, E-mail: saygun@comu.edu.tr

    In this study, we have investigated bulk viscous with strange quark matter attached to the string cloud for higher dimensional Friedman-Robertson-Walker (FRW) universe in Lyra geometry. By using varying deceleration parameter and conservation equations we have solved Einstein Field Equations (EFE’s) and obtained generalized exact solutions for our model. Also we have found that string is not survived for bulk viscous with strange quark matter attached to the string cloud in framework higher dimensional FRW universe in Lyra geometry. This result agrees with Kiran and Reddy, Krori et al, Sahoo and Mishra and Mohanty et al. in four and fivemore » dimensions.« less

  18. Camera for Quasars in the Early Universe (CQUEAN)

    NASA Astrophysics Data System (ADS)

    Kim, Eunbin; Park, W.; Lim, J.; Jeong, H.; Kim, J.; Oh, H.; Pak, S.; Im, M.; Kuehne, J.

    2010-05-01

    The early universe of z ɳ is where the first stars, galaxies, and quasars formed, starting the re-ionization of the universe. The discovery and the study of quasars in the early universe allow us to witness the beginning of history of astronomical objects. In order to perform a medium-deep, medium-wide, imaging survey of quasars, we are developing an optical CCD camera, CQUEAN (Camera for QUasars in EArly uNiverse) which uses a 1024*1024 pixel deep-depletion CCD. It has an enhanced QE than conventional CCD at wavelength band around 1μm, thus it will be an efficient tool for observation of quasars at z > 7. It will be attached to the 2.1m telescope at McDonald Observatory, USA. A focal reducer is designed to secure a larger field of view at the cassegrain focus of 2.1m telescope. For long stable exposures, auto-guiding system will be implemented by using another CCD camera viewing an off-axis field. All these instruments will be controlled by the software written in python on linux platform. CQUEAN is expected to see the first light during summer in 2010.

  19. COBE - New sky maps of the early universe

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.

    1991-01-01

    This paper presents early results obtained from the first six months of measurements of the cosmic microwave background (CMB) by instruments aboard NASA's Cosmic Background Explorer (COBE) satellite and discusses the implications for cosmology. The three instruments: FIRAS, DMR, and DIRBE have operated well and produced significant new results. The FIRAS measurement of the CMB spectrum supports the standard big bang nucleosynthesis model. The maps made from the DMR instrument measurements show a surprisingly smooth early universe. The measurements are sufficiently precise that we must pay careful attention to potential systematic errors. The maps of galactic and local emission produced by the DIRBE instrument will be needed to identify foregrounds from extragalactic emission and thus to interpret the terms of events in the early universe.

  20. Protostar formation in the early universe.

    PubMed

    Yoshida, Naoki; Omukai, Kazuyuki; Hernquist, Lars

    2008-08-01

    The nature of the first generation of stars in the universe remains largely unknown. Observations imply the existence of massive primordial stars early in the history of the universe, and the standard theory for the growth of cosmic structure predicts that structures grow hierarchically through gravitational instability. We have developed an ab initio computer simulation of the formation of primordial stars that follows the relevant atomic and molecular processes in a primordial gas in an expanding universe. The results show that primeval density fluctuations left over from the Big Bang can drive the formation of a tiny protostar with a mass 1% that of the Sun. The protostar is a seed for the subsequent formation of a massive primordial star.

  1. On the early and developed stages of surface condensation: competition mechanism between interfacial and condensate bulk thermal resistances.

    PubMed

    Sun, Jie; Wang, Hua Sheng

    2016-10-10

    We use molecular dynamics simulation to investigate the early and developed stages of surface condensation. We find that the liquid-vapor and solid-liquid interfacial thermal resistances depend on the properties of solid and fluid, which are time-independent, while the condensate bulk thermal resistance depends on the condensate thickness, which is time-dependent. There exists intrinsic competition between the interfacial and condensate bulk thermal resistances in timeline and the resultant total thermal resistance determines the condensation intensity for a given vapor-solid temperature difference. We reveal the competition mechanism that the interfacial thermal resistance dominates at the onset of condensation and holds afterwards while the condensate bulk thermal resistance gradually takes over with condensate thickness growing. The weaker the solid-liquid bonding, the later the takeover occurs. This competition mechanism suggests that only when the condensate bulk thermal resistance is reduced after it takes over the domination can the condensation be effectively intensified. We propose a unified theoretical model for the thermal resistance analysis by making dropwise condensation equivalent to filmwise condensation. We further find that near a critical point (contact angle being ca. 153°) the bulk thermal resistance has the least opportunity to take over the domination while away from it the probability increases.

  2. On the early and developed stages of surface condensation: competition mechanism between interfacial and condensate bulk thermal resistances

    PubMed Central

    Sun, Jie; Wang, Hua Sheng

    2016-01-01

    We use molecular dynamics simulation to investigate the early and developed stages of surface condensation. We find that the liquid-vapor and solid-liquid interfacial thermal resistances depend on the properties of solid and fluid, which are time-independent, while the condensate bulk thermal resistance depends on the condensate thickness, which is time-dependent. There exists intrinsic competition between the interfacial and condensate bulk thermal resistances in timeline and the resultant total thermal resistance determines the condensation intensity for a given vapor-solid temperature difference. We reveal the competition mechanism that the interfacial thermal resistance dominates at the onset of condensation and holds afterwards while the condensate bulk thermal resistance gradually takes over with condensate thickness growing. The weaker the solid-liquid bonding, the later the takeover occurs. This competition mechanism suggests that only when the condensate bulk thermal resistance is reduced after it takes over the domination can the condensation be effectively intensified. We propose a unified theoretical model for the thermal resistance analysis by making dropwise condensation equivalent to filmwise condensation. We further find that near a critical point (contact angle being ca. 153°) the bulk thermal resistance has the least opportunity to take over the domination while away from it the probability increases. PMID:27721397

  3. Early Predictors of First-Year Academic Success at University: Pre-University Effort, Pre-University Self-Efficacy, and Pre-University Reasons for Attending University

    ERIC Educational Resources Information Center

    van Herpen, Sanne G. A.; Meeuwisse, Marieke; Hofman, W. H. Adriaan; Severiens, Sabine E.; Arends, Lidia R.

    2017-01-01

    Given the large number of dropouts in the 1st year at university, it is important to identify early predictors of 1st-year academic success. The present study (n = 453 first-year students) contributes to literature on the transition from secondary to higher education by investigating how the non-cognitive factors "pre-university" effort…

  4. Inflation in the early universe.

    NASA Astrophysics Data System (ADS)

    Carmeli, M.

    1998-04-01

    In this talk it will be assumed that gravitation is negligible. Under this assumption, the receding velocities of galaxies and the distances between them in the Hubble expansion are united into a four-dimensional pseudo-Euclidean manifold, similarly to space and time in ordinary special relativity. The Hubble law is assumed and is written in an invariant way that enables one to derive a four-dimensional transformation which is similar to the Lorentz transformation. The parameter in the new transformation is the ratio between the cosmic time to the Hubble time. Accordingly, the new transformation relates physical quantities at different cosmic times in the limit of weak or negligible gravitation. The transformation is then applied to the problem of the expansion of the Universe at the very early stage when gravity was negligible and thus the transformation is applicable. The author calculates the ratio of the volumes of the Universe at two different times T1 and T2 after the big bang. The result conforms with the standard inflationary universe theory, but now it is obtained without assuming that the Universe is propelled by antigravity.

  5. The first whole transcriptomic exploration of pre-oviposited early chicken embryos using single and bulked embryonic RNA-sequencing.

    PubMed

    Hwang, Young Sun; Seo, Minseok; Choi, Hee Jung; Kim, Sang Kyung; Kim, Heebal; Han, Jae Yong

    2018-04-01

    The chicken is a valuable model organism, especially in evolutionary and embryology research because its embryonic development occurs in the egg. However, despite its scientific importance, no transcriptome data have been generated for deciphering the early developmental stages of the chicken because of practical and technical constraints in accessing pre-oviposited embryos. Here, we determine the entire transcriptome of pre-oviposited avian embryos, including oocyte, zygote, and intrauterine embryos from Eyal-giladi and Kochav stage I (EGK.I) to EGK.X collected using a noninvasive approach for the first time. We also compare RNA-sequencing data obtained using a bulked embryo sequencing and single embryo/cell sequencing technique. The raw sequencing data were preprocessed with two genome builds, Galgal4 and Galgal5, and the expression of 17,108 and 26,102 genes was quantified in the respective builds. There were some differences between the two techniques, as well as between the two genome builds, and these were affected by the emergence of long intergenic noncoding RNA annotations. The first transcriptome datasets of pre-oviposited early chicken embryos based on bulked and single embryo sequencing techniques will serve as a valuable resource for investigating early avian embryogenesis, for comparative studies among vertebrates, and for novel gene annotation in the chicken genome.

  6. Forming Disk Galaxies Early in the Universe

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    What were galaxies like in the first 500 million years of the universe? According to simulations by Yu Feng (UC Berkeley) and collaborators, the earliest massive galaxies to form were mostly disk-shaped, rather than the compact clumps previously predicted. Early-Galaxy Models. Current models for galaxy formation predict that small perturbations in the distribution of matter in the early universe collapsed to form very compact, irregular, clumpy first galaxies. Observations support this: the furthest out that we've spotted disk-shaped galaxies is at z=3, whereas the galaxies we've observed from earlier times -- up to redshifts of z=8-10 -- are very compact. But could this be a selection effect, arising from the rarity of large galaxies in the early universe? Current surveys at high redshift have thus far only covered relatively small volumes of space, so it's not necessarily surprising that we haven't yet spotted any large disk galaxies. Similarly, numerical simulations of galaxy formation are limited in the size of the volume they can evolve, so resulting models of early galaxy formation also tend to favor compact clumpy galaxies over large disks. An Enormous Simulation. Pushing at these limitations, Feng and his collaborators used the Blue Waters supercomputer to carry out an enormous cosmological hydrodynamic simulation called BlueTides. In this simulation, they track 700 billion particles as they evolve in a volume of 400 comoving Mpc/h -- 40 times the volume of the largest previous simulation and 300 times the volume of the largest observational survey at these redshifts. What they find is that by z=8, a whopping 70% of the most massive galaxies (over 7 billion solar masses each) were disk-shaped, though they are more compact, gas-rich, and turbulent than present-day disk galaxies like the Milky Way. The way the most massive galaxies formed in the simulation also wasn't expected: rather than resulting from major mergers, they were built from smooth accretion

  7. Teaching Early Childhood Assessment Online: A State-Wide Multi-University Collaboration

    ERIC Educational Resources Information Center

    Murray, Ann D.; McDonald, Angie; York, Marti A.

    2006-01-01

    This paper describes an online early childhood assessment course that was developed through a multi-university collaboration with support from a state improvement grant. Collaborators from three universities developed the course to address a new early childhood unified license (birth to age 8, regular and special education) in the state of Kansas.…

  8. The Transient High Energy Sky and Early Universe Surveyor

    NASA Astrophysics Data System (ADS)

    O'Brien, P. T.

    2016-04-01

    The Transient High Energy Sky and Early Universe Surveyor is a mission which will be proposed for the ESA M5 call. THESEUS will address multiple components in the Early Universe ESA Cosmic Vision theme:4.1 Early Universe,4.2 The Universe taking shape, and4.3 The evolving violent Universe.THESEUS aims at vastly increasing the discovery space of the high energy transient phenomena over the entire cosmic history. This is achieved via a unique payload providing an unprecedented combination of: (i) wide and deep sky monitoring in a broad energy band(0.3 keV-20 MeV; (ii) focusing capabilities in the soft X-ray band granting large grasp and high angular resolution; and (iii) on board near-IR capabilities for immediate transient identification and first redshift estimate.The THESEUS payload consists of: (i) the Soft X--ray Imager (SXI), a set of Lobster Eye (0.3--6 keV) telescopes with CCD detectors covering a total FOV of 1 sr; (ii) the X--Gamma-rays spectrometer (XGS), a non-imaging spectrometer (XGS) based on SDD+CsI, covering the same FOV than the Lobster telescope extending the THESEUS energy band up to 20 MeV; and (iii) a 70cm class InfraRed Telescope (IRT) observing up to 2 microns with imaging and moderate spectral capabilities.The main scientific goals of THESEUS are to:(a) Explore the Early Universe (cosmic dawn and reionization era) by unveiling the Gamma--Ray Burst (GRBs) population in the first billion years}, determining when did the first stars form, and investigating the re-ionization epoch, the interstellar medium (ISM) and the intergalactic medium (IGM) at high redshifts.(b) Perform an unprecedented deep survey of the soft X-ray transient Universe in order to fill the present gap in the discovery space of new classes of transient; provide a fundamental step forward in the comprehension of the physics of various classes of Galactic and extra--Galactic transients, and provide real time trigger and accurate locations of transients for follow-up with next

  9. Use of containers to carry bulk and break bulk commodities and its impact on gulf region ports and international trade.

    DOT National Transportation Integrated Search

    2014-08-01

    The University of New Orleans Transportation Institute was tasked by the Louisiana Transportation Research Center (LTRC) in mid-2012 to assess the use of containers to transport bulk and break bulk commodities and to determine what their impact would...

  10. X-ray Emission from Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip; Prestwich, Andrea H.; Mirabel, I. Felix; Feng, Hua

    2016-01-01

    Around 300,000 years after the Big Bang, the Universe had cooled enough to combine and form neutral atoms. This signified the beginning of a time known as the Dark Ages. Neutral matter began to fall into the dark matter gravitational wells that were seeded after the initial moments of the Big Bang. As the first stars and galaxies formed within these gravitational wells, the surrounding baryonic matter was heated and started to ionize. The source of energetic photons that heated and reionized the early Universe remains uncertain. Early galaxies had low metallicity and recent population synthesis calculations suggest that the number and luminosity of high-mass X-ray binaries are enhanced in star-forming galaxies with low metallicity, offering a potentially important and previously overlooked source of heating and reionization. Here we examine two types of local galaxies that have been shown to be good analogs to the early galaxies in the Universe: Blue compact dwarf galaxies (BCDs) and Lyman Break Analogs (LBAs).A BCD is defined by its blue optical colors, low metallicities, and physically small size. This makes BCDs the best available local analogs for early star formation. We analyzed data from a sample of 25 metal-poor BCDs and compared our results with those of near-solar metallicity galaxies. Using a Bayesian approach, we showed that the X-ray luminosity function for the low-metallicity BCDs is significantly elevated relative to the XLF for near-solar metallicity galaxies.Larger, gas-rich galaxies may have formed shortly after these first galaxies. These larger galaxies would be similar in their properties to the high-redshift Lyman break galaxies (LBGs). LBAs provide the best local comparison to the LBGs. We studied a sample of 10 LBAs in order to measure the relation between star formation rate and X-ray luminosity for these galaxies. We found that for LBAs with intermediate sub-solar metallicities, there is enhanced X-ray emission relative to the expected

  11. Probing Models of Dark Matter and the Early Universe

    NASA Astrophysics Data System (ADS)

    Orlofsky, Nicholas David

    This thesis discusses models for dark matter (DM) and their behavior in the early universe. An important question is how phenomenological probes can directly search for signals of DM today. Another topic of investigation is how the DM and other processes in the early universe must evolve. Then, astrophysical bounds on early universe dynamics can constrain DM. We will consider these questions in the context of three classes of DM models--weakly interacting massive particles (WIMPs), axions, and primordial black holes (PBHs). Starting with WIMPs, we consider models where the DM is charged under the electroweak gauge group of the Standard Model. Such WIMPs, if generated by a thermal cosmological history, are constrained by direct detection experiments. To avoid present or near-future bounds, the WIMP model or cosmological history must be altered in some way. This may be accomplished by the inclusion of new states that coannihilate with the WIMP or a period of non-thermal evolution in the early universe. Future experiments are likely to probe some of these altered scenarios, and a non-observation would require a high degree of tuning in some of the model parameters in these scenarios. Next, axions, as light pseudo-Nambu-Goldstone bosons, are susceptible to quantum fluctuations in the early universe that lead to isocurvature perturbations, which are constrained by observations of the cosmic microwave background (CMB). We ask what it would take to allow axion models in the face of these strong CMB bounds. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed, elucidating the difficulties in these constructions. Avoiding disruption of inflationary dynamics provides important limits on the parameter space. Finally, PBHs have received interest in part due to observations by LIGO of merging black hole binaries. We ask how these PBHs could arise through inflationary models and investigate the opportunity

  12. Early Tracking or Finally Leaving? Determinants of Early Study Success in First-Year University Students

    ERIC Educational Resources Information Center

    Brouwer, Jasperina; Jansen, Ellen; Hofman, Adriaan; Flache, Andreas

    2016-01-01

    Two theoretical approaches underlie this investigation of the determinants of early study success among first-year university students. Specifically, to extend Walberg's educational productivity model, this study draws on the expectancy-value theory of achievement motivation in a contemporary university context. The survey data came from 407…

  13. Effect of bulk Lorentz violation on anisotropic brane cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydari-Fard, Malihe, E-mail: heydarifard@qom.ac.ir

    2012-04-01

    The effect of Lorentz invariance violation in cosmology has attracted a considerable amount of attention. By using a dynamical vector field assumed to point in the bulk direction, with Lorentz invariance holding on the brane, we extend the notation of Lorentz violation in four dimensions Jacobson to a five-dimensional brane-world. We obtain the general solution of the field equations in an exact parametric form for Bianchi type I space-time, with perfect fluid as a matter source. We show that the brane universe evolves from an isotropic/anisotropic state to an isotropic de Sitter inflationary phase at late time. The early timemore » behavior of anisotropic brane universe is largely dependent on the Lorentz violating parameters β{sub i},i = 1,2,3 and the equation of state of the matter, while its late time behavior is independent of these parameters.« less

  14. QCD development in the early universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromov, N. A., E-mail: gromov@dm.komisc.ru

    The high-energy limit of Quantum Chromodynamics is generated by the contraction of its gauge groups. Contraction parameters are taken identical with those of the Electroweak Model and tend to zero when energy increases. At the infinite energy limit all quarks lose masses and have only one color degree of freedom. The limit model represents the development of Quantum Chromodynamics in the early Universe from the Big Bang up to the end of several milliseconds.

  15. Cosmology and the early universe

    NASA Astrophysics Data System (ADS)

    Joshi, Abhigna

    2017-01-01

    In the beginning the universe was in a hot dense state nearly 13.8 billion years ago. The thermal history of the universe was traced back to an era when the temperature was about 1012K. At this early time, the universe was filled with particles-mostly photons and leptons- whose interactions are hopefully weak enough to allow this medium to be treated as a more or less ideal gas. However, if we look back a little further, into the first 0.0001 second of cosmic history when the temperature was above 1012K. At such temperatures, there will be present in thermal equilibrium copious numbers of strongly interacting particles-mostly masons and baryons-with a mean interparticle distance less than a Compton wavelength. These particles will be in a state of continual mutual interaction, and cannot reasonably be expected to obey any simple equation of state. The inflationary epoch lasted from 10-36seconds after the Big Bang to sometime between 10-33and 10-32seconds. Matter and energy created in this time. Right after that space expanded exponentially with enormous rate of 74.3 +/-2.1Km per second per Mpc. Undergraduate student and researcher of the string theory, quantum gravity, cosmology and quantum biology.

  16. Probing the Early Universe with the SZ Effect

    NASA Technical Reports Server (NTRS)

    Joy, M. K.; Carlstrom, J. E.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The Cosmic Microwave Background Radiation (CMBR) which we observe today is relic radiation which last interacted with matter more than 10 billion years ago, when the expanding universe cooled to the point that free electrons and ionized nuclei recombined to form atoms. Prior to recombination, scattering between photons and free electrons was a very frequent occurrence, and the distance light could penetrate was small; afterwards, with free electrons out of circulation, the universe became largely transparent to light. Thus, the CMBR photons we observe today give us a clear view of the state of the early universe. Measured deviations in the intensity of the CMBR trace the small perturbations in the primordial matter density, which have been amplified by gravitational forces to form the magnificent, complex structures which comprise the present-day universe.

  17. Enhanced X-ray Emission from Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip; Prestwich, Andrea H.; Mirabel, I. Felix; Feng, Hua

    2016-04-01

    X-rays from binaries containing compact objects may have played an important role in heating the early Universe. Here we discuss our findings from X-ray studies of blue compact dwarf galaxies (BCDs), Lyman break analogs (LBAs), and Green Pea galaxies (GP), all of which are considered local analogs to high redshift galaxies. We find enhanced X-ray emission per unit star-formation rate which strongly correlates with decreasing metallicity. We find evidence for the existence of a L_X-SFR-Metallicity plane for star-forming galaxies. The exact properties of X-ray emission in the early Universe affects the timing and morphology of reionization, both being observable properties of current and future radio observations of the redshifted 21cm signal from neutral hydrogen.

  18. Inflation in the Early Universe

    NASA Astrophysics Data System (ADS)

    Carmeli, Moshe

    In this talk it will be assumed that gravitation is negligible. Under this assumption, the receding velocities of galaxies and the distances between them in the Hubble expansion are united into a four-dimensional pseudo-Euclidean manifold, similarly to space and time in ordinary special relativity. The Hubble law is assumed and is written in an invariant way that enables one to derive a four-dimensional transformation which is similar to the Lorentz transformation. The parameter in the new transformation is the ratio between the cosmic time to the Hubble time (in which the cosmic time is measured backward with respect to the present time). Accordingly, the new transformation relates physical quantities at different cosmic times in the limit of weak or negligible gravitation. The transformation is then applied to the problem of the expansion of the Universe at the very early stage when gravity was negligible and thus the transformation is applicable. We calculate the ratio of the volumes of the Universe at two different times T1 and T2 after the Big Bang. Under the assumptions that T2 - T1 ≈ 10-32 sec and T2 ≪ 1 sec, we find that V_{2}/V_{1} = 10^{-16}/√{T_{1}}. For T1 ≈ 10-132 sec we obtain V2/V1 ≈ 1050. This result conforms with the standard inflationary universe theory, but now it is obtained without assuming that the Universe is propelled by antigravity.

  19. Australian Early Childhood Educators: From Government Policy to University Practice

    ERIC Educational Resources Information Center

    Davies, Sharon; Trinidad, Sue

    2013-01-01

    This article provides an overview of the Australian Federal Government initiatives in the area of early childhood with regard to the provision of early childhood education and care. These changes have influenced a Western Australian university to develop an innovative birth to 8 years preservice educator education curriculum. Using an ecological…

  20. Early Universe synthesis of asymmetric dark matter nuggets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    We compute the mass function of bound states of asymmetric dark matter - nuggets - synthesized in the early Universe. We apply our results for the nugget density and binding energy computed from a nuclear model to obtain analytic estimates of the typical nugget size exiting synthesis. We numerically solve the Boltzmann equation for synthesis including two-to-two fusion reactions, estimating the impact of bottlenecks on the mass function exiting synthesis. These results provide the basis for studying the late Universe cosmology of nuggets in a future companion paper.

  1. Early Universe synthesis of asymmetric dark matter nuggets

    NASA Astrophysics Data System (ADS)

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    2018-02-01

    We compute the mass function of bound states of asymmetric dark matter—nuggets—synthesized in the early Universe. We apply our results for the nugget density and binding energy computed from a nuclear model to obtain analytic estimates of the typical nugget size exiting synthesis. We numerically solve the Boltzmann equation for synthesis including two-to-two fusion reactions, estimating the impact of bottlenecks on the mass function exiting synthesis. These results provide the basis for studying the late Universe cosmology of nuggets in a future companion paper.

  2. Early Universe synthesis of asymmetric dark matter nuggets

    DOE PAGES

    Gresham, Moira I.; Lou, Hou Keong; Zurek, Kathryn M.

    2018-02-12

    We compute the mass function of bound states of asymmetric dark matter - nuggets - synthesized in the early Universe. We apply our results for the nugget density and binding energy computed from a nuclear model to obtain analytic estimates of the typical nugget size exiting synthesis. We numerically solve the Boltzmann equation for synthesis including two-to-two fusion reactions, estimating the impact of bottlenecks on the mass function exiting synthesis. These results provide the basis for studying the late Universe cosmology of nuggets in a future companion paper.

  3. Addressing the University's Tripartite Mission through an Early Childhood Movement Program.

    ERIC Educational Resources Information Center

    Marston, Rip

    2002-01-01

    Describes the University of Northern Iowa's early childhood motor laboratory, which brings together college students, preschoolers, and parents while contributing to each strand of the university's three-strand mission of teaching, scholarly endeavors, and service. The article describes program sessions, highlights the tripartite mission, and…

  4. Galactic Pairs in the Early Universe

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-02-01

    In the spirit of Valentines Day, today well be exploring apparent pairs of galaxies in the distant, early universe. How can we tell whether these duos are actually paired galaxies, as opposed to disguised singles?Real Pair, or Trick of the Light?In the schematic timeline of the universe, the epoch of reionization is when the first galaxies and quasars began to form and evolve. [NASA]The statistics of merging galaxies throughout the universe reveal not only direct information about how galaxies interact, but also cosmological information about the structure of the universe. While weve observed many merging galaxy pairs at low redshift, however, its much more challenging to identify these duos in the early universe.A merging pair of galaxies at high redshift appears to us as a pair of unresolved blobs that lie close to each other in the sky. But spotting such a set of objects doesnt necessarily mean were looking at a merger! There are three possible scenarios to explain an observed apparent duo:Its a pair of galaxies in a stage of merger.Its a projection coincidence; the two galaxies arent truly near each other.Its a single galaxy being gravitationally lensed by a foreground object. This strong lensing produces the appearance of multiple galaxies.Hubble photometry of one of the three galaxy groups identified at z 8, with the galaxies in the image labeled with their corresponding approximate photometric redshifts. [Adapted from Chaikin et al. 2018]Hunting for Distant DuosIn a recent study led by Evgenii Chaikin (Peter the Great St. Petersburg Polytechnic University, Russia), a team of scientists has explored the Hubble Ultra Deep Field in search ofhigh-redshift galaxies merging during the epoch of reionization, when the first galaxies formed and evolved.Using an approach called the dropout technique, which leverages the visibility of the galaxies in different wavelength filters, Chaikin and collaborators obtain approximate redshifts for an initial sample of 7

  5. Artist's Concept of Early Universe

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an artist's impression of how the very early universe (less than one billion years old) might have looked when it went through a voracious onset of star formation, converting primordial hydrogen into myriad stars at an unprecedented rate. The deepest views of the cosmos from the Hubble Space Telescope (HST) yield clues that the very first stars may have burst into the universe as brilliantly and spectacularly as a firework finale. Except in this case, the finale came first, long before Earth, the Sun ,and the Milky Way Galaxy formed. Studies of HST's deepest views of the heavens lead to the preliminary conclusion that the universe made a significant portion of its stars in a torrential firestorm of star birth, which abruptly lit up the pitch-dark heavens just a few hundred million years after the 'big bang,' the tremendous explosion that created the cosmos. Within the starburst galaxies, bright knots of hot blue stars come and go like bursting fireworks shells. Regions of new starbirth glow intensely red under torrent of ultraviolet radiation. The most massive stars self-detonate as supernovas, which explode across the sky like a string of firecrackers. A foreground starburst galaxy at lower right is sculpted with hot bubbles from supernova explosions and torrential stellar winds. Unlike today there is very little dust in these galaxies, because the heavier elements have not yet been cooked up through nucleosynthesis in stars. Recent analysis of HST deep sky images supports the theory that the first stars in the universe appeared in an abrupt eruption of star formation, rather than at a gradual pace. Science Credit: NASA and K. Lanzetta (SUNY). Artwork Credit: Adolf Schaller for STScI.

  6. The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2009-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approximately 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  7. The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2008-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approximately 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown university; University of British Columbia; and University of California, Los Angeles.

  8. The Cosmic Microwave Background Radiation-A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2010-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of 11 00. Data from the first seven years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  9. Was there an early reionization component in our universe?

    DOE PAGES

    Villanueva-Domingo, Pablo; Gariazzo, Stefano; Gnedin, Nickolay Y.; ...

    2018-04-06

    A deep understanding of the Epoch of Reionization is still missing in our knowledge of the universe. While future probes will allow us to test the precise evolution of the free electron fraction from redshifts betweenmore » $$z\\simeq 6$$ and $$z\\simeq 20$$, at present one could ask what kind of reionization processes are allowed by present Cosmic Microwave Background temperature and polarization measurements. An early contribution to reionization could imply a departure from the standard picture where star formation determines the reionization onset. BBy considering a broad class of possible reionization parameterizations, we find that current data do not require an early reionization component in our universe and that only one marginal class of models, based on a particular realization of reionization, may point to that. In addition, the frequentist Akaike Information Criterion (AIC) provides strong evidence against alternative reionization histories, favoring the most simple reionization scenario, which describes reionization by means of only one (constant) reionization optical depth $$\\tau$$.« less

  10. Was there an early reionization component in our universe?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villanueva-Domingo, Pablo; Gariazzo, Stefano; Gnedin, Nickolay Y.

    A deep understanding of the Epoch of Reionization is still missing in our knowledge of the universe. While future probes will allow us to test the precise evolution of the free electron fraction from redshifts betweenmore » $$z\\simeq 6$$ and $$z\\simeq 20$$, at present one could ask what kind of reionization processes are allowed by present Cosmic Microwave Background temperature and polarization measurements. An early contribution to reionization could imply a departure from the standard picture where star formation determines the reionization onset. BBy considering a broad class of possible reionization parameterizations, we find that current data do not require an early reionization component in our universe and that only one marginal class of models, based on a particular realization of reionization, may point to that. In addition, the frequentist Akaike Information Criterion (AIC) provides strong evidence against alternative reionization histories, favoring the most simple reionization scenario, which describes reionization by means of only one (constant) reionization optical depth $$\\tau$$.« less

  11. Was there an early reionization component in our universe?

    NASA Astrophysics Data System (ADS)

    Villanueva-Domingo, Pablo; Gariazzo, Stefano; Gnedin, Nickolay Y.; Mena, Olga

    2018-04-01

    A deep understanding of the epoch of reionization is still missing in our knowledge of the universe. While future probes will allow us to test the precise evolution of the free electron fraction from redshifts between zsimeq 6 and 0zsimeq 2, at present one could ask what kind of reionization processes are allowed by present cosmic microwave background temperature and polarization measurements. An early contribution to reionization could imply a departure from the standard picture where star formation determines the reionization onset. By considering a broad class of possible reionization parameterizations, we find that current data do not require an early reionization component in our universe and that only one marginal class of models, based on a particular realization of reionization, may point to that. In addition, the frequentist Akaike information criterion (AIC) provides strong evidence against alternative reionization histories, favoring the most simple reionization scenario, which describes reionization by means of only one (constant) reionization optical depth τ.

  12. The Early Universe: Searching for Evidence of Cosmic Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2012-01-01

    In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as "inflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.

  13. BOOK REVIEW: The Physics of the Early Universe

    NASA Astrophysics Data System (ADS)

    Scott, Douglas

    2007-11-01

    The physics of the very small and the very large were successfully brought together in the 1980s through the idea of 'the universe as a particle accelerator'. The manifesto of this new campaign was laid out in the book 'The Early Universe' by Kolb and Turner in 1990. For at least the next decade that book was to be found on the shelves of every theorist (and many experimentalists) who professed an interest in this topic. But science marches on, and the last 10 15 years has seen an explosion in our understanding of the physics of the very earliest times and the very largest scales. Experimentally our world-view has changed utterly, through exquisitely precise measurements of the cosmic microwave background, galaxy clustering and supernova distances, with a refinement of the basic inflationary big bang paradigm into the new 'standard cosmological model'. And in tandem with these changes has been the development of new theoretical ideas, particularly involving dark energy and connections between string/brane theory and cosmology. So what is the new book for the shelves of today's cohort of young Rockys and Mikes? Despite a recent number of promising-sounding cosmology books, there is nothing at the advanced level which is broad enough to be a general introduction to the 'early universe' topic. Perhaps the best of the bunch is 'The Physics of the Early Universe', edited by E Papantonopoulos as part of Springer's series 'Lecture notes in physics'. This is a set of 9 review articles given as part of a 2003 summer school on Syros Island, Greece. Although far from perfect, the core of this book provides a solid introduction to current research in early universe physics, which should be useful for PhD students or postdoctoral researchers who want the real thing. The book starts with a competent introduction by Kyriakos Tamvakis, serving essentially as a summary of where we were in Kolb and Turner's text. We have learned since then, however, that inflation is really all

  14. Feedback in low-mass galaxies in the early Universe.

    PubMed

    Erb, Dawn K

    2015-07-09

    The formation, evolution and death of massive stars release large quantities of energy and momentum into the gas surrounding the sites of star formation. This process, generically termed 'feedback', inhibits further star formation either by removing gas from the galaxy, or by heating it to temperatures that are too high to form new stars. Observations reveal feedback in the form of galactic-scale outflows of gas in galaxies with high rates of star formation, especially in the early Universe. Feedback in faint, low-mass galaxies probably facilitated the escape of ionizing radiation from galaxies when the Universe was about 500 million years old, so that the hydrogen between galaxies changed from neutral to ionized-the last major phase transition in the Universe.

  15. The Transient High-Energy Sky and Early Universe Surveyor (THESEUS)

    NASA Astrophysics Data System (ADS)

    Amati, L.

    2016-10-01

    THESEUS is a mission concept by a large international collaboration aimed at exploiting GRBs for investigating the early universe and at vastly increasing the discovery space of the high energy transient phenomena over the entire cosmic history.

  16. Nuclear matter in the early universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barros, Celso de Camargo, E-mail: barros.celso@ufsc.br; Cunha, Ivan Eugênio da, E-mail: lordlihige@hotmail.com

    Recently, extreme conditions have been obtained in ultra-relativistic heavy ion collisions at RHIC and at the Large Hadron collider. It is believed that these conditions are similar to the ones of the early Universe, in the time between 10{sup −6}s and 1s, approximately. In this work, the hadrons produced in this range of time will be studied, considering some aspects of the systems produced in the heavy-ion collisions. We will study a phase posterior to the phase transition (in fact it is believed to be a crossover) from the quark-gluon plasma, that is the hadronic phase of the Universe. Wemore » will show the model proposed in [1], considering the hadronic matter described by a relativistic model (similar to the Walecka model), considering particles described by quantum equations in a curved spacetime. This curvature is due to the mass and to the strong interactions that appears in the energy-momentum tensor. The set of the equations is proposed in the Robertson-Walker metric, and some approximate solutions are obtained.« less

  17. Strategic Programming for Early University Entrants: Creating Support for Socio-Emotional Needs

    ERIC Educational Resources Information Center

    Lancour, Julie A.

    2011-01-01

    This article introduces "Resiliency Training," a program designed to support early university entrants as they take on the challenges and adventures of their sophomore and junior year at the University of Washington (UW). As the Academic Counselor and Counseling Services Coordinator for the Robinson Center, watching the students engage…

  18. Exploring the Early Universe on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Kocevski, Dale; McGrath, E. J.; CANDELS Collaboration

    2014-01-01

    The widespread adoption of smart phones and tablet computers has the potential to revolutionize the way in which educational material is shared with the general public. As part of the outreach effort for the CANDELS survey, we have developed a free interactive astronomy education application named Hubble Universe for iPad and iPhone devices. The application focuses on extragalactic science topics related to the CANDELS legacy survey, which is documenting galaxy evolution in the early universe. I will provide an overview of the application, which contains a wide range of interactive content, including 3D models of astrophysical phenomenon, informative diagrams and computer simulations. I will discuss how the application can be used to enhance classroom learning both by providing a database of interactive media and by encouraging students to explore astronomical topics away from traditional settings like the classroom or the desktop computer.

  19. University Students' Early Maladaptive Schemas' Prediction of Their Mindfulness Levels

    ERIC Educational Resources Information Center

    Yalcin, S.Barbaros; Kavakli, Mehmet; Kesici, Sahin; Ak, Mehmet

    2017-01-01

    Purpose: The aim of this study is to determine whether university students' early maladaptive schemas predict their mindfulness levels or not. Methods: The study was carried out in the relational screening model. The study group consisted of 293 university students; 237 (80,9%) females and 56 (19,1%) males. "Mindful Attention Awareness Scale…

  20. Origins and Missions of Two Early Land-Grant Colleges: Georgetown University and George Washington University. ASHE Annual Meeting 1980 Paper.

    ERIC Educational Resources Information Center

    Quigley, Martin S.

    The founding and missions of Georgetown University and George Washington University, two early land-grant colleges, are considered. The account is based partially on standard histories of the colleges, and other information comes from Congressional Records. Some understanding of why Congress took an interest in the founding and survival of…

  1. An overview of rotating machine systems with high-temperature bulk superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Difan; Izumi, Mitsuru; Miki, Motohiro; Felder, Brice; Ida, Tetsuya; Kitano, Masahiro

    2012-10-01

    The paper contains a review of recent advancements in rotating machines with bulk high-temperature superconductors (HTS). The high critical current density of bulk HTS enables us to design rotating machines with a compact configuration in a practical scheme. The development of an axial-gap-type trapped flux synchronous rotating machine together with the systematic research works at the Tokyo University of Marine Science and Technology since 2001 are briefly introduced. Developments in bulk HTS rotating machines in other research groups are also summarized. The key issues of bulk HTS machines, including material progress of bulk HTS, in situ magnetization, and cooling together with AC loss at low-temperature operation are discussed.

  2. Cosmological Simulations with Molecular Astrochemistry: Water in the Early Universe

    NASA Astrophysics Data System (ADS)

    Wiggins, Brandon K.; Smidt, Joseph

    2018-01-01

    Water is required for the rise of life as we know it throughout the universe, but its origin and the circumstances of its first appearance remain a mystery. The abundance of deuterated water in solar system bodies cannot be explained if all the water in the solar system were created in the protoplanetary disk (Cleeves et al. 2014), suggesting that as much of half of Earth’s water predates the Sun. Water has been observed as early as one sixth the current universe’s age in MG J0414+0534 (Imprellizzeri et al. 2008). It was recently shown that water could, in principle, appear in hot halos barely enriched with heavy elements such as oxygen and carbon (Bialy et al. 2015). So far, no self-consistent calculation of cosmology physics carried out in line with a large chemical reaction network has been carried out to study the first sites of water formation in the universe. We present initial results the first such series of cosmological calculations with a 26 species low metallicity molecular chemical reaction network with Enzo (Bryan et al. 2014) to understand the role of hydrodynamics and radiative feedback on molecule formation in the early universe and to shed light on the cosmological history of this life-giving substance.

  3. Social anxiety and negative early life events in university students.

    PubMed

    Binelli, Cynthia; Ortiz, Ana; Muñiz, Armando; Gelabert, Estel; Ferraz, Liliana; S Filho, Alaor; Crippa, José Alexandre S; Nardi, Antonio E; Subirà, Susana; Martín-Santos, Rocío

    2012-06-01

    There is substantial evidence regarding the impact of negative life events during childhood on the aetiology of psychiatric disorders. We examined the association between negative early life events and social anxiety in a sample of 571 Spanish University students. In a cross-sectional survey conducted in 2007, we collected data through a semistructured questionnaire of sociodemographic variables, personal and family psychiatric history, and substance abuse. We assessed the five early negative life events: (i) the loss of someone close, (ii) emotional abuse, (iii) physical abuse, (iv) family violence, and (v) sexual abuse. All participants completed the Liebowitz Social Anxiety Scale. Mean (SD) age was 21 (4.5), 75% female, LSAS score was 40 (DP = 22), 14.2% had a psychiatric family history and 50.6% had negative life events during childhood. Linear regression analyses, after controlling for age, gender, and family psychiatric history, showed a positive association between family violence and social score (p = 0.03). None of the remaining stressors produced a significant increase in LSAS score (p > 0.05). University students with high levels of social anxiety presented higher prevalence of negative early life events. Thus, childhood family violence could be a risk factor for social anxiety in such a population.

  4. The Origin of Dust in the Early Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2011-01-01

    In this talk I will describe the origin of dust in the early universe. I will be presenting observations of the spectral energy distribution of the galaxy J1148+5251, and present estimates of the dust mass in this high redshift (z=6.4) object. I will then discuss the origin of this dust, and the role of SN and AGB stars as dust sources, and the effect of SNRs on the destruction of dust in the interstellar medium of this galaxy.

  5. The Origin of Dust in the Early Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2010-01-01

    In this talk I will describe the origin of dust in the early universe. I will be presenting observations of the spectral energy distribution of the galaxy J1148+5251, and present estimates of the dust mass in this high redshift (z=6.4) object. I will then discuss the origin of this dust, and the role of SN and AGB stars as dust sources, and the effect of SNRs on the destruction of dust in the interstellar medium of this galaxy.

  6. A Balancing Act: Facilitating a University Education Induction Programme for (Early Career) Academics

    ERIC Educational Resources Information Center

    Reddy, Sarasvathie; Searle, Ruth L.; Shawa, Lester B.; Teferra, Damtew

    2016-01-01

    This article examines the University Education Induction Programme (UEIP), an academic development programme, delivered at the University of KwaZulu-Natal, South Africa. The authors, who developed and now facilitate the UEIP, deliver the programme to early career academics and senior academics as per a senate-mandated requirement. Drawing on…

  7. Observing the Cosmic Microwave Background Radiation: A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics,of the early universe. Within the framework of inflationary dark matter models observations of the anisotropy on sub-degree angular scales will reveal the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approx. 1100. The validity of inflationary models will be tested and, if agreement is found, accurate values for most of the key cosmological parameters will result. If disagreement is found, we will need to rethink our basic ideas about the physics of the early universe. I will present an overview of the physical processes at work in forming the anisotropy and discuss what we have already learned from current observations. I will conclude with a brief overview of the recently launched Microwave Anisotropy Probe (MAP) mission which will observe the anisotropy over the full sky with 0.21 degree angular resolution. At the time of this meeting, MAP will have just arrived at the L2 Lagrange point, marking the start of its observing campaign. The MAP hardware is being produced by Goddard in partnership with Princeton University.

  8. Outcomes for Students on a Fast Track to College: Early College Entrance Programs at the University of Washington

    ERIC Educational Resources Information Center

    Hertzog, Nancy B.; Chung, Rachel U.

    2015-01-01

    Radical acceleration from middle school to university is an unusual option in the United States. The Early Entrance Program and the University of Washington (UW) Academy for Young Scholars housed in the Halbert and Nancy Robinson Center for Young Scholars are two of only 21 early university entrance programs offered in the United States. Due to…

  9. ALICE in the early Universe wonderland

    NASA Astrophysics Data System (ADS)

    Di Nezza, Pasquale

    2012-03-01

    In these years the Large Hadron Collider (LHC) at CERN is probing, for the first time, physics at energy scales more than an order of magnitude beyond that of the Standard Model. These experiments explore an energy regime of particle physics where phenomena, such as supersymmetry and Grand Unified Theories, may become relevant. Certainly, the LHC should shed light on the mechanism of electroweak symmetry breaking and may discover the first fundamental scalar particle seen in nature. The collisions of heavy ions (Pb - Pb) will create the same "soup" the early Universe had at the epoch of 10-5 seconds. In general, there is a strong and growing interplay between particle physics and cosmology, in particular in the possible production of mini black holes and dark matter candidates like the lightest neutralino in the MSSM.

  10. The Transient High Energy Sky and Early Universe Surveyor (THESEUS)

    NASA Astrophysics Data System (ADS)

    Amati, Lorenzo; O'Brien, Paul T.; Götz, Diego

    2016-07-01

    The Transient High Energy Sky and Early Universe Surveyor (THESEUS) is a mission concept under development by a large international collaboration aimed at exploiting gamma-ray bursts for investigating the early Universe. The main scientific objectives of THESEUS include: investigating the star formation rate and metallicity evolution of the ISM and IGM up to redshift 9-10, detecting the first generation (pop III) of stars, studying the sources and physics of re-ionization, detecting the faint end of galaxies luminosity function. These goals will be achieved through a unique combination of instruments allowing GRB detection and arcmin localization over a broad FOV (more than 1sr) and an energy band extending from several MeVs down to 0.3 keV with unprecedented sensitivity, as well as on-board prompt (few minutes) follow-up with a 0.6m class IR telescope with both imaging and spectroscopic capabilities. Such instrumentation will also allow THESEUS to unveil and study the population of soft and sub-energetic GRBs, and, more in general, to perform monitoring and survey of the X-ray sky with unprecedented sensitivity.

  11. Phase Transitions in the Early Universe: The Cosmology of Non-Minimal Scalar Sectors

    NASA Astrophysics Data System (ADS)

    Kost, Jeffrey D.

    Light scalar fields such as axions and string moduli can play an important role in early-universe cosmology. However, many factors can significantly impact their late-time cosmological abundances. For example, in cases where the potentials for these fields are generated dynamically--such as during cosmological mass-generating phase transitions--the duration of the time interval required for these potentials to fully develop can have significant repercussions. Likewise, in scenarios with multiple scalars, mixing amongst the fields can also give rise to an effective timescale that modifies the resulting late-time abundances. Previous studies have focused on the effects of either the first or the second timescale in isolation. In this thesis, by contrast, we examine the new features that arise from the interplay between these two timescales when both mixing and time-dependent phase transitions are introduced together. First, we find that the effects of these timescales can conspire to alter not only the total late-time abundance of the system--often by many orders of magnitude--but also its distribution across the different fields. Second, we find that these effects can produce large parametric resonances which render the energy densities of the fields highly sensitive to the degree of mixing as well as the duration of the time interval over which the phase transition unfolds. Finally, we find that these effects can even give rise to a "re-overdamping" phenomenon which causes the total energy density of the system to behave in novel ways that differ from those exhibited by pure dark matter or vacuum energy. All of these features therefore give rise to new possibilities for early-universe phenomenology and cosmological evolution. They also highlight the importance of taking into account the time dependence associated with phase transitions in cosmological settings. In the second part of this thesis, we proceed to study the early-universe cosmology of a Kaluza-Klein (KK

  12. A Case Study of the Development of an Early Retirement Program for University Faculty.

    ERIC Educational Resources Information Center

    Chronister, Jay L.; Trainer, Aileen

    1985-01-01

    To offset declining enrollments, financial constraints, younger faculties, and high tenure ratios, some institutions are considering early retirement programs to facilitate faculty turnover. A University of Virginia faculty committee reviewed several early retirement options and selected a cost-effective bridging program with ample incentives and…

  13. The Cosmic Microwave Background Radiation - A Unique Window on the Early Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2009-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of approx. 1100. Data from the first five years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time.

  14. A Glimpse of the Very Early Universal Web

    NASA Astrophysics Data System (ADS)

    2001-05-01

    The VLT Maps Extremely Distant Galaxies Summary New, trailblazing observations with the ESO Very Large Telescope (VLT) at Paranal lend strong support to current computer models of the early universe: It is "spongy", with galaxies forming along filaments, like droplets along the strands of a spiders web. A group of astronomers at ESO and in Denmark [1] determined the distances to some very faint galaxies in the neighbourhood of a distant quasar. Plotting their positions in a three-dimensional map, they found that these objects are located within a narrow "filament", exactly as predicted by the present theories for the development of the first structures in the young universe . The objects are most likely "building blocks" from which galaxies and clusters of galaxies assemble. This observation shows a very useful way forward for the study of the early evolution of the universe and the emergence of structures soon after the Big Bang. At the same time, it provides yet another proof of the great power of the new class of giant optical telescopes for cosmological studies. PR Photo 19a/01 : Web-like structures in the young Universe (computer model). PR Photo 19b/01 : A group of objects at redshift 3.04 . PR Photo 19c/01 : Animated view of sky field and distant filament . PR Photo 19d/01 : The shape of the filament . PR Photo 19e/01 : Artist's impression of the very distant filament. PR Video Clip 04/01 : Video animation of the very distant filament. The computers are ahead of the telescopes For the past two decades cosmologists have been in the somewhat odd situation that their computers were "ahead" of their telescopes. The rapid evolution of powerful computer hardware and sophisticated software has provided theorists with the ability to build almost any sort of virtual universe they can imagine. Starting with different initial conditions just after the Big Bang, they can watch such fictional worlds evolve over billions of years in their supercomputers - and do so in a

  15. Star Formation-Driven Winds in the Early Universe

    NASA Astrophysics Data System (ADS)

    Peek, Matthew; Lundgren, Britt; Brammer, Gabriel

    2018-01-01

    Measuring the extent of star formation-driven winds from galaxies in the early universe is crucial for understanding of how galaxies evolve over cosmic time. Using WFC3/IR grism data from the Hubble Space Telescope (HST), we have measured the star formation rates and star formation rate surface densities of several hundred galaxies at redshift (z) = 1, when the universe was roughly half its present age. The galaxies we examine are also probed by background quasars, whose spectra provide information about the extent of metal-enriched gas in their halos. We use a computational pipeline to measure the density of the star formation in each galaxy and correlate these measurements with detections of Mg II absorption in nearby quasar spectra from the Sloan Digital Sky Survey. Our preliminary results support a model in which galaxies with high SFR surface densities drive metal-enriched gas out of the disk and into these galaxies’ extended halos, where that gas is detected in the spectra of more distant quasars.

  16. James Gregory, the University observatory and the early acquisition of scientific instruments at the University of St Andrews

    PubMed Central

    Rawson, Helen C.

    2015-01-01

    James Gregory, inventor of the reflecting telescope and Fellow of the Royal Society, was the first Regius Professor of Mathematics of the University of St Andrews, 1668–74. He attempted to establish in St Andrews what would, if completed, have been the first purpose-built observatory in the British Isles. He travelled to London in 1673 to purchase instruments for equipping the observatory and improving the teaching and study of natural philosophy and mathematics in the university, seeking the advice of John Flamsteed, later the first Astronomer Royal. This paper considers the observatory initiative and the early acquisition of instruments at the University of St Andrews, with reference to Gregory's correspondence, inventories made ca. 1699–ca. 1718 and extant instruments themselves, some of which predate Gregory's time. It examines the structure and fate of the university observatory, the legacy of Gregory's teaching and endeavours, and the meridian line laid down in 1748 in the University Library.

  17. The Reluctant Academic: Early-Career Academics in a Teaching-Orientated University

    ERIC Educational Resources Information Center

    Gale, Helen

    2011-01-01

    This paper is based on research into academic identities amongst early-career academics in a UK post-1992, teaching-orientated university. Literature around academic identity suggests five major academic roles: teaching, research, management, writing and networking. However, this appears to be a picture of an established mid-career academic in a…

  18. Universal Design for Learning: Cognitive Theory into Practice for Facilitating Comprehension in Early Literacy

    ERIC Educational Resources Information Center

    Brand, Susan Trostle; Dalton, Elizabeth M.

    2012-01-01

    Addressing the unique needs of children of all ages and abilities, Universal Design for Learning (UDL) is gaining momentum in schools and preschools around the nation and the globe. This article explores Universal Design for Learning and its promising applications to a variety of reading and language arts experiences in the Early Childhood…

  19. The Early Astronomy Toolkit was Universal

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.

    2018-01-01

    From historical, anthropological, and archaeological records, we can reconstruct the general properties of the earliest astronomy for many cultures worldwide, and they all share many similar characteristics. The 'Early Astronomy Toolkit' (EAT) has the Earth being flat, and the heavens as a dome overhead populated by gods/heroes that rule Nature. The skies provided omens in a wide variety of manners, with eclipses, comets, and meteors always being evil and bad. Constellations were ubiquitous pictures of gods, heroes, animals, and everyday items; all for story telling. The calendars were all luni-solar, with no year counts and months only named by seasonal cues (including solstice observations and heliacal risings) with vague intercalation. Time of day came only from the sun's altitude/azimuth, while time at night came from star risings. Graves are oriented astronomically, and each culture has deep traditions of quartering the horizon. The most complicated astronomical tools were just a few sticks and stones. This is a higher level description and summary of the astronomy of all ancient cultures.This basic EAT was universal up until the Greeks, Mesopotamians, and Chinese broke out around 500 BC and afterwards. Outside the Eurasian milieu, with few exceptions (for example, planetary position measures in Mexico), this EAT represents astronomy for the rest of the world up until around 1600 AD. The EAT is present in these many cultures with virtually no variations or extensions. This universality must arise either from multiple independent inventions or by migration/diffusion. The probability of any culture independently inventing all 19 items in the EAT is low, but any such calculation has all the usual problems. Still, we realize that it is virtually impossible for many cultures to independently develop all 19 items in the EAT, so there must be a substantial fraction of migration of the early astronomical concepts. Further, the utter lack, as far as I know, of any

  20. Fluctuation-driven electroweak phase transition. [in early universe

    NASA Technical Reports Server (NTRS)

    Gleiser, Marcelo; Kolb, Edward W.

    1992-01-01

    We examine the dynamics of the electroweak phase transition in the early Universe. For Higgs masses in the range 46 less than or = M sub H less than or = 150 GeV and top quark masses less than 200 GeV, regions of symmetric and asymmetric vacuum coexist to below the critical temperature, with thermal equilibrium between the two phases maintained by fluctuations of both phases. We propose that the transition to the asymmetric vacuum is completed by percolation of these subcritical fluctuations. Our results are relevant to scenarios of baryogenesis that invoke a weakly first-order phase transition at the electroweak scale.

  1. Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis.

    PubMed

    Wang, Changhe; Wang, Yeshi; Hu, Meiqin; Chai, Zuying; Wu, Qihui; Huang, Rong; Han, Weiping; Zhang, Claire Xi; Zhou, Zhuan

    2016-01-01

    Precise and efficient endocytosis is essential for vesicle recycling during a sustained neurotransmission. The regulation of endocytosis has been extensively studied, but inhibitors have rarely been found. Here, we show that synaptotagmin-11 (Syt11), a non-Ca(2+)-binding Syt implicated in schizophrenia and Parkinson's disease, inhibits clathrin-mediated endocytosis (CME) and bulk endocytosis in dorsal root ganglion neurons. The frequency of both types of endocytic event increases in Syt11 knockdown neurons, while the sizes of endocytosed vesicles and the kinetics of individual bulk endocytotic events remain unaffected. Specifically, clathrin-coated pits and bulk endocytosis-like structures increase on the plasma membrane in Syt11-knockdown neurons. Structural-functional analysis reveals distinct domain requirements for Syt11 function in CME and bulk endocytosis. Importantly, Syt11 also inhibits endocytosis in hippocampal neurons, implying a general role of Syt11 in neurons. Taken together, we propose that Syt11 functions to ensure precision in vesicle retrieval, mainly by limiting the sites of membrane invagination at the early stage of endocytosis. © 2015 The Authors.

  2. Relaxation of the bulk modulus in partially molten dunite?

    NASA Astrophysics Data System (ADS)

    Cline, C. J.; Jackson, I.

    2016-11-01

    To address the possibility of melt-related bulk modulus relaxation, a forced oscillation experiment was conducted at seismic frequencies on a partially molten synthetic dunite specimen (melt fraction = 0.026) utilizing the enhanced capacity of the Australian National University attenuation apparatus to operate in both torsional and flexural oscillation modes. Shear modulus and dissipation data are consistent with those for melt-bearing olivine specimens previously tested in torsion, with a pronounced dissipation peak superimposed on high-temperature background. Flexural data exhibit a monotonic decrease in complex Young's modulus with increasing temperature under transsolidus temperatures. The observed variation of Young's modulus is well described by the relationship 1/E 1/3G, without requiring relaxation of the bulk modulus. At high homologous temperatures, when shear modulus is low, extensional and flexural oscillation measurements have little resolution of bulk modulus, and thus, only pressure oscillation measurements can definitively constrain bulk properties at these conditions.

  3. Phonological universals in early childhood: Evidence from sonority restrictions

    PubMed Central

    Berent, Iris; Harder, Katherine; Lennertz, Tracy

    2012-01-01

    Across languages, onsets with large sonority distances are preferred to those with smaller distances (e.g., bw>bd>lb; Greenberg, 1978). Optimality theory (Prince & Smolensky, 2004) attributes such facts to grammatical restrictions that are universally active in all grammars. To test this hypothesis, here, we examine whether children extend putatively universal sonority restrictions to onsets unattested in their language. Participants (M=4;04 years) were presented with pairs of auditory words—either identical (e.g., lbif→lbif) or epenthetically related (e.g., lbif→lebif)—and asked to judge their identity. Results showed that, like adults, children’s ability to detect epenthetic distortions was monotonically related to sonority distance (bw>bd>lb), and their performance was inexplicable by several statistical and phonetic factors. These findings suggest that sonority restrictions are active in early childhood and their scope is broad. PMID:22328807

  4. Gravitational Wave Astronomy Using Pulsars: Massive Black Hole Mergers and the Early Universe

    DTIC Science & Technology

    2010-01-01

    Gravitational Wave Astronomy Using Pulsars : Massive Black Hole Mergers & the Early Universe A White Paper for the Astronomy & Astrophysics Decadal...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Gravitational Wave Astronomy Using Pulsars : Massive Black Hole Mergers & the Early...theory of general relativity. Using a collection of millisecond pulsars as high-precision clocks, the nHz band of this radiation is likely to be detected

  5. What the Most Metal-poor Stars Tell Us About the Early Universe

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2008-05-01

    The chemical evolution of the Galaxy and the early Universe is a key topic in modern astrophysics. The most metal-poor Galactic halo stars are now frequently used in an attempt to reconstruct the onset of the chemical and dynamical formation processes of the Galaxy. These stars are an easily-accessible local equivalent of the high-redshift Universe, and can thus be used to carry out field-field cosmology. The discovery of two astrophysically very important metal-poor objects has recently lead to a significant advance in the field. One object is the most iron-poor star yet found (with [Fe/H]=-5.4). The other stars displays the strongest known overabundances of heavy neutron-capture elements, such as uranium, and nucleo-chronometry yields a stellar age of 13 Gyr. Both stars already serve as benchmark objects for various theoretical studies with regard to nucleosynthesis processes in the early Galaxy. I will discuss how the abundance patterns of these and other metal-poor stars solidify and advance our understanding of the early Universe, and provide constraints on the nature of the first stars, as well as their explosion mechanisms and corresponding supernova nucleosynthesis yields. Large samples of these old objects are also employed to test theoretical predictions about the formation of the very first low-mass stars. In the near future, the combined power of near-field cosmology results with those of the next-generation facilities (e.g., MWA, JWST, GMT) may yield exceptional details about the formation processes of the first generations of stars and galaxies.

  6. Color-Matching and Blending-Effect of Universal Shade Bulk-Fill-Resin-Composite in Resin-Composite-Models and Natural Teeth.

    PubMed

    Abdelraouf, Rasha M; Habib, Nour A

    2016-01-01

    Objectives . To assess visually color-matching and blending-effect (BE) of a universal shade bulk-fill-resin-composite placed in resin-composite-models with different shades and cavity sizes and in natural teeth (extracted and patients' teeth). Materials and Methods . Resin-composite-discs (10 mm × 1 mm) were prepared of universal shade composite and resin-composite of shades: A1, A2, A3, A3.5, and A4. Spectrophotometric-color-measurement was performed to calculate color-difference (Δ E ) between the universal shade and shaded-resin-composites discs and determine their translucency-parameter (TP). Visual assessment was performed by seven normal-color-vision-observers to determine the color-matching between the universal shade and each shade, under Illuminant D65. Color-matching visual scoring (VS) values were expressed numerically (1-5): 1: mismatch/totally unacceptable, 2: Poor-Match/hardly acceptable, 3: Good-Match/acceptable, 4: Close-Match/small-difference, and 5: Exact-Match/no-color-difference. Occlusal cavities of different sizes were prepared in teeth-like resin-composite-models with shades A1, A2, A3, A3.5, and A4. The cavities were filled by the universal shade composite. The same scale was used to score color-matching between the fillings and composite-models. BE was calculated as difference in mean-visual-scores in models and that of discs. Extracted teeth with two different class I-cavity sizes as well as ten patients' lower posterior molars with occlusal caries were prepared, filled by universal shade composite, and assessed similarly. Results . In models, the universal shade composite showed close matching in the different cavity sizes and surrounding shades (4 ≤ VS < 5) (BE = 0.6-2.9 in small cavities and 0.5-2.8 in large cavities). In extracted teeth, there was good-to-close color-matching (VS = 3.7-4.4 in small cavities, BE = 2.5-3.2) (VS = 3-3.5, BE = 1.8-2.3 in large cavities). In patients' molars, the universal shade composite showed

  7. Matter-antimatter separation in the early universe by rotating black holes

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.

    1981-01-01

    Consideration of the effect of rotating black holes evaporating early in the universe shows that they would have produced oppositely directed neutrino and antineutrino currents, which push matter and antimatter apart. This separation mechanism is, however, too feeble to account for a present baryon-to-photon ratio of 10 to the -9th, and has no significant observational consequences.

  8. Elementary particles in the early Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromov, N.A., E-mail: gromov@dm.komisc.ru

    The high-temperature limit of the Standard Model generated by the contractions of gauge groups is discussed. Contraction parameters of gauge group SU(2) of the Electroweak Model and gauge group SU(3) of Quantum Chromodynamics are taken identical and tending to zero when the temperature increases. Properties of the elementary particles change drastically at the infinite temperature limit: all particles lose masses, all quarks are monochromatic. Electroweak interactions become long-range and are mediated by neutral currents. Particles of different kind do not interact. It looks like some stratification with only one sort of particles in each stratum. The Standard Model passes inmore » this limit through several stages, which are distinguished by the powers of the contraction parameter. For any stage intermediate models are constructed and the exact expressions for the respective Lagrangians are presented. The developed approach describes the evolution of the Standard Model in the early Universe from the Big Bang up to the end of several nanoseconds.« less

  9. Role of phase instabilities in the early response of bulk fused silica during laser-induced breakdown

    NASA Astrophysics Data System (ADS)

    Demange, P.; Negres, R. A.; Raman, R. N.; Colvin, J. D.; Demos, S. G.

    2011-08-01

    We report on the experimental and hydrocode modeling investigation of the early material response to localized energy deposition via nanosecond laser pulses in bulk fused silica. A time-resolved microscope system was used to acquire transient images with adequate spatial and temporal resolution to resolve the material behavior from the onset of the process. These images revealed a high-pressure shock front propagating at twice the speed of sound at ambient conditions and bounding a region of modified material at delays up to one nanosecond. Hydrocode simulations matching the experimental conditions were also performed and indicated initial pressures of ˜40 GPa and temperatures of ˜1 eV at the absorption region. Both the simulations and the image data show a clear boundary between distinct material phases, a hot plasma and solid silica, with a suggestion that growth of perturbations at the Rayleigh-Taylor unstable interface between the two phases is the seed mechanism for the growth of cracks into the stressed solid.

  10. Developing Peer Mentoring Support for TAFE Students Entering 1st-Year University Early Childhood Studies

    ERIC Educational Resources Information Center

    Heirdsfield, Ann; Walker, Sue; Walsh, Kerryann

    2005-01-01

    At Queensland University of Technology (QUT, Australia), in the Bachelor of Education (BEd) (Early Childhood) (EC), Technical and Further Education (TAFE) students with a diploma enroll with advanced standing (1 year's credit). These students share many challenges faced by 1st-year university students--workload, technology, academic orientation,…

  11. The early universe as a probe of new physics

    NASA Astrophysics Data System (ADS)

    Bird, Christopher Shane

    The Standard Model of Particle Physics has been verified to unprecedented precision in the last few decades. However there are still phenomena in nature which cannot be explained, and as such new theories will be required. Since terrestrial experiments are limited in both the energy and precision that can be probed, new methods are required to search for signs of physics beyond the Standard Model. In this dissertation, I demonstrate how these theories can be probed by searching for remnants of their effects in the early Universe. In particular I focus on three possible extensions of the Standard Model: the addition of massive neutral particles as dark matter, the addition of charged massive particles, and the existence of higher dimensions. For each new model, I review the existing experimental bounds and the potential for discovering new physics in the next generation of experiments. For dark matter, I introduce six simple models which I have developed, and which involve a minimum amount of new physics, as well as reviewing one existing model of dark matter. For each model I calculate the latest constraints from astrophysics experiments, nuclear recoil experiments, and collider experiments. I also provide motivations for studying sub-GeV mass dark matter, and propose the possibility of searching for light WIMPs in the decay of B-mesons and other heavy particles. For charged massive relics, I introduce and review the recently proposed model of catalyzed Big Bang nucleosynthesis. In particular I review the production of 6Li by this mechanism, and calculate the abundance of 7Li after destruction of 7Be by charged relics. The result is that for certain natural relics CBBN is capable of removing tensions between the predicted and observed 6Li and 7Li abundances which are present in the standard model of BBN. For extra dimensions, I review the constraints on the ADD model from both astrophysics and collider experiments. I then calculate the constraints on this model

  12. The Transient High-Energy Sky and Early Universe Surveyor (THESEUS)

    NASA Astrophysics Data System (ADS)

    Amati, L.; O'Brien, P.; Goetz, D.; Tenzer, C.; Bozzo, E.

    2017-10-01

    The Transient High Energy Sky and Early Universe Surveyor (THESEUS) is a mission concept developed by a large international collaboration aimed at exploiting Gamma-Ray Bursts for investigating the early Universe. The main scientic objectives of THESEUS, currently under evaluation by ESA within the selection process for next M5 mission, include: investigating the star formation rate and metallicity evolution of the ISM and IGM up to redshift 10, detecting the first generation (pop III) of stars, studying the sources and physics of re-ionization, detecting the faint end of galaxies luminosity function. These goals will be achieved through a unique combination of instruments allowing GRB detection and arcmin localization over a broad FOV (more than 1sr) and an energy band extending from several MeVs down to 0.3 keV with unprecedented sensitivity, as well as on-board prompt (few minutes) follow-up with a 0.7m class IR telescope with both imaging and spectroscopic capabilities. Such instrumentation will also allow THESEUS to perform a monitoring of the X-ray sky with unprecedented sensitivity, which will provide a perfect service and sinergy to next generation multi-wavalength (e.g., E-ELT, SKA, CTA, ATHENA) and multi-messenger (aLIGO, aVIRGO, eLISA, ET, neutrino detectors, ...) facilities.

  13. Lyman-α Emission from an Infant Black Hole in the Early Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiggins, Brandon Kerry; Smidt, Joseph Michael; Johnson, Jarrett L.

    The COSMOS survey recently discovered an exotic young galaxy, COSMOS Redshift 7 (CR7), in the early universe (1 billion years after the Big Bang), which is devoid of evidence of elements heavier than hydrogen and helium. Whereas some believe this might be the first galaxy discovered with stars made only from these elements, others think CR7 may be powered by a newborn supermassive black hole. In this paper, we summarize for a general academic audience our efforts to model the creation of this galaxy through cosmological simulations. These state-of-the-art calculations include primordial chemistry and cooling and the interaction of x-raysmore » from the black hole with surrounding gas. We simulate the process of light escaping this object with Monte Carlo Lyman-α transfer and compare our calculations with observations of CR7. Our work demonstrates the viability of the black hole interpretation for this intriguing object in the early universe.« less

  14. Vacuum stability in the early universe and the backreaction of classical gravity

    NASA Astrophysics Data System (ADS)

    Markkanen, Tommi

    2018-01-01

    In the case of a metastable electroweak vacuum, the quantum corrected effective potential plays a crucial role in the potential instability of the standard model. In the early universe, in particular during inflation and reheating, this instability can be triggered leading to catastrophic vacuum decay. We discuss how the large space-time curvature of the early universe can be incorporated in the calculation and in many cases significantly modify the flat space prediction. The two key new elements are the unavoidable generation of the non-minimal coupling between the Higgs field and the scalar curvature of gravity and a curvature induced contribution to the running of the constants. For the minimal set up of the standard model and a decoupled inflation sector we show how a metastable vacuum can lead to very tight bounds for the non-minimal coupling. We also discuss a novel and very much related dark matter generation mechanism. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  15. Lyman-α Emission from an Infant Black Hole in the Early Universe

    DOE PAGES

    Wiggins, Brandon Kerry; Smidt, Joseph Michael; Johnson, Jarrett L.

    2016-01-01

    The COSMOS survey recently discovered an exotic young galaxy, COSMOS Redshift 7 (CR7), in the early universe (1 billion years after the Big Bang), which is devoid of evidence of elements heavier than hydrogen and helium. Whereas some believe this might be the first galaxy discovered with stars made only from these elements, others think CR7 may be powered by a newborn supermassive black hole. In this paper, we summarize for a general academic audience our efforts to model the creation of this galaxy through cosmological simulations. These state-of-the-art calculations include primordial chemistry and cooling and the interaction of x-raysmore » from the black hole with surrounding gas. We simulate the process of light escaping this object with Monte Carlo Lyman-α transfer and compare our calculations with observations of CR7. Our work demonstrates the viability of the black hole interpretation for this intriguing object in the early universe.« less

  16. [Comparison of wear resistance and flexural strength of three kinds of bulk-fill composite resins].

    PubMed

    Zhang, Huan; Zhang, Meng-Long; Qiu, Li-Hong; Yu, Jing-Tao; Zhan, Fu-Liang

    2016-06-01

    To compare the abrasion resistance and flexure strength of three bulk-fill resin composites with an universal nano-hybrid composite resins. The specimens were prepared with three kinds of bulk fill composites (SDR , sonicfill, Tetric N-Ceram Bulk Fill) and an universal nano-hybrid composite resins(Herculite Precis). 10 mm in diameter × 2mm in height specimens were prepared for abrasion resistance, while 2 mm in width × 2 mm in depth×25 mm in length specimens were prepared for flexure strength. The specimens were mounted in a bal1-on-disc wear testing machine and abraded with the media artificial saliva(50 N loads, 10000 cycles).Flexural test was performed with an Universal Testing Machine at a cross-head speed of 1mm/min. One-way variance analysis was used to determine the statistical differences of volume loss and flexural strength among groups with SPSS 13.0 software package(P<0.05). The volume loss was as follows: SDR (1.2433±0.11) mm3Bulk Fill(0.3558±0.05) mm3 Bulk Fill (119.2082±20.32) MPa< SDR(103.6246±7.13) MPa. There was no significant difference between Tetric N-Ceram Bulk Fill and Herculite Precis either in volume loss or flexural strength(P>0.05). With regard to wear resistance and flexural strength, Tetric N-Ceram Bulk Fill is recommended as an alternative for posterior restorations.

  17. A Pathway to Enhancing Professionalism: Building a Bridge between TAFE and University Early Childhood Qualifications

    ERIC Educational Resources Information Center

    Whitington, Victoria; Ebbeck, Marjory; Diamond, Alexandra; Yim, Hoi Yin Bonnie

    2009-01-01

    It has been argued that a key strategy to improve developmental and educational outcomes for young children is to increase the number of childcare staff with early childhood university degrees (Saracho & Spodek, 2007). In order to upgrade the qualifications of staff, a number of Australian universities provide pathways that enable graduates of…

  18. Preparedness to Teach: Experiences of the University of Ibadan Early Career Academics

    ERIC Educational Resources Information Center

    Udegbe, I. Bola

    2016-01-01

    This research examined the experiences of early career academics (ECAs) in terms of their preparedness to teach. Using a survey design involving 104 ECAs in a large Nigeria university, quantitative and qualitative data were obtained to address the research questions raised. Findings showed that (1) prior experience and training impacted on…

  19. Universal biology and the statistical mechanics of early life.

    PubMed

    Goldenfeld, Nigel; Biancalani, Tommaso; Jafarpour, Farshid

    2017-12-28

    All known life on the Earth exhibits at least two non-trivial common features: the canonical genetic code and biological homochirality, both of which emerged prior to the Last Universal Common Ancestor state. This article describes recent efforts to provide a narrative of this epoch using tools from statistical mechanics. During the emergence of self-replicating life far from equilibrium in a period of chemical evolution, minimal models of autocatalysis show that homochirality would have necessarily co-evolved along with the efficiency of early-life self-replicators. Dynamical system models of the evolution of the genetic code must explain its universality and its highly refined error-minimization properties. These have both been accounted for in a scenario where life arose from a collective, networked phase where there was no notion of species and perhaps even individuality itself. We show how this phase ultimately terminated during an event sometimes known as the Darwinian transition, leading to the present epoch of tree-like vertical descent of organismal lineages. These examples illustrate concrete examples of universal biology: the quest for a fundamental understanding of the basic properties of living systems, independent of precise instantiation in chemistry or other media.This article is part of the themed issue 'Reconceptualizing the origins of life'. © 2017 The Author(s).

  20. Universal biology and the statistical mechanics of early life

    NASA Astrophysics Data System (ADS)

    Goldenfeld, Nigel; Biancalani, Tommaso; Jafarpour, Farshid

    2017-11-01

    All known life on the Earth exhibits at least two non-trivial common features: the canonical genetic code and biological homochirality, both of which emerged prior to the Last Universal Common Ancestor state. This article describes recent efforts to provide a narrative of this epoch using tools from statistical mechanics. During the emergence of self-replicating life far from equilibrium in a period of chemical evolution, minimal models of autocatalysis show that homochirality would have necessarily co-evolved along with the efficiency of early-life self-replicators. Dynamical system models of the evolution of the genetic code must explain its universality and its highly refined error-minimization properties. These have both been accounted for in a scenario where life arose from a collective, networked phase where there was no notion of species and perhaps even individuality itself. We show how this phase ultimately terminated during an event sometimes known as the Darwinian transition, leading to the present epoch of tree-like vertical descent of organismal lineages. These examples illustrate concrete examples of universal biology: the quest for a fundamental understanding of the basic properties of living systems, independent of precise instantiation in chemistry or other media. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  1. From Early Aspirations to Actual Attainment: The Effects of Economic Status and Educational Expectations on University Pursuit

    ERIC Educational Resources Information Center

    Wu, Ching-Ling; Bai, Haiyan

    2015-01-01

    This study investigated the effects of economic status and the educational expectations of significant others on early university aspirations and actual university attainment. The study analyzed two-wave longitudinal data collected from 1,595 Taiwanese students in their 9th grade in middle school and in their freshman year at universities. The…

  2. Blast from the Past Gives Clues About Early Universe

    NASA Astrophysics Data System (ADS)

    2009-10-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have gained tantalizing insights into the nature of the most distant object ever observed in the Universe -- a gigantic stellar explosion known as a Gamma Ray Burst (GRB). The explosion was detected on April 23 by NASA's Swift satellite, and scientists soon realized that it was more than 13 billion light-years from Earth. It represents an event that occurred 630 million years after the Big Bang, when the Universe was only four percent of its current age of 13.7 billion years. This explosion provides an unprecedented look at an era when the Universe was very young and also was undergoing drastic changes. The primal cosmic darkness was being pierced by the light of the first stars and the first galaxies were beginning to form. The star that exploded in this event was a member of one of these earliest generations of stars," said Dale Frail of the National Radio Astronomy Observatory. Astronomers turned telescopes from around the world to study the blast, dubbed GRB 090423. The VLA first looked for the object the day after the discovery, detected the first radio waves from the blast a week later, then recorded changes in the object until it faded from view more than two months later. "It's important to study these explosions with many kinds of telescopes. Our research team combined data from the VLA with data from X-ray and infrared telescopes to piece together some of the physical conditions of the blast," said Derek Fox of Pennsylvania State University. "The result is a unique look into the very early Universe that we couldn't have gotten any other way," he added. The scientists concluded that the explosion was more energetic than most GRBs, was a nearly-spherical blast, and that it expanded into a tenuous and relatively uniform gaseous medium surrounding the star. Astronomers suspect that the very first stars in the Universe were very different -- brighter, hotter, and more

  3. Evolution of domain walls in the early universe. Ph.D. Thesis - Chicago Univ.

    NASA Technical Reports Server (NTRS)

    Kawano, Lawrence

    1989-01-01

    The evolution of domain walls in the early universe is studied via 2-D computer simulation. The walls are initially configured on a triangular lattice and then released from the lattice, their evolution driven by wall curvature and by the universal expansion. The walls attain an average velocity of about 0.3c and their surface area per volume (as measured in comoving coordinates) goes down with a slope of -1 with respect to conformal time, regardless of whether the universe is matter or radiation dominated. The additional influence of vacuum pressure causes the energy density to fall away from this slope and steepen, thus allowing a situation in which domain walls can constitute a significant portion of the energy density of the universe without provoking an unacceptably large perturbation upon the microwave background.

  4. 17 CFR 5.23 - Notice of bulk transfers and bulk liquidations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 1 2011-04-01 2011-04-01 false Notice of bulk transfers and bulk liquidations. 5.23 Section 5.23 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION OFF-EXCHANGE FOREIGN CURRENCY TRANSACTIONS § 5.23 Notice of bulk transfers and bulk liquidations...

  5. Resonant Production of Sterile Neutrinos in the Early Universe

    NASA Astrophysics Data System (ADS)

    Gilbert, Lauren; Grohs, Evan; Fuller, George M.

    2016-06-01

    This study examines the cosmological impacts of a light resonantly produced sterile neutrino in the early universe. Such a neutrino could be produced through lepton number-driven Mikheyev-Smirnov-Wolfenstein (MSW) conversion of active neutrinos around big bang nucleosynthesis (BBN), resulting in a non-thermal spectrum of both sterile and electron neutrinos. During BBN, the neutron-proton ratio depends sensitively on the electron neutrino flux. If electron neutrinos are being converted to sterile neutrinos, this makes the n/p ratio a probe of possible new physics. We use observations of primordial Yp and D/H to place limits on this process.

  6. Quantum Kinetics and the Zeno Ansatz: Sterile Neutrino Dark Matter in the Early Universe

    NASA Astrophysics Data System (ADS)

    Dvornikov, Olexiy V.

    We solved the quantum kinetic equations for the evolution of neutrino states in the early universe. Starting at high temperatures, we evolve neutrino states to observe the resonant conversion of active-to-sterile neutrinos in a lepton asymmetric (more neutrinos than anti-neutrinos) universe. We find that at high temperatures, the high neutrino scattering and oscillation rates enforce a local equilibrium that balances the growth of coherence at the oscillation rate and the damping of coherence through scattering. This equilibrium, which we call a "quantum kinetic equilibrium," appears to approximately hold throughout the neutrino evolution, from the initial conditions through resonances that may be non adiabatic. Using this quantum kinetic equilibrium informs a proper choice of the initial conditions of the neutrino state and the relaxation process that occurs to this equilibrium when the initial conditions (as are typically chosen in the literature) are not coincident with the equilibrium values. We also discuss how to use this equilibrium to reduce the computational expense of solving the full quantum kinetic equations for neutrino states evolving in the early universe.

  7. Vacuum stability in the early universe and the backreaction of classical gravity.

    PubMed

    Markkanen, Tommi

    2018-03-06

    In the case of a metastable electroweak vacuum, the quantum corrected effective potential plays a crucial role in the potential instability of the standard model. In the early universe, in particular during inflation and reheating, this instability can be triggered leading to catastrophic vacuum decay. We discuss how the large space-time curvature of the early universe can be incorporated in the calculation and in many cases significantly modify the flat space prediction. The two key new elements are the unavoidable generation of the non-minimal coupling between the Higgs field and the scalar curvature of gravity and a curvature induced contribution to the running of the constants. For the minimal set up of the standard model and a decoupled inflation sector we show how a metastable vacuum can lead to very tight bounds for the non-minimal coupling. We also discuss a novel and very much related dark matter generation mechanism.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  8. The D-material universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elghozi, Thomas; Mavromatos, Nick E.; Sakellariadou, Mairi

    In a previous publication by some of the authors (N.E.M., M.S. and M.F.Y.), we have argued that the ''D-material universe'', that is a model of a brane world propagating in a higher-dimensional bulk populated by collections of D-particle stringy defects, provides a model for the growth of large-scale structure in the universe via the vector field in its spectrum. The latter corresponds to D-particle recoil velocity excitations as a result of the interactions of the defects with stringy matter and radiation on the brane world. In this article, we first elaborate further on the results of the previous study onmore » the galactic growth era and analyse the circumstances under which the D-particle recoil velocity fluid may ''mimic'' dark matter in galaxies. A lensing phenomenology is also presented for some samples of galaxies, which previously were known to provide tension for modified gravity (TeVeS) models. The current model is found in agreement with these lensing data. Then we discuss a cosmic evolution for the D-material universe by analysing the conditions under which the late eras of this universe associated with large-scale structure are connected to early epochs, where inflation takes place. It is shown that inflation is induced by dense populations of D-particles in the early universe, with the rôle of the inflaton field played by the condensate of the D-particle recoil-velocity fields under their interaction with relativistic stringy matter, only for sufficiently large brane tensions and low string mass scales compared to the Hubble scale. On the other hand, for large string scales, where the recoil-velocity condensate fields are weak, inflation cannot be driven by the D-particle defects alone. In such cases inflation may be driven by dilaton (or other moduli) fields in the underlying string theory.« less

  9. Re-Envisioning the Role of Universities in Early Childhood Teacher Education: Community Partnerships for 21st-Century Learning

    ERIC Educational Resources Information Center

    Kennedy, Adam S.; Heineke, Amy

    2014-01-01

    Despite contrasting views on the overlap of early childhood education and teacher education, opportunities abound for expanding the role of early childhood educators in broader teacher education discourse. University-based early childhood education and kindergarten-through-grade-12 teacher education share purposes, philosophies, and resources that…

  10. Entropy production during an isothermal phase transition in the early universe

    NASA Astrophysics Data System (ADS)

    Kaempfer, B.

    The analytical model of Lodenquai and Dixit (1983) and of Bonometto and Matarrese (1983) of an isothermal era in the early universe is extended here to arbitrary temperatures. It is found that a sufficiently large supercooling gives rise to a large entropy production which may significantly dilute the primordial monopole or baryon to entropy ratio. Whether such large supercooling can be achieved depends on the characteristics of the nucleation process.

  11. A simple model of universe describing the early inflation and the late accelerated expansion in a symmetric manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavanis, Pierre-Henri

    We construct a simple model of universe which 'unifies' vacuum energy and radiation on the one hand, and matter and dark energy on the other hand in the spirit of a generalized Chaplygin gas model. Specifically, the phases of early inflation and late accelerated expansion are described by a generalized equation of state p/c{sup 2} = αρ+kρ{sup 1+1/n} having a linear component p = αρc{sup 2} and a polytropic component p = kρ{sup 1+1/n}c{sup 2}. For α= 1/3, n= 1 and k=−4/(3ρ{sub P}), where ρ{sub P}= 5.1610{sup 99} g/m{sup 3} is the Planck density, this equation of state describes themore » transition between the vacuum energy era and the radiation era. For t≥ 0, the universe undergoes an inflationary expansion that brings it from the Planck size l{sub P}= 1.6210{sup −35} m to a size a{sub 1}= 2.6110{sup −6} m on a timescale of about 23.3 Planck times t{sub P}= 5.3910{sup −44} s (early inflation). When t > t{sub 1}= 23.3t{sub P}, the universe decelerates and enters in the radiation era. We interpret the transition from the vacuum energy era to the radiation era as a second order phase transition where the Planck constant ℏ plays the role of finite size effects (the standard Big Bang theory is recovered for ℏ= 0). For α= 0, n=−1 and k=−ρ{sub Λ}, where ρ{sub Λ}= 7.0210{sup −24} g/m{sup 3} is the cosmological density, the equation of state p/c{sup 2} = αρ+kρ{sup 1+1/n} describes the transition from a decelerating universe dominated by pressureless matter (baryonic and dark matter) to an accelerating universe dominated by dark energy (late inflation). This transition takes place at a size a{sub 2}= 0.204l{sub Λ}. corresponding to a time t{sub 2}= 0.203t{sub Λ} where l{sub Λ}= 4.38 10{sup 26} m is the cosmological length and t{sub Λ}= 1.46 10{sup 18} s the cosmological time. The present universe turns out to be just at the transition between these two periods (t{sub 0}∼t{sub 2}). Our model gives the same results as the standard

  12. Early Childhood Pre-Service Teachers' Concerns and Solutions to Overcome Them (the Case of Pamukkale University)

    ERIC Educational Resources Information Center

    Cevher-Kalburan, Nilgün

    2014-01-01

    The purpose of this qualitative study is to determine early childhood pre-service teachers' concerns and solutions. One hundred early childhood pre-service teachers who were enrolled at Pamukkale University, Turkey, answered two open-ended questions by e-mail. In addition, six of these participants were interviewed for developing a deeper…

  13. AC conductivity and dielectric behavior of bulk Furfurylidenemalononitrile

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.

    2012-06-01

    AC conductivity and dielectric behavior for bulk Furfurylidenemalononitrile have been studied over a temperature range (293-333 K) and frequency range (50-5×106 Hz). The frequency dependence of ac conductivity, σac, has been investigated by the universal power law, σac(ω)=Aωs. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms, and it was found that the correlated barrier hopping (CBH) model is the predominant conduction mechanism. The temperature dependence of σac(ω) showed a linear increase with the increase in temperature at different frequencies. The ac activation energy was determined at different frequencies. Dielectric data were analyzed using complex permittivity and complex electric modulus for bulk Furfurylidenemalononitrile at various temperatures.

  14. Hypermagnetic helicity evolution in early universe: leptogenesis and hypermagnetic diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semikoz, V.B.; Smirnov, A.Yu.; Sokoloff, D.D., E-mail: semikoz@yandex.ru, E-mail: smirnoff.alexandr@gmail.com, E-mail: sokoloff.dd@gmail.com

    2013-10-01

    We study hypermagnetic helicity and lepton asymmetry evolution in plasma of the early Universe before the electroweak phase transition (EWPT) accounting for chirality flip processes via inverse Higgs decays and sphaleron transitions which violate the left lepton number and wash out the baryon asymmetry of the Universe (BAU). In the scenario where the right electron asymmetry supports the BAU alone through the conservation law B/3−L{sub eR} = const at temperatures T > T{sub RL} ≅ 10 TeV the following universe cooling leads to the production of a non-zero left lepton (electrons and neutrinos) asymmetry. This is due to the Higgsmore » decays becoming more faster when entering the equilibrium at T = T{sub RL} with the universe expansion, Γ{sub RL} ∼ T > H ∼ T{sup 2}, resulting in the parallel evolution of both the right and the left electron asymmetries at T < T{sub RL} through the corresponding Abelian anomalies in SM in the presence of a seed hypermagnetic field. The hypermagnetic helicity evolution proceeds in a self-consistent way with the lepton asymmetry growth. The role of sphaleron transitions decreasing the left lepton number turns out to be negligible in given scenario. The hypermagnetic helicity can be a supply for the magnetic one in Higgs phase assuming a strong seed hypermagnetic field in symmetric phase.« less

  15. Unstable Hadrons in Hot Hadron Gas in Laboratory and in the Early Universe

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Inga; Rafelski, Johann

    2011-04-01

    We study kinetic master equations for reactions involving the formation and the natural decay of unstable particles in a thermal expanding hadronic gas in the laboratory and in the early Universe. We consider here for the first time the role of the decay channel of one (hadron resonance) into two daughter particles, and also by token of detailed balance the inverse process, fusion of two (thermal) particles into one. We obtain the thermal invariant reaction rate using as an input the free space (vacuum) decay time and show the medium quantum effects on π+π<->ρ reaction relaxation time. As another laboratory example we describe the K+K<->φ process in thermal expanding hadronic gas in heavy ions collisions. A particularly interesting application of our formalism is the 0̂<->γ+γ process in the early Universe. We also explore the fate of charged pions and the muon freeze-out in the Universe. Another interesting field of application of our formalism is the study of short lived hadronic resonances, which are in general not able to reach yield equilibrium. We study the evolution of hadron resonances in small drops of QGP and use the insight gained to generalize the dynamics to QED effects as well.

  16. Green Peas emit X-rays: Extreme Star Formation in Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip

    2017-01-01

    Luminous compact galaxies (LCGs), Lyman Alpha Emitters (LAEs), and Lyman Break Analog galaxies (LBAs) are all used as proxies for star-forming galaxies in the early Universe (z ≥ 6). The X-ray emission from such galaxies has been found to be elevated compared to other star-forming galaxies in our local Universe. It has been suggested that this may be due to the lower metallicity seen in these proxies to high-redshift galaxies and the elevated X-ray emission may affect the heating and Reionization evolution of the early Universe. Our previous studies have suggested the existence of an LX-SFR-metallicity plane for all star-forming galaxies. We present these results in the context of our newest Joint Chandra/HST study containing the first X-ray detection of the Green Pea galaxies, a population of compact starburst galaxies discovered by volunteers in the Galaxy Zoo Project (Cardamone+2009). The galaxies were given the name Green Peas due to their compact size and green appearance in the gri composite images from SDSS. The green color is caused by a strong [OIII]λ5007Å emission line, an indicator of recent star formation. We observed a few of the most promising candidates with joint Chandra/HST observation and discuss our findings here.

  17. STELLAR 'FIREWORKS FINALE' CAME FIRST IN EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an artist's impression of how the very early universe (less than 1 billion years old) might have looked when it went through a voracious onset of star formation, converting primordial hydrogen into myriad stars at an unprecedented rate. Back then the sky would have looked markedly different from the sea of quiescent galaxies around us today. The sky is ablaze with primeval starburst galaxies; giant elliptical and spiral galaxies have yet to form. Within the starburst galaxies, bright knots of hot blue stars come and go like bursting fireworks shells. Regions of new starbirth glow intensely red under a torrent of ultraviolet radiation. The most massive stars self-detonate as supernovas, which explode across the sky like a string of firecrackers. A foreground starburst galaxy at lower right is sculpted with hot bubbles from supernova explosions and torrential stellar winds. Unlike today there is very little dust in these galaxies, because the heavier elements have not yet been cooked up through nucleosynthesis in stars. Recent analysis of Hubble Space Telescope deep sky images supports the theory that the first stars in the universe appeared in an abrupt eruption of star formation, rather than at a gradual pace. Painting Credit: Adolf Schaller for STScI

  18. Social Strategies during University Studies Predict Early Career Work Burnout and Engagement: 18-Year Longitudinal Study

    ERIC Educational Resources Information Center

    Salmela-Aro, Katariina; Tolvanen, Asko; Nurmi, Jari-Erik

    2011-01-01

    This longitudinal study spanning 18 years examined the role of social strategies in early career adaptation. The aim was to find out whether individuals' social strategies measured during their university studies had an impact on work burnout and work engagement measured 10-18 years later. A sample of 292 university students completed the SAQ…

  19. Coherent Active-Sterile Neutrino Flavor Transformation in the Early Universe

    NASA Astrophysics Data System (ADS)

    Kishimoto, Chad T.; Fuller, George M.; Smith, Christel J.

    2006-10-01

    We solve the problem of coherent Mikheyev-Smirnov-Wolfenstein resonant active-to-sterile neutrino flavor conversion driven by an initial lepton number in the early Universe. We find incomplete destruction of the lepton number in this process and a sterile neutrino energy distribution with a distinctive cusp and high energy tail. These features imply alteration of the nonzero lepton number primordial nucleosynthesis paradigm when there exist sterile neutrinos with rest masses ms˜1eV. This could result in better light element probes of (constraints on) these particles.

  20. Coherent active-sterile neutrino flavor transformation in the early universe.

    PubMed

    Kishimoto, Chad T; Fuller, George M; Smith, Christel J

    2006-10-06

    We solve the problem of coherent Mikheyev-Smirnov-Wolfenstein resonant active-to-sterile neutrino flavor conversion driven by an initial lepton number in the early Universe. We find incomplete destruction of the lepton number in this process and a sterile neutrino energy distribution with a distinctive cusp and high energy tail. These features imply alteration of the nonzero lepton number primordial nucleosynthesis paradigm when there exist sterile neutrinos with rest masses m(s) approximately 1 eV. This could result in better light element probes of (constraints on) these particles.

  1. Bianchi type-VIh string cloud cosmological models with bulk viscosity

    NASA Astrophysics Data System (ADS)

    Tripathy, Sunil K.; Behera, Dipanjali

    2010-11-01

    String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.

  2. A Multi-Faceted Study of Three Forms of Galactic Formation in the Early Universe

    NASA Astrophysics Data System (ADS)

    Jones, Gareth Christopher

    While observations of the early universe have focused on bright, highly starbursting galaxies, star formation activity in the early universe was dominated by main sequence galaxies. Observations of the former group have been accumulating for decades, but the latter are only recently observable using modern instruments. In this work, we apply the Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array (ALMA) to observe specific examples of each galactic class, in order to explore three modes of galaxy formation: smooth accretion, satellite accretion, and massive mergers. Using the molecular gas tracer CO and a broad set of continuum measurements, we characterize the gas mass and distribution, star formation, and dust temperature of the two archetypal massively merging Hyper-Luminous IR Galaxies (HyLIRGs) BRI1202-0725 & BRI1335-0417. We then examine the [C II] emission of the Lyman-Break Galaxy (LBG) WMH5, which shows two infalling gas clouds, implying ongoing formation via filamentary accretion. Finally, we apply a classical suite of dynamical characterization tools to [C II] observations of three MS galaxies and three starbursts, resulting in rotation curves and dynamical masses for each. By examining each of these sources in detail, we find that galaxies in the early (i.e., z > 4) universe formed via a broad range of interactions, ranging from cold-mode accretion to major mergers. As these instruments continue observing, and with the future advent of JWST and perhaps the ngVLA, stronger constraints may be placed on the behavior of the galaxies in the epoch of initial galaxy formation.

  3. Early-term and mid-term histologic events during single-level posterolateral intertransverse process fusion with rhBMP-2/collagen carrier and a ceramic bulking agent in a nonhuman primate model: implications for bone graft preparation.

    PubMed

    Khan, Safdar N; Toth, Jeffrey M; Gupta, Kavita; Glassman, Steven D; Gupta, Munish C

    2014-06-01

    We used a nonhuman primate lumbar intertransverse process arthrodesis model to evaluate biological cascade of bone formation using different carrier preparation methods with a single dose of recombinant human bone morphogenetic protein-2 (rhBMP-2) at early time points. To examine early-term/mid-term descriptive histologic and computerized tomographic events in single-level uninstrumented posterolateral nonhuman primate spinal fusions using rhBMP-2/absorbable collagen sponge (ACS) combined with ceramic bulking agents in 3 different configurations. rhBMP-2 on an ACS carrier alone leads to consistent posterolateral lumbar spine fusions in lower-order animals; however, these results have been difficult to replicate in nonhuman primates. Twelve skeletally mature, rhesus macaque monkeys underwent single-level posterolateral arthrodesis at L4-L5. A hydroxyapatite/β-tricalcium phosphate ceramic bulking agent in 3 formulations was used in the treatment groups (n=3). When used, rhBMP-2/ACS at 1.5 mg/cm (3.0 mg rhBMP-2) was combined with 2.5 cm of ceramic bulking agent per side. Animals were euthanized at 4 and 12 weeks postoperative. Computerized tomography scans were performed immediately postoperatively and every 4 weeks until they were euthanized. Sagittal histologic sections were evaluated for bone histogenesis and location, cellular infiltration of the graft/substitute, and bone remodeling activity. Significant histologic differences in the developing fusion appeared between the 3 rhBMP-2/ACS treatment groups at 4 and 12 weeks. At 4 weeks, bone formation appeared to originate at the transverse process and the intertransverse membrane. Cellular infiltration was greatest in granular ceramic groups compared with matrix ceramic group. Minimal to no residual ACS was identified at the early time point. At 12 weeks, marked ceramic remodeling was observed with continued bone formation noted in all carrier groups. At the early time period, histology showed that bone formation

  4. Depth of cure of bulk-fill flowable composite resins.

    PubMed

    Pedalino, Inaam; Hartup, Grant R; Vandewalle, Kraig S

    2015-01-01

    In recent years, manufacturers have introduced flowable composite resins that reportedly can be placed in increments of 4 mm or greater. The purpose of this study was to evaluate the depth of cure of bulk-fill flowable composite resins (SureFil SDR Flow, Grandio Flow, and Venus Bulk Fill) and a conventional flowable composite resin (Revolution Formula 2). Depth of cure was measured in terms of bottom-maximum Knoop hardness number (KHN) ratios and the International Organization for Standardization (ISO) 4049 scrape technique. Shades A2 and A3 of SureFil SDR Flow, Grandio Flow, and Revolution Formula 2 were tested. Venus Bulk Fill was tested in its only available shade (universal). Specimens in thicknesses of 2, 3, 4, 5, and 6 mm were polymerized for 20 or 40 seconds, and a hardness tester was used to determine the hardness ratios for each shade at each thickness. For the scraping technique, after specimens were exposed to the curing light, unpolymerized composite resin was removed with a plastic instrument, the polymerized composite was measured, and the length was divided by 2 per ISO guidelines. According to the KHN ratios and the scrape test, Venus Bulk Fill predictably exceeded the manufacturer's claim of a 4-mm depth of cure at both 20 and 40 seconds of curing time. The overall results for depth of cure showed that Venus Bulk Fill ≥ SureFil SDR Flow ≥ Grandio Flow ≥ Revolution Formula 2.

  5. First measurement of the bulk flow of nearby galaxies using the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    Lavaux, Guilhem; Afshordi, Niayesh; Hudson, Michael J.

    2013-04-01

    Peculiar velocities in the nearby Universe can be measured via the kinetic Sunyaev-Zel'dovich (kSZ) effect. Using a statistical method based on an optimized cross-correlation with nearby galaxies, we extract the kSZ signal generated by plasma halo of galaxies from the cosmic microwave background (CMB) temperature anisotropies observed by the Wilkinson Microwave Anisotropy Probe (WMAP). Marginalizing over the thermal Sunyaev-Zel'dovich contribution from clusters of galaxies, possible unresolved point source contamination, and Galactic foregrounds, we find a kSZ bulk flow signal present at the ˜90 per cent confidence level in the seven-year WMAP data. When only galaxies within 50 h-1 Mpc are included in the kSZ template, we find a bulk flow in the CMB frame of |V| = 533 ± 263 km s-1, in the direction l = 324 ± 27, b = -7 ± 17, consistent with bulk flow measurements on a similar scale using classical distance indicators. We show how this comparison constrains, for the first time, the (ionized) baryonic budget in the local universe. On very large (˜500 h-1 Mpc) scales, we find a 95 per cent upper limit of 470 km s-1, inconsistent with some analyses of bulk flow of clusters from the kSZ. We estimate that the significance of the bulk flow signal may increase to 3σ-5σ using data from the Planck probe.

  6. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    NASA Technical Reports Server (NTRS)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-01-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  7. Mechanical design engineering. NASA/university advanced design program: Lunar Bulk Material Transport Vehicle

    NASA Astrophysics Data System (ADS)

    Daugherty, Paul; Griner, Stewart; Hendrix, Alan; Makarov, Chris; Martiny, Stephen; Meyhoefer, Douglas Ralph; Platt, Cody Claxton; Sivak, John; Wheeler, Elizabeth Fitch

    1988-06-01

    The design of a Lunar Bulk Material Transport Vehicle (LBMTV) is discussed. Goals set in the project include a payload of 50 cubic feet of lunar soil with a lunar of approximately 800 moon-pounds, a speed of 15 mph, and the ability to handle a grade of 20 percent. Thermal control, an articulated steering mechanism, a dump mechanism, a self-righting mechanism, viable power sources, and a probable control panel are analyzed. The thermal control system involves the use of small strip heaters to heat the housing of electronic equipment in the absence of sufficient solar radiation and multi-layer insulation during periods of intense solar radiation. The entire system uses only 10 W and weighs about 60 pounds, or 10 moon-pounds. The steering mechanism is an articulated steering joint at the center of the vehicle. It utilizes two actuators and yields a turning radius of 10.3 feet. The dump mechanism rotates the bulk material container through an angle of 100 degree using one actuator. The self-righting mechanism consists of two four bar linkages, each of which is powered by the same size actuator as the other linkages. The LBMTV is powered by rechargeable batteries. A running time of at least two hours is attained under a worst case analysis. The weight of the batteries is 100 pounds. A control panel consisting of feedback and control instruments is described. The panel includes all critical information necessary to control the vehicle remotely. The LBMTV is capable of handling many types of cargo. It is able to interface with many types of removable bulk material containers. These containers are made to interface with the three-legged walker, SKITTER. The overall vehicle is about 15 feet in length and has a weight of about 1000 pounds, or 170 lunar pounds.

  8. On the proposed existence of an anti-gravity regime in the early universe

    NASA Astrophysics Data System (ADS)

    Pollock, M. D.

    1982-02-01

    In an interesting letter, Linde has recently suggested that, as a result of the behaviour of dense matter in the early Universe, the realization of an anti-gravity phase is possible, in principle, without the intervention of quantum gravity. Using the Friedman cosmological model, we amplify the discussion given by Linde and find a difficulty with his interpretation.

  9. AGN feedback through UFO and galaxy-wide winds in the early Universe

    NASA Astrophysics Data System (ADS)

    Feruglio, C.; Piconcelli, E.; Bischetti, M.; Zappacosta, L.; Fiore, F.

    2017-10-01

    AGN feedback through massive molecular winds is today routinely observed in local AGN host galaxies, but not as such in the early universe. I will present the first evidence for a massive, AGN-driven molecular wind in the z 4 QSO APM08279, which also hosts the most well studied and persistent nuclear semi-raltivistic wind (UFO). This observation directly probes the expansion mechanism of a nuclear wind into the ISM on galaxy wide scales, that so far was constrained by a couple of other objects only (Feruglio et al. 2015, Tombesi et al. 2015). This result also opens the path toward the exploration of molecular AGN-driven winds at early epochs, close after the end of the Epoch of Reionisation (EoR).

  10. New holographic dark energy model with constant bulk viscosity in modified f(R,T) gravity theory

    NASA Astrophysics Data System (ADS)

    Srivastava, Milan; Singh, C. P.

    2018-06-01

    The aim of this paper is to study new holographic dark energy (HDE) model in modified f(R,T) gravity theory within the framework of a flat Friedmann-Robertson-Walker model with bulk viscous matter content. It is thought that the negative pressure caused by the bulk viscosity can play the role of dark energy component, and drive the accelerating expansion of the universe. This is the motive of this paper to observe such phenomena with bulk viscosity. In the specific model f(R,T)=R+λ T, where R is the Ricci scalar, T the trace of the energy-momentum tensor and λ is a constant, we find the solution for non-viscous and viscous new HDE models. We analyze new HDE model with constant bulk viscosity, ζ =ζ 0= const. to explain the present accelerated expansion of the universe. We classify all possible scenarios (deceleration, acceleration and their transition) with possible positive and negative ranges of λ over the constraint on ζ 0 to analyze the evolution of the universe. We obtain the solutions of scale factor and deceleration parameter, and discuss the evolution of the universe. We observe the future finite-time singularities of type I and III at a finite time under certain constraints on λ . We also investigate the statefinder and Om diagnostics of the viscous new HDE model to discriminate with other existing dark energy models. In late time the viscous new HDE model approaches to Λ CDM model. We also discuss the thermodynamics and entropy of the model and find that it satisfies the second law of thermodynamics.

  11. Ground based THz Spectroscopy of Obscured Starbursts in the Early Universe enabled by the 2nd generation Redshift (z) & Early Universe Spectrometer (ZEUS-2)

    NASA Astrophysics Data System (ADS)

    Vishwas, Amit; Stacey, Gordon; Nikola, Thomas; Ferkinhoff, Carl; Parshley, Stephen; Schoenwald, Justin; Lamarche, Cody James; Higdon, James; Higdon, Sarah; Brisbin, Drew; Güesten, Rolf; Weiss, Axel; Menten, Karl; Irwin, Kent; Cho, Hsiao-Mei; Niemack, Michael; Hilton, Gene; Hubmayr, Johannes; Amiri, Mandana; Halpern, Mark; Wiebe, Donald; Hasselfield, Matthew; Ade, Peter; Tucker, Carole

    2018-01-01

    Galaxies were surprisingly dusty in the early Universe, with more than half of the light emitted from stars being absorbed by dust within the system and re-radiated into far infrared (FIR, ~50-150μm) wavelengths. Dusty star forming galaxies (DSFGs) dominate the co-moving star formation rate density of the Universe that peaks around redshift, z~2, making it compelling to study them in rest frame FIR bands. From galaxies at z > 1, the FIR line emission from abundant ions like [O III], [C II] and [N II], are redshifted into the short sub-mm telluric windows. My thesis work is based on building and deploying the 2nd Generation Redshift (z) and Early Universe Spectrometer (ZEUS-2), a long-slit, echelle grating spectrometer optimized to study broad (Δv = 300km/s) spectral lines from galaxies in the 200-650µm telluric windows using TES bolometers. These far-IR lines being extinction free and major coolants of the gas heated by (young) massive stars, are powerful probes of the physical conditions of the gas and the stellar radiation field. I present results from our survey of the [O III] 88µm line in galaxies at redshift, z ~ 2.8 to 4.6, with ZEUS-2 at the Atacama Pathfinder Experiment (APEX) Telescope. To interpret our observations along with ancillary data from optical to radio facilities, we apply photoionization models for HII regions and Photo Dissociation Region (PDR) models and confirm that the galaxies host substantial ongoing obscured star formation. The presence of doubly ionized oxygen suggests hard radiation fields and hence, elevated ionization parameters that can only be accounted for by a large population of massive stars formed during the ongoing starburst, that contribute a large fraction of the infrared luminosity. This study highlights the use of FIR line emission to trace the assembly of current day massive galaxies, conditions of star formation and details of their stellar populations. The construction and operation of ZEUS-2 were funded by NSF ATI

  12. A Constructivist/Reflective Paradigm: A Model for the Early Childhood Program at Tuskegee University.

    ERIC Educational Resources Information Center

    Noori, Kathryn K.

    The Early Childhood Program in the Department of Curriculum, Instruction and Administration at Tuskegee University (Alabama) is described as a convergence of Jean Piaget's constructivism and John Dewey's progressivism. It is designed to provide preservice teachers with experiences that promote reflective practice and that view the learner as an…

  13. The early universe history from contraction-deformation of the Standard Model

    NASA Astrophysics Data System (ADS)

    Gromov, N. A.

    2017-03-01

    The elementary particles evolution in the early Universe from Plank time up to several milliseconds is presented. The developed theory is based on the high-temperature (high-energy) limit of the Standard Model which is generated by the contractions of its gauge groups. At the infinite temperature all particles lose masses. Only massless neutral -bosons, massless Z-quarks, neutrinos and photons are survived in this limit. The weak interactions become long-range and are mediated by neutral currents, quarks have only one color degree of freedom.

  14. One-loop quantum gravity repulsion in the early Universe.

    PubMed

    Broda, Bogusław

    2011-03-11

    Perturbative quantum gravity formalism is applied to compute the lowest order corrections to the classical spatially flat cosmological Friedmann-Lemaître-Robertson-Walker solution (for the radiation). The presented approach is analogous to the approach applied to compute quantum corrections to the Coulomb potential in electrodynamics, or rather to the approach applied to compute quantum corrections to the Schwarzschild solution in gravity. In the framework of the standard perturbative quantum gravity, it is shown that the corrections to the classical deceleration, coming from the one-loop graviton vacuum polarization (self-energy), have (UV cutoff free) opposite to the classical repulsive properties which are not negligible in the very early Universe. The repulsive "quantum forces" resemble those known from loop quantum cosmology.

  15. Test Anxiety in Mathematics among Early Undergraduate Students in a British University in Malaysia

    ERIC Educational Resources Information Center

    Karjanto, Natanael; Yong, Su Ting

    2013-01-01

    The level of test anxiety in mathematics subjects among early undergraduate students at the University of Nottingham Malaysia Campus is studied in this article. The sample consists of 206 students taking several mathematics modules who completed the questionnaires on test anxiety just before they entered the venue for midterm examinations. The…

  16. Constraining antimatter domains in the early universe with big bang nucleosynthesis.

    PubMed

    Kurki-Suonio, H; Sihvola, E

    2000-04-24

    We consider the effect of a small-scale matter-antimatter domain structure on big bang nucleosynthesis and place upper limits on the amount of antimatter in the early universe. For small domains, which annihilate before nucleosynthesis, this limit comes from underproduction of 4He. For larger domains, the limit comes from 3He overproduction. Since most of the 3He from &pmacr; 4He annihilation are themselves annihilated, the main source of primordial 3He is the photodisintegration of 4He by the electromagnetic cascades initiated by the annihilation.

  17. Learning and Developing as a University Teacher: Narratives of Early Career Academics in Estonia

    ERIC Educational Resources Information Center

    Remmik, Marvi; Karm, Mari; Lepp, Liina

    2013-01-01

    In recent years the higher education context in Estonia, as in most European countries, has changed a lot. All changes have an impact on university teachers' practice and their work organisation, and are presenting new challenges. The current research aims at developing an understanding of Estonian early career academics' professional identity by…

  18. Rotary bulk solids divider

    DOEpatents

    Maronde, Carl P.; Killmeyer, Jr., Richard P.

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  19. ROTARY BULK SOLIDS DIVIDER

    DOEpatents

    Maronde, Carl P.; Killmeyer JR., Richard P.

    1992-03-03

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  20. Visible and near-infrared bulk optical properties of raw milk.

    PubMed

    Aernouts, B; Van Beers, R; Watté, R; Huybrechts, T; Lammertyn, J; Saeys, W

    2015-10-01

    The implementation of optical sensor technology to monitor the milk quality on dairy farms and milk processing plants would support the early detection of altering production processes. Basic visible and near-infrared spectroscopy is already widely used to measure the composition of agricultural and food products. However, to obtain maximal performance, the design of such optical sensors should be optimized with regard to the optical properties of the samples to be measured. Therefore, the aim of this study was to determine the visible and near-infrared bulk absorption coefficient, bulk scattering coefficient, and scattering anisotropy spectra for a diverse set of raw milk samples originating from individual cow milkings, representing the milk variability present on dairy farms. Accordingly, this database of bulk optical properties can be used in future simulation studies to efficiently optimize and validate the design of an optical milk quality sensor. In a next step of the current study, the relation between the obtained bulk optical properties and milk quality properties was analyzed in detail. The bulk absorption coefficient spectra were found to mainly contain information on the water, fat, and casein content, whereas the bulk scattering coefficient spectra were found to be primarily influenced by the quantity and the size of the fat globules. Moreover, a strong positive correlation (r ≥ 0.975) was found between the fat content in raw milk and the measured bulk scattering coefficients in the 1,300 to 1,400 nm wavelength range. Relative to the bulk scattering coefficient, the variability on the scattering anisotropy factor was found to be limited. This is because the milk scattering anisotropy is nearly independent of the fat globule and casein micelle quantity, while it is mainly determined by the size of the fat globules. As this study shows high correlations between the sample's bulk optical properties and the milk composition and fat globule size, a

  1. 75 FR 34682 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ...] RIN 1625-AB47 Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk... on June 17, 2010, entitled ``Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes (IMSBC) Code.'' This correction provides correct information with regard to the...

  2. Primordial Black Holes from Supersymmetry in the Early Universe.

    PubMed

    Cotner, Eric; Kusenko, Alexander

    2017-07-21

    Supersymmetric extensions of the standard model generically predict that in the early Universe a scalar condensate can form and fragment into Q balls before decaying. If the Q balls dominate the energy density for some period of time, the relatively large fluctuations in their number density can lead to formation of primordial black holes (PBH). Other scalar fields, unrelated to supersymmetry, can play a similar role. For a general charged scalar field, this robust mechanism can generate black holes over the entire mass range allowed by observational constraints, with a sufficient abundance to account for all dark matter in some parameter ranges. In the case of supersymmetry the mass range is limited from above by 10^{23}  g. We also comment on the role that topological defects can play for PBH formation in a similar fashion.

  3. Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers.

    PubMed

    Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-05-23

    An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage.

  4. Wavelength-Versatile Graphene-Gold Film Saturable Absorber Mirror for Ultra-Broadband Mode-Locking of Bulk Lasers

    PubMed Central

    Ma, Jie; Xie, Guoqiang; Lv, Peng; Gao, Wenlan; Yuan, Peng; Qian, Liejia; Griebner, Uwe; Petrov, Valentin; Yu, Haohai; Zhang, Huaijin; Wang, Jiyang

    2014-01-01

    An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage. PMID:24853072

  5. 7 CFR 201.40 - Bulk.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Sampling in the Administration of the Act § 201.40 Bulk. Bulk seeds or screenings shall be sampled by inserting a long probe or thrusting the hand into the bulk as circumstances require in at least seven... 7 Agriculture 3 2011-01-01 2011-01-01 false Bulk. 201.40 Section 201.40 Agriculture Regulations of...

  6. 7 CFR 201.40 - Bulk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Sampling in the Administration of the Act § 201.40 Bulk. Bulk seeds or screenings shall be sampled by inserting a long probe or thrusting the hand into the bulk as circumstances require in at least seven... 7 Agriculture 3 2010-01-01 2010-01-01 false Bulk. 201.40 Section 201.40 Agriculture Regulations of...

  7. Supersonic gas streams enhance the formation of massive black holes in the early universe.

    PubMed

    Hirano, Shingo; Hosokawa, Takashi; Yoshida, Naoki; Kuiper, Rolf

    2017-09-29

    The origin of super-massive black holes in the early universe remains poorly understood. Gravitational collapse of a massive primordial gas cloud is a promising initial process, but theoretical studies have difficulty growing the black hole fast enough. We report numerical simulations of early black hole formation starting from realistic cosmological conditions. Supersonic gas motions left over from the Big Bang prevent early gas cloud formation until rapid gas condensation is triggered in a protogalactic halo. A protostar is formed in the dense, turbulent gas cloud, and it grows by sporadic mass accretion until it acquires 34,000 solar masses. The massive star ends its life with a catastrophic collapse to leave a black hole-a promising seed for the formation of a monstrous black hole. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Ovarian tissue characterization using bulk optical properties

    NASA Astrophysics Data System (ADS)

    Tavakoli, B.; Xu, Y.; Zhu, Q.

    2013-03-01

    Ovarian cancer, the deadliest of all gynecologic cancers, is not often found in its early stages due to few symptoms and no reliable screening test. Optical imaging has a great potential to improve the ovarian cancer detection and diagnosis. In this study we have characterized the bulk optical properties of 26 ex-vivo human ovaries using a Diffuse Optical Tomography system. The quantitative values indicated that, in the postmenopausal group, malignant ovaries showed significantly lower scattering coefficient than normal ones. The scattering parameter is largely related to the collagen content that has shown a strong correlation with the cancer development.

  9. Spacetime deformation effect on the early universe and the PTOLEMY experiment

    NASA Astrophysics Data System (ADS)

    Horvat, Raul; Trampetic, Josip; You, Jiangyang

    2017-09-01

    Using a fully-fledged formulation of gauge field theory deformed by the spacetime noncommutativity, we study its impact on relic neutrino direct detection, as proposed recently by the PTOLEMY experiment. The noncommutative background tends to influence the propagating neutrinos by providing them with a tree-level vector-like coupling to photons, enabling thus otherwise sterile right-handed (RH) neutrinos to be thermally produced in the early universe. Such a new component in the universe's background radiation has been switched today to the almost fully active sea of non-relativistic neutrinos, exerting consequently some impact on the capture on tritium at PTOLEMY. The peculiarities of our nonperturbative approach tend to reflect in the cosmology as well, upon the appearances of the coupling temperature, above which RH neutrinos stay permanently decoupled from thermal environment. This entails the maximal scale of noncommutativity as well, being of order of 10-4MPl, above which there is no impact whatsoever on the capture rates at PTOLEMY. The latter represents an exceptional upper bound on the scale of noncommutativity coming from phenomenology.

  10. From Universalism to Selectivity? The Background, Discourses and Ideas of Recent Early Childhood Education and Care Reforms in Finland

    ERIC Educational Resources Information Center

    Lundkvist, Marina; Nyby, Josefine; Autto, Janne; Nygård, Mikael

    2017-01-01

    Universal public childcare for children under seven has been central in Finland since the mid-1990s, capacitating both gender equality and children's human capital and wellbeing. In 2015, as a further step in the development of this system, early learning and childhood pedagogy was strengthened through the early childhood education and care (ECEC)…

  11. Numerical estimation of deformation energy of selected bulk oilseeds in compression loading

    NASA Astrophysics Data System (ADS)

    Demirel, C.; Kabutey, A.; Herak, D.; Gurdil, G. A. K.

    2017-09-01

    This paper aimed at the determination of the deformation energy of some bulk oilseeds or kernels namely oil palm, sunflower, rape and flax in linear pressing applying the trapezoidal rule which is characterized by the area under the force and deformation curve.The bulk samples were measured at the initial pressing height of 60 mm with the vessel diameter of 60 mm where they were compressed under the universal compression machine at a maximum force of 200 kN and speed of 5 mm/min.Based on the compression test, the optimal deformation energy for recovering the oil was observed at a force of 163 kN where there was no seed/kernel cake ejection in comparison to the initial maximum force used particularly for rape and flax bulk oilseeds.This information is needed for analyzing the energy efficiency of the non-linear compression process involving a mechanical screw press or expeller.

  12. Solutions on a brane in a bulk spacetime with Kalb–Ramond field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Sumanta, E-mail: sumanta@iucaa.in; SenGupta, Soumitra, E-mail: tpssg@iacs.res.in

    Effective gravitational field equations on a brane have been derived, when the bulk spacetime is endowed with the second rank antisymmetric Kalb–Ramond field. Since both the graviton and the Kalb–Ramond field are closed string excitations, they can propagate in the bulk. After deriving the effective gravitational field equations on the brane, we solve them for a static spherically symmetric solution. It turns out that the solution so obtained represents a black hole or naked singularity depending on the parameter space of the model. The stability of this model is also discussed. Cosmological solutions to the gravitational field equations have beenmore » obtained, where the Kalb–Ramond field is found to behave as normal pressure free matter. For certain specific choices of the parameters in the cosmological solution, the solution exhibits a transition in the behaviour of the scale factor and hence a transition in the expansion history of the universe. The possibility of accelerated expansion of the universe in this scenario is also discussed.« less

  13. Temperature measurements in small holes drilled in superconducting bulk during pulsed field magnetization

    NASA Astrophysics Data System (ADS)

    Fujishiro, H.; Naito, T.; Furuta, D.; Kakehata, K.

    2010-11-01

    The time dependence of the temperatures T(z, t) has been measured along the thickness direction z in several drilled holes in a superconducting bulk during pulsed field magnetization (PFM) and the heat generation and heat transfer in the bulk have been discussed. In the previous paper [H. Fujishiro, S. Kawaguchi, K. Kakehata, A. Fujiwara, T. Tateiwa, T. Oka, Supercond. Sci. Technol. 19 (2006) S540], we calculated the T(z, t) profiles in the bulk by solving a three-dimensional heat-diffusion equation to reproduce the measured T(t) on the bulk surface; the heat generation took place adiabatically and the calculated T(z, t) was isothermal along the z direction. In this study, the measured T(z, t) at the top surface was higher than that at the bottom surface just after the pulse field application at t < 0.5 s, and then became isothermal with increasing time. These results suggest that the magnetic flux intrudes inhomogeneously into the bulk from the edge of the top surface and the periphery at the early stage. The inhomogeneous magnetic flux intrusion and the flux trap during PFM change depending on the strength of the pulsed field and the pulse number in the successive pulse field application.

  14. Inflation of the early cold Universe filled with a nonlinear scalar field and a nonideal relativistic Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pashitskii, E. A., E-mail: pashitsk@iop.kiev.ua; Pentegov, V. I., E-mail: pentegov@iop.kiev.ua

    We consider a possible scenario for the evolution of the early cold Universe born from a fairly large quantum fluctuation in a vacuum with a size a{sub 0} ≫ l{sub P} (where l{sub P} is the Planck length) and filled with both a nonlinear scalar field φ, whose potential energy density U(φ) determines the vacuum energy density λ, and a nonideal Fermi gas with short-range repulsion between particles, whose equation of state is characterized by the ratio of pressure P(n{sub F}) to energy density ε(n{sub F}) dependent on the number density of fermions n{sub F}. As the early Universe expands,more » the dimensionless quantity ν(n{sub F}) = P(n{sub F})/ε(n{sub F}) decreases with decreasing n{sub F} from its maximum value ν{sub max} = 1 for n{sub F} → ∞ to zero for n{sub F} → 0. The interaction of the scalar and gravitational fields, which is characterized by a dimensionless constant ξ, is proportional to the scalar curvature of four-dimensional space R = κ[3P(n{sub F})–ε(n{sub F})–4λ] (where κ is Einstein’s gravitational constant), and contains terms both quadratic and linear in φ. As a result, the expanding early Universe reaches the point of first-order phase transition in a finite time interval at critical values of the scalar curvature R = R{sub c} =–μ{sup 2}/ξ and radius a{sub c} ≫ a{sub 0}. Thereafter, the early closed Universe “rolls down” from the flat inflection point of the potential U(φ) to the zero potential minimum in a finite time. The release of the total potential energy of the scalar field in the entire volume of the expanding Universe as it “rolls down” must be accompanied by the production of a large number of massive particles and antiparticles of various kinds, whose annihilation plays the role of the Big Bang. We also discuss the fundamental nature of Newton’ gravitational constant G{sub N}.« less

  15. Nearby star cluster yields insights into early universe

    NASA Astrophysics Data System (ADS)

    1998-07-01

    The nebula offers a unique opportunity for a close-up glimpse of the "firestorm" accompanying the birth of extremely massive stars, each blazing with the brilliance of 300,000 of our suns. Such galactic fireworks were much more common billions of years ago in the early universe, when most star formation took place. "This is giving us new insights into the physical mechanisms governing star formation in far away galaxies that existed long ago," says Mohammad Heydari-Malayeri (Paris Observatory, France), who headed the international team of astronomers who made the discovery using Hubble's Wide Field and Planetary Camera 2. Because these stars are deficient in heavier elements, they also evolve much like the universe's earliest stars, which were made almost exclusively of the primordial elements hydrogen and helium that were created in the big bang. The Small Magellanic Cloud is a unique laboratory for studying star formation in the early universe since it is the closest and best seen galaxy containing so-called "metal-poor" first- and second -generation type stars. These observations show that massive stars may form in groups. "As a result, it is more likely some of these stars are members of double and multiple star systems," says Heydari-Malayeri. "The multiple systems will affect stellar evolution considerably by ejecting a great deal of matter into space." This furious rate of mass loss from these stars is evident in the Hubble picture, which reveals dramatic shapes sculpted in the nebula's wall of glowing gases by violent stellar winds and shock waves. "This implies a very turbulent environment typical of young star formation regions," Heydari-Malayeri adds. He believes one of the members of the cluster may be an extremely rare and short-lived class of super-hot star (50,000 degrees Kelvin) called a Wolf-Rayet. This star represents a violent, transitional phase in the final years of a massive star's existence - before it ultimately explodes as a supernova. "If

  16. Postsecondary Preparation and Remediation: Examining the Effect of the Early Assessment Program at California State University

    ERIC Educational Resources Information Center

    Howell, Jessica S.; Kurlaender, Michal; Grodsky, Eric

    2010-01-01

    In this paper we investigate how participation in the Early Assessment Program, which provides California high school juniors with information about their academic readiness for college-level work at California State University campuses, affects their college-going behavior and need for remediation in college. Using administrative records from…

  17. Inflaton and metric fluctuations in the early universe from a 5D vacuum state

    NASA Astrophysics Data System (ADS)

    Membiela, Agustin; Bellini, Mauricio

    2006-04-01

    In this Letter we complete a previously introduced formalism to study the gauge-invariant metric fluctuations from a noncompact Kaluza Klein theory of gravity, to study the evolution of the early universe. The evolution of both, metric and inflaton field fluctuations are reciprocally related. We obtain that <δρ>/ρ depends on the coupling of Φ with δφ and the spectral index of its spectrum is 0.9483

  18. Evaluation of Standardized Instruments for Use in Universal Screening of Very Early School-Age Children: Suitability, Technical Adequacy, and Usability

    ERIC Educational Resources Information Center

    Miles, Sandra; Fulbrook, Paul; Mainwaring-Mägi, Debra

    2018-01-01

    Universal screening of very early school-age children (age 4-7 years) is important for early identification of learning problems that may require enhanced learning opportunity. In this context, use of standardized instruments is critical to obtain valid, reliable, and comparable assessment outcomes. A wide variety of standardized instruments is…

  19. Emergent universe model with dissipative effects

    NASA Astrophysics Data System (ADS)

    Debnath, P. S.; Paul, B. C.

    2017-12-01

    Emergent universe model is presented in general theory of relativity with isotropic fluid in addition to viscosity. We obtain cosmological solutions that permit emergent universe scenario in the presence of bulk viscosity that are described by either Eckart theory or Truncated Israel Stewart (TIS) theory. The stability of the solutions are also studied. In this case, the emergent universe (EU) model is analyzed with observational data. In the presence of viscosity, one obtains emergent universe scenario, which however is not permitted in the absence of viscosity. The EU model is compatible with cosmological observations.

  20. Direct Observation of Twisted Surface skyrmions in Bulk Crystals

    NASA Astrophysics Data System (ADS)

    Zhang, S. L.; van der Laan, G.; Wang, W. W.; Haghighirad, A. A.; Hesjedal, T.

    2018-06-01

    Magnetic skyrmions in noncentrosymmetric helimagnets with Dn symmetry are Bloch-type magnetization swirls with a helicity angle of ±9 0 ° . At the surface of helimagnetic thin films below a critical thickness, a twisted skyrmion state with an arbitrary helicity angle has been proposed; however, its direct experimental observation has remained elusive. Here, we show that circularly polarized resonant elastic x-ray scattering is able to unambiguously measure the helicity angle of surface skyrmions, providing direct experimental evidence that a twisted skyrmion surface state also exists in bulk systems. The exact surface helicity angles of twisted skyrmions for both left- and right-handed chiral bulk Cu2 OSeO3 , in the single as well as in the multidomain skyrmion lattice state, are determined, revealing their detailed internal structure. Our findings suggest that a skyrmion surface reconstruction is a universal phenomenon, stemming from the breaking of translational symmetry at the interface.

  1. Turbulence of Weak Gravitational Waves in the Early Universe.

    PubMed

    Galtier, Sébastien; Nazarenko, Sergey V

    2017-12-01

    We study the statistical properties of an ensemble of weak gravitational waves interacting nonlinearly in a flat space-time. We show that the resonant three-wave interactions are absent and develop a theory for four-wave interactions in the reduced case of a 2.5+1 diagonal metric tensor. In this limit, where only plus-polarized gravitational waves are present, we derive the interaction Hamiltonian and consider the asymptotic regime of weak gravitational wave turbulence. Both direct and inverse cascades are found for the energy and the wave action, respectively, and the corresponding wave spectra are derived. The inverse cascade is characterized by a finite-time propagation of the metric excitations-a process similar to an explosive nonequilibrium Bose-Einstein condensation, which provides an efficient mechanism to ironing out small-scale inhomogeneities. The direct cascade leads to an accumulation of the radiation energy in the system. These processes might be important for understanding the early Universe where a background of weak nonlinear gravitational waves is expected.

  2. 76 FR 8658 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes (IMSBC) Code..., the Coast Guard amended its regulations governing the carriage of solid hazardous materials in bulk to... hazardous bulk solid materials not addressed in the amended regulations. This notice announces that the...

  3. Effect of bulk-fill base material on fracture strength of root-filled teeth restored with laminate resin composite restorations.

    PubMed

    Taha, N A; Maghaireh, G A; Ghannam, A S; Palamara, J E

    2017-08-01

    To evaluate the effect of using a bulk-fill flowable base material on fracture strength and fracture patterns of root-filled maxillary premolars with MOD preparations restored with laminate restorations. Fifty extracted maxillary premolars were selected for the study. Standardized MOD cavities with endodontic treatment were prepared for all teeth, except for intact control. The teeth were divided randomly into five groups (n=10); (Group 1) sound teeth, (Group 2) unrestored teeth; (Group 3) MOD cavities with Vitrebond base and resin-based composite (Ceram. X One Universal); (Group 4) MOD cavities with 2mm GIC base (Fuji IX GP) and resin-based composite (Ceram. X One Universal) open laminate, (Group 5) MOD cavities were restored with 4mm of bulk-fill flowable base material (SDR) and resin-based composite (Ceram. X One Universal). All teeth were thermocycled and subjected to a 45° ramped oblique load in a universal testing machine. Fracture load and fracture patterns were recorded. Data were analyzed using one-way ANOVA and Dunnett's T3 test. Restoration in general increased the fracture strength compared to unrestored teeth. The fracture strength of group 5 (bulk-fill) was significantly higher than the fracture strength of the GIC laminate groups and not significantly different from the intact teeth (355±112N, P=0.118). The type of failure was unfavorable for most of the groups, with the majority being mixed failures. The use of a bulk-fill flowable base material significantly increased the fracture strength of extracted root-filled teeth with MOD cavities; however it did not improve fracture patterns to more favorable ones. Investigating restorative techniques that may improve the longevity of root-filled premolar teeth restored with direct resin restorations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Isotropy of the early universe from CMB anisotropies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donoghue, Evan P.; University of Notre Dame, Notre Dame, Indiana 46556; Donoghue, John F.

    The acoustic peak in the cosmic microwave background power spectrum is sensitive to causal processes and cosmological parameters in the early universe up to the time of last scattering. We provide limits on correlated spatial variations of the peak height and peak position and interpret these as constraints on the spatial variation of the cosmological parameters (baryon density, cold dark matter density, and cosmological constant as well as the amplitude and tilt of the original fluctuations). We utilize recent work of Hansen, Banday, and Gorski who have studied the spatial isotropy of the power spectrum as measured by WMAP bymore » performing the power spectrum analysis on smaller patches of the sky. We find that there is no statistically significant correlated asymmetry of the peak. Hansen, Banday, and Gorski have also provided preliminary indications of a preferred direction in the lower angular momentum range (l{approx}2-40) and we show how possible explanations of this asymmetry are severely constrained by the data on the acoustic peak. Finally we show a possible non-Gaussian feature in the data, associated with a difference in the northern and southern galactic hemispheres.« less

  5. Magnetic fields and chiral asymmetry in the early hot universe

    NASA Astrophysics Data System (ADS)

    Sydorenko, Maksym; Tomalak, Oleksandr; Shtanov, Yuri

    2016-10-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of `inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.

  6. Early Opportunities Research Partnership Between Howard University, University of Maryland Baltimore County and NASA Goddard for Engaging Underrepresented STEM Students in Earth and Space Sciences

    NASA Astrophysics Data System (ADS)

    Misra, P.; Venable, D. D.; Hoban, S.; Demoz, B.; Bleacher, L.; Meeson, B. W.; Farrell, W. M.

    2017-12-01

    Howard University, University of Maryland Baltimore County and NASA Goddard Space Flight Center (GSFC) are collaborating to engage underrepresented STEM students and expose them to an early career pathway in NASA-related Earth & Space Science research. The major goal is to instill interest in Earth and Space Science to STEM majors early in their academic careers, so that they become engaged in ongoing NASA-related research, motivated to pursue STEM careers, and perhaps become part of the future NASA workforce. The collaboration builds on a program established by NASA's Dynamic Response of the Environments of Asteroids, the Moon and the moons of Mars (DREAM2) team to engage underrepresented students from Howard in summer internships. Howard leveraged this program to expand via NASA's Minority University Research and Education Project (MUREP) funding. The project pairs Howard students with GSFC mentors and engages them in cutting-edge Earth and Space Science research throughout their undergraduate tenure. The project takes a multi-faceted approach, with each year of the program specifically tailored to each student's strengths and addressing their weaknesses, so that they experience a wide array of enriching research and professional development activities that help them grow both academically and professionally. During the academic year, the students are at Howard taking a full load of courses towards satisfying their degree requirements and engaging in research with their GSFC mentors via regular telecons, e-mail exchanges, video chats & on an average one visit per semester to GSFC for an in-person meeting with their research mentor. The students extend their research with full-time summer internships at GSFC, culminating in a Capstone Project and Senior Thesis. As a result, these Early Opportunities Program students, who have undergone rigorous training in the Earth and Space Sciences, are expected to be well-prepared for graduate school and the NASA workforce.

  7. Integrated Specialized Early-Course Psychosis Treatment Services - University Psychiatric Hospital Vrapce Model.

    PubMed

    Ostojić, DraŽenka; Čulo, Ilaria; Silić, Ante; Kos, Suzana; Savić, Aleksandar

    2018-06-01

    First episode of psychosis presents a critical period in terms of numerous associated risks, but also possibilities for effective therapeutic interventions. There is a continued focus on early interventions in prodromal states and early course of frank psychosis, aimed at ensuring faster remission, reducing relapses, achieving better long-term functioning, and preventing adverse outcomes linked to untreated psychosis and chronic psychotic disorders. A number of different specialized treatment models and services exist trying to close knowledge gaps and provide clinical interventions to first-episode psychosis (FEP) patients, but there is still no generally accepted standard of care informing our every-day practice. FEP and early-course psychosis specialized treatment model developed in 2004 in University Psychiatric Hospital Vrapce rests on integration of care across different organization units and clinical presentation acuity levels and patient needs (intensive care, FEP inpatient unit, FEP outpatient services including day hospital). Such integration of FEP services allows for flexible entry point on multiple levels, earlier structuring of therapeutic alliance for those requiring inpatient care, reduction of risks associated with FEP, quicker formation of long-term treatment plans, reduction of delay in accessing specialized services, and a more coordinated diagnostic process and recruitment of FEP patient population. Detailed evaluations of outcomes and comparisons with different treatment models are necessary in order to assess strengths and weaknesses of each specific model and inform modifications to current practice models.

  8. Federal Tax Policy regarding Universities: Endowments and beyond

    ERIC Educational Resources Information Center

    Vedder, Richard

    2008-01-01

    The vast bulk of economic activity in the United States is taxed by the federal government. There are exceptions carved out, primarily for charitable operations, including universities. The rationale is that these organizations serve the public good and should not be reduced in magnitude by the deleterious effects of taxes. Universities in…

  9. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.

    PubMed

    Marenich, Aleksandr V; Cramer, Christopher J; Truhlar, Donald G

    2009-05-07

    We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the "D" stands for "density" to denote that the full solute electron density is used without defining partial atomic charges. "Continuum" denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute-solvent boundary. SMD is a universal solvation model, where "universal" denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonhomogeneous Poisson equation for electrostatics in terms of the integral-equation-formalism polarizable continuum model (IEF-PCM). The cavities for the bulk electrostatic calculation are defined by superpositions of nuclear-centered spheres. The second component is called the cavity-dispersion-solvent-structure term and is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas of the individual atoms of the solute. The SMD model has been parametrized with a training set of 2821 solvation data including 112 aqueous ionic solvation free energies, 220 solvation free energies for 166 ions in acetonitrile, methanol, and dimethyl sulfoxide, 2346 solvation free energies for 318 neutral solutes in 91 solvents (90 nonaqueous

  10. Large area bulk superconductors

    DOEpatents

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  11. Shear bond strength of bulk-fill and nano-restorative materials to dentin.

    PubMed

    Colak, Hakan; Ercan, Ertugrul; Hamidi, Mehmet Mustafa

    2016-01-01

    Bulk-fill composite materials are being developed for preparation depths of up to 4 mm in an effort to simplify and improve the placement of direct composite posterior restorations. The aim of our study was to compare shear-bond strength of bulk-fill and conventional posterior composite resins. In this study, 60 caries free extracted human molars were used and sectioned parallel to occlusal surface to expose midcoronal dentin. The specimens were randomly divided into four groups. Total-etch dentine bonding system (Adper Scotchbond 1XT, 3M ESPE) was applied to dentin surface in all the groups to reduce variability in results. Then, dentine surfaces covered by following materials. Group I: SonicFill Bulk-Fill, Group II: Tetric EvoCeram (TBF), Group III: Herculite XRV Ultra, and Group IV: TBF Bulk-Fill, 2 mm × 3 mm cylindrical restorations were prepared by using application apparatus. Shear bond testing was measured by using a universal testing machine. Kruskal-Wallis and Mann-Whitney U-tests were performed to evaluate the data. The highest value was observed in Group III (14.42 ± 4.34) and the lowest value was observed in Group IV (11.16 ± 2.76) and there is a statistically significant difference between these groups (P = 0.046). However, there is no statistically significant difference between the values of other groups. In this study, Group III was showed higher strength values. There is a need for future studies about long-term bond strength and clinical success of these adhesive and bulk-fill systems.

  12. Ground penetrating radar: a case study for estimating root bulking rate in cassava (Manihot esculenta Crantz).

    PubMed

    Delgado, Alfredo; Hays, Dirk B; Bruton, Richard K; Ceballos, Hernán; Novo, Alexandre; Boi, Enrico; Selvaraj, Michael Gomez

    2017-01-01

    Understanding root traits is a necessary research front for selection of favorable genotypes or cultivation practices. Root and tuber crops having most of their economic potential stored below ground are favorable candidates for such studies. The ability to image and quantify subsurface root structure would allow breeders to classify root traits for rapid selection and allow agronomist the ability to derive effective cultivation practices. In spite of the huge role of Cassava ( Manihot esculenta Crantz), for food security and industrial uses, little progress has been made in understanding the onset and rate of the root-bulking process and the factors that influence it. The objective of this research was to determine the capability of ground penetrating radar (GPR) to predict root-bulking rates through the detection of total root biomass during its growth cycle. Our research provides the first application of GPR for detecting below ground biomass in cassava. Through an empirical study, linear regressions were derived to model cassava bulking rates. The linear equations derived suggest that GPR is a suitable measure of root biomass ( r  = .79). The regression analysis developed accounts for 63% of the variability in cassava biomass below ground. When modeling is performed at the variety level, it is evident that the variety models for SM 1219-9 and TMS 60444 outperform the HMC-1 variety model (r 2  = .77, .63 and .51 respectively). Using current modeling methods, it is possible to predict below ground biomass and estimate root bulking rates for selection of early root bulking in cassava. Results of this approach suggested that the general model was over predicting at early growth stages but became more precise in later root development.

  13. Using Electronic Portfolio to Promote Professional Learning Community for Pre-Service Early Childhood Teachers at Alquds University

    ERIC Educational Resources Information Center

    Khales, Buad

    2016-01-01

    The present study aims to explore whether the electronic portfolio can influence pre-service teachers' education and to examine how professional learning communities develop through electronic portfolios. To achieve this, twenty-four student-teachers taking a course in early childhood education at Al-Quds University participated in a study to…

  14. Addressing Impacts of Geomagnetic Disturbances on the North American Bulk Power System

    NASA Astrophysics Data System (ADS)

    Rollison, Eric; Moura, John; Lauby, Mark

    2011-08-01

    In a joint report issued in June 2010, the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy (DOE) identified geomagnetic disturbances as a high-impact, low-frequency (HILF) event risk to bulk power system reliability. The potential impact of geomagnetic disturbance events has gained renewed attention as recent studies have suggested that solar storms may be more severe and reach lower geographic latitudes than formerly expected and can affect bulk power system reliability. The most well known power system experience with geomagnetic disturbances in North America was the 13-14 March 1989 storm, which led to the collapse of the Hydro-Québec system in the early morning hours of 13 March 1989, lasting approximately 9 hours. NERC is actively addressing a range of HILF event risks to bulk power system reliability through the efforts of four of its task forces: Geomagnetic Disturbance, Spare Equipment Database, Cyber and Physical Attack, and Severe Impact Resilience. These task forces operate under the direction of three NERC committees: Planning, Operating, and Critical Infrastructure Protection. The NERC Geomagnetic Disturbance Task Force (GMDTF), which was established in September 2010, is charged with investigating the implications of geomagnetic disturbances to the reliability of bulk power systems and developing solutions to help mitigate these risks. The objective of these efforts is to develop models to better understand the nature and effects of coronal mass ejections (CMEs), the vulnerabilities of equipment, bulk power system design considerations, our ability to reduce the operational and real-time impacts of geomagnetic disturbances on the bulk power system, and restoration methods, as well as to inventory long-lead-time equipment. For more information on the current activities of the GMDTF, please visit: www.nerc.com/filez/gmdtf.html

  15. Ignition and combustion of bulk metals in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Branch, Melvyn C.; Daily, J. W.; Abbud-Madrid, Angel

    1994-01-01

    Knowledge of the oxidation, ignition, and combustion of bulk metals is important for fire safety in the production, management, and utilization of liquid and gaseous oxygen for ground based and space applications. This report summarizes research under NASA support to investigate the ignition and combustion characteristics of bulk metals under varying gravity conditions. Metal ignition and combustion have not been studied previously under these conditions and the results are important not only for improved fire safety but also to increase knowledge of basic ignition and combustion mechanisms. The studies completed to date have led to the development of a clean and reproducible ignition source and diagnostic techniques for combustion measurements and have provided normal gravity combustion data on ten different pure metals. Metal specimens were ignited using a xenon short-arc lamp and measurements were made of the radiant energy flux, surface temperature history, spectroscopy of surface and gas products, and surface morphology and chemistry. Elevated gravity was provided by the University of Colorado Geotechnical Centrifuge.

  16. PhD Thesis: String theory in the early universe

    NASA Astrophysics Data System (ADS)

    Gwyn, Rhiannon

    2009-11-01

    The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.

  17. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers

    PubMed Central

    2017-01-01

    This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals’ pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers. PMID:28178270

  18. Encouraging entrepreneurship in university labs: Research activities, research outputs, and early doctorate careers.

    PubMed

    Roach, Michael

    2017-01-01

    This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals' pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers.

  19. Toxic Effects of Nickel Oxide Bulk and Nanoparticles on the Aquatic Plant Lemna gibba L.

    PubMed Central

    Oukarroum, Abdallah; Barhoumi, Lotfi; Samadani, Mahshid

    2015-01-01

    The aquatic plant Lemna gibba L. was used to investigate and compare the toxicity induced by 30 nm nickel oxide nanoparticles (NiO-NPs) and nickel(II) oxide as bulk (NiO-Bulk). Plants were exposed during 24 h to 0–1000 mg/L of NiO-NPs or NiO-Bulk. Analysis of physicochemical characteristics of nanoparticles in solution indicated agglomerations of NiO-NPs in culture medium and a wide size distribution was observed. Both NiO-NPs and NiO-Bulk caused a strong increase in reactive oxygen species (ROS) formation, especially at high concentration (1000 mg/L). These results showed a strong evidence of a cellular oxidative stress induction caused by the exposure to NiO. Under this condition, NiO-NPs and NiO-Bulk induced a strong inhibitory effect on the PSII quantum yield, indicating an alteration of the photosynthetic electron transport performance. Under the experimental conditions used, it is clear that the observed toxicity impact was mainly due to NiO particles effect. Therefore, results of this study permitted determining the use of ROS production as an early biomarker of NiO exposure on the aquatic plant model L. gibba used in toxicity testing. PMID:26075242

  20. Worms under Pressure: Bulk Mechanical Properties of C. elegans Are Independent of the Cuticle

    PubMed Central

    Gilpin, William; Uppaluri, Sravanti; Brangwynne, Clifford P.

    2015-01-01

    The mechanical properties of cells and tissues play a well-known role in physiology and disease. The model organism Caenorhabditis elegans exhibits mechanical properties that are still poorly understood, but are thought to be dominated by its collagen-rich outer cuticle. To our knowledge, we use a novel microfluidic technique to reveal that the worm responds linearly to low applied hydrostatic stress, exhibiting a volumetric compression with a bulk modulus, κ = 140 ± 20 kPa; applying negative pressures leads to volumetric expansion of the worm, with a similar bulk modulus. Surprisingly, however, we find that a variety of collagen mutants and pharmacological perturbations targeting the cuticle do not impact the bulk modulus. Moreover, the worm exhibits dramatic stiffening at higher stresses—behavior that is also independent of the cuticle. The stress-strain curves for all conditions can be scaled onto a master equation, suggesting that C. elegans exhibits a universal elastic response dominated by the mechanics of pressurized internal organs. PMID:25902429

  1. Magnetic fields and chiral asymmetry in the early hot universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sydorenko, Maksym; Shtanov, Yuri; Tomalak, Oleksandr, E-mail: maxsydorenko@gmail.com, E-mail: tomalak@uni-mainz.de, E-mail: shtanov@bitp.kiev.ua

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field andmore » lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.« less

  2. Bulk Viscous Anisotropic Cosmological Models with Variable G and Λ

    NASA Astrophysics Data System (ADS)

    Pradhan, Anirudh; Yadav, Vinod Kumar; Dolgov, A.

    The Einstein field equations with bulk viscosity and variable G and Λ for Bianchi-type universes are studied under the assumption of a power-law time variation of the expansion factor, achieved via a suitable power-law assumption for the Hubble parameter suggested by M. S. Berman. All the models have a power-law variation of pressure and density and are singular at the epoch t = 0. The variation of G(t) as (1)/(t) and Λ(t) as (1)/(t2) is consistent with these models.

  3. Inflationary universe in terms of a van der Waals viscous fluid

    NASA Astrophysics Data System (ADS)

    Brevik, I.; Elizalde, E.; Odintsov, S. D.; Timoshkin, A. V.

    The inflationary expansion of our early-time universe is considered in terms of the van der Waals equation, as equation of state for the cosmic fluid, where a bulk viscosity contribution is assumed to be present. The corresponding gravitational equations for the energy density in a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker universe are solved, and an analytic expression for the scale factor is obtained. Attention is paid, specifically, to the role of the viscosity term in the accelerated expansion; the values of the slow-roll parameters, the spectral index, and the tensor-to-scalar ratio for the van der Waals model are calculated and compared with the most recent astronomical data from the Planck satellite. By imposing reasonable restrictions on the parameters of the van der Waals equation, in the presence of viscosity, it is shown to be possible for this model to comply quite precisely with the observational data. One can therefore conclude that the inclusion of viscosity in the theory of the inflationary epoch may definitely improve the cosmological models.

  4. Home and Community Language Proficiency in Spanish-English Early Bilingual University Students.

    PubMed

    Schmidtke, Jens

    2017-10-17

    This study assessed home and community language proficiency in Spanish-English bilingual university students to investigate whether the vocabulary gap reported in studies of bilingual children persists into adulthood. Sixty-five early bilinguals (mean age = 21 years) were assessed in English and Spanish vocabulary and verbal reasoning ability using subtests of the Woodcock-Muñoz Language Survey-Revised (Schrank & Woodcock, 2009). Their English scores were compared to 74 monolinguals matched in age and level of education. Participants also completed a background questionnaire. Bilinguals scored below the monolingual control group on both subtests, and the difference was larger for vocabulary compared to verbal reasoning. However, bilinguals were close to the population mean for verbal reasoning. Spanish scores were on average lower than English scores, but participants differed widely in their degree of balance. Participants with an earlier age of acquisition of English and more current exposure to English tended to be more dominant in English. Vocabulary tests in the home or community language may underestimate bilingual university students' true verbal ability and should be interpreted with caution in high-stakes situations. Verbal reasoning ability may be more indicative of a bilingual's verbal ability.

  5. Bar Evolution and Bar Properties from Disc Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Hutchinson-Smith, Tenley; Simmons, Brooke

    2017-01-01

    Bars in disc galaxies indicate a large collection of stars in a specific configuration of orbits that give the galaxy center a rectangular looking feature. Astronomers have discovered that these bars affect the distribution of matter in galaxies, and are also related to galaxy stellar mass and star formation history. Little is known about the specifics of how bars evolve and drive the evolution of their host galaxies because only a handful of bars have been studied in detail so far. I have examined a sample of 8,221 barred galaxies from the early universe to identify and examine correlations with galaxy properties. The data comes from Galaxy Zoo, an online citizen science project that allows anyone to classify and measure detailed properties of galaxies. I present results including the fraction of galaxies in the sample that have bars, and the variation of galaxy properties with bar length, including galaxy color and stellar mass. I also compare these results to barred galaxies in the local universe. I will discuss the implications of these results in the context of galaxy evolution overall, including the effect of dark matter on bars and galaxy evolution.

  6. Influence of the turbulent motion on the chiral magnetic effect in the early universe

    NASA Astrophysics Data System (ADS)

    Dvornikov, Maxim; Semikoz, Victor B.

    2017-02-01

    We study the magnetohydrodynamics of relativistic plasmas accounting for the chiral magnetic effect (CME). To take into account the evolution of the plasma velocity, obeying the Navier-Stokes equation, we approximate it by the Lorentz force accompanied by the phenomenological drag time parameter. On the basis of this ansatz, we obtain the contributions of both the turbulence effects, resulting from the dynamo term, and the magnetic field instability, caused by the CME, to the evolution of the magnetic field governed by the modified Faraday equation. In this way, we explore the evolution of the magnetic field energy and the magnetic helicity density spectra in the early Universe plasma. We find that the right-left electron asymmetry is enhanced by the turbulent plasma motion in a strong seed magnetic field compared to the pure CME case studied earlier for the hot Universe plasma in the same broken phase.

  7. 49 CFR 172.514 - Bulk packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings. 172.514 Section 172.514... SECURITY PLANS Placarding § 172.514 Bulk packagings. (a) Except as provided in paragraph (c) of this section, each person who offers for transportation a bulk packaging which contains a hazardous material...

  8. Representing massive gravitons, as a way to quantify early universe magnetic field contributions to space-time, created by non linear electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckwith, Andrew Walcott, E-mail: Rwill9955b@gmail.com

    We review a relationship between cosmological vacuum energy and massive gravitons as given by Garattini and also the nonlinear electrodynamics of Camara et.al (2004) for a non singular universe and NLED. . In evaluating the Garattini result, we find that having the scale factor close to zero due to a given magnetic field value in, an early universe magnetic field affects how we would interpret Garattini’s linkage of the ‘cosmological constant’ value and non zero graviton mass.. We close as to how these initial conditions affect the issue of an early universe initial pressure and its experimental similarities and differencesmore » with results by Corda and Questa as to negative pressure at the surface of a star. Note, that in theDupays et.al. article , the star in question is rapidly spinning, which is not. assumed in the Camara et.al article , for an early universe. Also, Corda and Questa do not assume a spinning star. We conclude with a comparison between the Lagrangian Dupays and other authors bring up for non linear electrodynamics which is for rapidly spinning neutron stars , and a linkage between the Goldstone theorem and NLED. Our conclusion is for generalizing results seen in the Dupays neutron star Lagrangian with conditions which may confirm C. A. Escobar and L. F. Urrutia’s work on the Goldstone theorem and non linear electrodynamics, for some future projects we have in mind. If the universe does not spin, then we will stick with the density analogy given by adapting density as proportional to one over the fourth power of the minimum value of the scale factor as computed by adaptation of the Camara et.al.(2004) theory for non spinning universes. What may happen is that the Camara (2004) density and Quintessential density are both simultaneously satisfied, which would put additional restrictions on the magnetic field, which is one of our considerations, regardless if a universe spins, akin to spinning neutron stars. The spinning universe though

  9. Supersonic gas streams enhance the formation of massive black holes in the early universe

    NASA Astrophysics Data System (ADS)

    Hirano, Shingo; Hosokawa, Takashi; Yoshida, Naoki; Kuiper, Rolf

    2017-09-01

    Supermassive black holes existed less than a billion years after the Big Bang. Because black holes can grow at a maximum rate that depends on their current mass, it has been difficult to understand how such massive black holes could have formed so quickly. Hirano et al. developed simulations to show that streaming motions—velocity offsets between the gas and dark matter components—could have produced black holes with tens of thousands of solar masses in the early universe. That's big enough to grow into the supermassive black holes that we observe today.

  10. Matter-antimatter asymmetry in the universe via string-inspired CPT violation at early eras

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.

    2018-01-01

    In four-space-time dimensional string/brane theory, obtained either through compactification of the extra spatial dimensions, or by appropriate restriction to brane worlds with three large spatial dimensions, the rich physics potential associated with the presence of non-trivial Kalb-Ramond (KR) axion-like fields has not been fully exploited so far. In this talk, I discuss a scenario whereby such fields produce spontaneous Lorentz- and CPT-violating cosmological backgrounds over which strings propagate, which in the early Universe can lead to Baryogenesis through Leptogenesis in models with heavy right-handed neutrinos.

  11. Early cosmology constrained

    NASA Astrophysics Data System (ADS)

    Verde, Licia; Bellini, Emilio; Pigozzo, Cassio; Heavens, Alan F.; Jimenez, Raul

    2017-04-01

    We investigate our knowledge of early universe cosmology by exploring how much additional energy density can be placed in different components beyond those in the ΛCDM model. To do this we use a method to separate early- and late-universe information enclosed in observational data, thus markedly reducing the model-dependency of the conclusions. We find that the 95% credibility regions for extra energy components of the early universe at recombination are: non-accelerating additional fluid density parameter ΩMR < 0.006 and extra radiation parameterised as extra effective neutrino species 2.3 < Neff < 3.2 when imposing flatness. Our constraints thus show that even when analyzing the data in this largely model-independent way, the possibility of hiding extra energy components beyond ΛCDM in the early universe is seriously constrained by current observations. We also find that the standard ruler, the sound horizon at radiation drag, can be well determined in a way that does not depend on late-time Universe assumptions, but depends strongly on early-time physics and in particular on additional components that behave like radiation. We find that the standard ruler length determined in this way is rs = 147.4 ± 0.7 Mpc if the radiation and neutrino components are standard, but the uncertainty increases by an order of magnitude when non-standard dark radiation components are allowed, to rs = 150 ± 5 Mpc.

  12. Early cosmology constrained

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verde, Licia; Jimenez, Raul; Bellini, Emilio

    We investigate our knowledge of early universe cosmology by exploring how much additional energy density can be placed in different components beyond those in the ΛCDM model. To do this we use a method to separate early- and late-universe information enclosed in observational data, thus markedly reducing the model-dependency of the conclusions. We find that the 95% credibility regions for extra energy components of the early universe at recombination are: non-accelerating additional fluid density parameter Ω{sub MR} < 0.006 and extra radiation parameterised as extra effective neutrino species 2.3 < N {sub eff} < 3.2 when imposing flatness. Our constraintsmore » thus show that even when analyzing the data in this largely model-independent way, the possibility of hiding extra energy components beyond ΛCDM in the early universe is seriously constrained by current observations. We also find that the standard ruler, the sound horizon at radiation drag, can be well determined in a way that does not depend on late-time Universe assumptions, but depends strongly on early-time physics and in particular on additional components that behave like radiation. We find that the standard ruler length determined in this way is r {sub s} = 147.4 ± 0.7 Mpc if the radiation and neutrino components are standard, but the uncertainty increases by an order of magnitude when non-standard dark radiation components are allowed, to r {sub s} = 150 ± 5 Mpc.« less

  13. From Eminent Men to Excellent Universities: University Rankings as Calculative Devices

    ERIC Educational Resources Information Center

    Hammarfelt, Björn; de Rijcke, Sarah; Wouters, Paul

    2017-01-01

    Global university rankings have become increasingly important "calculative devices" for assessing the "quality" of higher education and research. Their ability to make characteristics of universities "calculable" is here exemplified by the first proper university ranking ever, produced as early as 1910 by the American…

  14. Meteorite zircon constraints on the bulk Lu-Hf isotope composition and early differentiation of the Earth.

    PubMed

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Hibiya, Yuki; Amelin, Yuri

    2015-04-28

    Knowledge of planetary differentiation is crucial for understanding the chemical and thermal evolution of terrestrial planets. The (176)Lu-(176)Hf radioactive decay system has been widely used to constrain the timescales and mechanisms of silicate differentiation on Earth, but the data interpretation requires accurate estimation of Hf isotope evolution of the bulk Earth. Because both Lu and Hf are refractory lithophile elements, the isotope evolution can be potentially extrapolated from the present-day (176)Hf/(177)Hf and (176)Lu/(177)Hf in undifferentiated chondrite meteorites. However, these ratios in chondrites are highly variable due to the metamorphic redistribution of Lu and Hf, making it difficult to ascertain the correct reference values for the bulk Earth. In addition, it has been proposed that chondrites contain excess (176)Hf due to the accelerated decay of (176)Lu resulting from photoexcitation to a short-lived isomer. If so, the paradigm of a chondritic Earth would be invalid for the Lu-Hf system. Herein we report the first, to our knowledge, high-precision Lu-Hf isotope analysis of meteorite crystalline zircon, a mineral that is resistant to metamorphism and has low Lu/Hf. We use the meteorite zircon data to define the Solar System initial (176)Hf/(177)Hf (0.279781 ± 0.000018) and further to identify pristine chondrites that contain no excess (176)Hf and accurately represent the Lu-Hf system of the bulk Earth ((176)Hf/(177)Hf = 0.282793 ± 0.000011; (176)Lu/(177)Hf = 0.0338 ± 0.0001). Our results provide firm evidence that the most primitive Hf in terrestrial zircon reflects the development of a chemically enriched silicate reservoir on Earth as far back as 4.5 billion years ago.

  15. Meteorite zircon constraints on the bulk Lu−Hf isotope composition and early differentiation of the Earth

    PubMed Central

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Hibiya, Yuki; Amelin, Yuri

    2015-01-01

    Knowledge of planetary differentiation is crucial for understanding the chemical and thermal evolution of terrestrial planets. The 176Lu−176Hf radioactive decay system has been widely used to constrain the timescales and mechanisms of silicate differentiation on Earth, but the data interpretation requires accurate estimation of Hf isotope evolution of the bulk Earth. Because both Lu and Hf are refractory lithophile elements, the isotope evolution can be potentially extrapolated from the present-day 176Hf/177Hf and 176Lu/177Hf in undifferentiated chondrite meteorites. However, these ratios in chondrites are highly variable due to the metamorphic redistribution of Lu and Hf, making it difficult to ascertain the correct reference values for the bulk Earth. In addition, it has been proposed that chondrites contain excess 176Hf due to the accelerated decay of 176Lu resulting from photoexcitation to a short-lived isomer. If so, the paradigm of a chondritic Earth would be invalid for the Lu−Hf system. Herein we report the first, to our knowledge, high-precision Lu−Hf isotope analysis of meteorite crystalline zircon, a mineral that is resistant to metamorphism and has low Lu/Hf. We use the meteorite zircon data to define the Solar System initial 176Hf/177Hf (0.279781 ± 0.000018) and further to identify pristine chondrites that contain no excess 176Hf and accurately represent the Lu−Hf system of the bulk Earth (176Hf/177Hf = 0.282793 ± 0.000011; 176Lu/177Hf = 0.0338 ± 0.0001). Our results provide firm evidence that the most primitive Hf in terrestrial zircon reflects the development of a chemically enriched silicate reservoir on Earth as far back as 4.5 billion years ago. PMID:25870298

  16. Post-recombination early Universe cooling by translation-internal inter-conversion: The role of minor constituents.

    PubMed

    McCaffery, Anthony J

    2015-09-14

    Little is known of the mechanism by which H and H2, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H2, as Δj = - 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H2 in a H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H2 + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.

  17. Post-recombination early Universe cooling by translation–internal inter-conversion: The role of minor constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffery, Anthony J., E-mail: A.J.McCaffery@sussex.ac.uk

    Little is known of the mechanism by which H and H{sub 2}, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H{sub 2}, as Δj = − 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H{sub 2} in amore » H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H{sub 2} + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.« less

  18. Dust-obscured star-forming galaxies in the early universe

    NASA Astrophysics Data System (ADS)

    Wilkins, Stephen M.; Feng, Yu; Di Matteo, Tiziana; Croft, Rupert; Lovell, Christopher C.; Thomas, Peter

    2018-02-01

    Motivated by recent observational constraints on dust reprocessed emission in star-forming galaxies at z ∼ 6 and above, we use the very large cosmological hydrodynamical simulation BLUETIDES to explore predictions for the amount of dust-obscured star formation in the early Universe (z > 8). BLUETIDES matches current observational constraints on both the UV luminosity function and galaxy stellar mass function and predicts that approximately 90 per cent of the star formation in high-mass (M* > 1010 M⊙) galaxies at z = 8 is already obscured by dust. The relationship between dust attenuation and stellar mass predicted by BLUETIDES is consistent with that observed at lower redshift. However, observations of several individual objects at z > 6 are discrepant with the predictions, though it is possible that their uncertainties may have been underestimated. We find that the predicted surface density of z ≥ 8 submm sources is below that accessible to current Herschel, SCUBA-2 and Atacama Large Millimetre Array (ALMA) submm surveys. However, as ALMA continues to accrue an additional surface area the population of z > 8 dust-obscured galaxies may become accessible in the near future.

  19. Early universe with modified scalar-tensor theory of gravity

    NASA Astrophysics Data System (ADS)

    Mandal, Ranajit; Sarkar, Chandramouli; Sanyal, Abhik Kumar

    2018-05-01

    Scalar-tensor theory of gravity with non-minimal coupling is a fairly good candidate for dark energy, required to explain late-time cosmic evolution. Here we study the very early stage of evolution of the universe with a modified version of the theory, which includes scalar curvature squared term. One of the key aspects of the present study is that, the quantum dynamics of the action under consideration ends up generically with de-Sitter expansion under semiclassical approximation, rather than power-law. This justifies the analysis of inflationary regime with de-Sitter expansion. The other key aspect is that, while studying gravitational perturbation, the perturbed generalized scalar field equation obtained from the perturbed action, when matched with the perturbed form of the background scalar field equation, relates the coupling parameter and the potential exactly in the same manner as the solution of classical field equations does, assuming de-Sitter expansion. The study also reveals that the quantum theory is well behaved, inflationary parameters fall well within the observational limit and quantum perturbation analysis shows that the power-spectrum does not deviate considerably from the standard one obtained from minimally coupled theory.

  20. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    PubMed

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang. Copyright © 2014, American Association for the Advancement of Science.

  1. "Swim or Sink": State of Induction in the Deployment of Early Career Academics into Teaching at Makerere University

    ERIC Educational Resources Information Center

    Ssempebwa, Jude; Teferra, Damtew; Bakkabulindi, Fred Edward K.

    2016-01-01

    Conducted as part of a multi-country study of the teaching-related experiences and expectations of early career academics (ECAs) in Africa, this study investigated the major influences on the teaching practice of ECAs at Makerere University; the mechanisms by which these academics learn to teach; the teaching-related challenges they experience;…

  2. Chronology of formation of early solar system solids from bulk Mg isotope analyses of CV3 chondrules

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Wei; Claydon, Jennifer L.; Elliott, Tim; Coath, Christopher D.; Lai, Yi-Jen; Russell, Sara S.

    2018-04-01

    We have analysed the petrography, major element abundances and bulk Al-Mg isotope systematics of 19 ferromagnesian chondrules from the CV3 chondrites Allende, Mokoia, and Vigarano, together with an Al-rich chondrule and refractory olivine from Mokoia. Co-variations of Al/Mg with Na/Mg and Ti/Mg in our bulk chondrules suggest their compositions are dominantly controlled by reworking of different proportions of chondrule components (e.g. mafic minerals and mesostatis); their precursors are thus fragments from prior generations of chondrules. Our samples show a range in fractionation corrected 26Mg/24Mg (Δ‧26Mg) ∼ 60 ppm, relative to precisions <±5 ppm (2se) and these values broadly covary with 27Al/24Mg. The data can be used to calculate model initial 26Al/27Al, or (26Al/27Al)0, of the chondrule precursors. Our resolvably radiogenic chondrules yield model (26Al/27Al)0 ∼ 1-2 × 10-5, equivalent to model "ages" of precursor formation ≦1 Ma post CAI. However, many of our chondrules show near solar Δ‧26Mg and no variability despite a range in 27Al/24Mg. This suggests their derivation either from younger precursor chondrules or open system behaviour once 26Al was effectively extinct ((26Al/27Al)0 < 0.8 × 10-5, given the resolution here). Evidence for the latter explanation is provided by marked rims of orthopyroxene replacing olivine, indicating reaction of chondrules with a surrounding silicate vapour. Concurrent isotopic exchange of Mg with a near chondritic vapour during late reworking could explain their isotopic systematics. One ferromagnesian object is dominated by a high Mg# olivine with elevated Ti and Ca abundances. This refractory olivine has a markedly negative Δ‧26Mg = -16 ± 3 ppm (2se), reflecting its early removal (model age of <0.5 Ma post CAI), from a reservoir with evolving Δ‧26Mg. If representative of the chondrule forming region, this grain defines a minimum interval of radiogenic ingrowth for CV chondrites commensurate with (26Al

  3. Topological Defects and Structures in the Early Universe

    NASA Astrophysics Data System (ADS)

    Zhu, Yong

    1997-08-01

    This thesis discusses the topological defects generated in the early universe and their contributions to cosmic structure formation. First, we investigate non-Gaussian isocurvature perturbations generated by the evolution of Goldstone modes during inflation. If a global symmetry is broken before inflation, the resulting Goldstone modes are disordered during inflation in a precise and predictable way. After inflation these Goldstone modes order themselves in a self-similar way, much as Goldstone modes in field ordering scenarios based on the Kibble mechanism. For (Hi2/Mpl2)~10- 6, through their gravitational interaction these Goldstone modes generate density perturbations of approximately the right magnitude to explain the cosmic microwave background (CMB) anisotropy and seed the structure seen in the universe today. In such a model non-Gaussian perturbations result because to lowest order density perturbations are sourced by products of Gaussian fields. We explore the issue of phase dispersion and conclude that this non-Gaussian model predicts Doppler peaks in the CMB anisotropy. Topological defects generated from quantum fluctuations during inflation are studied in chapter four. We present a calculation of the power spectrum generated in a classically symmetry-breaking O(N) scalar field through inflationary quantum fluctuations, using the large-N limit. The effective potential of the theory in de Sitter space is obtained from a gap equation which is exact at large N. Quantum fluctuations restore the O(N) symmetry in de Sitter space, but for the finite values of N of interest, there is symmetry breaking and phase ordering after inflation, described by the classical nonlinear sigma model. The scalar field power spectrum is obtained as a function of the scalar field self-coupling. In the second part of the thesis, we investigate non-Abelian topological worm-holes, obtained when winding number one texture field is coupled to Einstein gravity with a conserved global

  4. Bulk undercooling

    NASA Technical Reports Server (NTRS)

    Kattamis, T. Z.

    1984-01-01

    Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.

  5. Energy Feedback from X-ray Binaries in the Early Universe

    NASA Technical Reports Server (NTRS)

    Fragos, T.; Lehmer, B..; Naoz, S.; Zezas, A.; Basu-Zych, A.

    2013-01-01

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z (redshift) approximately equal to 20) until today.We estimate that X-ray emission from XRBs dominates over AGN at z (redshift) greater than or approximately equal to 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by approximately 4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of approximately 300 Myr (million years) and then decreases gradually at later times, showing little variation for mean stellar ages 3 Gyr (Giga years, or billion years). Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  6. Bulk crystalline optomechanics

    NASA Astrophysics Data System (ADS)

    Renninger, W. H.; Kharel, P.; Behunin, R. O.; Rakich, P. T.

    2018-06-01

    Control of long-lived, high-frequency phonons using light offers a path towards creating robust quantum links, and could lead to tools for precision metrology with applications to quantum information processing. Optomechanical systems based on bulk acoustic-wave resonators are well suited for this goal in light of their high quality factors, and because they do not suffer from surface interactions as much as their microscale counterparts. However, so far these phonons have been accessible only electromechanically, using piezoelectric interactions. Here, we demonstrate customizable optomechanical coupling to macroscopic phonon modes of a bulk acoustic-wave resonator at cryogenic temperatures. These phonon modes, which are formed by shaping the surfaces of a crystal into a plano-convex phononic resonator, yield appreciable optomechanical coupling rates, providing access to high acoustic quality factors (4.2 × 107) at high phonon frequencies (13 GHz). This simple approach, which uses bulk properties rather than nanostructural control, is appealing for the ability to engineer optomechanical systems at high frequencies that are robust against thermal decoherence. Moreover, we show that this optomechanical system yields a unique form of dispersive symmetry-breaking that enables phonon heating or cooling without an optical cavity.

  7. Chemical Evolution and the Formation of Dwarf Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Cote, Benoit; JINA-CEE, NuGrid, ChETEC

    2018-06-01

    Stellar abundances in local dwarf galaxies offer a unique window into the nature and nucleosynthesis of the first stars. They also contain clues regarding how galaxies formed and assembled in the early stages of the universe. In this talk, I will present our effort to connect nuclear astrophysics with the field of galaxy formation in order to define what can be learned about galaxy evolution using stellar abundances. In particular, I will describe the current state of our numerical chemical evolution pipeline which accounts for the mass assembly history of galaxies, present how we use high-redshift cosmological hydrodynamic simulations to calibrate our models and to learn about the formation of dwarf galaxies, and address the challenge of identifying the dominant r-process site(s) using stellar abundances.

  8. Relative entropy equals bulk relative entropy

    DOE PAGES

    Jafferis, Daniel L.; Lewkowycz, Aitor; Maldacena, Juan; ...

    2016-06-01

    We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.

  9. Entropy Growth in the Early Universe and Confirmation of Initial Big Bang Conditions

    NASA Astrophysics Data System (ADS)

    Beckwith, Andrew

    2009-09-01

    This paper shows how increased entropy values from an initially low big bang level can be measured experimentally by counting relic gravitons. Furthermore the physical mechanism of this entropy increase is explained via analogies with early-universe phase transitions. The role of Jack Ng's (2007, 2008a, 2008b) revised infinite quantum statistics in the physics of gravitational wave detection is acknowledged. Ng's infinite quantum statistics can be used to show that ΔS~ΔNgravitons is a startmg point to the increasing net universe cosmological entropy. Finally, in a nod to similarities AS ZPE analysis, it is important to note that the resulting ΔS~ΔNgravitons ≠ 1088, that in fact it is much lower, allowing for evaluating initial graviton production as an emergent field phenomena, which may be similar to how ZPE states can be used to extract energy from a vacuum if entropy is not maximized. The rapid increase in entropy so alluded to without near sudden increases to 1088 may be enough to allow successful modeling of relic graviton production for entropy in a manner similar to ZPE energy extraction from a vacuum state.

  10. Comparison of platelet activation through hinge vs bulk flow in mechanical heart valves

    NASA Astrophysics Data System (ADS)

    Hedayat, Mohammadali; Borazjani, Iman

    2017-11-01

    Bileaflet mechanical heart valves increase the risk of thrombus formation in patients which is believed to be initiated by platelet activation. Platelets can be activated by the elevated shear stresses in the bulk flow during the systole phase or the flow through the hinge during the diastole. However, the importance of platelet activation by the bulk flow vs the hinge in MHVs has yet to be studied. Here, we investigate the contribution of each of the above mechanisms to the activation of platelets in MHs by performing simulation of the flow through a 25mm St. Jude Medical valve placed in a straight aorta. Two different gap sizes (250 and 150 micrometer) are used in this study. The simulations are done using a sharp interface curvilinear immersed boundary method along with a strong-coupling algorithm for FSI solver on overset grids. The platelet activation through the hinge for different gap sizes is compared to the activation in the bulk flow using two platelet activation models to ensure the consistency of the results. Our results for all gap sizes using different activation models show that the integration of platelet activation caused by the bulk flow is several times higher in comparison to the activation through the hinge. This work is supported by the American Heart Association Grant 13SDG17220022, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.

  11. Finite element analysis and simulation of rheological properties of bulk molding compound (BMC)

    NASA Astrophysics Data System (ADS)

    Ergin, M. Fatih; Aydin, Ismail

    2013-12-01

    Bulk molding compound (BMC) is one of the important composite materials with various engineering applications. BMC is a thermoset plastic resin blend of various inert fillers, fiber reinforcements, catalysts, stabilizers and pigments that form a viscous, molding compound. Depending on the end-use application, bulk molding compounds are formulated to achieve close dimensional control, flame and scratch resistance, electrical insulation, corrosion and stain resistance, superior mechanical properties, low shrink and color stability. Its excellent flow characteristics, dielectric properties, and flame resistance make this thermoset material well-suited to a wide variety of applications requiring precision in detail and dimensions as well as high performance. When a BMC is used for these purposes, the rheological behavior and properties of the BMC is the main concern. In this paper, finite element analysis of rheological properties of bulk molding composite material was studied. For this purpose, standard samples of composite material were obtained by means of uniaxial hot pressing. 3 point flexural tests were then carried out by using a universal testing machine. Finite element analyses were then performed with defined material properties within a specific constitutive material behavior. Experimental and numerical results were then compared. Good correlation between the numerical simulation and the experimental results was obtained. It was expected with this study that effects of various process parameters and boundary conditions on the rheological behavior of bulk molding compounds could be determined by means of numerical analysis without detailed experimental work.

  12. Brane universes with Gauss-Bonnet-induced-gravity

    NASA Astrophysics Data System (ADS)

    Brown, Richard A.

    2007-04-01

    The DGP brane world model allows us to get the observed late time acceleration via modified gravity, without the need for a “dark energy” field. This can then be generalised by the inclusion of high energy terms, in the form of a Gauss-Bonnet bulk. This is the basis of the Gauss-Bonnet-Induced-Gravity (GBIG) model explored here with both early and late time modifications to the cosmological evolution. Recently the simplest GBIG models (Minkowski bulk and no brane tension) have been analysed. Two of the three possible branches in these models start with a finite density “Big-Bang” and with late time acceleration. Here we present a comprehensive analysis of more general models where we include a bulk cosmological constant and brane tension. We show that by including these factors it is possible to have late time phantom behaviour.

  13. Meteoroid Bulk Density and Ceplecha Types

    NASA Technical Reports Server (NTRS)

    Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.

    2017-01-01

    The determination of asteroid bulk density is an important aspect of Near Earth Object (NEO) characterization. A fraction of meteoroids originate from asteroids (including some NEOs), thus in lieu of mutual perturbations, satellites, or expensive spacecraft missions, a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs (Potentially Hazardous Objects). Meteoroid bulk density is still inherently difficult to measure, and is most often determined by modeling the ablation of the meteoroid. One approach towards determining a meteoroid density distribution entails using a more easily measured proxy for the densities, then calibrating the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, KB (Ceplecha, 1958), which is thought to indicate the strength of a meteoroid and often correlated to different bulk densities in literature. KB is calculated using the air density at the beginning height of the meteor, the initial velocity, and the zenith angle of the radiant; quantities more readily determined than meteoroid bulk density itself. Numerical values of K(sub B) are sorted into groups (A, B, C, etc.), which have been matched to meteorite falls or meteor showers with known composition such as the porous Draconids. An extensive survey was conducted to establish the strength of the relationship between bulk density and K(sub B), specifically looking at those that additionally determined K(sub B) for the meteors. In examining the modeling of high-resolution meteor data from Kikwaya et al. (2011), the correlation between K(sub B) and bulk density was not as strong as hoped. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter (T(sub J)), with meteoroids from Halley Type comets (T(sub J) < 2) exhibiting much lower bulk densities than those originating from Jupiter Family comets and asteroids (T(sub J) > 2

  14. DEPLOYMENT OF THE BULK TRITIUM SHIPPING PACKAGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanton, P.

    A new Bulk Tritium Shipping Package (BTSP) was designed by the Savannah River National Laboratory to be a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The BTSP was certified by the National Nuclear Safety Administration in 2011 for shipments of up to 150 grams of Tritium. Thirty packages were procured and are being delivered to various DOE sites for operational use. This paper summarizes the design features of the BTSP, as well as associated engineered material improvements. Fabrication challenges encountered during production are discussedmore » as well as fielding requirements. Current approved tritium content forms (gas and tritium hydrides), are reviewed, as well as, a new content, tritium contaminated water on molecular sieves. Issues associated with gas generation will also be discussed.« less

  15. Exploring the dusty star-formation in the early Universe using intensity mapping

    NASA Astrophysics Data System (ADS)

    Lagache, Guilaine

    2018-05-01

    In the last decade, it has become clear that the dust-enshrouded star formation contributes significantly to early galaxy evolution. Detection of dust is therefore essential in determining the properties of galaxies in the high-redshift universe. This requires observations at the (sub-)millimeter wavelengths. Unfortunately, sensitivity and background confusion of single dish observations on the one hand, and mapping efficiency of interferometers on the other hand, pose unique challenges to observers. One promising route to overcome these difficulties is intensity mapping of fluctuations which exploits the confusion-limited regime and measures the collective light emission from all sources, including unresolved faint galaxies. We discuss in this contribution how 2D and 3D intensity mapping can measure the dusty star formation at high redshift, through the Cosmic Infrared Background (2D) and [CII] fine structure transition (3D) anisotropies.

  16. Bulk-wave ultrasonic propagation imagers

    NASA Astrophysics Data System (ADS)

    Abbas, Syed Haider; Lee, Jung-Ryul

    2018-03-01

    Laser-based ultrasound systems are described that utilize the ultrasonic bulk-wave sensing to detect the damages and flaws in the aerospace structures. These systems apply pulse-echo or through transmission methods to detect longitudinal through-the-thickness bulk-waves. These thermoelastic waves are generated using Q-switched laser and non-contact sensing is performed using a laser Doppler vibrometer (LDV). Laser-based raster scanning is performed by either twoaxis translation stage for linear-scanning or galvanometer-based laser mirror scanner for angular-scanning. In all ultrasonic propagation imagers, the ultrasonic data is captured and processed in real-time and the ultrasonic propagation can be visualized during scanning. The scanning speed can go up to 1.8 kHz for two-axis linear translation stage based B-UPIs and 10 kHz for galvanometer-based laser mirror scanners. In contrast with the other available ultrasound systems, these systems have the advantage of high-speed, non-contact, real-time, and non-destructive inspection. In this paper, the description of all bulk-wave ultrasonic imagers (B-UPIs) are presented and their advantages are discussed. Experiments are performed with these system on various structures to proof the integrity of their results. The C-scan results produced from non-dispersive, through-the-thickness, bulk-wave detection show good agreement in detection of structural variances and damage location in all inspected structures. These results show that bulk-wave UPIs can be used for in-situ NDE of engineering structures.

  17. On the origin of Hawking mini black-holes and the cold early universe

    NASA Technical Reports Server (NTRS)

    Canuto, V.

    1978-01-01

    A simple argument is outlined leading to the result that the mass of mini black holes exploding today is 10 to the 15th power g. A mathematical model is discussed which indicates that the equation of state is greatly softened in the high-density regime and a phase transition may exist, such that any length (particularly very small sizes) will grow with time irrespective of its relation to the size of the particle horizon. It is shown that the effect of spin-2 mesons with respect to the equation of state is to soften the pressure and make it negative. An analytical expression is given for the probability that any particular region in a hot early universe will evolve into a black hole.

  18. Quasars at Cosmic Dawn: Discoveries and Probes of the Early Universe

    NASA Astrophysics Data System (ADS)

    Wang, Feige; Wu, Xue-Bing; Fan, Xiaohui; Yang, Jinyi; Bian, Fuyan; McGreer, Ian D.; Green, Richard F.; Yang, Qian; Jiang, Linhua; Wang, Ran; DECaLS Team; UHS Team

    2017-01-01

    High redshift quasars, as the most luminous non-transient objects in the early universe, are the most promising tracers to address the history of cosmic reionization and how the origins of super-massive black hole (SMBH) are linked to galaxy formation and evolution. Over the last fifteen years, more than 100 quasars within the first billion years after the Big Bang have been discovered with the highest redshift at 7.1. We have developed a new method to select z>~6 quasars with both high efficiency and high completeness by combing optical and mid-IR Wide-field Infrared Survey Explorer (WISE) photometric data. We have applied this method to SDSS footprint and resulted in the discovery of the most luminous z>6 quasar ever discovered, which hosts a twelve billion solar mass black hole. I will present detailed follow-up observations of the host galaxies and environment of the most luminous quasars using HST, LBT and ALMA, in order to constrain early black hole growth and black hole/galaxy co-evolution at the highest redshift. I will also present initial results from a new quasar survey, which utilizes optical data from DECaLS, which is imaging 6700 deg^2 of sky down to z_AB˜23.0, and neaar-IR data from UHS and UKIDSS, which maps the whole northern sky at Decl.<+60deg. The combination of these datasets allows us to discover quasars at redshift z>~7 and to conduct a complete census of the faint quasar population at z~6.

  19. Looking for a bulk point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maldacena, Juan; Simmons-Duffin, David; Zhiboedov, Alexander

    Here, we consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We also argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at thesemore » locations. Finally, we prove this statement in 1+1 dimensions by CFT methods.« less

  20. Looking for a bulk point

    DOE PAGES

    Maldacena, Juan; Simmons-Duffin, David; Zhiboedov, Alexander

    2017-01-03

    Here, we consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We also argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at thesemore » locations. Finally, we prove this statement in 1+1 dimensions by CFT methods.« less

  1. Fracture Toughness Properties of Gd123 Superconducting Bulks

    NASA Astrophysics Data System (ADS)

    Fujimoto, H.; Murakami, A.

    Fracture toughness properties of melt growth GdBa2Cu3Ox (Gd123) large single domain superconducting bulks with Ag2O of 10 wt% and Pt of 0.5 wt%; 45 mm in diameter and 25 mm in thickness with low void density were evaluated at 77 K through flexural tests of specimens cut from the bulks, and compared to those of a conventional Gd123 with voids. The densified Gd123 bulks were prepared with a seeding and temperature gradient method; first melt processed in oxygen, then crystal growth in air; two-step regulated atmosphere heat treatment. The plane strain fracture toughness, KIC was obtained by the three point flexure test of the specimens with through precrack, referring to the single edge pre-cracked beam (SEPB) method, according to the JIS-R-1607, Testing Methods for Fracture Toughness of High Performance Ceramics. The results show that the fracture toughness of the densified Gd123 bulk with low void density was higher than that of the standard Gd123 bulk with voids, as well as the flexural strength previously reported. We also compared the fracture toughness of as-grown bulks with that of annealed bulks. The relation between the microstructure and the fracture toughness of the Gd123 bulk was clearly shown.

  2. Social Science Research Institutes in the Quality American University. Final Technical Report.

    ERIC Educational Resources Information Center

    Totman, Theodore L.

    The technical report presents a chapter outline and thesis summary of an investigation of social science research institutes in American universities. The bulk of the report presents the thesis in four sections. Section I proposes a typology of organized social research units (OSRUs) in the 11 universities studied. Dimensions used to classify the…

  3. Polder maps: Improving OMIT maps by excluding bulk solvent

    DOE PAGES

    Liebschner, Dorothee; Afonine, Pavel V.; Moriarty, Nigel W.; ...

    2017-02-01

    The crystallographic maps that are routinely used during the structure-solution workflow are almost always model-biased because model information is used for their calculation. As these maps are also used to validate the atomic models that result from model building and refinement, this constitutes an immediate problem: anything added to the model will manifest itself in the map and thus hinder the validation. OMIT maps are a common tool to verify the presence of atoms in the model. The simplest way to compute an OMIT map is to exclude the atoms in question from the structure, update the corresponding structure factorsmore » and compute a residual map. It is then expected that if these atoms are present in the crystal structure, the electron density for the omitted atoms will be seen as positive features in this map. This, however, is complicated by the flat bulk-solvent model which is almost universally used in modern crystallographic refinement programs. This model postulates constant electron density at any voxel of the unit-cell volume that is not occupied by the atomic model. Consequently, if the density arising from the omitted atoms is weak then the bulk-solvent model may obscure it further. A possible solution to this problem is to prevent bulk solvent from entering the selected OMIT regions, which may improve the interpretative power of residual maps. This approach is called a polder (OMIT) map. Polder OMIT maps can be particularly useful for displaying weak densities of ligands, solvent molecules, side chains, alternative conformations and residues both in terminal regions and in loops. As a result, the tools described in this manuscript have been implemented and are available in PHENIX.« less

  4. Faecal bulking efficacy of Australasian breakfast cereals.

    PubMed

    Monro, John A

    2002-01-01

    Faecal bulk may play an important role in preventing a range of disorders of the large bowel, but as yet there is little information available on the relative faecal bulking capacities of various foods. Breakfast cereals are often promoted as a good source of potential bulk for 'inner health' because they provide dietary fibre, but their relative abilities to provide faecal bulk per se have not been described. The faecal bulking efficacy of 28 representative Australasian breakfast cereals was therefore measured. A rat model developed for the purpose, and shown to give similar responses as humans to cereal fibres, was used to measure faecal bulking efficacy as increases in fully hydrated faecal weight/100 g diet, based on precise measurements of food intake, faecal dry matter output and faecal water-holding capacity (g water held without stress/g faecal dry matter). Compared to a baseline diet containing 50% sucrose, increments in hydrated faecal weight due to 50% breakfast cereal ranged from slightly negative (Cornflakes, -2 g/100 g diet) to about 80 g/100 g diet (San Bran). Most breakfast cereals increased hydrated faecal weight by between 10 and 20 g/100 g diet from a baseline of 21 +/- 1.5 g/100 g diet, but four products containing high levels of wheat bran had an exceptionally large impact on hydrated faecal weight (increment > 20 g/100 g diet), and the changes resulted more from relative changes in dry matter output than in faecal water retention/gram. However, as faecal water retention was about 2.5 g water/g faecal dry matter on average, increases in dry matter represented large increases in faecal water load. Faecal bulking indices (FBI) for most of the breakfast cereals were less than 20 (wheat bran = 100). The content of wheat bran equivalents for faecal bulk (WBE(fb)) in the breakfast cereals was calculated from FBI. Most breakfast cereals contributed, per serve, less than 10% of a theoretical daily reference value for faecal bulk (DRV(fb) = 63 WBE

  5. Test Review for Preschool-Wide Evaluation Tool (PreSET) Manual: Assessing Universal Program-Wide Positive Behavior Support in Early Childhood

    ERIC Educational Resources Information Center

    Rodriguez, Billie Jo

    2013-01-01

    The Preschool-Wide Evaluation Tool (PreSET; Steed & Pomerleau, 2012) is published by Paul H. Brookes Publishing Company in Baltimore, MD. The PreSET purports to measure universal and program-wide features of early childhood programs' implementation fidelity of program-wide positive behavior intervention and support (PW-PBIS) and is,…

  6. 33 CFR 127.313 - Bulk storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Bulk storage. 127.313 Section 127.313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The operator...

  7. 33 CFR 127.313 - Bulk storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Bulk storage. 127.313 Section 127.313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The operator...

  8. 33 CFR 127.313 - Bulk storage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Bulk storage. 127.313 Section 127.313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The operator...

  9. 33 CFR 127.313 - Bulk storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Bulk storage. 127.313 Section 127.313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The operator...

  10. 33 CFR 127.313 - Bulk storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Bulk storage. 127.313 Section 127.313 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The operator...

  11. Bulk Composition of Vesta as Constrained by the Dawn Mission and the HED Meteorites

    NASA Technical Reports Server (NTRS)

    Toplis, M. J.; Mizzon, H.; Forni, O.; Monnereau, H.; Prettyman, T. H.; McSween, H. Y.; McCoy, T. J.; Mittlefehldt, D. W.; DeSactis, M. C.; Raymond, C. T.; hide

    2014-01-01

    Of the objects in the main asteroid belt, Vesta is of particular interest as it is large enough to have experienced internal differentiation (520 km diameter), and it is known to have a basaltic surface dominated by FeO-bearing pyroxenes. Furthermore, visible-IR spectra of Vesta and associated Vestoids are remarkably similar to laboratory spectra of Howardite-Eucrite-Diogenite (HED) meteorites, leading to the paradigm that the HEDs ultimately came from Vesta. Geochemical and petrological studies of the HEDs confirm the differentiated nature of the near-surface region of their parent body, and imply that crust extraction occurred well within the first 10 Ma of solar system history Vesta is therefore a prime target for studies that aim to constrain the earliest stages of planet building, and it is within this context that the NASA Dawn spacecraft orbited Vesta from July 2011 to September 2012. The results of the Dawn mission so far have significantly reinforced the HED-Vesta connection, confirming a significant degree of internal differentiation, a surface mineralogy compatible with that of the HEDs, and near-surface ratios of Fe/O and Fe/Si consistent with HED lithologies. The combination of data from the HED meteorites and the Dawn mission thus presents an unprecedented opportunity to use Vesta as a natural laboratory of early differentiation processes in the early solar system. However, the bulk composition of Vesta remains a significant unknown parameter, but one that plays a key role on the physical and chemical properties of the internal and surface reservoirs (core, mantle, crust). Several attempts have been made to constrain the bulk composition of the eucrite parent body, early endeavours relying on petrological or cosmochemical constraints. More recently, individual chondrite class compositions, or mixtures thereof, have been considered, constrained by considerations such as O-isotopes, trace-element ratios and siderophile element concentrations of the

  12. Bulk viscosity of molecular fluids

    NASA Astrophysics Data System (ADS)

    Jaeger, Frederike; Matar, Omar K.; Müller, Erich A.

    2018-05-01

    The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the μs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.

  13. Gravitational potential wells and the cosmic bulk flow

    NASA Astrophysics Data System (ADS)

    Wang, Yuyu; Kumar, Abhinav; Feldman, Hume; Watkins, Richard

    2016-03-01

    The bulk flow is a volume average of the peculiar velocities and a useful probe of the mass distribution on large scales. The gravitational instability model views the bulk flow as a potential flow that obeys a Maxwellian Distribution. We use two N-body simulations, the LasDamas Carmen and the Horizon Run, to calculate the bulk flows of various sized volumes in the simulation boxes. Once we have the bulk flow velocities as a function of scale, we investigate the mass and gravitational potential distribution around the volume. We found that matter densities can be asymmetrical and difficult to detect in real surveys, however, the gravitational potential and its gradient may provide better tools to investigate the underlying matter distribution. This study shows that bulk flows are indeed potential flows and thus provides information on the flow sources. We also show that bulk flow magnitudes follow a Maxwellian distribution on scales > 10h-1 Mpc.

  14. Unified bulk-boundary correspondence for band insulators

    NASA Astrophysics Data System (ADS)

    Rhim, Jun-Won; Bardarson, Jens H.; Slager, Robert-Jan

    2018-03-01

    The bulk-boundary correspondence, a topic of intensive research interest over the past decades, is one of the quintessential ideas in the physics of topological quantum matter. Nevertheless, it has not been proven in all generality and has in certain scenarios even been shown to fail, depending on the boundary profiles of the terminated system. Here, we introduce bulk numbers that capture the exact number of in-gap modes, without any such subtleties in one spatial dimension. Similarly, based on these 1D bulk numbers, we define a new 2D winding number, which we call the pole winding number, that specifies the number of robust metallic surface bands in the gap as well as their topological character. The underlying general methodology relies on a simple continuous extrapolation from the bulk to the boundary, while tracking the evolution of Green's function's poles in the vicinity of the bulk band edges. As a main result we find that all the obtained numbers can be applied to the known insulating phases in a unified manner regardless of the specific symmetries. Additionally, from a computational point of view, these numbers can be effectively evaluated without any gauge fixing problems. In particular, we directly apply our bulk-boundary correspondence construction to various systems, including 1D examples without a traditional bulk-boundary correspondence, and predict the existence of boundary modes on various experimentally studied graphene edges, such as open boundaries and grain boundaries. Finally, we sketch the 3D generalization of the pole winding number by in the context of topological insulators.

  15. A Universal Early Childhood Education System

    ERIC Educational Resources Information Center

    Brown, Christopher P.

    2006-01-01

    In this article, the author demonstrates how the current emphasis on viewing early childhood education (ECE) as an investment keeps ECE at the margins of U.S. political debates as well as in other discussions around the world. Historically, the field of ECE in the United States has struggled, and continues to struggle, for political positioning.…

  16. 46 CFR 148.04-23 - Unslaked lime in bulk.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Unslaked lime in bulk. 148.04-23 Section 148.04-23... HAZARDOUS MATERIALS IN BULK Special Additional Requirements for Certain Material § 148.04-23 Unslaked lime in bulk. (a) Unslaked lime in bulk must be transported in unmanned, all steel, double-hulled barges...

  17. Temporal soil bulk density following tillage

    USDA-ARS?s Scientific Manuscript database

    Soil is the medium for air, energy, water, and chemical transport between the atmosphere and the solid earth. Soil bulk density is a key variable impacting the rate at which this transport occurs. Typically, soil bulk density is measured by the gravimetric method, where a sample of known volume is t...

  18. Spider: Probing the Early Universe with a Large-Scale CMB Polarization Survey

    NASA Astrophysics Data System (ADS)

    Jones, William

    The standard dark-matter and dark-energy dominated cosmological model (LCDM) has proven to be remarkably successful in describing the current state and past evolution of the Universe. However, there remain significant uncertainties regarding the physical mechanisms that established the initial conditions upon which the LCDM predictions rely. Theories of cosmic genesis - the extremely high energy mechanisms that established these conditions - should be expected to provide a natural description of the nearly flat geometry of the Universe, the existence of super-horizon density correlations, and the adiabatic, Gaussian and nearly scale-invariant nature of the observed primordial density perturbations. The primary objective of Spider is to subject models of the early Universe to observational test, probing fundamental physics at energy scales far beyond the reach of terrestrial particle accelerators. The main scientific result will be to characterize, or place stringent upper limits on the level of the odd-parity polarization of the CMB. In the context of the inflationary paradigm, Spider will confirm or exclude the predictions of the simplest single-field inflationary models near the Lyth bound, characterized by tensor to scalar ratios r 0.03. While viable alternatives to the inflationary paradigm are an active and important area of investigation, including string cosmologies and cyclic models, early Universe models described by inflationary periods are now widely accepted as the underlying cause behind much of what we observe in cosmology today. Nevertheless, we know very little about the mechanism that would drive inflation or the energy scale at which it occurred, and the paradigm faces significant questions about the viability of the framework as a scientific theory. Fortunately, inflationary paradigms and alternative theories offer distinct predictions regarding the statistical properties of the Cosmic Microwave Background radiation. Spider will use measurements

  19. Continuity, Support, Togetherness and Trust: Findings from an Evaluation of a University-Administered Early Professional Development Programme for Teachers in England

    ERIC Educational Resources Information Center

    McIntyre, Joanna; Hobson, Andrew J.; Mitchell, Nick

    2009-01-01

    This article discusses the evaluation of a unique university-based early professional development (EPD) programme in England that enabled newly and recently qualified teachers to have continued contact with their initial teacher preparation provider. The programme was designed to enhance the induction, EPD and retention of beginning teachers of…

  20. Bulk solitary waves in elastic solids

    NASA Astrophysics Data System (ADS)

    Samsonov, A. M.; Dreiden, G. V.; Semenova, I. V.; Shvartz, A. G.

    2015-10-01

    A short and object oriented conspectus of bulk solitary wave theory, numerical simulations and real experiments in condensed matter is given. Upon a brief description of the soliton history and development we focus on bulk solitary waves of strain, also known as waves of density and, sometimes, as elastic and/or acoustic solitons. We consider the problem of nonlinear bulk wave generation and detection in basic structural elements, rods, plates and shells, that are exhaustively studied and widely used in physics and engineering. However, it is mostly valid for linear elasticity, whereas dynamic nonlinear theory of these elements is still far from being completed. In order to show how the nonlinear waves can be used in various applications, we studied the solitary elastic wave propagation along lengthy wave guides, and remarkably small attenuation of elastic solitons was proven in physical experiments. Both theory and generation for strain soliton in a shell, however, remained unsolved problems until recently, and we consider in more details the nonlinear bulk wave propagation in a shell. We studied an axially symmetric deformation of an infinite nonlinearly elastic cylindrical shell without torsion. The problem for bulk longitudinal waves is shown to be reducible to the one equation, if a relation between transversal displacement and the longitudinal strain is found. It is found that both the 1+1D and even the 1+2D problems for long travelling waves in nonlinear solids can be reduced to the Weierstrass equation for elliptic functions, which provide the solitary wave solutions as appropriate limits. We show that the accuracy in the boundary conditions on free lateral surfaces is of crucial importance for solution, derive the only equation for longitudinal nonlinear strain wave and show, that the equation has, amongst others, a bidirectional solitary wave solution, which lead us to successful physical experiments. We observed first the compression solitary wave in the

  1. 27 CFR 20.191 - Bulk articles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of this...

  2. 27 CFR 20.191 - Bulk articles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of this...

  3. 27 CFR 20.191 - Bulk articles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of this...

  4. 27 CFR 20.191 - Bulk articles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of this...

  5. 27 CFR 20.191 - Bulk articles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of this...

  6. Iterative absolute electroanalytical approach to characterization of bulk redox conducting systems.

    PubMed

    Lewera, Adam; Miecznikowski, Krzysztof; Chojak, Malgorzata; Makowski, Oktawian; Golimowski, Jerzy; Kulesza, Pawel J

    2004-05-15

    A novel electroanalytical approach is proposed here, and it is demonstrated with the direct and simultaneous determination of two unknowns: the concentration of redox sites and the apparent diffusion coefficient for charge propagation in a single crystal of dodecatungstophosphoric acid. This Keggin-type polyoxometalate serves as a model bulk redox conducting inorganic material for solid-state voltammetry. The system has been investigated using an ultramicrodisk working electrode in the absence of external liquid supporting electrolyte. The analytical method requires numerical solution of the combination of two equations in which the first one describes current (or charge) in a well-defined (either spherical or linear) diffusional regime and the second general equation describes chronoamperometric (or normal pulse voltammetric current) under mixed (linear-spherical) conditions. The iterative approach is based on successive approximations through calculation and minimizing the least-squares error function. The method is fairly universal, and in principle, it can be extended to the investigation of other bulk systems including sol-gel processed materials, redox melts, and solutions on condition that they are electroactive and well behaved, they contain redox centers at sufficiently high level, and a number of electrons for the redox reaction considered is known.

  7. Void asymmetries in the cosmic web: a mechanism for bulk flows

    NASA Astrophysics Data System (ADS)

    Bland-Hawthorn, J.; Sharma, S.

    2016-10-01

    Bulk flows of galaxies moving with respect to the cosmic microwave background are well established observationally and seen in the most recent ΛCDM simulations. With the aid of an idealised Gadget-2 simulation, we show that void asymmetries in the cosmic web can exacerbate local bulk flows of galaxies. The {\\it Cosmicflows-2} survey, which has mapped in detail the 3D structure of the Local Universe, reveals that the Local Group resides in a ``local sheet'' of galaxies that borders a ``local void'' with a diameter of about 40 Mpc. The void is emptying out at a rate of 16 km s-1 Mpc-1. In a co-moving frame, the Local Sheet is found to be moving away from the Local Void at ~ 260 km s-1. Our model shows how asymmetric collapse due to unbalanced voids on either side of a developing sheet or wall can lead to a systematic movement of the sheet. We conjectured that asymmetries could lead to a large-scale separation of dark matter and baryons, thereby driving a dependence of galaxy properties with environment, but we do {\\it not} find any evidence for this effect.

  8. Wilms' tumor blastemal stem cells dedifferentiate to propagate the tumor bulk.

    PubMed

    Shukrun, Rachel; Pode-Shakked, Naomi; Pleniceanu, Oren; Omer, Dorit; Vax, Einav; Peer, Eyal; Pri-Chen, Sara; Jacob, Jasmine; Hu, Qianghua; Harari-Steinberg, Orit; Huff, Vicki; Dekel, Benjamin

    2014-07-08

    An open question remains in cancer stem cell (CSC) biology whether CSCs are by definition at the top of the differentiation hierarchy of the tumor. Wilms' tumor (WT), composed of blastema and differentiated renal elements resembling the nephrogenic zone of the developing kidney, is a valuable model for studying this question because early kidney differentiation is well characterized. WT neural cell adhesion molecule 1-positive (NCAM1(+)) aldehyde dehydrogenase 1-positive (ALDH1(+)) CSCs have been recently isolated and shown to harbor early renal progenitor traits. Herein, by generating pure blastema WT xenografts, composed solely of cells expressing the renal developmental markers SIX2 and NCAM1, we surprisingly show that sorted ALDH1(+) WT CSCs do not correspond to earliest renal stem cells. Rather, gene expression and proteomic comparative analyses disclose a cell type skewed more toward epithelial differentiation than the bulk of the blastema. Thus, WT CSCs are likely to dedifferentiate to propagate WT blastema.

  9. Wilms’ Tumor Blastemal Stem Cells Dedifferentiate to Propagate the Tumor Bulk

    PubMed Central

    Shukrun, Rachel; Pode-Shakked, Naomi; Pleniceanu, Oren; Omer, Dorit; Vax, Einav; Peer, Eyal; Pri-Chen, Sara; Jacob, Jasmine; Hu, Qianghua; Harari-Steinberg, Orit; Huff, Vicki; Dekel, Benjamin

    2014-01-01

    Summary An open question remains in cancer stem cell (CSC) biology whether CSCs are by definition at the top of the differentiation hierarchy of the tumor. Wilms’ tumor (WT), composed of blastema and differentiated renal elements resembling the nephrogenic zone of the developing kidney, is a valuable model for studying this question because early kidney differentiation is well characterized. WT neural cell adhesion molecule 1-positive (NCAM1+) aldehyde dehydrogenase 1-positive (ALDH1+) CSCs have been recently isolated and shown to harbor early renal progenitor traits. Herein, by generating pure blastema WT xenografts, composed solely of cells expressing the renal developmental markers SIX2 and NCAM1, we surprisingly show that sorted ALDH1+ WT CSCs do not correspond to earliest renal stem cells. Rather, gene expression and proteomic comparative analyses disclose a cell type skewed more toward epithelial differentiation than the bulk of the blastema. Thus, WT CSCs are likely to dedifferentiate to propagate WT blastema. PMID:25068119

  10. Early universe cosmology, effective supergravity, and invariants of algebraic forms

    NASA Astrophysics Data System (ADS)

    Sinha, Kuver

    2015-09-01

    The presence of light scalars can have profound effects on early universe cosmology, influencing its thermal history as well as paradigms like inflation and baryogenesis. Effective supergravity provides a framework to make quantifiable, model-independent studies of these effects. The Riemannian curvature of the Kähler manifold spanned by scalars belonging to chiral superfields, evaluated along supersymmetry breaking directions, provides an order parameter (in the sense that it must necessarily take certain values) for phenomena as diverse as slow roll modular inflation, nonthermal cosmological histories, and the viability of Affleck-Dine baryogenesis. Within certain classes of UV completions, the order parameter for theories with n scalar moduli is conjectured to be related to invariants of n -ary cubic forms (for example, for models with three moduli, the order parameter is given by a function on the ring of invariants spanned by the Aronhold invariants). Within these completions, and under the caveats spelled out, this may provide an avenue to obtain necessary conditions for the above phenomena that are in principle calculable given nothing but the intersection numbers of a Calabi-Yau compactification geometry. As an additional result, abstract relations between holomorphic sectional and bisectional curvatures are utilized to constrain Affleck-Dine baryogenesis on a wide class of Kähler geometries.

  11. Squeezed states and graviton-entropy production in the early universe

    NASA Technical Reports Server (NTRS)

    Giovannini, Massimo

    1994-01-01

    Squeezed states are a very useful framework for the quantum treatment of tensor perturbations (i.e. gravitons production) in the early universe. In particular, the non equilibrium entropy growth in a cosmological process of pair production is completely determined by the associated squeezing parameter and is insensitive to the number of particles in the initial state. The total produced entropy may represent a significant fraction of the entropy stored today in the cosmic blackbody radiation, provided pair production originates from a change in the background metric at a curvature scale of the Planck order. Within the formalism of squeezed thermal states it is also possible to discuss the stimulated emission of gravitons from an initial thermal bath, under the action of the cosmic gravitational background field. We find that at low energy the graviton production is enhanced, if compared with spontaneous creation from the vacuum; as a consequence, the inflation scale must be lowered, in order not to exceed the observed CMB quadrupole anisotropy. This effect is important, in particular, for models based on a symmetry-breaking transition which require, as initial condition, a state of thermal equilibrium at temperatures higher than the inflation scale and in which inflation has a minimal duration.

  12. Nanostructured Bulk Thermoelectric Generator for Efficient Power Harvesting for Self-powered Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanliang; Butt, Darryl; Agarwal, Vivek

    2015-07-01

    The objective of this Nuclear Energy Enabling Technology research project is to develop high-efficiency and reliable thermoelectric generators for self-powered wireless sensors nodes utilizing thermal energy from nuclear plant or fuel cycle. The power harvesting technology has crosscutting significance to address critical technology gaps in monitoring nuclear plants and fuel cycle. The outcomes of the project will lead to significant advancement in sensors and instrumentation technology, reducing cost, improving monitoring reliability and therefore enhancing safety. The self-powered wireless sensor networks could support the long-term safe and economical operation of all the reactor designs and fuel cycle concepts, as well asmore » spent fuel storage and many other nuclear science and engineering applications. The research is based on recent breakthroughs in high-performance nanostructured bulk (nanobulk) thermoelectric materials that enable high-efficiency direct heat-to-electricity conversion over a wide temperature range. The nanobulk thermoelectric materials that the research team at Boise State University and University of Houston has developed yield up to a 50% increase in the thermoelectric figure of merit, ZT, compared with state-of-the-art bulk counterparts. This report focuses on the selection of optimal thermoelectric materials for this project. The team has performed extensive study on two thermoelectric materials systems, i.e. the half-Heusler materials, and the Bismuth-Telluride materials. The report contains our recent research results on the fabrication, characterization and thermoelectric property measurements of these two materials.« less

  13. Ectopic expression of dentin sialoprotein during amelogenesis hardens bulk enamel.

    PubMed

    White, Shane N; Paine, Michael L; Ngan, Amanda Y W; Miklus, Vetea G; Luo, Wen; Wang, HongJun; Snead, Malcolm L

    2007-02-23

    Dentin sialophosphpoprotein (Dspp) is transiently expressed in the early stage of secretory ameloblasts. The secretion of ameloblast-derived Dspp is short-lived, correlates to the establishment of the dentinoenamel junction (DEJ), and is consistent with Dspp having a role in producing the specialized first-formed harder enamel adjacent to the DEJ. Crack diffusion by branching and dissipation within this specialized first-formed enamel close to the DEJ prevents catastrophic interfacial damage and tooth failure. Once Dspp is secreted, it is subjected to proteolytic cleavage that results in two distinct proteins referred to as dentin sialoprotein (Dsp) and dentin phosphoprotein (Dpp). The purpose of this study was to investigate the biological and mechanical contribution of Dsp and Dpp to enamel formation. Transgenic mice were engineered to overexpress either Dsp or Dpp in their enamel organs. The mechanical properties (hardness and toughness) of the mature enamel of transgenic mice were compared with genetically matched and age-matched nontransgenic animals. Dsp and Dpp contributions to enamel formation greatly differed. The inclusion of Dsp in bulk enamel significantly and uniformly increased enamel hardness (20%), whereas the inclusion of Dpp weakened the bulk enamel. Thus, Dsp appears to make a unique contribution to the physical properties of the DEJ. Dsp transgenic animals have been engineered with superior enamel mechanical properties.

  14. Technical issues of a high-Tc superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki

    2000-06-01

    Superconducting magnets made of high-Tc superconductors are promising for industrial applications. It is well known that REBa2Cu3O7-x superconductors prepared by melt processes have a high critical current density, Jc, at 77 K and high magnetic fields. The materials are very promising for high magnetic field applications as a superconducting permanent/bulk magnet with liquid-nitrogen refrigeration. Light rare-earth (LRE) BaCuO bulks, compared with REBaCuO bulks, exhibit a larger Jc in high magnetic fields and a much improved irreversibility field, Hirr, at 77 K. In this study, we discuss technical issues of a high-Tc superconducting bulk magnet, namely the aspects of the melt processing for bulk superconductors, their characteristic superconducting properties and mechanical properties, and trapped field properties of a superconducting bulk magnet. One of the possible applications is a superconducting bulk magnet for the magnetically levitated (Maglev) train in the future.

  15. Efficiency of bulk-heterojunction organic solar cells

    PubMed Central

    Scharber, M.C.; Sariciftci, N.S.

    2013-01-01

    During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10–15%. A more general approach assuming device operation close to the Shockley–Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices. PMID:24302787

  16. Kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB): the influence of interfacial transport and bulk diffusion on the oxidation of oleic acid by ozone

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Pfrang, Christian; Pöschl, Ulrich

    2010-05-01

    Aerosols are ubiquitous in the atmosphere and have strong effects on climate and public health. Gas-particle interactions can significantly change the physical and chemical properties of aerosols such as toxicity, reactivity, hygroscopicity and radiative properties. Chemical reactions and mass transport lead to continuous transformation and changes in the composition of atmospheric aerosols ("chemical aging"). Resistor model formulations are widely used to describe and investigate heterogeneous reactions and multiphase processes in laboratory, field and model studies of atmospheric chemistry. The traditional resistor models, however, are usually based on simplifying assumptions such as steady state conditions, homogeneous mixing, and limited numbers of non-interacting species and processes. In order to overcome these limitations, Pöschl, Rudich and Ammann have developed a kinetic model framework (PRA framework) with a double-layer surface concept and universally applicable rate equations and parameters for mass transport and chemical reactions at the gas-particle interface of aerosols and clouds [1]. Based on the PRA framework, we present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB) [2]. The model includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and

  17. Preliminary study of superconducting bulk magnets for Maglev

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki; Kamijo, Hiroki

    Recent development shows that melt-processed YBaCuO (Y123) or Rare Earth (RE)123 superconductors have a high Jc at 77 K and high magnetic field, leading to high field application as a superconducting quasi-permanent bulk magnet with the liquid nitrogen refrigeration. One of the promising applications is a superconducting magnet for the magnetically levitated (Maglev) train. We discuss a superconducting bulk magnet for the Maglev train in the aspect of a preliminary design of the bulk magnet and also processing for (L)REBaCuO bulk superconductors and their characteristic superconducting properties.

  18. Molecular Dynamics Simulations of Grain Boundary and Bulk Diffusion in Metals.

    NASA Astrophysics Data System (ADS)

    Plimpton, Steven James

    Diffusion is a microscopic mass transport mechanism that underlies many important macroscopic phenomena affecting the structural, electrical, and mechanical properties of metals. This thesis presents results from atomistic simulation studies of diffusion both in bulk and in the fast diffusion paths known as grain boundaries. Using the principles of molecular dynamics single boundaries are studied and their structure and dynamic properties characterized. In particular, tilt boundary bicrystal and bulk models of fcc Al and bcc alpha-Fe are simulated. Diffusion coefficients and activation energies for atomic motion are calculated for both models and compared to experimental data. The influence of the interatomic pair potential on the diffusion is studied in detail. A universal relation between the melting temperature that a pair potential induces in a simulated bulk model and the potential energy barrier height for atomic hopping is derived and used to correlate results for a wide variety of pair potentials. Using these techniques grain boundary and bulk diffusion coefficients for any fcc material can be estimated from simple static calculations without the need to perform more time-consuming dynamic simulations. The influences of two other factors on grain boundary diffusion are also studied because of the interest of the microelectronics industry in the diffusion related reliability problem known as electromigration. The first factor, known to affect the self diffusion rate of Al, is the presence of Cu impurity atoms in Al tilt boundaries. The bicrystal model for Al is seeded randomly with Cu atoms and a simple hybrid Morse potential used to model the Al-Cu interaction. While some effect due to the Cu is noted, it is concluded that pair potentials are likely an inadequate approximation for the alloy system. The second factor studied is the effect of the boundary orientation angle on the diffusion rate. Symmetric bcc Fe boundaries are relaxed to find optimal

  19. Improvement in trapped fields by stacking bulk superconductors

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Wongsatanawarid, A.; Seki, H.; Murakami, M.

    2009-10-01

    We studied the effects of stacking several bulk superconductor blocks on the field trapping properties. In order to avoid the detrimental effects of the bottom deteriorated parts, bulk Dy-Ba-Cu-O superconductors 45 mm in diameter and 10 mm in thickness were cut from the top parts of as-grown bulk blocks of 25 mm diameter. We stacked the superconductors and measured the field distribution as a function of the gap. The trapped field measurements were performed by field-cooling the samples inserted in between two permanent magnets with liquid nitrogen. It was found that the trapped field values are almost doubled when the number of stacked bulk superconductors increased from two to three. The present results clearly show that one can expect beneficial effects of increasing the ratio of the height to the diameter even in bulk high temperature superconductors.

  20. 30 CFR 56.6802 - Bulk delivery vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 56.6802 Bulk delivery vehicles. No welding or cutting shall be performed on a bulk delivery vehicle... cutting on a hollow shaft, the shaft shall be thoroughly cleaned inside and out and vented with a minimum...

  1. Large-scale HTS bulks for magnetic application

    NASA Astrophysics Data System (ADS)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500-3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  2. Bulk density of small meteoroids

    NASA Astrophysics Data System (ADS)

    Kikwaya, J.-B.; Campbell-Brown, M.; Brown, P. G.

    2011-06-01

    Aims: Here we report on precise metric and photometric observations of 107 optical meteors, which were simultaneously recorded at multiple stations using three different intensified video camera systems. The purpose is to estimate bulk meteoroid density, link small meteoroids to their parent bodies based on dynamical and physical density values expected for different small body populations, to better understand and explain the dynamical evolution of meteoroids after release from their parent bodies. Methods: The video systems used had image sizes ranging from 640 × 480 to 1360 × 1036 pixels, with pixel scales from 0.01° per pixel to 0.05° per pixel, and limiting meteor magnitudes ranging from Mv = +2.5 to +6.0. We find that 78% of our sample show noticeable deceleration, allowing more robust constraints to be placed on density estimates. The density of each meteoroid is estimated by simultaneously fitting the observed deceleration and lightcurve using a model based on thermal fragmentation, conservation of energy and momentum. The entire phase space of the model free parameters is explored for each event to find ranges of parameters which fit the observations within the measurement uncertainty. Results: (a) We have analysed our data by first associating each of our events with one of the five meteoroid classes. The average density of meteoroids whose orbits are asteroidal and chondritic (AC) is 4200 kg m-3 suggesting an asteroidal parentage, possibly related to the high-iron content population. Meteoroids with orbits belonging to Jupiter family comets (JFCs) have an average density of 3100 ± 300 kg m-3. This high density is found for all meteoroids with JFC-like orbits and supports the notion that the refractory material reported from the Stardust measurements of 81P/Wild 2 dust is common among the broader JFC population. This high density is also the average bulk density for the 4 meteoroids with orbits belonging to the Ecliptic shower-type class (ES) also

  3. What is the Universe made of?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paris, Mark

    A team of physicists and astrophysicists at Los Alamos National Laboratory, in collaboration with leading universities around the country, are using the Laboratory’s supercomputers to simulate the Big Bang nucleosynthesis and the early universe to unprecedented precision. These researchers developed a code, called BURST that describes the universe from a time of a few seconds after the Big Bang to several hundred thousand years later. BURST allows physicists to study the microscopic, quantum nature of fundamental particles — like nuclei and the ghostly, weakly interacting neutrinos — by simulating the universe at its largest, cosmological scale. BURST simultaneously describes allmore » the particles present in the early universe as they develop, tracking their evolution, particularly the amounts of light nuclei fused in the cosmic soup.« less

  4. A tale of two timescales: Mixing, mass generation, and phase transitions in the early universe

    NASA Astrophysics Data System (ADS)

    Dienes, Keith R.; Kost, Jeff; Thomas, Brooks

    2016-02-01

    Light scalar fields such as axions and string moduli can play an important role in early-universe cosmology. However, many factors can significantly impact their late-time cosmological abundances. For example, in cases where the potentials for these fields are generated dynamically—such as during cosmological mass-generating phase transitions—the duration of the time interval required for these potentials to fully develop can have significant repercussions. Likewise, in scenarios with multiple scalars, mixing amongst the fields can also give rise to an effective timescale that modifies the resulting late-time abundances. Previous studies have focused on the effects of either the first or the second timescale in isolation. In this paper, by contrast, we examine the new features that arise from the interplay between these two timescales when both mixing and time-dependent phase transitions are introduced together. First, we find that the effects of these timescales can conspire to alter not only the total late-time abundance of the system—often by many orders of magnitude—but also its distribution across the different fields. Second, we find that these effects can produce large parametric resonances which render the energy densities of the fields highly sensitive to the degree of mixing as well as the duration of the time interval over which the phase transition unfolds. Finally, we find that these effects can even give rise to a "reoverdamping" phenomenon which causes the total energy density of the system to behave in novel ways that differ from those exhibited by pure dark matter or vacuum energy. All of these features therefore give rise to new possibilities for early-universe phenomenology and cosmological evolution. They also highlight the importance of taking into account the time dependence associated with phase transitions in cosmological settings.

  5. Vertical phase separation in bulk heterojunction solar cells formed by in situ polymerization of fulleride

    PubMed Central

    Zhang, Lipei; Xing, Xing; Zheng, Lingling; Chen, Zhijian; Xiao, Lixin; Qu, Bo; Gong, Qihuang

    2014-01-01

    Vertical phase separation of the donor and the acceptor in organic bulk heterojunction solar cells is crucial to improve the exciton dissociation and charge transport efficiencies. This is because whilst the exciton diffusion length is limited, the organic film must be thick enough to absorb sufficient light. However, it is still a challenge to control the phase separation of a binary blend in a bulk heterojunction device architecture. Here we report the realization of vertical phase separation induced by in situ photo-polymerization of the acrylate-based fulleride. The power conversion efficiency of the devices with vertical phase separation increased by 20%. By optimising the device architecture, the power conversion efficiency of the single junction device reached 8.47%. We believe that in situ photo-polymerization of acrylate-based fulleride is a universal and controllable way to realise vertical phase separation in organic blends. PMID:24861168

  6. A bulk milk tank study to detect evidence of spread of Schmallenberg virus infection in the south-west of Ireland in 2013.

    PubMed

    Johnson, Alan; Bradshaw, Bernard; Boland, Catherine; Ross, Padraig

    2014-01-01

    Schmallenberg virus (SBV) was first detected in Germany in November 2011. Confirmation of infection in Ireland was reported on October 30(th) 2012. The results of a national serological survey carried out in early 2013 suggested that the first introduction of SBV into Ireland probably occurred in the south or southeast of Ireland in the spring or summer of 2012, with subsequent spread eastwards and northwards. It was unclear at that stage whether the virus had survived the winter period and would continue to spread in 2013. The purpose of this study was to monitor the spread of the virus in the mid-west region through the summer and autumn of 2013 using bulk tank milk from selected dairy herds. Seventy two dairy farmers were recruited to participate in the bulk milk tank study. Each farmer agreed to collect a bulk tank milk sample on a weekly basis from early June. A total of 988 samples were received between June 5(th) and December 3(rd) 2013 and these were analysed using an indirect ELISA test. Of the initial set of 72 samples received between June 5(th) and July 16(th), nine were positive, one was inconclusive and 62 were negative. By the end of the study in early December 2013 only one new farm turned positive. This was the farm that had initially tested inconclusive. The study results suggest that the anticipated spread of SBV across Ireland from the south and south-east did not occur during 2013.

  7. Lensing as a probe of early universe: from CMB to galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassani, Farbod; Baghram, Shant; Firouzjahi, Hassan, E-mail: farbod@physics.sharif.edu, E-mail: baghram@sharif.edu, E-mail: firouz@ipm.ir

    The Cosmic Microwave Background (CMB) radiation lensing is a promising tool to study the physics of early universe. In this work we probe the imprints of deviations from isotropy and scale invariance of primordial curvature perturbation power spectrum on CMB lensing potential and convergence. Specifically, we consider a scale-dependent hemispherical asymmetry in primordial power spectrum. We show that the CMB lensing potential and convergence and also the cross-correlation of the CMB lensing and late time galaxy convergence can probe the amplitude and the scale dependence of the dipole modulation. As another example, we consider a primordial power spectrum with localmore » feature. We show that the CMB lensing and the cross-correlation of the CMB lensing and galaxy lensing can probe the amplitude and the shape of the local feature. We show that the cross correlation of CMB lensing convergence and galaxy lensing is capable to probe the effects of local features in power spectrum on smaller scales than the CMB lensing. Finally we showed that the current data can constrain the amplitude and moment dependence of dipole asymmetry.« less

  8. Meteoroid Bulk Density and Ceplecha Types

    NASA Technical Reports Server (NTRS)

    Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.

    2017-01-01

    Determination of asteroid bulk density is an important aspect of NEO characterization, yet difficult to measure. As a fraction of meteoroids originate from asteroids (including some NEOs), a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs in lieu of mutual perturbations, satellite, or expensive spacecraft missions. NASA's Meteoroid Environment Office characterizes the meteoroid environment for the purpose of spacecraft risk and operations. To accurately determine the risk, a distribution of meteoroid bulk densities are needed. This is not trivial to determine. If the particle survives to the ground the bulk density can be directly measured, however only the most dense particles land on the Earth. The next best approach is to model the meteor's ablation, which is not straightforward. Clear deceleration is necessary to do this and there are discrepancies in results between models. One approach to a distribution of bulk density is to use a measured proxy for the densities, then calibrate the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, K(sub B), thought to indicate the strength of a meteoroid. KB is frequented cited as a good proxy for meteoroid densities, but we find it is poorly correlated with density. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter, T(sub J), with meteoroids from Halley Type comets (T(sub J less than 2 ) exhibiting much lower densities than those originating from Jupiter and asteroids (T(sub J greater than 2).

  9. Evaluation of Vickers hardness of bulk-fill composites cured by different light sources

    NASA Astrophysics Data System (ADS)

    Bakhsh, Turki A.; Yagmoor, Mohammed A.; Alsadi, Fahad M.; Jamleh, Ahmad

    2016-02-01

    [Objective] The current in vitro study was performed to evaluate Vickers hardness (VHN) of two different composite resins that were cured by using two different light curing units. [Materials and Methods] Porcelain tube samplers were used to fabricate composite cylinders from either Tetric Evoceram BulkFill (BF; Ivoclar/Vivadent, USA) or SonicFill composite (SF; Kerr, USA). Each composite type had 12 cylindrical specimens, and each specimen was cured with either Blue-phase N light-cure (Bp; Polywave, Ivoclar/Vivadent, USA) or Elipar S10 (El; Monowave, 3M ESPE, Germany). The VHN data were analyzed and tested by using Mann-Whitney U test at a significance level of 5%. [Results] Statistical analyses demonstrated an interaction between the type of composite and the type of light curing source. Significant differences (P<0.05) were recorded for all groups with higher VHN hardness of SF-El and lowest for BF-El. [Conclusions] It can be concluded that the surface hardness of bulk-fill composite is not dependent on the type of light-cure. This research was supported by King Abdulaziz University.

  10. Bulk-edge correspondence in topological transport and pumping

    NASA Astrophysics Data System (ADS)

    Imura, Ken-Ichiro; Yoshimura, Yukinori; Fukui, Takahiro; Hatsugai, Yasuhiro

    2018-03-01

    The bulk-edge correspondence (BEC) refers to a one-to-one relation between the bulk and edge properties ubiquitous in topologically nontrivial systems. Depending on the setup, BEC manifests in different forms and govern the spectral and transport properties of topological insulators and semimetals. Although the topological pump is theoretically old, BEC in the pump has been established just recently [1] motivated by the state-of-the-art experiments using cold atoms [2, 3]. The center of mass (CM) of a system with boundaries shows a sequence of quantized jumps in the adiabatic limit associated with the edge states. Despite that the bulk is adiabatic, the edge is inevitably non-adiabatic in the experimental setup or in any numerical simulations. Still the pumped charge is quantized and carried by the bulk. Its quantization is guaranteed by a compensation between the bulk and edges. We show that in the presence of disorder the pumped charge continues to be quantized despite the appearance of non-quantized jumps.

  11. 29 CFR 794.131 - “Customer * * * engaged in bulk distribution”.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false âCustomer * * * engaged in bulk distributionâ. 794.131... Sales Made to Other Bulk Distributors § 794.131 “Customer * * * engaged in bulk distribution”. A sale to a customer of an enterprise engaged in the wholesale or bulk distribution of petroleum products will...

  12. Proposal of a Bulk HTSC Staggered Array Undulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kii, Toshiteru; Kinjo, Ryota; Bakr, Mahmoud A.

    We proposed a new type of undulator based on bulk high-T{sub c} superconductors (HTSC) which consists of a single solenoid and a stacked array of bulk HTSC. The main advantage of this configuration is that a mechanical structure is not required to produce and control the undulator field. In order to perform a proof of principle experiment, we have developed a prototype of bulk HTSC staggered array undulator using 11 pairs of DyBaCuO bulk superconductors and a normal conducting solenoid. Experimental results obtained by using the prototype undulator and numerical results obtained by a loop current model based on themore » Bean mode for a type-II superconductor were compared.« less

  13. Eco-Early Childhood Education: A New Paradigm of Early Childhood Education in South Korea

    ERIC Educational Resources Information Center

    Kim, Eunju; Lim, Jaetack

    2007-01-01

    In the early 1990s, university faculty members, early childhood educators, and preschool teachers in South Korea created a new paradigm for education. Eco-early childhood education uses an ecological point of view to reform existing child-centered education. This perspective proposes moving from child- to life-centered, individual- to…

  14. Changing Trends within the Population of Children Who Are Deaf or Hard of Hearing in Flanders (Belgium): Effects of 12 Years of Universal Newborn Hearing Screening, Early Intervention, and Early Cochlear Implantation

    ERIC Educational Resources Information Center

    De Raeve, Leo; Lichtert, Guido

    2012-01-01

    The purpose of this study is to show the changing trends within the population of children who are deaf and hard of hearing in Belgium over the last 12 years. The combination of Universal Newborn Hearing Screening programs, early intervention, and cochlear implants have tremendously influenced the education and support of children who are deaf or…

  15. Microtensile bond strength of bulk-fill restorative composites to dentin.

    PubMed

    Mandava, Jyothi; Vegesna, Divya-Prasanna; Ravi, Ravichandra; Boddeda, Mohan-Rao; Uppalapati, Lakshman-Varma; Ghazanfaruddin, M D

    2017-08-01

    To facilitate the easier placement of direct resin composite in deeper cavities, bulk fill composites have been introduced. The Mechanical stability of fillings in stress bearing areas restored with bulk-fill resin composites is still open to question, since long term clinical studies are not available so far. Thus, the objective of the study was to evaluate and compare the microtensile bond strength of three bulk-fill restorative composites with a nanohybrid composite. Class I cavities were prepared on sixty extracted mandibular molars. Teeth were divided into 4 groups (n= 15 each) and in group I, the prepared cavities were restored with nanohybrid (Filtek Z250 XT) restorative composite in an incremental manner. In group II, III and IV, the bulk-fill composites (Filtek, Tetric EvoCeram, X-tra fil bulk-fill restoratives) were placed as a 4 mm single increment and light cured. The restored teeth were subjected to thermocycling and bond strength testing was done using instron testing machine. The mode of failure was assessed by scanning electron microscope (SEM). The bond strength values obtained in megapascals (MPa) were subjected to statistical analysis, using SPSS/PC version 20 software.One-way ANOVA was used for groupwise comparison of the bond strength. Tukey's Post Hoc test was used for pairwise comparisons among the groups. The highest mean bond strength was achieved with Filtek bulk-fill restorative showing statistically significant difference with Tetric EvoCeram bulk-fill ( p < 0.003) and X-tra fil bulk-fill ( p <0.001) composites. Adhesive failures are mostly observed with X-tra fil bulk fill composites, whereas mixed failures are more common with other bulk fill composites. Bulk-fill composites exhibited adequate bond strength to dentin and can be considered as restorative material of choice in posterior stress bearing areas. Key words: Bond strength, Bulk-fill restoratives, Configuration factor, Polymerization shrinkage.

  16. Bulk Superconductors in Mobile Application

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  17. Imprinting bulk amorphous alloy at room temperature

    DOE PAGES

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; ...

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  18. Dusty starburst galaxies in the early Universe as revealed by gravitational lensing.

    PubMed

    Vieira, J D; Marrone, D P; Chapman, S C; De Breuck, C; Hezaveh, Y D; Weiβ, A; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Fomalont, E B; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Gullberg, B; Halverson, N W; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Hunter, T R; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Mocanu, L M; Murphy, E J; Natoli, T; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Sharon, K; Schaffer, K K; Shaw, L; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R

    2013-03-21

    In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.

  19. 17 CFR 5.23 - Notice of bulk transfers and bulk liquidations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... (a) Notice and disclosure to retail forex customers of a bulk transfer. (1) A retail foreign exchange... consent of its retail forex customer to the assignment of any position or transfer of any account of the retail forex customer to another retail foreign exchange dealer, futures commission merchant or...

  20. 17 CFR 5.23 - Notice of bulk transfers and bulk liquidations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (a) Notice and disclosure to retail forex customers of a bulk transfer. (1) A retail foreign exchange... consent of its retail forex customer to the assignment of any position or transfer of any account of the retail forex customer to another retail foreign exchange dealer, futures commission merchant or...

  1. 17 CFR 5.23 - Notice of bulk transfers and bulk liquidations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (a) Notice and disclosure to retail forex customers of a bulk transfer. (1) A retail foreign exchange... consent of its retail forex customer to the assignment of any position or transfer of any account of the retail forex customer to another retail foreign exchange dealer, futures commission merchant or...

  2. Replication RCT of Early Universal Prevention Effects on Young Adult Substance Misuse

    PubMed Central

    Spoth, Richard; Trudeau, Linda; Redmond, Cleve; Shin, Chungyeol

    2014-01-01

    Objective For many substances, more frequent and problematic use occurs in young adulthood; these types of use are predicted by the timing of initiation during adolescence. We replicated and extended an earlier study examining whether delayed substance initiation during adolescence, resulting from universal preventive interventions implemented in middle school, reduces problematic use in young adulthood. Method Participants were middle school students from 36 Iowa schools randomly assigned to the Strengthening Families Program plus Life Skills Training (SFP 10–14 + LST), LST-only, or a control condition. Self-report questionnaires were collected at 11 time points, including four during young adulthood. The intercept (average level) and rate of change (slope) in young adult frequency measures (drunkenness, alcohol-related problems, cigarettes, and illicit drugs) across ages 19–22 were modeled as outcomes influenced by growth factors describing substance initiation during adolescence. Analyses entailed testing a two-step hierarchical latent growth curve model; models included the effects of baseline risk, intervention condition assignment, and their interaction. Results Analyses showed significant indirect intervention effects on the average levels of all young adult outcomes, through effects on adolescent substance initiation growth factors, along with intervention by risk interaction effects favoring the higher-risk subsample. Additional direct effects on young adult use were observed in some cases. Relative reduction rates were larger for the higher-risk subsample at age 22, ranging from 5.8% to 36.4% on outcomes showing significant intervention effects. Conclusions Universal preventive interventions implemented during early adolescence have the potential to decrease the rates of substance use and associated problems, into young adulthood. PMID:24821095

  3. 46 CFR 97.12-1 - Definition of a bulk solid cargo.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Definition of a bulk solid cargo. 97.12-1 Section 97.12... OPERATIONS Bulk Solid Cargoes § 97.12-1 Definition of a bulk solid cargo. (a) A bulk solid cargo— (1.... (b) Additional requirements for bulk solid materials needing special handling are contained in Part...

  4. A study of ignition phenomena of bulk metals by radiant heating

    NASA Technical Reports Server (NTRS)

    Branch, Melvin C.; Abbud-Madrid, A.; Feiereisen, T. J.; Daily, J. W.

    1993-01-01

    Early research on combustion of metals was motivated by the knowledge of the large heat release and corresponding high temperatures associated with metal-oxygen reactions. The advent of space flight brought about an increased interest in the ignition and combustion of metallic particles as additives in solid rocket propellants. More recently, attention has been given to the flammability properties of bulk, structural metals due to the number of accidental explosions of metal components in high-pressure oxygen systems. The following work represents a preliminary study that is part of a broader research effort aimed at providing further insight into the phenomena of bulk metal combustion by looking at the effects of gravity on the ignition behavior of metals. The scope of this preliminary experimental study includes the use of a non-coherent, continuous radiation ignition source, the measurement of temperature profiles of a variety of metals and a qualitative observation of the ignition phenomena at normal gravity. The specific objectives of the investigation include: (1) a feasibility study of the use of a continuous radiation source for metal ignition; (2) testing and characterization of the ignition behavior of a variety of metals; and (3) building a preliminary experimental database on ignition of metals under normal gravity conditions.

  5. A stereoscopic look into the bulk

    DOE PAGES

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; ...

    2016-07-26

    Here, we present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphism-invariant bulk operators. The CFT operators of interest are the “OPE blocks,” contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1/N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimalmore » surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields. Although the OPE blocks are non-local operators in the CFT, they admit a simple geometric description as fields in kinematic space — the space of pairs of CFT points. We develop the tools for constructing local bulk operators in terms of these non-local objects. The OPE blocks also allow for conceptually clean and technically simple derivations of many results known in the literature, including linearized Einstein’s equations and the relation between conformal blocks and geodesic Witten diagrams.« less

  6. Holographic bulk reconstruction with α' corrections

    NASA Astrophysics Data System (ADS)

    Roy, Shubho R.; Sarkar, Debajyoti

    2017-10-01

    We outline a holographic recipe to reconstruct α' corrections to anti-de Sitter (AdS) (quantum) gravity from an underlying CFT in the strictly planar limit (N →∞ ). Assuming that the boundary CFT can be solved in principle to all orders of the 't Hooft coupling λ , for scalar primary operators, the λ-1 expansion of the conformal dimensions can be mapped to higher curvature corrections of the dual bulk scalar field action. Furthermore, for the metric perturbations in the bulk, the AdS /CFT operator-field isomorphism forces these corrections to be of the Lovelock type. We demonstrate this by reconstructing the coefficient of the leading Lovelock correction, also known as the Gauss-Bonnet term in a bulk AdS gravity action using the expression of stress-tensor two-point function up to subleading order in λ-1.

  7. A Compact Bulk Acousto-Optic Time Integrating Correlator.

    DTIC Science & Technology

    1984-11-01

    AD-A156 668 A COMPACT BULK ACOUSTO - OPTIC TIME INTEGRATING 1/1 CORRELATOR(U) ELECTRONICS RESEARCH LAB ADELAIDE (AUSTRALIA) D A FOGG NOV 84 ERL-9323-TR...DEFENCE RESEARCH CENTRE SALISBURY SOUTH AUSTRALIA TECHNICAL REPORT ER L-0323-TR A COMPACT BULK ACOUSTO - OPTIC TIME INTEGRATING CORRELATOR D.A.B. FOGG...LABORATORY TECHNICAL REPORT ERL-0323-TR A COMPACT BULK ACOUSTO - OPTIC TIME INTEGRATING CORRELATOR D.A.B. Fogg SUMMARY This report describes the design and

  8. Role of bulk and Nanosized SiO2 to overcome salt stress during Fenugreek germination (Trigonella foenum- graceum L.).

    PubMed

    Ivani, Reihane; Sanaei Nejad, Seyed Hossein; Ghahraman, Bijan; Astaraei, Ali Reza; Feizi, Hassan

    2018-04-05

    The effects of bulk and Nanosized SiO 2 on seed germination and seedling growth indices of fenugreek under salinity stress were studied in the College of Agriculture, Ferdowsi University of Mashhad, Iran, in 2013. The experimental treatments included 4 levels of salinity stress (0, 50, 100 and 150 mM), 2 concentrations of bulk (50 and 100 ppm), 2 concentrations of nanosized SiO 2 (50 and 100 ppm), and control (without any SiO 2 types). Seedling growth attributes significantly improved when bulk and nanosized SiO 2 concentrations applied singly or with different levels of salt stress. However, they significantly declined with salt application. The adverse effects of salt on shoot, root and seedling lengths were alleviated by application of 50 ppm nanosized SiO 2 treatment. Under salt stress condition, addition of 50 and 100 ppm nanosized SiO 2 to fenugreek seeds increased shoot, root and seedling dry weights as compared to bulk SiO 2 concentrations and control treatments, though 50 ppm nanosized SiO 2 was more effective than 100 ppm nanosized SiO 2 application. It was concluded that nanosized SiO 2 improves growth attributes of fenugreek and mitigate adverse effects of salt stress.

  9. Numerical relativity and the early Universe

    NASA Astrophysics Data System (ADS)

    Mironov, Sergey

    2016-10-01

    We consider numerical simulations in general relativity in ADM formalism with cosmological ansatz for the metric. This ansatz is convenient for investigations of the Universe creation in laboratory with Galileons. Here we consider toy model for the software: spherically symmetric scalar field minimally coupled to the gravity with asymmetric double well potential. We studied the dependence of radius of critical bubble on the parameters of the theory. It demonstrates the wide applicability of thin-wall approximation. We did not find any kind of stable bubble solution.

  10. 19 CFR 151.24 - Unlading facilities for bulk sugar.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a full...

  11. 19 CFR 151.24 - Unlading facilities for bulk sugar.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a full...

  12. 19 CFR 151.24 - Unlading facilities for bulk sugar.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a full...

  13. 19 CFR 151.24 - Unlading facilities for bulk sugar.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a full...

  14. 19 CFR 151.24 - Unlading facilities for bulk sugar.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Unlading facilities for bulk sugar. 151.24 Section... OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.24 Unlading facilities for bulk sugar. When dutiable sugar is to be imported in bulk, a full...

  15. Polymerization stress evolution of a bulk-fill flowable composite under different compliances.

    PubMed

    Guo, Yongwen; Landis, Forrest A; Wang, Zhengzhi; Bai, Ding; Jiang, Li; Chiang, Martin Y M

    2016-04-01

    To use a compliance-variable instrument to simultaneously measure and compare the polymerization stress (PS) evolution, degree of conversion (DC), and exotherm of a bulk-fill flowable composite to a packable composite. A bulk-fill flowable composite (Filtek Bulk-fill, FBF) and a conventional packable composite (Filtek Z250, Z250) purchased from 3M ESPE were investigated. The composites were studied using a cantilever-beam based instrument equipped with an in situ near infrared (NIR) spectrometer and a microprobe thermocouple. The measurements were carried out under various instrumental compliances (ranging from 0.3327μm/N to 12.3215μm/N) that are comparable to the compliances of clinically prepared tooth cavities. Correlations between the PS and temperature change as well as the DC were interpreted. The maximum PS of both composites at 10min after irradiation decreased with the increase in the compliance of the cantilever beam. The FBF composite generated a lower final stress than the Z250 sample under instrumental compliances less than ca. 4μm/N; however, both materials generated statistically similar PS values at higher compliances. The reaction exotherm and the DC of both materials were found to be independent of compliance. The DC of the FBF sample was slightly higher than that of the packable Z250 composite while the peak exotherm of FBF was almost double that of the Z250 composite. For FBF, a characteristic drop in the PS was observed during the early stage of polymerization for all compliances studied which was not observed in the Z250 sample. This drop was shown to relate to the greater exotherm of the less-filled FBF sample relative to the Z250 composite. While the composites with lower filler content (low viscosity) are generally considered to have lower PS than the conventional packable composites, a bulk-fill flowable composite was shown to produce lower PS under a lower compliance of constraint as would be experienced if the composite was used as

  16. Transition from AdS universe to DS universe in the BPP model

    NASA Astrophysics Data System (ADS)

    Kim, Wontae; Yoon, Myungseok

    2007-04-01

    It can be shown that in the BPP model the smooth phase transition from the asymptotically decelerated AdS universe to the asymptotically accelerated DS universe is possible by solving the modified semiclassical equations of motion. This transition comes from noncommutative Poisson algebra, which gives the constant curvature scalars asymptotically. The decelerated expansion of the early universe is due to the negative energy density with the negative pressure induced by quantum back reaction, and the accelerated late-time universe comes from the positive energy and the negative pressure which behave like dark energy source in recent cosmological models.

  17. An improved interim therapeutic restoration technique for management of anterior early childhood caries: report of two cases.

    PubMed

    Nelson, Travis

    2013-01-01

    Early childhood caries presents unique treatment challenges that often require advanced behavior management techniques, such as general anesthesia or procedural sedation. In some cases, use of these pharmacologic adjuncts is undesirable or not possible. The interim therapeutic restoration is a treatment method that, while sometimes employed in such cases, can often produce unsatisfactory results in primary anterior teeth. This is often due to insufficient bulk of material and lack of retention. The purpose of this report was to describe a simple alternative technique (resin modified glass ionomer strip crowns) that may be employed to deliver esthetic anterior restorations to marginally cooperative children in the dental clinic setting and to report on two cases in which it was successfully used. \\\\\\Department of Pediatric Dentistry, University of Washington, Seattle, Wash., USA. tmnelson@uw.edu

  18. The Early Universe and High-Energy Physics.

    ERIC Educational Resources Information Center

    Schramm, David N.

    1983-01-01

    Many properties of new particle field theories can only be tested by comparing their predictions about the physical conditions immediately after the big bang with what can be reconstructed about this event from astronomical data. Facts/questions about big bang, unified field theories, and universe epochs/mass are among the topics discussed. (JN)

  19. FAA bulk technology overview for explosives detection

    NASA Astrophysics Data System (ADS)

    Novakoff, Alan K.

    1993-04-01

    The Federal Aviation Administration (FAA) is the leading federal agency responsible for encouraging and fostering the development of a safe, secure, and efficient national airspace system (NAS). Our goal is to establish an operating environment that ensures a threat-free system to preclude acts of terrorism and fatalities. As part of the process to meet this goal, our research and development activities continually search for technologies to ensure aviation security. Recent acts of terrorism against the aviation community have demonstrated an increasing level of sophistication in the design and deployment of explosive devices. In order to prevent the introduction of explosives onto an aircraft they must be detected prior to passenger and baggage loading. The Bulk Detection program is one method of developing a number of technologies that 'see' into and 'alarm' on suspect baggage. These detection devices must be capable of providing this serve with a confidence commensurate with the state-of-the- art available today. This program utilizes the expertise of government agencies, universities and industries working toward constructing their plans and executing their designs to produce the best available equipment.

  20. Economic manufacturing of bulk metallic glass compositions by microalloying

    DOEpatents

    Liu, Chain T.

    2003-05-13

    A method of making a bulk metallic glass composition includes the steps of:a. providing a starting material suitable for making a bulk metallic glass composition, for example, BAM-11; b. adding at least one impurity-mitigating dopant, for example, Pb, Si, B, Sn, P, to the starting material to form a doped starting material; and c. converting the doped starting material to a bulk metallic glass composition so that the impurity-mitigating dopant reacts with impurities in the starting material to neutralize deleterious effects of the impurities on the formation of the bulk metallic glass composition.

  1. Piezoelectric coefficients of bulk 3R transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Konabe, Satoru; Yamamoto, Takahiro

    2017-09-01

    The piezoelectric properties of bulk transition metal dichalcogenides (TMDCs) with a 3R structure were investigated using first-principles calculations based on density functional theory combined with the Berry phase treatment. Values for the elastic constant Cijkl , the piezoelectric coefficient eijk , and the piezoelectric coefficient dijk are given for bulk 3R-TMDCs (MoS2, MoSe2, WS2, and WSe2). The piezoelectric coefficients of bulk 3R-TMDCs are shown to be sufficiently large or comparable to those of conventional bulk piezoelectric materials such as α-quartz, wurtzite GaN, and wurtzite AlN.

  2. Hexaferrite multiferroics: from bulk to thick films

    NASA Astrophysics Data System (ADS)

    Koutzarova, T.; Ghelev, Ch; Peneva, P.; Georgieva, B.; Kolev, S.; Vertruyen, B.; Closset, R.

    2018-03-01

    We report studies of the structural and microstructural properties of Sr3Co2Fe24O41 in bulk form and as thick films. The precursor powders for the bulk form were prepared following the sol-gel auto-combustion method. The prepared pellets were synthesized at 1200 °C to produce Sr3Co2Fe24O41. The XRD spectra of the bulks showed the characteristic peaks corresponding to the Z-type hexaferrite structure as a main phase and second phases of CoFe2O4 and Sr3Fe2O7-x. The microstructure analysis of the cross-section of the bulk pellets revealed a hexagonal sheet structure. Large areas were observed of packages of hexagonal sheets where the separate hexagonal particles were ordered along the c axis. Sr3Co2Fe24O41 thick films were deposited from a suspension containing the Sr3Co2Fe24O41 powder. The microstructural analysis of the thick films showed that the particles had the perfect hexagonal shape typical for hexaferrites.

  3. Efficient bulk-loading of gridfiles

    NASA Technical Reports Server (NTRS)

    Leutenegger, Scott T.; Nicol, David M.

    1994-01-01

    This paper considers the problem of bulk-loading large data sets for the gridfile multiattribute indexing technique. We propose a rectilinear partitioning algorithm that heuristically seeks to minimize the size of the gridfile needed to ensure no bucket overflows. Empirical studies on both synthetic data sets and on data sets drawn from computational fluid dynamics applications demonstrate that our algorithm is very efficient, and is able to handle large data sets. In addition, we present an algorithm for bulk-loading data sets too large to fit in main memory. Utilizing a sort of the entire data set it creates a gridfile without incurring any overflows.

  4. Disorder in the early universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Daniel, E-mail: drgreen@cita.utoronto.ca

    2015-03-01

    Little is known about the microscopic physics that gave rise to inflation in our universe. There are many reasons to wonder if the underlying description requires a careful arrangement of ingredients or if inflation was the result of an essentially random process. At a technical level, randomness in the microphysics of inflation is closely related to disorder in solids. We develop the formalism of disorder for inflation and investigate the observational consequences of quenched disorder. We find that a common prediction is the presence of additional noise in the power spectrum or bispectrum. At a phenomenological level, these results canmore » be recast in terms of a modulating field, allowing us to write the quadratic maximum likelihood estimator for this noise. Preliminary constraints on disorder can be derived from existing analyses but significant improvements should be possible with a dedicated treatment.« less

  5. The Learning Experiences of Early-Career Indonesian Government Employees: A Case Study in Cross-Cultural Workforce Development Based in a University Environment

    ERIC Educational Resources Information Center

    Elsey, Barry; Omarova, Amina; Grill, Ronald

    2016-01-01

    The research provides a selective report on the learning experiences covering a whole year of study for a double-degree Master's programme by a cohort of early-career Indonesians. They were undertaking the second half of the programme at The University of Adelaide in South Australia, and for all 18 students it was their first taste of learning in…

  6. Longitudinal and bulk viscosities of Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Tankeshwar, K.; Pathak, K. N.; Ranganathan, S.

    1996-12-01

    Expressions for the longitudinal and bulk viscosities have been derived using Green Kubo formulae involving the time integral of the longitudinal and bulk stress autocorrelation functions. The time evolution of stress autocorrelation functions are determined using the Mori formalism and a memory function which is obtained from the Mori equation of motion. The memory function is of hyperbolic secant form and involves two parameters which are related to the microscopic sum rules of the respective autocorrelation function. We have derived expressions for the zeroth-, second-and fourth- order sum rules of the longitudinal and bulk stress autocorrelation functions. These involve static correlation functions up to four particles. The final expressions for these have been put in a form suitable for numerical calculations using low- order decoupling approximations. The numerical results have been obtained for the sum rules of longitudinal and bulk stress autocorrelation functions. These have been used to calculate the longitudinal and bulk viscosities and time evolution of the longitudinal stress autocorrelation function of the Lennard-Jones fluids over wide ranges of densities and temperatures. We have compared our results with the available computer simulation data and found reasonable agreement.

  7. Centralizing a University's Financial Decision Making

    ERIC Educational Resources Information Center

    Zeppos, Nicholas S.

    2010-01-01

    To get a feel for the last time Vanderbilt University confronted economic volatility and stress similar to what U.S. colleges and universities have experienced over the past two years, the author carefully reviewed his predecessors' notes. His conclusion: the early 1930s. That was the last time a chancellor at Vanderbilt University detailed…

  8. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marenich, Aleksandr; Cramer, Christopher J; Truhlar, Donald G

    2009-04-30

    We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the “D” stands for “density” to denote that the full solute electron density is used without defining partial atomic charges. “Continuum” denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute-solvent boundary. SMD is a universal solvation model, where “universal” denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which amore » few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonhomogeneous Poisson equation for electrostatics in terms of the integral-equation-formalism polarizable continuum model (IEF-PCM). The cavities for the bulk electrostatic calculation are defined by superpositions of nuclear-centered spheres. The second component is called the cavity-dispersion-solvent-structure term and is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas of the individual atoms of the solute. The SMD model has been parametrized with a training set of 2821 solvation data including 112 aqueous ionic solvation free energies, 220 solvation free energies for 166 ions in acetonitrile, methanol, and dimethyl sulfoxide, 2346 solvation free energies for 318 neutral solutes in 91

  9. Onset of bulk pinning in BSCCO single crystals

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Indenbom, M. V.; Berseth, V.; Li, T. W.; Benoit, W.

    1996-11-01

    The long growth defects often found in Bi2Sr2CaCu2O8, “single” crystals effectively weaken the geometrical barrier and lower the field of first flux penetration. This means that the intrinsic (bulk) magnetic properties can be more easily accessed using magnetic measurements. Thus, the onset of strong bulk flux pinning in the sample bulk is determined to lie at T ≈ 40 K, indepedent of whether the field strength is above or below the field of the second peak in the magnetisation.

  10. Phenomenological constraints on the bulk viscosity of QCD

    NASA Astrophysics Data System (ADS)

    Paquet, Jean-François; Shen, Chun; Denicol, Gabriel; Jeon, Sangyong; Gale, Charles

    2017-11-01

    While small at very high temperature, the bulk viscosity of Quantum Chromodynamics is expected to grow in the confinement region. Although its precise magnitude and temperature-dependence in the cross-over region is not fully understood, recent theoretical and phenomenological studies provided evidence that the bulk viscosity can be sufficiently large to have measurable consequences on the evolution of the quark-gluon plasma. In this work, a Bayesian statistical analysis is used to establish probabilistic constraints on the temperature-dependence of bulk viscosity using hadronic measurements from RHIC and LHC.

  11. University Education on Computers

    NASA Astrophysics Data System (ADS)

    Kurki-Suonio, Reino; Benediktsson, Oddur; Bubenko, Janis; Dahlstrand, Ingemar; Gram, Christian; Impagliazzo, John

    Following a session on university education, this panel discussed early Nordic visions and experiences on university computing education, contrasting them to today’s needs and the international development at that time. This report gives short papers by the panelists (their opening statements), and a brief summary (the chair’s interpretation) of the views that were raised in the ensuing discussion.

  12. Micro benchtop optics by bulk silicon micromachining

    DOEpatents

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  13. The creation and early implementation of a high speed fiber optic network for a university health sciences center.

    PubMed Central

    Schueler, J. D.; Mitchell, J. A.; Forbes, S. M.; Neely, R. C.; Goodman, R. J.; Branson, D. K.

    1991-01-01

    In late 1989 the University of Missouri Health Sciences Center began the process of creating an extensive fiber optic network throughout its facilities, with the intent to provide networked computer access to anyone in the Center desiring such access, regardless of geographic location or organizational affiliation. A committee representing all disciplines within the Center produced and, in conjunction with independent consultants, approved a comprehensive design for the network. Installation of network backbone components commenced in the second half of 1990 and was completed in early 1991. As the network entered its initial phases of operation, the first realities of this important new resource began to manifest themselves as enhanced functional capacity in the Health Sciences Center. This paper describes the development of the network, with emphasis on its design criteria, installation, early operation, and management. Also included are discussions on its organizational impact and its evolving significance as a medical community resource. PMID:1807660

  14. The ZEUS 1 & 2 INvestigated Galaxy Reference Sample (ZINGRS): A window into galaxies in the early Universe.

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl; Hershey, Deborah; Scrabeck, Alex; Higdon, Sarah; Higdon, James L.; Tidwell, Hannah; Lamarche, Cody; Vishwas, Amit; Nikola, Thomas; Stacey, Gordon J.; Brisbin, Drew

    2018-06-01

    Galaxies have evolved significantly from the early Universe until today. Star formation rates, stellar and molecular gas masses, sizes and metal enrichment of galaxies have all changed significantly from early epochs until the present. Probing the physical conditions of galaxy at high redshift is vital to understanding this evolution. ZINGRS, the ZEUS 1 and 2 INvestigated Galaxy Reference Sample, provides a unique and powerful window for this work. The sample consists of more than ~30 galaxies from z ~ 1 - 4.5 for which the far-IR fine-structure lines (e.g. [CII] 158 micron, [NII] 122micron, [OIII] 88 micron) have been observed with the ZEUS-1 and 2 instruments. These lines are ideal for studying high-z systems since they require low energies for excitation, are typically optically thin, and are not susceptible to extinction from dust. ZINGRS is the largest collection of far-IR fine-structure line detections at high-z. Here we describe the sample, including extensive multifrequency supporting observations like CO & radio continuum, and summarize what we have learned so far.

  15. 49 CFR 173.37 - Hazardous Materials in Flexible Bulk Containers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... an external visual inspection by the person filling the Flexible Bulk Container to ensure: (1) The... transported in cargo transport units when offered for transportation by vessel. (7) Flexible Bulk Containers... 49 Transportation 2 2013-10-01 2013-10-01 false Hazardous Materials in Flexible Bulk Containers...

  16. 49 CFR 173.37 - Hazardous Materials in Flexible Bulk Containers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... an external visual inspection by the person filling the Flexible Bulk Container to ensure: (1) The... transported in cargo transport units when offered for transportation by vessel. (7) Flexible Bulk Containers... 49 Transportation 2 2014-10-01 2014-10-01 false Hazardous Materials in Flexible Bulk Containers...

  17. High-resolution Campanian-Maastrichtian carbon and oxygen stable isotopes of bulk-rock and skeletal components: palaeoceanographic and palaeoenvironmental implications for the Boreal shelf sea

    NASA Astrophysics Data System (ADS)

    Wilmsen, Markus; Niebuhr, Birgit

    2017-03-01

    A high-resolution latest Early Campanian to Early Maastrichtian carbon and oxygen stable isotope record from the northern German Boreal shelf sea based on 537 analyses of co-occurring belemnites, brachiopods, inoceramids, oysters, and bulk rock samples is presented. All samples are precisely related to their stratigraphic, systematic and facies backgrounds and form an integrated, nearly 10-myr-long dataset with considerable palaeoenvironmental and palaeoceanographical implications. Petrographic studies indicate that low-magnesium calcitic coccoliths and calcispheres (i.e., planktic carbonate) predominate the bulk-rock data (marl-limestone rhythmites and chalks), thus representing a sea-surface water signal, and that only minor diagenetic alteration of the carbonate muds took place. Based on TL and CL microscopy, the investigated belemnites are extraordinarily well preserved, which may in part be explained by their early diagenetic surficial silicification (container effect), while the other macroinvertebrate groups are all less well preserved. The (plankton-dominated) δ13C values of the marl-limestone rhythmites and chalks (+1.1 to +2.5 ‰), recording a surface water signal, compare well with the δ18C data of inoceramids while δ13Cbrach. values (+1.5 to +3.0 ‰) are heavier than the bulk rock data. The large variation in the δ13Cbel. (-0.1 to +3.6 ‰) is attributed to isotopic disequilibrium of the biogenic carbonate formed by the belemnite animal. The bulk rock δ18O values show a remarkable low scatter, supporting petrographic observation of only minor diagenetic stabilisation/cementation, and can be approximated with northern German shelf sea-surface temperatures of ca. 20°C for the Late Campanian (ca. -2 ‰ δ18O), being slightly cooler during the Early Maastrichtian. The δ18O values of the belemnite rostra are even less variable and quite rich in heavier 18O (-0.7 to +0.6 with a mean of -0.1 ‰ δ18Obel.) in comparison to bulk rock and other

  18. Recent ARPES experiments on quasi-1D bulk materials and artificial structures.

    PubMed

    Grioni, M; Pons, S; Frantzeskakis, E

    2009-01-14

    The spectroscopy of quasi-one-dimensional (1D) systems has been a subject of strong interest since the first experimental observations of unusual line shapes in the early 1990s. Angle-resolved photoemission (ARPES) measurements performed with increasing accuracy have greatly broadened our knowledge of the properties of bulk 1D materials and, more recently, of artificial 1D structures. They have yielded a direct view of 1D bands, of open Fermi surfaces, and of characteristic instabilities. They have also provided unique microscopic evidence for the non-conventional, non-Fermi-liquid, behavior predicted by theory, and for strong and singular interactions. Here we briefly review some of the remarkable experimental results obtained in the last decade.

  19. Carbon nanotubes grown on bulk materials and methods for fabrication

    DOEpatents

    Menchhofer, Paul A [Clinton, TN; Montgomery, Frederick C [Oak Ridge, TN; Baker, Frederick S [Oak Ridge, TN

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  20. NEARBY MASSIVE STAR CLUSTER YIELDS INSIGHTS INTO EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA Hubble Space Telescope 'family portrait' of young, ultra-bright stars nested in their embryonic cloud of glowing gases. The celestial maternity ward, called N81, is located 200,000 light-years away in the Small Magellanic Cloud (SMC), a small irregular satellite galaxy of our Milky Way. Hubble's exquisite resolution allows astronomers to pinpoint 50 separate stars tightly packed in the nebula's core within a 10 light-year diameter - slightly more than twice the distance between earth and the nearest star to our sun. The closest pair of stars is only 1/3 of a light-year apart (0.3 arcseconds in the sky). This furious rate of mass loss from these super-hot stars is evident in the Hubble picture that reveals dramatic shapes sculpted in the nebula's wall of glowing gases by violent stellar winds and shock waves. A pair of bright stars in the center of the nebula is pouring out most of the ultraviolet radiation to make the nebula glow. Just above them, a small dark knot is all that's left of the cold cloud of molecular hydrogen and dust the stars were born from. Dark absorption lanes of residual dust trisect the nebula. The nebula offers a unique opportunity for a close-up glimpse at the 'firestorm' accompanying the birth of extremely massive stars, each blazing with the brilliance of 300,000 of our suns. Such galactic fireworks were much more common billions of years ago in the early universe, when most star formation took place. The 'natural-color' view was assembled from separate images taken with the Wide Field and Planetary Camera 2, in ultraviolet light and two narrow emission lines of ionized Hydrogen (H-alpha, H-beta). The picture was taken on September 4, 1997. Credit: Mohammad Heydari-Malayeri (Paris Observatory, France), NASA/ESA

  1. The impact of compaction, moisture content, particle size and type of bulking agent on initial physical properties of sludge-bulking agent mixtures before composting.

    PubMed

    Huet, J; Druilhe, C; Trémier, A; Benoist, J C; Debenest, G

    2012-06-01

    This study aimed to experimentally acquire evolution profiles between depth, bulk density, Free Air Space (FAS), air permeability and thermal conductivity in initial composting materials. The impact of two different moisture content, two particle size and two types of bulking agent on these four parameters was also evaluated. Bulk density and thermal conductivity both increased with depth while FAS and air permeability both decreased with it. Moreover, depth and moisture content had a significant impact on almost all the four physical parameters contrary to particle size and the type of bulking agent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. 46 CFR 97.12-5 - Bulk solid cargoes that may liquefy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Bulk solid cargoes that may liquefy. 97.12-5 Section 97... VESSELS OPERATIONS Bulk Solid Cargoes § 97.12-5 Bulk solid cargoes that may liquefy. If the information provided in § 97.12-3(a) or (b) indicates that the bulk solid cargo to be carried is prone to liquefy...

  3. "Big Bang" as a result result of the curvature-driven first-order phase transition in the early cold Universe

    NASA Astrophysics Data System (ADS)

    Pashitskii, E. A.; Pentegov, V. I.

    We suggest that the "Big Bang" may be a result of the first-order phase transition driven by changing scalar curvature of the 4D space-time in the expanding cold Universe, filled with nonlinear scalar field φ and neutral matter with equation of state p = vɛ (where p and ɛ are pressure and energy density of matter). We consider a Lagrangian for scalar field in curved space-time with nonlinearity φ, which along with the quadratic term -ΣR|φ|2 (where Σ is interaction constant and R is scalar curvature) contains a term ΣR(φ +φ+) linear in φ. Due to this term the condition for the extrema of the potential energy of the scalar field is given by a cubic equation. Provided v > 1/3 the scalar curvature R = [κ(3v-1)ɛ - 4Γ (where κ and Γ are Einstein's gravitational and cosmological constants) decreases along with decreasing " in the process of the Universe's expansion, and at some critical value Rc < 0 a first-order phase transition occurs, driven by an "external field" parameter proportional to R. Given certain conditions the critical radius of the early Universe at the point of the first-order phase transition may reach arbitrary large values, so this scenario of unrestricted "inflation" of the Universe may be called "hyperinflation". Beyond the point of phase transition the system is rolling down into the potential minimum releasing the potential energy of scalar field with subsequent powerful heating of the Universe playing the role of "Big Bang".

  4. Topology and the universe

    NASA Astrophysics Data System (ADS)

    Gott, J. Richard, III

    1998-09-01

    Topology may play an important role in cosmology in several different ways. First, Einstein's field equations tell us about the local geometry of the universe but not about its topology. Therefore, the universe may be multiply connected. Inflation predicts that the fluctuations that made clusters and groups of galaxies arose from random quantum fluctuations in the early universe. These should be Gaussian random phase. This can be tested by quantitatively measuring the topology of large-scale structure in the universe using the genus statistic. If the original fluctuations were Gaussian random phase then the structure we see today should have a spongelike topology. A number of studies by our group and others have shown that this is indeed the case. Future tests using the Sloan Digital Sky Survey should be possible. Microwave background fluctuations should also exhibit a characteristic symmetric pattern of hot and cold spots. The COBE data are consistent with this pattern and the MAP and PLANCK satellites should provide a definitive test. If the original inflationary state was metastable then it should decay by making an infinite number of open inflationary bubble universes. This model makes a specific prediction for the power spectrum of fluctuations in the microwave background which can be checked by the MAP and PLANCK satellites. Finally, Gott and Li have proposed how a multiply connected cosmology with an early epoch of closed timelike curves might allow the universe to be its own mother.

  5. Temperature effects on the universal equation of state of solids

    NASA Technical Reports Server (NTRS)

    Vinet, P.; Ferrante, J.; Smith, J. R.; Rose, J. H.

    1986-01-01

    Recently it has been argued based on theoretical calculations and experimental data that there is a universal form for the equation of state of solids. This observation was restricted to the range of temperatures and pressures such that there are no phase transitions. The use of this universal relation to estimate pressure-volume relations (i.e., isotherms) required three input parameters at each fixed temperature. It is shown that for many solids the input data needed to predict high temperature thermodynamical properties can be dramatically reduced. In particular, only four numbers are needed: (1) the zero pressure (P=0) isothermal bulk modulus; (2)it P=0 pressure derivative; (3) the P=0 volume; and (4) the P=0 thermal expansion; all evaluated at a single (reference) temperature. Explicit predictions are made for the high temperature isotherms, the thermal expansion as a function of temperature, and the temperature variation of the isothermal bulk modulus and its pressure derivative. These predictions are tested using experimental data for three representative solids: gold, sodium chloride, and xenon. Good agreement between theory and experiment is found.

  6. Temperature effects on the universal equation of state of solids

    NASA Technical Reports Server (NTRS)

    Vinet, Pascal; Ferrante, John; Smith, John R.; Rose, James H.

    1987-01-01

    Recently it has been argued based on theoretical calculations and experimental data that there is a universal form for the equation of state of solids. This observation was restricted to the range of temperatures and pressures such that there are no phase transitions. The use of this universal relation to estimate pressure-volume relations (i.e., isotherms) required three input parameters at each fixed temperature. It is shown that for many solids the input data needed to predict high temperature thermodynamical properties can be dramatically reduced. In particular, only four numbers are needed: (1) the zero pressure (P = 0) isothermal bulk modulus; (2) its P = 0 pressure derivative; (3) the P = 0 volume; and (4) the P = 0 thermal expansion; all evaluated at a single (reference) temperature. Explicit predictions are made for the high temperature isotherms, the thermal expansion as a function of temperature, and the temperature variation of the isothermal bulk modulus and its pressure derivative. These predictions are tested using experimental data for three representative solids: gold, sodium chloride, and xenon. Good agreement between theory and experiment is found.

  7. Bulk and edge spin transport in topological magnon insulators

    NASA Astrophysics Data System (ADS)

    Rückriegel, Andreas; Brataas, Arne; Duine, Rembert A.

    2018-02-01

    We investigate the spin transport properties of a topological magnon insulator, a magnetic insulator characterized by topologically nontrivial bulk magnon bands and protected magnon edge modes located in the bulk band gaps. Employing the Landau-Lifshitz-Gilbert phenomenology, we calculate the spin current driven through a normal metal |topological magnon insulator |normal metal heterostructure by a spin accumulation imbalance between the metals, with and without random lattice defects. We show that bulk and edge transport are characterized by different length scales. This results in a characteristic system size where the magnon transport crosses over from being bulk dominated for small systems to edge dominated for larger systems. These findings are generic and relevant for topological transport in systems of nonconserved bosons.

  8. Development of the 2nd generation z(Redshift) and early universe spectrometer & the study of far-IR fine structure emission in high-z galaxies

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl

    The 2nd generation z (Redshift) and Early Universe Spectrometer (ZEUS-2), is a long-slit echelle-grating spectrometer (R~1000) for observations at submillimeter wavelengths from 200 to 850 microm. Its design is optimized for the detection of redshifted far-infrared spectral lines from galaxies in the early universe. Combining exquisite sensitivity, broad wavelength coverage, and large (˜2.5%) instantaneous bandwidth, ZEUS-2 is uniquely suited for studying galaxies between z˜0.2 and 5---spanning the peaks in both the star formation rate and number of AGN in the universe. ZEUS-2 saw first light at the Caltech Submillimeter Observatory (CSO) in the Spring of 2012 and was commissioned on the Atacama Pathfinder Experiment (APEX) in November 2012. Here we detail the design and performance of ZEUS-2, first however we discuss important science results that are examples of the science enabled by ZEUS-2. Using the first generation z (Redshift) and Early Universe Spectrometer (ZEUS-1) we made the first high-z detections of the [NII] 122 microm and [OIII] 88 microm lines. We detect these lines from starburst galaxies between z ˜2.5 and 4 demonstrating the utility of these lines for characterizing the properties of early galaxies. Specifically we are able to determine the most massive star still on the main sequence, the number of those stars and a lower limit on the mass of ionized gas in the source. Next we present ZEUS-2's first science result. Using ZEUS-2 on APEX we have detected the [CII] 158 microm line from the z = 1.78 galaxy H-ATLAS J091043.1-000322 with a line flux of (6.44 +/- 0.42) ˜ 10-18 W m-2. Combined with its far-infrared luminosity and a new Herschel-PACS detection of the [OI] 63 microm line we are able to conclude that H-ATLAS J091043.1-000322 is a high redshift analogue of a local ultra-luminous infrared galaxy, i.e. it is likely the site of a compact starburst due to a major merger. This detection, combined with the ZEUS-1 observations of the [NII

  9. Does boundary quantum mechanics imply quantum mechanics in the bulk?

    NASA Astrophysics Data System (ADS)

    Kabat, Daniel; Lifschytz, Gilad

    2018-03-01

    Perturbative bulk reconstruction in AdS/CFT starts by representing a free bulk field ϕ (0) as a smeared operator in the CFT. A series of 1 /N corrections must be added to ϕ (0) to represent an interacting bulk field ϕ. These corrections have been determined in the literature from several points of view. Here we develop a new perspective. We show that correlation functions involving ϕ (0) suffer from ambiguities due to analytic continuation. As a result ϕ (0) fails to be a well-defined linear operator in the CFT. This means bulk reconstruction can be understood as a procedure for building up well-defined operators in the CFT which thereby singles out the interacting field ϕ. We further propose that the difficulty with defining ϕ (0) as a linear operator can be re-interpreted as a breakdown of associativity. Presumably ϕ (0) can only be corrected to become an associative operator in perturbation theory. This suggests that quantum mechanics in the bulk is only valid in perturbation theory around a semiclassical bulk geometry.

  10. Evaluation and remediation of bulk soap dispensers for biofilm.

    PubMed

    Lorenz, Lindsey A; Ramsay, Bradley D; Goeres, Darla M; Fields, Matthew W; Zapka, Carrie A; Macinga, David R

    2012-01-01

    Recent studies evaluating bulk soap in public restroom soap dispensers have demonstrated up to 25% of open refillable bulk-soap dispensers were contaminated with ~ 6 log(10)(CFU ml(-1)) heterotrophic bacteria. In this study, plastic counter-mounted, plastic wall-mounted and stainless steel wall-mounted dispensers were analyzed for suspended and biofilm bacteria using total cell and viable plate counts. Independent of dispenser type or construction material, the bulk soap was contaminated with 4-7 log(10)(CFU ml(-1)) bacteria, while 4-6 log(10)(CFU cm(-2)) biofilm bacteria were isolated from the inside surfaces of the dispensers (n = 6). Dispenser remediation studies, including a 10 min soak with 5000 mg l(-1) sodium hypochlorite, were then conducted to determine the efficacy of cleaning and disinfectant procedures against established biofilms. The testing showed that contamination of the bulk soap returned to pre-test levels within 7-14 days. These results demonstrate biofilm is present in contaminated bulk-soap dispensers and remediation studies to clean and sanitize the dispensers are temporary.

  11. Black hole growth in the early Universe is self-regulated and largely hidden from view.

    PubMed

    Treister, Ezequiel; Schawinski, Kevin; Volonteri, Marta; Natarajan, Priyamvada; Gawiser, Eric

    2011-06-15

    The formation of the first massive objects in the infant Universe remains impossible to observe directly and yet it sets the stage for the subsequent evolution of galaxies. Although some black holes with masses more than 10(9) times that of the Sun have been detected in luminous quasars less than one billion years after the Big Bang, these individual extreme objects have limited utility in constraining the channels of formation of the earliest black holes; this is because the initial conditions of black hole seed properties are quickly erased during the growth process. Here we report a measurement of the amount of black hole growth in galaxies at redshift z = 6-8 (0.95-0.7 billion years after the Big Bang), based on optimally stacked, archival X-ray observations. Our results imply that black holes grow in tandem with their host galaxies throughout cosmic history, starting from the earliest times. We find that most copiously accreting black holes at these epochs are buried in significant amounts of gas and dust that absorb most radiation except for the highest-energy X-rays. This suggests that black holes grew significantly more during these early bursts than was previously thought, but because of the obscuration of their ultraviolet emission they did not contribute to the re-ionization of the Universe.

  12. Computational Cosmology: From the Early Universe to the Large Scale Structure.

    PubMed

    Anninos, Peter

    2001-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  13. Computational Cosmology: from the Early Universe to the Large Scale Structure.

    PubMed

    Anninos, Peter

    1998-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  14. Bulk local states and crosscaps in holographic CFT

    DOE PAGES

    Nakayama, Yu; Ooguri, Hirosi

    2016-10-17

    In a weakly coupled gravity theory in the anti-de Sitter space, local states in the bulk are linear superpositions of Ishibashi states for a crosscap in the dual conformal field theory. The superposition structure can be constrained either by the microscopic causality in the bulk gravity or the bootstrap condition in the boundary conformal field theory. We show, contrary to some expectation, that these two conditions are not compatible to each other in the weak gravity regime. As a result, we also present an evidence to show that bulk local states in three dimensions are not organized by the Virasoromore » symmetry.« less

  15. Accidental SUSY: enhanced bulk supersymmetry from brane back-reaction

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; van Nierop, L.; Parameswaran, S.; Salvio, A.; Williams, M.

    2013-02-01

    We compute how bulk loops renormalize both bulk and brane effective interactions for codimension-two branes in 6D gauged chiral supergravity, as functions of the brane tension and brane-localized flux. We do so by explicitly integrating out hyper- and gauge-multiplets in 6D gauged chiral supergravity compactified to 4D on a flux-stabilized 2D rugby-ball geometry, specializing the results of a companion paper, arXiv:1210.3753, to the supersymmetric case. While the brane back-reaction generically breaks supersymmetry, we show that the bulk supersymmetry can be preserved if the amount of brane- localized flux is related in a specific BPS-like way to the brane tension, and verify that the loop corrections to the brane curvature vanish in this special case. In these systems it is the brane-bulk couplings that fix the size of the extra dimensions, and we show that in some circumstances the bulk geometry dynamically adjusts to ensure the supersymmetric BPS-like condition is automatically satisfied. We investigate the robustness of this residual supersymmetry to loops of non-supersymmetric matter on the branes, and show that supersymmetry-breaking effects can enter only through effective brane-bulk interactions involving at least two derivatives. We comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.

  16. Dirac Fermions without bulk backscattering in rhombohedral topological insulators

    NASA Astrophysics Data System (ADS)

    Mera Acosta, Carlos; Lima, Matheus; Seixas, Leandro; da Silva, Antônio; Fazzio, Adalberto

    2015-03-01

    The realization of a spintronic device using topological insulators is not trivial, because there are inherent difficulties in achieving the surface transport regime. The majority of 3D topological insulators materials (3DTI) despite of support helical metallic surface states on an insulating bulk, forming topological Dirac fermions protected by the time-reversal symmetry, exhibit electronic scattering channels due to the presence of residual continuous bulk states near the Dirac-point. From ab initio calculations, we studied the microscopic origin of the continuous bulk states in rhombohedral topological insulators materials with the space group D3d 5 (R 3 m) , showing that it is possible to understand the emergence of residual continuous bulk states near the Dirac-point into a six bands effective model, where the breaking of the R3 symmetry beyond the Γ point has an important role in the hybridization of the px, py and pz atomic orbitals. Within these model, the mechanisms known to eliminate the bulk scattering, for instance: the stacking faults (SF), electric field and alloy, generated the similar effect in the effective states of the 3DTI. Finally, we show how the surface electronic transport is modified by perturbations of bulk with SF. We would like to thank the financial support by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

  17. The Inherent Dynamics of the Group University.

    ERIC Educational Resources Information Center

    Kaltefleiter, Werner

    1979-01-01

    The reorganization of the German universities between the end of the 1960s and the early 1970s into "Group Universities" is discussed. It is suggested that this new organizational system, modeled along the lines of a corporate state, has destroyed the communication system of the university and introduced discontinuity into the academic…

  18. 46 CFR 97.12-1 - Bulk ores and similar cargoes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk ores and similar cargoes. 97.12-1 Section 97.12-1... OPERATIONS Cargo Stowage § 97.12-1 Bulk ores and similar cargoes. (a) The owners or operators of general cargo vessels which carry bulk cargoes such as ore, ore concentrates, and similar cargoes shall furnish...

  19. WWC Review of the Report "Early College, Early Success: Early College High School Initiative Impact Study." What Works Clearinghouse Single Study Review

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2014

    2014-01-01

    Early College High Schools partner with colleges and universities to provide students with an opportunity to earn an Associate's degree or college credits toward a Bachelor's degree at no or low cost to students. In a recent study, researchers found that attending Early College High Schools improved some high school and postsecondary outcomes for…

  20. Palm-size miniature superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Saho, Norihide; Matsuda, Kazuya; Nishijima, Noriyo

    The development of a small, light, powerful and energy-efficient superconducting magnet has been desired in order to realize better efficiency and manipulability in guiding magnetic nano-particles, magnetic organic cells and other items to the right place. This study focuses on the development of a high-temperature superconducting (HTS) bulk magnet characterized by comparatively low leak magnetism despite a relatively high magnetic field. On this basis, the authors developed a palm-sized superconducting bulk magnet, which is the world's smallest, lightest, and lowest power consuming, as well as a new technology to effectively magnetize such a bulk magnet in a compact Stirling-cycle cryocooler (magnet C) with a pre-magnetized HTS bulk magnet (magnet B) in a compact cryocooler. This technology is demonstrated in two steps. In the first step, magnet B is magnetized using a superconducting solenoid magnet with a high magnetic field (magnet A) via the field cooling method. In the second step, magnet C is magnetized in the high magnetic field of magnet B. The prototype magnet C weighs 1.8 kg, and measures 235 × 65 × 115 mm (L × W × H). Magnet B was magnetized to 4.9 T using a 5 T magnet, and the target, magnet C, was magnetized using magnet B so that its maximum trapped magnetic flux density reached the value of 3.15 T. The net power consumption in a steady cooling state was 23 W, which is very low and comparable to that of a laptop computer.

  1. Orchestrating Bulk Data Movement in Grid Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vazhkudai, SS

    2005-01-25

    Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data by addressing several system and transfer challenges inherent to these environments. This work addresses issues involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus Toolkit{trademark}, building middleware that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored sites. These efforts have demonstrated a decentralizedmore » data scheduling architecture, a set of forecasting tools that predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.« less

  2. Roles of Bulk and Surface Chemistry in the Oxygen Exchange Kinetics and Related Properties of Mixed Conducting Perovskite Oxide Electrodes

    PubMed Central

    Perry, Nicola H.; Ishihara, Tatsumi

    2016-01-01

    Mixed conducting perovskite oxides and related structures serving as electrodes for electrochemical oxygen incorporation and evolution in solid oxide fuel and electrolysis cells, respectively, play a significant role in determining the cell efficiency and lifetime. Desired improvements in catalytic activity for rapid surface oxygen exchange, fast bulk transport (electronic and ionic), and thermo-chemo-mechanical stability of oxygen electrodes will require increased understanding of the impact of both bulk and surface chemistry on these properties. This review highlights selected work at the International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, set in the context of work in the broader community, aiming to characterize and understand relationships between bulk and surface composition and oxygen electrode performance. Insights into aspects of bulk point defect chemistry, electronic structure, crystal structure, and cation choice that impact carrier concentrations and mobilities, surface exchange kinetics, and chemical expansion coefficients are emerging. At the same time, an understanding of the relationship between bulk and surface chemistry is being developed that may assist design of electrodes with more robust surface chemistries, e.g., impurity tolerance or limited surface segregation. Ion scattering techniques (e.g., secondary ion mass spectrometry, SIMS, or low energy ion scattering spectroscopy, LEIS) with high surface sensitivity and increasing lateral resolution are proving useful for measuring surface exchange kinetics, diffusivity, and corresponding outer monolayer chemistry of electrodes exposed to typical operating conditions. Beyond consideration of chemical composition, the use of strain and/or a high density of active interfaces also show promise for enhancing performance. PMID:28773978

  3. Homogeneous Universes in Extended Inflation II

    NASA Astrophysics Data System (ADS)

    Guzmán, Enrique

    1997-04-01

    It is shown that the scalar field π of the Brans-Dicke theory in the Bianchi TypeVIo-VIh-VIIh-VIII and IX models has the same form that in the isotropic Robertson-Walker case. It is shown that the Universe will be isotropized very fast, permitting so that the approximation of an Universe Robertson-Walker isotropic to be a good approach in the early Universe.

  4. Nuclear and particle physics in the early universe

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1981-01-01

    Basic principles and implications of Big Bang cosmology are reviewed, noting the physical evidence of a previous universe temperature of 10,000 K and theoretical arguments such as grand unification decoupling indicating a primal temperature of 10 to the 15th eV. The Planck time of 10 to the -43rd sec after the Big Bang is set as the limit before which gravity was quantized and nothing is known. Gauge theories of elementary particle physics are reviewed for successful predictions of similarity in weak and electromagnetic interactions and quantum chromodynamic predictions for strong interactions. The large number of photons in the universe relative to the baryons is considered and the grand unified theories are cited as showing the existence of baryon nonconservation as an explanation. Further attention is given to quark-hadron phase transition, the decoupling for the weak interaction and relic neutrinos, and Big Bang nucleosynthesis.

  5. Effect of light Sphagnum peat on odour formation in the early stages of biowaste composting.

    PubMed

    Kurola, Jukka M; Arnold, Mona; Kontro, Merja H; Talves, Matti; Romantschuk, Martin

    2010-05-01

    In the present study, we investigated the effects of two bulking materials, Sphagnum peat and pine wood chips, on the early stages of biowaste composting in two pilot-scale processes. Emphasis was placed on studying the formation conditions of malodorous compost gases in the initial phases of the processes. The results showed that gas emission leaving an open windrow and a closed drum composting system contained elevated concentrations of fermentative microbial metabolites when acid Sphagnum peat (pH 3.2) was used as a bulking material. Moreover, the gas emission of the peat amended drum composter contained a high concentration of odour (up to 450,000oum(-3) of air). The highest odour values in the outlet gas of peat amended composts coincided with the elevated concentrations of volatile organic compounds such as acetoin and buthanedion. We conclude that the acidifying qualities of composting substrates or bulking material may intensify odour emission from biowaste composts and prolong the early stages of the composting process. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. The bulk composition of Titan's atmosphere.

    NASA Technical Reports Server (NTRS)

    Trafton, L.

    1972-01-01

    Consideration of the physical constraints for Titan's atmosphere leads to a model which describes the bulk composition of the atmosphere in terms of observable parameters. Intermediate-resolution photometric scans of both Saturn and Titan, including scans of the Q branch of Titan's methane band, constrain these parameters in such a way that the model indicates the presence of another important atmospheric gas, namely, another bulk constituent or a significant thermal opacity. Further progress in determining the composition and state of Titan's atmosphere requires additional observations to eliminate present ambiguities. For this purpose, particular observational targets are suggested.

  7. A Recap of the 2011 ISPI University Case Study Competition

    ERIC Educational Resources Information Center

    Hicks, Karen; Blake, Anne

    2012-01-01

    In early 2011, the International Society for Performance Improvement (ISPI) invited three universities--University of North Carolina, Charlotte; Purdue University; and Wayne State University--to participate in the third annual University Human Performance Technology (HPT) Case Study Competition. Each university put together a team of three or four…

  8. An Analysis of the California State University and Colleges Early Retirement Incentive Program: A Report Pursuant to Chapter 656 of the Statutes of 1979.

    ERIC Educational Resources Information Center

    Reinhard, Raymond M.

    The California State University and Colleges' (CSUC) Early Retirement Incentive (ERI) Program is described, and information is presented of those who retire during a three-month period with an incentive bonus of two additional years of (unearned) retirement service credit. During the eligibility period 1,047 CSUC employees retired, and it appears…

  9. Bulk Leisure--Problem or Blessing?

    ERIC Educational Resources Information Center

    Beland, Robert M.

    1983-01-01

    With an increasing number of the nation's work force experiencing "bulk leisure" time because of new work scheduling procedures, parks and recreation offices are encouraged to examine their program scheduling and content. (JM)

  10. 3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples

    NASA Technical Reports Server (NTRS)

    Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.

    2015-01-01

    In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible

  11. Numerical modelling of iron-pnictide bulk superconductor magnetization

    NASA Astrophysics Data System (ADS)

    Ainslie, Mark D.; Yamamoto, Akiyasu; Fujishiro, Hiroyuki; Weiss, Jeremy D.; Hellstrom, Eric E.

    2017-10-01

    Iron-based superconductors exhibit a number of properties attractive for applications, including low anisotropy, high upper critical magnetic fields (H c2) in excess of 90 T and intrinsic critical current densities above 1 MA cm-2 (0 T, 4.2 K). It was shown recently that bulk iron-pnictide superconducting magnets capable of trapping over 1 T (5 K) and 0.5 T (20 K) can be fabricated with fine-grain polycrystalline Ba0.6K0.4Fe2As2 (Ba122). These Ba122 magnets were processed by a scalable, versatile and low-cost method using common industrial ceramic processing techniques. In this paper, a standard numerical modelling technique, based on a 2D axisymmetric finite-element model implementing the H -formulation, is used to investigate the magnetisation properties of such iron-pnictide bulk superconductors. Using the measured J c(B, T) characteristics of a small specimen taken from a bulk Ba122 sample, experimentally measured trapped fields are reproduced well for a single bulk, as well as a stack of bulks. Additionally, the influence of the geometric dimensions (thickness and diameter) on the trapped field is analysed, with a view of fabricating larger samples to increase the magnetic field available from such trapped field magnets. It is shown that, with current state-of-the-art superconducting properties, surface trapped fields >2 T could readily be achieved at 5 K (and >1 T at 20 K) with a sample of diameter 50 mm. Finally, an aspect ratio of between 1 and 1.5 for R/H (radius/thickness) would be an appropriate compromise between the accessible, surface trapped field and volume of superconducting material for bulk Ba122 magnets.

  12. Fractal Feature of Particle-Size Distribution in the Rhizospheres and Bulk Soils during Natural Recovery on the Loess Plateau, China

    PubMed Central

    Song, Zilin; Zhang, Chao; Liu, Guobin; Qu, Dong; Xue, Sha

    2015-01-01

    The application of fractal geometry to describe soil structure is an increasingly useful tool for better understanding the performance of soil systems. Only a few studies, however, have focused on the structure of rhizospheric zones, where energy flow and nutrient recycling most frequently occur. We used fractal dimensions to investigate the characteristics of particle-size distribution (PSD) in the rhizospheres and bulk soils of six croplands abandoned for 1, 5, 10, 15, 20, and 30 years on the Loess Plateau of China and evaluated the changes over successional time. The PSDs of the rhizospheres and the fractal dimensions between rhizosphere soil and bulk soils during the natural succession differed significantly due to the influence of plant roots. The rhizospheres had higher sand (0.05–1.00 mm) contents, lower silt (<0.002 mm) contents, and lower fractal dimensions than the bulk soils during the early and intermediate successional stages (1–15 years). The fractal dimensions of the rhizosphere soil and bulk soil ranged from 2.102 to 2.441 and from 2.214 to 2.459, respectively, during the 30-year restoration. Rhizospheric clay and silt contents and fractal dimension tended to be higher and sand content tended to be lower as abandonment age increased, but the bulk soils had the opposite trend. Linear regression analysis indicated that the fractal dimensions of both the rhizospheres and bulk soils were significantly linearly correlated with clay, sand, organic-carbon, and total-nitrogen contents, with R 2 ranging from 0.526 to 0.752 (P<0.001). In conclusion, PSD differed significantly between the rhizosphere soil and bulk soil. The fractal dimension was a sensitive and useful index for quantifying changes in the properties of the different soil zones. This study will greatly aid the application of the fractal method for describing soil structure and nutrient status and the understanding of the performance of rhizospheric zones during ecological restoration. PMID

  13. Physico-mechanical characteristics of commercially available bulk-fill composites.

    PubMed

    Leprince, Julian G; Palin, William M; Vanacker, Julie; Sabbagh, Joseph; Devaux, Jacques; Leloup, Gaetane

    2014-08-01

    Bulk-fill composites have emerged, arguably, as a new "class" of resin-based composites, which are claimed to enable restoration in thick layers, up to 4mm. The objective of this work was to compare, under optimal curing conditions, the physico-mechanical properties of most currently available bulk-fill composites to those of two conventional composite materials chosen as references, one highly filled and one flowable "nano-hybrid" composite. Tetric EvoCeram Bulk Fill (Ivoclar-Vivadent), Venus Bulk Fill (Heraeus-Kulzer), SDR (Dentsply), X-tra Fil (VOCO), X-tra Base (VOCO), Sonic Fill (Kerr), Filtek Bulk Fill (3M-Espe), Xenius (GC) were compared to the two reference materials. The materials were light-cured for 40s in a 2mm×2mm×25mm Teflon mould. Degree of conversion was measured by Raman spectroscopy, Elastic modulus and flexural strength were evaluated by three point bending, surface hardness using Vickers microindentation before and after 24h ethanol storage, and filler weight content by thermogravimetric analysis. The ratio of surface hardness before and after ethanol storage was considered as an evaluation of polymer softening. Data were analyzed by one-way ANOVA and post hoc Tukey's test (p=0.05). The mechanical properties of the bulk-fill composites were mostly lower compared with the conventional high viscosity material, and, at best, comparable to the conventional flowable composite. Linear correlations of the mechanical properties investigated were poor with degree of conversion (0.090.8). Softening in ethanol revealed differences in polymer network density between material types. The reduction of time and improvement of convenience associated with bulk-fill materials is a clear advantage of this particular material class. However, a compromise with mechanical properties compared with more conventional commercially-available nano-hybrid materials was demonstrated by the present work. Given the lower mechanical

  14. The nucleosynthetic origins and chemical evolution of phosphorus in the early universe

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2013-10-01

    Relatively little is known about the chemical evolution of the element phosphorus, despite its relatively large abundance in the Sun and its importance for biological life. The goal of this archive proposal is to establish the chemical evolution trend of phosphorus, extending our knowledge from solar metallicity to stars with less than 1/1000th the solar metallicity.Previous studies have used weak near-infrared P I lines to establish phosphorus abundance trends from -1.0 < [Fe/H] < 0. We have identified a strong P I doublet in the UV at 2136 Angstroms, which is present in the spectra of 22 stars available in the HST archives. Our study will {1} improve on the limited observations of the abundance trend at high metallicity and extend it to metallicities lower by 2 dex and {2} determine whether [P/Fe] flattens out towards lower metallicities {like the alpha-elements Mg, Si, Ca, and Ti} or whether it continues to increase {like Co and Zn}. Our results will provide the first tight constraints on the nucleosynthesis of phosphorus and its production sites in the early Universe.We request one semester of funding to support a graduate student to lead the spectral analysis work, one month of summer salary, and miscellaneous travel and publication costs.

  15. Bulk renormalization and particle spectrum in codimension-two brane worlds

    NASA Astrophysics Data System (ADS)

    Salvio, Alberto

    2013-04-01

    We study the Casimir energy due to bulk loops of matter fields in codimension-two brane worlds and discuss how effective field theory methods allow us to use this result to renormalize the bulk and brane operators. In the calculation we explicitly sum over the Kaluza-Klein (KK) states with a new convenient method, which is based on a combined use of zeta function and dimensional regularization. Among the general class of models we consider we include a supersymmetric example, 6D gauged chiral supergravity. Although much of our discussion is more general, we treat in some detail a class of compactifications, where the extra dimensions parametrize a rugby ball shaped space with size stabilized by a bulk magnetic flux. The rugby ball geometry requires two branes, which can host the Standard Model fields and carry both tension and magnetic flux (of the bulk gauge field), the leading terms in a derivative expansion. The brane properties have an impact on the KK spectrum and therefore on the Casimir energy as well as on the renormalization of the brane operators. A very interesting feature is that when the two branes carry exactly the same amount of flux, one half of the bulk supersymmetries survives after the compactification, even if the brane tensions are large. We also discuss the implications of these calculations for the natural value of the cosmological constant when the bulk has two large extra dimensions and the bulk supersymmetry is partially preserved (or completely broken).

  16. 7 CFR 58.317 - Bulk butter trucks, boats, texturizers, and packers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Bulk butter trucks, boats, texturizers, and packers... and Grading Service 1 Equipment and Utensils § 58.317 Bulk butter trucks, boats, texturizers, and packers. Bulk butter trucks, boats, texturizers, and packers shall be constructed of aluminum, stainless...

  17. 7 CFR 58.317 - Bulk butter trucks, boats, texturizers, and packers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Bulk butter trucks, boats, texturizers, and packers... and Grading Service 1 Equipment and Utensils § 58.317 Bulk butter trucks, boats, texturizers, and packers. Bulk butter trucks, boats, texturizers, and packers shall be constructed of aluminum, stainless...

  18. 7 CFR 58.317 - Bulk butter trucks, boats, texturizers, and packers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Bulk butter trucks, boats, texturizers, and packers... and Grading Service 1 Equipment and Utensils § 58.317 Bulk butter trucks, boats, texturizers, and packers. Bulk butter trucks, boats, texturizers, and packers shall be constructed of aluminum, stainless...

  19. 7 CFR 58.317 - Bulk butter trucks, boats, texturizers, and packers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Bulk butter trucks, boats, texturizers, and packers... and Grading Service 1 Equipment and Utensils § 58.317 Bulk butter trucks, boats, texturizers, and packers. Bulk butter trucks, boats, texturizers, and packers shall be constructed of aluminum, stainless...

  20. 7 CFR 58.317 - Bulk butter trucks, boats, texturizers, and packers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Bulk butter trucks, boats, texturizers, and packers... and Grading Service 1 Equipment and Utensils § 58.317 Bulk butter trucks, boats, texturizers, and packers. Bulk butter trucks, boats, texturizers, and packers shall be constructed of aluminum, stainless...

  1. The Changing Shape of Corporate Universities

    ERIC Educational Resources Information Center

    Baucus, David; Baucus, Melissa

    2005-01-01

    About seven years ago, technological innovation gave rise to the e-learning industry and the growth of corporate universities. Early in the evolution of the industry, corporate universities represented a reasonable deployment of learning technologies. They enabled companies to deliver the right content to target markets (e.g., employees, partners,…

  2. Aspects of Reading Acquisition; Proceedings of the Annual Hyman Blumberg Symposium on Research in Early Childhood Education (5th, Johns Hopkins University, Nov. 13-14, 1974).

    ERIC Educational Resources Information Center

    Guthrie, John T., Ed.

    Papers collected in this volume were presented at the Fifth Annual Blumberg Symposium on Research in Early Childhood Education, held at Johns Hopkins University in 1974. Selections include "Alexia" (D. Frank Benson), "Young Children's Expectations for Reading" (Doris R. Entwisle), "Relations between Acquisition of…

  3. Bulk chemical compositions of Antarctic meteorites in the NIPR collection

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Imae, N.; Yamaguchi, A.; Haramura, H.; Kojima, H.

    2018-03-01

    Bulk chemical compositions of meteorites were traditionally analyzed by wet chemical analysis, and NIPR has data for 1162 meteorites as of September 2017. We discuss the classification of meteorites on the basis of these data. Chondrite data are distributed in an anomalously wide range of compositions on the Urey-Craig diagram. One of the reasons for such wide distribution is terrestrial weathering producing Fe2O3-bearing phases from Fe-Ni metal and sulfides. Another important factor affecting the bulk compositional data is brecciation. Our observations indicate that many brecciated chondrites contain anomalously abundant opaque minerals, or are depleted in them, resulting in unusual compositions. In case of enstatite and some carbonaceous chondrites, the bulk compositions are distributed in wider ranges than reported before. The bulk compositions of HED meteorites are consistent with their mineralogy and classification. Our study suggests that wet chemical data are still significant for the meteorite classification. However, petrographic observation is indispensable for evaluating the bulk chemistry and classification of meteorites.

  4. The Mission of the University: Medieval to Postmodern Transformations

    ERIC Educational Resources Information Center

    Scott, John C.

    2006-01-01

    Mission transformation, multiplicity, and complexity are analyzed. The medieval university emphasizes "teaching." Thereafter, the early modern university adopts "nationalization" (service to the nation-state). The formative U.S. college advances "democratization." Simultaneously, the German university promotes research. The modern American…

  5. Ignition and combustion of bulk metals at normal, elevated and reduced gravity

    NASA Technical Reports Server (NTRS)

    Branch, Melvyn C.; Daily, John W.; Abbud-Madrid, Angel

    1995-01-01

    Knowledge of the oxidation, ignition, and combustion of bulk metals is important for fire safety in the production, management, and utilization of liquid and gaseous oxygen for ground based and space applications. This proposal outlines studies in continuation of research initiated earlier under NASA support to investigate the ignition and combustion characteristics of bulk metals under varying gravity conditions. Metal ignition and combustion have not been studied previously under these conditions and the results are important not only for improved fire safety but also to increase knowledge of basic ignition and combustion mechanisms. The studies completed to date have led to the development of a clean and reproducible ignition source and diagnostic techniques for combustion measurements and have provided normal, elevated, and reduced gravity combustion data on a variety of different pure metals. The research conducted under this grant will use the apparatus and techniques developed earlier to continue the elevated and low gravity experiments, and to develop the overall modeling of the ignition and combustion process. Metal specimens are to be ignited using a xenon short-arc lamp and measurements are to be made of the ignition energy, surface temperature history, burning rates, spectroscopy of surface and gas products, and surface morphology and chemistry. Elevated gravity will be provided by the University of Colorado Geotechnical Centrifuge and microgravity will be obtained in NASA's DC-9 Reduced Gravity aircraft.

  6. Ability of admissions criteria to predict early academic performance among students of health science colleges at King Saud University, Saudi Arabia.

    PubMed

    Alhadlaq, Adel M; Alshammari, Osama F; Alsager, Saleh M; Neel, Khalid A Fouda; Mohamed, Ashry G

    2015-06-01

    The aim of this study was to evaluate the ability of admissions criteria at King Saud University (KSU), Riyadh, Saudi Arabia, to predict students' early academic performance at three health science colleges (medicine, dentistry, and pharmacy). A retrospective cohort study was conducted with data from the records of students enrolled in the three colleges from the 2008-09 to 2010-11 academic years. The admissions criteria-high school grade average (HSGA), aptitude test (APT) score, and achievement test (ACT) score-were the independent variables. The dependent variable was the average of students' first- and second-year grade point average (GPA). The results showed that the ACT was a better predictor of the students' early academic performance than the HSGA (β=0.368, β=0.254, respectively). No significant relationship was found between the APT and students' early academic performance (β=-0.019, p>0.01). The ACT was most predictive for pharmacy students (β=0.405), followed by dental students (β =0.392) and medical students (β=0.195). Overall, the current admissions criteria explained only 25.5% of the variance in the students' early academic performance. While the ACT and HSGA were found to be predictive of students' early academic performance in health colleges at KSU, the APT was not a strong predictor. Since the combined current admissions criteria for the health science colleges at KSU were weak predictors of the variance in early academic performance, it may be necessary to consider noncognitive evaluation methods during the admission process.

  7. Temperature uniformity of the bulk medium produced in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ray, Lanny

    2006-10-01

    The success of hydrodynamic models of elliptic flow in relativistic heavy ion collisions is often touted as evidence for rapid thermal equilibration. However, large momentum scale two-particle correlations indicate that a significant fraction of the final-state hadrons retain jet-like correlation structure associated with early stage, non-equilibrated low-Q^2 partons [1]. In addition, correlations on transverse momentum (pt1xpt2) suggest that low-Q^2 parton momentum is partially dissipated causing fluctuations in the effective temperature (thermal and/or collective motion) of the bulk medium[2]. We first show that both global and local temperature fluctuation models describe the available (pt1xpt2) correlation data equally well. Results of an analytical model are then presented which tests the sensitivity of (pt1xpt2) correlations to the first few lower-order cumulants of the two-point temperature distribution for the event ensemble. Unique signatures in the predicted (pt1xpt2) correlations are observed for each cumulant term studied. The prospects for direct measurement of the absolute temperature distribution in the bulk medium produced in relativistic heavy-ion collisions using (pt1xpt2) and other correlation measures are discussed. [1] J. Adams et al., Phys. Rev. C 73, 064907 (2006); J. Phys.G. 32, L37 (2006). [2]J. Adams et al., nucl-ex/0408012.

  8. Family Income Dynamics, Early Childhood Education and Care, and Early Child Behavior Problems in Norway

    ERIC Educational Resources Information Center

    Zachrisson, Henrik D.; Dearing, Eric

    2015-01-01

    The sociopolitical context of Norway includes low poverty rates and universal access to subsidized and regulated Early Childhood Education and Care (ECEC). In this context, the association between family income dynamics and changes in early child behavior problems was investigated, as well as whether high-quality ECEC buffers children from the…

  9. Quantum Universe

    NASA Astrophysics Data System (ADS)

    Mukhanov, V. F.

    2016-10-01

    In March 2013, following an accurate processing of available measurement data, the Planck Scientific Collaboration published the highest-resolution photograph ever of the early Universe when it was only a few hundred thousand years old. The photograph showed galactic seeds in sufficient detail to test some nontrivial theoretical predictions made more than thirty years ago. Most amazing was that all predictions were confirmed to be remarkably accurate. With no exaggeration, we may consider it established experimentally that quantum physics, which is normally assumed to be relevant on the atomic and subatomic scale, also works on the scale of the entire Universe, determining its structure with all its galaxies, stars, and planets.

  10. First Look at a Major Transition Period in the Early Universe

    NASA Astrophysics Data System (ADS)

    1997-08-01

    New Observations of Intergalactic Helium Absorption Observations of the bright southern quasar HE 2347-4342 with telescopes at the ESO La Silla Observatory and with the NASA/ESA Hubble Space Telescope (HST) have provided a group of European astronomers [1] with an exceptional glimpse into an early, still unexplored transition period of the Universe. At that time, many billions of years ago, some of the enormous gaseous clouds of hydrogen and helium left over from the Big Bang had not yet been fully ionized by the increasingly strong radiation from emerging galaxies and stars. In recent years astronomers have successfully `looked back' towards this period, but the new observations of HE 2347-4342 have now homed in on an important transitionary epoch during the evolution of the young Universe. Searching for clear views towards bright quasars As has been the case for many other important scientific achievements, this observational breakthrough was preceded by a long and tedious period of careful preparatory work. It began in 1989, when Dieter Reimers and his collaborators from the University of Hamburg (Germany) initiated a spectral survey of the entire southern sky with the 1-metre ESO Schmidt Telescope at La Silla. The aim was to find bright quasars , a rare class of remote galaxies with unusually bright and energetic centres. They would then be studied in greater detail with other, larger telescopes. For this programme, a large objective prism is placed in front of the telescope, allowing the simultaneous recording on a large photographic plate of spectra of about 40,000 celestial objects in a 5 o x 5 o sky field. The plates are sent to Hamburg where they are scanned (digitized) in a microphotometer and automatically searched for spectra of quasars. Until now, more than 400 plates have been obtained. One of the main goals of this vast programme is to find bright and distant quasars, in particular those whose light reaches us along relatively unobstructed paths. Or

  11. Optical and Electrical Characterization of Bulk Grown Indium-Gallium-Arsenide Alloys

    DTIC Science & Technology

    2010-03-01

    OPTICAL AND ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS THESIS...Government. AFIT/GAP/ENP/10-M02 OPTICAL AND ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS THESIS Presented to...ELECTRICAL CHARACTERIZATION OF BULK GROWN INDIUM- GALLIUM -ARSENIDE ALLOYS Austin C Bergstrom, BS 2 nd Lieutenant, USAF

  12. Cuspal Deflection of Premolars Restored with Bulk-Fill Composite Resins.

    PubMed

    Behery, Haytham; El-Mowafy, Omar; El-Badrawy, Wafa; Saleh, Belal; Nabih, Sameh

    2016-01-01

    This in vitro study compared cuspal deflection of premolars restored with three bulk-fill composite resins to that of incrementally-restored ones with a low-shrinkage silorane-based restorative material. Forty freshly-extracted intact human upper premolars were used. Reference points at buccal and palatal cusp tips were acid-etched and composite rods were horizontally bonded to them (TPH-Spectra-HV, Dentsply). Two acrylic resin guiding paths were made for each premolar to guide beaks of a digital micrometer used for cuspal deflection measurements. Standardized MOD cavities, 3 mm wide bucco-lingually and 3.5 mm deep, were prepared on each premolar. Prepared teeth were then equally divided into four groups (n = 10) and each group was assigned to one of four composite resin (QuiXX, Dentsply; X-tra fil, Voco; Tetric EvoCeram Bulk Fill, Ivoclar Vivadent; low-shrinkage Filtek LS, 3M/ESPE). Adper Single Bond-Plus, 3M/ESPE was used with all bulk-fill restoratives. LS-System Adhesive, 3M/ESPE was used with Filtek LS. For each prepared premolar, cuspal deflection was measured in microns as the difference between two readings between reference points before and after restoration completion. Means and SDs were calculated and data statistically-analyzed using One-way ANOVA and Tukey's test. Filtek LS showed the lowest mean cuspal deflection value 6.4(0.84)μm followed by Tetric EvoCeram Bulk Fill 10.1(1.2) μm and X-tra fil 12.4(1.35)μm, while QuiXX showed the highest mean 13(1.05)μm. ANOVA indicated significant difference among mean values of groups (p < 0.001). Tukey's test indicated no significant difference in mean values between QuiXX and X-tra fil (p = 0.637). Tetric EvoCeram Bulk Fill had significantly lower mean cuspal deflection compared with the two other bulk-fill composite resins tested. Filtek LS had the lowest significant mean cuspal deflection in comparison to all tested bulk-fill restoratives. The use of Tetric EvoCeram Bulk fill composite resin

  13. 77 FR 12293 - PCBs Bulk Product v. Remediation Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    .... Remediation Waste AGENCY: Environmental Protection Agency (EPA). ACTION: Request for Public Comment. SUMMARY... biphenyl (PCB) disposal regulations regarding PCB bulk product and PCB remediation waste. The proposed... regarding PCB bulk product and PCB remediation waste under regulations promulgated at 40 CFR part 761. The...

  14. Electro-optical modeling of bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Kirchartz, Thomas; Pieters, Bart E.; Taretto, Kurt; Rau, Uwe

    2008-11-01

    We introduce a model for charge separation in bulk heterojunction solar cells that combines exciton transport to the interface between donor and acceptor phases with the dissociation of the bound electron/hole pair. We implement this model into a standard semiconductor device simulator, thereby creating a convenient method to simulate the optical and electrical characteristics of a bulk heterojunction solar cell with a commercially available program. By taking into account different collection probabilities for the excitons in the polymer and the fullerene, we are able to reproduce absorptance, internal and external quantum efficiency, as well as current/voltage curves of bulk heterojunction solar cells. We further investigate the influence of mobilities of the free excitons as well as the mobilities of the free charge carriers on the performance of bulk heterojunction solar cells. We find that, in general, the highest efficiencies are achieved with the highest mobilities. However, an optimum finite mobility of free charge carriers can result from a large recombination velocity at the contacts. In contrast, Langevin-type of recombination cannot lead to finite optimum mobilities even though this mechanism has a strong dependence on the free carrier mobilities.

  15. Critical soil bulk density for soybean growth in Oxisols

    NASA Astrophysics Data System (ADS)

    Keisuke Sato, Michel; Veras de Lima, Herdjania; Oliveira, Pedro Daniel de; Rodrigues, Sueli

    2015-10-01

    The aim of this study was to evaluate the critical soil bulk density from the soil penetration resistance measurements for soybean root growth in Brazilian Amazon Oxisols. The experiment was carried out in a greenhouse using disturbed soil samples collected from the northwest of Para characterized by different texture. The treatments consisted of a range of soil bulk densities for each soil textural class. Three pots were used for soybean growth of and two for the soil penetration resistance curve. From the fitted model, the critical soil bulk density was determined considering the penetration resistance values of 2 and 3 MPa. After sixty days, plants were cut and root length, dry mass of root, and dry mass of shoots were determined. At higher bulk densities, the increase in soil water content decreased the penetration resistance, allowing unrestricted growth of soybean roots. Regardless of soil texture, the penetration resistance of 2 and 3 MPa had a slight effect on root growth in soil moisture at field capacity and a reduction of 50% in the soybean root growth was achieved at critical soil bulk density of 1.82, 1.75, 1.51, and 1.45 Mg m-3 for the sandy loam, sandy clay loam, clayey, and very clayey soil.

  16. Role Model Effects of Female STEM Teachers and Doctors on Early 20th Century University Enrollment in California. Research & Occasional Paper Series: CSHE.10.16

    ERIC Educational Resources Information Center

    Bleemer, Zach

    2016-01-01

    What was the role of imperfect local information in the growth, gender gap, and STEM (Science, Technology, Engineering and Math) major selection of early 20th century American universities? In order to examine pre-1950 American higher education, this study constructs four rich panel datasets covering most students, high school teachers, and…

  17. Bulk Extractor 1.4 User’s Manual

    DTIC Science & Technology

    2013-08-01

    optimistically decompresses data in ZIP, GZIP, RAR, and Mi- crosoft’s Hibernation files. This has proven useful, for example, in recovering email...command line. Java 7 or above must be installed on the machine for the Bulk Extractor Viewer to run. Instructions on running bulk_extractor from the... Hibernation File Fragments (decompressed and processed, not carved) Subsection 4.6 winprefetch Windows Prefetch files, file fragments (processed

  18. The Early Study Abroad Trend

    ERIC Educational Resources Information Center

    Ly, Phuong

    2008-01-01

    A growing number of South Korean students are going to an English-speaking country as teenagers to escape from the grueling, test-oriented Korean schools in hopes of gaining entry into American universities. American colleges and universities are starting to see more of these "early study abroad students," as they are called in South…

  19. Evaluation of Radiopacity of Bulk-fill Flowable Composites Using Digital Radiography.

    PubMed

    Tarcin, B; Gumru, B; Peker, S; Ovecoglu, H S

    2016-01-01

    New flowable composites that may be bulk-filled in layers up to 4 mm are indicated as a base beneath posterior composite restorations. Sufficient radiopacity is one of the several important requirements such materials should meet. The aim of this study was to evaluate the radiopacity of bulk-fill flowable composites and to provide a comparison with conventional flowable composites using digital imaging. Ten standard specimens (5 mm in diameter, 1 mm in thickness) were prepared from each of four different bulk-fill flowable composites and nine different conventional flowable composites. Radiographs of the specimens were taken together with 1-mm-thick tooth slices and an aluminum step wedge using a digital imaging system. For the radiographic exposures, a storage phosphor plate and a dental x-ray unit at 70 kVp and 8 mA were used. The object-to-focus distance was 30 cm, and the exposure time was 0.2 seconds. The gray values of the materials were measured using the histogram function of the software available with the system, and radiopacity was calculated as the equivalent thickness of aluminum. The data were analyzed statistically (p<0.05). All of the tested bulk-fill flowable composites showed significantly higher radiopacity values in comparison with those of enamel, dentin, and most of the conventional flowable composites (p<0.05). Venus Bulk Fill (Heraeus Kulzer) provided the highest radiopacity value, whereas Arabesk Flow (Voco) showed the lowest. The order of the radiopacity values for the bulk-fill flowable composites was as follows: Venus Bulk Fill (Heraeus Kulzer) ≥ X-tra Base (Voco) > SDR (Dentsply DeTrey) ≥ Filtek Bulk Fill (3M ESPE). To conclude, the bulk-fill flowable restorative materials, which were tested in this study using digital radiography, met the minimum standard of radiopacity specified by the International Standards Organization.

  20. Should bulk cloudwater or fogwater samples obey Henry's law?

    NASA Astrophysics Data System (ADS)

    Pandis, Spyros N.; Seinfeld, John H.

    1991-06-01

    Mixing of droplets with different pH that are individually in Henry's law equilibrium with the surrounding atmosphere always results in a bulk mixture that is supersaturated with weak acids like S(IV) and HCOOH, and bases like NH3 with respect to the original atmosphere. High supersaturations result only when the pH of the bulk droplet mixture exceeds the pKa of the species, in which pH range large pH differences among droplets of different sizes lead to large deviations from Henry's law for the bulk mixture. The deviation is shown to depend on the ratio of the arithmetic mean to the harmonic mean of the hydrogen ion concentrations of the droplets with the liquid water content used as weighting factor in the calculation of the means. The theory developed can explain observed discrepancies from Henry's law in atmospheric samples and also other observed phenomena like the reported increase of pH values of bulk aqueous samples during storage.

  1. High-Oriented Thermoelectric Nano-Bulk Fabricated from Thermoelectric Ink

    NASA Astrophysics Data System (ADS)

    Koyano, M.; Mizutani, S.; Hayashi, Y.; Nishino, S.; Miyata, M.; Tanaka, T.; Fukuda, K.

    2017-05-01

    Printing technology is expected to provide innovative and environmentally friendly processes for thermoelectric (TE) module fabrication. As described in this paper, we propose an orientation control process using plastic deformation at high temperatures and present high-oriented TE nano-bulks fabricated from bismuth telluride (Bi-Te) TE inks using this process. In the case of n-type Bi-Te, surface x-ray diffraction reveals that crystalline grains in the plastic-deformed nano-bulk demonstrate a c-plane orientation parallel to the pressed face. According to the high orientation, electrical resistivity ρ, thermal conductivity κ, and figure of merit ZT show anisotropic behavior. It is noteworthy that ( ZT)// almost reaches unity ( ZT)// ˜1 at 340 K, even at low temperatures of the plastic deformation process. In contrast, the ZT of plastic-deformed p-type nano-bulk indicates isotropic behavior. The difference in the process temperature dependence of ZT suggests that n-type and p-type nano-bulk orientation mechanisms mutually differ.

  2. Surface Premelting Coupled with Bulk Phase Transitions in Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Li, Bo; Wang, Feng; Zhou, Di; Cao, Xin; Peng, Yi; Ni, Ran; Liao, Maijia; Han, Yilong

    2015-03-01

    Colloids have been used as outstanding model systems for the studies of various phase transitions in bulk, but not at interface yet. Here we obtained equilibrium crystal-vapor interfaces using tunable attractive colloidal spheres and studied the surface premelting at the single-particle level by video microscopy. We found that monolayer crystals exhibit a bulk isostructural solid-solid transition which triggers the surface premelting. The premelting is incomplete due to the interruption of a mechanical-instability-induced bulk melting. By contrast, two- or multilayer crystals do not have the solid-solid transition and the mechanical instability, hence they exhibit complete premelting with divergent surface-liquid thickness. These novel interplays between bulk and surface phase transitions cast new lights for both types of transitions.

  3. Evaluation of bulk heat fluxes from atmospheric datasets

    NASA Astrophysics Data System (ADS)

    Farmer, Benton

    Heat fluxes at the air-sea interface are an important component of the Earth's heat budget. In addition, they are an integral factor in determining the sea surface temperature (SST) evolution of the oceans. Different representations of these fluxes are used in both the atmospheric and oceanic communities for the purpose of heat budget studies and, in particular, for forcing oceanic models. It is currently difficult to quantify the potential impact varying heat flux representations have on the ocean response. In this study, a diagnostic tool is presented that allows for a straightforward comparison of surface heat flux formulations and atmospheric data sets. Two variables, relaxation time (RT) and the apparent temperature (T*), are derived from the linearization of the bulk formulas. They are then calculated to compare three bulk formulae and five atmospheric datasets. Additionally, the linearization is expanded to the second order to compare the amount of residual flux present. It is found that the use of a bulk formula employing a constant heat transfer coefficient produces longer relaxation times and contains a greater amount of residual flux in the higher order terms of the linearization. Depending on the temperature difference, the residual flux remaining in the second order and above terms can reach as much as 40--50% of the total residual on a monthly time scale. This is certainly a non-negligible residual flux. In contrast, a bulk formula using a stability and wind dependent transfer coefficient retains much of the total flux in the first order term, as only a few percent remain in the residual flux. Most of the difference displayed among the bulk formulas stems from the sensitivity to wind speed and the choice of a constant or spatially varying transfer coefficient. Comparing the representation of RT and T* provides insight into the differences among various atmospheric datasets. In particular, the representations of the western boundary current, upwelling

  4. Test anxiety in mathematics among early undergraduate students in a British university in Malaysia

    NASA Astrophysics Data System (ADS)

    Karjanto, Natanael; Yong, Su Ting

    2013-03-01

    The level of test anxiety in mathematics subjects among early undergraduate students at the University of Nottingham Malaysia Campus is studied in this article. The sample consists of 206 students taking several mathematics modules who completed the questionnaires on test anxiety just before they entered the venue for midterm examinations. The sample data include the differences in the context of academic levels, gender groups and nationality backgrounds. The level of test anxiety in mathematics is measured using seven Likert questionnaire statements adapted from the Test Anxiety Inventory describing one's emotional feeling before the start of an examination. In general, the result shows that the students who had a lower score expectation were more anxious than those who had a higher score expectation, but that they obtained a better score than the expected score. In the context of academic levels, gender groups and nationality backgrounds, there were no significant correlations between the level of test anxiety and the students' academic performance. The effect size of the correlation values ranged from extremely small to moderate.

  5. Models and (some) Searches for CPT Violation: From Early Universe to the Present Era

    NASA Astrophysics Data System (ADS)

    Mavromatos, Nick E.

    2017-07-01

    In the talk, I review theoretical models, inspired by quantum gravity, that may violate CPT symmetry. The amount of violation today (which is constrained severely by a plethora of experiments that I will not describe due to lack of space) need not be the same with the one that occurred in the Early Universe,. In certain models, one can obtain a precise temperature dependence of CPT violating effects, which is such that these effects are significant during the radiation era of the Universe, but are damped quickly so that they do not to affect nucleosynthesis and are negligible in the present epoch (that is, beyond experimental detection with the current experimental sensitivity). The CPT Violation (CPTV) in these models may arise from special properties of the background over which the fields of the model are propagating upon and be responsible for the generation of a matter-antimatter asymmetry, where any CP violation effects could only assist in the creation of the asymmetry, the dominant effect being CPTV. However, there are cases, where the CPTV arises as a consequence of an ill-defined CPT operator due to decoherence as a result of quantum gravity environmental degrees of freedom, inaccessible to a low-energy observer. I also discuss briefly the current-era phenomenology of some of the above models; in particular, for the ones involving decoherence-induced CPT violation, I argue that entangled states of neutral mesons (Kaons or B-systems) can provide smoking-gun sensitive tests or even falsify some of these models. If CPT is ill-defined one may also encounter violations of the spin-statistics theorem, with possible consequences for the Pauli Exclusion Principle.

  6. Fathers' and Mothers' Home Learning Environments and Children's Early Academic Outcomes

    ERIC Educational Resources Information Center

    Foster, Tricia D.; Froyen, Laura C.; Skibbe, Lori E.; Bowles, Ryan P.; Decker, Kalli B.

    2016-01-01

    The home learning environment (HLE) that children experience early on is highly predictive of their later academic competencies; however, the bulk of this work is operationalized from mothers' perspectives. This study investigates the HLE provided by both mothers and fathers to their preschoolers (n = 767), with consideration for how parents'…

  7. Exploring the bulk in AdS /CFT : A covariant approach

    NASA Astrophysics Data System (ADS)

    Engelhardt, Netta

    2017-03-01

    I propose a general, covariant way of defining when one region is "deeper in the bulk" than another. This definition is formulated outside of an event horizon (or in the absence thereof) in generic geometries; it may be applied to both points and surfaces, and it may be used to compare the depth of bulk points or surfaces relative to a particular boundary subregion or relative to the entire boundary. Using the recently proposed "light-cone cut" formalism, the comparative depth between two bulk points can be determined from the singularity structure of Lorentzian correlators in the dual field theory. I prove that, by this definition, causal wedges of progressively larger regions probe monotonically deeper in the bulk. The definition furthermore matches expectations in pure AdS and in static AdS black holes with isotropic spatial slices, where a well-defined holographic coordinate exists. In terms of holographic renormalization group flow, this new definition of bulk depth makes contact with coarse graining over both large distances and long time scales.

  8. Sounds of the Ancient Universe

    NASA Image and Video Library

    2013-03-21

    Tones represents sound waves that traveled through the early universe, and were later heard by ESA Planck space telescope. The primordial sound waves have been translated into frequencies we can hear.

  9. Unpaired Majorana modes in Josephson-Junction Arrays with gapless bulk excitations

    DOE PAGES

    Pino, M.; Tsvelik, A.; Ioffe, L. B.

    2015-11-06

    In this study, the search for Majorana bound states in solid-state physics has been limited to materials that display a gap in their bulk spectrum. We show that such unpaired states appear in certain quasi-one-dimensional Josephson-junction arrays with gapless bulk excitations. The bulk modes mediate a coupling between Majorana bound states via the Ruderman-Kittel-Yosida-Kasuya mechanism. As a consequence, the lowest energy doublet acquires a finite energy difference. For a realistic set of parameters this energy splitting remains much smaller than the energy of the bulk eigenstates even for short chains of length L~10.

  10. Residual fluctuations in the matter and radiation distribution after the decoupling epoch. [of early universe

    NASA Technical Reports Server (NTRS)

    Silk, J.; Wilson, M. L.

    1980-01-01

    The residual spectra of matter and radiation fluctuations in the early universe are investigated, and the evolution of primordial adiabatic and isothermal fluctuations through the decoupling epoch is studied. Amplification of adiabatic density fluctuations during decoupling, or velocity 'overshoot', is largely suppressed by Compton drag. Consequently, the amplitude of density fluctuations entering the horizon prior to decoupling is larger than hitherto assumed in the adiabatic theory. Damping of primordial adiabatic density fluctuations by an order of magnitude occurs on mass-scales of 3 x 10 to the 13th solar masses (Omega = 1) or 10 to the 14th solar masses (Omega = 0.2). Comparison of the residual radiation fluctuations with observational limits indicates that the adiabatic theory is only acceptable if re-ionization of the intergalactic medium results in additional scattering of the radiation after decoupling. Primordial isothermal fluctuations are found to yield radiation fluctuations which are insensitive to the assumed spectrum and lie a factor of about 5 below current limits

  11. Tailoring Magnetic Properties in Bulk Nanostructured Solids

    NASA Astrophysics Data System (ADS)

    Morales, Jason Rolando

    Important magnetic properties and behaviors such as coercivity, remanence, susceptibility, energy product, and exchange coupling can be tailored by controlling the grain size, composition, and density of bulk magnetic materials. At nanometric length scales the grain size plays an increasingly important role since magnetic domain behavior and grain boundary concentration determine bulk magnetic behavior. This has spurred a significant amount of work devoted to developing magnetic materials with nanometric features (thickness, grain/crystallite size, inclusions or shells) in 0D (powder), 1D (wires), and 2D (thin films) materials. Large 3D nanocrystalline materials are more suitable for many applications such as permanent magnets, magneto-optical Faraday isolators etc. Yet there are relatively few successful demonstrations of 3D magnetic materials with nanoscale influenced properties available in the literature. Making dense 3D bulk materials with magnetic nanocrystalline microstructures is a challenge because many traditional densification techniques (HIP, pressureless sintering, etc.) move the microstructure out of the "nano" regime during densification. This dissertation shows that the Current Activated Pressure Assisted Densification (CAPAD) method, also known as spark plasma sintering, can be used to create dense, bulk, magnetic, nanocrystalline solids with varied compositions suited to fit many applications. The results of my research will first show important implications for the use of CAPAD for the production of exchange-coupled nanocomposite magnets. Decreases in grain size were shown to have a significant role in increasing the magnitude of exchange bias. Second, preferentially ordered bulk magnetic materials were produced with highly anisotropic material properties. The ordered microstructure resulted in changing magnetic property magnitudes (ex. change in coercivity by almost 10x) depending on the relative orientation (0° vs. 90°) of an externally

  12. The role of bulk viscosity on the decay of compressible, homogeneous, isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Johnsen, Eric; Pan, Shaowu

    2016-11-01

    The practice of neglecting bulk viscosity in studies of compressible turbulence is widespread. While exact for monatomic gases and unlikely to strongly affect the dynamics of fluids whose bulk-to-shear viscosity ratio is small and/or of weakly compressible turbulence, this assumption is not justifiable for compressible, turbulent flows of gases whose bulk viscosity is orders of magnitude larger than their shear viscosities (e.g., CO2). To understand the mechanisms by which bulk viscosity and the associated phenomena affect compressible turbulence, we conduct DNS of freely decaying compressible, homogeneous, isotropic turbulence for ratios of bulk-to-shear viscosity ranging from 0-1000. Our simulations demonstrate that bulk viscosity increases the decay rate of turbulent kinetic energy; while enstrophy exhibits little sensitivity to bulk viscosity, dilatation is reduced by an order of magnitude within the two eddy turnover time. Via a Helmholtz decomposition of the flow, we determined that bulk viscosity damps the dilatational velocity and reduces dilatational-solenoidal exchanges, as well as pressure-dilatation coupling. In short, bulk viscosity renders compressible turbulence incompressible by reducing energy transfer between translational and internal modes.

  13. Process audits versus product quality monitoring of bulk milk.

    PubMed

    Velthuis, A G J; van Asseldonk, M A P M

    2011-01-01

    Assessment of milk quality is based on bulk milk testing and farm certification on process quality audits. It is unknown to what extent dairy farm audits improve milk quality. A statistical analysis was conducted to quantify possible associations between bulk milk testing and dairy farm audits. The analysis comprised 64.373 audit outcomes on 26,953 dairy farms, which were merged with all conducted laboratory tests of bulk milk samples 12 mo before the audit. Each farm audit record included 271 binary checklist items and 52 attention point variables (given to farmers if serious deviations were observed), both indicating possible deviations from the desired farm situation. Test results included somatic cell count (SCC), total bacterial count (TBC), antimicrobial drug residues (ADR), level of butyric acid spores (BAB), freezing point depression (FPD), level of free fatty acid (FFA), and milk sediment (SED). Results show that numerous audit variables were related to bulk milk test results, although the goodness of fit of the models was generally low. Cow hygiene, clean cubicles, hygiene of milking parlor, and utility room were positively correlated with superior product quality, mainly with respect to SCC, TBC, BAB, FPD, FFA, and SED. Animal health or veterinary drugs management (i.e., drug treatment recording, marking of treated animals, and storage of veterinary drugs) related to SCC, FPD, FFA, and SED. The availability of drinking water was related to TBC, BAB, FFA, and SED, whereas maintenance of the milking equipment was related mainly to SCC, FPD, and FFA. In summary, bulk milk quality and farm audit outcomes are, to some degree, associated: if dairy farms are assessed negatively on specific audit aspects, the bulk milk quality is more likely to be inferior. However, the proportion of the total variance in milk test results explained by audits ranged between 4 and 13% (depending on the specific bulk milk test), showing that auditing dairy farms provides

  14. Universal Prekindergarten and Early Childhood Education Act of 2013

    THOMAS, 113th Congress

    Rep. Norton, Eleanor Holmes [D-DC-At Large

    2013-02-27

    House - 04/23/2013 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  15. Universal Prekindergarten and Early Childhood Education Act of 2011

    THOMAS, 112th Congress

    Rep. Norton, Eleanor Holmes [D-DC-At Large

    2011-11-17

    House - 03/29/2012 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  16. Universal Prekindergarten and Early Childhood Education Act of 2009

    THOMAS, 111th Congress

    Rep. Norton, Eleanor Holmes [D-DC-At Large

    2009-10-08

    House - 11/16/2009 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. Black hole formation in the early Universe

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Schleicher, D. R. G.; Schmidt, W.; Niemeyer, J.

    2013-08-01

    Supermassive black holes with up to a 109 M⊙ dwell in the centres of present-day galaxies, and their presence has been confirmed at z ≥ 6. Their formation at such early epochs is still an enigma. Different pathways have been suggested to assemble supermassive black holes in the first billion years after the big bang. Direct collapse has emerged as a highly plausible scenario to form black holes as it provides seed masses of 105-106 M⊙. Gravitational collapse in atomic cooling haloes with virial temperatures Tvir ≥ 104 K may lead to the formation of massive seed black holes in the presence of an intense background ultraviolet flux. Turbulence plays a central role in regulating accretion and transporting angular momentum. We present here the highest resolution cosmological large eddy simulations to date which track the evolution of high-density regions on scales of 0.25 au beyond the formation of the first peak, and study the impact of subgrid-scale turbulence. The peak density reached in these simulations is 1.2 × 10-8 g cm-3. Our findings show that while fragmentation occasionally occurs, it does not prevent the growth of a central massive object resulting from turbulent accretion and occasional mergers. The central object reaches ˜1000 M⊙ within four free-fall times, and we expect further growth up to 106 M⊙ through accretion in about 1 Myr. The direct collapse model thus provides a viable pathway of forming high-mass black holes at early cosmic times.

  18. 1. Bulk fuel tanks and pump station. East side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Bulk fuel tanks and pump station. East side of tanks. View to northwest. - Conrad Refining Company Oil Refinery, Bulk Tanks & Pump Station, 90 feet northeast of Office & Warehouse Building, Conrad, Pondera County, MT

  19. 3. Bulk fuel tanks and pump station. West side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Bulk fuel tanks and pump station. West side of tanks. View to southeast. - Conrad Refining Company Oil Refinery, Bulk Tanks & Pump Station, 90 feet northeast of Office & Warehouse Building, Conrad, Pondera County, MT

  20. 2. Bulk fuel tanks and pump station. North side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Bulk fuel tanks and pump station. North side of tanks. View to southwest. - Conrad Refining Company Oil Refinery, Bulk Tanks & Pump Station, 90 feet northeast of Office & Warehouse Building, Conrad, Pondera County, MT

  1. Site preparation effects on soil bulk density and pine seedling growth

    Treesearch

    John J. Stransky

    1981-01-01

    Soil bulk density was sampled the first and third growing seasons after site preparation and pine planting on three clearcut pine-hardwood forest sites in eastern Texas. Bulk density was measured 10 cm below the surface of mineral soil using a surface moisture-density probe. Plots that had been KG-bladed and chopped had significanlty higher bulk density than those that...

  2. 4. Bulk fuel tanks and pump station. Detail of a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Bulk fuel tanks and pump station. Detail of a vertical tank. View to southeast. - Conrad Refining Company Oil Refinery, Bulk Tanks & Pump Station, 90 feet northeast of Office & Warehouse Building, Conrad, Pondera County, MT

  3. Promising Thermoelectric Bulk Materials with 2D Structures.

    PubMed

    Zhou, Yiming; Zhao, Li-Dong

    2017-12-01

    Given that more than two thirds of all energy is lost, mostly as waste heat, in utilization processes worldwide, thermoelectric materials, which can directly convert waste heat to electricity, provide an alternative option for optimizing energy utilization processes. After the prediction that superlattices may show high thermoelectric performance, various methods based on quantum effects and superlattice theory have been adopted to analyze bulk materials, leading to the rapid development of thermoelectric materials. Bulk materials with two-dimensional (2D) structures show outstanding properties, and their high performance originates from both their low thermal conductivity and high Seebeck coefficient due to their strong anisotropic features. Here, the advantages of superlattices for enhancing the thermoelectric performance, the transport mechanism in bulk materials with 2D structures, and optimization methods are discussed. The phenomenological transport mechanism in these materials indicates that thermal conductivities are reduced in 2D materials with intrinsically short mean free paths. Recent progress in the transport mechanisms of Bi 2 Te 3 -, SnSe-, and BiCuSeO-based systems is summarized. Finally, possible research directions to enhance the thermoelectric performance of bulk materials with 2D structures are briefly considered. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Bulk assembly of organic metal halide nanotubes

    DOE PAGES

    Lin, Haoran; Zhou, Chenkun; Tian, Yu; ...

    2017-10-16

    The organic metal halide hybrids welcome a new member with a one-dimensional (1D) tubular structure. Herein we report the synthesis and characterization of a single crystalline bulk assembly of organic metal halide nanotubes, (C 6H 13N 4) 3Pb 2Br 7. In a metal halide nanotube, six face-sharing metal halide dimers (Pb 2Br 9 5–) connect at the corners to form rings that extend in one dimension, of which the inside and outside surfaces are coated with protonated hexamethylenetetramine (HMTA) cations (C 6H 13N 4 +). This unique 1D tubular structure possesses highly localized electronic states with strong quantum confinement, resultingmore » in the formation of self-trapped excitons that give strongly Stokes shifted broadband yellowish-white emission with a photoluminescence quantum efficiency (PLQE) of ~7%. Finally, having realized single crystalline bulk assemblies of two-dimensional (2D) wells, 1D wires, and now 1D tubes using organic metal halide hybrids, our work significantly advances the research on bulk assemblies of quantum-confined materials.« less

  5. Effect of layer thickness on the elution of bulk-fill composite components.

    PubMed

    Rothmund, Lena; Reichl, Franz-Xaver; Hickel, Reinhard; Styllou, Panorea; Styllou, Marianthi; Kehe, Kai; Yang, Yang; Högg, Christof

    2017-01-01

    An increment layering technique in a thickness of 2mm or less has been the standard to sufficiently convert (co)monomers. Bulk fill resin composites were developed to accelerate the restoration process by enabling up to 4mm thick increments to be cured in a single step. The aim of the present study is to investigate the effect of layer thickness on the elution of components from bulk fill composites. The composites ELS Bulk fill, SDR Bulk fill and Venus Bulkfill were polymerized according to the instruction of the manufacturers. For each composite three groups with four samples each (n=4) were prepared: (1) samples with a layer thickness of 2mm; (2) samples with a layer thickness of 4mm and (3) samples with a layer thickness of 6mm. The samples were eluted in methanol and water for 24h and 7 d. The eluates were analyzed by gas chromatography/mass spectrometry (GC/MS). A total of 11 different elutable substances have been identified from the investigated composites. Following methacrylates showed an increase of elution at a higher layer thickness: TEGDMA (SDR Bulk fill, Venus Bulk fill), EGDMA (Venus Bulk fill). There was no significant difference in the elution of HEMA regarding the layer thickness. The highest concentration of TEGDMA was 146μg/mL for SDR Bulk fill at a layer thickness of 6mm after 7 d in water. The highest HEMA concentration measured at 108μg/mL was detected in the methanol eluate of Venus Bulk fill after 7 d with a layer thickness of 6mm. A layer thickness of 4mm or more can lead to an increased elution of some bulk fill components, compared to the elution at a layer thickness of 2mm. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Formation and Stability of Bulk Nanobubbles Generated by Ethanol-Water Exchange.

    PubMed

    Qiu, Jie; Zou, Zhenglei; Wang, Shuo; Wang, Xingya; Wang, Lei; Dong, Yaming; Zhao, Hongwei; Zhang, Lijuan; Hu, Jun

    2017-05-19

    Bulk nanobubbles have unique properties and find potential applications in many important processes. However, their stability or long lifetime still needs to be understood and has attracted much attention from researchers. Bulk nanobubbles are generated based on ethanol-water exchange, a method that is generally used in the study of surface nanobubbles. Their formation and stability is further studied by using a new type of dynamic light scattering known as NanoSight. The results show that the concentration of the bulk nanobubbles produced by this method is about five times greater than that in the degassed group, which indicates the existence of bulk gas nanobubbles. The effects of ethanol/water ratios and temperature on the stability of the bulk nanobubbles have also been studied and their numbers reach a maximum at a ratio of about 1:10 (v/v). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Human Resource Management in Dry-Bulk Shipping

    NASA Astrophysics Data System (ADS)

    Konstantopoulos, Nikolaos; Alexopoulos, Aristotelis B.

    2007-12-01

    This article investigates some positions and human resource management practices in dry-bulk shipping. The particularity of the human resource management field, as well as the crews' nationality change that has occurred over the last years, underpin the configuration of the hypothesis of this present research. The results demonstrate that the Greek dry-bulk shipping is going through a transition phase regarding the sector of the ships' human resource management by the captains.

  8. Bulk locality and boundary creating operators

    DOE PAGES

    Nakayama, Yu; Ooguri, Hirosi

    2015-10-19

    Here, we formulate a minimum requirement for CFT operators to be localized in the dual AdS. In any spacetime dimensions, we show that a general solution to the requirement is a linear superposition of operators creating spherical boundaries in CFT, with the dilatation by the imaginary unit from their centers. This generalizes the recent proposal by Miyaji et al. for bulk local operators in the three dimensional AdS. We show that Ishibashi states for the global conformal symmetry in any dimensions and with the imaginary di-latation obey free field equations in AdS and that incorporating bulk interactions require their superpositions.more » We also comment on the recent proposals by Kabat et al., and by H. Verlinde.« less

  9. Fiber Treatment Effects on Bioreactor Bulk Fluid Trends

    NASA Technical Reports Server (NTRS)

    Ellis, Ronald II

    2013-01-01

    In order to facilitate the exploration of worlds beyond the borders of our planet, it is necessary to maintain sustainable levels of clean water. The remediation of water via Membrane Aerated Bioreactors (MABRs) is one such method, and the focus of this study. MARRs rely on healthy biofilms grown on hollow fiber membranes to clean non-potable water. These biofilms can take weeks to months to establish. Therefore, various fiber treatments and two inoculums were evaluated for their effect on rapid biofilm formation. Fiber treatments are as follows: sanding of the fibers with 1500 and 8000 grit sandpaper, immersion of the fibers in a 1% hydrofluoric acid solution for 12 seconds and 15 minutes, and the immersion of the fibers in a Fluoroetch® solution for 18 seconds and 5 minutes. The two inoculums utilized were sourced from healthy, established MARRs; Texas Tech University (TTU) MABR "TRL5" and Kennedy Space Center (KSC) MABR "R3". Data attained from direct bacterial cell counts of the reactor bulk fluids via fluorescent microscopy, suggests that the fluoroetching treatment combined with the TTU inoculum show the greatest biofilm creation.

  10. Mechanisms of the anomalous Pockels effect in bulk water

    NASA Astrophysics Data System (ADS)

    Yukita, Shunpei; Suzuki, Yuto; Shiokawa, Naoyuki; Kobayashi, Takayoshi; Tokunaga, Eiji

    2018-04-01

    The "anomalous" Pockels effect is a phenomenon that a light beam passing between two electrodes in an aqueous electrolyte solution is deflected by an AC voltage applied between the electrodes: the deflection angle is proportional to the voltage such that the incident beam alternately changes its direction. This phenomenon, the Pockels effect in bulk water, apparently contradicts what is believed in nonlinear optics, i.e., macroscopic inversion symmetry should be broken for the second-order nonlinear optical effect to occur such as the first-order electro-optic effect, i.e., the Pockels effect. To clarify the underlying mechanism, the dependence of the effect on the electrode material is investigated to find that the Pockels coefficient with Pt electrodes is two orders of magnitude smaller than with indium tin oxide (ITO) electrodes. It is experimentally confirmed that the Pockels effect of interfacial water in the electric double layer (EDL) on these electrodes shows an electrode dependence similar to the effect in bulk water while the effects depend on the frequency of the AC voltage such that the interfacial signal decreases with frequency but the bulk signal increases with frequency up to 221 Hz. These experimental results lead to a conclusion that the beam deflection is caused by the refractive index gradient in the bulk water region, which is formed transiently by the Pockels effect of interfacial water in the EDL when an AC electric field is applied. The refractive index gradient is caused by the diffuse layer spreading into the bulk region to work as a breaking factor of inversion symmetry of bulk water due to its charge-biased ionic distribution. This mechanism does not contradict the principle of nonlinear optics.

  11. A new approximate sum rule for bulk alloy properties

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1991-01-01

    A new, approximate sum rule is introduced for determining bulk properties of multicomponent systems, in terms of the pure components properties. This expression is applied for the study of lattice parameters, cohesive energies, and bulk moduli of binary alloys. The correct experimental trends (i.e., departure from average values) are predicted in all cases.

  12. 7 CFR 58.211 - Packaging room for bulk products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Packaging room for bulk products. 58.211 Section 58... Service 1 Rooms and Compartments § 58.211 Packaging room for bulk products. A separate room or area shall... dust within the packaging room and where needed, a dust collector shall be provided and properly...

  13. Raman Spectroscopy Study of Prostatic Adenocarcinoma Bulk Tissues

    NASA Astrophysics Data System (ADS)

    Devpura, S.; Dai, H.; Thakur, J. S.; Naik, R.; Cao, A.; Pandya, A.; Auner, G. W.; Sarkar, F.; Sakr, W.; Naik, V.

    2009-03-01

    Prostate cancer is one of the most common types of cancer among men. The mortality rate for this disease can be dramatically reduced if it can be diagnosed in its early stages. Raman spectroscopy is one of the optical techniques which can provide fingerprints of a disease in terms of its molecular composition which changes due to the onset of disease. The aim of this project is to investigate the differences in the Raman spectra to identify benign epithelium (BE), prostatic intraepithelial neoplasia (PIN) and adenocarcinoma of various Gleason grades in archived bulk tissues embedded in paraffin wax. For each tissue, two adjacent tissue sections were cut and dewaxed, where one of the sections was stained using haematoxylin and eosin for histological examination and the other unstained adjacent section was used for Raman spectroscopic studies. We have collected Raman spectra from 10 prostatic adenocarcinoma dewaxed tissue sections using Raman microscope (785 nm excitation laser). The data were analyzed using statistical methods of principal component analysis and discriminant function analysis to classify the tissue regions. The results indicate that Raman Spectroscopy can differentiate between BE, PIN and Cancer regions.

  14. Correlated Time-Variation of Asphalt Rheology and Bulk Microstructure

    NASA Astrophysics Data System (ADS)

    Ramm, Adam; Nazmus, Sakib; Bhasin, Amit; Downer, Michael

    We use noncontact optical microscopy and optical scattering in the visible and near-infrared spectrum on Performance Grade (PG) asphalt binder to confirm the existence of microstructures in the bulk. The number of visible microstructures increases linearly as penetration depth of the incident radiation increases, which verifies a uniform volume distribution of microstructures. We use dark field optical scatter in the near-infrared to measure the temperature dependent behavior of the bulk microstructures and compare this behavior with Dynamic Shear Rheometer (DSR) measurements of the bulk complex shear modulus | G* (T) | . The main findings are: (1) After reaching thermal equilibrium, both temperature dependent optical scatter intensity (I (T)) and bulk shear modulus (| G* (T) |) continue to change appreciably for times much greater than thermal equilibration times. (2) The hysteresis behavior during a complete temperature cycle seen in previous work derives from a larger time dependence in the cooling step compared with the heating step. (3) Different binder aging conditions show different thermal time-variations for both I (T) and | G* (T) | .

  15. Reversible ultrafast melting in bulk CdSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Wenzhi; Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712; He, Feng

    2016-02-07

    In this work, transient reflectivity changes in bulk CdSe have been measured with two-color femtosecond pump-probe spectroscopy under a wide range of pump fluences. Three regions of reflectivity change with pump fluences have been consistently revealed for excited carrier density, coherent phonon amplitude, and lattice temperature. For laser fluences from 13 to 19.3 mJ/cm{sup 2}, ultrafast melting happens in first several picoseconds. This melting process is purely thermal and reversible. A complete phase transformation in bulk CdSe may be reached when the absorbed laser energy is localized long enough, as observed in nanocrystalline CdSe.

  16. Preparation of bulk superhard B-C-N nanocomposite compact

    DOEpatents

    Zhao, Yusheng [Los Alamos, NM; He, Duanwei [Sichuan, CN

    2011-05-10

    Bulk, superhard, B--C--N nanocomposite compacts were prepared by ball milling a mixture of graphite and hexagonal boron nitride, encapsulating the ball-milled mixture at a pressure in a range of from about 15 GPa to about 25 GPa, and sintering the pressurized encapsulated ball-milled mixture at a temperature in a range of from about 1800-2500 K. The product bulk, superhard, nanocomposite compacts were well sintered compacts with nanocrystalline grains of at least one high-pressure phase of B--C--N surrounded by amorphous diamond-like carbon grain boundaries. The bulk compacts had a measured Vicker's hardness in a range of from about 41 GPa to about 68 GPa.

  17. Collaborative, Early-undergraduate-focused REU Programs at Savannah State University have been Vital to Growing a Demographically Diverse Ocean Science Community

    NASA Astrophysics Data System (ADS)

    Gilligan, M. R.; Cox, T. M.; Hintz, C. J.

    2011-12-01

    Formal support for undergraduates to participate in marine/ocean science research at Savannah State University (SSU), a historically-Black unit of the University System of Georgia, began in 1989 with funding from the National Science Foundation for an unsolicited proposal (OCE-8919102, 34,935). Today SSU, which has offered B.S degrees since 1979 and M.S. degrees since 2001 in Marine Sciences, is making major contributions nationally to demographic diversity in ocean sciences. 33% of Master's degrees in marine/ocean sciences earned by African Americans in the U.S. from 2004-2007 were earned at SSU. 10% of African American Master's and Doctoral students in marine/ ocean sciences in 2007 were either enrolled in the Master's program at SSU or were former SSU students enrolled in Doctoral programs elsewhere. Collaborative REU programs that focus on early (freshman and sophomore) undergraduate students have been a consistent and vital part of that success. In the most recent iteration of our summer REU program we used six of the best practices outlined in the literature to increase success and retention of underrepresented minority students in STEM fields: early intervention, strong mentoring, research experience, career counseling, financial support, workshops and seminars. The early intervention with strong mentoring has proven successful in several metrics: retention in STEM majors (96%), progression to graduate school (50%), and continuation to later research experiences (75%). Research mentors include faculty at staff at SSU, the Skidaway Institute of Oceanography, Gray's Reef National Marine Sanctuary and Georgia Tech-Savannah. Formal collaborative and cooperative agreements, externally-funded grants, and contracts in support of student research training have proven to be critical in providing resources for growth and improvement marine science curricular options at the University. Since 1981 the program has had four formal partnerships and 36 funded grant awards

  18. William Band at Yenching University

    NASA Astrophysics Data System (ADS)

    Hu, Danian

    2008-04-01

    William Band (1906-1993) has been widely remembered by his American colleagues and students as ``a fine physicist and teacher,'' who taught at Washington State University in Pullman between 1949 and 1971 and authored Introduction to Quantum Statistics (1954) and Introduction to Mathematical Physics (1959). Not many, however, knew much about Band's early career, which was very ``uncommon and eventful.'' Born in England, Band graduated from University of Liverpool in 1927 with an MsSc degree in physics. Instead of pursuing his Ph.D. at Cambridge, he chose to teach physics at Yenching University, a prestigious Christian university in Beijing, China. Arriving in 1929, Band established his career at Yenching, where he taught and researched the theory of relativity and quantum mechanics, pioneered the study on low-temperature superconductivity in China, founded the country's first graduate program in physics, and chaired the Physics Department for 10 years until he fled from Yenching upon hearing of the attack on Pearl Harbor. It took him two years to cross Japanese occupied areas under the escort of the Communist force; he left China in early 1945. This presentation will explore Band's motivation to work in China and his contributions to the Chinese physics research and education.

  19. Integration of bulk piezoelectric materials into microsystems

    NASA Astrophysics Data System (ADS)

    Aktakka, Ethem Erkan

    Bulk piezoelectric ceramics, compared to deposited piezoelectric thin-films, provide greater electromechanical coupling and charge capacity, which are highly desirable in many MEMS applications. In this thesis, a technology platform is developed for wafer-level integration of bulk piezoelectric substrates on silicon, with a final film thickness of 5-100microm. The characterized processes include reliable low-temperature (200°C) AuIn diffusion bonding and parylene bonding of bulk-PZT on silicon, wafer-level lapping of bulk-PZT with high-uniformity (+/-0.5microm), and low-damage micro-machining of PZT films via dicing-saw patterning, laser ablation, and wet-etching. Preservation of ferroelectric and piezoelectric properties is confirmed with hysteresis and piezo-response measurements. The introduced technology offers higher material quality and unique advantages in fabrication flexibility over existing piezoelectric film deposition methods. In order to confirm the preserved bulk properties in the final film, diaphragm and cantilever beam actuators operating in the transverse-mode are designed, fabricated and tested. The diaphragm structure and electrode shapes/sizes are optimized for maximum deflection through finite-element simulations. During tests of fabricated devices, greater than 12microm PP displacement is obtained by actuation of a 1mm2 diaphragm at 111kHz with <7mW power consumption. The close match between test data and simulation results suggests that the piezoelectric properties of bulk-PZT5A are mostly preserved without any necessity of repolarization. Three generations of resonant vibration energy harvesters are designed, simulated and fabricated to demonstrate the competitive performance of the new fabrication process over traditional piezoelectric deposition systems. An unpackaged PZT/Si unimorph harvester with 27mm3 active device volume produces up to 205microW at 1.5g/154Hz. The prototypes have achieved the highest figure-of-merits (normalized

  20. Bulk Lorentz factors of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Nappo, F.; Ghisellini, G.; Melandri, A.; Marcarini, G.; Nava, L.; Salafia, O. S.; Campana, S.; Salvaterra, R.

    2018-01-01

    Knowledge of the bulk Lorentz factor Γ0 of gamma-ray bursts (GRBs) allows us to compute their comoving frame properties shedding light on their physics. Upon collisions with the circumburst matter, the fireball of a GRB starts to decelerate, producing a peak or a break (depending on the circumburst density profile) in the light curve of the afterglow. Considering all bursts with known redshift and with an early coverage of their emission, we find 67 GRBs (including one short event) with a peak in their optical or GeV light curves at a time tp. For another 106 GRBs we set an upper limit tpUL. The measure of tp provides the bulk Lorentz factor Γ0 of the fireball before deceleration. We show that tp is due to the dynamics of the fireball deceleration and not to the passage of a characteristic frequency of the synchrotron spectrum across the optical band. Considering the tp of 66 long GRBs and the 85 most constraining upper limits, we estimate Γ0 or a lower limit Γ0LL. Using censored data analysis methods, we reconstruct the most likely distribution of tp. All tp are larger than the time Tp,γ when the prompt γ-ray emission peaks, and are much larger than the time Tph when the fireball becomes transparent, that is, tp>Tp,γ>Tph. The reconstructed distribution of Γ0 has median value 300 (150) for a uniform (wind) circumburst density profile. In the comoving frame, long GRBs have typical isotropic energy, luminosity, and peak energy ⟨ Eiso ⟩ = 3(8) × 1050 erg, ⟨ Liso ⟩ = 3(15) × 1047 erg s-1, and ⟨ Epeak ⟩ = 1(2) keV in the homogeneous (wind) case. We confirm that the significant correlations between Γ0 and the rest frame isotropic energy (Eiso), luminosity (Liso), and peak energy (Ep) are not due to selection effects. When combined, they lead to the observed Ep-Eiso and Ep-Liso correlations. Finally, assuming a typical opening angle of 5 degrees, we derive the distribution of the jet baryon loading which is centered around a few 10-6M⊙.

  1. Phenomenological consequences of enhanced bulk viscosity near the QCD critical point

    DOE PAGES

    Monnai, Akihiko; Mukherjee, Swagato; Yin, Yi

    2017-03-06

    In the proximity of the QCD critical point the bulk viscosity of quark-gluon matter is expected to be proportional to nearly the third power of the critical correlation length, and become significantly enhanced. Here, this work is the first attempt to study the phenomenological consequences of enhanced bulk viscosity near the QCD critical point. For this purpose, we implement the expected critical behavior of the bulk viscosity within a non-boost-invariant, longitudinally expanding 1 + 1 dimensional causal relativistic hydrodynamical evolution at nonzero baryon density. We demonstrate that the critically enhanced bulk viscosity induces a substantial nonequilibrium pressure, effectively softening themore » equation of state, and leads to sizable effects in the flow velocity and single-particle distributions at the freeze-out. In conclusion, the observable effects that may arise due to the enhanced bulk viscosity in the vicinity of the QCD critical point can be used as complementary information to facilitate searches for the QCD critical point.« less

  2. The Universities of the Renaissance and Reformation.

    PubMed

    Grendler, Paul F

    2004-01-01

    European universities had great intellectual and religious influence in the Renaissance and Reformation and exhibited considerable variety. Italian universities taught law and medicine to doctoral students. Their loose organization made it possible for professors to produce original research in law, medicine, philosophy, and the humanities. Northern European universities concentrated on teaching arts to undergraduates, while theology was the most important graduate faculty. Their stronger structure enabled Martin Luther and other professors of theology in German, Dutch, Swiss, and English universities to create and lead the Protestant. By the early seventeenth century universities everywhere were in decline.

  3. The Universe's Most Extreme Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Casey, Caitlin

    2017-06-01

    Dusty star-forming galaxies host the most intense stellar nurseries in the Universe. Their unusual characteristics (SFRs=200-2000Msun/yr, Mstar>1010 Msun) pose a unique challenge for cosmological simulations and galaxy formation theory, particularly at early times. Although rare today, they were factors of 1000 times more prevalent at z~2-5, contributing significantly to the buildup of the Universe's stellar mass and the formation of high-mass galaxies. At even earlier times (within 1Gyr post Big Bang) they could have played a pivotal role in enriching the IGM. However, an ongoing debate lingers as to their evolutionary origins at high-redshift, whether or not they are triggered by major mergers of gas-rich disk galaxies, or if they are solitary galaxies continually fed pristine gas from the intergalactic medium. Furthermore, their presence in early protoclusters, only revealed quite recently, pose intriguing questions regarding the collapse of large scale structure. I will discuss some of the latest observational programs dedicated to understanding dust-obscuration in and gas content of the early Universe, their context in the cosmic web, and future long-term observing campaigns that may reveal their relationship to `normal’ galaxies, thus teaching us valuable lessons on the physical mechanisms of galaxy growth and the collapse of large scale structure in an evolving Universe.

  4. Combined Molecular Dynamics, Atoms in Molecules, and IR Studies of the Bulk Monofluoroethanol and Bulk Ethanol To Understand the Role of Organic Fluorine in the Hydrogen Bond Network.

    PubMed

    Biswas, Biswajit; Mondal, Saptarsi; Singh, Prashant Chandra

    2017-02-16

    The presence of the fluorocarbon group in fluorinated alcohols makes them an important class of molecules that have diverse applications in the field of separation techniques, synthetic chemistry, polymer industry, and biology. In this paper, we have performed the density function theory calculation along with atom in molecule analysis, molecular dynamics simulation, and IR measurements of bulk monofluoroethanol (MFE) and compared them with the data for bulk ethanol (ETH) to understand the effect of the fluorocarbon group in the structure and the hydrogen bond network of bulk MFE. It has been found that the intramolecular O-H···F hydrogen bond is almost absent in bulk MFE. Molecular dynamics simulation and density function theory calculation along with atom in molecule analysis clearly depict that in the case of bulk MFE, a significant amount of intermolecular O-H···F and C-H···F hydrogen bonds are present along with the intermolecular O-H···O hydrogen bond. The presence of intermolecular O-H···F and C-H···F hydrogen bonds causes the difference in the IR spectrum of bulk MFE as compared to bulk ETH. This study clearly depicts that the organic fluorine (fluorocarbon) of MFE acts as a hydrogen bond acceptor and plays a significant role in the structure and hydrogen bond network of bulk MFE through the formation of weak O-H···F as well C-H···F hydrogen bonds, which may be one of the important reasons behind the unique behavior of the fluoroethanols.

  5. Direct Comparison of Surface and Bulk Relaxation of PS - A Temperature Dependent Study

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Li; Sambasivan, Sharadha; Wang, Chia-Ying; Genzer, Jan; Fischer, Daniel A.

    2005-03-01

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to measure simultaneously the relaxation rates of polystyrene (PS) molecules at the free surface and in the bulk. The samples were uniaxially oriented at room temperature via a modified cold rolling process. The density of the oriented samples as determined by liquid immersion technique is identical to that of bulk PS. At temperatures below its bulk glass transition temperature the rate of surface and bulk chain relaxation was monitored by measuring the partial-electron yield (PEY) and the fluorescence NEXAFS yields (FS), respectively, both parallel and perpendicular to the stretching direction. The decay rate of the dichroic ratios from both PEY and FY at various temperatures was taken as a measure of the relaxation rate of surface and bulk molecules respectively. In addition, the decay rate of the optical birefringence was also measured to provide an independent measure of the bulk relaxation. Relaxation of PS chains was found to occur faster on the surface relative to the bulk. The magnitude of the surface glass transition temperature suppression over the bulk was estimated to be 18 C based on the measured temperature dependence of the relaxation rates.

  6. Abundance profiling of extremely metal-poor stars and supernova properties in the early universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tominaga, Nozomu; Iwamoto, Nobuyuki; Nomoto, Ken'ichi, E-mail: tominaga@konan-u.ac.jp, E-mail: iwamoto.nobuyuki@jaea.go.jp, E-mail: nomoto@astron.s.u-tokyo.ac.jp

    2014-04-20

    After the big bang nucleosynthesis, the first heavy element enrichment in the universe was made by a supernova (SN) explosion of a population (Pop) III star (Pop III SN). The abundance ratios of elements produced from Pop III SNe are recorded in abundance patterns of extremely metal-poor (EMP) stars. The observations of the increasing number of EMP stars have made it possible to statistically constrain the explosion properties of Pop III SNe. We present Pop III SN models whose nucleosynthesis yields well reproduce, individually, the abundance patterns of 48 such metal-poor stars as [Fe/H] ≲ – 3.5. We then derivemore » relations between the abundance ratios of EMP stars and certain explosion properties of Pop III SNe: the higher [(C + N)/Fe] and [(C + N)/Mg] ratios correspond to the smaller ejected Fe mass and the larger compact remnant mass, respectively. Using these relations, the distributions of the abundance ratios of EMP stars are converted to those of the explosion properties of Pop III SNe. Such distributions are compared with those of the explosion properties of present day SNe: the distribution of the ejected Fe mass of Pop III SNe has the same peak as that of the present day SNe but shows an extended tail down to ∼10{sup –2}-10{sup –5} M {sub ☉}, and the distribution of the mass of the compact remnant of Pop III SNe is as wide as that of the present-day, stellar-mass black holes. Our results demonstrate the importance of large samples of EMP stars obtained by ongoing and future EMP star surveys and subsequent high-dispersion spectroscopic observations in clarifying the nature of Pop III SNe in the early universe.« less

  7. The role of exciton ionization processes in bulk heterojunction organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong; Holmes, Russell

    2015-03-01

    Dissociating photogenerated excitons into their constituent charges is essential for efficient photoconversion in organic semiconductors. Organic photovoltaics cells (OPV) widely adopt a heterojunction architecture where dissociation is facilitated by charge transfer at a donor-acceptor (D-A) interface. Interestingly, recent work on MoOx/C60 Schottky OPVs has demonstrated that excitons in C60 may also undergo bulk-ionization to generate photocurrent, driven by the built-in field at the MoOx/C60 interface. Here, we show that bulk-ionization processes also contribute to the photocurrent in bulk heterojunction (BHJ) OPVs with fullerene-rich compositions. The short-circuit current density (JSC) in a MoOx/C60 Schottky OPVs shows almost no dependence on temperature down to 80 K. This characteristic of bulk-ionization allows the use of temperature-dependent measurements of JSC to distinguish dissociation by bulk-ionization from charge transfer at a D-A interface. For BHJ OPVs constructed using the D-A pairing of boron subphthalocyanine chloride (SubPc)-C60, bulk-ionization is found to contribute >10% of the total photocurrent and >30% of the photocurrent from C60. We further find that fullerene-rich SubPc-C60 BHJ OPVs show a larger open-circuit voltage (VOC) than evenly mixed BHJs due to the presence of bulk-ionization. This talk will examine the dependence of JSC and VOC on the relative fraction of dissociation by charge transfer and bulk-ionization processes.

  8. Executive Function: Comparing Bilingual and Monolingual Iranian University Students

    ERIC Educational Resources Information Center

    Kazemeini, Toktam; Fadardi, Javad Salehi

    2016-01-01

    The study aimed to examine whether Kurdish-Persian early Bilingual university students (EBL) and Persian Monolingual university students (ML) differ on tasks of executive function (EF). Thirty male EBL and 30 male ML students from Ferdowsi University of Mashhad completed a Persian Stroop Color-Word task (SCWT), Backward Digit Span Test (BDST),…

  9. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  10. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  11. Foamed Bulk Metallic Glass (Foam) Investigation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This soldering iron has an evacuated copper capsule at the tip that contains a pellet of Bulk Metallic Glass (BMG) aboard the International Space Station (ISS). Prior to flight, researchers sealed a pellet of bulk metallic glass mixed with microscopic gas-generating particles into the copper ampoule under vacuum. Once heated in space, such as in this photograph, the particles generated gas and the BMG becomes a viscous liquid. The released gas made the sample foam within the capsule where each microscopic particle formed a gas-filled pore within the foam. The inset image shows the oxidation of the sample after several minutes of applying heat. Although hidden within the brass sleeve, the sample retained the foam shape when cooled, because the viscosity increased during cooling until it was solid.

  12. Induction detection of concealed bulk banknotes

    NASA Astrophysics Data System (ADS)

    Fuller, Christopher; Chen, Antao

    2011-10-01

    Bulk cash smuggling is a serious issue that has grown in volume in recent years. By building on the magnetic characteristics of paper currency, induction sensing is found to be capable of quickly detecting large masses of banknotes. The results show that this method is effective in detecting bulk cash through concealing materials such as plastics, cardboards, fabrics and aluminum foil. The significant difference in the observed phase between the received signals caused by conducting materials and ferrite compounds, found in banknotes, provides a good indication that this process can overcome the interference by metal objects in a real sensing application. This identification strategy has the potential to not only detect the presence of banknotes, but also the number, while still eliminating false positives caused by metal objects.

  13. Genetic variation among Staphylococcus aureus strains from Norwegian bulk milk.

    PubMed

    Jørgensen, H J; Mørk, T; Caugant, D A; Kearns, A; Rørvik, L M

    2005-12-01

    Strains of Staphylococcus aureus obtained from bovine (n = 117) and caprine (n = 114) bulk milk were characterized and compared with S. aureus strains from raw-milk products (n = 27), bovine mastitis specimens (n = 9), and human blood cultures (n = 39). All isolates were typed by pulsed-field gel electrophoresis (PFGE). In addition, subsets of isolates were characterized using multilocus sequence typing (MLST), multiplex PCR (m-PCR) for genes encoding nine of the staphylococcal enterotoxins (SE), and the cloverleaf method for penicillin resistance. A variety of genotypes were observed, and greater genetic diversity was found among bovine than caprine bulk milk isolates. Certain genotypes, with a wide geographic distribution, were common to bovine and caprine bulk milk and may represent ruminant-specialized S. aureus. Isolates with genotypes indistinguishable from those of strains from ruminant mastitis were frequently found in bulk milk, and strains with genotypes indistinguishable from those from bulk milk were observed in raw-milk products. This indicates that S. aureus from infected udders may contaminate bulk milk and, subsequently, raw-milk products. Human blood culture isolates were diverse and differed from isolates from other sources. Genotyping by PFGE, MLST, and m-PCR for SE genes largely corresponded. In general, isolates with indistinguishable PFGE banding patterns had the same SE gene profile and isolates with identical SE gene profiles were placed together in PFGE clusters. Phylogenetic analyses agreed with the division of MLST sequence types into clonal complexes, and isolates within the same clonal complex had the same SE gene profile. Furthermore, isolates within PFGE clusters generally belonged to the same clonal complex.

  14. Dynamic analysis of bulk-fill composites: Effect of food-simulating liquids.

    PubMed

    Eweis, Ahmed Hesham; Yap, Adrian U-Jin; Yahya, Noor Azlin

    2017-10-01

    This study investigated the effect of food simulating liquids on visco-elastic properties of bulk-fill restoratives using dynamic mechanical analysis. One conventional composite (Filtek Z350 [FZ]), two bulk-fill composites (Filtek Bulk-fill [FB] and Tetric N Ceram [TN]) and a bulk-fill giomer (Beautifil-Bulk Restorative [BB]) were evaluated. Specimens (12 × 2 × 2mm) were fabricated using customized stainless steel molds. The specimens were light-cured, removed from their molds, finished, measured and randomly divided into six groups. The groups (n = 10) were conditioned in the following mediums for 7 days at 37°C: air (control), artificial saliva (SAGF), distilled water, 0.02N citric acid, heptane, 50% ethanol-water solution. Specimens were assessed using dynamic mechanical testing in flexural three-point bending mode and their respective mediums at 37°C and a frequency range of 0.1-10Hz. The distance between the supports were fixed at 10mm and an axial load of 5N was employed. Data for elastic modulus, viscous modulus and loss tangent were subjected to ANOVA/Tukey's tests at significance level p < 0.05. Significant differences in visco-elastic properties were observed between materials and mediums. Apart from bulk-fill giomer, elastic modulus was the highest after conditioning in heptane. No apparent trends were noted for viscous modulus. Generally, loss tangent was the highest after conditioning in ethanol. The effect of food-simulating liquids on the visco-elastic properties of bulk-fill composites was material and medium dependent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Relation between nonlocal surface and bulk dark solitons

    NASA Astrophysics Data System (ADS)

    Gao, Xinghui; Zhang, Chengyun; Wang, Qing

    2018-06-01

    We investigate the existence and stability of nonlocal surface dark solitons at the interface formed by a nonlocal nonlinear self-defocusing medium and a linear medium. We find that nonlocal fundamental surface dark solitons are always stable in their entire existence domain, while high-order surface dark solitons are oscillatory stable. Comparing with nonlocal bulk dark solitons in amplitude and boundary conditions, nonlocal surface dark solitons can be regarded as the half of the corresponding bulk dark solitons with antisymmetrical amplitude distribution.

  16. College and University Libraries.

    ERIC Educational Resources Information Center

    Shubert, Joseph F., Ed.; Josey, E. J., Ed.

    1986-01-01

    Following an introductory discussion by E. J. Josey that provides a perspective on college and university libraries, the following essays are presented: (1) "Academic Library Planning--Definitions and Early Planning Studies in Academic Libraries" (Stanton F. Biddle); (2) "Academic Libraries and Academic Computing--Rationale for a…

  17. Evidence for Bulk Ripplocations in Layered Solids

    NASA Astrophysics Data System (ADS)

    Gruber, Jacob; Lang, Andrew C.; Griggs, Justin; Taheri, Mitra L.; Tucker, Garritt J.; Barsoum, Michel W.

    2016-09-01

    Plastically anisotropic/layered solids are ubiquitous in nature and understanding how they deform is crucial in geology, nuclear engineering, microelectronics, among other fields. Recently, a new defect termed a ripplocation-best described as an atomic scale ripple-was proposed to explain deformation in two-dimensional solids. Herein, we leverage atomistic simulations of graphite to extend the ripplocation idea to bulk layered solids, and confirm that it is essentially a buckling phenomenon. In contrast to dislocations, bulk ripplocations have no Burgers vector and no polarity. In graphite, ripplocations are attracted to other ripplocations, both within the same, and on adjacent layers, the latter resulting in kink boundaries. Furthermore, we present transmission electron microscopy evidence consistent with the existence of bulk ripplocations in Ti3SiC2. Ripplocations are a topological imperative, as they allow atomic layers to glide relative to each other without breaking the in-plane bonds. A more complete understanding of their mechanics and behavior is critically important, and could profoundly influence our current understanding of how graphite, layered silicates, the MAX phases, and many other plastically anisotropic/layered solids, deform and accommodate strain.

  18. Effects of antimicrobial therapy on faecal bulking.

    PubMed Central

    Kurpad, A V; Shetty, P S

    1986-01-01

    It has recently been postulated that dietary fibre acts as a substrate for colonic flora, and that the resultant microbial growth bulks the faeces. Antimicrobial therapy was used in this study to assess the effect of reduction in colonic microbial proliferation on faecal output in human subjects on a constant dietary fibre intake. Six healthy young male subjects were maintained on constant daily diets and metronidazole (1 g/day) and ampicillin (1 g/day) were administered in divided doses for one week after an initial baseline study period of two weeks. After antimicrobial therapy, mean faecal weights rose from 176.0 +/- 27.0 g to 348.1 +/- 37.7 g/day. Faecal solids increased from 32.9 +/- 4.2 g to 46.1 +/- 5.8 g/day. Faecal neutral detergent fibre increased from 1.92 +/- 0.42 g to 15.19 +/- 2.58 g/day. The mean transit times and mean daily faecal nitrogen remained the same, both before and after treatment. Substantial breakdown of dietary fibre occurs in the human colon which may decrease faecal bulk, suggesting that water holding by dietary fibre is probably of greater importance for faecal bulking. PMID:3005139

  19. Superconducting state parameters of bulk amorphous alloys

    NASA Astrophysics Data System (ADS)

    Vora, A. M.

    2012-12-01

    Well recognized empty core pseudopotential of Ashcroft is used to investigate the superconducting state parameters viz; electron-phonon coupling strength λ, Coulomb pseudopotential μ*, transition temperature T C , isotope effect exponent α and effective interaction strength N O V of some (Ni33Zr67)1- x V x ( x = 0, 0.05, 0.1, 0.15) bulk amorphous alloys. We have incorporated five different types of local field correction functions, proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) to show the effect of exchange and correlation on the aforesaid properties. Very strong influence of the various exchange and correlation functions is concluded from the present study. The T C obtained from local field correction function proposed by Sarkar et al. (S) is in excellent agreement with available theoretical data. Quadratic T C equation has been proposed providing successfully the T C values of bulk amorphous alloys under consideration. Also, the present results are found in qualitative agreement with other such earlier reported data, which confirm the superconducting phase in the s bulk amorphous alloys.

  20. Variables associated with the risk of early death after liver transplantation at a liver transplant unit in a university hospital.

    PubMed

    Azevedo, L D; Stucchi, R S; de Ataíde, E C; Boin, I F S F

    2015-05-01

    Graft dysfunction after liver transplantation is a serious complication that can lead to graft loss and patient death. This was a study to identify risk factors for early death (up to 30 days after transplantation). It was an observational and retrospective analysis at the Liver Transplantation Unit, Hospital de Clinicas, State University of Campinas, Brazil. From July 1994 to December 2012, 302 patients were included (>18 years old, piggyback technique). Of these cases, 26% died within 30 days. For analysis, Student t tests and chi-square were used to analyze receptor-related (age, body mass index, serum sodium, graft dysfunction, Model for End-Stage Liver Disease score, renal function, and early graft dysfunction [EGD type 1, 2, or 3]), surgery (hot and cold ischemia, surgical time, and units of packed erythrocytes [pRBC]), and donor (age, hypotension, and brain death cause) factors. Risk factors were identified by means of logistic regression model adjusted by the Hosmer-Lemeshow test with significance set at P < .05. We found that hyponatremic recipients had a 6.26-fold higher risk for early death. There was a 9% reduced chance of death when the recipient serum sodium increased 1 unit. The chance of EGD3 to have early death was 18-fold higher than for EGD1 and there was a 13% increased risk for death for each unit of pRBC transfused. Donor total bilirubin, hyponatremia, massive transfusion, and EGD3 in the allocation graft should be observed for better results in the postoperative period. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. 49 CFR 172.324 - Hazardous substances in non-bulk packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous substances in non-bulk packagings. 172.324 Section 172.324 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS..., TRAINING REQUIREMENTS, AND SECURITY PLANS Marking § 172.324 Hazardous substances in non-bulk packagings...

  2. Intrinsic Spin-Hall Effect in n-Doped Bulk GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-01-15

    We show that the bulk Dresselhauss (k{sup 3}) spin-orbit coupling term leads to an intrinsic spin-Hall effect in n-doped bulk GaAs, but without the appearance of uniform magnetization. The spin-Hall effect in strained and unstrained bulk GaAs has been recently observed experimentally by Kato et. al. [1]. We show that the experimental result is quantitatively consistent with the intrinsic spin-Hall effect due to the Dresselhauss term, when lifetime broadening is taken into account. On the other hand, extrinsic contribution to the spin-Hall effect is several orders of magnitude smaller than the observed effect.

  3. Processing of MnBi bulk magnets with enhanced energy product

    DOE PAGES

    Poudyal, Narayan; Liu, Xubo; Wang, Wei; ...

    2016-02-23

    Here, we report magnetic properties and microstructure of high energy-product MnBi bulk magnets fabricated by low-temperature ball-milling and warm compaction technique. A maximum energy product (BH) max of 8.4 MGOe and a coercivity of 6.2 kOe were obtained in the bulk MnBi magnet at room temperature. Magnetic characterization at elevated temperatures showed an increase in coercivity to 16.2 kOe while (BH) max value decreased to 6.8 MGOe at 400 K. Microstructure characterization revealed that the bulk magnets consist of oriented uniform nanoscale grains with average size about 50 nm.

  4. Dark matter universe.

    PubMed

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  5. Dark matter universe

    PubMed Central

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  6. Development of a superconducting bulk magnet for NMR and MRI.

    PubMed

    Nakamura, Takashi; Tamada, Daiki; Yanagi, Yousuke; Itoh, Yoshitaka; Nemoto, Takahiro; Utumi, Hiroaki; Kose, Katsumi

    2015-10-01

    A superconducting bulk magnet composed of six vertically stacked annular single-domain c-axis-oriented Eu-Ba-Cu-O crystals was energized to 4.74 T using a conventional superconducting magnet for high-resolution NMR spectroscopy. Shim coils, gradient coils, and radio frequency coils for high resolution NMR and MRI were installed in the 23 mm-diameter room-temperature bore of the bulk magnet. A 6.9 ppm peak-to-peak homogeneous region suitable for MRI was achieved in the central cylindrical region (6.2 mm diameter, 9.1 mm length) of the bulk magnet by using a single layer shim coil. A 21 Hz spectral resolution that can be used for high resolution NMR spectroscopy was obtained in the central cylindrical region (1.3 mm diameter, 4 mm length) of the bulk magnet by using a multichannel shim coil. A clear 3D MR image dataset of a chemically fixed mouse fetus with (50 μm)(3) voxel resolution was obtained in 5.5 h. We therefore concluded that the cryogen-free superconducting bulk magnet developed in this study is useful for high-resolution desktop NMR, MRI and mobile NMR device. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Three-dimensionality of the bulk electronic structure in WTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Jo, Na Hyun; Mou, Daixiang

    Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less

  8. Three-dimensionality of the bulk electronic structure in WTe 2

    DOE PAGES

    Wu, Yun; Jo, Na Hyun; Mou, Daixiang; ...

    2017-05-18

    Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less

  9. Mass production of bulk artificial nacre with excellent mechanical properties.

    PubMed

    Gao, Huai-Ling; Chen, Si-Ming; Mao, Li-Bo; Song, Zhao-Qiang; Yao, Hong-Bin; Cölfen, Helmut; Luo, Xi-Sheng; Zhang, Fu; Pan, Zhao; Meng, Yu-Feng; Ni, Yong; Yu, Shu-Hong

    2017-08-18

    Various methods have been exploited to replicate nacre features into artificial structural materials with impressive structural and mechanical similarity. However, it is still very challenging to produce nacre-mimetics in three-dimensional bulk form, especially for further scale-up. Herein, we demonstrate that large-sized, three-dimensional bulk artificial nacre with comprehensive mimicry of the hierarchical structures and the toughening mechanisms of natural nacre can be facilely fabricated via a bottom-up assembly process based on laminating pre-fabricated two-dimensional nacre-mimetic films. By optimizing the hierarchical architecture from molecular level to macroscopic level, the mechanical performance of the artificial nacre is superior to that of natural nacre and many engineering materials. This bottom-up strategy has no size restriction or fundamental barrier for further scale-up, and can be easily extended to other material systems, opening an avenue for mass production of high-performance bulk nacre-mimetic structural materials in an efficient and cost-effective way for practical applications.Artificial materials that replicate the mechanical properties of nacre represent important structural materials, but are difficult to produce in bulk. Here, the authors exploit the bottom-up assembly of 2D nacre-mimetic films to fabricate 3D bulk artificial nacre with an optimized architecture and excellent mechanical properties.

  10. Relevance of early head CT scans following neurosurgical procedures: an analysis of 892 intracranial procedures at Rush University Medical Center.

    PubMed

    Fontes, Ricardo B V; Smith, Adam P; Muñoz, Lorenzo F; Byrne, Richard W; Traynelis, Vincent C

    2014-08-01

    Early postoperative head CT scanning is routinely performed following intracranial procedures for detection of complications, but its real value remains uncertain: so-called abnormal results are frequently found, but active, emergency intervention based on these findings may be rare. The authors' objective was to analyze whether early postoperative CT scans led to emergency surgical interventions and if the results of neurological examination predicted this occurrence. The authors retrospectively analyzed 892 intracranial procedures followed by an early postoperative CT scan performed over a 1-year period at Rush University Medical Center and classified these cases according to postoperative neurological status: baseline, predicted neurological change, unexpected neurological change, and sedated or comatose. The interpretation of CT results was reviewed and unexpected CT findings were classified based on immediate action taken: Type I, additional observation and CT; Type II, active nonsurgical intervention; and Type III, surgical intervention. Results were compared between neurological examination groups with the Fisher exact test. Patients with unexpected neurological changes or in the sedated or comatose group had significantly more unexpected findings on the postoperative CT (p < 0.001; OR 19.2 and 2.3, respectively) and Type II/III interventions (p < 0.001) than patients at baseline. Patients at baseline or with expected neurological changes still had a rate of Type II/III changes in the 2.2%-2.4% range; however, no patient required an immediate return to the operating room. Over a 1-year period in an academic neurosurgery service, no patient who was neurologically intact or who had a predicted neurological change required an immediate return to the operating room based on early postoperative CT findings. Obtaining early CT scans should not be a priority in these patients and may even be cancelled in favor of MRI studies, if the latter have already been planned

  11. Two-dimensional topological insulators with large bulk energy gap

    NASA Astrophysics Data System (ADS)

    Yang, Z. Q.; Jia, Jin-Feng; Qian, Dong

    2016-11-01

    Two-dimensional (2D) topological insulators (TIs, or quantum spin Hall insulators) are special insulators that possess bulk 2D electronic energy gap and time-reversal symmetry protected one-dimensional (1D) edge state. Carriers in the edge state have the property of spin-momentum locking, enabling dissipation-free conduction along the 1D edge. The existence of 2D TIs was confirmed by experiments in semiconductor quantum wells. However, the 2D bulk gaps in those quantum wells are extremely small, greatly limiting potential application in future electronics and spintronics. Despite this limitation, 2D TIs with a large bulk gap attracted plenty of interest. In this paper, recent progress in searching for TIs with a large bulk gap is reviewed briefly. We start by introducing some theoretical predictions of these new materials and then discuss some recent important achievements in crystal growth and characterization. Project supported by the National Natural Science Foundation of China (Grant Nos. U1632272, 11574201, and 11521404). D. Q. acknowledges support from the Changjiang Scholars Program, China and the Program for Professor of Special Appointment (Eastern Scholar), China.

  12. Mechanism of radiative recombination in acceptor-doped bulk GaN crystals

    NASA Astrophysics Data System (ADS)

    Godlewski, M.; Suski, T.; Grzegory, I.; Porowski, S.; Bergman, J. P.; Chen, W. M.; Monemar, B.

    1999-12-01

    Optical and electrical properties of acceptor-doped bulk GaN crystals are discussed. Though introducing Zn and Ca to bulk GaN does not significantly change electron concentration, it results in the appearance of a blue photoluminescence band accompanying the relatively strong yellow band usually present. Highly resistive GaN : Mg crystals are obtained when high amount of Mg is introduced to the Ga melt during high-pressure synthesis. Change of electrical properties of Mg-doped bulk crystals is accompanied by the appearance of a strong blue emission of GaN similar to that in Ca- and Zn-doped crystals. Optically detected magnetic resonance investigations indicate a multi-band character of this blue emission and suggest possible mechanism of compensation in acceptor-doped bulk GaN.

  13. Is the Universe a white-hole?

    NASA Astrophysics Data System (ADS)

    Berman, Marcelo Samuel

    2007-10-01

    Pathria (1972) has shown, for a pressureless closed Universe, that it is inside a black (or white) hole. We show now, that the Universe with a cosmic pressure obeying Einstein’s field equations, can be inside a white-hole. In the closed case, a positive cosmological constant does the job; for the flat and open cases, the condition we find is not verified for the very early Universe, but with the growth of the scale-factor, the condition will be certainly fulfilled for a positive cosmological constant, after some time. We associate the absolute temperature of the Universe, with the temperature of the corresponding white-hole.

  14. New York City Universal Prekindergarten Frequently Asked Questions.

    ERIC Educational Resources Information Center

    Springsteel, Amy; Cooper, Amy

    Universal Prekindergarten (UPK) is a New York state early childhood initiative providing 4-year-olds access to comprehensive early childhood education experiences that promote their social-emotional, creative expressive/aesthetic, physical, cognitive, linguistic, and cultural development. The UPK initiative takes the form of a stand-alone program…

  15. Can Universities Develop Advanced Technology and Solve Social Problems?

    NASA Astrophysics Data System (ADS)

    Pérez Ones, Isarelis; Núñez Jover, Jorge

    This paper presents case studies on how Cuban universities have increasingly become directly involved with the economic and social development of the country. The paper shows how Cuban universities, from the early 1980s and early 1990s, started reorientation and organization of their scientific research, becoming more directly and intensely involved in the economic and social development of the country. In this way, special reference is made to the case of a research group at the University of Havana: the Laboratory of Synthetic Antigens. This group developed the first synthetic vaccine for human use approved in the world. In the article, public policies involved in this success as well as different obstacles are discussed. These obstacles demonstrate the difficulties and challenges that universities face when carrying out research and innovation activities related to economic and social development.

  16. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    NASA Astrophysics Data System (ADS)

    Seino, H.; Nagashima, K.; Arai, Y.

    2008-02-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.

  17. Systems and Methods for Implementing Bulk Metallic Glass-Based Macroscale Compliant Mechanisms

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Agnes, Gregory (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention implement bulk metallic glass-based macroscale compliant mechanisms. In one embodiment, a bulk metallic glass-based macroscale compliant mechanism includes: a flexible member that is strained during the normal operation of the compliant mechanism; where the flexible member has a thickness of 0.5 mm; where the flexible member comprises a bulk metallic glass-based material; and where the bulk metallic glass-based material can survive a fatigue test that includes 1000 cycles under a bending loading mode at an applied stress to ultimate strength ratio of 0.25.

  18. Cosmic bulk flow and the local motion from Cosmicflows-2

    NASA Astrophysics Data System (ADS)

    Hoffman, Yehuda; Courtois, Hélène M.; Tully, R. Brent

    2015-06-01

    Full sky surveys of peculiar velocity are arguably the best way to map the large-scale structure (LSS) out to distances of a few × 100 h-1 Mpc. Using the largest and most accurate ever catalogue of galaxy peculiar velocities Cosmicflows-2, the LSS has been reconstructed by means of the Wiener filter (WF) and constrained realizations (CRs) assuming as a Bayesian prior model the Λ cold dark matter model with the WMAP inferred cosmological parameters. This paper focuses on studying the bulk flow of the local flow field, defined as the mean velocity of top-hat spheres with radii ranging out to R = 500 h-1 Mpc. The estimated LSS, in general, and the bulk flow, in particular, are determined by the tension between the observational data and the assumed prior model. A pre-requisite for such an analysis is the requirement that the estimated bulk flow is consistent with the prior model. Such a consistency is found here. At R = 50 (150) h-1 Mpc, the estimated bulk velocity is 250 ± 21 (239 ± 38) km s-1. The corresponding cosmic variance at these radii is 126 (60) km s-1, which implies that these estimated bulk flows are dominated by the data and not by the assumed prior model. The estimated bulk velocity is dominated by the data out to R ≈ 200 h-1 Mpc, where the cosmic variance on the individual supergalactic Cartesian components (of the rms values) exceeds the variance of the CRs by at least a factor of 2. The SGX and SGY components of the cosmic microwave background dipole velocity are recovered by the WF velocity field down to a very few km s-1. The SGZ component of the estimated velocity, the one that is most affected by the zone of avoidance, is off by 126 km s-1 (an almost 2σ discrepancy). The bulk velocity analysis reported here is virtually unaffected by the Malmquist bias and very similar results are obtained for the data with and without the bias correction.

  19. Peering Into an Early Galaxy

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-04-01

    Thirteen billion years ago, early galaxies ionized the gas around them, producing some of the first light that brought our universe out of its dark ages. Now the Atacama Large Millimeter/submillimeter Array (ALMA) has provided one of the first detailed looks into the interior of one of these early, distant galaxies.Sources of LightArtists illustration of the reionization of the universe (time progresses left to right), in which ionized bubbles that form around the first sources of light eventually overlap to form the fully ionized universe we observe today. [Avi Loeb/Scientific American]For the first roughly hundred million years of its existence, our universe expanded in relative darkness there were no sources of light at that time besides the cosmic microwave background. But as mass started to condense to form the first objects, these objects eventually shone as the earliest luminous sources, contributing to the reionization of the universe.To learn about the early production of light in the universe, our best bet is to study in detail the earliest luminous sources stars, galaxies, or quasars that we can hunt down. One ideal target is the galaxy COSMOS Redshift 7, known as CR7 for short.Targeting CR7CR7 is one of the oldest, most distant galaxies known, lying at a redshift of z 6.6. Its discovery in 2015 and subsequent observations of bright, ultraviolet-emitting clumps within it have led to broad speculation about the source of its emission. Does this galaxy host an active nucleus? Or could it perhaps contain the long-theorized first generation of stars, metal-free Population III stars?To determine the nature of CR7 and the other early galaxies that contributed to reionization, we need to explore their gas and dust in detail a daunting task for such distant sources! Conveniently, this is a challenge that is now made possible by ALMAs incredible capabilities. In a new publication led by Jorryt Matthee (Leiden University, the Netherlands), a team of scientists now

  20. Bulk Moisture and Salinity Sensor

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  1. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, R.J.; Cecchi, J.L.

    1991-08-20

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

  2. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1991-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  3. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1990-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  4. The effect of artificial bulk viscosity in simulations of forced compressible turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, A.; Morgan, B.

    The use of an artificial bulk viscosity for shock stabilization is a common approach employed in turbulence simulations with high-order numerics. The effect of the artificial bulk viscosity is analyzed in the context of large eddy simulations by using as a test case simulations of linearly-forced compressible homogeneous turbulence (Petersen and Livescu, 2010 [12]). This case is unique in that it allows for the specification of a priori target values for total dissipation and ratio of solenoidal to dilatational dissipation. A comparison between these target values and the true predicted levels of dissipation is thus used to investigate the performancemore » of the artificial bulk viscosity. Results show that the artificial bulk viscosity is effective at achieving stable solutions, but also leads to large values of artificial dissipation that outweigh the physical dissipation caused by fluid viscosity. An alternate approach, which employs the artificial thermal conductivity only, shows that the dissipation of dilatational modes is entirely due to the fluid viscosity. However, this method leads to unwanted Gibbs oscillations around the shocklets. The use of shock sensors that further localize the artificial bulk viscosity did not reduce the amount of artificial dissipation introduced by the artificial bulk viscosity. Finally, an improved forcing function that explicitly accounts for the role of the artificial bulk viscosity in the budget of turbulent kinetic energy was explored.« less

  5. The effect of artificial bulk viscosity in simulations of forced compressible turbulence

    DOE PAGES

    Campos, A.; Morgan, B.

    2018-05-17

    The use of an artificial bulk viscosity for shock stabilization is a common approach employed in turbulence simulations with high-order numerics. The effect of the artificial bulk viscosity is analyzed in the context of large eddy simulations by using as a test case simulations of linearly-forced compressible homogeneous turbulence (Petersen and Livescu, 2010 [12]). This case is unique in that it allows for the specification of a priori target values for total dissipation and ratio of solenoidal to dilatational dissipation. A comparison between these target values and the true predicted levels of dissipation is thus used to investigate the performancemore » of the artificial bulk viscosity. Results show that the artificial bulk viscosity is effective at achieving stable solutions, but also leads to large values of artificial dissipation that outweigh the physical dissipation caused by fluid viscosity. An alternate approach, which employs the artificial thermal conductivity only, shows that the dissipation of dilatational modes is entirely due to the fluid viscosity. However, this method leads to unwanted Gibbs oscillations around the shocklets. The use of shock sensors that further localize the artificial bulk viscosity did not reduce the amount of artificial dissipation introduced by the artificial bulk viscosity. Finally, an improved forcing function that explicitly accounts for the role of the artificial bulk viscosity in the budget of turbulent kinetic energy was explored.« less

  6. For Every Dollar Invested...The Economic Impact of Public Universities.

    ERIC Educational Resources Information Center

    National Association of State Universities and Land Grant Colleges, Washington, DC.

    This publication summarizes information provided during 1995 and early 1996 in an informal survey of state and land-grant universities concerning the direct and long-range economic impacts of public universities on their immediate communities. Items considered under direct impact include: expenditures by the universities on supplies, materials,…

  7. Pathways to prevention: protocol for the CAP (Climate and Preventure) study to evaluate the long-term effectiveness of school-based universal, selective and combined alcohol misuse prevention into early adulthood.

    PubMed

    Newton, Nicola C; Stapinski, Lexine; Slade, Tim; Champion, Katrina E; Barrett, Emma L; Chapman, Catherine; Smout, Anna; Lawler, Siobhan; Mather, Marius; Castellanos-Ryan, Natalie; Conrod, Patricia J; Teesson, Maree

    2018-05-21

    Alcohol use and associated harms are among the leading causes of burden of disease among young people, highlighting the need for effective prevention. The Climate and Preventure (CAP) study was the first trial of a combined universal and selective school-based approach to preventing alcohol misuse among adolescents. Initial results indicate that universal, selective and combined prevention were all effective in delaying the uptake of alcohol use and binge drinking for up to 3 years following the interventions. However, little is known about the sustainability of prevention effects across the transition to early adulthood, a period of increased exposure to alcohol and other drug use. This paper describes the protocol for the CAP long-term follow-up study which will determine the effectiveness of universal, selective and combined alcohol misuse prevention up to 7 years post intervention, and across the transition from adolescence into early adulthood. A cluster randomized controlled trial was conducted between 2012 and 2015 with 2190 students (mean age: 13.3 yrs) from 26 Australian high schools. Participants were randomized to receive one of four conditions; universal prevention for all students (Climate); selective prevention for high-risk students (Preventure); combined universal and selective prevention (Climate and Preventure; CAP); or health education as usual (Control). The positive effect of the interventions on alcohol use at 12-, 24- and 36-month post baseline have previously been reported. This study will follow up the CAP study cohort approximately 5- and 7-years post baseline. The primary outcome will be alcohol use and related harms. Secondary outcomes will be cannabis use, alcohol and other drug harms including violent behavior, and mental health symptomatology. Analyses will be conducted using multi-level, mixed effects models within an intention-to-treat framework. This study will provide the first ever evaluation of the long-term effectiveness of

  8. Planck and the reionization of the universe

    NASA Astrophysics Data System (ADS)

    Crill, Brendan

    2016-03-01

    Planck is the third-generation satellite aimed at measuring the cosmic microwave background, a relic of the hot big bang. Planck's temperature and polarization maps of the millimeter-wave sky have constrained parameters of the standard lambda-CDM model of cosmology to incredible precision, and have provided constraints on inflation in the very early universe. Planck's all-sky survey of polarization in seven frequency bands can remove contamination from nearby Galactic emission and constrain the optical depth of the reionized Universe, giving insight into the properties of the earliest star formation. The final 2016 data release from Planck will include a refined optical depth measurement using the full sensitivity of both the High Frequency and Low Frequency instruments. I present the status of the reionization measurement and discuss future prospects for further measurements of the early Universe with the CMB from Planck and future space and suborbital platforms.

  9. Genetic Variation among Staphylococcus aureus Strains from Norwegian Bulk Milk

    PubMed Central

    Jørgensen, H. J.; Mørk, T.; Caugant, D. A.; Kearns, A.; Rørvik, L. M.

    2005-01-01

    Strains of Staphylococcus aureus obtained from bovine (n = 117) and caprine (n = 114) bulk milk were characterized and compared with S. aureus strains from raw-milk products (n = 27), bovine mastitis specimens (n = 9), and human blood cultures (n = 39). All isolates were typed by pulsed-field gel electrophoresis (PFGE). In addition, subsets of isolates were characterized using multilocus sequence typing (MLST), multiplex PCR (m-PCR) for genes encoding nine of the staphylococcal enterotoxins (SE), and the cloverleaf method for penicillin resistance. A variety of genotypes were observed, and greater genetic diversity was found among bovine than caprine bulk milk isolates. Certain genotypes, with a wide geographic distribution, were common to bovine and caprine bulk milk and may represent ruminant-specialized S. aureus. Isolates with genotypes indistinguishable from those of strains from ruminant mastitis were frequently found in bulk milk, and strains with genotypes indistinguishable from those from bulk milk were observed in raw-milk products. This indicates that S. aureus from infected udders may contaminate bulk milk and, subsequently, raw-milk products. Human blood culture isolates were diverse and differed from isolates from other sources. Genotyping by PFGE, MLST, and m-PCR for SE genes largely corresponded. In general, isolates with indistinguishable PFGE banding patterns had the same SE gene profile and isolates with identical SE gene profiles were placed together in PFGE clusters. Phylogenetic analyses agreed with the division of MLST sequence types into clonal complexes, and isolates within the same clonal complex had the same SE gene profile. Furthermore, isolates within PFGE clusters generally belonged to the same clonal complex. PMID:16332822

  10. Portable design rules for bulk CMOS

    NASA Technical Reports Server (NTRS)

    Griswold, T. W.

    1982-01-01

    It is pointed out that for the past several years, one school of IC designers has used a simplified set of nMOS geometric design rules (GDR) which is 'portable', in that it can be used by many different nMOS manufacturers. The present investigation is concerned with a preliminary set of design rules for bulk CMOS which has been verified for simple test structures. The GDR are defined in terms of Caltech Intermediate Form (CIF), which is a geometry-description language that defines simple geometrical objects in layers. The layers are abstractions of physical mask layers. The design rules do not presume the existence of any particular design methodology. Attention is given to p-well and n-well CMOS processes, bulk CMOS and CMOS-SOS, CMOS geometric rules, and a description of the advantages of CMOS technology.

  11. Induction detection of concealed bulk banknotes

    NASA Astrophysics Data System (ADS)

    Fuller, Christopher; Chen, Antao

    2012-06-01

    The smuggling of bulk cash across borders is a serious issue that has increased in recent years. In an effort to curb the illegal transport of large numbers of paper bills, a detection scheme has been developed, based on the magnetic characteristics of bank notes. The results show that volumes of paper currency can be detected through common concealing materials such as plastics, cardboard, and fabrics making it a possible potential addition to border security methods. The detection scheme holds the potential of also reducing or eliminating false positives caused by metallic materials found in the vicinity, by observing the stark difference in received signals caused by metal and currency. The detection scheme holds the potential to detect for both the presence and number of concealed bulk notes, while maintaining the ability to reduce false positives caused by metal objects.

  12. Structural determinants in the bulk heterojunction.

    PubMed

    Acocella, Angela; Höfinger, Siegfried; Haunschmid, Ernst; Pop, Sergiu C; Narumi, Tetsu; Yasuoka, Kenji; Yasui, Masato; Zerbetto, Francesco

    2018-02-21

    Photovoltaics is one of the key areas in renewable energy research with remarkable progress made every year. Here we consider the case of a photoactive material and study its structural composition and the resulting consequences for the fundamental processes driving solar energy conversion. A multiscale approach is used to characterize essential molecular properties of the light-absorbing layer. A selection of bulk-representative pairs of donor/acceptor molecules is extracted from the molecular dynamics simulation of the bulk heterojunction and analyzed at increasing levels of detail. Significantly increased ground state energies together with an array of additional structural characteristics are identified that all point towards an auxiliary role of the material's structural organization in mediating charge-transfer and -separation. Mechanistic studies of the type presented here can provide important insights into fundamental principles governing solar energy conversion in next-generation photovoltaic devices.

  13. Bulk Viscosity of Bubbly Magmas and the Amplification of Pressure Waves

    NASA Astrophysics Data System (ADS)

    Navon, O.; Lensky, N. G.; Neuberg, J. W.; Lyakhovsky, V.

    2001-12-01

    The bulk viscosity of magma is needed in order to describe the dynamics of a compressible bubbly magma flowing in conduits and to follow the attenuation of pressure waves travelling through a compressible magma. We developed a model for the bulk viscosity of a suspension of gas bubbles in an incompressible Newtonian liquid that exsolves volatiles (e.g. magma). The suspension is modeled as a close pack of spherical cells, consisting of gas bubbles centered in spherical shells of a volatile-bearing liquid. Following a drop in the ambient pressure the resulting dilatational motion and driving pressure are obtained in terms of the two-phase cell parameters, i.e. bubble radius and gas pressure. By definition, the bulk viscosity of a fluid is the relation between changes of the driving pressure with respect to changes in the resulted expansion strain-rate. Thus, we can use the two-phase solution to define the bulk viscosity of a hypothetical cell, composed of a homogeneously compressible, one-phase, continuous fluid. The resulted bulk viscosity is highly non-linear. At the beginning of the expansion process, when gas exsolution is efficient, the expansion rate grows exponentially while the driving pressure decreases slightly. That means that bulk viscosity is formally negative. The negative value reflects the release of the energy stored in the supersaturated liquid (melt) and its conversion to mechanical work during exsolution. Later, when bubbles are large enough and the gas influx decreases significantly, the strain rate decelerates and the bulk viscosity becomes positive as expected in a dissipative system. We demonstrate that amplification of seismic wave travelling through a volcanic conduit filled with a volatile saturated magma may be attributed to the negative bulk viscosity of the compressible magma. Amplification of an expansion wave may, at some level in the conduit, damage the conduit walls and initiate opening of new pathways for magma to erupt.

  14. 76 FR 16263 - Revision to Electric Reliability Organization Definition of Bulk Electric System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ...'s Reliability Standards Development Process, to revise its definition of the term ``bulk electric... definition of ``bulk electric system'' through the NERC Standards Development Process to address the... undertake the process of revising the bulk electric system definition to address the Commission's concerns...

  15. 49 CFR 173.24a - Additional general requirements for non-bulk packagings and packages.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... subchapter. (b) Non-bulk packaging filling limits. (1) A single or composite non-bulk packaging may be filled... gross mass marked on the packaging. (3) A single or composite non-bulk packaging which is tested and... marked on the packaging, or 1.2 if not marked. In addition: (i) A single or composite non-bulk packaging...

  16. 49 CFR 173.24a - Additional general requirements for non-bulk packagings and packages.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... subchapter. (b) Non-bulk packaging filling limits. (1) A single or composite non-bulk packaging may be filled... gross mass marked on the packaging. (3) A single or composite non-bulk packaging which is tested and... marked on the packaging, or 1.2 if not marked. In addition: (i) A single or composite non-bulk packaging...

  17. 49 CFR 173.24a - Additional general requirements for non-bulk packagings and packages.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... subchapter. (b) Non-bulk packaging filling limits. (1) A single or composite non-bulk packaging may be filled... gross mass marked on the packaging. (3) A single or composite non-bulk packaging which is tested and... marked on the packaging, or 1.2 if not marked. In addition: (i) A single or composite non-bulk packaging...

  18. Running with rugby balls: bulk renormalization of codimension-2 branes

    NASA Astrophysics Data System (ADS)

    Williams, M.; Burgess, C. P.; van Nierop, L.; Salvio, A.

    2013-01-01

    We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D - 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane's effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.

  19. [Energy saving achieved by limited filamentous bulking under low dissolved oxygen: derivation, originality and theoretical basis].

    PubMed

    Peng, Yong-zhen; Guo, Jian-hua; Wang, Shu-ying; Chen, Ying

    2008-12-01

    How to prevent and control filamentous bulking sludge has being a research focus and attracted much attention. To date despite the extensive research that has been done on bulking sludge, filamentous bulking still occurs world-wide and a comprehensive solution does not seem to be available. Particularly, there are few studies about making use of the characteristics of filamentous bacteria and achieving energy saving by filamentous bulking. Limited filamentous bulking, a novel method for energy saving while equal or better treatment performance by allowing slight and controlled filamentous bulking sludge at low dissolved oxygen (DO), was proposed based on full-scale field observations. The practical operation showed that limited filamentous bulking resulted from a decline in DO concentration. COD, SS and TP removal could be enhanced and energy saving could be achieved by limited filamentous bulking at low DO. The derivation of limited filamentous bulking is introduced firstly, and then the theoretical fundamentals of the technique of limited filamentous bulking are presented and analyzed, including the occurrence of limited filamentous bulking caused by low DO, the enhanced effect of filamentous bacteria on pollutants removal and the energy saving mechanism by using limited filamentous bulking. Besides, the paper provides some new perspectives about the application and research direction of limited filamentous bulking in future.

  20. Some reminiscences about my early career

    NASA Astrophysics Data System (ADS)

    Domb, Cyril

    1990-09-01

    The author recalls some of the highlights of his scientific career before he took up a professional appointment at King's College, London in 1954. The periods covered are: High School and undergraduate studies at Cambridge University 1932-1941; radar research for the British Admiralty 1941-1946; graduate studies at Cambridge University 1946-1949; post-doctoral research at the Clarendon Laboratory, Oxford University 1949-1952; faculty appointment at Cambridge University 1952-1954. A brief description is given of the personalities with whom the author was associated, the research problems in which he was involved, and of the early post world war 2 scientific conferences.

  1. First look at a major transition period in the early Universe

    NASA Astrophysics Data System (ADS)

    1997-08-01

    in ESO PR Photo 22b/97 which shows its overall spectrum. Note in particular the intensity increase towards the ultraviolet part (to the left in the diagram) due to the unusually `clear view' in this direction. New observations of HE 2347-4342 have now provided important information, not only about the quasar itself, but especially about the conditions in the surrounding intergalactic medium at this early time. Early evolution of the Universe There is general agreement among most scientists that the Universe emanated from a hot and extremely dense initial state in the so-called Big Bang. Just three minutes later, the production of enormous quantities of hydrogen and helium nuclei of protons and neutrons came to an end. Lots of free electrons were moving around and the numerous photons were scattered from these and the `naked' atomic nuclei. After some 100,000 years, the Universe had cooled down to a few thousand degrees and the nuclei and electrons combined to form atoms. The photons were then no longer scattered and the Universe became transparent. Cosmologists refer to this moment as the recombination epoch. The microwave background radiation we now observe from all directions gives a picture of the state of great homogeneity in the Universe at that epoch. In the next phase the primeval atoms, more than 99% of which were of hydrogen and helium, moved together and began to form huge clouds from which galaxies and stars later emerged. When the first generation of stars and, somewhat later, of quasars, had formed, their intensive ultraviolet radiation began to knock off electrons from the hydrogen and helium atoms. Now the intergalactic gas again became ionized [4] in steadily growing spheres around the ionizing sources. This is the so-called re-ionization epoch. Is it possible to observe the re-ionization epoch directly? It is believed that a sufficient number of energetic photons to cause re-ionization of most of the primeval hydrogen atoms in intergalactic space had

  2. An Early Childhood Movement Laboratory Model: Kindergym

    ERIC Educational Resources Information Center

    Marston, Rip

    2004-01-01

    Early childhood motor activity programs at institutions of higher learning can operate within the tripartite mission of the university while serving a vital function in providing leadership and guidance to educators. This article describes the University of Northern Iowa's Kindergym model. Within this model, curricular areas of games/sports,…

  3. Interdisciplinary Early Childhood Handicapped Personnel Training Project.

    ERIC Educational Resources Information Center

    Swartz, Stanley L.

    The report describes the Western Illinois University 0-6 Interdisciplinary Early Childhood Handicapped Personnel Training Project (WIU 0-6 Project)--a model project designed to demonstrate innovative methods to fill personnel needs for early childhood handicapped programs. The project is a 2 semester program to train professional educators in the…

  4. Interface or bulk scattering in the semiclassical theory for spin valves

    NASA Astrophysics Data System (ADS)

    Wang, L.; McMahon, W. J.; Liu, B.; Wu, Y. H.; Chong, C. T.

    2004-06-01

    By taking into account spin asymmetries of the interface transmissions and the bulk mean free paths, we have treated pure interface, non-pure interface, bulk, and interface plus bulk scattering within the semiclassical Boltzmann theory. First, the optimizations of NOL (nano-oxide-layers) insertions in bottom, synthetic, and dual spin valves and the variations of the giant magnetoresistance (GMR) with the thickness of the free layer have been examined. For non-pure interface, bulk, and interface plus bulk scattering, qualitative trends of GMR versus NOL positions in spin valves are similar to each other. For pure interface scattering, there is no optimized NOL insertion positions and the blocking effect of the NOL inserted in the spacer remains effective as other three kinds of scattering. The GMR ratio for bulk scattering simply approaches zero when the free layer thickness becomes short; in contrast, for interface scattering or interface plus bulk scattering, the GMR ratio is nonzero at zero thickness of the free layer. Second, the relationships between GMR and specular and diffusive scattering have been explored. As far as specular reflection is concerned, our results imply that for a realistic bottom spin filter spin valve, Ta/NiFe/IrMn/CoFe/Cu/CoFe/Cu/Ta, roughness of the surfaces of Ta and the interfaces of Ta/NiFe, NiFe/IrMn, pinned layer/spacer, and spacer/free layer may lead to large GMR. We also find that the enhancement of GMR due to surface specular reflection is only a pure interface effect. The dependences of GMR on the specular transmissions roughly follow square relations. The trends of GMR against the spin-down diffusive scattering depend on the values of the spin-up transmission. Finally, impurity scattering was investigated and our semiclassical results are in qualitative agreement with the experiments and the quantum theory.

  5. Influence of addition of degassed water on bulk nanobubbles.

    PubMed

    Tuziuti, Toru; Yasui, Kyuichi; Kanematsu, Wataru

    2018-05-01

    The effects of the addition of degassed water on bulk nanobubbles (ultrafine bubbles) of air in liquid water were investigated by measuring the volumetric concentration and size distribution at different dissolved air degree of saturation (DOS) values. The proportion of degassed water mixed with water containing bulk nanobubbles was increased to prepare samples having lower DOS values. It was found that the volumetric concentration of nanobubbles mostly decreased and the average nanobubble size became larger as the DOS was decreased. In our proposed mechanism, smaller nanobubbles are selectively dissolved into the surrounding liquid by Laplace pressure due to surface tension as the DOS is reduced. These results demonstrate that stable bulk nanobubbles are present even in water undersaturated with gas. The role of nanobubble under an ultrasound is also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Sodium Flux Growth of Bulk Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were <100 arcseconds. Oxygen impurity concentrations as measured by secondary ion mass spectroscopy (SIMS) were >1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of

  7. Using Supercomputers to Probe the Early Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giorgi, Elena Edi

    For decades physicists have been trying to decipher the first moments after the Big Bang. Using very large telescopes, for example, scientists scan the skies and look at how fast galaxies move. Satellites study the relic radiation left from the Big Bang, called the cosmic microwave background radiation. And finally, particle colliders, like the Large Hadron Collider at CERN, allow researchers to smash protons together and analyze the debris left behind by such collisions. Physicists at Los Alamos National Laboratory, however, are taking a different approach: they are using computers. In collaboration with colleagues at University of California San Diego,more » the Los Alamos researchers developed a computer code, called BURST, that can simulate conditions during the first few minutes of cosmological evolution.« less

  8. Bulk specific gravity round-robin using the Corelok vacuum sealing device

    DOT National Transportation Integrated Search

    2002-11-01

    This project conducted an evaluation of the Corelok device for the determination of the bulk specific gravity of compacted hot mix asphalt samples. The project consisted of the bulk specific gravity determination for compacted HMA mixes utilizing the...

  9. Structural comparison of Ag-Ge-S bulk glasses and thin films

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Jain, Mukul; Dunn, Porter; de Leo, Carter; Boolchand, Punit

    2007-03-01

    Ternary glasses of composition (GeS3)1-xAgx (x=0.1 and 0.2) are studied in form of bulk and thin films. Bulk glasses are synthesized and examined in Raman scattering and SEM. Raman scattering results of bulk glasses show that with increasing x, an increasing fraction of the Ag additive enters the base glass as Ag^+ with S^-anions serving to form thiogermanate species with one, two and three non-bridging S^- species. SEM measurements of the bulk glass show the material is intrinsically phase separated. White colored islands are observed distributed in a dark base. The EDS measurements show islands are Ag rich and the base is relatively Ag deficient. The Ag rich islands are expected to be mainly glassy phase Ag2S. Thin films of same compositions are fabricated using thermal evaporation. Films are evaporated following two different procedures to prevent the material from spitting. One method was preheating outgas and the other method was using tungsten mesh wrapped boats. The stoichiometry and molecular structure of films under each procedure are analyzed by Raman scattering and SEM to be compared with bulk glasses.

  10. Cosmic Bulk Flow and the Local Motion from Cosmicflows-2

    NASA Astrophysics Data System (ADS)

    Courtois, Helene M.; Hoffman, Yehuda; Tully, R. Brent

    2015-08-01

    Full sky surveys of peculiar velocity are arguably the best way to map the large scale structure out to distances of a few times 100 Mpc/h.Using the largest and most accurate ever catalog of galaxy peculiar velocities Cosmicflows-2, the large scale structure has been reconstructed by means of the Wiener filter and constrained realizations assuming as a Bayesian prior model the LCDM standard model of cosmology. The present paper focuses on studying the bulk flow of the local flow field, defined as the mean velocity of top-hat spheres with radii ranging out to R=500 Mpc/h. Our main results is that the estimated bulk flow is consistent with the LCDM model with the WMAP inferred cosmological parameters. At R=50 (150)Mpc/h the estimated bulk velocity is 250 +/- 21 (239 +/- 38) km/s. The corresponding cosmic variance at these radii is 126 (60) km/s, which implies that these estimated bulk flows are dominated by the data and not by the assumed prior model. The estimated bulk velocity is dominated by the data out to R ˜200 Mpc/h, where the cosmic variance on the individual Supergalactic Cartesian components (of the r.m.s. values) exceeds the variance of the constrined realizations by at least a factor of 2. The SGX and SGY components of the CMB dipole velocity are recovered by the Wiener Filter velocity field down to a very few km/s. The SGZ component of the estimated velocity, the one that is most affected by the Zone of Avoidance, is off by 126km/s (an almost 2 sigma discrepancy).The bulk velocity analysis reported here is virtually unaffected by the Malmquist bias and very similar results are obtained for the data with and without the bias correction.

  11. Is the bulk mode conversion important in high density helicon plasma?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro

    2016-06-15

    In a high-density helicon plasma production process, a contribution of Trivelpiece-Gould (TG) wave for surface power deposition is widely accepted. The TG wave can be excited either due to an abrupt density gradient near the plasma edge (surface conversion) or due to linear mode conversion from the helicon wave in a density gradient in the bulk region (bulk mode conversion). By numerically solving the boundary value problem of linear coupling between the helicon and the TG waves in a background with density gradient, we show that the efficiency of the bulk mode conversion strongly depends on the dissipation included inmore » the plasma, and the bulk mode conversion is important when the dissipation is small. Also, by performing FDTD simulation, we show the time evolution of energy flux associated with the helicon and the TG waves.« less

  12. Taking the Measure of the Universe

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2009-01-01

    The cosmic microwave background (CMB) radiation is the oldest light in the universe - it is literally the remnant heat left over from the Big Bang. This fossil relic has survived largely intact and it provides us with a unique probe of conditions in the early universe, long before any stars or galaxies had formed. NASA has now flown two satellites devoted to studying the CMB: 'COBE' and 'WMAP'. In this lecture I will describe what we have learned from these missions including: evidence for the Big Bang itself; new measurements of the age, shape, and content of the universe; and new evidence that all structure in the universe emerged from microscopic quantum fluctuations in the primordial soup.

  13. Local renormalization group functions from quantum renormalization group and holographic bulk locality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Yu

    Here, the bulk locality in the constructive holographic renormalization group requires miraculous cancellations among various local renormalization group functions. The cancellation is not only from the properties of the spectrum but from more detailed aspects of operator product expansions in relation to conformal anomaly. It is remarkable that one-loop computation of the universal local renormalization group functions in the weakly coupled limit of the N = 4 super Yang-Mills theory fulfils the necessary condition for the cancellation in the strongly coupled limit in its SL(2, Z) duality invariant form. From the consistency between the quantum renormalization group and the holographicmore » renormalization group, we determine some unexplored local renormalization group functions (e.g. diffusive term in the beta function for the gauge coupling constant) in the strongly coupled limit of the planar N = 4 super Yang-Mills theory.« less

  14. A Passion for Learning: The Theory and Practice of Optimal Match at the University of Washington

    ERIC Educational Resources Information Center

    Noble, Kathleen D.; Childers, Sarah A.

    2008-01-01

    Early entrance from secondary school to university, based on the principle of optimal match, is a rare but highly effective educational strategy for many gifted students. The University of Washington offers two early entrance options for gifted adolescents: the Early Entrance Program for students prior to age 15, and the UW Academy for Young…

  15. Sub-Surface and Bulk Creep Behaviour of Polyurethane/Clay Nanocomposites.

    PubMed

    Jin, J; Yusoh, K; Zhang, H X; Song, M

    2016-03-01

    A series of exfoliated and intercalated polyurethane organoclay nanocomposites were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The creep behaviour of subsurface and bulk of the polyurethane coatings was investigated by nanoindentation technique and uniaxial conventional creep testing method, respectively. The results showed that the creep resistance of the nanocomposites was significantly improved by incorporation of organoclay. The enhancement of creep resistance was dependent on clay content as well as organoclay structure (exfoliation or intercalation) in the polymer matrix. With 1 wt% organoclay, the creep resistance increased by about 50% for the intercalated organoclay and 6% for the exfoliated organoclay systems, respectively, compared to the pristine polyurethane. Viscoelastic model was employed to investigate the effect of organoclay loadings on the creep performance of the polyurethane. Results showed the model was in good agreement with the experimental data. Incorporation of clay leads to an increase in elastic deformation especially in exfoliated polyurethane nanocomposites and induces a higher initial displacement at the early stage of creep.

  16. Energy saving achieved by limited filamentous bulking sludge under low dissolved oxygen.

    PubMed

    Guo, Jian-Hua; Peng, Yong-Zhen; Peng, Cheng-Yao; Wang, Shu-Ying; Chen, Ying; Huang, Hui-Jun; Sun, Zhi-Rong

    2010-02-01

    Limited filamentous bulking caused by low dissolved oxygen (DO) was proposed to establish a low energy consumption wastewater treatment system. This method for energy saving was derived from two full-scale field observations, which showed pollutants removal would be enhanced and energy consumption could be reduced by at least 10% using limited filamentous bulking. Furthermore, preliminary investigation including the abundance evaluation and the identification of filamentous bacteria demonstrated that the limited filamentous bulking could be repeated steadily in a lab-scale anoxic-oxic reactor fed with domestic wastewater. The sludge loss did not occur in the secondary clarifier, while COD and total nitrogen removal efficiencies were improved by controlling DO for optimal filamentous bacterial population. Suspended solids in effluent were negligible and turbidity was lower than 2 NTU, which were distinctly lower than those under no bulking. Theoretical and experimental results indicated the aeration consumption could be saved by the application of limited filamentous bulking.

  17. Early Literacy Teacher Preparation: One University's Perspective

    ERIC Educational Resources Information Center

    Berenato, Carolyn; Severino, Lori

    2017-01-01

    Colleges and universities can have an impact on the entire field of education when preparing teachers for one of the most challenging part of the job: teaching literacy. When teachers are properly trained and have a toolbox of strategies and teaching techniques to use, they can have a tremendous impact on student learning. In teacher preparation…

  18. How does spallation microdamage nucleate in bulk amorphous alloys under shock loading?

    NASA Astrophysics Data System (ADS)

    Huang, X.; Ling, Z.; Zhang, H. S.; Ma, J.; Dai, L. H.

    2011-11-01

    Specially designed plate-impact experiments have been conducted on a Zr-based amorphous alloy using a single-stage light gas gun. To understand the microdamage nucleation process in the material, the samples are subjected to dynamic tensile loadings of identical amplitude (˜ 3.18 GPa) but with different durations (83-201 ns). A cellular pattern with an equiaxed shape is observed on the spallation surface, which shows that spallation in the tested amorphous alloy is a typical ductile fracture and that microvoids have been nucleated during the process. Based on the observed fracture morphologies of the spallation surface and free-volume theory, we propose a microvoid nucleation model of bulk amorphous alloys. It is found that nucleation of microvoids at the early stage of spallation in amorphous alloys results from diffusion and coalescence of free volume, and that high mean tensile stress plays a dominant role in microvoid nucleation.

  19. Non-nuclear Testing of Reactor Systems in the Early Flight Fission Test Facilities (EFF-TF)

    NASA Technical Reports Server (NTRS)

    VanDyke, Melissa; Martin, James

    2004-01-01

    The Early Flight Fission-Test Facility (EFF-TF) can assist in the &sign and development of systems through highly effective non-nuclear testing of nuclear systems when technical issues associated with near-term space fission systems are "non-nuclear" in nature (e.g. system s nuclear operations are understood). For many systems. thermal simulators can he used to closely mimic fission heat deposition. Axial power profile, radial power profile. and fuel pin thermal conductivity can be matched. In addition to component and subsystem testing, operational and lifetime issues associated with the steady state and transient performance of the integrated reactor module can be investigated. Instrumentation at the EFF-TF allows accurate measurement of temperature, pressure, strain, and bulk core deformation (useful for accurately simulating nuclear behavior). Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE laboratories, industry, universities, and other NASA centers. This paper describes the current efforts for the latter portion of 2003 and beginning of 2004.

  20. A Heteroglossic Theory of Proto-Genbun Itchi in Edo and Early Meiji Writings

    ERIC Educational Resources Information Center

    Hansen, Kelly J.

    2009-01-01

    Genbun itchi is conventionally described as an early Meiji-period movement which sought to rid written Japanese of archaic forms, and instead develop a written style closer to the spoken vernacular of the time. The overwhelming bulk of critical work on genbun itchi has centered around the introduction of Western literature during this period as…