Sample records for early universe evolution

  1. Connecting QGP-Heavy Ion Physics to the Early Universe

    NASA Astrophysics Data System (ADS)

    Rafelski, Johann

    2013-10-01

    We discuss properties and evolution of quark-gluon plasma in the early Universe and compare to laboratory heavy ion experiments. We describe how matter and antimatter emerged from a primordial soup of quarks and gluons. We focus our discussion on similarities and differences between the early Universe and the laboratory experiments.

  2. Evolution of domain walls in the early universe. Ph.D. Thesis - Chicago Univ.

    NASA Technical Reports Server (NTRS)

    Kawano, Lawrence

    1989-01-01

    The evolution of domain walls in the early universe is studied via 2-D computer simulation. The walls are initially configured on a triangular lattice and then released from the lattice, their evolution driven by wall curvature and by the universal expansion. The walls attain an average velocity of about 0.3c and their surface area per volume (as measured in comoving coordinates) goes down with a slope of -1 with respect to conformal time, regardless of whether the universe is matter or radiation dominated. The additional influence of vacuum pressure causes the energy density to fall away from this slope and steepen, thus allowing a situation in which domain walls can constitute a significant portion of the energy density of the universe without provoking an unacceptably large perturbation upon the microwave background.

  3. WMAP - A Portrait of the Early Universe

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.

    2008-01-01

    A host of astrophysical observations suggest that early Universe was incredibly hot, dense, and homogeneous. A powerful probe of this time is provided by the relic radiation which we refer to today as the Cosmic Microwave Background (CMB). Images produced from this light contain the earliest glimpse of the Universe after the 'Big Bang' and the signature of the evolution of its contents. By exploiting these clues, constraints on the age, mass density, and geometry of the early Universe can be derived. A brief history of the evolution of the microwave radiometer systems and map making approaches used in advancing these aspects our understanding of cosmological will be reviewed. In addition, an overview of the results from NASA's Wilkinson Microwave Anisotropy (WMAP) will be presented.

  4. Inflaton and metric fluctuations in the early universe from a 5D vacuum state

    NASA Astrophysics Data System (ADS)

    Membiela, Agustin; Bellini, Mauricio

    2006-04-01

    In this Letter we complete a previously introduced formalism to study the gauge-invariant metric fluctuations from a noncompact Kaluza Klein theory of gravity, to study the evolution of the early universe. The evolution of both, metric and inflaton field fluctuations are reciprocally related. We obtain that <δρ>/ρ depends on the coupling of Φ with δφ and the spectral index of its spectrum is 0.9483

  5. Could Martian Strawberries Be? -- Prebiotic Chemical Evolution on an Early Wet Mars

    NASA Astrophysics Data System (ADS)

    Lerman, L.

    2005-03-01

    The universality of chemical physics dictates the ubiquity of bubbles, aerosols, and droplets on planets with water and simple amphiphiles. Their ability to functionally support prebiotic chemical evolution seems critical: on the early Earth and Mars, and quite likely for Titan and Europa.

  6. Cosmological QCD phase transition in steady non-equilibrium dissipative Hořava–Lifshitz early universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodadi, M., E-mail: M.Khodadi@sbu.ac.ir; Sepangi, H.R., E-mail: hr-sepangi@sbu.ac.ir

    We study the phase transition from quark–gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 1–10 μs old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Hořava–Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann–Robertson–Walker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigatemore » the effects of the running coupling constants of Hořava–Lifshitz gravity, λ, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (ξ)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively. -- Highlights: •In this paper we have studied quark–hadron phase transition in the early universe in the context of the Hořava–Lifshitz model. •We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively.« less

  7. The Cosmic Microwave Background: Detection and Interpretation of the First Light

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.

    2016-01-01

    A host of astrophysical observations suggest the early Universe was incredibly hot, dense, and homogeneous. A powerful and useful probe of this epoch is provided by the relic radiation, which we refer to today as the Cosmic Microwave Background (CMB). Precision maps of this light contain the earliest glimpse of the Universe after the Big Bang and signatures of the evolution of its contents. By exploiting these clues, constraints on the age, mass density, detailed composition, and geometry of the Universe can be made. A brief survey of the evolution of the radiometric and polarimetric imaging systems used in advancing our understanding of the early Universe will be reviewed. A survey of detector technologies, instrumentation techniques, and experimental challenges encountered in these efforts will be presented.

  8. Influence of the turbulent motion on the chiral magnetic effect in the early universe

    NASA Astrophysics Data System (ADS)

    Dvornikov, Maxim; Semikoz, Victor B.

    2017-02-01

    We study the magnetohydrodynamics of relativistic plasmas accounting for the chiral magnetic effect (CME). To take into account the evolution of the plasma velocity, obeying the Navier-Stokes equation, we approximate it by the Lorentz force accompanied by the phenomenological drag time parameter. On the basis of this ansatz, we obtain the contributions of both the turbulence effects, resulting from the dynamo term, and the magnetic field instability, caused by the CME, to the evolution of the magnetic field governed by the modified Faraday equation. In this way, we explore the evolution of the magnetic field energy and the magnetic helicity density spectra in the early Universe plasma. We find that the right-left electron asymmetry is enhanced by the turbulent plasma motion in a strong seed magnetic field compared to the pure CME case studied earlier for the hot Universe plasma in the same broken phase.

  9. WMAP - A Glimpse of the Early Universe

    NASA Technical Reports Server (NTRS)

    Wollack, Edward

    2009-01-01

    The early Universe was incredibly hot, dense, and homogeneous. A powerful probe of this time is provided by the relic radiation which we refer to today as the Cosmic Microwave Background (CMB). Images produced from this light contain the earliest glimpse of the Universe after the "Big Bang" and the signature of the evolution of its contents. By exploiting these clues, precise constraints on the age, mass density, and geometry of the early Universe can be derived. The history of this intriguing cosmological detective story will be reviewed. Recent results from NASA's Wilkinson Microwave Anisotropy Probe (WMAP) will be presented.

  10. The Toy model: Understanding the early universe

    NASA Astrophysics Data System (ADS)

    Fisher, Peter H.; Price, Richard H.

    2018-04-01

    In many branches of science, progress is being made by taking advantage of insights from other branches of science. Cosmology, the structure and evolution of the universe, is certainly an area that is currently beset by problems in understanding. We show here that the scientific insights from the studies of early childhood development, in particular, those of Piaget, give a new way of looking at the early universe. This new approach can not only be invaluable in undergraduate teaching, but can even be the basis of semi-quantitative predictions.

  11. Chemical Evolution and the Formation of Dwarf Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Cote, Benoit; JINA-CEE, NuGrid, ChETEC

    2018-06-01

    Stellar abundances in local dwarf galaxies offer a unique window into the nature and nucleosynthesis of the first stars. They also contain clues regarding how galaxies formed and assembled in the early stages of the universe. In this talk, I will present our effort to connect nuclear astrophysics with the field of galaxy formation in order to define what can be learned about galaxy evolution using stellar abundances. In particular, I will describe the current state of our numerical chemical evolution pipeline which accounts for the mass assembly history of galaxies, present how we use high-redshift cosmological hydrodynamic simulations to calibrate our models and to learn about the formation of dwarf galaxies, and address the challenge of identifying the dominant r-process site(s) using stellar abundances.

  12. Conceptual Ecology of the Evolution Acceptance among Greek Education Students: Knowledge, Religious Practices and Social Influences

    ERIC Educational Resources Information Center

    Athanasiou, Kyriacos; Papadopoulou, Penelope

    2012-01-01

    In this study, we explored some of the factors related to the acceptance of evolution theory among Greek university students training to be teachers in early childhood education, using conceptual ecology for biological evolution as a theoretical framework. We examined the acceptance of evolution theory and we also looked into the relationship…

  13. Exobiology: The NASA program

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Harper, Lynn; Andersen, Dale

    1992-01-01

    The goal of NASA's Exobiology Program is to understand the origin, evolution, and distribution of life in the universe. To do this, the Exobiology Program seeks to provide a critical framework and some key research to allow NASA to bear the combined talents and capabilities of the agency and the scientific community, and the unique opportunities afforded by space exploration. To provide structure and direction to the quest for answers, the Exobiology Program has instituted a comprehensive research program divided into four elements which are being implemented at several of NASA's research centers and in the university community. These program elements correspond to the four major epochs in the evolution of living systems: (1) cosmic evolution of the biogenic compounds; (2) prebiotic evolution; (3) origin and early evolution of life; and (4) evolution of advanced life. The overall research program is designed to trace the pathways leading from the origin of the universe through the major epochs in the story of life.

  14. Remedial, Basic, Advanced: Evolving Frameworks for First-Year Composition at the California State University

    ERIC Educational Resources Information Center

    Melzer, Dan

    2015-01-01

    In this essay I conduct a Critical Discourse Analysis of the language surrounding the California State University (CSU) Chancellor's Office latest plan to curb remediation, the Early Start program. I consider Early Start in the context of what I argue is the evolution of three major frameworks for Basic Writing in the CSU: the CSU Chancellor's…

  15. Hypermagnetic helicity evolution in early universe: leptogenesis and hypermagnetic diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semikoz, V.B.; Smirnov, A.Yu.; Sokoloff, D.D., E-mail: semikoz@yandex.ru, E-mail: smirnoff.alexandr@gmail.com, E-mail: sokoloff.dd@gmail.com

    2013-10-01

    We study hypermagnetic helicity and lepton asymmetry evolution in plasma of the early Universe before the electroweak phase transition (EWPT) accounting for chirality flip processes via inverse Higgs decays and sphaleron transitions which violate the left lepton number and wash out the baryon asymmetry of the Universe (BAU). In the scenario where the right electron asymmetry supports the BAU alone through the conservation law B/3−L{sub eR} = const at temperatures T > T{sub RL} ≅ 10 TeV the following universe cooling leads to the production of a non-zero left lepton (electrons and neutrinos) asymmetry. This is due to the Higgsmore » decays becoming more faster when entering the equilibrium at T = T{sub RL} with the universe expansion, Γ{sub RL} ∼ T > H ∼ T{sup 2}, resulting in the parallel evolution of both the right and the left electron asymmetries at T < T{sub RL} through the corresponding Abelian anomalies in SM in the presence of a seed hypermagnetic field. The hypermagnetic helicity evolution proceeds in a self-consistent way with the lepton asymmetry growth. The role of sphaleron transitions decreasing the left lepton number turns out to be negligible in given scenario. The hypermagnetic helicity can be a supply for the magnetic one in Higgs phase assuming a strong seed hypermagnetic field in symmetric phase.« less

  16. Quantum Kinetics and the Zeno Ansatz: Sterile Neutrino Dark Matter in the Early Universe

    NASA Astrophysics Data System (ADS)

    Dvornikov, Olexiy V.

    We solved the quantum kinetic equations for the evolution of neutrino states in the early universe. Starting at high temperatures, we evolve neutrino states to observe the resonant conversion of active-to-sterile neutrinos in a lepton asymmetric (more neutrinos than anti-neutrinos) universe. We find that at high temperatures, the high neutrino scattering and oscillation rates enforce a local equilibrium that balances the growth of coherence at the oscillation rate and the damping of coherence through scattering. This equilibrium, which we call a "quantum kinetic equilibrium," appears to approximately hold throughout the neutrino evolution, from the initial conditions through resonances that may be non adiabatic. Using this quantum kinetic equilibrium informs a proper choice of the initial conditions of the neutrino state and the relaxation process that occurs to this equilibrium when the initial conditions (as are typically chosen in the literature) are not coincident with the equilibrium values. We also discuss how to use this equilibrium to reduce the computational expense of solving the full quantum kinetic equations for neutrino states evolving in the early universe.

  17. The Changing Shape of Corporate Universities

    ERIC Educational Resources Information Center

    Baucus, David; Baucus, Melissa

    2005-01-01

    About seven years ago, technological innovation gave rise to the e-learning industry and the growth of corporate universities. Early in the evolution of the industry, corporate universities represented a reasonable deployment of learning technologies. They enabled companies to deliver the right content to target markets (e.g., employees, partners,…

  18. Elementary Cosmology: From Aristotle's Universe to the Big Bang and Beyond

    NASA Astrophysics Data System (ADS)

    Kolata, James J.

    2015-11-01

    Cosmology is the study of the origin, size, and evolution of the entire universe. Every culture has developed a cosmology, whether it be based on religious, philosophical, or scientific principles. In this book, the evolution of the scientific understanding of the Universe in Western tradition is traced from the early Greek philosophers to the most modern 21st century view. After a brief introduction to the concept of the scientific method, the first part of the book describes the way in which detailed observations of the Universe, first with the naked eye and later with increasingly complex modern instruments, ultimately led to the development of the ``Big Bang'' theory. The second part of the book traces the evolution of the Big Bang including the very recent observation that the expansion of the Universe is itself accelerating with time.

  19. Bar Evolution and Bar Properties from Disc Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Hutchinson-Smith, Tenley; Simmons, Brooke

    2017-01-01

    Bars in disc galaxies indicate a large collection of stars in a specific configuration of orbits that give the galaxy center a rectangular looking feature. Astronomers have discovered that these bars affect the distribution of matter in galaxies, and are also related to galaxy stellar mass and star formation history. Little is known about the specifics of how bars evolve and drive the evolution of their host galaxies because only a handful of bars have been studied in detail so far. I have examined a sample of 8,221 barred galaxies from the early universe to identify and examine correlations with galaxy properties. The data comes from Galaxy Zoo, an online citizen science project that allows anyone to classify and measure detailed properties of galaxies. I present results including the fraction of galaxies in the sample that have bars, and the variation of galaxy properties with bar length, including galaxy color and stellar mass. I also compare these results to barred galaxies in the local universe. I will discuss the implications of these results in the context of galaxy evolution overall, including the effect of dark matter on bars and galaxy evolution.

  20. The inevitable youthfulness of known high-redshift radio galaxies

    NASA Astrophysics Data System (ADS)

    Blundell, Katherine M.; Rawlings, Steve

    1999-05-01

    Some galaxies are very luminous in the radio part of the spectrum. These `radio galaxies' have extensive (hundreds of kiloparsecs) lobes of emission powered by plasma jets originating at a central black hole. Some radio galaxies can be seen at very high redshifts, where in principle they can serve as probes of the early evolution of the Universe. Here we show that, for any model of radio-galaxy evolution in which the luminosity decreases with time after an initial rapid increase (that is, essentially all reasonable models), all observable high-redshift radio galaxies must be seen when the lobes are less than 107 years old. This means that high-redshift radio galaxies can be used as a high-time-resolution probe of evolution in the early Universe. Moreover, this result explains many observed trends of radio-galaxy properties with redshift, without needing to invoke explanations based on cosmology or strong evolution of the surrounding intergalactic medium with cosmic time, thereby avoiding conflict with current theories of structure formation.

  1. Information entropy and dark energy evolution

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; Luongo, Orlando

    Here, the information entropy is investigated in the context of early and late cosmology under the hypothesis that distinct phases of universe evolution are entangled between them. The approach is based on the entangled state ansatz, representing a coarse-grained definition of primordial dark temperature associated to an effective entangled energy density. The dark temperature definition comes from assuming either Von Neumann or linear entropy as sources of cosmological thermodynamics. We interpret the involved information entropies by means of probabilities of forming structures during cosmic evolution. Following this recipe, we propose that quantum entropy is simply associated to the thermodynamical entropy and we investigate the consequences of our approach using the adiabatic sound speed. As byproducts, we analyze two phases of universe evolution: the late and early stages. To do so, we first recover that dark energy reduces to a pure cosmological constant, as zero-order entanglement contribution, and second that inflation is well-described by means of an effective potential. In both cases, we infer numerical limits which are compatible with current observations.

  2. Nucleosynthesis in relation to cosmology

    NASA Astrophysics Data System (ADS)

    El Eid, Mounib F.

    2018-04-01

    While the primordial (or Big Bang) nucleosynthesis delivers important clues about the conditions in the high red-shift universe (termed far-field cosmology), the nucleosynthesis of the heavy elements beyond iron by the r-process or the s-process deliver information about the early phase and history of the Galaxy (termed near-field cosmology). In particular, the r-process nucleosynthesis is unique, because it is a primary process that helps to associate individual stars with the composition of the protocloud. The present contribution is intended to give a brief overview about these nucleosynthesis processes and describe their link to the early universe, stellar evolution and to the chemical evolution of the Galaxy. The focus of this present contribution is on illumination the role of nucleosynthesis in the Universe. Owing to the complexity of this subject, a general scenario is more appealing to address interested readers.

  3. Observational constraints on finite scale factor singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denkiewicz, Tomasz, E-mail: atomekd@wmf.univ.szczecin.pl

    2012-07-01

    We discuss the combined constraints on a Finite Scale Factor Singularity (FSF) universe evolution scenario, which come from the shift parameter R, baryon acoustic oscillations (BAO) A, and from the type Ia supernovae. We show that observations allow existence of such singularities in the 2 × 10{sup 9} years in future (at 1σ CL) which is much farther than a Sudden Future Singularity (SFS), and that at the present moment of the cosmic evolution, one cannot differentiate between cosmological scenario which allow finite scale factor singularities and the standard ΛCDM dark energy models. We also show that there is anmore » allowed value of m = 2/3 within 1σ CL, which corresponds to a dust-filled Einstein-de-Sitter universe limit of the early time evolution and so it is pasted into a standard early-time scenario.« less

  4. Early Childhood Studies in Israel: Using DAP as a Framework.

    ERIC Educational Resources Information Center

    Dayan, Yael

    2000-01-01

    This article describes the evolution of a graduate program in early childhood studies at the Hebrew University of Jerusalem. The training model was designed to enhance sensitivity and responsiveness toward children, and uses developmentally appropriate practices as a theoretical basis. (JPB)

  5. Publications of the exobiology program for 1990: A special bibliography

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Exobiology Program is an integrated program designed to investigate and understand those processes related to the origin, evolution, and distribution of life in the universe. The Exobiology Program is broad in scope, covering the following subject areas: cosmic evolution of biogenic compounds; prebiotic evolution; early evolution of life; evolution of advanced life; solar system exploration; search for extraterrestrial intelligence; planetary protection; and advanced programs in biological systems research. A listing of the 1990 publications resulting from research supported by the Exobiology Program is presented.

  6. Frontiers of Big Bang cosmology and primordial nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Mathews, Grant J.; Cheoun, Myung-Ki; Kajino, Toshitaka; Kusakabe, Motohiko; Yamazaki, Dai G.

    2012-11-01

    We summarize some current research on the formation and evolution of the universe and overview some of the key questions surrounding the the big bang. There are really only two observational cosmological probes of the physics of the early universe. Of those two, the only probe during the relevant radiation dominated epoch is the yield of light elements during the epoch of big bang nucleosynthesis. The synthesis of light elements occurs in the temperature regime from 108 to 1010 K and times of about 1 to 104 sec into the big bang. The other probe is the spectrum of temperature fluctuations in the CMB which (among other things) contains information of the first quantum fluctuations in the universe, along with details of the distribution and evolution of dark matter, baryonic matter and photons up to the surface of photon last scattering. Here, we emphasize the role of these probes in answering some key questions of the big bang and early universe cosmology.

  7. The Cosmic Century

    NASA Astrophysics Data System (ADS)

    Longair, Malcolm S.

    2013-04-01

    Part I. Stars and Stellar Evolution up to the Second World War: 1. The legacy of the nineteenth century; 2. The classification of stellar spectra; 3. Stellar structure and evolution; 4. The end points of stellar evolution; Part II. The Large-Scale Structure of the Universe, 1900-1939: 5. The Galaxy and the nature of spiral nebulae; 6. The origins of astrophysical cosmology; Part III. The Opening up of the Electromagnetic Spectrum: 7. The opening up of the electromagnetic spectrum and the new astronomies; Part IV. The Astrophysics of Stars and Galaxies since 1945: 8. Stars and stellar evolution; 9. The physics of the interstellar medium; 10. The physics of galaxies and clusters of galaxies; 11. High-energy astrophysics; Part V. Astrophysical Cosmology since 1945: 12. Astrophysical cosmology; 13. The determination of cosmological parameters; 14. The evolution of galaxies and active galaxies with cosmic epoch; 15. The origin of galaxies and the large-scale structure of the Universe; 16. The very early Universe; References; Name index; Object index; Subject index.

  8. A Missing Link in the Evolution of the Cumulative Recorder

    ERIC Educational Resources Information Center

    Asano, Toshio; Lattal, Kennon A.

    2012-01-01

    A recently recovered cumulative recorder provides a missing link in the evolution of the cumulative recorder from a modified kymograph to a reliably operating, scientifically and commercially successful instrument. The recorder, the only physical evidence of such an early precommercial cumulative recorder yet found, was sent to Keio University in…

  9. What Learning for What Development?

    ERIC Educational Resources Information Center

    Daniel, John

    2014-01-01

    After reviewing the evolution of attitudes to poverty and education we note how it influenced the early provision of schooling and the emergence of a global agenda for international development and universal education. At first, this agenda was grounded in the Enlightenment values that inspired the Universal Declaration of Human Rights but…

  10. Interpreting the universal phylogenetic tree

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    2000-01-01

    The universal phylogenetic tree not only spans all extant life, but its root and earliest branchings represent stages in the evolutionary process before modern cell types had come into being. The evolution of the cell is an interplay between vertically derived and horizontally acquired variation. Primitive cellular entities were necessarily simpler and more modular in design than are modern cells. Consequently, horizontal gene transfer early on was pervasive, dominating the evolutionary dynamic. The root of the universal phylogenetic tree represents the first stage in cellular evolution when the evolving cell became sufficiently integrated and stable to the erosive effects of horizontal gene transfer that true organismal lineages could exist.

  11. Galaxy evolution in extreme environments: Molecular gas content star formation and AGN in isolated void galaxies

    NASA Astrophysics Data System (ADS)

    Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha

    Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.

  12. Astrophysical cosmology

    NASA Astrophysics Data System (ADS)

    Bardeen, J. M.

    The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe.

  13. What is the Universe made of?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paris, Mark

    A team of physicists and astrophysicists at Los Alamos National Laboratory, in collaboration with leading universities around the country, are using the Laboratory’s supercomputers to simulate the Big Bang nucleosynthesis and the early universe to unprecedented precision. These researchers developed a code, called BURST that describes the universe from a time of a few seconds after the Big Bang to several hundred thousand years later. BURST allows physicists to study the microscopic, quantum nature of fundamental particles — like nuclei and the ghostly, weakly interacting neutrinos — by simulating the universe at its largest, cosmological scale. BURST simultaneously describes allmore » the particles present in the early universe as they develop, tracking their evolution, particularly the amounts of light nuclei fused in the cosmic soup.« less

  14. Primordial alchemy: from the Big Bang to the present universe

    NASA Astrophysics Data System (ADS)

    Steigman, Gary

    Of the light nuclides observed in the universe today, D, 3He, 4He, and 7Li are relics from its early evolution. The primordial abundances of these relics, produced via Big Bang Nucleosynthesis (BBN) during the first half hour of the evolution of the universe provide a unique window on Physics and Cosmology at redshifts ~1010. Comparing the BBN-predicted abundances with those inferred from observational data tests the consistency of the standard cosmological model over ten orders of magnitude in redshift, constrains the baryon and other particle content of the universe, and probes both Physics and Cosmology beyond the current standard models. These lectures are intended to introduce students, both of theory and observation, to those aspects of the evolution of the universe relevant to the production and evolution of the light nuclides from the Big Bang to the present. The current observational data is reviewed and compared with the BBN predictions and the implications for cosmology (e.g., universal baryon density) and particle physics (e.g., relativistic energy density) are discussed. While this comparison reveals the stunning success of the standard model(s), there are currently some challenge which leave open the door for more theoretical and observational work with potential implications for astronomy, cosmology, and particle physics.

  15. Sixth Symposium on Chemical Evolution and the Origin and Evolution of Life

    NASA Technical Reports Server (NTRS)

    Acevedo, Sara (Editor); DeVincenzi, Donald L. (Editor); Chang, Sherwood (Editor)

    1998-01-01

    The 6th Symposium on Chemical Evolution and the Origin and Evolution of Life was convened at NASA Ames Research Center, November 17-20, 1997. This Symposium is convened every three years under the auspices of NASA's Exobiology Program Office. All Principal Investigators funded by this Program present their most recent research accomplishments at the Symposium. Scientific papers were presented in the following areas: cosmic evolution of the biogenic elements, prebiotic evolution (both planetary and chemical), evolution of early organisms and evolution of organisms in extreme environments, solar system exploration, and star and planet formation. The Symposium was attended by over 200 scientists from NASA centers and Universities nationwide.

  16. The Emerging Life Era: A Cosmological Imperative

    NASA Astrophysics Data System (ADS)

    Chaisson, Eric

    Cosmic evolution is the study of the many varied changes in the assembly and composition of radiation, matter and life throughout the Universe. At one and the same time, cosmic evolution represents a search for our cosmic heritage, for a principle of cosmic selection that transcends neo-Darwinism, indeed for a holistic cosmology wherein life plays an integral role. This paper sketches the grand scenario of cosmic evolution by mathematically examining the temporal dependence of various energy densities in current cosmological models. The early Universe is shown to have been flooded with radiation whose energy density was so severe as to preclude the existence of any appreciable structures. As the Universe cooled and thinned, a preeminent phase change occurred about 100,000 years after creation, at which time matter's energy density overthrew the early primacy of radiation. Only with the emergence of technologically manipulative beings (on Earth and perhaps elsewhere) has the energy density contained within matter become locally exceeded by the flux of free energy density flowing through open organic structures. Using aspects of non-equilibrium thermodynamics, we argued that it is the contrasting temporal behavior of various energy densities that have given rise to galaxies, stars, planets, and life forms. We furthermore argue that a necessary (though perhaps not sufficient) condition--a veritable prime mover--for the emergence of such ordered structures is the expansion of the Universe itself.

  17. Observational Searches for Star-Forming Galaxies at z > 6

    NASA Astrophysics Data System (ADS)

    Finkelstein, Steven L.

    2016-08-01

    Although the universe at redshifts greater than six represents only the first one billion years (< 10%) of cosmic time, the dense nature of the early universe led to vigorous galaxy formation and evolution activity which we are only now starting to piece together. Technological improvements have, over only the past decade, allowed large samples of galaxies at such high redshifts to be collected, providing a glimpse into the epoch of formation of the first stars and galaxies. A wide variety of observational techniques have led to the discovery of thousands of galaxy candidates at z > 6, with spectroscopically confirmed galaxies out to nearly z = 9. Using these large samples, we have begun to gain a physical insight into the processes inherent in galaxy evolution at early times. In this review, I will discuss (i) the selection techniques for finding distant galaxies, including a summary of previous and ongoing ground and space-based searches, and spectroscopic follow-up efforts, (ii) insights into galaxy evolution gleaned from measures such as the rest-frame ultraviolet luminosity function, the stellar mass function, and galaxy star-formation rates, and (iii) the effect of galaxies on their surrounding environment, including the chemical enrichment of the universe, and the reionisation of the intergalactic medium. Finally, I conclude with prospects for future observational study of the distant universe, using a bevy of new state-of-the-art facilities coming online over the next decade and beyond.

  18. Probing Galaxy Formation and Evolution with Space Born Sub-Millimeter Telescopes

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Arendt, Richard G.; Moseley, Harvey; Benford, Dominic; Shafer, Richard; Mather, John; Oegerle, William (Technical Monitor)

    2002-01-01

    A major unresolved question in cosmology is how the complex system of galaxies we see in the present universe evolved from an almost perfectly smooth beginning. Multiwavelength observations of galaxies have revealed that a significant fraction of their UV-visible starlight is absorbed and reradiated by dust at infrared JR) and submillimeter wavelengths. The cumulative IR-submm. emission from galaxies since the epoch of recombination, the cosmic IR background, has recently been recorded by the COBE satellite. The COBE observations in combination with recent submm surveys conducted with the SCUBA on the 15 m JCMT have shown that most of the radiation from star formation that has taken place in the early stages of galaxy evolution is reradiated by dust at submm wavelengths. Therefore, submm telescopes offer a unique probe of the early stages of galaxy formation and evolution. This talk will: (1) consider the impact of telescope diameter on the depth of the survey (what redshift can be probed) at different wavelengths; (2) discuss the relative scientific merits of high-resolution narrow-field surveys versus lower resolution deep surveys; and (3) show how both strategies offer complementary information crucial to our understanding of the structure and evolution of galaxies in the universe.

  19. The early universe history from contraction-deformation of the Standard Model

    NASA Astrophysics Data System (ADS)

    Gromov, N. A.

    2017-03-01

    The elementary particles evolution in the early Universe from Plank time up to several milliseconds is presented. The developed theory is based on the high-temperature (high-energy) limit of the Standard Model which is generated by the contractions of its gauge groups. At the infinite temperature all particles lose masses. Only massless neutral -bosons, massless Z-quarks, neutrinos and photons are survived in this limit. The weak interactions become long-range and are mediated by neutral currents, quarks have only one color degree of freedom.

  20. Semiclassical gravitoelectromagnetic inflation in a Lorentz gauge: Seminal inflaton fluctuations and electromagnetic fields from a 5D vacuum state

    NASA Astrophysics Data System (ADS)

    Membiela, Federico Agustín; Bellini, Mauricio

    2010-02-01

    Using a semiclassical approach to Gravitoelectromagnetic Inflation (GEMI), we study the origin and evolution of seminal inflaton and electromagnetic fields in the early inflationary universe from a 5D vacuum state. The difference with other previous works is that in this one we use a Lorentz gauge. Our formalism is naturally not conformal invariant on the effective 4D de Sitter metric, which make possible the super adiabatic amplification of magnetic field modes during the early inflationary epoch of the universe on cosmological scales.

  1. Feedback in low-mass galaxies in the early Universe.

    PubMed

    Erb, Dawn K

    2015-07-09

    The formation, evolution and death of massive stars release large quantities of energy and momentum into the gas surrounding the sites of star formation. This process, generically termed 'feedback', inhibits further star formation either by removing gas from the galaxy, or by heating it to temperatures that are too high to form new stars. Observations reveal feedback in the form of galactic-scale outflows of gas in galaxies with high rates of star formation, especially in the early Universe. Feedback in faint, low-mass galaxies probably facilitated the escape of ionizing radiation from galaxies when the Universe was about 500 million years old, so that the hydrogen between galaxies changed from neutral to ionized-the last major phase transition in the Universe.

  2. Holographic Dark Energy in Brans-Dicke Theory with Logarithmic Form of Scalar Field

    NASA Astrophysics Data System (ADS)

    Singh, C. P.; Kumar, Pankaj

    2017-10-01

    In this paper, an interacting holographic dark energy model with Hubble horizon as an infra-red cut-off is considered in the framework of Brans-Dicke theory. We assume the Brans-Dicke scalar field as a logarithmic form ϕ = ϕ 0 l n( α + β a), where a is the scale factor, α and β are arbitrary constants, to interpret the physical phenomena of the Universe. The equation of state parameter w h and deceleration parameter q are obtained to discuss the dynamics of the evolution of the Universe. We present a unified model of holographic dark energy which explains the early time acceleration (inflation), medieval time deceleration and late time acceleration. It is also observed that w h may cross the phantom divide line in the late time evolution. We also discuss the cosmic coincidence problem. We obtain a time-varying density ratio of holographic dark energy to dark matter which is a constant of order one (r˜ O(1)) during early and late time evolution, and may evolve sufficiently slow at present time. Thus, the model successfully resolves the cosmic coincidence problem.

  3. Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor

    NASA Astrophysics Data System (ADS)

    Cantine, Marjorie D.; Fournier, Gregory P.

    2018-03-01

    Extensive fundamental molecular and biological evolution took place between the prebiotic origins of life and the state of the Last Universal Common Ancestor (LUCA). Considering the evolutionary innovations between these two endpoints from the perspective of environmental adaptation, we explore the hypothesis that LUCA was temporally, spatially, and environmentally distinct from life's earliest origins in an RNA world. Using this lens, we interpret several molecular biological features as indicating an environmental transition between a cold, radiation-shielded origin of life and a mesophilic, surface-dwelling LUCA. Cellularity provides motility and permits Darwinian evolution by connecting genetic material and its products, and thus establishing heredity and lineage. Considering the importance of compartmentalization and motility, we propose that the early emergence of cellularity is required for environmental dispersal and diversification during these transitions. Early diversification and the emergence of ecology before LUCA could be an important pre-adaptation for life's persistence on a changing planet.

  4. Gauss-Bonnet cosmology unifying late and early-time acceleration eras with intermediate eras

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2016-07-01

    In this paper we demonstrate that with vacuum F(G) gravity it is possible to describe the unification of late and early-time acceleration eras with the radiation and matter domination era. The Hubble rate of the unified evolution contains two mild singularities, so called Type IV singularities, and the evolution itself has some appealing features, such as the existence of a deceleration-acceleration transition at late times. We also address quantitatively a fundamental question related to modified gravity models description of cosmological evolution: Is it possible for all modified gravity descriptions of our Universe evolution, to produce a nearly scale invariant spectrum of primordial curvature perturbations? As we demonstrate, the answer for the F(G) description is no, since the resulting power spectrum is not scale invariant, in contrast to the F(R) description studied in the literature. Therefore, although the cosmological evolution can be realized in the context of vacuum F(G) gravity, the evolution is not compatible with the observational data, in contrast to the F(R) gravity description of the same cosmological evolution.

  5. Black hole formation in a contracting universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quintin, Jerome; Brandenberger, Robert H., E-mail: jquintin@physics.mcgill.ca, E-mail: rhb@hep.physics.mcgill.ca

    We study the evolution of cosmological perturbations in a contracting universe. We aim to determine under which conditions density perturbations grow to form large inhomogeneities and collapse into black holes. Our method consists in solving the cosmological perturbation equations in complete generality for a hydrodynamical fluid. We then describe the evolution of the fluctuations over the different length scales of interest and as a function of the equation of state for the fluid, and we explore two different types of initial conditions: quantum vacuum and thermal fluctuations. We also derive a general requirement for black hole collapse on sub-Hubble scales,more » and we use the Press-Schechter formalism to describe the black hole formation probability. For a fluid with a small sound speed (e.g., dust), we find that both quantum and thermal initial fluctuations grow in a contracting universe, and the largest inhomogeneities that first collapse into black holes are of Hubble size and the collapse occurs well before reaching the Planck scale. For a radiation-dominated fluid, we find that no black hole can form before reaching the Planck scale. In the context of matter bounce cosmology, it thus appears that only models in which a radiation-dominated era begins early in the cosmological evolution are robust against the formation of black holes. Yet, the formation of black holes might be an interesting feature for other models. We comment on a number of possible alternative early universe scenarios that could take advantage of this feature.« less

  6. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofter, Karl; Wilson, Michael A.

    2006-01-01

    The origin and early evolution of membrane proteins, and in particular ion channels, are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Prokarya, and Archaea). We discuss the potassium-sodium-calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.

  7. BHDD: Primordial black hole binaries code

    NASA Astrophysics Data System (ADS)

    Kavanagh, Bradley J.; Gaggero, Daniele; Bertone, Gianfranco

    2018-06-01

    BHDD (BlackHolesDarkDress) simulates primordial black hole (PBH) binaries that are clothed in dark matter (DM) halos. The software uses N-body simulations and analytical estimates to follow the evolution of PBH binaries formed in the early Universe.

  8. Dust formation in a galaxy with primitive abundances.

    PubMed

    Sloan, G C; Matsuura, M; Zijlstra, A A; Lagadec, E; Groenewegen, M A T; Wood, P R; Szyszka, C; Bernard-Salas, J; van Loon, J Th

    2009-01-16

    Interstellar dust plays a crucial role in the evolution of galaxies. It governs the chemistry and physics of the interstellar medium. In the local universe, dust forms primarily in the ejecta from stars, but its composition and origin in galaxies at very early times remain controversial. We report observational evidence of dust forming around a carbon star in a nearby galaxy with a low abundance of heavy elements, 25 times lower than the solar abundance. The production of dust by a carbon star in a galaxy with such primitive abundances raises the possibility that carbon stars contributed carbonaceous dust in the early universe.

  9. Publications of the Exobiology Program for 1988: A special bibliography

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The 1988 publications resulting from research pursued under the auspices of NASA's Exobiology Program are listed. The Exobiology Program is an integrated program designed to investigate those processes that may have been responsible for or related to the origin, evolution, and distribution of life in the universe. Research supported by this program is in the areas of cosmic evolution of biogenic compounds, prebiotic evolution, early evolution of life, and evolution of advanced life. Pre-mission and pre-project activities supporting these areas are included in the areas of solar system exploration and the search for extraterrestrial intelligence. A planetary protection subject area is also included because of its direct relevance to the Exobiology program.

  10. Molecular Evolution of Aminoacyl tRNA Synthetase Proteins in the Early History of Life

    NASA Astrophysics Data System (ADS)

    Fournier, Gregory P.; Andam, Cheryl P.; Alm, Eric J.; Gogarten, J. Peter

    2011-12-01

    Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.

  11. Dynamics of the universe and spontaneous symmetry breaking

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    1980-01-01

    It is shown that the presence of a phase transition early in the history of the universe, associated with spontaneous symmetry breaking (believed to take place at very high temperatures at which the various fundamental interactions unify), significantly modifies its dynamics and evolution. This is due to the energy 'pumping' during the phase transition from the vacuum to the substance, rather than the gravitating effects of the vacuum. The expansion law of the universe then differs substantially from the relation considered so far for the very early time expansion. In particular it is shown that under certain conditions this expansion law is exponential. It is further argued that under reasonable assumptions for the mass of the associated Higgs boson this expansion stage could last long enough to potentially account for the observed isotropy of the universe.

  12. Universal biology and the statistical mechanics of early life.

    PubMed

    Goldenfeld, Nigel; Biancalani, Tommaso; Jafarpour, Farshid

    2017-12-28

    All known life on the Earth exhibits at least two non-trivial common features: the canonical genetic code and biological homochirality, both of which emerged prior to the Last Universal Common Ancestor state. This article describes recent efforts to provide a narrative of this epoch using tools from statistical mechanics. During the emergence of self-replicating life far from equilibrium in a period of chemical evolution, minimal models of autocatalysis show that homochirality would have necessarily co-evolved along with the efficiency of early-life self-replicators. Dynamical system models of the evolution of the genetic code must explain its universality and its highly refined error-minimization properties. These have both been accounted for in a scenario where life arose from a collective, networked phase where there was no notion of species and perhaps even individuality itself. We show how this phase ultimately terminated during an event sometimes known as the Darwinian transition, leading to the present epoch of tree-like vertical descent of organismal lineages. These examples illustrate concrete examples of universal biology: the quest for a fundamental understanding of the basic properties of living systems, independent of precise instantiation in chemistry or other media.This article is part of the themed issue 'Reconceptualizing the origins of life'. © 2017 The Author(s).

  13. Universal biology and the statistical mechanics of early life

    NASA Astrophysics Data System (ADS)

    Goldenfeld, Nigel; Biancalani, Tommaso; Jafarpour, Farshid

    2017-11-01

    All known life on the Earth exhibits at least two non-trivial common features: the canonical genetic code and biological homochirality, both of which emerged prior to the Last Universal Common Ancestor state. This article describes recent efforts to provide a narrative of this epoch using tools from statistical mechanics. During the emergence of self-replicating life far from equilibrium in a period of chemical evolution, minimal models of autocatalysis show that homochirality would have necessarily co-evolved along with the efficiency of early-life self-replicators. Dynamical system models of the evolution of the genetic code must explain its universality and its highly refined error-minimization properties. These have both been accounted for in a scenario where life arose from a collective, networked phase where there was no notion of species and perhaps even individuality itself. We show how this phase ultimately terminated during an event sometimes known as the Darwinian transition, leading to the present epoch of tree-like vertical descent of organismal lineages. These examples illustrate concrete examples of universal biology: the quest for a fundamental understanding of the basic properties of living systems, independent of precise instantiation in chemistry or other media. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  14. Accreting binary population synthesis and feedback prescriptions

    NASA Astrophysics Data System (ADS)

    Fragos, Tassos

    2016-04-01

    Studies of extagalactic X-ray binary populations have shown that the characteristics of these populations depend strongly on the characteristics of the host galaxy's parent stellar population (e.g. star-formation history and metallicity). These dependencies not only make X-ray binaries promising for aiding in the measurement of galaxy properties themselves, but they also have important astrophysical and cosmological implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that X-ray binaries were more luminous than today. The more energetic X-ray photons, because of their long mean-free paths, can escape the galaxies where they are produced, and interact at long distances with the intergalactic medium. This could result in a smoother spatial distribution of ionized regions, and more importantly in an overall warmer intergalactic medium. The energetic X-ray photons emitted from X-ray binaries dominate the X-ray radiation field over active galactic nuclei at z > 6 - 8, and hence Χ-ray binary feedback can be a non-negligible contributor to the heating and reionization of the inter-galactic medium in the early universe. The spectral energy distribution shape of the XRB emission does not change significantly with redshift, suggesting that the same XRB subpopulation, namely black-hole XRBs in the high-soft state, dominates the cumulative emission at all times. On the contrary, the normalization of the spectral energy distribution does evolve with redshift. To zeroth order, this evolution is driven by the cosmic star-formation rate evolution. However, the metallicity evolution of the universe and the mean stellar population age are two important factors that affect the X-ray emission from high-mass and low-mass XRBs, respectively. In this talk, I will review recent studies on the potential feedback from accreting binary populations in galactic and cosmological scales. Furthermore, I will discuss which are the next steps towards a more physically realisitc modelling of accreting compact object populations in the early Universe.

  15. Exponential evolution: implications for intelligent extraterrestrial life.

    PubMed

    Russell, D A

    1983-01-01

    Some measures of biologic complexity, including maximal levels of brain development, are exponential functions of time through intervals of 10(6) to 10(9) yrs. Biological interactions apparently stimulate evolution but physical conditions determine the time required to achieve a given level of complexity. Trends in brain evolution suggest that other organisms could attain human levels within approximately 10(7) yrs. The number (N) and longevity (L) terms in appropriate modifications of the Drake Equation, together with trends in the evolution of biological complexity on Earth, could provide rough estimates of the prevalence of life forms at specified levels of complexity within the Galaxy. If life occurs throughout the cosmos, exponential evolutionary processes imply that higher intelligence will soon (10(9) yrs) become more prevalent than it now is. Changes in the physical universe become less rapid as time increases from the Big Bang. Changes in biological complexity may be most rapid at such later times. This lends a unique and symmetrical importance to early and late universal times.

  16. The Evolution of Metals and Dust in the High-Redshift Universe (z greater than 6)

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2007-01-01

    Dusty hyperluminous galaxies in the early universe provide unique environments for studying the role of massive stars in the formation and destruction of dust. At redshifts above approx. 6, when the universe was less than approx. 1 Gyr old, dust could have only condensed in the explosive ejecta of Type-II supernovae (SNe), since most of the progenitors of the AGB stars, the major alternative source of interstellar dust, did not have time to evolve off the main sequence. I will present analytical models for the evolution of the gas, dust, and metals in high redshift galaxies, with a special application to SDSS J1148+5251, a hyperluminous quasar at $z = 6.4$. I will also discuss possible star formation scenarios consistent with observational constraints on the dust and gas content of this object.

  17. The correlation function for density perturbations in an expanding universe. I - Linear theory

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1977-01-01

    The evolution of the two-point correlation function for adiabatic density perturbations in the early universe is studied. Analytical solutions are obtained for the evolution of linearized spherically symmetric adiabatic density perturbations and the two-point correlation function for these perturbations in the radiation-dominated portion of the early universe. The results are then extended to the regime after decoupling. It is found that: (1) adiabatic spherically symmetric perturbations comparable in scale with the maximum Jeans length would survive the radiation-dominated regime; (2) irregular fluctuations are smoothed out up to the scale of the maximum Jeans length in the radiation era, but regular fluctuations might survive on smaller scales; (3) in general, the only surviving structures for irregularly shaped adiabatic density perturbations of arbitrary but finite scale in the radiation regime are the size of or larger than the maximum Jeans length in that regime; (4) infinite plane waves with a wavelength smaller than the maximum Jeans length but larger than the critical dissipative damping scale could survive the radiation regime; and (5) black holes would also survive the radiation regime and might accrete sufficient mass after decoupling to nucleate the formation of galaxies.

  18. Super inflation mechanism and dark energy in F(T,TG) gravity

    NASA Astrophysics Data System (ADS)

    Keskin, A. I.

    2017-03-01

    There are various mechanisms that explain both the inflationary epoch of the early universe and a unification of this epoch with the other stages of the universe. In this study, we show all the expansion history of the universe and transition among of them in a single form by using the theoretical framework of F ( T, TG ) gravity in the context of the FRW (Friedmann-Robertson-Walker) universe. According to a particular model we obtain the unified solutions of the field equations. Without using any scalar field description we especially present the super inflation mechanism composed of three phase regions which describes the evolution of the early universe. The mechanism begins with a vacuum state and then follows a super accelerated period where there are two regions. The first continues in a quintessential field, and the second is a region where the radiation is created. Furthermore, we verified this inflationary mechanism by using the spectral index parameter and the scalar tensor ratio, i.e., ns, r, and calculated the ratio of radiation emergent from the quintessence field. This creation should be in a certain rate in the early universe otherwise we show that the universe cannot survive and continue to expand. Also, we have obtained a phantom solution of the model that shows two regions which are compatible with the recent cosmological observations. In one respect, it is observed that the late time expansion of the universe is similar to the early time inflation.

  19. Tunneling in quantum cosmology and holographic SYM theory

    NASA Astrophysics Data System (ADS)

    Ghoroku, Kazuo; Nakano, Yoshimasa; Tachibana, Motoi; Toyoda, Fumihiko

    2018-03-01

    We study the time evolution of the early Universe, which is developed by a cosmological constant Λ4 and supersymmetric Yang-Mills (SYM) fields in the Friedmann-Robertson-Walker space-time. The renormalized vacuum expectation value of the energy-momentum tensor of the SYM theory is obtained in a holographic way. It includes a radiation of the SYM field, parametrized as C . The evolution is controlled by this radiation C and the cosmological constant Λ4. For positive Λ4, an inflationary solution is obtained at late time. When C is added, the quantum mechanical situation at early time is fairly changed. Here we perform the early time analysis in terms of two different approaches, (i) the Wheeler-DeWitt equation and (ii) Lorentzian path integral with the Picard-Lefschetz method by introducing an effective action. The results of two methods are compared.

  20. An upper limit on the stochastic gravitational-wave background of cosmological origin.

    PubMed

    Abbott, B P; Abbott, R; Acernese, F; Adhikari, R; Ajith, P; Allen, B; Allen, G; Alshourbagy, M; Amin, R S; Anderson, S B; Anderson, W G; Antonucci, F; Aoudia, S; Arain, M A; Araya, M; Armandula, H; Armor, P; Arun, K G; Aso, Y; Aston, S; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Barker, C; Barker, D; Barone, F; Barr, B; Barriga, P; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Bauer, Th S; Behnke, B; Beker, M; Benacquista, M; Betzwieser, J; Beyersdorf, P T; Bigotta, S; Bilenko, I A; Billingsley, G; Birindelli, S; Biswas, R; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Boccara, C; Bodiya, T P; Bogue, L; Bondu, F; Bonelli, L; Bork, R; Boschi, V; Bose, S; Bosi, L; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Brand, J F J van den; Brau, J E; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Van Den Broeck, C; Brooks, A F; Brown, D A; Brummit, A; Brunet, G; Bullington, A; Bulten, H J; Buonanno, A; Burmeister, O; Buskulic, D; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campagna, E; Cannizzo, J; Cannon, K C; Canuel, B; Cao, J; Carbognani, F; Cardenas, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Chalkley, E; Charlton, P; Chassande-Mottin, E; Chatterji, S; Chelkowski, S; Chen, Y; Christensen, N; Chung, C T Y; Clark, D; Clark, J; Clayton, J H; Cleva, F; Coccia, E; Cokelaer, T; Colacino, C N; Colas, J; Colla, A; Colombini, M; Conte, R; Cook, D; Corbitt, T R C; Corda, C; Cornish, N; Corsi, A; Coulon, J-P; Coward, D; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Culter, R M; Cumming, A; Cunningham, L; Cuoco, E; Danilishin, S L; D'Antonio, S; Danzmann, K; Dari, A; Dattilo, V; Daudert, B; Davier, M; Davies, G; Daw, E J; Day, R; De Rosa, R; Debra, D; Degallaix, J; Del Prete, M; Dergachev, V; Desai, S; Desalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Paolo Emilio, M; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doomes, E E; Drago, M; Drever, R W P; Dueck, J; Duke, I; Dumas, J-C; Dwyer, J G; Echols, C; Edgar, M; Effler, A; Ehrens, P; Ely, G; Espinoza, E; Etzel, T; Evans, M; Evans, T; Fafone, V; Fairhurst, S; Faltas, Y; Fan, Y; Fazi, D; Fehrmann, H; Ferrante, I; Fidecaro, F; Finn, L S; Fiori, I; Flaminio, R; Flasch, K; Foley, S; Forrest, C; Fotopoulos, N; Fournier, J-D; Franc, J; Franzen, A; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T; Fritschel, P; Frolov, V V; Fyffe, M; Galdi, V; Gammaitoni, L; Garofoli, J A; Garufi, F; Genin, E; Gennai, A; Gholami, I; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Goda, K; Goetz, E; Goggin, L M; González, G; Gorodetsky, M L; Gobler, S; Gouaty, R; Granata, M; Granata, V; Grant, A; Gras, S; Gray, C; Gray, M; Greenhalgh, R J S; Gretarsson, A M; Greverie, C; Grimaldi, F; Grosso, R; Grote, H; Grunewald, S; Guenther, M; Guidi, G; Gustafson, E K; Gustafson, R; Hage, B; Hallam, J M; Hammer, D; Hammond, G D; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Haughian, K; Hayama, K; Heefner, J; Heitmann, H; Hello, P; Heng, I S; Heptonstall, A; Hewitson, M; Hild, S; Hirose, E; Hoak, D; Hodge, K A; Holt, K; Hosken, D J; Hough, J; Hoyland, D; Huet, D; Hughey, B; Huttner, S H; Ingram, D R; Isogai, T; Ito, M; Ivanov, A; Johnson, B; Johnson, W W; Jones, D I; Jones, G; Jones, R; Sancho de la Jordana, L; Ju, L; Kalmus, P; Kalogera, V; Kandhasamy, S; Kanner, J; Kasprzyk, D; Katsavounidis, E; Kawabe, K; Kawamura, S; Kawazoe, F; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khan, R; Khazanov, E; King, P; Kissel, J S; Klimenko, S; Kokeyama, K; Kondrashov, V; Kopparapu, R; Koranda, S; Kozak, D; Krishnan, B; Kumar, R; Kwee, P; La Penna, P; Lam, P K; Landry, M; Lantz, B; Laval, M; Lazzarini, A; Lei, H; Lei, M; Leindecker, N; Leonor, I; Leroy, N; Letendre, N; Li, C; Lin, H; Lindquist, P E; Littenberg, T B; Lockerbie, N A; Lodhia, D; Longo, M; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lu, P; Lubinski, M; Lucianetti, A; Lück, H; Machenschalk, B; Macinnis, M; Mackowski, J-M; Mageswaran, M; Mailand, K; Majorana, E; Man, N; Mandel, I; Mandic, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Markowitz, J; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Marx, J N; Mason, K; Masserot, A; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; McCarthy, R; McClelland, D E; McGuire, S C; McHugh, M; McIntyre, G; McKechan, D J A; McKenzie, K; Mehmet, M; Melatos, A; Melissinos, A C; Mendell, G; Menéndez, D F; Menzinger, F; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Michel, C; Milano, L; Miller, J; Minelli, J; Minenkov, Y; Mino, Y; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Moe, B; Mohan, M; Mohanty, S D; Mohapatra, S R P; Moreau, J; Moreno, G; Morgado, N; Morgia, A; Morioka, T; Mors, K; Mosca, S; Mossavi, K; Mours, B; Mowlowry, C; Mueller, G; Muhammad, D; Mühlen, H Zur; Mukherjee, S; Mukhopadhyay, H; Mullavey, A; Müller-Ebhardt, H; Munch, J; Murray, P G; Myers, E; Myers, J; Nash, T; Nelson, J; Neri, I; Newton, G; Nishizawa, A; Nocera, F; Numata, K; Ochsner, E; O'Dell, J; Ogin, G H; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pagliaroli, G; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Parameshwaraiah, V; Pardi, S; Pasqualetti, A; Passaquieti, R; Passuello, D; Patel, P; Pedraza, M; Penn, S; Perreca, A; Persichetti, G; Pichot, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Pletsch, H J; Plissi, M V; Poggiani, R; Postiglione, F; Principe, M; Prix, R; Prodi, G A; Prokhorov, L; Punken, O; Punturo, M; Puppo, P; Putten, S van der; Quetschke, V; Raab, F J; Rabaste, O; Rabeling, D S; Radkins, H; Raffai, P; Raics, Z; Rainer, N; Rakhmanov, M; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Rehbein, H; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Rivera, B; Roberts, P; Robertson, N A; Robinet, F; Robinson, C; Robinson, E L; Rocchi, A; Roddy, S; Rolland, L; Rollins, J; Romano, J D; Romano, R; Romie, J H; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Russell, P; Ryan, K; Sakata, S; Salemi, F; Sandberg, V; Sannibale, V; Santamaría, L; Saraf, S; Sarin, P; Sassolas, B; Sathyaprakash, B S; Sato, S; Satterthwaite, M; Saulson, P R; Savage, R; Savov, P; Scanlan, M; Schilling, R; Schnabel, R; Schofield, R; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Searle, A C; Sears, B; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shapiro, B; Shawhan, P; Shoemaker, D H; Sibley, A; Siemens, X; Sigg, D; Sinha, S; Sintes, A M; Slagmolen, B J J; Slutsky, J; van der Sluys, M V; Smith, J R; Smith, M R; Smith, N D; Somiya, K; Sorazu, B; Stein, A; Stein, L C; Steplewski, S; Stochino, A; Stone, R; Strain, K A; Strigin, S; Stroeer, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, K-X; Sung, M; Sutton, P J; Swinkels, B L; Szokoly, G P; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, J R; Taylor, R; Terenzi, R; Thacker, J; Thorne, K A; Thorne, K S; Thüring, A; Tokmakov, K V; Toncelli, A; Tonelli, M; Torres, C; Torrie, C; Tournefier, E; Travasso, F; Traylor, G; Trias, M; Trummer, J; Ugolini, D; Ulmen, J; Urbanek, K; Vahlbruch, H; Vajente, G; Vallisneri, M; Vass, S; Vaulin, R; Vavoulidis, M; Vecchio, A; Vedovato, G; van Veggel, A A; Veitch, J; Veitch, P; Veltkamp, C; Verkindt, D; Vetrano, F; Viceré, A; Villar, A; Vinet, J-Y; Vocca, H; Vorvick, C; Vyachanin, S P; Waldman, S J; Wallace, L; Ward, H; Ward, R L; Was, M; Weidner, A; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wen, S; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Wilkinson, C; Willems, P A; Williams, H R; Williams, L; Willke, B; Wilmut, I; Winkelmann, L; Winkler, W; Wipf, C C; Wiseman, A G; Woan, G; Wooley, R; Worden, J; Wu, W; Yakushin, I; Yamamoto, H; Yan, Z; Yoshida, S; Yvert, M; Zanolin, M; Zhang, J; Zhang, L; Zhao, C; Zotov, N; Zucker, M E; Zweizig, J

    2009-08-20

    A stochastic background of gravitational waves is expected to arise from a superposition of a large number of unresolved gravitational-wave sources of astrophysical and cosmological origin. It should carry unique signatures from the earliest epochs in the evolution of the Universe, inaccessible to standard astrophysical observations. Direct measurements of the amplitude of this background are therefore of fundamental importance for understanding the evolution of the Universe when it was younger than one minute. Here we report limits on the amplitude of the stochastic gravitational-wave background using the data from a two-year science run of the Laser Interferometer Gravitational-wave Observatory (LIGO). Our result constrains the energy density of the stochastic gravitational-wave background normalized by the critical energy density of the Universe, in the frequency band around 100 Hz, to be <6.9 x 10(-6) at 95% confidence. The data rule out models of early Universe evolution with relatively large equation-of-state parameter, as well as cosmic (super)string models with relatively small string tension that are favoured in some string theory models. This search for the stochastic background improves on the indirect limits from Big Bang nucleosynthesis and cosmic microwave background at 100 Hz.

  1. Addiction research centres and the nurturing of creativity. University of Michigan Addiction Research Center (UMARC): development, evolution, and direction.

    PubMed

    Zucker, Robert A

    2010-06-01

    A historical summary is provided of the evolution of the University of Michigan Addiction Research Center (UMARC) since its origins in 1988. Begun as an National Institutes of Health (NIH) research center within a Department of Psychiatry and focused solely upon alcohol and aging, early work emphasized treatment efficacy, differential outcome studies and characterization of the neurophysiological and behavioral manifestations of chronic alcoholism. Over the last 15 years, UMARC has extended its research focus along a number of dimensions: its developmental reach has been extended etiologically by studies of risk early in the life span, and by way of work on earlier screening and the development of early, brief treatment interventions. The addiction focus has expanded to include other drugs of abuse. Levels of analysis have also broadened, with work on the molecular genetics and brain neurophysiology underlying addictive processes, on one hand, and examination of the role of the social environment in long-term course of disorder on the other hand. Activities have been facilitated by several research training programs and by collaborative relationships with other universities around the United States and in Poland. Since 2002, a program for research infrastructure development and collaboration has been ongoing, initially with Poland and more recently with Ukraine, Latvia and Slovakia. A blueprint for the future includes expanded characterization of the neurobiology and genetics of addictive processes, the developmental environment, as well as programmatic work to address the public health implications of our ability to identify risk for disorder very early in life.

  2. Addiction research centres and the nurturing of creativity: University of Michigan Addiction Research Center (UMARC): Development, Evolution, and Direction

    PubMed Central

    Zucker, Robert A.

    2010-01-01

    A historical summary is provided of the evolution of the University of Michigan Addiction Research Center (UMARC) since its origins in 1988. Begun as an NIH research center within a Department of Psychiatry and focused solely on alcohol and aging, early work emphasized treatment efficacy, differential outcome studies, and characterization of the neurophysiological and behavioral manifestations of chronic alcoholism. Over the last fifteen years, UMARC has extended its research focus along a number of dimensions: Its developmental reach has been extended etiologically by studies of risk early in the life span, and by way of work on earlier screening and the development of early, brief treatment interventions. The addiction focus has expanded to include other drugs of abuse. Levels of analysis have also broadened, with work on the molecular genetics and brain neurophysiology underlying addictive processes on the one hand, and examination of the role of the social environment in long term course of disorder on the other. Activities have been facilitated by several research training programs and by collaborative relationships with other universities around the United States and in Poland. Since 2002, a program for research infrastructure development and collaboration has been carried on, initially with Poland and more recently with Ukraine, Latvia, and Slovakia. A blueprint for the future includes expanded characterization of the neurobiology and genetics of addictive processes, the developmental environment, as well as programmatic work to address the public health implications of our ability to identify risk for disorder very early in life. PMID:20331547

  3. Innovation in Course Design

    ERIC Educational Resources Information Center

    Knipe, Sally

    2016-01-01

    Initial teacher education programs offered at Australian universities tend to qualify graduates to teach in the age-related contexts of early childhood/primary or secondary, a model that has reflected the organisational evolution of schools. Greater flexibility is required in the design of teacher preparation courses in order to produce graduates…

  4. Nonlinear viscosity in brane-world cosmology with a Gauss–Bonnet term

    NASA Astrophysics Data System (ADS)

    Debnath, P. S.; Beesham, A.; Paul, B. C.

    2018-06-01

    Cosmological solutions are obtained with nonlinear bulk viscous cosmological fluid in the Randall–Sundrum type II (RS) brane-world model with or without Gauss–Bonnet (GB) terms. To describe such a viscous fluid, we consider the nonlinear transport equation which may be used far from equilibrium during inflation or reheating. Cosmological models are explored for both (i) power law and (ii) exponential evolution of the early universe in the presence of an imperfect fluid described by the non-linear Israel and Stewart theory (nIS). We obtain analytic solutions and the complex field equations are also analyzed numerically to study the evolution of the universe. The stability analysis of the equilibrium points of the dynamical system associated with the evolution of the nonlinear bulk viscous fluid in the RS Brane in the presence (or absence) of a GB term are also studied.

  5. Evolution and dynamics of a matter creation model

    NASA Astrophysics Data System (ADS)

    Pan, S.; de Haro, J.; Paliathanasis, A.; Slagter, R. J.

    2016-08-01

    In a flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry, we consider the expansion of the universe powered by the gravitationally induced `adiabatic' matter creation. To demonstrate how matter creation works well with the expanding universe, we have considered a general creation rate and analysed this rate in the framework of dynamical analysis. The dynamical analysis hints the presence of a non-singular universe (without the big bang singularity) with two successive accelerated phases, one at the very early phase of the universe (I.e. inflation), and the other one describes the current accelerating universe, where this early, late accelerated phases are associated with an unstable fixed point (I.e. repeller) and a stable fixed point (attractor), respectively. We have described this phenomena by analytic solutions of the Hubble function and the scale factor of the FLRW universe. Using Jacobi last multiplier method, we have found a Lagrangian for this matter creation rate describing this scenario of the universe. To match with our early physics results, we introduce an equivalent dynamics driven by a single scalar field, discuss the associated observable parameters and compare them with the latest Planck data sets. Finally, introducing the teleparallel modified gravity, we have established an equivalent gravitational theory in the framework of matter creation.

  6. Cosmic Evolution: The History of an Idea

    NASA Astrophysics Data System (ADS)

    Dick, S. J.

    2004-12-01

    Cosmic evolution has become the conceptual framework within which modern astronomy is undertaken, and is the guiding principle of major NASA programs such as Origins and Astrobiology. While there are 19th- and early 20th century antecedents, as in the work of Robert Chambers, Herbert Spencer and Lawrence Henderson, it was only at mid-20th century that full-blown cosmic evolution began to be articulated and accepted as a research paradigm extending from the Big Bang to life, intelligence and the evolution of culture. Harlow Shapley was particularly important in spreading the idea to the public in the 1950s, and NASA embraced the idea in the 1970s as part of its SETI program and later its exobiology and astrobiology programs. Eric Chaisson, Carl Sagan and others were early proponents of cosmic evolution, and it continues to be elaborated in ever more subtle form as a research program and a philosophy. It has even been termed "Genesis for the 21st century." This paper documents the origin and development of the idea and offers a glimpse of where it could lead if cultural evolution is taken seriously, possibly leading to the concept of a postbiological universe.

  7. Oxygen and hydrogen peroxide in the early evolution of life on earth: in silico comparative analysis of biochemical pathways.

    PubMed

    Slesak, Ireneusz; Slesak, Halina; Kruk, Jerzy

    2012-08-01

    In the Universe, oxygen is the third most widespread element, while on Earth it is the most abundant one. Moreover, oxygen is a major constituent of all biopolymers fundamental to living organisms. Besides O(2), reactive oxygen species (ROS), among them hydrogen peroxide (H(2)O(2)), are also important reactants in the present aerobic metabolism. According to a widely accepted hypothesis, aerobic metabolism and many other reactions/pathways involving O(2) appeared after the evolution of oxygenic photosynthesis. In this study, the hypothesis was formulated that the Last Universal Common Ancestor (LUCA) was at least able to tolerate O(2) and detoxify ROS in a primordial environment. A comparative analysis was carried out of a number of the O(2)-and H(2)O(2)-involving metabolic reactions that occur in strict anaerobes, facultative anaerobes, and aerobes. The results indicate that the most likely LUCA possessed O(2)-and H(2)O(2)-involving pathways, mainly reactions to remove ROS, and had, at least in part, the components of aerobic respiration. Based on this, the presence of a low, but significant, quantity of H(2)O(2) and O(2) should be taken into account in theoretical models of the early Archean atmosphere and oceans and the evolution of life. It is suggested that the early metabolism involving O(2)/H(2)O(2) was a key adaptation of LUCA to already existing weakly oxic zones in Earth's primordial environment.

  8. Deuterium Abundance in Consciousness and Current Cosmology

    NASA Astrophysics Data System (ADS)

    Rauscher, Elizabeth A.

    We utilize the deuterium-hydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K and missing mass is made. We first examine the Schwarzschild condition; second, the geometrical constraints of a multidimensional Cartesian space on closed cosmologies, and third we will consider the cosmogenesis and evolution of the universe in a multidimensional Cartesian space, obeying the Schwarzschild condition. Implications of this model for matter creation are made. We also examine experimental evidence for closed versus open cosmologies; x-ray detection of the "missing mass" density. Also the interstellar deuterium abundance, along with the value of the Hubble constant set a general criterion on the value of the curvature constant, k. Once the value of the Hubble constant, H is determined, the deuterium abundance sets stringent restrictions on the value of the curvature constant k by an detailed discussion is presented. The experimental evidences for the determination of H and the primary set of coupled equations to determine D abundance is given. 'The value of k for an open, closed, or flat universe will be discussed in terms of the D abundance which will affect the interpretation of the Schwarzschild, black hole universe. We determine cosmology solutions to Einstein's field obeying the Schwarzschild solutions condition. With this model, we can form a reconciliation of the black hole, from galactic to cosmological scale. Continuous creation occurs at the dynamic blackhole plasma field. We term this new model the multiple big bang or "little whimper model". We utilize the deuteriumhydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K background and missing mass is made.

  9. From "Conflict" to "Constitutional Question": Transformations in Early American Public Discourse.

    ERIC Educational Resources Information Center

    Zarefsky, David; Gallagher, Victoria J.

    1990-01-01

    Suggests that the United States Constitution contains nearly universal concepts but also ambiguities which trigger conflicts. Describes the evolution of the document through its framing and through controversy surrounding the Alien and Sedition Acts, state nullification of federal action, and secession. Concludes that the Constitution provides a…

  10. Improving Functional Outcomes in College and University Students with Schizophrenia in the Western World

    ERIC Educational Resources Information Center

    Christianson, Laura

    2018-01-01

    Retrospective research from patients with schizophrenia suggests that remission becomes increasingly less likely the longer psychosis goes untreated. Yet symptoms of schizophrenia are insidious and disease evolution varies between patients, requiring an ongoing diagnostic process. One way of justifying early treatment is by focusing on…

  11. The Universe at Infrared and Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Dwek, E.; Arendt, R. G.; Benford, D. J.; Mather, J. C.; Moseley, S. H.; Shafer, R. A.; Staguhn, J.

    2004-01-01

    Far infrared and submillimeter surveys offer unique information on the early stages of galaxy formation and evolution, and the cosmic history of star formation and metal enrichment. This paper presents various model results that can be used in the interpretation of far-IR and submm surveys with different diameter telescopes.

  12. Toward the Darwinian transition: Switching between distributed and speciated states in a simple model of early life.

    PubMed

    Arnoldt, Hinrich; Strogatz, Steven H; Timme, Marc

    2015-01-01

    It has been hypothesized that in the era just before the last universal common ancestor emerged, life on earth was fundamentally collective. Ancient life forms shared their genetic material freely through massive horizontal gene transfer (HGT). At a certain point, however, life made a transition to the modern era of individuality and vertical descent. Here we present a minimal model for stochastic processes potentially contributing to this hypothesized "Darwinian transition." The model suggests that HGT-dominated dynamics may have been intermittently interrupted by selection-driven processes during which genotypes became fitter and decreased their inclination toward HGT. Stochastic switching in the population dynamics with three-point (hypernetwork) interactions may have destabilized the HGT-dominated collective state and essentially contributed to the emergence of vertical descent and the first well-defined species in early evolution. A systematic nonlinear analysis of the stochastic model dynamics covering key features of evolutionary processes (such as selection, mutation, drift and HGT) supports this view. Our findings thus suggest a viable direction out of early collective evolution, potentially enabling the start of individuality and vertical Darwinian evolution.

  13. Nearby Newborns

    NASA Image and Video Library

    2004-12-21

    This image shows six of the three-dozen "ultraviolet luminous galaxies" spotted in our corner of the universe by NASA's Galaxy Evolution Explorer. These massive galaxies greatly resemble newborn galaxies that were common in the early universe. The discovery came as a surprise, because astronomers had thought that the universe's "birth-rate" had declined, and that massive galaxies were no longer forming. The galaxies, located in the center of each panel, were discovered after the Galaxy Evolution Explorer scanned a large portion of the sky with its highly sensitive ultraviolet-light detectors. Because young stars pack most of their light into ultraviolet wavelengths, young galaxies appear to the Galaxy Evolution Explorer like diamonds in a field of stones. Astronomers mined for these rare "gems" before, but missed them because they weren't able to examine a large enough slice of the sky. The Galaxy Evolution Explorer surveyed thousands of nearby galaxies before finding three-dozen newborns. While still relatively close in astronomical terms, these galaxies are far enough away to appear small to the Galaxy Evolution Explorer. Clockwise beginning from the upper left, they are called: GALEX_J232539.24+004507.1, GALEX_J231812.98-004126.1, GALEX_J015028.39+130858.5, GALEX_J021348.52+125951.3, GALEX_J143417.15+020742.5, GALEX_J020354.02-092452.5. http://photojournal.jpl.nasa.gov/catalog/PIA07143

  14. Was there an early reionization component in our universe?

    DOE PAGES

    Villanueva-Domingo, Pablo; Gariazzo, Stefano; Gnedin, Nickolay Y.; ...

    2018-04-06

    A deep understanding of the Epoch of Reionization is still missing in our knowledge of the universe. While future probes will allow us to test the precise evolution of the free electron fraction from redshifts betweenmore » $$z\\simeq 6$$ and $$z\\simeq 20$$, at present one could ask what kind of reionization processes are allowed by present Cosmic Microwave Background temperature and polarization measurements. An early contribution to reionization could imply a departure from the standard picture where star formation determines the reionization onset. BBy considering a broad class of possible reionization parameterizations, we find that current data do not require an early reionization component in our universe and that only one marginal class of models, based on a particular realization of reionization, may point to that. In addition, the frequentist Akaike Information Criterion (AIC) provides strong evidence against alternative reionization histories, favoring the most simple reionization scenario, which describes reionization by means of only one (constant) reionization optical depth $$\\tau$$.« less

  15. Was there an early reionization component in our universe?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villanueva-Domingo, Pablo; Gariazzo, Stefano; Gnedin, Nickolay Y.

    A deep understanding of the Epoch of Reionization is still missing in our knowledge of the universe. While future probes will allow us to test the precise evolution of the free electron fraction from redshifts betweenmore » $$z\\simeq 6$$ and $$z\\simeq 20$$, at present one could ask what kind of reionization processes are allowed by present Cosmic Microwave Background temperature and polarization measurements. An early contribution to reionization could imply a departure from the standard picture where star formation determines the reionization onset. BBy considering a broad class of possible reionization parameterizations, we find that current data do not require an early reionization component in our universe and that only one marginal class of models, based on a particular realization of reionization, may point to that. In addition, the frequentist Akaike Information Criterion (AIC) provides strong evidence against alternative reionization histories, favoring the most simple reionization scenario, which describes reionization by means of only one (constant) reionization optical depth $$\\tau$$.« less

  16. Was there an early reionization component in our universe?

    NASA Astrophysics Data System (ADS)

    Villanueva-Domingo, Pablo; Gariazzo, Stefano; Gnedin, Nickolay Y.; Mena, Olga

    2018-04-01

    A deep understanding of the epoch of reionization is still missing in our knowledge of the universe. While future probes will allow us to test the precise evolution of the free electron fraction from redshifts between zsimeq 6 and 0zsimeq 2, at present one could ask what kind of reionization processes are allowed by present cosmic microwave background temperature and polarization measurements. An early contribution to reionization could imply a departure from the standard picture where star formation determines the reionization onset. By considering a broad class of possible reionization parameterizations, we find that current data do not require an early reionization component in our universe and that only one marginal class of models, based on a particular realization of reionization, may point to that. In addition, the frequentist Akaike information criterion (AIC) provides strong evidence against alternative reionization histories, favoring the most simple reionization scenario, which describes reionization by means of only one (constant) reionization optical depth τ.

  17. The nucleosynthetic origins and chemical evolution of phosphorus in the early universe

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2013-10-01

    Relatively little is known about the chemical evolution of the element phosphorus, despite its relatively large abundance in the Sun and its importance for biological life. The goal of this archive proposal is to establish the chemical evolution trend of phosphorus, extending our knowledge from solar metallicity to stars with less than 1/1000th the solar metallicity.Previous studies have used weak near-infrared P I lines to establish phosphorus abundance trends from -1.0 < [Fe/H] < 0. We have identified a strong P I doublet in the UV at 2136 Angstroms, which is present in the spectra of 22 stars available in the HST archives. Our study will {1} improve on the limited observations of the abundance trend at high metallicity and extend it to metallicities lower by 2 dex and {2} determine whether [P/Fe] flattens out towards lower metallicities {like the alpha-elements Mg, Si, Ca, and Ti} or whether it continues to increase {like Co and Zn}. Our results will provide the first tight constraints on the nucleosynthesis of phosphorus and its production sites in the early Universe.We request one semester of funding to support a graduate student to lead the spectral analysis work, one month of summer salary, and miscellaneous travel and publication costs.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; Hsin, Po-Shen; Niu, Yuezhen, E-mail: pisinchen@phys.ntu.edu.tw, E-mail: r01222031@ntu.edu.tw, E-mail: yuezhenniu@gmail.com

    We investigate the entropy evolution in the early universe by computing the change of the entanglement entropy in Freedmann-Robertson-Walker quantum cosmology in the presence of particle horizon. The matter is modeled by a Chaplygin gas so as to provide a smooth interpolation between inflationary and radiation epochs, rendering the evolution of entropy from early time to late time trackable. We found that soon after the onset of the inflation, the total entanglement entropy rapidly decreases to a minimum. It then rises monotonically in the remainder of the inflation epoch as well as the radiation epoch. Our result is in qualitativemore » agreement with the area law of Ryu and Takayanagi including the logarithmic correction. We comment on the possible implication of our finding to the cosmological entropy problem.« less

  19. Question 7: Comparative Genomics and Early Cell Evolution: A Cautionary Methodological Note

    NASA Astrophysics Data System (ADS)

    Islas, Sara; Hernández-Morales, Ricardo; Lazcano, Antonio

    2007-10-01

    Inventories of the gene content of the last common ancestor (LCA), i.e., the cenancestor, include sequences that may have undergone horizontal transfer events, as well as sequences that have originated in different pre-cenancestral epochs. However, the universal distribution of highly conserved genes involved in RNA metabolism provide insights into early stages of cell evolution during which RNA played a much more conspicuous biological role, and is consistent with the hypothesis that extant living systems were preceded by an RNA/protein world. Insights into the traits of primitive entities from which the LCA evolved may be derived from the analysis of paralogous gene families, including those formed by sequences that resulted from internal elongation events. Three major types of paralogous gene families can be recognized. The importance of this grouping for understanding the traits of early cells is discussed.

  20. The origin and early evolution of life on earth

    NASA Technical Reports Server (NTRS)

    Oro, J.; Miller, Stanley L.; Lazcano, Antonio

    1990-01-01

    Results of the studies that have provided insights into the cosmic and primitive earth environments are reviewed with emphasis on those environments in which life is thought to have originated. The evidence bearing on the antiquity of life on the earth and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar-system bodies such as comets, dark asteroids, and carbonaceous chondrites are assessed. The environmental models of the Hadean and early Archean earth are discussed, as well as the prebiotic formation of organic monomers and polymers essential to life. The processes that may have led to the appearance in the Archean of the first cells are considered, and possible effects of these processes on the early steps of biological evolution are analyzed. The significance of these results to the study of the distribution of life in the universe is evaluated.

  1. Cosmological backreaction within the Szekeres model and emergence of spatial curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolejko, Krzysztof, E-mail: krzysztof.bolejko@sydney.edu.au

    This paper discusses the phenomenon of backreaction within the Szekeres model. Cosmological backreaction describes how the mean global evolution of the Universe deviates from the Friedmannian evolution. The analysis is based on models of a single cosmological environment and the global ensemble of the Szekeres models (of the Swiss-Cheese-type and Styrofoam-type). The obtained results show that non-linear growth of cosmic structures is associated with the growth of the spatial curvature Ω{sub R} (in the FLRW limit Ω{sub R} → Ω {sub k} ). If averaged over global scales the result depends on the assumed global model of the Universe. Withinmore » the Swiss-Cheese model, which does have a fixed background, the volume average follows the evolution of the background, and the global spatial curvature averages out to zero (the background model is the ΛCDM model, which is spatially flat). In the Styrofoam-type model, which does not have a fixed background, the mean evolution deviates from the spatially flat ΛCDM model, and the mean spatial curvature evolves from Ω{sub R} =0 at the CMB to Ω{sub R} ∼ 0.1 at 0 z =. If the Styrofoam-type model correctly captures evolutionary features of the real Universe then one should expect that in our Universe, the spatial curvature should build up (local growth of cosmic structures) and its mean global average should deviate from zero (backreaction). As a result, this paper predicts that the low-redshift Universe should not be spatially flat (i.e. Ω {sub k} ≠ 0, even if in the early Universe Ω {sub k} = 0) and therefore when analysing low- z cosmological data one should keep Ω {sub k} as a free parameter and independent from the CMB constraints.« less

  2. Cosmological backreaction within the Szekeres model and emergence of spatial curvature

    NASA Astrophysics Data System (ADS)

    Bolejko, Krzysztof

    2017-06-01

    This paper discusses the phenomenon of backreaction within the Szekeres model. Cosmological backreaction describes how the mean global evolution of the Universe deviates from the Friedmannian evolution. The analysis is based on models of a single cosmological environment and the global ensemble of the Szekeres models (of the Swiss-Cheese-type and Styrofoam-type). The obtained results show that non-linear growth of cosmic structures is associated with the growth of the spatial curvature ΩScript R (in the FLRW limit ΩScript R → Ωk). If averaged over global scales the result depends on the assumed global model of the Universe. Within the Swiss-Cheese model, which does have a fixed background, the volume average follows the evolution of the background, and the global spatial curvature averages out to zero (the background model is the ΛCDM model, which is spatially flat). In the Styrofoam-type model, which does not have a fixed background, the mean evolution deviates from the spatially flat ΛCDM model, and the mean spatial curvature evolves from ΩScript R =0 at the CMB to ΩScript R ~ 0.1 at 0z =. If the Styrofoam-type model correctly captures evolutionary features of the real Universe then one should expect that in our Universe, the spatial curvature should build up (local growth of cosmic structures) and its mean global average should deviate from zero (backreaction). As a result, this paper predicts that the low-redshift Universe should not be spatially flat (i.e. Ωk ≠ 0, even if in the early Universe Ωk = 0) and therefore when analysing low-z cosmological data one should keep Ωk as a free parameter and independent from the CMB constraints.

  3. Some Historical Thoughts on the ee-Learning Renaissance

    ERIC Educational Resources Information Center

    Nilles, Jack M.

    2007-01-01

    Jack Nilles surveys the evolution of ee-learning at the University of Southern California, together with the first formal telecommuting demonstration program, from its beginnings in the early 1970s to the relevant trends in 2006. Although the basic technologies of telecommuting and ee-learning were in evidence in the 1970s, subsequent…

  4. The Early Universe: Searching for Evidence of Cosmic Inflation

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2012-01-01

    In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as "inflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.

  5. Leaf evolution in early-diverging ferns: insights from a new fern-like plant from the Late Devonian of China.

    PubMed

    Wang, De-Ming; Xu, Hong-He; Xue, Jin-Zhuang; Wang, Qi; Liu, Le

    2015-06-01

    With the exception of angiosperms, the main euphyllophyte lineages (i.e. ferns sensu lato, progymnosperms and gymnosperms) had evolved laminate leaves by the Late Devonian. The evolution of laminate leaves, however, remains unclear for early-diverging ferns, largely represented by fern-like plants. This study presents a novel fern-like taxon with pinnules, which provides new insights into the early evolution of laminate leaves in early-diverging ferns. Macrofossil specimens were collected from the Upper Devonian (Famennian) Wutong Formation of Anhui and Jiangsu Provinces, South China. A standard degagement technique was employed to uncover compressed plant portions within the rock matrix. A new fern-like taxon, SHOUGANGIA BELLA GEN ET SP NOV: , is described and represents an early-diverging fern with highly derived features. It has a partially creeping stem with adventitious roots only on one side, upright primary and secondary branches arranged in helices, tertiary branches borne alternately or (sub)oppositely, laminate and usually lobed leaves with divergent veins, and complex fertile organs terminating tertiary branches and possessing multiple divisions and numerous terminal sporangia. Shougangia bella provides unequivocal fossil evidence for laminate leaves in early-diverging ferns. It suggests that fern-like plants, along with other euphyllophyte lineages, had independently evolved megaphylls by the Late Devonian, possibly in response to a significant decline in atmospheric CO2 concentration. Among fern-like plants, planate ultimate appendages are homologous with laminate pinnules, and in the evolution of megaphylls, fertile organs tend to become complex. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Conceptual Ecology of the Evolution Acceptance among Greek Education Students: Knowledge, religious practices and social influences

    NASA Astrophysics Data System (ADS)

    Athanasiou, Kyriacos; Papadopoulou, Penelope

    2012-04-01

    In this study, we explored some of the factors related to the acceptance of evolution theory among Greek university students training to be teachers in early childhood education, using conceptual ecology for biological evolution as a theoretical framework. We examined the acceptance of evolution theory and we also looked into the relationship between the acceptance and parents' education level, thinking dispositions and frequency of religious practice as independent variables. Students' moderate acceptance of evolution theory is positively correlated with the frequency of religious practices and thinking dispositions. Our findings indicate that studying a controversial issue such as the acceptance of evolution theory in a multivariate fashion, using conceptual ecology as a theoretical lens to interpret the findings, is informative. They also indicate the differences that exist between societies and how socio-cultural factors such as the nature of religion, as part of the conceptual ecology, influence acceptance of evolution and have an influence on evolution education.

  7. Evolution of hydromagnetic turbulence from the electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Kahniashvili, Tina; Mandal, Sayan; Pol, Alberto Roper; Tevzadze, Alexander G.; Vachaspati, Tanmay

    2017-12-01

    We present new simulations of decaying hydromagnetic turbulence for a relativistic equation of state relevant to the early Universe. We compare helical and nonhelical cases either with kinetically or magnetically dominated initial fields. Both kinetic and magnetic initial helicities lead to maximally helical magnetic fields after some time, but with different temporal decay laws. Both are relevant to the early Universe, although no mechanisms have yet been identified that produce magnetic helicity with strengths comparable to the big bang nucleosynthesis limit at scales comparable to the Hubble horizon at the electroweak phase transition. Nonhelical magnetically dominated fields could still produce picoGauss magnetic fields under most optimistic conditions. Only helical magnetic fields can potentially have nanoGauss strengths at scales up to 30 kpc today.

  8. Exploring the Early Universe on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Kocevski, Dale; McGrath, E. J.; CANDELS Collaboration

    2014-01-01

    The widespread adoption of smart phones and tablet computers has the potential to revolutionize the way in which educational material is shared with the general public. As part of the outreach effort for the CANDELS survey, we have developed a free interactive astronomy education application named Hubble Universe for iPad and iPhone devices. The application focuses on extragalactic science topics related to the CANDELS legacy survey, which is documenting galaxy evolution in the early universe. I will provide an overview of the application, which contains a wide range of interactive content, including 3D models of astrophysical phenomenon, informative diagrams and computer simulations. I will discuss how the application can be used to enhance classroom learning both by providing a database of interactive media and by encouraging students to explore astronomical topics away from traditional settings like the classroom or the desktop computer.

  9. How life began.

    PubMed

    Cloud, P

    1986-11-01

    Study of the origin of life has become a legitimate scientific inquiry, with an international, multidisciplinary membership and a cogent body of data. Experiments involving plausible early Earth conditions and biogeochemical analyses of carbonaceous meteorites imply a variety of available starting molecules. Biogeological evidence indicates microbial beginnings about 3800 million years (3.8 aeons) ago. By then the known universe had been in existence for perhaps 15 aeons and galaxies abundant for ten. Conditions suitable for the origin of life may require a long prior cosmic evolution. The natural origin of life on the early Earth is now widely agreed upon but not the pathways. The beginnings of catalysis, replication and a functional cell remain moot. Much discussion has centered on the templating role that crystals such as clays and zeolites might have played in prebiotic evolution. Recent discovery of the catalytic and replicative functions of RNA recommend it as the key molecule in the transition from chemical to biological evolution. Copyright © 1986. Published by Elsevier Ltd.

  10. Snapshot Survey of the Globular Cluster Populations of Isolated Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Gregg, Michael

    2017-08-01

    We propose WFC3/UVIS snapshot observations of a sample of 75 isolated early type galaxiesresiding in cosmic voids or extremely low density regions. The primary aim is to usetheir globular cluster populations to reconstruct their evolutionary history, revealingif, how, and why void ellipticals differ from cluster ellipticals. The galaxies span arange of luminosities, providing a varied sample for comparison with the well-documentedglobular cluster populations in denser environments. This proposed WFC3 study of isolatedearly type galaxies breaks new ground by targeting a sample which has thus far receivedlittle attention, and, significantly, this will be the first such study with HST.Characterizing early type galaxies in voids and their GC systems promises to increase ourunderstanding of galaxy formation and evolution of galaxies in general because isolatedobjects are the best approximation to a control sample that we have for understanding theinfluence of environment on formation and evolution. Whether these isolated objects turnout to be identical to or distinct from counterparts in other regions of the Universe,they will supply insight into the formation and evolution of all galaxies. Parallel ACSimaging will help to characterize the near field environments of the sample.

  11. Before Head Start: The Iowa Station and America's Children.

    ERIC Educational Resources Information Center

    Cravens, Hamilton

    This book chronicles the evolution of the child welfare movement of the early 20th century into the science of child development, from both the national perspective and the perspective of the field's best-known research center, the University of Iowa's Child Welfare Research Station. The book first explores the child welfare movement as it evolved…

  12. Careers and people

    NASA Astrophysics Data System (ADS)

    2016-12-01

    The 2016 Paolo Farinella Prize has been awarded to Greek physicist Kleomenis Tsiganis at the Aristotle University of Thessaloniki, for his work on the applications of celestial mechanics to the dynamics of planetary systems, including the development of the “Nice model”, which describes the migrations of Jupiter, Saturn, Uranus and Neptune during the early phases of the solar system's evolution.

  13. The Transient High Energy Sky and Early Universe Surveyor (THESEUS)

    NASA Astrophysics Data System (ADS)

    Amati, Lorenzo; O'Brien, Paul T.; Götz, Diego

    2016-07-01

    The Transient High Energy Sky and Early Universe Surveyor (THESEUS) is a mission concept under development by a large international collaboration aimed at exploiting gamma-ray bursts for investigating the early Universe. The main scientific objectives of THESEUS include: investigating the star formation rate and metallicity evolution of the ISM and IGM up to redshift 9-10, detecting the first generation (pop III) of stars, studying the sources and physics of re-ionization, detecting the faint end of galaxies luminosity function. These goals will be achieved through a unique combination of instruments allowing GRB detection and arcmin localization over a broad FOV (more than 1sr) and an energy band extending from several MeVs down to 0.3 keV with unprecedented sensitivity, as well as on-board prompt (few minutes) follow-up with a 0.6m class IR telescope with both imaging and spectroscopic capabilities. Such instrumentation will also allow THESEUS to unveil and study the population of soft and sub-energetic GRBs, and, more in general, to perform monitoring and survey of the X-ray sky with unprecedented sensitivity.

  14. Dark stars: a review.

    PubMed

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  15. Dark stars: a review

    NASA Astrophysics Data System (ADS)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures  ˜10 000 K) objects. We follow the evolution of dark stars from their inception at  ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >{{10}6}{{M}⊙} and luminosities  >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  16. CXBN-2 CubeSat Integration Team in the Morehead State University Spacecraft Integration and Assembly Facility

    NASA Image and Video Library

    2016-11-09

    CXBN-2 Integration Team in the Morehead State University Spacecraft Integration and Assembly Facility. Left to right: Kein Dant, Yevgeniy Byleborodov, and Nate Richard. The Cosmic X-Ray Background NanoSat-2 (CXBN-2) CubeSat Mission developed by Morehead State University and its partners the Keldysh Institute (Moscow, Russia), the Maysville Community and Technical College (Morehead, KY) and KYSpace LLC (Lexington, KY) will increase the precision of measurements of the Cosmic X-Ray Background in the 30-50 keV range to a precision of <5%, thereby constraining models that attempt to explain the relative contribution of proposed sources lending insight into the underlying physics of the early universe. The mission addresses a fundamental science question that is central to our understanding of the structure, origin, and evolution of the universe by potentially lending insight into both the high-energy background radiation and into the evolution of primordial galaxies. Launched by NASA’s CubeSat Launch Initiative NET April 18, 2017 ELaNa XVII mission on the seventh Orbital-ATK Cygnus Commercial Resupply Services (OA-7) to the International Space Station and deployed on tbd.

  17. Universes without the weak force: Astrophysical processes with stable neutrons

    NASA Astrophysics Data System (ADS)

    Grohs, E.; Howe, Alex R.; Adams, Fred C.

    2018-02-01

    We investigate a class of universes in which the weak interaction is not in operation. We consider how astrophysical processes are altered in the absence of weak forces, including big bang nucleosynthesis (BBN), galaxy formation, molecular cloud assembly, star formation, and stellar evolution. Without weak interactions, neutrons no longer decay, and the universe emerges from its early epochs with a mixture of protons, neutrons, deuterium, and helium. The baryon-to-photon ratio must be smaller than the canonical value in our Universe to allow free nucleons to survive the BBN epoch without being incorporated into heavier nuclei. At later times, the free neutrons readily combine with protons to make deuterium in sufficiently dense parts of the interstellar medium, and provide a power source before they are incorporated into stars. Almost all of the neutrons are incorporated into deuterium nuclei before stars are formed. As a result, stellar evolution proceeds primarily through strong interactions, with deuterium first burning into helium, and then helium fusing into carbon. Low-mass deuterium-burning stars can be long-lived, and higher-mass stars can synthesize the heavier elements necessary for life. Although somewhat different from our own, such universes remain potentially habitable.

  18. CXBN-2 CubeSat – ELaNa XVII

    NASA Image and Video Library

    2016-12-08

    The Cosmic X-Ray Background NanoSat-2 (CXBN-2) CubeSat Mission developed by Morehead State University and its partners the Keldysh Institute (Moscow, Russia), the Maysville Community and Technical College (Morehead, KY) and KYSpace LLC (Lexington, KY) will increase the precision of measurements of the Cosmic X-Ray Background in the 30-50 keV range to a precision of <5%, thereby constraining models that attempt to explain the relative contribution of proposed sources lending insight into the underlying physics of the early universe. The mission addresses a fundamental science question that is central to our understanding of the structure, origin, and evolution of the universe by potentially lending insight into both the high-energy background radiation and into the evolution of primordial galaxies. Launched by NASA’s CubeSat Launch Initiative NET April 18, 2017 ELaNa XVII mission on the seventh Orbital-ATK Cygnus Commercial Resupply Services (OA-7) to the International Space Station and deployed on tbd.

  19. Heavy element synthesis in the oldest stars and the early Universe.

    PubMed

    Cowan, John J; Sneden, Christopher

    2006-04-27

    The first stars in the Universe were probably quite different from those born today. Composed almost entirely of hydrogen and helium (plus a tiny trace of lithium), they lacked the heavier elements that determine the formation and evolution of younger stars. Although we cannot observe the very first stars--they died long ago in supernovae explosions--they created heavy elements that were incorporated into the next generation. Here we describe how observations of heavy elements in the oldest surviving stars in our Galaxy's halo help us understand the nature of the first stars--those responsible for the chemical enrichment of our Galaxy and Universe.

  20. The state of the Universe.

    PubMed

    Coles, Peter

    2005-01-20

    The past 20 years have seen dramatic advances in cosmology, mostly driven by observations from new telescopes and detectors. These instruments have allowed astronomers to map out the large-scale structure of the Universe and probe the very early stages of its evolution. We seem to have established the basic parameters describing the behaviour of our expanding Universe, thereby putting cosmology on a firm empirical footing. But the emerging 'standard' model leaves many details of galaxy formation still to be worked out, and new ideas are emerging that challenge the theoretical framework on which the structure of the Big Bang is based. There is still a great deal left to explore in cosmology.

  1. Remembering John M. Olson (1929-2017).

    PubMed

    Blankenship, Robert E; Brune, Daniel C; Olson, Jon C

    2018-02-19

    Here we provide reflections of and a tribute to John M. Olson, a pioneering researcher in photosynthesis. We trace his career, which began at Wesleyan University and the University of Pennsylvania, and continued at Utrech in The Netherlands, Brookhaven National Laboratory, and Odense University in Denmark. He was the world expert on pigment organization in the green photosynthetic bacteria, and discovered and characterized the first chlorophyll-containing protein, which has come to be known as the Fenna-Matthews-Olson (FMO) protein. He also thought and wrote extensively on the origin and early evolution of photosynthesis. We include personal comments from Brian Matthews, Raymond Cox, Paolo Gerola, Beverly Pierson and Jon Olson.

  2. Harlow Shapley's Biological Universe: Cosmic Evolution and its Uses

    NASA Astrophysics Data System (ADS)

    Palmeri, J.

    2002-12-01

    Harlow Shapley was an astronomer with a lifelong interest in biological questions. An early fascination with ants acquired at Mount Wilson became a continuing avocation. During his years in California, Shapley made frequent trips to La Jolla biological station and interacted with prominent biologists. At Harvard in the 1920s Shapley initiated a series of interdisciplinary seminars, one of which was on "The Origin of Life." At this time he also displayed an interest in the question of life in the universe. In response to an inquiry from Charles Abbot of the Smithsonian, Shapley identified "life in the universe" as one of the most important scientific questions of the day. Shapley's continuing interest in these questions found expression in his many popularizations - articles, books, lectures, and other media. (A decade before Sagan's memorable appearances on the Johnny Carson show, Shapley was engaging in his own dialogue with the American public on life in the universe, through Tonight Show host Jack Paar). Evolution was the idea that underlay Shapley's discussions of these biological themes and the vehicle through which he popularized science as well as his own vision of the wider significance of science for humanity. As an astronomer with a profound interest in biological subjects, Shapley was uniquely positioned to popularize cosmic evolution, and to use this theme to promote his belief that science could serve as a kind of "stellar theology." Shapley's case illustrates how cosmic evolution, like biological evolution, has served as more than a scientific account of nature; it has become an idea invested with moral and cultural significance. Shapley's promotion of cosmic evolution throughout the 1950s and 1960s can be understood against the backdrop of developments in the sciences as well as the historical and personal factors that shaped his career as a spokesman for science. This research was supported by grants from the American Institute of Physics and the National Science Foundation.

  3. Simulations of the formation of large-scale structure

    NASA Astrophysics Data System (ADS)

    White, S. D. M.

    Numerical studies related to the simulation of structure growth are examined. The linear development of fluctuations in the early universe is studied. The research of Aarseth, Gott, and Turner (1979) based on N-body integrators that obtained particle accelerations by direct summation of the forces due to other objects is discussed. Consideration is given to the 'pancake theory' of Zel'dovich (1970) for the evolution from adiabatic initial fluctuation, the neutrino-dominated universe models of White, Frenk, and Davis (1983), and the simulations of Davis et al. (1985).

  4. Universal adhesives: the next evolution in adhesive dentistry?

    PubMed

    Alex, Gary

    2015-01-01

    Every so often a new material, technique, or technological breakthrough spurs a paradigm shift in the way dentistry is practiced. The development and evolution of reliable enamel and dentin bonding agents is one such example. Indeed, the so-called "cosmetic revolution" in dentistry blossomed in large part due to dramatic advances in adhesive technology. It is the ability to bond various materials in a reasonably predictable fashion to both enamel and dentin substrates that enables dentists to routinely place porcelain veneers, direct and indirect composites, and a plethora of other restorative and esthetic materials. In fact, the longevity and predictability of many (if not most) current restorative procedures is wholly predicated on the dentist's ability to bond various materials to tooth tissues. Adhesive systems have progressed from the largely ineffective systems of the 1970s and early 1980s to the relatively successful total- and self-etching systems of today. The latest players in the adhesive marketplace are the so-called "universal adhesives." In theory, these systems have the potential to significantly simplify and expedite adhesive protocols and may indeed represent the next evolution in adhesive dentistry. But what defines a universal system, and are all these new systems truly "universal" and everything they are claimed to be? This article will examine the origin, chemistry, strengths, weaknesses, and clinical relevance of this new genre of dental adhesives.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, L.W.; Krisch, A.D.

    This report contains papers on the following topics: Kent M Terwilliger; Graduate School at Berkeley and Early Years at Michigan, 1949--1959; Terwilliger and the Group'': A Chronicle of MURA; Reflections on the MURA Years; The Evolution of High Energy Accelerators; Some Frontiers of Accelerator Physics; Reflections on the ZGS: Terwilliger's Contributions; Spark Chambers and Early Experiments; Strong Interaction Experiments at the ZGS; Polarized Beams at the ZGS and the AGS; Terwilliger and Spin Physics; Siberian Snakes and Future Polarized Beams; Washington and High Energy Physics; and Terwilliger in the Department and University. These papers have been cataloged separately. (LSP)

  6. A cosmic microwave background feature consistent with a cosmic texture.

    PubMed

    Cruz, M; Turok, N; Vielva, P; Martínez-González, E; Hobson, M

    2007-12-07

    The Cosmic Microwave Background provides our most ancient image of the universe and our best tool for studying its early evolution. Theories of high-energy physics predict the formation of various types of topological defects in the very early universe, including cosmic texture, which would generate hot and cold spots in the Cosmic Microwave Background. We show through a Bayesian statistical analysis that the most prominent 5 degrees -radius cold spot observed in all-sky images, which is otherwise hard to explain, is compatible with having being caused by a texture. From this model, we constrain the fundamental symmetry-breaking energy scale to be (0) approximately 8.7 x 10(15) gigaelectron volts. If confirmed, this detection of a cosmic defect will probe physics at energies exceeding any conceivable terrestrial experiment.

  7. Interworking evolution of mobile satellite and terrestrial networks

    NASA Technical Reports Server (NTRS)

    Matyas, R.; Kelleher, P.; Moller, P.; Jones, T.

    1993-01-01

    There is considerable interest among mobile satellite service providers in interworking with terrestrial networks to provide a universal global network. With such interworking, subscribers may be provided a common set of services such as those planned for the Public Switched Telephone Network (PSTN), the Integrated Services Digital Network (ISDN), and future Intelligent Networks (IN's). This paper first reviews issues in satellite interworking. Next the status and interworking plans of terrestrial mobile communications service providers are examined with early examples of mobile satellite interworking including a discussion of the anticipated evolution towards full interworking between mobile satellite and both fixed and mobile terrestrial networks.

  8. Dependence of evolutionary cooperation on the additive noise to the enhancement level in the spatial public goods game

    NASA Astrophysics Data System (ADS)

    Jia, Chun-Xiao; Liu, Run-Ran; Rong, Zhihai

    2017-03-01

    Either in societies or economic cycles, the benefits of a group can be affected by various unpredictable factors. We study effects of additive spatiotemporal random variations on the evolution of cooperation by introducing them to the enhancement level of the spatial public goods game. Players are located on the sites of a two-dimensional lattice and gain their payoffs from games with their neighbors by choosing cooperation or defection. We observe that a moderate intensity of variations can best favor cooperation at low enhancement levels, which resembles classical coherence resonance. Whereas for high enhancement levels, we find that the random variations cannot increase the cooperation level, but hamper cooperation instead. This discrepancy is attributed to the different roles the additive variations played in the early and late stages of evolution. In the early stage of evolution, the additive variations increase the survival probability of the players with lower average payoffs. However, in the late stage of evolution, the additive variations can promote defectors to destroy the cooperative clusters that have been formed. Our results indicate that additive spatiotemporal noise may not be as universally beneficial for cooperation as the spatial prisoner's dilemma game.

  9. Epigenetics, Darwin, and Lamarck.

    PubMed

    Penny, David

    2015-05-29

    It is not really helpful to consider modern environmental epigenetics as neo-Lamarckian; and there is no evidence that Lamarck considered the idea original to himself. We must all keep learning about inheritance, but attributing modern ideas to early researchers is not helpful, and can be misleading. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Evolution of a Social Media-Driven Campus-Community Partnership: Collaborative Learning at the Knowledge Café

    ERIC Educational Resources Information Center

    Baim, Susan A.

    2017-01-01

    This article describes an early-stage collaborative partnership between a local community foundation and a regional campus of a major university to increase dialogue on the strategic importance and practical execution of advanced social media best practices for small- to medium-sized businesses. Started through a grant won by the author, an…

  11. Astrobiology: Life on Earth (and Elsewhere?)

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.

    2016-01-01

    Astrobiology investigates the origins, evolution and distribution of life in the universe. Scientists study how stellar systems and their planets can create planetary environments that sustain biospheres. They search for biosignatures, which are objects, substances and or patterns that indicate the presence of life. Studies of Earth's early biosphere enhance these search strategies and also provide key insights about our own origins.

  12. Stellar Archaeology: New Science with Old Stars

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2011-01-01

    The early chemical evolution of the Galaxy and the Universe is vital to our understanding of a host of astrophysical phenomena. Since the most metal-poor Galactic stars are relics from the high-redshift Universe, they probe the chemical and dynamical conditions as the Milky Way began to form, the origin and evolution of the elements, and the physics of nucleosynthesis. They also provide constraints on the nature of the first stars, their associated supernovae and initial mass function, and early star and galaxy formation. I will present exemplary metal-poor stars with which these different topics can be addressed. Those are the most metal-poor stars in the Galaxy ([Fe/H] < -5.0), and metal-poor stars with strong overabundances of heavy elements, in particular uranium and thorium, which can be used to radioactively date the stars to be 13 Gyr old. I will then transition to recent discoveries of metal-poor ([Fe/H] -3.0) stars in the least luminous dwarf satellites orbiting the Milky Way. Their stellar chemical signatures support the concept that small systems, analogous to the surviving dwarf galaxies, were the building blocks of the Milky Way's low-metallicity halo. This opens a new window for studying galaxy formation through stellar chemistry.

  13. Early universe with modified scalar-tensor theory of gravity

    NASA Astrophysics Data System (ADS)

    Mandal, Ranajit; Sarkar, Chandramouli; Sanyal, Abhik Kumar

    2018-05-01

    Scalar-tensor theory of gravity with non-minimal coupling is a fairly good candidate for dark energy, required to explain late-time cosmic evolution. Here we study the very early stage of evolution of the universe with a modified version of the theory, which includes scalar curvature squared term. One of the key aspects of the present study is that, the quantum dynamics of the action under consideration ends up generically with de-Sitter expansion under semiclassical approximation, rather than power-law. This justifies the analysis of inflationary regime with de-Sitter expansion. The other key aspect is that, while studying gravitational perturbation, the perturbed generalized scalar field equation obtained from the perturbed action, when matched with the perturbed form of the background scalar field equation, relates the coupling parameter and the potential exactly in the same manner as the solution of classical field equations does, assuming de-Sitter expansion. The study also reveals that the quantum theory is well behaved, inflationary parameters fall well within the observational limit and quantum perturbation analysis shows that the power-spectrum does not deviate considerably from the standard one obtained from minimally coupled theory.

  14. Unstable Hadrons in Hot Hadron Gas in Laboratory and in the Early Universe

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Inga; Rafelski, Johann

    2011-04-01

    We study kinetic master equations for reactions involving the formation and the natural decay of unstable particles in a thermal expanding hadronic gas in the laboratory and in the early Universe. We consider here for the first time the role of the decay channel of one (hadron resonance) into two daughter particles, and also by token of detailed balance the inverse process, fusion of two (thermal) particles into one. We obtain the thermal invariant reaction rate using as an input the free space (vacuum) decay time and show the medium quantum effects on π+π<->ρ reaction relaxation time. As another laboratory example we describe the K+K<->φ process in thermal expanding hadronic gas in heavy ions collisions. A particularly interesting application of our formalism is the 0̂<->γ+γ process in the early Universe. We also explore the fate of charged pions and the muon freeze-out in the Universe. Another interesting field of application of our formalism is the study of short lived hadronic resonances, which are in general not able to reach yield equilibrium. We study the evolution of hadron resonances in small drops of QGP and use the insight gained to generalize the dynamics to QED effects as well.

  15. Green Peas emit X-rays: Extreme Star Formation in Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip

    2017-01-01

    Luminous compact galaxies (LCGs), Lyman Alpha Emitters (LAEs), and Lyman Break Analog galaxies (LBAs) are all used as proxies for star-forming galaxies in the early Universe (z ≥ 6). The X-ray emission from such galaxies has been found to be elevated compared to other star-forming galaxies in our local Universe. It has been suggested that this may be due to the lower metallicity seen in these proxies to high-redshift galaxies and the elevated X-ray emission may affect the heating and Reionization evolution of the early Universe. Our previous studies have suggested the existence of an LX-SFR-metallicity plane for all star-forming galaxies. We present these results in the context of our newest Joint Chandra/HST study containing the first X-ray detection of the Green Pea galaxies, a population of compact starburst galaxies discovered by volunteers in the Galaxy Zoo Project (Cardamone+2009). The galaxies were given the name Green Peas due to their compact size and green appearance in the gri composite images from SDSS. The green color is caused by a strong [OIII]λ5007Å emission line, an indicator of recent star formation. We observed a few of the most promising candidates with joint Chandra/HST observation and discuss our findings here.

  16. Effects of Anisotropy on Scalar Field Ghost Dark Energy and the Non-Equilibrium Thermodynamics in Fractal Cosmology

    NASA Astrophysics Data System (ADS)

    Najafi, A.; Hossienkhani, H.

    2017-10-01

    Since the fractal cosmology has been created in early universe, therefore their models were mostly isotropic. The majority of previous studies had been based on FRW universe, while in the early universe, the best model for describing fractal cosmology is actually the anisotropic universe. Therefore in this work, by assuming the anisotropic universe, the cosmological implications of ghost and generalized ghost dark energy models with dark matter in fractal cosmology has been discussed. Moreover, the different kinds of dark energy models such as quintessence and tachyon field, with the generalized ghost dark energy in fractal universe has been investigated. In addition, we have reconstructed the Hubble parameter, H, the energy density, ρ, the deceleration parameter, q, the equations of state parameter, {ω }{{}D}, for both ghost and generalized ghost dark energy models. This correspondence allows us to reconstruct the potential and the dynamics of a fractal canonical scalar field according to the evolution of generalized ghost dark energy density. Eventually, thermodynamics of the cosmological apparent horizon in fractal cosmology was investigated and the validity of the Generalized second law of thermodynamics (GSLT) have been examined in an anisotropic universe. The results show the influence of the anisotropy on the GSLT of thermodynamics in a fractal cosmology.

  17. A missing link in the evolution of the cumulative recorder.

    PubMed

    Asano, Toshio; Lattal, Kennon A

    2012-09-01

    A recently recovered cumulative recorder provides a missing link in the evolution of the cumulative recorder from a modified kymograph to a reliably operating, scientifically and commercially successful instrument. The recorder, the only physical evidence of such an early precommercial cumulative recorder yet found, was sent to Keio University in Tokyo, Japan, in 1952 at the behest of B. F. Skinner at Harvard University. Last used in research in the late 1960s, the cumulative recorder remained locked in a storage room until 2007, when it was found again. A historical context for the recorder is followed by a description of the recorder and a comparison between it and the commercially successful Gerbrands Model C-1 recorder. Labeled the Keio recorder, it is a testament to Skinner's persistence in developing a reliable means of quantifying the behavior of living organisms in real time.

  18. Recent Structural Evolution of Early-Type Galaxies: Size Growth from z = 1 to z = 0

    NASA Astrophysics Data System (ADS)

    van der Wel, Arjen; Holden, Bradford P.; Zirm, Andrew W.; Franx, Marijn; Rettura, Alessandro; Illingworth, Garth D.; Ford, Holland C.

    2008-11-01

    Strong size and internal density evolution of early-type galaxies between z ~ 2 and the present has been reported by several authors. Here we analyze samples of nearby and distant (z ~ 1) galaxies with dynamically measured masses in order to confirm the previous, model-dependent results and constrain the uncertainties that may play a role. Velocity dispersion (σ) measurements are taken from the literature for 50 morphologically selected 0.8 < z < 1.2 field and cluster early-type galaxies with typical masses Mdyn = 2 × 1011 M⊙. Sizes (Reff) are determined with Advanced Camera for Surveys imaging. We compare the distant sample with a large sample of nearby (0.04 < z < 0.08) early-type galaxies extracted from the Sloan Digital Sky Survey for which we determine sizes, masses, and densities in a consistent manner, using simulations to quantify systematic differences between the size measurements of nearby and distant galaxies. We find a highly significant difference between the σ - Reff distributions of the nearby and distant samples, regardless of sample selection effects. The implied evolution in Reff at fixed mass between z = 1 and the present is a factor of 1.97 +/- 0.15. This is in qualitative agreement with semianalytic models; however, the observed evolution is much faster than the predicted evolution. Our results reinforce and are quantitatively consistent with previous, photometric studies that found size evolution of up to a factor of 5 since z ~ 2. A combination of structural evolution of individual galaxies through the accretion of companions and the continuous formation of early-type galaxies through increasingly gas-poor mergers is one plausible explanation of the observations. Based on observations with the Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555, and observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Based on observations collected at the European Southern Observatory, Chile (169.A-0458). Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  19. Friedmann Cosmology with Matter Creation in Modified f( R, T) Gravity

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Singh, C. P.

    2016-02-01

    The theoretical and observational consequences of thermodynamics of open systems which allow matter creation, are investigated in modified f( R, T) ( R is the Ricci scalar and T is the trace of energy-momentum tensor) theory of gravity within the framework of a flat Friedmann-Robertson-Walker line element. The simplest model f( R, T)= R+2 f( T) with "gamma-law" equation of state p = ( γ-1) ρ is assumed to obtain the exact solution. A power-law expansion model is proposed by considering the natural phenomenological particle creation rate ψ = 3 β n H, where β is a pure number of the order of unity, n the particle number density and H is the Hubble parameter. A Big Rip singularity is observed for γ<0 describing phantom cosmology. The accelerated expansion of the Universe is driven by the particle creation. The density parameter shows the negative curvature of the Universe due to particle creation. The entropy increases with the evolution of the Universe. Some kinematics tests such as lookback time, luminosity distance, proper distance, angular diameter versus redshift are discussed in detail to observe the role of particle creation in early and late time evolution of the Universe.

  20. Chemistry and cosmology.

    PubMed

    Black, John H

    2006-01-01

    The simplest elements, hydrogen and helium, offer a remarkably rich chemistry, which has controlled crucial features of the early evolution of the universe. Theoretical models of the origin of structure (stars, galaxies, clusters of galaxies, etc.) now incorporate this chemistry in some detail. In addition to the origin of structure, cosmologists are concerned with observational tests of competing world models. Primordial chemistry may give rise to some of the earliest departures from thermodynamic equilibrium in the universe. These effects may be observable as broad-band spectroscopic distortions of the cosmic background radiation, which otherwise exhibits a nearly perfect blackbody spectrum. The chemical history of the expanding universe is followed through a detailed calculation of the evolution of the abundances of H, H+, H-, H2, H2+, H3+, and other minor species. It is shown that continuous absorption by the small concentration of H- can produce a distortion in the cosmic background spectrum with a maximum at a frequency near nu/c = 9 cm-1 (wavelength 1.1 mm). The predicted effect lies only a factor of 5 below current limits. Its detection would provide an important test of our understanding of the recombination epoch of the universe.

  1. Cosmic history of chameleonic dark matter in F (R ) gravity

    NASA Astrophysics Data System (ADS)

    Katsuragawa, Taishi; Matsuzaki, Shinya

    2018-03-01

    We study the cosmic history of the scalaron in F (R ) gravity with constructing the time evolution of the cosmic environment and discuss the chameleonic dark matter based on the chameleon mechanism in the early and current Universe. We then find that the scalaron can be a dark matter. We also propose an interesting possibility that the F (R ) gravity can address the coincidence problem.

  2. Primordial large-scale electromagnetic fields from gravitoelectromagnetic inflation

    NASA Astrophysics Data System (ADS)

    Membiela, Federico Agustín; Bellini, Mauricio

    2009-04-01

    We investigate the origin and evolution of primordial electric and magnetic fields in the early universe, when the expansion is governed by a cosmological constant Λ0. Using the gravitoelectromagnetic inflationary formalism with A0 = 0, we obtain the power of spectrums for large-scale magnetic fields and the inflaton field fluctuations during inflation. A very important fact is that our formalism is naturally non-conformally invariant.

  3. A Long-Term Space Astrophysics Research Program: The Evolution of the Quasar Continuum

    NASA Technical Reports Server (NTRS)

    Elvis, M.; Oliversen, Ronald K. (Technical Monitor)

    2002-01-01

    Four papers have been written. One reports on the major study funded by this grant: a pan-chromatic study of the quasar continuum at redshift 3. Two others make use of the quasar continuum shapes to find the minimum total accretion luminosity of the Universe, and hence the efficiency and spin of supermassive black holes; the second shows that the reemission of absorbed quasar radiation alleviates a major problem with galaxy formation and the FIR background. The last paper recognizes the role quasars may play in the initial formation of dust in the early Universe.

  4. Galaxy Transformation Under Extreme Conditions: The Evolution of Galaxies in the Largest Structures in the High Redshift Universe

    NASA Astrophysics Data System (ADS)

    Lemaux, Brian Clark

    This dissertation describes research performed in the field of observational astrophysics as part of the Observations of Redshift Evolution in Large Scale Environment (ORELSE) survey. The general motivation of the research presented in this dissertation is to investigate the processes responsible for the evolution of galaxies in a wide range of physical conditions over cosmic time. Throughout this dissertation, galaxy populations will be considered in the very nearby universe (i.e., within one billion light years from Earth), the middle-aged universe (i.e., eight billion years ago), and in the very early universe (i.e., just one billion years after the beginning of the universe). In each chapter I present unique data from observations taken and analyzed specifically for the ORELSE survey. In the first part of this dissertation I describe the context, aims, and current state of the ORELSE survey. The studies presented in this dissertation span a large range of galaxy samples and investigate a variety of different astrophysical phenomena. As all of these studies fall under the context of galaxy evolution, these initial sections will set the framework for the variety of studies presented in this thesis. In the second part of this dissertation I present four studies undertaken to investigate various aspects of galaxy evolution. The first of these studies is an investigation of a large population of very distant galaxies detected in one of the ORELSE fields. The survey in this field represents the deepest survey of a particular kind of very distant galaxy population known as Lymanalpha Emitter (LAEs). The number of LAEs found in this survey far exceeded expectations for such galaxies and are shown to be in excess of every other survey of similar galaxies at similar distances. This result has important consequences for galaxy evolution studies, as it suggests that faint LAEs may be much more numerous than previously thought. This work also has important consequences for a process in the early universe known as reionization, which is the subject of much debate amongst astronomers. The second and third of these studies are investigations using near-infrared spectroscopy of X-ray bright and red galaxies that exhibit optical spectra with prominent emission features. These studies are the first systematic investigations of both galaxy populations in the middle-aged universe using near-infrared spectroscopy. In both studies I conclude the dominant mechanism giving rise to optical emission line features are processes associated with the presence of an Active Galactic Nuclei (AGN) rather than normal star formation. This result has important consequences for galaxy evolutionary scenarios, as the two processes are typically difficult to separate observationally and are thought to be related. The final study in this presentation is a full investigation of the processes driving galaxy evolution in one of the ORELSE fields, the Cl1604 supercluster. In this study I present the wealth of astronomical observations available to the ORELSE survey on the member galaxies of this supercluster. Several transitional populations of galaxies are detected in the supercluster environment, and their properties are analyzed in the context of galaxy evolution. Processing of the galaxy population is found to be significant in both the densest environments in the supercluster and the lower-density regions. One of the major conclusions of this work relates to the efficiency of these transformative processes and the global environment in which a galaxy resides. I present evidence for a process termed "dynamical downsizing", in which efficient transforming of galaxies occurs earliest in structures of galaxies that are observed to be relaxed (i.e., virialized) in their dynamics.

  5. The Role of Ontogeny in the Evolution of Human Cooperation.

    PubMed

    Tomasello, Michael; Gonzalez-Cabrera, Ivan

    2017-09-01

    To explain the evolutionary emergence of uniquely human skills and motivations for cooperation, Tomasello et al. (2012, in Current Anthropology 53(6):673-92) proposed the interdependence hypothesis. The key adaptive context in this account was the obligate collaborative foraging of early human adults. Hawkes (2014, in Human Nature 25(1):28-48), following Hrdy (Mothers and Others, Harvard University Press, 2009), provided an alternative account for the emergence of uniquely human cooperative skills in which the key was early human infants' attempts to solicit care and attention from adults in a cooperative breeding context. Here we attempt to reconcile these two accounts. Our composite account accepts Hrdy's and Hawkes's contention that the extremely early emergence of human infants' cooperative skills suggests an important role for cooperative breeding as adaptive context, perhaps in early Homo. But our account also insists that human cooperation goes well beyond these nascent skills to include such things as the communicative and cultural conventions, norms, and institutions created by later Homo and early modern humans to deal with adult problems of social coordination. As part of this account we hypothesize how each of the main stages of human ontogeny (infancy, childhood, adolescence) was transformed during evolution both by infants' cooperative skills "migrating up" in age and by adults' cooperative skills "migrating down" in age.

  6. Panchromatic observations of dwarf starburst galaxies: Infant super star clusters and a low-luminosity AGN

    NASA Astrophysics Data System (ADS)

    Reines, Amy Ellen

    2011-01-01

    Globular star clusters and supermassive black holes are fundamental components of today's massive galaxies, with origins dating back to the very early universe. Both globular clusters and the seeds of supermassive black holes are believed to have formed in the progenitors of modern massive galaxies, although the details are poorly understood. Direct observations of these low-mass, distant, and hence faint systems are unobtainable with current capabilities. However, gas-rich dwarf starburst galaxies in the local universe, analogous in many ways to protogalaxies at high-redshift, can provide critical insight into the early stages of galaxy evolution including the formation of globular clusters and massive black holes. This thesis presents a panchromatic study of nearby dwarf starburst galaxies harboring nascent globular clusters still embedded in their birth material. Infant clusters are identified via their production of thermal radio emission at centimeter wavelengths, which comes from dense gas ionized by young massive stars. By combining radio observations with complementary data at ultraviolet, optical and infrared wavelengths, we obtain a comprehensive view of massive clusters emerging from their gaseous and dusty birth cocoons. This thesis also presents the first example of a nearby dwarf starburst galaxy hosting an actively accreting massive central black hole. The black hole in this dwarf galaxy is unusual in that it is not associated with a bulge, a nuclear star cluster, or any other well-defined nucleus, likely reflecting an early phase of black hole and galaxy evolution that has not been previously observed.

  7. Evolution of density and velocity profiles of dark matter and dark energy in spherical voids

    NASA Astrophysics Data System (ADS)

    Novosyadlyj, Bohdan; Tsizh, Maksym; Kulinich, Yurij

    2017-02-01

    We analyse the evolution of cosmological perturbations which leads to the formation of large isolated voids in the Universe. We assume that initial perturbations are spherical and all components of the Universe (radiation, matter and dark energy) are continuous media with ideal fluid energy-momentum tensors, which interact only gravitationally. Equations of the evolution of perturbations for every component in the comoving to cosmological background reference frame are obtained from equations of energy and momentum conservation and Einstein's ones and are integrated numerically. Initial conditions are set at the early stage of evolution in the radiation-dominated epoch, when the scale of perturbation is much larger than the particle horizon. Results show how the profiles of density and velocity of matter and dark energy are formed and how they depend on parameters of dark energy and initial conditions. In particular, it is shown that final matter density and velocity amplitudes change within range ˜4-7 per cent when the value of equation-of-state parameter of dark energy w vary in the range from -0.8 to -1.2, and change within ˜1 per cent only when the value of effective sound speed of dark energy vary over all allowable range of its values.

  8. The origin and early evolution of life on Earth.

    PubMed

    Oró, J; Miller, S L; Lazcano, A

    1990-01-01

    We do not have a detailed knowledge of the processes that led to the appearance of life on Earth. In this review we bring together some of the most important results that have provided insights into the cosmic and primitive Earth environments, particularly those environments in which life is thought to have originated. To do so, we first discuss the evidence bearing on the antiquity of life on our planet and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar system bodies such as comets, dark asteroids, and carbonaceous chondrites. This is followed by a discussion on the environmental models of the Hadean and early Archean Earth, as well as on the prebiotic formation of organic monomers and polymers essential to life. We then consider the processes that may have led to the appearance in the Archean of the first cells, and how these processes may have affected the early steps of biological evolution. Finally, the significance of these results to the study of the distribution of life in the Universe is discussed.

  9. Berkeley's New Approach to Global Engagement: Early and Current Efforts to Become More International. Research & Occasional Paper Series: CSHE.12.15

    ERIC Educational Resources Information Center

    Dirks, Nicholas B.; Gilman, Nils

    2015-01-01

    This essay discusses past and current thinking about the globalization of higher education (from a U.S. point of view in particular) and a new model we are attempting to develop at the University of California, Berkeley. This essay begins with a brief narrative of the historical evolution of efforts to internationalize education, from the…

  10. Standard cosmology delayed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Debajyoti; Ghoshal, Debashis; Sen, Anjan Ananda, E-mail: debajyoti.choudhury@gmail.com, E-mail: dghoshal@mail.jnu.ac.in, E-mail: anjan.ctp@jmi.ac.in

    2012-02-01

    The introduction of a delay in the Friedmann equation of cosmological evolution is shown to result in the very early universe undergoing the necessary accelerated expansion in the usual radiation (or matter) dominated phase. Occurring even without a violation of the strong energy condition, this expansion slows down naturally to go over to the decelerated phase, namely the standard Hubble expansion. This may obviate the need for a scalar field driven inflationary epoch.

  11. Observing the epoch of galaxy formation.

    PubMed

    Steidel, C C

    1999-04-13

    Significant observational progress in addressing the question of the origin and early evolution of galaxies has been made in the past few years, allowing for direct comparison of the epoch when most of the stars in the universe were forming to prevailing theoretical models. There is currently broad consistency between theoretical expectations and the observations, but rapid improvement in the data will provide much more critical tests of theory in the coming years.

  12. Snapshots in X-ray binary evolution: Using Hα Emitters and post-starburst galaxies to study the age-dependence of XRB populations

    NASA Astrophysics Data System (ADS)

    Basu-Zych, Antara; Hornschemeier, Ann; Fragkos, Anastasios; Lehmer, Bret; Zezas, Andreas; Yukita, Mihoko; Tzanavaris, Panayiotis

    2018-01-01

    The X-ray emission in galaxies, due to X-ray binaries (XRBs), appears to depend on global galaxy properties such as stellar mass (M*), star formation rate (SFR), metallicity, and stellar age. This poster will present unique galaxy populations with well-defined stellar ages to test current relations and models. Specifically, Hα emitters (HAEs), which are nearby analogs of galaxies in the early universe, trace how XRBs form and evolve in young, metal-poor environments. We find that HAEs have lower X-ray luminosities per SFR and metallicity compared to other normal galaxies. At such young ages (<10Myr), XRBs may not have fully formed. Therefore, these observations provide constraints for the expected X-ray emission from XRBs in the early Universe. Post-starburst galaxies, selected by the strength of the Hδ equivalent width (> 500 Å), probe the XRB population related to stellar ages of 0.1-1 Gyr. At these ages, the donor star is expected to be an A-star whose mass is ~2 M⊙ and similar to that of the compact object, which may potentially lead to high mass transfer rates and high X-ray luminosities. Together, these samples offer important constraints for the evolution of XRBs with stellar age.

  13. Physics of the very early Universe: what can we learn from cosmological observations?

    NASA Astrophysics Data System (ADS)

    Gondolo, Paolo

    Cosmological observations are starting to probe the evolution of the Universe before nucleosyn- thesis. The observed fluctuations in the cosmic microwave background and in the distribution of matter can be traced back to their origin during inflation, and the inflaton potential has begun to be unraveled. A future probe of the first microseconds would be the detection of weakly-interacting massive particles as dark matter. Discovery of supersymmetric particles at odds with the standard cosmological lore may open an experimental window on the physics at the highest energies, per- haps as far as superstring theory. This presentation will overview two topics on the physics of the Universe before nucleosynthesis: (1) slow-roll, natural and chain inflation in the landscape, and

  14. Light meson gas in the QCD vacuum and oscillating universe

    NASA Astrophysics Data System (ADS)

    Prokhorov, George; Pasechnik, Roman

    2018-01-01

    We have developed a phenomenological effective quantum-field theoretical model describing the "hadron gas" of the lightest pseudoscalar mesons, scalar σ-meson and σ-vacuum, i.e. the expectation value of the σ-field, at finite temperatures. The corresponding thermodynamic approach was formulated in terms of the generating functional derived from the effective Lagrangian providing the basic thermodynamic information about the "meson plasma + QCD condensate" system. This formalism enables us to study the QCD transition from the hadron phase with direct implications for cosmological evolution. Using the hypothesis about a positively-definite QCD vacuum contribution stochastically produced in early universe, we show that the universe could undergo a series of oscillations during the QCD epoch before resuming unbounded expansion.

  15. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte.

    PubMed

    Matsunaga, Kelly K S; Tomescu, Alexandru M F

    2016-04-01

    The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian-Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant-substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Probing Models of Dark Matter and the Early Universe

    NASA Astrophysics Data System (ADS)

    Orlofsky, Nicholas David

    This thesis discusses models for dark matter (DM) and their behavior in the early universe. An important question is how phenomenological probes can directly search for signals of DM today. Another topic of investigation is how the DM and other processes in the early universe must evolve. Then, astrophysical bounds on early universe dynamics can constrain DM. We will consider these questions in the context of three classes of DM models--weakly interacting massive particles (WIMPs), axions, and primordial black holes (PBHs). Starting with WIMPs, we consider models where the DM is charged under the electroweak gauge group of the Standard Model. Such WIMPs, if generated by a thermal cosmological history, are constrained by direct detection experiments. To avoid present or near-future bounds, the WIMP model or cosmological history must be altered in some way. This may be accomplished by the inclusion of new states that coannihilate with the WIMP or a period of non-thermal evolution in the early universe. Future experiments are likely to probe some of these altered scenarios, and a non-observation would require a high degree of tuning in some of the model parameters in these scenarios. Next, axions, as light pseudo-Nambu-Goldstone bosons, are susceptible to quantum fluctuations in the early universe that lead to isocurvature perturbations, which are constrained by observations of the cosmic microwave background (CMB). We ask what it would take to allow axion models in the face of these strong CMB bounds. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed, elucidating the difficulties in these constructions. Avoiding disruption of inflationary dynamics provides important limits on the parameter space. Finally, PBHs have received interest in part due to observations by LIGO of merging black hole binaries. We ask how these PBHs could arise through inflationary models and investigate the opportunity for corroboration through experimental probes of gravitational waves at pulsar timing arrays. We provide examples of theories that are already ruled out, theories that will soon be probed, and theories that will not be tested in the foreseeable future. The models that are most strongly constrained are those with relatively broad primordial power spectra.

  17. The origin, evolution and signatures of primordial magnetic fields.

    PubMed

    Subramanian, Kandaswamy

    2016-07-01

    The universe is magnetized on all scales probed so far. On the largest scales, galaxies and galaxy clusters host magnetic fields at the micro Gauss level coherent on scales up to ten kpc. Recent observational evidence suggests that even the intergalactic medium in voids could host a weak  ∼  10(-16) Gauss magnetic field, coherent on Mpc scales. An intriguing possibility is that these observed magnetic fields are a relic from the early universe, albeit one which has been subsequently amplified and maintained by a dynamo in collapsed objects. We review here the origin, evolution and signatures of primordial magnetic fields. After a brief summary of magnetohydrodynamics in the expanding universe, we turn to magnetic field generation during inflation and phase transitions. We trace the linear and nonlinear evolution of the generated primordial fields through the radiation era, including viscous effects. Sensitive observational signatures of primordial magnetic fields on the cosmic microwave background, including current constraints from Planck, are discussed. After recombination, primordial magnetic fields could strongly influence structure formation, especially on dwarf galaxy scales. The resulting signatures on reionization, the redshifted 21 cm line, weak lensing and the Lyman-α forest are outlined. Constraints from radio and γ-ray astronomy are summarized. Astrophysical batteries and the role of dynamos in reshaping the primordial field are briefly considered. The review ends with some final thoughts on primordial magnetic fields.

  18. THE EVOLUTION OF EARLY- AND LATE-TYPE GALAXIES IN THE COSMIC EVOLUTION SURVEY UP TO z {approx} 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannella, Maurilio; Gabasch, Armin; Drory, Niv

    2009-08-10

    The Cosmic Evolution Survey (COSMOS) allows for the first time a highly significant census of environments and structures up to redshift 1, as well as a full morphological description of the galaxy population. In this paper we present a study aimed to constrain the evolution, in the redshift range 0.2 < z < 1.2, of the mass content of different morphological types and its dependence on the environmental density. We use a deep multicolor catalog, covering an area of {approx}0.7 deg{sup 2} inside the COSMOS field, with accurate photometric redshifts (i {approx}< 26.5 and {delta}z/(z {sub spec} + 1) {approx}more » 0.035). We estimate galaxy stellar masses by fitting the multicolor photometry to a grid of composite stellar population models. We quantitatively describe the galaxy morphology by fitting point-spread function convolved Sersic profiles to the galaxy surface brightness distributions down to F814 = 24 mag for a sample of 41,300 objects. We confirm an evolution of the morphological mix with redshift: the higher the redshift the more disk-dominated galaxies become important. We find that the morphological mix is a function of the local comoving density: the morphology density relation extends up to the highest redshift explored. The stellar mass function of disk-dominated galaxies is consistent with being constant with redshift. Conversely, the stellar mass function of bulge-dominated systems shows a decline in normalization with redshift. Such different behaviors of late-types and early-types stellar mass functions naturally set the redshift evolution of the transition mass. We find a population of relatively massive, early-type galaxies, having high specific star formation rate (SSFR) and blue colors which live preferentially in low-density environments. The bulk of massive (>7 x 10{sup 10} M {sub sun}) early-type galaxies have similar characteristic ages, colors, and SSFRs independently of the environment they belong to, with those hosting the oldest stars in the universe preferentially belonging to the highest density regions. The whole catalog including morphological information and stellar mass estimates analyzed in this work is made publicly available.« less

  19. The James Webb Space Telescope: Science and Mission Status

    NASA Technical Reports Server (NTRS)

    Sonneborn, George

    2011-01-01

    The James Webb Space Telescope (JWST) is a large aperture, cryogenic, infrared-optimized space observatory under construction by NASA for launch later this decade. The European and Canadian Space Agencies are mission partners. JWST will find and study the first galaxies that formed in the early universe and peer through dusty clouds to see star and planet formation at high spatial resolution. The breakthrough capabilities of JWST will enable new studies of star formation and evolution in the Milky Way, including the Galactic Center, nearby galaxies, and the early universe. JWST will have a segmented primary mirror, approximately 6.5 meters in diameter, and will be diffraction-limited at 2 microns. The JWST observatory will be placed in a L2 orbit by an Ariane 5 launch vehicle provided by ESA. The observatory is designed for a 5- year prime science mission, with consumables for 10 years of science operations.

  20. Exploring the dusty star-formation in the early Universe using intensity mapping

    NASA Astrophysics Data System (ADS)

    Lagache, Guilaine

    2018-05-01

    In the last decade, it has become clear that the dust-enshrouded star formation contributes significantly to early galaxy evolution. Detection of dust is therefore essential in determining the properties of galaxies in the high-redshift universe. This requires observations at the (sub-)millimeter wavelengths. Unfortunately, sensitivity and background confusion of single dish observations on the one hand, and mapping efficiency of interferometers on the other hand, pose unique challenges to observers. One promising route to overcome these difficulties is intensity mapping of fluctuations which exploits the confusion-limited regime and measures the collective light emission from all sources, including unresolved faint galaxies. We discuss in this contribution how 2D and 3D intensity mapping can measure the dusty star formation at high redshift, through the Cosmic Infrared Background (2D) and [CII] fine structure transition (3D) anisotropies.

  1. Online Planetary Science Courses at Athabasca University

    NASA Astrophysics Data System (ADS)

    Connors, Martin; Munyikwa, Ken; Bredeson, Christy

    2016-01-01

    Athabasca University offers distance education courses in science, at freshman and higher levels. It has a number of geology and astronomy courses, and recently opened a planetary science course as the first upper division astronomy course after many years of offering freshman astronomy. Astronomy 310, Planetary Science, focuses on process in the Solar System on bodies other than Earth. This process-oriented course uses W. F. Hartmann's "Moons and Planets" as its textbook. It primarily approaches the subject from an astronomy and physics perspective. Geology 415, Earth's Origin and Early Evolution, is based on the same textbook, but explores the evidence for the various processes, events, and materials involved in the formation and evolution of Earth. The course provides an overview of objects in the Solar System, including the Sun, the planets, asteroids, comets, and meteoroids. Earth's place in the solar system is examined and physical laws that govern the motion of objects in the universe are looked at. Various geochemical tools and techniques used by geologists to reveal and interpret the evidence for the formation and evolution of bodies in the solar system as well as the age of earth are also explored. After looking at lines of evidence used to reconstruct the evolution of the solar system, processes involved in the formation of planets and stars are examined. The course concludes with a look at the origin and nature of Earth's internal structure. GEOL415 is a senior undergraduate course and enrols about 15-30 students annually. The courses are delivered online via Moodle and student evaluation is conducted through assignments and invigilated examinations.

  2. Neutrino energy transport in weak decoupling and big bang nucleosynthesis

    DOE PAGES

    Grohs, Evan Bradley; Paris, Mark W.; Kishimoto, Chad T.; ...

    2016-04-21

    In this study, we calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multienergy group Boltzmann neutrino energy transport scheme. The modular structure of our code provides the ability to dissect the relative contributions of each process responsible for evolving the dynamics of the early universe in the absence of neutrino flavor oscillations. Such an approach allows a detailed accounting of the evolution of the νe, ν¯e, νμ, ν¯μ, ντ, ν¯τ energy distribution functions alongsidemore » and self-consistently with the nuclear reactions and entropy/heat generation and flow between the neutrino and photon/electron/positron/baryon plasma components. This calculation reveals nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions (e.g., electron-positron pair densities), with implications for the phasing between scale factor and plasma temperature; the neutron-to-proton ratio; light-element abundance histories; and the cosmological parameter N eff. We find that our approach of following the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma results in changes in the computed value of the BBN deuterium yield. For example, for particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium. These changes are potentially significant in the context of anticipated improvements in observational and nuclear physics uncertainties.« less

  3. Neutrino energy transport in weak decoupling and big bang nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grohs, Evan Bradley; Paris, Mark W.; Kishimoto, Chad T.

    In this study, we calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multienergy group Boltzmann neutrino energy transport scheme. The modular structure of our code provides the ability to dissect the relative contributions of each process responsible for evolving the dynamics of the early universe in the absence of neutrino flavor oscillations. Such an approach allows a detailed accounting of the evolution of the νe, ν¯e, νμ, ν¯μ, ντ, ν¯τ energy distribution functions alongsidemore » and self-consistently with the nuclear reactions and entropy/heat generation and flow between the neutrino and photon/electron/positron/baryon plasma components. This calculation reveals nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions (e.g., electron-positron pair densities), with implications for the phasing between scale factor and plasma temperature; the neutron-to-proton ratio; light-element abundance histories; and the cosmological parameter N eff. We find that our approach of following the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma results in changes in the computed value of the BBN deuterium yield. For example, for particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium. These changes are potentially significant in the context of anticipated improvements in observational and nuclear physics uncertainties.« less

  4. Inseparable tandem: evolution chooses ATP and Ca2+ to control life, death and cellular signalling

    PubMed Central

    Verkhratsky, Alexei

    2016-01-01

    From the very dawn of biological evolution, ATP was selected as a multipurpose energy-storing molecule. Metabolism of ATP required intracellular free Ca2+ to be set at exceedingly low concentrations, which in turn provided the background for the role of Ca2+ as a universal signalling molecule. The early-eukaryote life forms also evolved functional compartmentalization and vesicle trafficking, which used Ca2+ as a universal signalling ion; similarly, Ca2+ is needed for regulation of ciliary and flagellar beat, amoeboid movement, intracellular transport, as well as of numerous metabolic processes. Thus, during evolution, exploitation of atmospheric oxygen and increasingly efficient ATP production via oxidative phosphorylation by bacterial endosymbionts were a first step for the emergence of complex eukaryotic cells. Simultaneously, Ca2+ started to be exploited for short-range signalling, despite restrictions by the preset phosphate-based energy metabolism, when both phosphates and Ca2+ interfere with each other because of the low solubility of calcium phosphates. The need to keep cytosolic Ca2+ low forced cells to restrict Ca2+ signals in space and time and to develop energetically favourable Ca2+ signalling and Ca2+ microdomains. These steps in tandem dominated further evolution. The ATP molecule (often released by Ca2+-regulated exocytosis) rapidly grew to be the universal chemical messenger for intercellular communication; ATP effects are mediated by an extended family of purinoceptors often linked to Ca2+ signalling. Similar to atmospheric oxygen, Ca2+ must have been reverted from a deleterious agent to a most useful (intra- and extracellular) signalling molecule. Invention of intracellular trafficking further increased the role for Ca2+ homeostasis that became critical for regulation of cell survival and cell death. Several mutually interdependent effects of Ca2+ and ATP have been exploited in evolution, thus turning an originally unholy alliance into a fascinating success story. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377729

  5. The evolution of early cellular systems viewed through the lens of biological interactions.

    PubMed

    Poole, Anthony M; Lundin, Daniel; Rytkönen, Kalle T

    2015-01-01

    The minimal cell concept represents a pragmatic approach to the question of how few genes are required to run a cell. This is a helpful way to build a parts-list, and has been more successful than attempts to deduce a minimal gene set for life by inferring the gene repertoire of the last universal common ancestor, as few genes trace back to this hypothetical ancestral state. However, the study of minimal cellular systems is the study of biological outliers where, by practical necessity, coevolutionary interactions are minimized or ignored. In this paper, we consider the biological context from which minimal genomes have been removed. For instance, some of the most reduced genomes are from endosymbionts and are the result of coevolutionary interactions with a host; few such organisms are "free-living." As few, if any, biological systems exist in complete isolation, we expect that, as with modern life, early biological systems were part of an ecosystem, replete with organismal interactions. We favor refocusing discussions of the evolution of cellular systems on processes rather than gene counts. We therefore draw a distinction between a pragmatic minimal cell (an interesting engineering problem), a distributed genome (a system resulting from an evolutionary transition involving more than one cell) and the looser coevolutionary interactions that are ubiquitous in ecosystems. Finally, we consider the distributed genome and coevolutionary interactions between genomic entities in the context of early evolution.

  6. What the Most Metal-poor Stars Tell Us About the Early Universe

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2008-05-01

    The chemical evolution of the Galaxy and the early Universe is a key topic in modern astrophysics. The most metal-poor Galactic halo stars are now frequently used in an attempt to reconstruct the onset of the chemical and dynamical formation processes of the Galaxy. These stars are an easily-accessible local equivalent of the high-redshift Universe, and can thus be used to carry out field-field cosmology. The discovery of two astrophysically very important metal-poor objects has recently lead to a significant advance in the field. One object is the most iron-poor star yet found (with [Fe/H]=-5.4). The other stars displays the strongest known overabundances of heavy neutron-capture elements, such as uranium, and nucleo-chronometry yields a stellar age of 13 Gyr. Both stars already serve as benchmark objects for various theoretical studies with regard to nucleosynthesis processes in the early Galaxy. I will discuss how the abundance patterns of these and other metal-poor stars solidify and advance our understanding of the early Universe, and provide constraints on the nature of the first stars, as well as their explosion mechanisms and corresponding supernova nucleosynthesis yields. Large samples of these old objects are also employed to test theoretical predictions about the formation of the very first low-mass stars. In the near future, the combined power of near-field cosmology results with those of the next-generation facilities (e.g., MWA, JWST, GMT) may yield exceptional details about the formation processes of the first generations of stars and galaxies.

  7. High Energy Astrophysics Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Ormes, Jonathan F. (Technical Monitor)

    2000-01-01

    The nature of gravity and its relationship to the other three forces and to quantum theory is one of the major challenges facing us as we begin the new century. In order to make progress we must challenge the current theories by observing the effects of gravity under the most extreme conditions possible. Black holes represent one extreme, where the laws of physics as we understand them break down. The Universe as whole is another extreme, where its evolution and fate is dominated by the gravitational influence of dark matter and the nature of the Cosmological constant. The early universe represents a third extreme, where it is thought that gravity may somehow be unified with the other forces. NASA's "Cosmic Journeys" program is part of a NASA/NSF/DoE tri-agency initiative designed to observe the extremes of gravity throughout the universe. This program will probe the nature of black holes, ultimately obtaining a direct image of the event horizon. It will investigate the large scale structure of the Universe to constrain the location and nature of dark matter and the nature of the cosmological constant. Finally it will search for and study the highest energy processes, that approach those found in the early universe. I will outline the High Energy Astrophysics part of this program.

  8. The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Pantoni, L.; Zanisi, L.; Shi, J.; Mancuso, C.; Massardi, M.; Shankar, F.; Bressan, A.; Danese, L.

    2018-04-01

    We aim to provide a holistic view on the typical size and kinematic evolution of massive early-type galaxies (ETGs) that encompasses their high-z star-forming progenitors, their high-z quiescent counterparts, and their configurations in the local Universe. Our investigation covers the main processes playing a relevant role in the cosmic evolution of ETGs. Specifically, their early fast evolution comprises biased collapse of the low angular momentum gaseous baryons located in the inner regions of the host dark matter halo; cooling, fragmentation, and infall of the gas down to the radius set by the centrifugal barrier; further rapid compaction via clump/gas migration toward the galaxy center, where strong heavily dust-enshrouded star formation takes place and most of the stellar mass is accumulated; and ejection of substantial gas amount from the inner regions by feedback processes, which causes a dramatic puffing-up of the stellar component. In the late slow evolution, passive aging of stellar populations and mass additions by dry merger events occur. We describe these processes relying on prescriptions inspired by basic physical arguments and by numerical simulations to derive new analytical estimates of the relevant sizes, timescales, and kinematic properties for individual galaxies along their evolution. Then we obtain quantitative results as a function of galaxy mass and redshift, and compare them to recent observational constraints on half-light size R e , on the ratio v/σ between rotation velocity and velocity dispersion (for gas and stars) and on the specific angular momentum j ⋆ of the stellar component; we find good consistency with the available multiband data in average values and dispersion, both for local ETGs and for their z ∼ 1–2 star-forming and quiescent progenitors. The outcomes of our analysis can provide hints to gauge sub-grid recipes implemented in simulations, to tune numerical experiments focused on specific processes, and to plan future multiband, high-resolution observations on high-redshift star-forming and quiescent galaxies with next-generation facilities.

  9. Martian Surface and Atmosphere Workshop

    NASA Astrophysics Data System (ADS)

    Schuraytz, Benjamin C.

    The NASA-sponsored Martian Surface and Atmosphere Through Time Study Project convened its first major meeting at the University of Colorado in Boulder, September 23-25, 1991. The workshop, co-sponsored by the Lunar and Planetary Institute (LPI) and the Laboratory for Atmospheric and Space Physics at the University of Colorado, brought together an international group of 125 scientists to discuss a variety of issues relevant to the goals of the MSATT Program. The workshop program committee included co-convenors Robert Haberle, MSATT Steering Committee Chairman NASA Ames Research Center) and Bruce Jakosky (University of Colorado), and committee members Amos Banin (NASA Ames Research Center and Hebrew University), Benjamin Schuraytz (LPI), and Kenneth Tanaka (U.S. Geological Survey, Flagstaff, Ariz.).The purpose of the workshop was to begin exploring and defining the relationships between different aspects of Mars science—the evolution of the surface, the atmosphere, upper atmosphere, volatiles, and climate. Specific topics addressed in the 88 contributed abstracts included the current nature of the surface with respect to physical properties and photometric observations and interpretations; the history of geological processes, comprising water and ice-related geomorphology, impact cratering, and volcanism; and the geochemistry and mineralogy of the surface with emphasis on compositional and spectroscopic studies and weathering processes. Also addressed were the present atmosphere, focusing on structure and dynamics, volatile and dust distribution, and the upper atmosphere; long-term volatile evolution based on volatiles in SNC meteorites (certain meteorites thought to have come from Mars) and atmospheric evolution processes; climate history and volatile cycles in relation to early climate and the polar caps, ground ice, and regolith; and future mission concepts.

  10. General purpose graphics-processing-unit implementation of cosmological domain wall network evolution.

    PubMed

    Correia, J R C C C; Martins, C J A P

    2017-10-01

    Topological defects unavoidably form at symmetry breaking phase transitions in the early universe. To probe the parameter space of theoretical models and set tighter experimental constraints (exploiting the recent advances in astrophysical observations), one requires more and more demanding simulations, and therefore more hardware resources and computation time. Improving the speed and efficiency of existing codes is essential. Here we present a general purpose graphics-processing-unit implementation of the canonical Press-Ryden-Spergel algorithm for the evolution of cosmological domain wall networks. This is ported to the Open Computing Language standard, and as a consequence significant speedups are achieved both in two-dimensional (2D) and 3D simulations.

  11. The Transient High-Energy Sky and Early Universe Surveyor (THESEUS)

    NASA Astrophysics Data System (ADS)

    Amati, L.; O'Brien, P.; Goetz, D.; Tenzer, C.; Bozzo, E.

    2017-10-01

    The Transient High Energy Sky and Early Universe Surveyor (THESEUS) is a mission concept developed by a large international collaboration aimed at exploiting Gamma-Ray Bursts for investigating the early Universe. The main scientic objectives of THESEUS, currently under evaluation by ESA within the selection process for next M5 mission, include: investigating the star formation rate and metallicity evolution of the ISM and IGM up to redshift 10, detecting the first generation (pop III) of stars, studying the sources and physics of re-ionization, detecting the faint end of galaxies luminosity function. These goals will be achieved through a unique combination of instruments allowing GRB detection and arcmin localization over a broad FOV (more than 1sr) and an energy band extending from several MeVs down to 0.3 keV with unprecedented sensitivity, as well as on-board prompt (few minutes) follow-up with a 0.7m class IR telescope with both imaging and spectroscopic capabilities. Such instrumentation will also allow THESEUS to perform a monitoring of the X-ray sky with unprecedented sensitivity, which will provide a perfect service and sinergy to next generation multi-wavalength (e.g., E-ELT, SKA, CTA, ATHENA) and multi-messenger (aLIGO, aVIRGO, eLISA, ET, neutrino detectors, ...) facilities.

  12. Observing the epoch of galaxy formation

    PubMed Central

    Steidel, Charles C.

    1999-01-01

    Significant observational progress in addressing the question of the origin and early evolution of galaxies has been made in the past few years, allowing for direct comparison of the epoch when most of the stars in the universe were forming to prevailing theoretical models. There is currently broad consistency between theoretical expectations and the observations, but rapid improvement in the data will provide much more critical tests of theory in the coming years. PMID:10200244

  13. The ZEUS 1 & 2 INvestigated Galaxy Reference Sample (ZINGRS): A window into galaxies in the early Universe.

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl; Hershey, Deborah; Scrabeck, Alex; Higdon, Sarah; Higdon, James L.; Tidwell, Hannah; Lamarche, Cody; Vishwas, Amit; Nikola, Thomas; Stacey, Gordon J.; Brisbin, Drew

    2018-06-01

    Galaxies have evolved significantly from the early Universe until today. Star formation rates, stellar and molecular gas masses, sizes and metal enrichment of galaxies have all changed significantly from early epochs until the present. Probing the physical conditions of galaxy at high redshift is vital to understanding this evolution. ZINGRS, the ZEUS 1 and 2 INvestigated Galaxy Reference Sample, provides a unique and powerful window for this work. The sample consists of more than ~30 galaxies from z ~ 1 - 4.5 for which the far-IR fine-structure lines (e.g. [CII] 158 micron, [NII] 122micron, [OIII] 88 micron) have been observed with the ZEUS-1 and 2 instruments. These lines are ideal for studying high-z systems since they require low energies for excitation, are typically optically thin, and are not susceptible to extinction from dust. ZINGRS is the largest collection of far-IR fine-structure line detections at high-z. Here we describe the sample, including extensive multifrequency supporting observations like CO & radio continuum, and summarize what we have learned so far.

  14. Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities.

    PubMed

    Nagy, László G; Riley, Robert; Tritt, Andrew; Adam, Catherine; Daum, Chris; Floudas, Dimitrios; Sun, Hui; Yadav, Jagjit S; Pangilinan, Jasmyn; Larsson, Karl-Henrik; Matsuura, Kenji; Barry, Kerrie; Labutti, Kurt; Kuo, Rita; Ohm, Robin A; Bhattacharya, Sukanta S; Shirouzu, Takashi; Yoshinaga, Yuko; Martin, Francis M; Grigoriev, Igor V; Hibbett, David S

    2016-04-01

    Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white-rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Quasars at Cosmic Dawn: Discoveries and Probes of the Early Universe

    NASA Astrophysics Data System (ADS)

    Wang, Feige; Wu, Xue-Bing; Fan, Xiaohui; Yang, Jinyi; Bian, Fuyan; McGreer, Ian D.; Green, Richard F.; Yang, Qian; Jiang, Linhua; Wang, Ran; DECaLS Team; UHS Team

    2017-01-01

    High redshift quasars, as the most luminous non-transient objects in the early universe, are the most promising tracers to address the history of cosmic reionization and how the origins of super-massive black hole (SMBH) are linked to galaxy formation and evolution. Over the last fifteen years, more than 100 quasars within the first billion years after the Big Bang have been discovered with the highest redshift at 7.1. We have developed a new method to select z>~6 quasars with both high efficiency and high completeness by combing optical and mid-IR Wide-field Infrared Survey Explorer (WISE) photometric data. We have applied this method to SDSS footprint and resulted in the discovery of the most luminous z>6 quasar ever discovered, which hosts a twelve billion solar mass black hole. I will present detailed follow-up observations of the host galaxies and environment of the most luminous quasars using HST, LBT and ALMA, in order to constrain early black hole growth and black hole/galaxy co-evolution at the highest redshift. I will also present initial results from a new quasar survey, which utilizes optical data from DECaLS, which is imaging 6700 deg^2 of sky down to z_AB˜23.0, and neaar-IR data from UHS and UKIDSS, which maps the whole northern sky at Decl.<+60deg. The combination of these datasets allows us to discover quasars at redshift z>~7 and to conduct a complete census of the faint quasar population at z~6.

  16. Effects of biases in domain wall network evolution. II. Quantitative analysis

    NASA Astrophysics Data System (ADS)

    Correia, J. R. C. C. C.; Leite, I. S. C. R.; Martins, C. J. A. P.

    2018-04-01

    Domain walls form at phase transitions which break discrete symmetries. In a cosmological context, they often overclose the Universe (contrary to observational evidence), although one may prevent this by introducing biases or forcing anisotropic evolution of the walls. In a previous work [Correia et al., Phys. Rev. D 90, 023521 (2014), 10.1103/PhysRevD.90.023521], we numerically studied the evolution of various types of biased domain wall networks in the early Universe, confirming that anisotropic networks ultimately reach scaling while those with a biased potential or biased initial conditions decay. We also found that the analytic decay law obtained by Hindmarsh was in good agreement with simulations of biased potentials, but not of biased initial conditions, and suggested that the difference was related to the Gaussian approximation underlying the analytic law. Here, we extend our previous work in several ways. For the cases of biased potential and biased initial conditions, we study in detail the field distributions in the simulations, confirming that the validity (or not) of the Gaussian approximation is the key difference between the two cases. For anisotropic walls, we carry out a more extensive set of numerical simulations and compare them to the canonical velocity-dependent one-scale model for domain walls, finding that the model accurately predicts the linear scaling regime after isotropization. Overall, our analysis provides a quantitative description of the cosmological evolution of these networks.

  17. Xenia Mission: Spacecraft Design Concept

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Johnson, C. L.; Kouveliotou, C.; Jones, D.; Baysinger, M.; Bedsole, T.; Maples, C. C.; Benfield, P. J.; Turner, M.; Capizzo, P.; hide

    2009-01-01

    The proposed Xenia mission will, for the first time, chart the chemical and dynamical state of the majority of baryonic matter in the universe. using high-resolution spectroscopy, Xenia will collect essential information from major traces of the formation and evolution of structures from the early universe to the present time. The mission is based on innovative instrumental and observational approaches: observing with fast reaction gamma-ray bursts (GRBs) with a high spectral resolution. This enables the study of their (star-forming) environment from the dark to the local universe and the use of GRBs as backlight of large-scale cosmological structures, observing and surveying extended sources with high sensitivity using two wide field-of-view x-ray telescopes - one with a high angular resolution and the other with a high spectral resolution.

  18. Astrobiology: A Roadmap for Charting Life in the Universe

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.; DeVincezi, D. (Technical Monitor)

    2002-01-01

    Astrobiology is the study of the origin, evolution and distribution of life in the universe. It provides a biological perspective to many areas of NASA research. It links such endeavors as the search for habitable planets, exploration missions to Mars and the outer Solar System, efforts to understand the origins and early evolution of life, and charting the potential of life to adapt to future challenges, both on Earth and in space. Astrobiology addresses the following three basic questions, which have been asked in some form for generations. How does life begin and evolve? Does life exist elsewhere in the universe? What is future of life on Earth and beyond? The NASA Astrobiology Roadmap provides guidance for research and technology development across several NASA Enterprises: Space Science, Earth Science, and the Human Exploration and Development of Space. The Roadmap is formulated in terms of eight Science Goals that outline key domains of investigation that might require perhaps decades of effort to consolidate. For each of these goals, Science Objectives outline more specific high priority near-term efforts for the next three to five years. These twenty objectives will be integrated with NASA strategic planning.

  19. Investigating the Chemical Evolution of the Universe via Numerical Simulations: Supernova Dust Destruction and Non-Equilibrium Ionization Chemistry

    NASA Astrophysics Data System (ADS)

    Silvia, Devin W.

    2013-12-01

    The chemical evolution of the Universe is a complicated process with countless facets that define its properties over the course of time. In the early Universe, the metal-free first stars were responsible for originally introducing metals into the pristine gas left over from the Big Bang. Once these metals became prevalent, they forever altered the thermodynamics of the Universe. Understanding precisely where these metals originated, where they end up, and the conditions they experience along the way is of great interest in the astrophysical community. In this work, I have used numerical simulations as a means of understanding two separate phenomena related to the chemical evolution the Universe. The first topic focuses on the question as to whether or not core-collapse supernovae in the high-redshift universe are capable of being "dust factories" for the production of galactic dust. To achieve this, I carried out idealized simulations of supernova ejecta clouds being impacted by reverse-shock blast waves. By post-processing the results of these simulations, I was able to estimate the amount of dust destruction that would occur due to thermal sputtering. In the most extreme scenarios, simulated with high relative velocities between the shock and the ejecta cloud and high gas metallicities, I find complete destruction for some grains species and only 44% dust mass survival for even the most robust species. This raises the question as to whether or not high-redshift supernova can produce dust masses in sufficient excess of the ˜1 Msun per event required to match observations of high-z galaxies. The second investigation was driven by the desire to find an answer to the missing baryon problem and a curiosity as to the impact that including a full non-equilibrium treatment of ionization chemistry has on simulations of the intergalactic medium. To address these questions, I have helped to develop Dengo, a new software package for solving complex chemical networks. Once this new package was integrated into Enzo, I carried out a set of cosmological simulations that served as both a test of the new solver and a confirmation that non-equilibrium ionization chemistry produces results that are drastically different from those that assume collisional ionization equilibrium. Although my analysis of these simulations is in its early stages, I find that the observable properties of the intergalactic medium change considerably. Continued efforts to run state-of-the-art simulations of the intergalactic medium using Dengo are warranted.

  20. Inflation of the early cold Universe filled with a nonlinear scalar field and a nonideal relativistic Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pashitskii, E. A., E-mail: pashitsk@iop.kiev.ua; Pentegov, V. I., E-mail: pentegov@iop.kiev.ua

    We consider a possible scenario for the evolution of the early cold Universe born from a fairly large quantum fluctuation in a vacuum with a size a{sub 0} ≫ l{sub P} (where l{sub P} is the Planck length) and filled with both a nonlinear scalar field φ, whose potential energy density U(φ) determines the vacuum energy density λ, and a nonideal Fermi gas with short-range repulsion between particles, whose equation of state is characterized by the ratio of pressure P(n{sub F}) to energy density ε(n{sub F}) dependent on the number density of fermions n{sub F}. As the early Universe expands,more » the dimensionless quantity ν(n{sub F}) = P(n{sub F})/ε(n{sub F}) decreases with decreasing n{sub F} from its maximum value ν{sub max} = 1 for n{sub F} → ∞ to zero for n{sub F} → 0. The interaction of the scalar and gravitational fields, which is characterized by a dimensionless constant ξ, is proportional to the scalar curvature of four-dimensional space R = κ[3P(n{sub F})–ε(n{sub F})–4λ] (where κ is Einstein’s gravitational constant), and contains terms both quadratic and linear in φ. As a result, the expanding early Universe reaches the point of first-order phase transition in a finite time interval at critical values of the scalar curvature R = R{sub c} =–μ{sup 2}/ξ and radius a{sub c} ≫ a{sub 0}. Thereafter, the early closed Universe “rolls down” from the flat inflection point of the potential U(φ) to the zero potential minimum in a finite time. The release of the total potential energy of the scalar field in the entire volume of the expanding Universe as it “rolls down” must be accompanied by the production of a large number of massive particles and antiparticles of various kinds, whose annihilation plays the role of the Big Bang. We also discuss the fundamental nature of Newton’ gravitational constant G{sub N}.« less

  1. Physical Properties of Massive, Star-Forming Galaxies When the Universe Was Only Two Billion Years Old

    NASA Astrophysics Data System (ADS)

    Fu, Nicole Christina

    Due to the finite speed of light and a vast, expanding universe, telescopes are just now receiving the light emitted by galaxies as they were forming in the very early universe. The light from these galaxies has been redshifted (stretched to longer, redder wavelengths) as a result of its journey through expanding space. Using sophisticated techniques and exceptional multi-wavelength optical and infrared data, we isolate a population of 378 galaxies in the process of formation when the Universe was only two billion years old. By matching the distinctive properties of the light spectra of these galaxies to models, the redshift, age, dust content, star formation rate and total stellar mass of each galaxy are determined. Comparing our results to similar surveys of galaxy populations at other redshifts, a picture emerges of the growth and evolution of massive, star-forming galaxies over the course of billions of years.

  2. A unified universe

    NASA Astrophysics Data System (ADS)

    Codello, Alessandro; Jain, Rajeev Kumar

    2018-05-01

    We present a unified evolution of the universe from very early times until the present epoch by including both the leading local correction R^2 and the leading non-local term R1/\\square ^2R to the classical gravitational action. We find that the inflationary phase driven by R^2 term gracefully exits in a transitory regime characterized by coherent oscillations of the Hubble parameter. The universe then naturally enters into a radiation dominated epoch followed by a matter dominated era. At sufficiently late times after radiation-matter equality, the non-local term starts to dominate inducing an accelerated expansion of the universe at the present epoch. We further exhibit the fact that both the leading local and non-local terms can be obtained within the covariant effective field theory of gravity. This scenario thus provides a unified picture of inflation and dark energy in a single framework by means of a purely gravitational action without the usual need of a scalar field.

  3. Large Format Arrays for Far Infrared and Millimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Moseley, Harvey

    2004-01-01

    Some of the most compelling questions in modem astronomy are best addressed with submillimeter and millimeter observations. The question of the role of inflation in the early evolution of the universe is best addressed with large sensitive arrays of millimeter polarimeters. The study of the first generations of galaxies requires sensitive submillimeter imaging, which can help us to understand the history of energy release and nucleosynthesis in the universe. Our ability to address these questions is dramatically increasing, driven by dramatic steps in the sensitivity and size of available detector arrays. While the MIPS instrument on the SIRTF mission will revolutionize far infrared astronomy with its 1024 element array of photoconductors, thermal detectors remain the dominant technology for submillimeter and millimeter imaging and polarimetry. The last decade has seen the deployment of increasingly large arrays of bolometers, ranging from the 48 element arrays deployed on the KAO in the late 198Os, to the SHARC and SCUBA arrays in the 1990s. The past years have seen the deployment of a new generation of larger detector arrays in SHARC II (384 channels) and Bolocam (144 channels). These detectors are in operation and are beginning to make significant impacts on the field. Arrays of sensitive submillimeter bolometers on the SPIRE instrument on Herschel will allow the first large areas surveys of the sky, providing important insight into the evolution of galaxies. The next generation of detectors, led by SCUBA II, will increase the focal scale of these instruments by an order of magnitude. Two major missions are being planned by NASA for which further development of long wavelength detectors is essential, The SAFlR mission, a 10-m class telescope with large arrays of background limited detectors, will extend our reach into the epoch of initial galaxy formation. A major goal of modem cosmology is to test the inflationary paradigm in the early evolution of the universe. To this end, a mission is planned to detect the imprint of inflation on the CMB by precision measurement of its polarization. This work requires very large arrays of sensitive detectors which can provide unprecedented control of a wide range of systematic errors, given the small amplitude of the signal of interest. We will describe the current state of large format detector arrays, the performance requirements set by the new missions, and the different approaches being developed in the community to meet these requirements. We are confident that within a decade, these developments will lead to dramatic advances in our understanding of the evolution of the universe.

  4. The Chemical Evolution of Phosphorus

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-12-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning -3.3 <= [Fe/H] <= -0.2, and obtained an upper limit for a star with [Fe/H] ~ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of -1 <= [Fe/H] <= +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This work is supported through program AR-13246. Other portions of this work are based on data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and the McDonald Observatory of the University of Texas at Austin.

  5. Rab protein evolution and the history of the eukaryotic endomembrane system

    PubMed Central

    Brighouse, Andrew; Dacks, Joel B.

    2010-01-01

    Spectacular increases in the quantity of sequence data genome have facilitated major advances in eukaryotic comparative genomics. By exploiting homology with classical model organisms, this makes possible predictions of pathways and cellular functions currently impossible to address in intractable organisms. Echoing realization that core metabolic processes were established very early following evolution of life on earth, it is now emerging that many eukaryotic cellular features, including the endomembrane system, are ancient and organized around near-universal principles. Rab proteins are key mediators of vesicle transport and specificity, and via the presence of multiple paralogues, alterations in interaction specificity and modification of pathways, contribute greatly to the evolution of complexity of membrane transport. Understanding system-level contributions of Rab proteins to evolutionary history provides insight into the multiple processes sculpting cellular transport pathways and the exciting challenges that we face in delving further into the origins of membrane trafficking specificity. PMID:20582450

  6. Gravitational Instabilities in Disks: From Polytropes to Protoplanets?

    NASA Astrophysics Data System (ADS)

    Durisen, R. H.

    2004-12-01

    Gravitational instabilities (GI's) probably occur in disks around young stellar objects during their early embedded phase. This paper reviews what is known about the nonlinear consequences of GI's for planet formation and disk evolution. All researchers agree that, for sufficiently fast cooling, disks fragment into dense clumps or arclike structures, but there is no universal agreement about whether fast enough cooling to cause fragmentation ever occurs and, if it does, whether any clumps that form will become bound protoplanets.

  7. Records of our Early Biosphere Illuminate our Origins and Guide our Search for Life Beyond Earth

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2003-01-01

    A scientific "mission of exploration to early Earth" will help us chart the distribution of life elsewhere. We must discriminate between attributes of biospheres that are universal versus those attributes that represent principally the outcomes of long-term survival specifically on Earth. In addition to the basic physics and chemistry of matter, the geologic evolution of rocky habitable planets and their climates might be similar elsewhere in the Universe. Certain key agents that drive long-term environmental change (e.g., stellar evolution, impacts, geothermal heat flow, tectonics, etc.) can help us to reconstruct ancient climates and to compare their evolution among populations of Earth- like planets. Early Earth was tectonically more active than today and therefore it exhaled reduced chemical species into the more oxidized surface environment at greater rates. This tectonic activity thus sustained oxidation-reduction reactions that provided the basis for the development of biochemical pathways that harvest chemical energy ("bioenergetics"). Most examples of bioenergetics today that extract energy by reacting oxidized and reduced chemicals in the environment were likely more pervasive among our microbial ancestors than are the presently known examples of photosynthesis. The geologic rock record indicates that, as early as 3.5 billion years ago (3.5 Ga), microbial biofilms were widespread within the coastal environments of small continents and tectonically unstable volcanic islands. Non oxygen-producing (non-oxygenic) photosynthesis preceded oxygenic photosynthesis, but all types of photosynthesis contributed substantially to the long-term increase in global primary biological productivity. Evidence of photosynthesis is tentative by 3.5 Ga and compelling by 2.7 Ga. Evidence of oxygenic photosynthesis is strong by 2.7 Ga and compelling by 2.3 Ga. These successive innovations transformed life from local communities that survived principally by catalyzing chemical equilibration to a globally dominant agent that created and sustained widespread chemical disequilibria in the environment and shallow crust. Major biogeochemical perturbations ca. 2.3 to 2.0 Ga, 1.3 Ga, and also 0.8 to 0.6 Ga, contributed to the irreversible oxidation of the global environment and perhaps also triggered evolutionary innovations (e.g., the development of multi-cellular biota) that became the foundations of our modern biosphere. Understanding the nature and timing of this ascent of life is crucial for discerning our o m beginnings. This understanding also empowers OUT search for the origins, evolution and distribution of life elsewhere in our solar system and beyond.

  8. FAST MAGNETIC FIELD AMPLIFICATION IN THE EARLY UNIVERSE: GROWTH OF COLLISIONLESS PLASMA INSTABILITIES IN TURBULENT MEDIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falceta-Gonçalves, D.; Kowal, G.

    2015-07-20

    In this work we report on a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of the magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that (i) amplification of the magnetic field was efficient in firehose-unstable turbulent regimes, but not in the mirror-unstable models; (ii) the growthmore » rate of the magnetic energy density is much faster than the turbulent dynamo; and (iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales and pressure anisotropy is confirmed by the numerical simulations. These results reinforce the idea that pressure anisotropies—driven naturally in a turbulent collisionless medium, e.g., the intergalactic medium, could efficiently amplify the magnetic field in the early universe (post-recombination era), previous to the collapse of the first large-scale gravitational structures. This mechanism, though fast for the small-scale fields (∼kpc scales), is unable to provide relatively strong magnetic fields at large scales. Other mechanisms that were not accounted for here (e.g., collisional turbulence once instabilities are quenched, velocity shear, or gravitationally induced inflows of gas into galaxies and clusters) could operate afterward to build up large-scale coherent field structures in the long time evolution.« less

  9. Supermassive Black Holes in Bulgeless and Dwarf Galaxies: A Multi-Wavelength Investigation

    NASA Astrophysics Data System (ADS)

    Secrest, Nathan J.

    Supermassive black holes (SMBHs) are now understood to reside at the centers of nearly all major galaxies in the Universe. From studies of high-redshift quasars, we understand that SMBHs formed very early in the Universe's history, and well-studied correlations between other properties of galaxies, such as their morphologies, star formation rate, and merger history, with their central SMBH shows that SMBHs played a key role in the evolution of galaxies. The fact that the post-Big Bang Universe was extremely uniform and homogeneous presents a major mystery: How did SMBHs millions to billions of times as massive as the Sun form in such a short time? Given the theoretical limit at which a black hole can accrete material, it is not plausible that SMBHs could have formed through the conventional route: the end stage of the lifecycle of a massive star. Rather, there are two major theories for the formation of SMBHs, each with its own prediction for the black hole mass distribution and occupation fraction in the local Universe. Understanding this mass distribution and occupation fraction is therefore imperative to understanding the formation of SMBHs, the quasars that reveal their presence in the early Universe, and ultimately the evolution of galaxies to the present day. While large SMBHs in major, bulge-dominated galaxies are relatively easy to detect and characterize, this population of SMBHs is understood to have been built up largely through black hole merger events that erase any information about the progenitor black holes' masses. We must therefore search for SMBHs in late-type, bulgeless, and dwarf galaxies, which are much more likely to have had a relatively quiet, merger-free history, in order to glimpse the properties of the `seed' black holes that led to the buildup of SMBHs during the earliest epoch of the Universe. In this thesis, I will discuss my contributions to the understanding of this question, as well as what questions remain to be answered and the future of research in this field.

  10. A History of the Andrew File System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashear, Derrick

    2011-02-22

    Derrick Brashear and Jeffrey Altman will present a technical history of the evolution of Andrew File System starting with the early days of the Andrew Project at Carnegie Mellon through the commercialization by Transarc Corporation and IBM and a decade of OpenAFS. The talk will be technical with a focus on the various decisions and implementation trade-offs that were made over the course of AFS versions 1 through 4, the development of the Distributed Computing Environment Distributed File System (DCE DFS), and the course of the OpenAFS development community. The speakers will also discuss the various AFS branches developed atmore » the University of Michigan, Massachusetts Institute of Technology and Carnegie Mellon University.« less

  11. Reconstructing galaxy histories from globular clusters.

    PubMed

    West, Michael J; Côté, Patrick; Marzke, Ronald O; Jordán, Andrés

    2004-01-01

    Nearly a century after the true nature of galaxies as distant 'island universes' was established, their origin and evolution remain great unsolved problems of modern astrophysics. One of the most promising ways to investigate galaxy formation is to study the ubiquitous globular star clusters that surround most galaxies. Globular clusters are compact groups of up to a few million stars. They generally formed early in the history of the Universe, but have survived the interactions and mergers that alter substantially their parent galaxies. Recent advances in our understanding of the globular cluster systems of the Milky Way and other galaxies point to a complex picture of galaxy genesis driven by cannibalism, collisions, bursts of star formation and other tumultuous events.

  12. Singular F(R) cosmology unifying early- and late-time acceleration with matter and radiation domination era

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-06-01

    We present some cosmological models which unify the late- and early-time acceleration eras with the radiation and the matter domination era, and we realize the cosmological models by using the theoretical framework of F(R) gravity. Particularly, the first model unifies the late- and early-time acceleration with the matter domination era, and the second model unifies all the evolution eras of our Universe. The two models are described in the same way at early and late times, and only the intermediate stages of the evolution have some differences. Each cosmological model contains two Type IV singularities which are chosen to occur one at the end of the inflationary era and one at the end of the matter domination era. The cosmological models at early times are approximately identical to the R 2 inflation model, so these describe a slow-roll inflationary era which ends when the slow-roll parameters become of order one. The inflationary era is followed by the radiation era and after that the matter domination era follows, which lasts until the second Type IV singularity, and then the late-time acceleration era follows. The models have two appealing features: firstly they produce a nearly scale invariant power spectrum of primordial curvature perturbations and a scalar-to-tensor ratio which are compatible with the most recent observational data and secondly, it seems that the deceleration-acceleration transition is crucially affected by the presence of the second Type IV singularity which occurs at the end of the matter domination era. As we demonstrate, the Hubble horizon at early times shrinks, as expected for an initially accelerating Universe, then during the matter domination era, it expands and finally after the Type IV singularity, the Hubble horizon starts to shrink again, during the late-time acceleration era. Intriguingly enough, the deceleration-acceleration transition, occurs after the second Type IV singularity. In addition, we investigate which F(R) gravity can successfully realize each of the four cosmological epochs.

  13. The Physical Properties of Intracluster Gas at z > 1

    NASA Technical Reports Server (NTRS)

    Rosati, Piero; Ford, Holland C.

    2004-01-01

    We have used XMM-Newton, Chandra and HST/ACS data on one of the most distant clusters known to date, RDCS1252-29 at z= 1.24, to measure the mass of its baryonic and dark components for the first time at these large redshifts. By comparing physical properties of cluster galaxies and of the X-ray emitting intra-cluster medium (including the iron abundance) with those in low-redshift clusters, we have found that little evolution has taken place over 60% of the lifetime of the Universe. This suggests that most of the stars formed at z>approx.3 and metal enrichment processes took place early in the evolutionary history of galaxy clusters. These findings have a strong bearing on galaxy and cluster evolution models.

  14. Setting the stage for habitable planets.

    PubMed

    Gonzalez, Guillermo

    2014-02-21

    Our understanding of the processes that are relevant to the formation and maintenance of habitable planetary systems is advancing at a rapid pace, both from observation and theory. The present review focuses on recent research that bears on this topic and includes discussions of processes occurring in astrophysical, geophysical and climatic contexts, as well as the temporal evolution of planetary habitability. Special attention is given to recent observations of exoplanets and their host stars and the theories proposed to explain the observed trends. Recent theories about the early evolution of the Solar System and how they relate to its habitability are also summarized. Unresolved issues requiring additional research are pointed out, and a framework is provided for estimating the number of habitable planets in the Universe.

  15. Setting the Stage for Habitable Planets

    PubMed Central

    Gonzalez, Guillermo

    2014-01-01

    Our understanding of the processes that are relevant to the formation and maintenance of habitable planetary systems is advancing at a rapid pace, both from observation and theory. The present review focuses on recent research that bears on this topic and includes discussions of processes occurring in astrophysical, geophysical and climatic contexts, as well as the temporal evolution of planetary habitability. Special attention is given to recent observations of exoplanets and their host stars and the theories proposed to explain the observed trends. Recent theories about the early evolution of the Solar System and how they relate to its habitability are also summarized. Unresolved issues requiring additional research are pointed out, and a framework is provided for estimating the number of habitable planets in the Universe. PMID:25370028

  16. The Age of Precision Cosmology

    NASA Technical Reports Server (NTRS)

    Chuss, David T.

    2012-01-01

    In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as Uinflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.

  17. Could the dynamics of the Universe be influenced by what is going on inside black holes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avelino, P.P., E-mail: pedro.avelino@astro.up.pt

    We investigate the potential impact of mass inflation inside black holes on the dynamics of the Universe, considering a recent reformulation of general relativity, proposed in [1], which prevents the vacuum energy from acting as a gravitational source. The interior dynamics of accreting black holes is studied, at the classical level, using the homogeneous approximation and taking charge as a surrogate for angular momentum. We show that, depending on the accreting fluid properties, mass inflation inside black holes could influence the value of the cosmological constant and thus the dynamics of the Universe. A full assessment of the cosmological rolemore » played by black holes will require a deeper understanding of the extremely energetic regimes expected inside real astrophysical black holes, including their relation with the physics of the very early Universe, and may eventually lead to an entirely new paradigm for the origin and evolution of the Universe.« less

  18. Morphological Perspectives on Galaxy Evolution since z~1.5

    NASA Astrophysics Data System (ADS)

    Rutkowski, Michael

    Galaxies represent a fundamental catalyst in the "lifecycle'' of matter in the Universe, and the study of galaxy assembly and evolution provides unique insight into the physical processes governing the transformation of matter from atoms to gas to stars. With the Hubble Space Telescope, the astrophysical community is able to study the formation and evolution of galaxies, at an unrivaled spatial resolution, over more than 90% of cosmic time. Here, I present results from two complementary studies of galaxy evolution in the local and intermediate redshift Universe which used new and archival HST images. First, I use archival broad-band HST WFPC2 optical images of local (d < 63 Mpc) Seyfert-type galaxies to test the observed correlation between visually-classified host galaxy dust morphology and AGN class. Using quantitative parameters for classifying galaxy morphology, I do not measure a strong correlation between the galaxy morphology and AGN class. This result could imply that the Unified Model of AGN provides a sufficient model for the observed diversity of AGN, but this result could also indicate the quantitative techniques are insufficient for characterizing the dust morphology of local galaxies. To address the latter, I develop a new automated method using an inverse unsharp masking technique coupled to Source Extractor to detect and measure dust morphology. I measure no strong trends with dust-morphology and AGN class using this method, and conclude that the Unified Model remains sufficient to explain the diversity of AGN. Second, I use new UV-optical-near IR broad-band images obtained with the HST WFC3 in the Early Release Science (ERS) program to study the evolution of massive, early-type galaxies. These galaxies were once considered to be "red and dead'', as a class uniformly devoid of recent star formation, but observations of these galaxies in the local Universe at UV wavelengths have revealed a significant fraction (30%) of ETGs to have recently formed a small fraction (5--10%) of their stellar mass in young stars. I extend the study of recent star formation in ETGs to intermediate-redshift 0.35 intermediate-redshift 0.35 < z < 1.5 with the ERS data. Comparing the mass fraction and age of young stellar populations identified in these ETGs from two-component SED analysis with the morphology of the ETG and the frequency of companions, I find that at this redshift many ETGs are likely to have experienced a minor burst of recent star formation. The mechanisms driving this recent star formation are varied, and evidence for both minor merger driven recent star formation as well as the evolution of transitioning ETGs is identified.

  19. Astrobiology at Arizona State University: An Overview of Accomplishments

    NASA Technical Reports Server (NTRS)

    Farmer, Jack

    2005-01-01

    During our five years as an NAI charter member, Arizona State University sponsored a broadly-based program of research and training in Astrobiology to address the origin, evolution and distribution of life in the Solar System. With such a large, diverse and active team, it is not possible in a reasonable space, to cover all details of progress made over the entire five years. The following paragraphs provide an overview update of the specific research areas pursued by the Arizona State University (ASU) Astrobiology team at the end of Year 5 and at the end of the 4 month and subsequent no cost month extensions. for a more detailed review, the reader is referred to the individual annual reports (and Executive Summaries) submitted to the NAI at the end of each of our five years of membership. Appended in electronic form is our complete publication record for all five years, plus a tabulation of undergraduates, graduate students and post-docs supported by our program during this time. The overarching theme of ASU s Astrobiology program was "Exploring the Living Universe: Studies of the Origin, Evolution and Distribution of Life in the Solar System". The NAi-funded research effort was organized under three basic sub- themes: 1. Origins of the Basic Building Blocks of Life. 2. Early Biosphere Evolution. and 3. Exploring for Life in the Solar System. These sub-theme areas were in turn, subdivided into Co-lead research modules. In the paragraphs that follow, accomplishments for individual research modules are briefly outlined, and the key participants presented in tabular form. As noted, publications for each module are appended in hard copy and digital formats, under the name(s) of lead co-Is.

  20. Violence in the hearts of galaxies: aberration or adolescence?

    PubMed

    Mundell, Carole G

    2002-12-15

    Violent activity in the nuclei of galaxies has long been considered a curiosity in its own right; manifestations of this phenomenon include distant quasars in the early Universe and comparatively nearby Seyfert galaxies, both thought to be powered by the release of gravitational potential energy as material from the host galaxy accretes onto a central supermassive black hole (SMBH). Traditionally, the broader study of the formation, structure and evolution of galaxies has largely excluded active galactic nuclei. Recently, however, this situation has changed dramatically, both observationally and theoretically, with the realization that the growth and influence of the SMBH, the origin and development of galaxies and nuclear activity at different epochs in the Universe may be intimately related. The most spectacular fireworks seen in distant quasars may be relatively easy to explain, since the era of greatest quasar activity seems to coincide with turbulent dynamics at the epoch of galaxy formation in the young, gas-rich Universe. Ubiquitous black holes are believed to be a legacy of this violent birth. Alternatively, black holes may be the seeds that drive galaxy formation in the first place. Closer to home, and hence more recently in the history of the Universe, a fraction of comparatively ordinary galaxies, similar to our own, has reignited their central engines, albeit at a lower level of activity. Since these galaxies are more established than their younger and more distant counterparts, the activity here is all the more puzzling. Whatever the mechanisms involved, they are likely to play an important role in galaxy evolution. I review the intriguing evidence for causal links between SMBHs, nuclear activity and the formation and evolution of galaxies, and describe opportunities for testing these relationships using the next generation of earthbound and space-borne astronomical facilities.

  1. Until the sun dies. [Book on origin of universe, life and intelligence on earth

    NASA Technical Reports Server (NTRS)

    Jastrow, R.

    1977-01-01

    This book gives a popular account of the forces that have shaped human beings into their present form and created the power of human intelligence, and considers the prospects for intelligent life on other planets in the solar system and elsewhere in the universe. The chain of events leading from the big bang to the origin of life on earth is reviewed together with the observations that established the expansion of the universe. Philosophical difficulties with the concept of a universe that has both a beginning and an end are pondered, steady-state cosmology is briefly explained, and the discovery of the relict microwave background is discussed. The formation of the solar system is recounted along with the scientific view of the origin of terrestrial life. Attention is given to the origin of cells and the evolution of oxygen-breathing life, multicelled creatures, armored animals, fishes, amphibians, early reptiles, dinosaurs, and mammals. The development of mammalian intelligence is traced from the early tree dwellers through monkeys, apes, ape men, humanoid tool makers, and primitive members of the genus Homo, to Homo sapiens. Possible evidence for the existence of life on Mars is evaluated together with prospects for communication or other contact with extraterrestrial intelligence.

  2. Chemical evolution and the preservation of organic compounds on Mars

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia; Mancinelli, Rocco L.

    1989-01-01

    Several lines of evidence suggest that the environment on early Mars and early Earth were very similar. Since life is abundant on Earth, it seems likely that conditions on early Earth were conducive to chemical evolution and the origin of life. The similarity between early Mars and early Earth encourages the hypothesis that chemical evolution might have also occurred on Mars, but that decreasing temperatures and the loss of its atmosphere brought the evolution to a halt. The possibility of finding on Mars remnants of organic material dating back to this early clement period is addressed.

  3. Biopharmaceutical Innovation System in China: System Evolution and Policy Transitions (Pre-1990s-2010s).

    PubMed

    Hu, Hao; Chung, Chao-Chen

    2015-09-03

    This article sets up the initial discussion of the evolution of biopharmaceutical innovation in China through the perspective of sectoral innovation system (SIS). Two data sources including archival documentary data and field interviews were used in this study. Archival documentary data was collected from China Food and Drug Administration (CFDA) and Chinese National Knowledge Infrastructure (CNKI). In addition, industrial practitioners and leading researchers in academia were interviewed. Biopharmaceutical in China was established through international knowledge transfer. The firms played more active role in commercializing biopharmaceutical in China though universities and research institutes were starting to interact with local firms and make contribution to biopharmaceutical industrialization. The transition of the Chinese government's policies continuously shapes the evolution of biopharmaceutical sector. Policies have been dramatic changes before and after 1980s to encourage developing biopharmaceutical as a competitive industry for China. A SIS for biopharmaceutical has been shaped in China. However, currently biopharmaceutical is still a small sector in China, and for the further growth of the industry more synthetic policies should be implemented. Not only the policy supports towards the research and innovation of biopharmaceuticals in the early stage of development should be attended, but also commercialization of biopharmaceutical products in the later stage of sales. © 2015 by Kerman University of Medical Sciences.

  4. Plastid Phylogenomic Analyses Resolve Tofieldiaceae as the Root of the Early Diverging Monocot Order Alismatales.

    PubMed

    Luo, Yang; Ma, Peng-Fei; Li, Hong-Tao; Yang, Jun-Bo; Wang, Hong; Li, De-Zhu

    2016-04-06

    The predominantly aquatic order Alismatales, which includes approximately 4,500 species within Araceae, Tofieldiaceae, and the core alismatid families, is a key group in investigating the origin and early diversification of monocots. Despite their importance, phylogenetic ambiguity regarding the root of the Alismatales tree precludes answering questions about the early evolution of the order. Here, we sequenced the first complete plastid genomes from three key families in this order:Potamogeton perfoliatus(Potamogetonaceae),Sagittaria lichuanensis(Alismataceae), andTofieldia thibetica(Tofieldiaceae). Each family possesses the typical quadripartite structure, with plastid genome sizes of 156,226, 179,007, and 155,512 bp, respectively. Among them, the plastid genome ofS. lichuanensisis the largest in monocots and the second largest in angiosperms. Like other sequenced Alismatales plastid genomes, all three families generally encode the same 113 genes with similar structure and arrangement. However, we detected 2.4 and 6 kb inversions in the plastid genomes ofSagittariaandPotamogeton, respectively. Further, we assembled a 79 plastid protein-coding gene sequence data matrix of 22 taxa that included the three newly generated plastid genomes plus 19 previously reported ones, which together represent all primary lineages of monocots and outgroups. In plastid phylogenomic analyses using maximum likelihood and Bayesian inference, we show both strong support for Acorales as sister to the remaining monocots and monophyly of Alismatales. More importantly, Tofieldiaceae was resolved as the most basal lineage within Alismatales. These results provide new insights into the evolution of Alismatales as well as the early-diverging monocots as a whole. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Origin of the biologically important elements.

    PubMed

    Trimble, V

    1997-06-01

    The chemical elements most widely distributed in terrestrial living creatures are the ones (apart from inert helium and neon) that are commonest in the Universe--hydrogen, oxygen, carbon, and nitrogen. A chemically different Universe would clearly have different biology, if any. We explore here the nuclear processes in stars, the early Universe, and elsewhere that have produced these common elements, and, while we are at it, also encounter the production of lithium, gold, uranium, and other elements of sociological, if not biological, importance. The relevant processes are, for the most part, well understood. Much less well understood is the overall history of chemical evolution of the Galaxy, from pure hydrogen and helium to the mix of elements we see today. One implication is that we cannot do a very good job of estimating how many stars and which ones might be orbited by habitable planets.

  6. Elementary particles in the early Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gromov, N.A., E-mail: gromov@dm.komisc.ru

    The high-temperature limit of the Standard Model generated by the contractions of gauge groups is discussed. Contraction parameters of gauge group SU(2) of the Electroweak Model and gauge group SU(3) of Quantum Chromodynamics are taken identical and tending to zero when the temperature increases. Properties of the elementary particles change drastically at the infinite temperature limit: all particles lose masses, all quarks are monochromatic. Electroweak interactions become long-range and are mediated by neutral currents. Particles of different kind do not interact. It looks like some stratification with only one sort of particles in each stratum. The Standard Model passes inmore » this limit through several stages, which are distinguished by the powers of the contraction parameter. For any stage intermediate models are constructed and the exact expressions for the respective Lagrangians are presented. The developed approach describes the evolution of the Standard Model in the early Universe from the Big Bang up to the end of several nanoseconds.« less

  7. PhD Thesis: String theory in the early universe

    NASA Astrophysics Data System (ADS)

    Gwyn, Rhiannon

    2009-11-01

    The intersection of string theory with cosmology is unavoidable in the early universe, and its exploration may shine light on both fields. In this thesis, three papers at this intersection are presented and reviewed, with the aim of providing a thorough and pedagogical guide to their results. First, we address the longstanding problem of finding a string theory realisation of the axion. Using warped compactifications in heterotic string theory, we show that the axion decay constant can be lowered to acceptable values by the warp factor. Next, we move to the subject of cosmic strings, whose network evolution could have important consequences for astrophysics and cosmology. In particular, there are quantitative differences between cosmic superstring networks and GUT cosmic string networks. We investigate the properties of cosmic superstring networks in warped backgrounds, giving the tension and properties of three-string junctions in these backgrounds. Finally, we examine the possibility that cosmic strings in heterotic string theory could be responsible for generating the galactic magnetic fields that seeded those observed today.

  8. Residual fluctuations in the matter and radiation distribution after the decoupling epoch. [of early universe

    NASA Technical Reports Server (NTRS)

    Silk, J.; Wilson, M. L.

    1980-01-01

    The residual spectra of matter and radiation fluctuations in the early universe are investigated, and the evolution of primordial adiabatic and isothermal fluctuations through the decoupling epoch is studied. Amplification of adiabatic density fluctuations during decoupling, or velocity 'overshoot', is largely suppressed by Compton drag. Consequently, the amplitude of density fluctuations entering the horizon prior to decoupling is larger than hitherto assumed in the adiabatic theory. Damping of primordial adiabatic density fluctuations by an order of magnitude occurs on mass-scales of 3 x 10 to the 13th solar masses (Omega = 1) or 10 to the 14th solar masses (Omega = 0.2). Comparison of the residual radiation fluctuations with observational limits indicates that the adiabatic theory is only acceptable if re-ionization of the intergalactic medium results in additional scattering of the radiation after decoupling. Primordial isothermal fluctuations are found to yield radiation fluctuations which are insensitive to the assumed spectrum and lie a factor of about 5 below current limits

  9. A universal method for detection of amyloidogenic misfolded proteins.

    PubMed

    Yam, Alice Y; Wang, Xuemei; Gao, Carol Man; Connolly, Michael D; Zuckermann, Ronald N; Bleu, Thieu; Hall, John; Fedynyshyn, Joseph P; Allauzen, Sophie; Peretz, David; Salisbury, Cleo M

    2011-05-24

    Diseases associated with the misfolding of endogenous proteins, such as Alzheimer's disease and type II diabetes, are becoming increasingly prevalent. The pathophysiology of these diseases is not totally understood, but mounting evidence suggests that the misfolded protein aggregates themselves may be toxic to cells and serve as key mediators of cell death. As such, an assay that can detect aggregates in a sensitive and selective fashion could provide the basis for early detection of disease, before cellular damage occurs. Here we report the evolution of a reagent that can selectively capture diverse misfolded proteins by interacting with a common supramolecular feature of protein aggregates. By coupling this enrichment tool with protein specific immunoassays, diverse misfolded proteins and sub-femtomole amounts of oligomeric aggregates can be detected in complex biological matrices. We anticipate that this near-universal approach for quantitative misfolded protein detection will become a useful research tool for better understanding amyloidogenic protein pathology as well as serve as the basis for early detection of misfolded protein diseases.

  10. Post-recombination early Universe cooling by translation-internal inter-conversion: The role of minor constituents.

    PubMed

    McCaffery, Anthony J

    2015-09-14

    Little is known of the mechanism by which H and H2, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H2, as Δj = - 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H2 in a H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H2 + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.

  11. Post-recombination early Universe cooling by translation–internal inter-conversion: The role of minor constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffery, Anthony J., E-mail: A.J.McCaffery@sussex.ac.uk

    Little is known of the mechanism by which H and H{sub 2}, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H{sub 2}, as Δj = − 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H{sub 2} in amore » H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H{sub 2} + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.« less

  12. Workshop on Early Crustal Genesis: Implications from Earth

    NASA Technical Reports Server (NTRS)

    Phinney, W. C. (Compiler)

    1981-01-01

    Ways to foster increased study of the early evolution of the Earth, considering the planet as a whole, were explored and recommendations were made to NASA with the intent of exploring optimal ways for integrating Archean studies with problems of planetary evolution. Major themes addressed include: (1) Archean contribution to constraints for modeling planetary evolution; (2) Archean surface conditions and processes as clues to early planetary history; and (3) Archean evidence for physical, chemical and isotopic transfer processes in early planetary crusts. Ten early crustal evolution problems are outlined.

  13. Early-type Galaxy Spin Evolution in the Horizon-AGN Simulation

    NASA Astrophysics Data System (ADS)

    Choi, Hoseung; Yi, Sukyoung K.; Dubois, Yohan; Kimm, Taysun; Devriendt, Julien. E. G.; Pichon, Christophe

    2018-04-01

    Using the Horizon-AGN simulation data, we study the relative role of mergers and environmental effects in shaping the spin of early-type galaxies (ETGs) after z ≃ 1. We follow the spin evolution of 10,037 color-selected ETGs more massive than {10}10 {M}ȯ that are divided into four groups: cluster centrals (3%), cluster satellites (33%), group centrals (5%), and field ETGs (59%). We find a strong mass dependence of the slow rotator fraction, f SR, and the mean spin of massive ETGs. Although we do not find a clear environmental dependence of f SR, a weak trend is seen in the mean value of the spin parameter driven by the satellite ETGs as they gradually lose their spin as their environment becomes denser. Galaxy mergers appear to be the main cause of total spin changes in 94% of the central ETGs of halos with {M}vir}> {10}12.5 {M}ȯ , but only 22% of satellite and field ETGs. We find that non-merger-induced tidal perturbations better correlate with the galaxy spin down in satellite ETGs than in mergers. Given that the majority of ETGs are not central in dense environments, we conclude that non-merger tidal perturbation effects played a key role in the spin evolution of ETGs observed in the local (z < 1) universe.

  14. Hierarchical formation of dark matter halos and the free streaming scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiyama, Tomoaki, E-mail: ishiyama@ccs.tsukuba.ac.jp

    2014-06-10

    The smallest dark matter halos are formed first in the early universe. According to recent studies, the central density cusp is much steeper in these halos than in larger halos and scales as ρ∝r {sup –(1.5-1.3)}. We present the results of very large cosmological N-body simulations of the hierarchical formation and evolution of halos over a wide mass range, beginning from the formation of the smallest halos. We confirmed early studies that the inner density cusps are steeper in halos at the free streaming scale. The cusp slope gradually becomes shallower as the halo mass increases. The slope of halosmore » 50 times more massive than the smallest halo is approximately –1.3. No strong correlation exists between the inner slope and the collapse epoch. The cusp slope of halos above the free streaming scale seems to be reduced primarily due to major merger processes. The concentration, estimated at the present universe, is predicted to be 60-70, consistent with theoretical models and earlier simulations, and ruling out simple power law mass-concentration relations. Microhalos could still exist in the present universe with the same steep density profiles.« less

  15. A CONSTANT LIMITING MASS SCALE FOR FLAT EARLY-TYPE GALAXIES FROM z {approx} 1 TO z = 0: DENSITY EVOLVES BUT SHAPES DO NOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, Bradford P.; Van der Wel, Arjen; Rix, Hans-Walter

    2012-04-20

    We measure the evolution in the intrinsic shape distribution of early-type galaxies from z {approx} 1 to z {approx} 0 by analyzing their projected axis-ratio distributions. We extract a low-redshift sample (0.04 < z < 0.08) of early-type galaxies with very low star formation rates from the Sloan Digital Sky Survey, based on a color-color selection scheme and verified through the absence of emission lines in the spectra. The inferred intrinsic shape distribution of these early-type galaxies is strongly mass dependent: the typical short-to-long intrinsic axis ratio of high-mass early-type galaxies (>10{sup 11} M{sub Sun }) is 2:3, whereas atmore » masses below 10{sup 11} M{sub Sun} this ratio narrows to 1:3, or more flattened galaxies. In an entirely analogous manner, we select a high-redshift sample (0.6 < z < 0.8) from two deep-field surveys with multi-wavelength and Hubble Space Telescope/Advanced Camera for Surveys imaging: GEMS and COSMOS. We find a seemingly universal mass of {approx}10{sup 11} M{sub Sun} for highly flattened early-type systems at all redshifts. This implies that the process that grows an early-type galaxy above this ceiling mass, irrespective of cosmic epoch, involves forming round systems. Using both parametric and non-parametric tests, we find no evolution in the projected axis-ratio distribution for galaxies with masses >3 Multiplication-Sign 10{sup 10} M{sub Sun} with redshift. At the same time, our samples imply an increase of 2-3 Multiplication-Sign in comoving number density for early-type galaxies at masses >3 Multiplication-Sign 10{sup 10} M{sub Sun }, in agreement with previous studies. Given the direct connection between the axis-ratio distribution and the underlying bulge-to-disk ratio distribution, our findings imply that the number density evolution of early-type galaxies is not exclusively driven by the emergence of either bulge- or disk-dominated galaxies, but rather by a balanced mix that depends only on the stellar mass of the galaxy. The challenge for galaxy formation models is to reproduce this overall non-evolving ratio of flattened to round early-type galaxies in the context of a continually growing population.« less

  16. Imaging of early acceleration phase of the 2013-2014 Boso slow slip event

    NASA Astrophysics Data System (ADS)

    Fukuda, J.; Kato, A.; Obara, K.; Miura, S.; Kato, T.

    2014-12-01

    Based on GPS and seismic data, we examine the spatiotemporal evolution of a slow slip event (SSE) and associated seismic activity that occurred off the Boso peninsula, central Japan, from December 2013 to January 2014. We use GPS data from 71 stations of the GEONET and 6 stations operated by Earthquake Research Institute of the University of Tokyo and Tohoku University around the Boso peninsula. We apply a modified version of the Network Inversion Filter to the GPS time series at the 77 stations to estimate the spatiotemporal evolution of daily cumulative slip and slip rate on the subducting Philippine Sea plate. In addition, we create an improved earthquake catalog by applying a matched filter technique to continuous seismograms and examine the spatiotemporal relations between slow slip and seismicity. We find that the SSE started in early December 2013. The spatiotemporal evolution of slow slip and seismicity is divided into two distinct phases, an earlier slow phase from early to 30 December 2013 (Phase I) and a subsequent faster phase from 30 December 2013 to 9 January 2014 (Phase II). During Phase I, slip accelerated slowly up to a maximum rate of 1.6 m/yr with potentially accelerating along-strike propagation at speeds on the order of 1 km/day or less and no accompanying seismicity. On the other hand, during Phase II, slip accelerated rapidly up to a maximum rate of 4.5 m/yr and then rapidly decelerated. The slip front propagated along strike at a constant speed of ~10 km/day. During the Phase II, slow slip was accompanied by seismic swarm activity that was highly correlated in space and time with slip rate, suggesting that the swarm activity was triggered by stress loading due to slow slip. Early slow acceleration of slip has not been identified in the past Boso SSEs in 1996, 2002, 2007, and 2011. It is not clear at this point whether the past Boso SSEs started with slow acceleration similarly to the 2013-2014 SSE. The transition from the slow to the faster phase shares some similarities with the nucleation of megathrust earthquakes inferred from foreshock activities, suggesting that SSEs may provide insights into the nucleation of large earthquakes.

  17. Viscous cosmology in new holographic dark energy model and the cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Singh, C. P.; Srivastava, Milan

    2018-03-01

    In this work, we study a flat Friedmann-Robertson-Walker universe filled with dark matter and viscous new holographic dark energy. We present four possible solutions of the model depending on the choice of the viscous term. We obtain the evolution of the cosmological quantities such as scale factor, deceleration parameter and transition redshift to observe the effect of viscosity in the evolution. We also emphasis upon the two independent geometrical diagnostics for our model, namely the statefinder and the Om diagnostics. In the first case we study new holographic dark energy model without viscous and obtain power-law expansion of the universe which gives constant deceleration parameter and statefinder parameters. In the limit of the parameter, the model approaches to Λ CDM model. In new holographic dark energy model with viscous, the bulk viscous coefficient is assumed as ζ =ζ 0+ζ 1H, where ζ 0 and ζ 1 are constants, and H is the Hubble parameter. In this model, we obtain all possible solutions with viscous term and analyze the expansion history of the universe. We draw the evolution graphs of the scale factor and deceleration parameter. It is observed that the universe transits from deceleration to acceleration for small values of ζ in late time. However, it accelerates very fast from the beginning for large values of ζ . By illustrating the evolutionary trajectories in r-s and r-q planes, we find that our model behaves as an quintessence like for small values of viscous coefficient and a Chaplygin gas like for large values of bulk viscous coefficient at early stage. However, model has close resemblance to that of the Λ CDM cosmology in late time. The Om has positive and negative curvatures for phantom and quintessence models, respectively depending on ζ . Our study shows that the bulk viscosity plays very important role in the expansion history of the universe.

  18. X-Ray Binaries in Local Analogs to the First Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew G.

    2017-02-01

    The focus of this dissertation is to investigate the effect of metallicity on high-mass X-ray binary (HMXB) formation and evolution as a means to understand the evolution of the early Universe (z > 6). Understanding the population and X-ray output of HMXBs are vital to modelling the heating and ionization morphology of the intergalactic medium during the epoch of reionization. Current X-ray instruments are unable to directly detect very high redshift HMXBs, making it impossible to constrain population sizes in this way. Instead certain local galaxies may be used as analogs to infer the properties of galaxies in the early Universe. These local analogs should have properties consistent with those expected for the first galaxies, such as low-metallicity, compact morphology, and intense recent star formation. I present an X-ray population study of 25 blue compact dwarf galaxies (BCD), using multiwavelength data and Bayesian analysis techniques. We find a significant enhancement of the HMXB population in low-metallicity environments and suggest the same may be true in the early Universe. I continue the investigation of HMXB populations in a sample of 10 moderate metallicity (Z ≥ 0.3, Z solar masses), local star-forming galaxies known as Lyman Break Analogs (LBAs). I find evidence of a LX-SFR-metallicity plane in the combined sample of BCDs, LBAs, and regular star-forming galaxies. Then I study a third type of local analog to early Universe galaxies, the Green Pea galaxies. These are a subclass of luminous compact galaxies (LCGs) which show strong [OIII]lambda5007A emission indicative of extreme, recent star-formation. This pilot study was carried out to look, for the first time in X-rays, at this recently established class of galaxies and use them to test the LX-SFR-metallicity plane. Determining the spectral properties of bright HMXBs in low-metallicity environments also has important implications for models of X-ray heating leading up to the Epoch of Reionization. I examined the X-ray spectra of VII Zwicky 403, one of the nearby BCD galaxies from the first study and contrast this with the only other low-metallicity BCD with high-quality spectra, I Zw 18. In the high flux state, the spectrum of VII Zw 403 is hard but drops off exponentially at higher energies (E > 5 keV). This lies in contrast with the softer blackbody accretion disk spectrum seen from I Zw 18 in its high flux state. I conclude with a brief summary of the thesis and discuss recent relevant theory and simulation work done by other groups.

  19. Effective Strategies for Teaching Evolution: The Primary Evolution Project

    ERIC Educational Resources Information Center

    Hatcher, Chris

    2015-01-01

    When Chris Hatcher joined the Primary Evolution Project team at the University of Reading, his goal was to find effective strategies to teach evolution in a way that keeps children engaged and enthused. Hatcher has collaborated with colleagues at the University's Institute of Education to break the evolution unit down into distinct topics and…

  20. The Ellipticities of Cluster Early-type Galaxies from z ~ 1 to z ~ 0: No Evolution in the Overall Distribution of Bulge-to-Disk Ratios

    NASA Astrophysics Data System (ADS)

    Holden, B. P.; Franx, M.; Illingworth, G. D.; Postman, M.; van der Wel, A.; Kelson, D. D.; Blakeslee, J. P.; Ford, H.; Demarco, R.; Mei, S.

    2009-03-01

    We have compiled a sample of early-type cluster galaxies from 0 < z < 1.3 and measured the evolution of their ellipticity distributions. Our sample contains 487 galaxies in 17 z>0.3 clusters with high-quality space-based imaging and a comparable sample of 210 galaxies in 10 clusters at z < 0.05. We select early-type galaxies (elliptical and S0 galaxies) that fall within the cluster R 200, and which lie on the red-sequence in the magnitude range -19.3>MB > - 21, after correcting for luminosity evolution as measured by the fundamental plane. Our ellipticity measurements are made in a consistent manner over our whole sample. We perform extensive simulations to quantify the systematic and statistical errors, and find that it is crucial to use point-spread function (PSF)-corrected model fits; determinations of the ellipticity from Hubble Space Telescope image data that do not account for the PSF "blurring" are systematically and significantly biased to rounder ellipticities at redshifts z>0.3. We find that neither the median ellipticity, nor the shape of the ellipticity distribution of cluster early-type galaxies evolves with redshift from z ~ 0 to z>1 (i.e., over the last ~8 Gyr). The median ellipticity at z>0.3 is statistically identical with that at z < 0.05, being higher by only 0.01 ± 0.02 or 3 ± 6%, while the distribution of ellipticities at z>0.3 agrees with the shape of the z < 0.05 distribution at the 1-2% level (i.e., the probability that they are drawn from the same distribution is 98-99%). These results are strongly suggestive of an unchanging overall bulge-to-disk ratio distribution for cluster early-type galaxies over the last ~8 Gyr from z ~ 1 to z ~ 0. This result contrasts with that from visual classifications which show that the fraction of morphologically-selected disk-dominated early-type galaxies, or S0s, is significantly lower at z>0.4 than at z ~ 0. We find that the median disk-dominated early-type, or S0, galaxy has a somewhat higher ellipticity at z>0.3, suggesting that rounder S0s are being assigned as ellipticals. Taking the ellipticity measurements and assuming, as in all previous studies, that the intrinsic ellipticity distribution of both elliptical and S0 galaxies remains constant, then we conclude from the lack of evolution in the observed early-type ellipticity distribution that the relative fractions of ellipticals and S0s do not evolve from z ~ 1 to z = 0 for a red-sequence selected samples of galaxies in the cores of clusters of galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract No. NAS5-26555. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  1. Evolution of light domain walls interacting with dark matter, part 1

    NASA Technical Reports Server (NTRS)

    Massarotti, Alessandro

    1990-01-01

    The evolution of domain walls generated in the early Universe is discussed considering an interaction between the walls and a major gaseous component of the dark matter. The walls are supposed able to reflect the particles elastically and with a reflection coefficient of unity. A toy Lagrangian that could give rise to such a phenomenon is discussed. In the simple model studied, highly non-relativistic and slowly varying speeds are obtained for the domain walls (approximately 10 (exp -2)(1+z)(exp -1)) and negligible distortions of the microwave background. In addition, these topological defects may provide a mechanism of forming the large scale structure of the Universe, by creating fluctuations in the dark matter (delta rho/rho approximately O(1)) on a scale comparable with the distance the walls move from the formation (in the model d less than 20 h(exp -1) Mpc). The characteristic scale of the wall separation can be easily chosen to be of the order of 100 Mpc instead of being restricted to the horizon scale, as usually obtained.

  2. Thermodynamics, Life, the Universe and Everything

    NASA Astrophysics Data System (ADS)

    Neswald, Elizabeth

    2015-01-01

    The laws of thermodynamics were developed in the first half of the nineteenth century to describe processes governing the working of steam engines. The mechanical equivalent of heat, which quantified the relationship between heat and motion, enabled the quantification and comparison of all energy transformation processes. The energy laws and the mechanical equivalent of heat quickly moved out of the narrower field of physics to form the basis of a cosmic narrative that began with stellar evolution and continued to universal heat death. Newer physiological theories turned to the energy laws to explain life processes, energy and entropy were integrated into theories of biological evolution and degeneration, and economists and cultural theorists turned to thermodynamics to explore both the limits of natural resources and economic expansion and the contradictions of industrial modernity. This paper discusses the career of thermodynamics as an explanatory model and cultural commonplace in the late nineteenth and early twentieth centuries, and the different scientific, religious, and social perspectives that could be expressed through this model. Connected through the entropy law intimately to irreversible processes and time, thermodynamics provided an arena to debate which way the world was going.

  3. Universal characteristics of evolution and development are inherent in fetal autonomic brain maturation.

    PubMed

    Schmidt, Alexander; Schukat-Talamazzini, Ernst G; Zöllkau, Janine; Pytlik, Adelina; Leibl, Sophia; Kumm, Kathrin; Bode, Franziska; Kynass, Isabelle; Witte, Otto W; Schleussner, Ekkehard; Schneider, Uwe; Hoyer, Dirk

    2018-07-01

    Adverse prenatal environmental influences to the developing fetus are associated with mental and cardiovascular disease in later life. Universal developmental characteristics such as self-organization, pattern formation, and adaptation in the growing information processing system have not yet been sufficiently analyzed with respect to description of normal fetal development and identification of developmental disturbances. Fetal heart rate patterns are the only non-invasive order parameter of the developing autonomic brain available with respect to the developing complex organ system. The objective of the present study was to investigate whether universal indices, known from evolution and phylogeny, describe the ontogenetic fetal development from 20 weeks of gestation onwards. By means of a 10-fold cross-validated data-driven multivariate regression modeling procedure, relevant indices of heart rate variability (HRV) were explored using 552 fetal heart rate recordings, each lasting over 30 min. We found that models which included HRV indices of increasing fluctuation amplitude, complexity and fractal long-range dependencies largely estimated the maturation age (coefficients of determination 0.61-0.66). Consideration of these characteristics in prenatal care may not only have implications for early identification of developmental disturbances, but also for the development of system-theory-based therapeutic strategies. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The light up and early evolution of high redshift Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Comastri, Andrea; Brusa, Marcella; Aird, James; Lanzuisi, Giorgio

    2016-07-01

    The known AGN population at z > 6 is made by luminous optical QSO hosting Supermassive Black Holes (M > 10 ^{9}solar masses), likely to represent the tip of the iceberg of the luminosity and mass function. According to theoretical models for structure formation, Massive Black Holes (M _{BH} 10^{4-7} solar masses) are predicted to be abundant in the early Universe (z > 6). The majority of these lower luminosity objects are expected to be obscured and severely underepresented in current optical near-infrared surveys. The detection of such a population would provide unique constraints on the Massive Black Holes formation mechanism and subsequent growth and is within the capabilities of deep and large area ATHENA surveys. After a summary of the state of the art of present deep XMM and Chandra surveys, at z >3-6 also mentioning the expectations for the forthcoming eROSITA all sky survey; I will present the observational strategy of future multi-cone ATHENA Wide Field Imager (WFI) surveys and the expected breakthroughs in the determination of the luminosity function and its evolution at high (> 4) and very high (>6) redshifts.

  5. MEVTV study: Early tectonic evolution of Mars: Crustal dichotomy to Valles Marineris

    NASA Technical Reports Server (NTRS)

    Frey, Herbert V.; Schultz, Richard A.

    1990-01-01

    Several fundamental problems were addressed in the early impact, tectonic, and volcanic evolution of the martian lithosphere: (1) origin and evolution of the fundamental crustal dichotomy, including development of the highland/lowland transition zone; (2) growth and evolution of the Valles Marineris; and (3) nature and role of major resurfacing events in early martian history. The results in these areas are briefly summarized.

  6. The evolution of modern cosmology as seen through a personal walk across six decades

    NASA Astrophysics Data System (ADS)

    Narlikar, Jayant V.

    2018-02-01

    This highly personal account of evolution of cosmology spans a period of approximately six decades 1959-2017. It begins when in 1959 the author, as an undergraduate at Cambridge, was attracted to the subject by the thought provoking lectures by Fred Hoyle as well as by his popular books The Nature of Universe and The Frontiers of Astronomy. The result was that after a successful performance at the Mathematical Tripos (Part III) examination, he enrolled as a research student of Hoyle. In this article the author describes the interesting works in cosmology that kept him busy both in Cambridge and in India. The issues pertinent to cosmological research in the 1960s and 1970s included the Mach's principle, the Wheeler-Feynman theory relating the local electromagnetic arrow of time to the cosmological one, the observational tests of specific expanding universe models, and issues like singularity in quantum cosmology. However, post-1965, the nature of cosmological research changed dramatically with the discovery of the cosmic microwave background radiation (CMBR). Given the assumption that the CMBR is a relic of big bang there has been a host of papers on the early universe, going as close to the big bang as the very early universe would permit: around just 10-36 s. The author argues that despite the popularity of the standard hot big bang cosmology (SBBC) it rests on rather shaky foundations. On the theoretical side there is no well established physical framework to support the SBBC; nor is there independent observational support for its assumptions like the nonbaryonic dark matter, inflation and dark energy. While technological progress has made it possible to explore the universe in greater detail with open mind, today's cosmologists seem caught in a range of speculations in support of the big bang dogma. Thus, in modern times cosmology appears to have lost the Camelot spirit encouraging adventurous studies of the unknown. A spirit of openness is advocated to restore cosmology to its rightful position as the flagship of astronomy.

  7. The evolution of modern cosmology as seen through a personal walk across six decades

    NASA Astrophysics Data System (ADS)

    Narlikar, Jayant V.

    2018-05-01

    This highly personal account of evolution of cosmology spans a period of approximately six decades 1959-2017. It begins when in 1959 the author, as an undergraduate at Cambridge, was attracted to the subject by the thought provoking lectures by Fred Hoyle as well as by his popular books The Nature of Universe and The Frontiers of Astronomy. The result was that after a successful performance at the Mathematical Tripos (Part III) examination, he enrolled as a research student of Hoyle. In this article the author describes the interesting works in cosmology that kept him busy both in Cambridge and in India. The issues pertinent to cosmological research in the 1960s and 1970s included the Mach's principle, the Wheeler-Feynman theory relating the local electromagnetic arrow of time to the cosmological one, the observational tests of specific expanding universe models, and issues like singularity in quantum cosmology. However, post-1965, the nature of cosmological research changed dramatically with the discovery of the cosmic microwave background radiation (CMBR). Given the assumption that the CMBR is a relic of big bang there has been a host of papers on the early universe, going as close to the big bang as the very early universe would permit: around just 10-36 s. The author argues that despite the popularity of the standard hot big bang cosmology (SBBC) it rests on rather shaky foundations. On the theoretical side there is no well established physical framework to support the SBBC; nor is there independent observational support for its assumptions like the nonbaryonic dark matter, inflation and dark energy. While technological progress has made it possible to explore the universe in greater detail with open mind, today's cosmologists seem caught in a range of speculations in support of the big bang dogma. Thus, in modern times cosmology appears to have lost the Camelot spirit encouraging adventurous studies of the unknown. A spirit of openness is advocated to restore cosmology to its rightful position as the flagship of astronomy.

  8. Long-lived light mediator to dark matter and primordial small scale spectrum

    DOE PAGES

    Zhang, Yue

    2015-05-01

    We calculate the early universe evolution of perturbations in the dark matter energy density in the context of simple dark sector models containing a GeV scale light mediator. We consider the case that the mediator is long-lived, with lifetime up to a second, and before decaying it temporarily dominates the energy density of the universe. We show that for primordial perturbations that enter the horizon around this period, the interplay between linear growth during matter domination and collisional damping can generically lead to a sharp peak in the spectrum of dark matter density perturbation. Finally, as a result, the populationmore » of the smallest DM halos gets enhanced. Possible implications of this scenario are discussed.« less

  9. Acquiring surgical skills: the history of surgical teaching at the University of Sydney 1883-2014.

    PubMed

    Brown, Kilian G M; Storey, Catherine E

    2016-06-01

    There have been at least 10 major revisions of the medical curriculum since the inauguration of the Faculty of Medicine at the University of Sydney in 1883. This study traced the evolution of the teaching of surgery at our institution by examination of the set curriculum of each period; the expectations of student knowledge in the final examination as well as examining some of the insights provided by past students of their surgical experience through their writings. In the early years, medical graduates were qualified to perform operative surgery without any further training, whereas the modern postgraduate medical curriculum provides students with the basis for further surgical training. © 2016 Royal Australasian College of Surgeons.

  10. Using Supercomputers to Probe the Early Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giorgi, Elena Edi

    For decades physicists have been trying to decipher the first moments after the Big Bang. Using very large telescopes, for example, scientists scan the skies and look at how fast galaxies move. Satellites study the relic radiation left from the Big Bang, called the cosmic microwave background radiation. And finally, particle colliders, like the Large Hadron Collider at CERN, allow researchers to smash protons together and analyze the debris left behind by such collisions. Physicists at Los Alamos National Laboratory, however, are taking a different approach: they are using computers. In collaboration with colleagues at University of California San Diego,more » the Los Alamos researchers developed a computer code, called BURST, that can simulate conditions during the first few minutes of cosmological evolution.« less

  11. Conference on Early Mars: Geologic and Hydrologic Evolution, Physical and Chemical Environments, and the Implications for Life

    NASA Technical Reports Server (NTRS)

    Clifford, S. M. (Editor); Treiman, A. H. (Editor); Newsom, H. E. (Editor); Farmer, J. D. (Editor)

    1997-01-01

    Topics considered include: Geology alteration and life in an extreme environment; developing a chemical code to identify magnetic biominerals; effect of impacts on early Martin geologic evolution; spectroscopic identification of minerals in Hematite-bearing soils and sediments; exopaleontology and the search for a Fossil record on Mars; geochemical evolution of the crust of Mars; geological evolution of the early earth;solar-wind-induced erosion of the Mars atmosphere. Also included geological evolution of the crust of Mars.

  12. The Secret Lives Of Galaxies Unveiled In Deep Survey

    NASA Astrophysics Data System (ADS)

    2003-06-01

    Two of NASA's Great Observatories, bolstered by the largest ground-based telescopes around the world, are beginning to harvest new clues to the origin and evolution of galaxies. It's a bit like finding a family scrapbook containing snapshots that capture the lives of family members from infancy through adolescence to adulthood. "This is the first time the cosmic tale of how galaxies build themselves has been traced reliably to such early times in the universe's life," said Mauro Giavalisco, head of the Hubble Space Telescope (HST) portion of the survey, and research astronomer at the Space Telescope Science Institute (STScI) in Baltimore. The HST has joined forces with the Chandra X-ray Observatory to survey a relatively broad swath of sky encompassing tens of thousands of galaxies stretching far back into time. The Space Infrared Telescope Facility (SIRTF), scheduled for launch in August, will soon join this unprecedented survey. Called the Great Observatories Origins Deep Survey (GOODS), astronomers are studying galaxy formation and evolution over a wide range of distances and ages. The project is tracing the assembly history of galaxies, the evolution of their stellar populations, and the gusher of energy from star formation and active nuclei powered by immense black holes. HST astronomers report the sizes of galaxies clearly increase continuously from the time the universe was about 1 billion years old to an age of 6 billion years. This is approximately half the current age of the universe, 13.7 billion years. GOODS astronomers also find the star birth rate rose mildly, by about a factor of three, between the time the universe was about one billion years old and 1.5 billion years old, and remained high until about 7 billion years ago, when it quickly dropped to one-tenth the earlier "baby boomer" rate. This is further evidence major galaxy building trailed off when the universe was about half its current age. GOODS Chandra Deep Fields South Chandra Deep Field South This increase in galaxy size is consistent with "bottom-up" models, where galaxies grow hierarchically, through mergers and accretion of smaller satellite galaxies. This is also consistent with the idea the sizes of galaxies match hand-in-glove to a certain fraction of the sizes of their dark-matter halos. Dark matter is an invisible form of mass that comprises most of the matter in the universe. The theory is dark matter essentially pooled into gravitational "puddles" in the early universe, then collected normal gas that quickly contracted to build star clusters and small galaxies. These dwarf galaxies merged piece-by-piece over billions of years to build the immense spiral and elliptical galaxies we see today. The Chandra observations amounted to a "high-energy core sample" of the early universe, allowing us to "study the history of black holes over almost the entire age of the universe," said Niel Brandt of Penn State University, a co-investigator on the Chandra GOODS team. One of the fascinating findings in this deepest X-ray image ever taken is the discovery of mysterious black holes, which have no optical counterparts. "We found seven mysterious sources that are completely invisible in the optical with Hubble," said Anton Koekemoer of the STScI, a co-investigator on both the Hubble and Chandra GOODS teams. "Either they are the most distant black holes ever detected, or they are less distant black holes that are the most dust enshrouded known, a surprising result as well." When comparing the HST and Chandra fields, astronomers also found active black holes in distant, relatively small galaxies were rarer than expected. This may be due to the effects of early generations of massive stars that exploded as supernovae, evacuating galactic gas and thus reducing the supply of gas needed to feed a super massive black hole. These and other results from the GOODS project will be published in a special issue of the Astrophysical Journal Letters, entirely devoted to the team's results. The Chandra results are found in papers led by Koekemoer and Stefano Cristiani of the Trieste Astronomical Observatory. Hubble's findings came from papers led by Giavalisco, Mark Dickinson, and Harry Ferguson of the STScI. The image and additional information are available at: http://chandra.harvard.edu and http://hubblesite.org/newscenter/archive/2003/18/

  13. News and Views: Betelgeuse bubbles up dust; Hydrothermal activity on early asteroids; Is this a record? Galaxy evolution in 3D; LOFAR looks farther; IOPD makes plans

    NASA Astrophysics Data System (ADS)

    2011-08-01

    Red supergiant star Betelgeuse is surrounded by a vast halo of silicate and aluminium dust, visible in false colour in this infrared image from the European Southern Observatory's Very Large Telescope. This material may eventually form planets around a new star. Biochemical analysis of the Tagish Lake meteorites, some of the most pristine samples of carbonaceous chondrites known, suggests that much of the variation in organic matter between different meteorite samples can be ascribed to hydrothermal activity on meteorite parent bodies. European Southern Observatory astronomers have discovered the most distant quasar yet - and reckon it is one of the brightest objects in the early universe.

  14. The ancient history of the structure of ribonuclease P and the early origins of Archaea

    PubMed Central

    2010-01-01

    Background Ribonuclease P is an ancient endonuclease that cleaves precursor tRNA and generally consists of a catalytic RNA subunit (RPR) and one or more proteins (RPPs). It represents an important macromolecular complex and model system that is universally distributed in life. Its putative origins have inspired fundamental hypotheses, including the proposal of an ancient RNA world. Results To study the evolution of this complex, we constructed rooted phylogenetic trees of RPR molecules and substructures and estimated RPP age using a cladistic method that embeds structure directly into phylogenetic analysis. The general approach was used previously to study the evolution of tRNA, SINE RNA and 5S rRNA, the origins of metabolism, and the evolution and complexity of the protein world, and revealed here remarkable evolutionary patterns. Trees of molecules uncovered the tripartite nature of life and the early origin of archaeal RPRs. Trees of substructures showed molecules originated in stem P12 and were accessorized with a catalytic P1-P4 core structure before the first substructure was lost in Archaea. This core currently interacts with RPPs and ancient segments of the tRNA molecule. Finally, a census of protein domain structure in hundreds of genomes established RPPs appeared after the rise of metabolic enzymes at the onset of the protein world. Conclusions The study provides a detailed account of the history and early diversification of a fundamental ribonucleoprotein and offers further evidence in support of the existence of a tripartite organismal world that originated by the segregation of archaeal lineages from an ancient community of primordial organisms. PMID:20334683

  15. A Physical Parameterization of the Evolution of X-ray Binary Emission

    NASA Astrophysics Data System (ADS)

    Gilbertson, Woodrow; Lehmer, Bret; Eufrasio, Rafael

    2018-01-01

    The Chandra Deep Field-South (CDF-S) and North (CDF-N) surveys, 7 Ms and 2 Ms respectively, contain measurements spanning a large redshift range of z = 0 to 7. These data-rich fields provide a unique window into the cosmic history of X-ray emission from normal galaxies (i.e., not dominated by AGN). Scaling relations between normal-galaxy X-ray luminosity and quantities, such as star formation rate (SFR) and stellar mass (M*), have been used to constrain the redshift evolution of the formation rates of low-mass X-ray binaries (LMXB) and high-mass X-ray binaries (HMXB). However, these measurements do not directly reveal the driving forces behind the redshift evolution of X-ray binaries (XRBs). We hypothesize that changes in the mean stellar age and metallicity of the Universe drive the evolution of LMXB and HMXB emission, respectively. We use star-formation histories, derived through fitting broad-band UV-to-far-IR spectra, to estimate the masses of stellar populations in various age bins for each galaxy. We then divide our galaxy samples into bins of metallicity, and use our star-formation history information and measured X-ray luminosities to determine for each metallicity bin a best model LX/M*(tage). We show that this physical model provides a more useful parameterization of the evolution of X-ray binary emission, as it can be extrapolated out to high redshifts with more sensible predictions. This meaningful relation can be used to better estimate the emission of XRBs in the early Universe, where XRBs are predicted to play an important role in heating the intergalactic medium.

  16. Study on the opinion of university students about the themes of the origin of Universe and evolution of life

    NASA Astrophysics Data System (ADS)

    de Souza, Rogério F.; de Carvalho, Marcelo; Matsuo, Tiemi; Zaia, Dimas A. M.

    2010-04-01

    This paper reports the results of a questionnaire administered to university students, about several questions involving the origin of the Universe and life and biological evolution, as well as questions related to more common scientific themes. As few as between 2.4% (philosophy students) and 14% (geography students) did not accept the theory of evolution, because they believed in creation as described in the Bible. However, between 41.5% (philosophy students) and 71.3% (biology students) did not see any conflict between religion and evolution. About 80% of the students believed that the relationship between lung cancer and smoking is well established by science, but this number falls to 65% for biological evolution and 28.9% for the big bang theory. It should be pointed out that for 24.5% and 7.4% of the students the big bang theory and biological evolution, respectively, are poorly established by science. The students who self-reported being Christian but not Roman Catholic are more conservative in the acceptance of biological evolution and the old age of Earth and the Universe than are other groups of students. Other factors, such as family income and the level of education of parents, appear to influence the students' acceptance of themes related to the origin of the Universe and biological evolution.

  17. 77 FR 23506 - Notice of Inventory Completion: U.S. Department of Interior, Bureau of Reclamation, Upper...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Arizona State University, School of Human Evolution and Social Change, Tempe, AZ AGENCY: National Park... University, School of Human Evolution and Social Change, Tempe, AZ, and under the control of the U.S... University, School of Human Evolution and Social Change. No known individuals were identified. No associated...

  18. On the habitability of universes without stable deuterium

    NASA Astrophysics Data System (ADS)

    Adams, Fred C.; Grohs, Evan

    2017-05-01

    In both stars and in the early universe, the production of deuterium is the first step on the way to producing heavier nuclei. If the strong force were slightly weaker, then deuterium would not be stable, and many authors have noted that nuclesynthesis would be compromised so that helium production could not proceed through standard reaction chains. Motivated by the possibility that other regions of space-time could have different values for the fundamental constants, this paper considers stellar evolution in universes without stable deuterium and argues that such universes can remain habitable. Even in universes with no stellar nucleosynthesis, stars can form and will generate energy through gravitational contraction. Using both analytic estimates and a state-of-the-art stellar evolution code, we show that such stars can be sufficiently luminous and long-lived to support life. Stars with initial masses that exceed the Chandrasekhar mass cannot be supported by degeneracy pressure and will explode at the end of their contraction phase. The resulting explosive nucleosynthesis can thus provide the universe with some heavy elements. We also explore the possibility that helium can be produced in stellar cores through a triple-nucleon reaction that is roughly analogous to the triple-alpha reaction that operates in our universe. Stars burning hydrogen through this process are somewhat hotter than those in our universe, but otherwise play the same role. Next we show that with even trace amounts (metallicity Z ∼10-10) of heavy elements - produced through the triple-nucleon process or by explosive nucleosynthesis - the CNO cycle can operate and allow stars to function. Finally, we consider Big Bang Nucleosynthesis without stable deuterium and find that only trace amounts of helium are produced, with even smaller abundances of other nuclei. With stars evolving through gravitational contraction, explosive nucleosynthesis, the triple-nucleon reaction, and the CNO cycle, universes with no stable deuterium are thus potentially habitable, contrary to many previous claims.

  19. Early-time cosmology with stiff era from modified gravity

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2017-11-01

    In this work, we shall incorporate a stiff era in the Universe's evolution in the context of F (R ) gravity. After deriving the vacuum F (R ) gravity, which may realize a stiff evolution, we combine the stiff F (R ) gravity with an R2 model, and we construct a qualitative model for the inflationary and stiff era, with the latter commencing after the end of the inflationary era. We assume that the baryogenesis occurs during the stiff era, and we calculate the baryon to entropy ratio, which effectively constraints the functional form of the stiff F (R ) gravity. Further constraints on the stiff F (R ) gravity may come from the primordial gravitational waves, and particularly their scalar mode, which is characteristic of the F (R ) gravity theory. The stiff era presence does not contradict the standard cosmology era, namely, inflation, and the radiation-matter domination eras. Furthermore, we investigate which F (R ) gravity may realize a dust and stiff matter dominated Einstein-Hilbert evolution.

  20. Evolution of non-interacting entropic dark energy and its phantom nature

    NASA Astrophysics Data System (ADS)

    Mathew, Titus K.; Murali, Chinthak; Shejeelammal, J.

    2016-04-01

    Assuming the form of the entropic dark energy (EDE) as it arises from the surface term in the Einstein-Hilbert’s action, its evolution was analyzed in an expanding flat universe. The model parameters were evaluated by constraining the model using the Union data on Type Ia supernovae. We found that in the non-interacting case, the model predicts an early decelerated phase and a later accelerated phase at the background level. The evolutions of the Hubble parameter, dark energy (DE) density, equation of state parameter and deceleration parameter were obtained. The model hardly seems to be supporting the linear perturbation growth for the structure formation. We also found that the EDE shows phantom nature for redshifts z < 0.257. During the phantom epoch, the model predicts big rip effect at which both the scale factor of expansion and the DE density become infinitely large and the big rip time is found to be around 36 Giga years from now.

  1. Scientific Eschatology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noyes, H

    2005-03-18

    The future evolution of the universe suggested by the cosmological model proposed earlier at this meeting by the authors is explored. The fundamental role played by the positive ''cosmological constant'' is emphasized. Dyson's 1979 paper entitled ''Time Without End'' is briefly reviewed. His most optimistic scenario requires that the universe be geometrically open and that biology is structural in the sense that the current complexity of human society can be reproduced by scaling up its (quantum mechanical) structure to arbitrary size. If the recently measured ''cosmological constant'' is indeed a fundamental constant of nature, then Dyson's scenario is, for variousmore » reasons, ruled out by the finite (De Sitter) horizon due to exponential expansion of the resulting space. However, the finite temperature of that horizon does open other interesting options. If, as is suggested by the cosmology under consideration, the current exponential expansion of the universe is due to a phase transition which fixes a physical boundary condition during the early radiation dominated era, the behavior of the universe after the relevant scale factor crosses the De Sitter radius opens up still other possibilities. The relevance of Martin Rees' apocalyptic eschatology recently presented in his book ''Our Final Hour'' is mentioned. It is concluded that even for the far future, whether or not cultural and scientific descendants of the current epoch will play a role in it, an understanding (sadly, currently lacking) of community and political evolution and control is essential for a preliminary treatment of what could be even vaguely called scientific eschatology.« less

  2. Mass and size growth of early-type galaxies by dry mergers in cluster environments

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao; Ishiyama, Tomoaki

    2016-02-01

    We perform dry merger simulations to investigate the role of dry mergers in the size growth of early-type galaxies in high-density environments. We replace the virialized dark matter haloes obtained by a large cosmological N-body simulation with N-body galaxy models consisting of two components, a stellar bulge and a dark matter halo, which have higher mass resolution than the cosmological simulation. We then resimulate nine cluster-forming regions, whose masses range from 1 × 1014 to 5 × 1014 M⊙. Masses and sizes of stellar bulges are also assumed to satisfy the stellar mass-size relation of high-z compact massive early-type galaxies. We find that dry major mergers considerably contribute to the mass and size growth of central massive galaxies. One or two dry major mergers double the average stellar mass and quadruple the average size between z = 2 and 0. These growths favourably agree with observations. Moreover, the density distributions of our simulated central massive galaxies grow from the inside-out, which is consistent with recent observations. The mass-size evolution is approximated as R∝ M_{{ast }}^{α }, with α ˜ 2.24. Most of our simulated galaxies are efficiently grown by dry mergers, and their stellar mass-size relations match the ones observed in the local Universe. Our results show that the central galaxies in the cluster haloes are potential descendants of high-z (z ˜ 2-3) compact massive early-type galaxies. This conclusion is consistent with previous numerical studies which investigate the formation and evolution of compact massive early-type galaxies.

  3. Functional Constructivism: In Search of Formal Descriptors.

    PubMed

    Trofimova, Irina

    2017-10-01

    The Functional Constructivism (FC) paradigm is an alternative to behaviorism and considers behavior as being generated every time anew, based on an individual's capacities, environmental resources and demands. Walter Freeman's work provided us with evidence supporting the FC principles. In this paper we make parallels between gradual construction processes leading to the formation of individual behavior and habits, and evolutionary processes leading to the establishment of biological systems. Referencing evolutionary theory, several formal descriptors of such processes are proposed. These FC descriptors refer to the most universal aspects for constructing consistent structures: expansion of degrees of freedom, integration processes based on internal and external compatibility between systems and maintenance processes, all given in four different classes of systems: (a) Zone of Proximate Development (poorly defined) systems; (b) peer systems with emerging reproduction of multiple siblings; (c) systems with internalized integration of behavioral elements ('cruise controls'); and (d) systems capable of handling low-probability, not yet present events. The recursive dynamics within this set of descriptors acting on (traditional) downward, upward and horizontal directions of evolution, is conceptualized as diagonal evolution, or di-evolution. Two examples applying these FC descriptors to taxonomy are given: classification of the functionality of neuro-transmitters and temperament traits; classification of mental disorders. The paper is an early step towards finding a formal language describing universal tendencies in highly diverse, complex and multi-level transient systems known in ecology and biology as 'contingency cycles.'

  4. An organismal concept for Sengelia radicans gen. et sp. nov. - morphology and natural history of an Early Devonian lycophyte.

    PubMed

    Matsunaga, Kelly K S; Tomescu, Alexandru M F

    2017-05-01

    Fossil plants are found as fragmentary remains and understanding them as natural species requires assembly of whole-organism concepts that integrate different plant parts. Such concepts are essential for incorporating fossils in hypotheses of plant evolution and phylogeny. Plants of the Early Devonian are crucial to reconstructing the initial radiation of tracheophytes, yet few are understood as whole organisms. This study assembles a whole-plant concept for the Early Devonian lycophyte Sengelia radicans gen. et sp. nov., based on morphometric data and taphonomic observations from >1000 specimens collected in the Beartooth Butte Formation (Wyoming, USA). Sengelia radicans occupies a key position between stem-group and derived lycophyte lineages. Sengelia had a rooting system of downward-growing root-bearing stems, formed dense monotypic mats of prostrate shoots in areas that experienced periodic flooding, and was characterized by a life-history strategy adapted for survival after floods, dominated by clonality, and featuring infrequent sexual reproduction. Sengelia radicans is the oldest among the very few early tracheophytes for which a detailed, rigorous whole-plant concept integrates morphology, growth habit, life history and growth environment. This plant adds to the diversity of body plans documented among lycophytes and may help elucidate patterns of morphological evolution in the clade. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  5. A cosmological solution to the Impossibly Early Galaxy Problem

    NASA Astrophysics Data System (ADS)

    Yennapureddy, Manoj K.; Melia, Fulvio

    2018-06-01

    To understand the formation and evolution of galaxies at redshifts 0 ≲ z ≲ 10, one must invariably introduce specific models (e.g., for the star formation) in order to fully interpret the data. Unfortunately, this tends to render the analysis compliant to the theory and its assumptions, so consensus is still somewhat elusive. Nonetheless, the surprisingly early appearance of massive galaxies challenges the standard model, and the halo mass function estimated from galaxy surveys at z ≳ 4 appears to be inconsistent with the predictions of ΛCDM, giving rise to what has been termed "The Impossibly Early Galaxy Problem" by some workers in the field. A simple resolution to this question may not be forthcoming. The situation with the halos themselves, however, is more straightforward and, in this paper, we use linear perturbation theory to derive the halo mass function over the redshift range 0 ≲ z ≲ 10 for the Rh = ct universe. We use this predicted halo distribution to demonstrate that both its dependence on mass and its very weak dependence on redshift are compatible with the data. The difficulties with ΛCDM may eventually be overcome with refinements to the underlying theory of star formation and galaxy evolution within the halos. For now, however, we demonstrate that the unexpected early formation of structure may also simply be due to an incorrect choice of the cosmology, rather than to yet unknown astrophysical issues associated with the condensation of mass fluctuations and subsequent galaxy formation.

  6. The evolution of early-type galaxies in nearby clusters: breaking the age-metallicity degeneracy with Spitzer IRS Blue Peak-Up Imaging

    NASA Astrophysics Data System (ADS)

    Bressan, Alessandro; Buson, Lucio; Clemens, Marcel; Danese, Luigi; Granato, Gian Luigi; Panuzzo, Pasquale; Rampazzo, Roberto; Silva, Laura; Valdes, Jose Ramon

    2005-06-01

    We have shown with Cycle 1 observations that Spitzer has the capability of disentangling age and metallicity in old stellar populations. By looking to the broad emission feature left by dust enshrouded asymptotic giant branch stars above 9.7 microns, Spitzer IRS can provide direct evidence that the colour- magnitude relation of Virgo ellipticals is mainly driven by metallicity. However, with the IRS spectrograph we can only probe the bright tail of the colour-magnitude relation, and only in the nearest cluster. We propose to use IRS Blue Peak-Up, the only Spitzer band that looks directly in the core of that spectral feature, to reach fainter galaxies. We will perform a thorough investigation of early type galaxies along the colour-magnitude relation in Virgo and in Coma clusters. These observations, when coupled with already existing IRAC and Optical-NIR observations, will allow a) an unbiased census of the stellar populations in cluster early type galaxies; b) an estimate of the AGB material recycled into the ISM in these systems; c) a direct check of the universality of the colour- magnitude relation on a wide range of magnitudes; d) a spatial study of the stellar populations within the galaxies, e.g. investigating differences between bulge and disk populations within S0; e) the most secure reference frame with which to compare the evolution of early type galaxies in other environments (groups and field).

  7. ON THE ORIGIN OF THE HIGHEST REDSHIFT GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belczynski, Krzysztof; Holz, Daniel E.; Fryer, Chris L.

    2010-01-01

    GRB 080913 and GRB 090423 are the most distant gamma-ray bursts (GRBs) known to date, with spectroscopically determined redshifts of z = 6.7 and z = 8.1, respectively. The detection of bursts at this early epoch of the universe significantly constrains the nature of GRBs and their progenitors. We perform population synthesis studies of the formation and evolution of early stars, and calculate the resulting formation rates of short- and long-duration GRBs at high redshift. The peak of the GRB rate from Population II stars occurs at z approx 7 for a model with efficient/fast mixing of metals, while itmore » is found at z approx 3 for an inefficient/slow metallicity evolution model. We show that in the redshift range 6 approx< z approx< 10, essentially all GRBs originate from Population II stars, regardless of the metallicity evolution model. These stars (having small, but non-zero metallicity) are the most likely progenitors for both long GRBs (collapsars) and short GRBs (neutron star-neutron star or blackhole-neutron star mergers) at this epoch. Although the predicted intrinsic rates of long and short GRBs are similar at these high redshifts, observational selection effects lead to higher (a factor of approx10) observed rates for long GRBs. We conclude that the two recently observed high-z GRB events are most likely long GRBs originating from Population II collapsars.« less

  8. Galaxies at redshifts 5 to 6 with systematically low dust content and high [C II] emission

    NASA Astrophysics Data System (ADS)

    Capak, P. L.; Carilli, C.; Jones, G.; Casey, C. M.; Riechers, D.; Sheth, K.; Carollo, C. M.; Ilbert, O.; Karim, A.; Lefevre, O.; Lilly, S.; Scoville, N.; Smolcic, V.; Yan, L.

    2015-06-01

    The rest-frame ultraviolet properties of galaxies during the first three billion years of cosmic time (redshift z > 4) indicate a rapid evolution in the dust obscuration of such galaxies. This evolution implies a change in the average properties of the interstellar medium, but the measurements are systematically uncertain owing to untested assumptions and the inability to detect heavily obscured regions of the galaxies. Previous attempts to measure the interstellar medium directly in normal galaxies at these redshifts have failed for a number of reasons, with two notable exceptions. Here we report measurements of the forbidden C II emission (that is, [C II]) from gas, and the far-infrared emission from dust, in nine typical star-forming galaxies about one billion years after the Big Bang (z ~ 5-6). We find that these galaxies have thermal emission that is less than 1/12 that of similar systems about two billion years later, and enhanced [C II] emission relative to the far-infrared continuum, confirming a strong evolution in the properties of the interstellar medium in the early Universe. The gas is distributed over scales of one to eight kiloparsecs, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z < 3 and being comparable in dust content to local low-metallicity systems.

  9. Galaxies at redshifts 5 to 6 with systematically low dust content and high [C II] emission.

    PubMed

    Capak, P L; Carilli, C; Jones, G; Casey, C M; Riechers, D; Sheth, K; Carollo, C M; Ilbert, O; Karim, A; LeFevre, O; Lilly, S; Scoville, N; Smolcic, V; Yan, L

    2015-06-25

    The rest-frame ultraviolet properties of galaxies during the first three billion years of cosmic time (redshift z > 4) indicate a rapid evolution in the dust obscuration of such galaxies. This evolution implies a change in the average properties of the interstellar medium, but the measurements are systematically uncertain owing to untested assumptions and the inability to detect heavily obscured regions of the galaxies. Previous attempts to measure the interstellar medium directly in normal galaxies at these redshifts have failed for a number of reasons, with two notable exceptions. Here we report measurements of the forbidden C ii emission (that is, [C II]) from gas, and the far-infrared emission from dust, in nine typical star-forming galaxies about one billion years after the Big Bang (z ≈ 5-6). We find that these galaxies have thermal emission that is less than 1/12 that of similar systems about two billion years later, and enhanced [C II] emission relative to the far-infrared continuum, confirming a strong evolution in the properties of the interstellar medium in the early Universe. The gas is distributed over scales of one to eight kiloparsecs, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z < 3 and being comparable in dust content to local low-metallicity systems.

  10. The Evolution of the Cluster X-ray Scaling Relations in the Wide Angle ROSAT Pointed Survey Sample at 0.6 < z < 1.0

    NASA Technical Reports Server (NTRS)

    Maughan, B. J.; Jones, L. R.; Ebeling, H.; Scharf, C.

    2006-01-01

    The X-ray properties of a sample of 11 high-redshift (0.6 < z < 1 .O) clusters observed with Chardm and/or XMM-Newton are used to investigate the evolution of the cluster scaling relations. The observed evolution in the normalization of the L-T, M-T, M(sub 2)-T and M-L relations is consistent with simple self-similar predictions, in which the properties of clusters reflect the properties of the Universe at their redshift of observation. Under the assumption that the model of self-similar evolution is correct and that the local systems formed via a single spherical collapse, the high-redshift L-T relation is consistent with the high-z clusters having virialized at a significantly higher redshift than the local systems. The data are also consistent with the more realistic scenario of clusters forming via the continuous accretion of material. The slope of the L-T relation at high redshift (B = 3.32 +/- 0.37) is consistent with the local relation, and significantly steeper than the self-similar prediction of B = 2. This suggests that the same non-gravitational processes are responsible for steepening the local and high-z relations, possibly occurring universally at z is approximately greater than 1 or in the early stages of the cluster formation, prior to their observation. The properties of the intracluster medium at high redshift are found to be similar to those in the local Universe. The mean surface-brightness profile slope for the sample is Beta = 0.66 +/- 0.05, the mean gas mass fractions within R(sub 2500(z)) and R(200(z)) are 0.069 +/- 0.012 and 0.11 +/- 0.02, respectively, and the mean metallicity of the sample is 0.28 +/- 0.11 Z(sub solar).

  11. New Surveys of the Universe with the Jansky Very Large Array (VLA) and the Very Long Baseline Array (VLBA)

    NASA Astrophysics Data System (ADS)

    Myers, Steven T.

    2013-01-01

    The Jansky Very Large Array is a recently completed upgrade to the VLA that has significantly expanded its capabilities through replacement of the receivers, electronics, signal paths, and correlator with cutting-edge technology. This enhancement provides significantly increased continuum sensitivity and spectral survey speeds (by factors of 100 or more in select cases) from 1-50 GHz and in key bands below 1 GHz. Concurrently, we are greatly enhancing the sensitivity of the Very Long Baseline Array. A suite of ever more ambitious radio sky survey programs undertaken with these new instruments address science goals central to answering the questions posed by Astro2010, and will undoubtedly incite new inquiries. The science themes of the Jansky VLA and the VLBA are: illuminating the obscured, probing the magnetic, sounding the transient, and charting the evolving Universe. New observations will allow us to image young stars in massive black holes in dust enshrouded environments, measure the strength and topology of the cosmic magnetic field, follow the rapid evolution of energetic phenomena, and to study the formation and evolution of stars, galaxies, AGN, and the Universe itself. We can follow the evolution of gas and galaxies and particles and fields through cosmic time to bridge the eras from cosmic dawn to the dawn of new worlds. I will describe the salient features of the Jansky VLA and the VLBA for cosmological survey work, and summarize the multi-wavelength aspects in regard to those with ALMA and next generation optical, infrared, X-ray and Gamma-ray telescopes. Example data taken from Janksy VLA and upgraded VLBA commissioning tests and early science will illustrate these features. I also describe evolution of the VLA and VLBA and their capabilities for future surveys that will lead towards the next decade, into the era of the LSST and the SKA.

  12. Italian Universities and the Third Mission: A Longitudinal Analysis of Organizational and Educational Evolution towards the "Entrepreneurial University"

    ERIC Educational Resources Information Center

    Riviezzo, Angelo; Napolitano, Maria Rosaria

    2010-01-01

    This paper examines the diffusion of entrepreneurial activities among Italian universities, the evolution of the organizational models implemented to facilitate such activities and the commitment of the universities to the Third Mission of social and economic development. As previous analyses have shown, Italian universities have only recently…

  13. Galactic chemical evolution in hierarchical formation models

    NASA Astrophysics Data System (ADS)

    Arrigoni, Matias

    2010-10-01

    The chemical properties and abundance ratios of galaxies provide important information about their formation histories. Galactic chemical evolution has been modelled in detail within the monolithic collapse scenario. These models have successfully described the abundance distributions in our Galaxy and other spiral discs, as well as the trends of metallicity and abundance ratios observed in early-type galaxies. In the last three decades, however, the paradigm of hierarchical assembly in a Cold Dark Matter (CDM) cosmology has revised the picture of how structure in the Universe forms and evolves. In this scenario, galaxies form when gas radiatively cools and condenses inside dark matter haloes, which themselves follow dissipationless gravitational collapse. The CDM picture has been successful at predicting many observed properties of galaxies (for example, the luminosity and stellar mass function of galaxies, color-magnitude or star formation rate vs. stellar mass distributions, relative numbers of early and late-type galaxies, gas fractions and size distributions of spiral galaxies, and the global star formation history), though many potential problems and open questions remain. It is therefore interesting to see whether chemical evolution models, when implemented within this modern cosmological context, are able to correctly predict the observed chemical properties of galaxies. With the advent of more powerfull telescopes and detectors, precise observations of chemical abundances and abundance ratios in various phases (stellar, ISM, ICM) offer the opportunity to obtain strong constraints on galaxy formation histories and the physics that shapes them. However, in order to take advantage of these observations, it is necessary to implement detailed modeling of chemical evolution into a modern cosmological model of hierarchical assembly.

  14. Bayesian Morphological Clock Methods Resurrect Placoderm Monophyly and Reveal Rapid Early Evolution in Jawed Vertebrates.

    PubMed

    King, Benedict; Qiao, Tuo; Lee, Michael S Y; Zhu, Min; Long, John A

    2017-07-01

    The phylogeny of early gnathostomes provides an important framework for understanding one of the most significant evolutionary events, the origin and diversification of jawed vertebrates. A series of recent cladistic analyses have suggested that the placoderms, an extinct group of armoured fish, form a paraphyletic group basal to all other jawed vertebrates. We revised and expanded this morphological data set, most notably by sampling autapomorphies in a similar way to parsimony-informative traits, thus ensuring this data (unlike most existing morphological data sets) satisfied an important assumption of Bayesian tip-dated morphological clock approaches. We also found problems with characters supporting placoderm paraphyly, including character correlation and incorrect codings. Analysis of this data set reveals that paraphyly and monophyly of core placoderms (excluding maxillate forms) are essentially equally parsimonious. The two alternative topologies have different root positions for the jawed vertebrates but are otherwise similar. However, analysis using tip-dated clock methods reveals strong support for placoderm monophyly, due to this analysis favoring trees with more balanced rates of evolution. Furthermore, enforcing placoderm paraphyly results in higher levels and unusual patterns of rate heterogeneity among branches, similar to that generated from simulated trees reconstructed with incorrect root positions. These simulations also show that Bayesian tip-dated clock methods outperform parsimony when the outgroup is largely uninformative (e.g., due to inapplicable characters), as might be the case here. The analysis also reveals that gnathostomes underwent a rapid burst of evolution during the Silurian period which declined during the Early Devonian. This rapid evolution during a period with few articulated fossils might partly explain the difficulty in ascertaining the root position of jawed vertebrates. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Clinical evolution of post-transplant diabetes mellitus.

    PubMed

    Porrini, Esteban L; Díaz, Jose M; Moreso, Francisco; Delgado Mallén, Patricia I; Silva Torres, Irene; Ibernon, Meritxell; Bayés-Genís, Beatriz; Benitez-Ruiz, Rocío; Lampreabe, Ildefonso; Lauzurrica, Ricardo; Osorio, Jose M; Osuna, Antonio; Domínguez-Rollán, Rosa; Ruiz, Juan C; Jiménez-Sosa, Alejandro; González-Rinne, Ana; Marrero-Miranda, Domingo; Macía, Manuel; García, Javier; Torres, Armando

    2016-03-01

    The long-term clinical evolution of prediabetes and post-transplant diabetes mellitus (PTDM) is unknown. We analysed, in this cohort study, the reversibility, stability and progression of PTDM and prediabetes in 672 patients using repeated oral glucose tolerance tests (OGTTs) for ≤5 years. Most patients were on tacrolimus, steroids and mycophenolate. About half developed either PTDM or prediabetes. The incidence of PTDM was 32% and bimodal: early PTDM (≤3 months) and late PTDM. Early PTDM reverted in 31%; late PTDM developed in patients with post-transplant prediabetes. The use of OGTTs was necessary to detect around half of PTDM. Pretransplant obesity was a major risk factor for early PTDM, for its persistence and for late PTDM {odds ratio [OR] 1.18 [95% confidence interval (CI) 1.09-1.28]}. At 3 months, higher HbA1c promoted [OR 2.37 (95% CI 1.38-4.06)], while insulin sensitivity protected against [OR 0.64 (95% CI 0.48-0.86)] late PTDM. At 3 months, 28% had prediabetes; of these, 36% remained stable, 43% normalized and 21% developed late PTDM. Pretransplant obesity [OR 1.20 (95% CI 1.04-1.39)] and higher HbA1c [OR 3.80 (95% CI 1.45-9.94)] at 3 months promoted while insulin sensitivity protected against [OR 0.57 (95% CI 0.34-0.95)] evolution from prediabetes to late PTDM. Immunosuppressive levels or acute rejection did not influence PTDM. Most (84%) of the patients with normal tests at 3 months remained stable without evolving into PTDM; 14% developed prediabetes. PTDM and prediabetes are very common in renal transplantation. Classic metabolic factors like obesity, prediabetes and insulin resistance promote the evolution of PTDM and prediabetes. Patients with normal glucose metabolism rarely develop PTDM. OGTT is necessary to detect PTDM and prediabetes and thus should be included in clinical practice. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  16. A simple model of universe describing the early inflation and the late accelerated expansion in a symmetric manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavanis, Pierre-Henri

    We construct a simple model of universe which 'unifies' vacuum energy and radiation on the one hand, and matter and dark energy on the other hand in the spirit of a generalized Chaplygin gas model. Specifically, the phases of early inflation and late accelerated expansion are described by a generalized equation of state p/c{sup 2} = αρ+kρ{sup 1+1/n} having a linear component p = αρc{sup 2} and a polytropic component p = kρ{sup 1+1/n}c{sup 2}. For α= 1/3, n= 1 and k=−4/(3ρ{sub P}), where ρ{sub P}= 5.1610{sup 99} g/m{sup 3} is the Planck density, this equation of state describes themore » transition between the vacuum energy era and the radiation era. For t≥ 0, the universe undergoes an inflationary expansion that brings it from the Planck size l{sub P}= 1.6210{sup −35} m to a size a{sub 1}= 2.6110{sup −6} m on a timescale of about 23.3 Planck times t{sub P}= 5.3910{sup −44} s (early inflation). When t > t{sub 1}= 23.3t{sub P}, the universe decelerates and enters in the radiation era. We interpret the transition from the vacuum energy era to the radiation era as a second order phase transition where the Planck constant ℏ plays the role of finite size effects (the standard Big Bang theory is recovered for ℏ= 0). For α= 0, n=−1 and k=−ρ{sub Λ}, where ρ{sub Λ}= 7.0210{sup −24} g/m{sup 3} is the cosmological density, the equation of state p/c{sup 2} = αρ+kρ{sup 1+1/n} describes the transition from a decelerating universe dominated by pressureless matter (baryonic and dark matter) to an accelerating universe dominated by dark energy (late inflation). This transition takes place at a size a{sub 2}= 0.204l{sub Λ}. corresponding to a time t{sub 2}= 0.203t{sub Λ} where l{sub Λ}= 4.38 10{sup 26} m is the cosmological length and t{sub Λ}= 1.46 10{sup 18} s the cosmological time. The present universe turns out to be just at the transition between these two periods (t{sub 0}∼t{sub 2}). Our model gives the same results as the standard ΛCDM model for t≫t{sub P} and completes it by incorporating a phase of early inflation for t < 23.3t{sub P} in a very natural manner. Furthermore, it reveals a nice 'symmetry' between the early and the late evolution of the universe. The early universe is modeled by a polytrope n=+ 1 and the late universe by a polytrope n=−1. Furthermore, the cosmological constant Λ in the late universe plays a role similar to the Planck constant ℏ in the early universe. The mathematical formulae in the early and in the late universe are then strikingly symmetric. We interpret the cosmological constant as a fundamental constant of Nature describing the 'cosmophysics' just like the Planck constant describes the 'microphysics'. The Planck density and the cosmological density represent fundamental upper and lower bounds differing by 122 orders of magnitude. The cosmological constant 'problem' may be a false problem. Finally, we show that our model admits a scalar field interpretation based on a quintessence field or a tachyon field.« less

  17. Dusty starburst galaxies in the early Universe as revealed by gravitational lensing.

    PubMed

    Vieira, J D; Marrone, D P; Chapman, S C; De Breuck, C; Hezaveh, Y D; Weiβ, A; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Fomalont, E B; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Gullberg, B; Halverson, N W; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Hunter, T R; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Mocanu, L M; Murphy, E J; Natoli, T; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Sharon, K; Schaffer, K K; Shaw, L; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R

    2013-03-21

    In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.

  18. Convective penetration in stars

    NASA Astrophysics Data System (ADS)

    Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; Constantino, Tom; Popov, M. V.; Walder, Rolf; Folini, Doris; TOFU Collaboration

    To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC, currently being developed at the University of Exeter. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework (FP7/2007-2013)/ERC Grant agreement no. 320478.

  19. Gamma Ray Bursts as Cosmological Probes with EXIST

    NASA Astrophysics Data System (ADS)

    Hartmann, Dieter; EXIST Team

    2006-12-01

    The EXIST mission, studied as a Black Hole Finder Probe within NASA's Beyond Einstein Program, would, in its current design, trigger on 1000 Gamma Ray Bursts (GRBs) per year (Grindlay et al, this meeting). The redshift distribution of these GRBs, using results from Swift as a guide, would probe the z > 7 epoch at an event rate of > 50 per year. These bursts trace early cosmic star formation history, point to a first generation of stellar objects that reionize the universe, and provide bright beacons for absorption line studies with groundand space-based observatories. We discuss how EXIST, in conjunction with other space missions and future large survey programs such as LSST, can be utilized to advance our understanding of cosmic chemical evolution, the structure and evolution of the baryonic cosmic web, and the formation of stars in low metallicity environments.

  20. Constraining nuclear data via cosmological observations: Neutrino energy transport and big bang nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paris, Mark W.; Fuller, George M.; Grohs, Evan Bradley

    Here, we introduce a new computational capability that moves toward a self-consistent calculation of neutrino transport and nuclear reactions for big bang nucleosynthesis (BBN). Such a self-consistent approach is needed to be able to extract detailed information about nuclear reactions and physics beyond the standard model from precision cosmological observations of primordial nuclides and the cosmic microwave background radiation. We also calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multi-energy group Boltzmann neutrino energymore » transport scheme. The modular structure of our approach allows the dissection of the relative contributions of each process responsible for evolving the dynamics of the early universe. Such an approach allows a detailed account of the evolution of the active neutrino energy distribution functions alongside and self-consistently with the nuclear reactions and entropy/heat generation and flow between the neutrino and photon/electron/positron/baryon plasma components. Our calculations reveal nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions. We discuss the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma. These effects result in changes in the computed values of the BBN deuterium and helium-4 yields that are on the order of a half-percent relative to a baseline standard BBN calculation with no neutrino transport. This is an order of magnitude larger effect than in previous estimates. For particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium and a 0.6% decrease in 4He over our baseline. The magnitude of these changes are on the order of uncertainties in the nuclear physics for the case of deuterium and are potentially significant for the error budget of helium in upcoming cosmological observations.« less

  1. Constraining nuclear data via cosmological observations: Neutrino energy transport and big bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Paris, Mark; Fuller, George; Grohs, Evan; Kishimoto, Chad; Vlasenko, Alexey

    2017-09-01

    We introduce a new computational capability that moves toward a self-consistent calculation of neutrino transport and nuclear reactions for big bang nucleosynthesis (BBN). Such a self-consistent approach is needed to be able to extract detailed information about nuclear reactions and physics beyond the standard model from precision cosmological observations of primordial nuclides and the cosmic microwave background radiation. We calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multi-energy group Boltzmann neutrino energy transport scheme. The modular structure of our approach allows the dissection of the relative contributions of each process responsible for evolving the dynamics of the early universe. Such an approach allows a detailed account of the evolution of the active neutrino energy distribution functions alongside and self-consistently with the nuclear reactions and entropy/heat generation and 'ow between the neutrino and photon/electron/positron/baryon plasma components. Our calculations reveal nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions. We discuss the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma. These e↑ects result in changes in the computed values of the BBN deuterium and helium-4 yields that are on the order of a half-percent relative to a baseline standard BBN calculation with no neutrino transport. This is an order of magnitude larger e↑ect than in previous estimates. For particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium and a 0.6% decrease in 4He over our baseline. The magnitude of these changes are on the order of uncertainties in the nuclear physics for the case of deuterium and are potentially signi↓cant for the error budget of helium in upcoming cosmological observations.

  2. Improved constraints on the expansion rate of the Universe up to z ∼ 1.1 from the spectroscopic evolution of cosmic chronometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moresco, M.; Cimatti, A.; Jimenez, R.

    2012-08-01

    We present new improved constraints on the Hubble parameter H(z) in the redshift range 0.15 < z < 1.1, obtained from the differential spectroscopic evolution of early-type galaxies as a function of redshift. We extract a large sample of early-type galaxies ( ∼ 11000) from several spectroscopic surveys, spanning almost 8 billion years of cosmic lookback time (0.15 < z < 1.42). We select the most massive, red elliptical galaxies, passively evolving and without signature of ongoing star formation. Those galaxies can be used as standard cosmic chronometers, as firstly proposed by Jimenez and Loeb (2002), whose differential age evolutionmore » as a function of cosmic time directly probes H(z). We analyze the 4000 Å break (D4000) as a function of redshift, use stellar population synthesis models to theoretically calibrate the dependence of the differential age evolution on the differential D4000, and estimate the Hubble parameter taking into account both statistical and systematical errors. We provide 8 new measurements of H(z), and determine its change in H(z) to a precision of 5–12% mapping homogeneously the redshift range up to z ∼ 1.1; for the first time, we place a constraint on H(z) at z≠0 with a precision comparable with the one achieved for the Hubble constant (about 5–6% at z ∼ 0.2), and covered a redshift range (0.5 < z < 0.8) which is crucial to distinguish many different quintessence cosmologies. These measurements have been tested to best match a ΛCDM model, clearly providing a statistically robust indication that the Universe is undergoing an accelerated expansion. This method shows the potentiality to open a new avenue in constrain a variety of alternative cosmologies, especially when future surveys (e.g. Euclid) will open the possibility to extend it up to z ∼ 2.« less

  3. Constraining nuclear data via cosmological observations: Neutrino energy transport and big bang nucleosynthesis

    DOE PAGES

    Paris, Mark W.; Fuller, George M.; Grohs, Evan Bradley; ...

    2017-09-13

    Here, we introduce a new computational capability that moves toward a self-consistent calculation of neutrino transport and nuclear reactions for big bang nucleosynthesis (BBN). Such a self-consistent approach is needed to be able to extract detailed information about nuclear reactions and physics beyond the standard model from precision cosmological observations of primordial nuclides and the cosmic microwave background radiation. We also calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multi-energy group Boltzmann neutrino energymore » transport scheme. The modular structure of our approach allows the dissection of the relative contributions of each process responsible for evolving the dynamics of the early universe. Such an approach allows a detailed account of the evolution of the active neutrino energy distribution functions alongside and self-consistently with the nuclear reactions and entropy/heat generation and flow between the neutrino and photon/electron/positron/baryon plasma components. Our calculations reveal nonlinear feedback in the time evolution of neutrino distribution functions and plasma thermodynamic conditions. We discuss the time development of neutrino spectral distortions and concomitant entropy production and extraction from the plasma. These effects result in changes in the computed values of the BBN deuterium and helium-4 yields that are on the order of a half-percent relative to a baseline standard BBN calculation with no neutrino transport. This is an order of magnitude larger effect than in previous estimates. For particular implementations of quantum corrections in plasma thermodynamics, our calculations show a 0.4% increase in deuterium and a 0.6% decrease in 4He over our baseline. The magnitude of these changes are on the order of uncertainties in the nuclear physics for the case of deuterium and are potentially significant for the error budget of helium in upcoming cosmological observations.« less

  4. Prediction of emission line fluxes of gravitationally lensed very high-z galaxies

    NASA Astrophysics Data System (ADS)

    Inoue, Akio; Shimizu, Ikkoh; Okamoto, Takashi; Yoshida, Naoki; Matsuo, Hiroshi; Tamura, Yoichi

    2015-08-01

    Spectroscopic confirmation of very high-z galaxy candidates is extremely valuable because this is a direct proof of the existence of galaxies in the early Universe and put a strong constraint on the structure formation theory to produce such galaxies during the limited age of the Universe. Before the completion of the cosmic reionization, hydrogen Ly-alpha emission line is hard to be observed and we need other emission lines to confirm the redshift of galaxies. By using a state-of-the-art cosmological hydrodynamics simulation of galaxy formation and evolution with an emission line model based on Cloudy, we predict the line fluxes of some gravitationally-lensed very high-z galaxy candidates. We also discuss their detectability with the current and future telescopes.

  5. The dynamics of superclusters - Initial determination of the mass density of the universe at large scales

    NASA Technical Reports Server (NTRS)

    Ford, H. C.; Ciardullo, R.; Harms, R. J.; Bartko, F.

    1981-01-01

    The radial velocities of cluster members of two rich, large superclusters have been measured in order to probe the supercluster mass densities, and simple evolutionary models have been computed to place limits upon the mass density within each supercluster. These superclusters represent true physical associations of size of about 100 Mpc seen presently at an early stage of evolution. One supercluster is weakly bound, the other probably barely bound, but possibly marginally unbound. Gravity has noticeably slowed the Hubble expansion of both superclusters. Galaxy surface-density counts and the density enhancement of Abell clusters within each supercluster were used to derive the ratio of mass densities of the superclusters to the mean field mass density. The results strongly exclude a closed universe.

  6. Relaxed Observance of Traditional Marriage Rules Allows Social Connectivity without Loss of Genetic Diversity.

    PubMed

    Guillot, Elsa G; Hazelton, Martin L; Karafet, Tatiana M; Lansing, J Stephen; Sudoyo, Herawati; Cox, Murray P

    2015-09-01

    Marriage rules, the community prescriptions that dictate who an individual can or cannot marry, are extremely diverse and universally present in traditional societies. A major focus of research in the early decades of modern anthropology, marriage rules impose social and economic forces that help structure societies and forge connections between them. However, in those early anthropological studies, the biological benefits or disadvantages of marriage rules could not be determined. We revisit this question by applying a novel simulation framework and genome-wide data to explore the effects of Asymmetric Prescriptive Alliance, an elaborate set of marriage rules that has been a focus of research for many anthropologists. Simulations show that strict adherence to these marriage rules reduces genetic diversity on the autosomes, X chromosome and mitochondrial DNA, but relaxed compliance produces genetic diversity similar to random mating. Genome-wide data from the Indonesian community of Rindi, one of the early study populations for Asymmetric Prescriptive Alliance, are more consistent with relaxed compliance than strict adherence. We therefore suggest that, in practice, marriage rules are treated with sufficient flexibility to allow social connectivity without significant degradation of biological diversity. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Systematic variation of the stellar initial mass function in early-type galaxies.

    PubMed

    Cappellari, Michele; McDermid, Richard M; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2012-04-25

    Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination, no consensus has emerged on whether it is universal among different types of galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS(3D) sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy's IMF depends intimately on the galaxy's formation history.

  8. Nonsingular universe in massive gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Momennia, M.; Eslam Panah, B.; Panahiyan, S.

    2017-06-01

    One of the fundamental open questions in cosmology is whether we can regard the universe evolution without singularity like a Big Bang or a Big Rip. This challenging subject stimulates one to regard a nonsingular universe in the far past with an arbitrarily large vacuum energy. Considering the high energy regime in the cosmic history, it is believed that Einstein gravity should be corrected to an effective energy dependent theory which could be acquired by gravity's rainbow. On the other hand, employing massive gravity provided us with solutions to some of the long standing fundamental problems of cosmology such as cosmological constant problem and self acceleration of the universe. Considering these aspects of gravity's rainbow and massive gravity, in this paper, we initiate studying FRW cosmology in the massive gravity's rainbow formalism. At first, we show that although massive gravity modifies the FRW cosmology, but it does not itself remove the big bang singularity. Then, we generalize the massive gravity to the case of energy dependent spacetime and find that massive gravity's rainbow can remove the early universe singularity. We bring together all the essential conditions for having a nonsingular universe and the effects of both gravity's rainbow and massive gravity generalizations on such criteria are determined.

  9. Santorini Volcano

    USGS Publications Warehouse

    Druitt, T.H.; Edwards, L.; Mellors, R.M.; Pyle, D.M.; Sparks, R.S.J.; Lanphere, M.; Davies, M.; Barreirio, B.

    1999-01-01

    Santorini is one of the most spectacular caldera volcanoes in the world. It has been the focus of significant scientific and scholastic interest because of the great Bronze Age explosive eruption that buried the Minoan town of Akrotiri. Santorini is still active. It has been dormant since 1950, but there have been several substantial historic eruptions. Because of this potential risk to life, both for the indigenous population and for the large number of tourists who visit it, Santorini has been designated one of five European Laboratory Volcanoes by the European Commission. Santorini has long fascinated geologists, with some important early work on volcanoes being conducted there. Since 1980, research groups at Cambridge University, and later at the University of Bristol and Blaise Pascal University in Clermont-Ferrand, have collected a large amount of data on the stratigraphy, geochemistry, geochronology and petrology of the volcanics. The volcanic field has been remapped at a scale of 1:10 000. A remarkable picture of cyclic volcanic activity and magmatic evolution has emerged from this work. Much of this work has remained unpublished until now. This Memoir synthesizes for the first time all the data from the Cambridge/Bristol/Clermont groups, and integrates published data from other research groups. It provides the latest interpretation of the tectonic and magmatic evolution of Santorini. It is accompanied by the new 1:10 000 full-colour geological map of the island.

  10. Multispecies coalescent analysis of the early diversification of neotropical primates: phylogenetic inference under strong gene trees/species tree conflict.

    PubMed

    Schrago, Carlos G; Menezes, Albert N; Furtado, Carolina; Bonvicino, Cibele R; Seuanez, Hector N

    2014-11-05

    Neotropical primates (NP) are presently distributed in the New World from Mexico to northern Argentina, comprising three large families, Cebidae, Atelidae, and Pitheciidae, consequently to their diversification following their separation from Old World anthropoids near the Eocene/Oligocene boundary, some 40 Ma. The evolution of NP has been intensively investigated in the last decade by studies focusing on their phylogeny and timescale. However, despite major efforts, the phylogenetic relationship between these three major clades and the age of their last common ancestor are still controversial because these inferences were based on limited numbers of loci and dating analyses that did not consider the evolutionary variation associated with the distribution of gene trees within the proposed phylogenies. We show, by multispecies coalescent analyses of selected genome segments, spanning along 92,496,904 bp that the early diversification of extant NP was marked by a 2-fold increase of their effective population size and that Atelids and Cebids are more closely related respective to Pitheciids. The molecular phylogeny of NP has been difficult to solve because of population-level phenomena at the early evolution of the lineage. The association of evolutionary variation with the distribution of gene trees within proposed phylogenies is crucial for distinguishing the mean genetic divergence between species (the mean coalescent time between loci) from speciation time. This approach, based on extensive genomic data provided by new generation DNA sequencing, provides more accurate reconstructions of phylogenies and timescales for all organisms. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. The Evolution of Arthropod Body Plans: Integrating Phylogeny, Fossils, and Development-An Introduction to the Symposium.

    PubMed

    Chipman, Ariel D; Erwin, Douglas H

    2017-09-01

    The last few years have seen a significant increase in the amount of data we have about the evolution of the arthropod body plan. This has come mainly from three separate sources: a new consensus and improved resolution of arthropod phylogeny, based largely on new phylogenomic analyses; a wealth of new early arthropod fossils from a number of Cambrian localities with excellent preservation, as well as a renewed analysis of some older fossils; and developmental data from a range of model and non-model pan-arthropod species that shed light on the developmental origins and homologies of key arthropod traits. However, there has been relatively little synthesis among these different data sources, and the three communities studying them have little overlap. The symposium "The Evolution of Arthropod Body Plans-Integrating Phylogeny, Fossils and Development" brought together leading researchers in these three disciplines and made a significant contribution to the emerging synthesis of arthropod evolution, which will help advance the field and will be useful for years to come. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  12. The unfolding of the historical style in modern cosmology: Emergence, evolution, entrenchment

    NASA Astrophysics Data System (ADS)

    Pearce, Jacob

    2017-02-01

    This paper traces the emergence, evolution and subsequent entrenchment of the historical style in the shifting scene of modern cosmological inquiry. It argues that the historical style in cosmology was forged in the early decades of the 20th century and continued to evolve in the century that followed. Over time, the scene of cosmological inquiry has gradually become dominated and entirely constituted by historicist explanations. Practices such as forwards and backwards temporal extrapolation (thinking about the past evolutionary history of the universe with different initial conditions and other parameters) are now commonplace. The non-static geometrization of the cosmos in the early 20th century led to inquires thinking about the cosmos in evolutionary terms. Drawing on the historical approach of Gamow (and contrasting this with the ahistorical approach of Bondi), the paper then argues that the historical style became a major force as inquirers began scouring the universe for fossils and other relics as a new form of scientific practice-cosmic palaeontology. By the 1970s the historical style became the bedrock of the discipline and the presupposition of new lines of inquiry. By the end of the 20th century, the historical style was pushed to its very limits as temporal reasoning began to occur beyond a linear historical narrative. With the atemporal 'ensemble' type multiverse proposals, a certain type of ahistorical reasoning has been reintroduced to cosmological discourse, which, in a sense, represents a radical de-historicization of the historical style in cosmology. Some are now even attempting to explain the laws of physics in terms of their historicity.

  13. Evidence of translation efficiency adaptation of the coding regions of the bacteriophage lambda.

    PubMed

    Goz, Eli; Mioduser, Oriah; Diament, Alon; Tuller, Tamir

    2017-08-01

    Deciphering the way gene expression regulatory aspects are encoded in viral genomes is a challenging mission with ramifications related to all biomedical disciplines. Here, we aimed to understand how the evolution shapes the bacteriophage lambda genes by performing a high resolution analysis of ribosomal profiling data and gene expression related synonymous/silent information encoded in bacteriophage coding regions.We demonstrated evidence of selection for distinct compositions of synonymous codons in early and late viral genes related to the adaptation of translation efficiency to different bacteriophage developmental stages. Specifically, we showed that evolution of viral coding regions is driven, among others, by selection for codons with higher decoding rates; during the initial/progressive stages of infection the decoding rates in early/late genes were found to be superior to those in late/early genes, respectively. Moreover, we argued that selection for translation efficiency could be partially explained by adaptation to Escherichia coli tRNA pool and the fact that it can change during the bacteriophage life cycle.An analysis of additional aspects related to the expression of viral genes, such as mRNA folding and more complex/longer regulatory signals in the coding regions, is also reported. The reported conclusions are likely to be relevant also to additional viruses. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  14. Xenia: A Probe of Cosmic Chemical Evolution

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa; Piro, L.

    2008-01-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and y-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  15. Xenia: A Probe of Cosmic Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Kouveliotou, Chryssa; Piro, L.; Xenia Collaboration

    2008-03-01

    Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and γ-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.

  16. Peroxy defects in Rocks and H2O2 formation on the early Earth

    NASA Astrophysics Data System (ADS)

    Gray, A.; Balk, M.; Mason, P.; Freund, F.; Rothschild, L.

    2013-12-01

    An oxygen-rich atmosphere appears to have been a prerequisite for complex life to evolve on Earth and possibly elsewhere in the Universe. The question is still shrouded in uncertainty how free oxygen became available on the early Earth. Here we study processes of peroxy defects in silicate minerals which, upon weathering, generate mobilized electronic charge carriers resulting in oxygen formation in an initially anoxic subsurface environment. Reactive Oxygen Species (ROS) are precursors to molecular oxygen during this process. Due to their toxicity they may have strongly influenced the evolution of life. ROS are generated during hydrolysis of peroxy defects, which consist of pairs of oxygen anions. A second pathway for formation occurs during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, microorganisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defenses against the potentially dangerous, even lethal effects of ROS and oxygen. We have investigated how oxygen might be released through weathering and test microorganisms in contact with rock surfaces. Our results show how early Life might have adapted to oxygen. Early microorganisms must have "trained" to detoxify ROS prior to the evolution of aerobic metabolism and oxygenic photosynthesis. A possible way out of this dilemma comes from a study of igneous and high-grade metamorphic rocks, whose minerals contain a small but significant fraction of oxygen anions in the valence state 1- , forming peroxy links of the type O3Si-OO-SiO3 [1, 2]. As water hydrolyzes the peroxy links hydrogen peroxide, H2O2, forms. Continued experimental discovery of H2O2 formation at rock-water interfaces as part of stress-activated currents on the tectonically active Earth may help us better understand the oxidation of the early Earth and the evolution of early Life. [1] Balk et al. (2009) Earth and Planetary Science Letters 283, 87-92. [2] Grant, R. A. et al. (2011) Int. J. Environ. Res. Public Health 8, 1936-1956.

  17. The evolution of organic matter in space.

    PubMed

    Ehrenfreund, Pascale; Spaans, Marco; Holm, Nils G

    2011-02-13

    Carbon, and molecules made from it, have already been observed in the early Universe. During cosmic time, many galaxies undergo intense periods of star formation, during which heavy elements like carbon, oxygen, nitrogen, silicon and iron are produced. Also, many complex molecules, from carbon monoxide to polycyclic aromatic hydrocarbons, are detected in these systems, like they are for our own Galaxy. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly high number of molecules that are used in contemporary biochemistry on the Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites and interplanetary dust particles. Large quantities of extra-terrestrial material were delivered via comets and asteroids to young planetary surfaces during the heavy bombardment phase. Monitoring the formation and evolution of organic matter in space is crucial in order to determine the prebiotic reservoirs available to the early Earth. It is equally important to reveal abiotic routes to prebiotic molecules in the Earth environments. Materials from both carbon sources (extra-terrestrial and endogenous) may have contributed to biochemical pathways on the Earth leading to life's origin. The research avenues discussed also guide us to extend our knowledge to other habitable worlds.

  18. Milgram's Obedience to Authority experiments: origins and early evolution.

    PubMed

    Russell, Nestar John Charles

    2011-03-01

    Stanley Milgram's Obedience to Authority experiments remain one of the most inspired contributions in the field of social psychology. Although Milgram undertook more than 20 experimental variations, his most (in)famous result was the first official trial run - the remote condition and its 65% completion rate. Drawing on many unpublished documents from Milgram's personal archive at Yale University, this article traces the historical origins and early evolution of the obedience experiments. Part 1 presents the previous experiences that led to Milgram's conception of his rudimentary research idea and then details the role of his intuition in its refinement. Part 2 traces the conversion of Milgram's evolving idea into a reality, paying particular attention to his application of the exploratory method of discovery during several pilot studies. Both parts illuminate Milgram's ad hoc introduction of various manipulative techniques and subtle tension-resolving refinements. The procedural adjustments continued until Milgram was confident that the first official experiment would produce a high completion rate, a result contrary to expectations of people's behaviour. Showing how Milgram conceived of, then arrived at, this first official result is important because the insights gained may help others to determine theoretically why so many participants completed this experiment. ©2010 The British Psychological Society.

  19. The Intricate Role of Cold Gas and Dust in Galaxy Evolution at Early Cosmic Epochs

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; Capak, Peter L.; Carilli, Christopher L.

    Cold molecular and atomic gas plays a central role in our understanding of early galaxy formation and evolution. It represents the component of the interstellar medium (ISM) that stars form out of, and its mass, distribution, excitation, and dynamics provide crucial insight into the physical processes that support the ongoing star formation and stellar mass buildup. We here present results that demonstrate the capability of the Atacama Large (sub-)Millimeter Array (ALMA) to detect the cold ISM and dust in ``normal'' galaxies at redshifts z=5-6. We also show detailed studies of the ISM in massive, dust-obscured starburst galaxies out to z>6 with ALMA, the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the Plateau de Bure Interferometer (PdBI), and the Karl G. Jansky Very Large Array (VLA). These observations place some of the most direct constraints on the dust-obscured fraction of the star formation history of the universe at z>5 to date, showing that ``typical'' galaxies at these epochs have low dust content, but also that highly-enriched, dusty starbursts already exist within the first billion years after the Big Bang.

  20. Publications of the exobiology program for 1981: A special bibliography

    NASA Technical Reports Server (NTRS)

    Pleasant, L. G. (Compiler); Devincenzi, D. L. (Compiler)

    1982-01-01

    The exobiology program investigates the planetary events which were responsible for, or, related to, the origin, evolution, and distribution of life in the universe. The areas involved include: chemical evolution, organic geochemistry, origin and evolution of life, planetary environments, life in the universe, planetary protection, and Mars data analysis.

  1. What do Simulations Predict for the Galaxy Stellar Mass Function and its Evolution in Different Environments?

    NASA Astrophysics Data System (ADS)

    Vulcani, Benedetta; De Lucia, Gabriella; Poggianti, Bianca M.; Bundy, Kevin; More, Surhud; Calvi, Rosa

    2014-06-01

    We present a comparison between the observed galaxy stellar mass function and the one predicted from the De Lucia & Blaizot semi-analytic model applied to the Millennium Simulation, for cluster satellites and galaxies in the field (meant as a wide portion of the sky, including all environments), in the local universe (z ~ 0.06), and at intermediate redshift (z ~ 0.6), with the aim to shed light on the processes which regulate the mass distribution in different environments. While the mass functions in the field and in its finer environments (groups, binary, and single systems) are well matched in the local universe down to the completeness limit of the observational sample, the model overpredicts the number of low-mass galaxies in the field at z ~ 0.6 and in clusters at both redshifts. Above M * = 1010.25 M ⊙, it reproduces the observed similarity of the cluster and field mass functions but not the observed evolution. Our results point out two shortcomings of the model: an incorrect treatment of cluster-specific environmental effects and an overefficient galaxy formation at early times (as already found by, e.g., Weinmann et al.). Next, we consider only simulations. Also using the Guo et al. model, we find that the high-mass end of the mass functions depends on halo mass: only very massive halos host massive galaxies, with the result that their mass function is flatter. Above M * = 109.4 M ⊙, simulations show an evolution in the number of the most massive galaxies in all environments. Mass functions obtained from the two prescriptions are different, however, results are qualitatively similar, indicating that the adopted methods to model the evolution of central and satellite galaxies still have to be better implemented in semi-analytic models.

  2. Experiences and practices of evolution instructors at Christian universities that can inform culturally competent evolution education

    PubMed Central

    Barnes, M. Elizabeth

    2017-01-01

    Abstract Students’ religious beliefs and religious cultures have been shown to be the main factors predicting whether they will accept evolution, yet college biology instructors teaching evolution at public institutions often have religious beliefs and cultures that are different from their religious students. This difference in religious beliefs and cultures may be a barrier to effective evolution education. To explore when evolution instructors have similar religious cultures and beliefs as their students, we interviewed 32 evolution instructors at Christian universities nationwide about their practices and experiences teaching evolution. Christian university instructors emphasized teaching for acceptance of evolution while holding an inclusive teaching philosophy that they perceived led to a safe environment for students. Additionally, almost all instructors reported using practices that have been shown to increase student acceptance of evolution and reduce student conflict between evolution and religion. Further, we found that these instructors perceived that their own religious backgrounds have guided their decisions to teach evolution to their students in a culturally competent way. We discuss how these data, combined with past research literature on public college instructors, indicate that cultural competence could be a useful new framework for promoting effective evolution education in higher education institutions. PMID:29398727

  3. Gravitational wave signatures of inflationary models from Primordial Black Hole dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Bellido, Juan; Peloso, Marco; Unal, Caner, E-mail: juan.garciabellido@uam.es, E-mail: peloso@physics.umn.edu, E-mail: unal@physics.umn.edu

    Primordial Black Holes (PBH) could be the cold dark matter of the universe. They could have arisen from large (order one) curvature fluctuations produced during inflation that reentered the horizon in the radiation era. At reentry, these fluctuations source gravitational waves (GW) via second order anisotropic stresses. These GW, together with those (possibly) sourced during inflation by the same mechanism responsible for the large curvature fluctuations, constitute a primordial stochastic GW background (SGWB) that unavoidably accompanies the PBH formation. We study how the amplitude and the range of frequencies of this signal depend on the statistics (Gaussian versus χ{sup 2})more » of the primordial curvature fluctuations, and on the evolution of the PBH mass function due to accretion and merging. We then compare this signal with the sensitivity of present and future detectors, at PTA and LISA scales. We find that this SGWB will help to probe, or strongly constrain, the early universe mechanism of PBH production. The comparison between the peak mass of the PBH distribution and the peak frequency of this SGWB will provide important information on the merging and accretion evolution of the PBH mass distribution from their formation to the present era. Different assumptions on the statistics and on the PBH evolution also result in different amounts of CMB μ-distortions. Therefore the above results can be complemented by the detection (or the absence) of μ-distortions with an experiment such as PIXIE.« less

  4. Insight as a social identity process in the evolution of psychosocial functioning in the early phase of psychosis.

    PubMed

    Klaas, H S; Clémence, A; Marion-Veyron, R; Antonietti, J-P; Alameda, L; Golay, P; Conus, P

    2017-03-01

    Awareness of illness (insight) has been found to have contradictory effects for different functional outcomes after the early course of psychosis. Whereas it is related to psychotic symptom reduction and medication adherence, it is also associated with increased depressive symptoms. In this line, the specific effects of insight on the evolution of functioning over time have not been identified, and social indicators, such as socio-occupational functioning have barely been considered. Drawing from social identity theory we investigated the impact of insight on the development of psychosocial outcomes and the interactions of these variables over time. The participants, 240 patients in early phase of psychosis from the Treatment and Early Intervention in Psychosis Program (TIPP) of the University Hospital of Lausanne, Switzerland, were assessed at eight time points over 3 years. Cross-lagged panel analyses and multilevel analyses were conducted on socio-occupational and general functioning [Social and Occupational Functioning Assessment Scale (SOFAS) and Global Assessment of Functioning (GAF)] with insight, time and depressive symptoms as independent variables. Results from multilevel analyses point to an overall positive impact of insight on psychosocial functioning, which increases over time. Yet the cross-lagged panel analysis did not reveal a systematic positive and causal effect of insight on SOFAS and GAF scores. Depressive symptoms seem only to be relevant in the beginning of the treatment process. Our results point to a complex process in which the positive impact of insight on psychosocial functioning increases over time, even when considering depressive symptoms. Future studies and treatment approaches should consider the procedural aspect of insight.

  5. Anisotropic string cosmological model in Brans–Dicke theory of gravitation with time-dependent deceleration parameter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurya, D. Ch., E-mail: dcmaurya563@gmail.com; Zia, R., E-mail: rashidzya@gmail.com; Pradhan, A., E-mail: pradhan.anirudh@gmail.com

    We discuss a spatially homogeneous and anisotropic string cosmological models in the Brans–Dicke theory of gravitation. For a spatially homogeneous metric, it is assumed that the expansion scalar θ is proportional to the shear scalar σ. This condition leads to A = kB{sup m}, where k and m are constants. With these assumptions and also assuming a variable scale factor a = a(t), we find solutions of the Brans–Dicke field equations. Various phenomena like the Big Bang, expanding universe, and shift from anisotropy to isotropy are observed in the model. It can also be seen that in early stage ofmore » the evolution of the universe, strings dominate over particles, whereas the universe is dominated by massive strings at the late time. Some physical and geometrical behaviors of the models are also discussed and observed to be in good agreement with the recent observations of SNe la supernovae.« less

  6. Higgs cosmology

    NASA Astrophysics Data System (ADS)

    Rajantie, Arttu

    2018-01-01

    The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  7. Anisotropic Bianchi type-III model in Palatini f (R) gravity

    NASA Astrophysics Data System (ADS)

    Banik, Debika Kangsha; Banik, Sebika Kangsha; Bhuyan, Kalyan

    2017-03-01

    We derive exact solutions for anisotropic Bianchi type-III cosmological model in the Palatini formalism of f (R) gravity using Dynamical System Approach. For the f (R) of the form f(R) =R-β /Rn and f(R) =R+α Rm , we have found the fixed points describing the radiation-dominated, matter dominated and de Sitter evolution periods. Fixed points have also been found which have non-vanishing shear playing a very significant role in describing the anisotropy present in the early universe. In addition, we have also found that the spatial curvature affect isotropisation of this cosmological model.

  8. Spacetime topology change and black hole information

    NASA Astrophysics Data System (ADS)

    Hsu, Stephen D. H.

    2007-01-01

    Topology change-the creation of a disconnected baby universe-due to black hole collapse may resolve the information loss paradox. Evolution from an early time Cauchy surface to a final surface which includes a slice of the disconnected region can be unitary and consistent with conventional quantum mechanics. We discuss the issue of cluster decomposition, showing that any violations thereof are likely to be unobservably small. Topology change is similar to the black hole remnant scenario and only requires assumptions about the behavior of quantum gravity in Planckian regimes. It does not require non-locality or any modification of low-energy physics.

  9. The quiet revolution of numerical weather prediction.

    PubMed

    Bauer, Peter; Thorpe, Alan; Brunet, Gilbert

    2015-09-03

    Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions, have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical weather prediction is among the greatest of any area of physical science. As a computational problem, global weather prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is performed every day at major operational centres across the world.

  10. Integrating population health into a family medicine clerkship: 7 years of evolution.

    PubMed

    Unverzagt, Mark; Wallerstein, Nina; Benson, Jeffrey A; Tomedi, Angelo; Palley, Toby B

    2003-01-01

    A population health curriculum using methodologies from community-oriented primary care (COPC) was developed in 1994 as part of a required third-year family medicine clerkship at the University of New Mexico. The curriculum integrates population health/community medicine projects and problem-based tutorials into a community-based, ambulatory clinical experience. By combining a required population health experience with relevant clinical training, student careers have the opportunity to be influenced during the critical third year. Results over a 7-year period describe a three-phase evolution of the curriculum, within the context of changes in medical education and in health care delivery systems in that same period of time. Early evaluation revealed that students viewed the curricular experience as time consuming and peripheral to their training. Later comments on the revised curriculum showed a higher regard for the experience that was described as important for student learning.

  11. Origin and Evolution of Water Oxidation before the Last Common Ancestor of the Cyanobacteria.

    PubMed

    Cardona, Tanai; Murray, James W; Rutherford, A William

    2015-05-01

    Photosystem II, the water oxidizing enzyme, altered the course of evolution by filling the atmosphere with oxygen. Here, we reconstruct the origin and evolution of water oxidation at an unprecedented level of detail by studying the phylogeny of all D1 subunits, the main protein coordinating the water oxidizing cluster (Mn4CaO5) of Photosystem II. We show that D1 exists in several forms making well-defined clades, some of which could have evolved before the origin of water oxidation and presenting many atypical characteristics. The most ancient form is found in the genome of Gloeobacter kilaueensis JS-1 and this has a C-terminus with a higher sequence identity to D2 than to any other D1. Two other groups of early evolving D1 correspond to those expressed under prolonged far-red illumination and in darkness. These atypical D1 forms are characterized by a dramatically different Mn4CaO5 binding site and a Photosystem II containing such a site may assemble an unconventional metal cluster. The first D1 forms with a full set of ligands to the Mn4CaO5 cluster are grouped with D1 proteins expressed only under low oxygen concentrations and the latest evolving form is the dominant type of D1 found in all cyanobacteria and plastids. In addition, we show that the plastid ancestor had a D1 more similar to those in early branching Synechococcus. We suggest each one of these forms of D1 originated from transitional forms at different stages toward the innovation and optimization of water oxidation before the last common ancestor of all known cyanobacteria. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Detection of early landscape evolution through controlled experimentation, data analysis, and numerical modeling at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Troch, Peter A.; Pangle, Luke; Niu, Guo-Yue; Dontsova, Katerina; Barron-Gafford, Greg; van Haren, Joost; Pavao-Zuckerman, Mitch

    2014-05-01

    The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Embedded solution and gas samplers allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers to study water movement at very high spatial resolutions. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. The rain systems are capable of creating long-term steady state conditions or running complex simulations. The precipitation water supply storage system is flexibly designed to facilitate addition of tracers at constant or time-varying rates for any of the three hillslopes. This presentation will discuss detection of early landscape evolution in terms of hydrological, geochemical and microbial processes through controlled experimentation, data analysis, and numerical modeling during the commissioning phase of the first hillslope at LEO.

  13. Stable cosmology in chameleon bigravity

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Mukohyama, Shinji; Oliosi, Michele; Watanabe, Yota

    2018-02-01

    The recently proposed chameleonic extension of bigravity theory, by including a scalar field dependence in the graviton potential, avoids several fine-tunings found to be necessary in usual massive bigravity. In particular it ensures that the Higuchi bound is satisfied at all scales, that no Vainshtein mechanism is needed to satisfy Solar System experiments, and that the strong coupling scale is always above the scale of cosmological interest all the way up to the early Universe. This paper extends the previous work by presenting a stable example of cosmology in the chameleon bigravity model. We find a set of initial conditions and parameters such that the derived stability conditions on general flat Friedmann background are satisfied at all times. The evolution goes through radiation-dominated, matter-dominated, and de Sitter eras. We argue that the parameter space allowing for such a stable evolution may be large enough to encompass an observationally viable evolution. We also argue that our model satisfies all known constraints due to gravitational wave observations so far and thus can be considered as a unique testing ground of gravitational wave phenomenologies in bimetric theories of gravity.

  14. A Phylogenomic Census of Molecular Functions Identifies Modern Thermophilic Archaea as the Most Ancient Form of Cellular Life

    PubMed Central

    Kim, Kyung Mo; Caetano-Anollés, Gustavo

    2014-01-01

    The origins of diversified life remain mysterious despite considerable efforts devoted to untangling the roots of the universal tree of life. Here we reconstructed phylogenies that described the evolution of molecular functions and the evolution of species directly from a genomic census of gene ontology (GO) definitions. We sampled 249 free-living genomes spanning organisms in the three superkingdoms of life, Archaea, Bacteria, and Eukarya, and used the abundance of GO terms as molecular characters to produce rooted phylogenetic trees. Results revealed an early thermophilic origin of Archaea that was followed by genome reduction events in microbial superkingdoms. Eukaryal genomes displayed extraordinary functional diversity and were enriched with hundreds of novel molecular activities not detected in the akaryotic microbial cells. Remarkably, the majority of these novel functions appeared quite late in evolution, synchronized with the diversification of the eukaryal superkingdom. The distribution of GO terms in superkingdoms confirms that Archaea appears to be the simplest and most ancient form of cellular life, while Eukarya is the most diverse and recent. PMID:25249790

  15. Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan

    2016-01-01

    Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second partmore » focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments« less

  16. Star clusters in evolving galaxies

    NASA Astrophysics Data System (ADS)

    Renaud, Florent

    2018-04-01

    Their ubiquity and extreme densities make star clusters probes of prime importance of galaxy evolution. Old globular clusters keep imprints of the physical conditions of their assembly in the early Universe, and younger stellar objects, observationally resolved, tell us about the mechanisms at stake in their formation. Yet, we still do not understand the diversity involved: why is star cluster formation limited to 105M⊙ objects in the Milky Way, while some dwarf galaxies like NGC 1705 are able to produce clusters 10 times more massive? Why do dwarfs generally host a higher specific frequency of clusters than larger galaxies? How to connect the present-day, often resolved, stellar systems to the formation of globular clusters at high redshift? And how do these links depend on the galactic and cosmological environments of these clusters? In this review, I present recent advances on star cluster formation and evolution, in galactic and cosmological context. The emphasis is put on the theory, formation scenarios and the effects of the environment on the evolution of the global properties of clusters. A few open questions are identified.

  17. Two new fern chloroplasts and decelerated evolution linked to the long generation time in tree ferns.

    PubMed

    Zhong, Bojian; Fong, Richard; Collins, Lesley J; McLenachan, Patricia A; Penny, David

    2014-04-30

    We report the chloroplast genomes of a tree fern (Dicksonia squarrosa) and a "fern ally" (Tmesipteris elongata), and show that the phylogeny of early land plants is basically as expected, and the estimates of divergence time are largely unaffected after removing the fastest evolving sites. The tree fern shows the major reduction in the rate of evolution, and there has been a major slowdown in the rate of mutation in both families of tree ferns. We suggest that this is related to a generation time effect; if there is a long time period between generations, then this is probably incompatible with a high mutation rate because otherwise nearly every propagule would probably have several lethal mutations. This effect will be especially strong in organisms that have large numbers of cell divisions between generations. This shows the necessity of going beyond phylogeny and integrating its study with other properties of organisms. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. QCD-Electroweak First-Order Phase Transition in a Supercooled Universe.

    PubMed

    Iso, Satoshi; Serpico, Pasquale D; Shimada, Kengo

    2017-10-06

    If the electroweak sector of the standard model is described by classically conformal dynamics, the early Universe evolution can be substantially altered. It is already known that-contrarily to the standard model case-a first-order electroweak phase transition may occur. Here we show that, depending on the model parameters, a dramatically different scenario may happen: A first-order, six massless quark QCD phase transition occurs first, which then triggers the electroweak symmetry breaking. We derive the necessary conditions for this dynamics to occur, using the specific example of the classically conformal B-L model. In particular, relatively light weakly coupled particles are predicted, with implications for collider searches. This scenario is also potentially rich in cosmological consequences, such as renewed possibilities for electroweak baryogenesis, altered dark matter production, and gravitational wave production, as we briefly comment upon.

  19. GRB 130427A: A Nearby Ordinary Monster

    NASA Technical Reports Server (NTRS)

    Maselli, A.; Melandri, A.; Nava, L.; Mundell, C. G.; Kawai, N.; Campana, S.; Covino, S.; Cummings, J. R.; Cusumano, G.; Evans, P. A.; hide

    2014-01-01

    Long-duration gamma-ray bursts (GRBs) are an extremely rare outcome of the collapse of massive stars and are typically found in the distant universe. Because of its intrinsic luminosity (L approx. 3 x 10(exp 53) ergs/s and its relative proximity (z = 0.34), GRB 130427A reached the highest fluence observed in the gamma-ray band. Here, we present a comprehensive multiwavelength view of GRB 130427A with Swift, the 2-meter Liverpool and Faulkes telescopes, and by other ground-based facilities, highlighting the evolution of the burst emission from the prompt to the afterglow phase. The properties of GRB 130427A are similar to those of the most luminous, high-redshift GRBs, suggesting that a common central engine is responsible for producing GRBs in both the contemporary and the early universe and over the full range of GRB isotropic energies.

  20. GRB 130427A: a nearby ordinary monster.

    PubMed

    Maselli, A; Melandri, A; Nava, L; Mundell, C G; Kawai, N; Campana, S; Covino, S; Cummings, J R; Cusumano, G; Evans, P A; Ghirlanda, G; Ghisellini, G; Guidorzi, C; Kobayashi, S; Kuin, P; La Parola, V; Mangano, V; Oates, S; Sakamoto, T; Serino, M; Virgili, F; Zhang, B-B; Barthelmy, S; Beardmore, A; Bernardini, M G; Bersier, D; Burrows, D; Calderone, G; Capalbi, M; Chiang, J; D'Avanzo, P; D'Elia, V; De Pasquale, M; Fugazza, D; Gehrels, N; Gomboc, A; Harrison, R; Hanayama, H; Japelj, J; Kennea, J; Kopac, D; Kouveliotou, C; Kuroda, D; Levan, A; Malesani, D; Marshall, F; Nousek, J; O'Brien, P; Osborne, J P; Pagani, C; Page, K L; Page, M; Perri, M; Pritchard, T; Romano, P; Saito, Y; Sbarufatti, B; Salvaterra, R; Steele, I; Tanvir, N; Vianello, G; Wiegand, B; Weigand, B; Wiersema, K; Yatsu, Y; Yoshii, T; Tagliaferri, G

    2014-01-03

    Long-duration gamma-ray bursts (GRBs) are an extremely rare outcome of the collapse of massive stars and are typically found in the distant universe. Because of its intrinsic luminosity (L ~ 3 × 10(53) ergs per second) and its relative proximity (z = 0.34), GRB 130427A reached the highest fluence observed in the γ-ray band. Here, we present a comprehensive multiwavelength view of GRB 130427A with Swift, the 2-meter Liverpool and Faulkes telescopes, and by other ground-based facilities, highlighting the evolution of the burst emission from the prompt to the afterglow phase. The properties of GRB 130427A are similar to those of the most luminous, high-redshift GRBs, suggesting that a common central engine is responsible for producing GRBs in both the contemporary and the early universe and over the full range of GRB isotropic energies.

  1. QCD-Electroweak First-Order Phase Transition in a Supercooled Universe

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi; Serpico, Pasquale D.; Shimada, Kengo

    2017-10-01

    If the electroweak sector of the standard model is described by classically conformal dynamics, the early Universe evolution can be substantially altered. It is already known that—contrarily to the standard model case—a first-order electroweak phase transition may occur. Here we show that, depending on the model parameters, a dramatically different scenario may happen: A first-order, six massless quark QCD phase transition occurs first, which then triggers the electroweak symmetry breaking. We derive the necessary conditions for this dynamics to occur, using the specific example of the classically conformal B -L model. In particular, relatively light weakly coupled particles are predicted, with implications for collider searches. This scenario is also potentially rich in cosmological consequences, such as renewed possibilities for electroweak baryogenesis, altered dark matter production, and gravitational wave production, as we briefly comment upon.

  2. Cosmological lepton asymmetry, primordial nucleosynthesis and sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Abazajian, Kevork; Bell, Nicole F.; Fuller, George M.; Wong, Yvonne Y. Y.

    2005-09-01

    We study post weak decoupling coherent active-sterile and active-active matter-enhanced neutrino flavor transformation in the early Universe. We show that flavor conversion efficiency at Mikheyev-Smirnov-Wolfenstein resonances is likely to be high (adiabatic evolution) for relevant neutrino parameters and energies. However, we point out that these resonances cannot sweep smoothly and continuously with the expansion of the Universe. We show how neutrino flavor conversion in this way can leave both the active and sterile neutrinos with nonthermal energy spectra, and how, in turn, these distorted energy spectra can affect the neutron-to-proton ratio, primordial nucleosynthesis, and cosmological mass/closure constraints on sterile neutrinos. We demonstrate that the existence of a light sterile neutrino which mixes with active neutrinos can change fundamentally the relationship between the cosmological lepton numbers and the primordial nucleosynthesis He4 yield.

  3. A three-phase amplification of the cosmic magnetic field in galaxies

    NASA Astrophysics Data System (ADS)

    Martin-Alvarez, Sergio; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain

    2018-06-01

    Arguably the main challenge of galactic magnetism studies is to explain how the interstellar medium of galaxies reaches energetic equipartition despite the extremely weak cosmic primordial magnetic fields that are originally predicted to thread the inter-galactic medium. Previous numerical studies of isolated galaxies suggest that a fast dynamo amplification might suffice to bridge the gap spanning many orders of magnitude in strength between the weak early Universe magnetic fields and the ones observed in high redshift galaxies. To better understand their evolution in the cosmological context of hierarchical galaxy growth, we probe the amplification process undergone by the cosmic magnetic field within a spiral galaxy to unprecedented accuracy by means of a suite of constrained transport magnetohydrodynamical adaptive mesh refinement cosmological zoom simulations with different stellar feedback prescriptions. A galactic turbulent dynamo is found to be naturally excited in this cosmological environment, being responsible for most of the amplification of the magnetic energy. Indeed, we find that the magnetic energy spectra of simulated galaxies display telltale inverse cascades. Overall, the amplification process can be divided in three main phases, which are related to different physical mechanisms driving galaxy evolution: an initial collapse phase, an accretion-driven phase, and a feedback-driven phase. While different feedback models affect the magnetic field amplification differently, all tested models prove to be subdominant at early epochs, before the feedback-driven phase is reached. Thus the three-phase evolution paradigm is found to be quite robust vis-a-vis feedback prescriptions.

  4. Solar Radiation as Driving Force In Early Evolution

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    2002-01-01

    Ultraviolet radiation (UVR) has provided an evolutionary challenge to life on Earth in that it is both an agent of mutation and as well as a selective force. Today surface fluxes of UVR vary diurnally, seasonally, etc. Still, the UVR flux was probably substantially higher during the early phases of evolution, suggesting that its role in evolution was even more prominent during this time. In this presentation, the creative role of UVR in evolution is discussed, specifically in connection with the role that UVR may have played in the evolution of early microbial ecosystems. The presentation will include discussions of the direct influence of UVR on such processes as photosynthesis and genetic damage, as well as the indirect influence of UVR as mediated through the production of reactive oxygen species. These biological effects of UVR will be viewed against the backdrop of the physical nature of the early Earth, surely a very different place then than now.

  5. Supernova Remnants As Laboratories For Determining The Properties Of Ejecta Dust And The Processing Of Dust Grains In Shocks

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Temim, Tea

    Recent infrared satellites, such as the Spitzer, Herschel, and WISE, have obtained a wealth of spectral and broadband data on the infrared (IR) emission from dust in supernova remnants (SNRs). Supernovae (SNe) are important producers of newly condensed dust during the early free-expansion phase of their evolution, and the dominant destroyers of dust during the subsequent remnant phase of their evolution. The infrared observations hold the key for determining their role in the origin and evolution of dust in the universe. We propose to model the composition, abundance, and size distribution of the dust in select Galactic and Magellanic Cloud remnants. As explained in detail below, the remnants were selected for the availability of IR and X-ray observations. All selected remnants have Spitzer IRS spectral data in the 5-35 μm regions which allow us to determine the effect of grain processing in the shock. Some have spectral maps that allow the distinction between the IR emission from SN-condensed and swept up circumstellar and interstellar dust. All remnants have also been covered by Spitzer, Herschel, and WISE imaging, and have existing X-ray Chandra and/or XMM observations. The dust in some remnants is radiatively-heated by a pulsar wind nebula, and in others collisionally- heated by shocked X-ray or line emitting gas. We will use physical models to calculate the radiative and collisional heating of SNR dust, the equilibrium or fluctuating dust temperatures, and the resulting IR emission for various dust compositions and size distributions. Specific examples of Cas A, SN1987A, the Crab Nebula, and Puppis A, are discussed in detail to illustrate our modeling approach. Our study will be the first comprehensive and physical analysis of a large sample of SNRs in different evolutionary states and different astrophysical environments. They will cover a wide range of interactions between the dust grains and their surroundings, including the radioactively- powered and/or shocked SN ejecta, hard X-rays and EUV radiation fields, and shocked circumstel- lar/interstellar gas. Our study will shed light on the evolution of dust grains from their explosive formation sites, through their violent injection into the ISM, and ultimate demise or survival as they travel through a network of interstellar shock waves. It will constitute a major advance in our understanding of the origin and evolution of dust in the Milky Way, in galaxies in general, and especially in the early universe.

  6. On the evolution of the Universe

    NASA Astrophysics Data System (ADS)

    Kondratenko, P. O.

    2014-12-01

    In this paper a model of creation and evolution of the universe in which the laws of physics are performed. The model implies that our Universe is a part of a Super-Universe as a separate layer in the fiber space, and the information communication exists between adjacent layers through the single point. During the formation of Super-Universe it was filled first a one-dimensional World of Field-time, then a two-dimensional (1+1) World was filled with energy and Planck's particles which carry the electric and magnetic charges. Completion of two-dimensional world filling leads to a "transfusion" of energy into the neighboring three-dimensional World which presents a world of known quarks which have the fractional electric charges, color charges, and spins. The next step is a "transfusion" of energy into the four-dimensional (3+1) World and the birth of the particles of this World. Evolution of this World has a completion by the brane creation of five-dimensional World. This evolution is accompanying by the birth of the entire set of stable and unstable heavy nuclei and atoms. A filling of each new layer at the fiber space does not bring the entropy into this space (i.e. cold and completely deterministic start of evolution). The proposed model supports the anthropic principle in the Universe.

  7. Magnetic fields and chiral asymmetry in the early hot universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sydorenko, Maksym; Shtanov, Yuri; Tomalak, Oleksandr, E-mail: maxsydorenko@gmail.com, E-mail: tomalak@uni-mainz.de, E-mail: shtanov@bitp.kiev.ua

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field andmore » lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.« less

  8. Black hole growth in the early Universe is self-regulated and largely hidden from view.

    PubMed

    Treister, Ezequiel; Schawinski, Kevin; Volonteri, Marta; Natarajan, Priyamvada; Gawiser, Eric

    2011-06-15

    The formation of the first massive objects in the infant Universe remains impossible to observe directly and yet it sets the stage for the subsequent evolution of galaxies. Although some black holes with masses more than 10(9) times that of the Sun have been detected in luminous quasars less than one billion years after the Big Bang, these individual extreme objects have limited utility in constraining the channels of formation of the earliest black holes; this is because the initial conditions of black hole seed properties are quickly erased during the growth process. Here we report a measurement of the amount of black hole growth in galaxies at redshift z = 6-8 (0.95-0.7 billion years after the Big Bang), based on optimally stacked, archival X-ray observations. Our results imply that black holes grow in tandem with their host galaxies throughout cosmic history, starting from the earliest times. We find that most copiously accreting black holes at these epochs are buried in significant amounts of gas and dust that absorb most radiation except for the highest-energy X-rays. This suggests that black holes grew significantly more during these early bursts than was previously thought, but because of the obscuration of their ultraviolet emission they did not contribute to the re-ionization of the Universe.

  9. Magnetic fields and chiral asymmetry in the early hot universe

    NASA Astrophysics Data System (ADS)

    Sydorenko, Maksym; Tomalak, Oleksandr; Shtanov, Yuri

    2016-10-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of `inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.

  10. Development And Application Of The Ion Microprobe For Analysis Of Extraterrestrial Materials

    NASA Technical Reports Server (NTRS)

    Wasserburg, G. J.

    2001-01-01

    This report covers the work carried out under NASA Grant NAG5-4083. The research was directed toward analyses of early solar system material, of presolar grains preserved in meteorites, and toward theoretical studies of nucleosynthesis in stars related to the chemical evolution of the galaxy and the formation of the solar system. The work was carried out over the time period 15 February 1998 - 31 May 2001 and involved the participation of the following individuals: M. Busso, Visiting Associate, Professor of Astrophysics, Perugia University, Italy; B.-G. Choi, research fellow, now Associate Professor at Seoul National University, Korea; H. C. Connolly, research fellow, now at Kingsborough Community College, CUNY; R. Gallino, Visiting Associate, Professor of Astrophysics, University of Torino; Y. Guan, Smithsonian Institution; C. Hohenberg, Professor of Physics, Washington University, St. Louis; M. Heinrich, electronics and systems engineer, Caltech; W. Hsu, research fellow, Caltech; T. LaTourrette, research fellow, now at Rand Corporation; G. R. Huss, Senior Research Scientist, now at Arizona State University; N. Krestina, research fellow in geochemistry, Caltech; G. J. MacPherson, Smithsonian Institution; K. Nollett, research fellow in astrophysics; Y.-Z. Qian, Professor of Physics, University of Minnesota; G. Srinivasan, research fellow, now Research Scientist, Physical Research Laboratory, Ahmedabad, India.

  11. Cosmological Inflation: A Personal Perspective

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    2007-01-01

    Approximately twenty five years ago a novel proposal was made to explain two of the outstanding cosmological conundrums, namely those of the Horizon Problem and the Flatness Problem of the Universe. These are the fact that widely separated parts of the sky that have never been in causal contact during the evolution of the Universe have apparently the same CMB temperature and the fact that the mean density of the Universe is very close to the critical one, i.e. very close to the density that separates the closed and open models. These coincidences implied that the corresponding initial condition of the Universe must have been set to exquisite accuracy. This novel proposal posted that at these very early times, the energy density of the Universe was dominated by a fluid which had the equation state attributed to the vacuum (i.e. dominated by tension rather than pressure) and that this led to an exponential expansion of the Universe which was "inflated" by many orders of magnitude of its original size. It was then shown that this "inflation" could provide a resolution of the above outstanding problems. The talk will cover the speaker's personal perspective and contributions to this idea and the subsequent developments over the following 25 years since its inception.

  12. ZOONET: perspectives on the evolution of animal form. Meeting report.

    PubMed

    Fischer, Antje H L; Arboleda, Enrique; Egger, Bernhard; Hilbrant, Maarten; McGregor, Alistair P; Cole, Alison G; Daley, Allison C

    2009-11-15

    What drives evolution? This was one of the main questions raised at the final ZOONET meeting in Budapest, Hungary, in November 2008. The meeting marked the conclusion of ZOONET, an EU-funded Marie-Curie Research Training Network comprising nine research groups from all over Europe (Max Telford, University College London; Michael Akam, University of Cambridge; Detlev Arendt, EMBL Heidelberg; Maria Ina Arnone, Stazione Zoologica Anton Dohrn Napoli; Michalis Averof, IMBB Heraklion; Graham Budd, Uppsala University; Richard Copley, University of Oxford; Wim Damen, University of Cologne; Ernst Wimmer, University of Göttingen). ZOONET meetings and practical courses held during the past four years provided researchers from diverse backgrounds--bioinformatics, phylogenetics, embryology, palaeontology, and developmental and molecular biology--the opportunity to discuss their work under a common umbrella of evolutionary developmental biology (Evo Devo). The Budapest meeting emphasized in-depth discussions of the key concepts defining Evo Devo, and bringing together ZOONET researchers with external speakers who were invited to present their views on the evolution of animal form. The discussion sessions addressed four main topics: the driving forces of evolution, segmentation, fossils and phylogeny, and the future of Evo Devo.

  13. The new galaxy evolution paradigm revealed by the Herschel surveys

    NASA Astrophysics Data System (ADS)

    Eales, Stephen; Smith, Dan; Bourne, Nathan; Loveday, Jon; Rowlands, Kate; van der Werf, Paul; Driver, Simon; Dunne, Loretta; Dye, Simon; Furlanetto, Cristina; Ivison, R. J.; Maddox, Steve; Robotham, Aaron; Smith, Matthew W. L.; Taylor, Edward N.; Valiante, Elisabetta; Wright, Angus; Cigan, Philip; De Zotti, Gianfranco; Jarvis, Matt J.; Marchetti, Lucia; Michałowski, Michał J.; Phillipps, Steven; Viaene, Sebastien; Vlahakis, Catherine

    2018-01-01

    The Herschel Space Observatory has revealed a very different galaxyscape from that shown by optical surveys which presents a challenge for galaxy-evolution models. The Herschel surveys reveal (1) that there was rapid galaxy evolution in the very recent past and (2) that galaxies lie on a single Galaxy Sequence (GS) rather than a star-forming 'main sequence' and a separate region of 'passive' or 'red-and-dead' galaxies. The form of the GS is now clearer because far-infrared surveys such as the Herschel ATLAS pick up a population of optically red star-forming galaxies that would have been classified as passive using most optical criteria. The space-density of this population is at least as high as the traditional star-forming population. By stacking spectra of H-ATLAS galaxies over the redshift range 0.001 < z < 0.4, we show that the galaxies responsible for the rapid low-redshift evolution have high stellar masses, high star-formation rates but, even several billion years in the past, old stellar populations - they are thus likely to be relatively recent ancestors of early-type galaxies in the Universe today. The form of the GS is inconsistent with rapid quenching models and neither the analytic bathtub model nor the hydrodynamical EAGLE simulation can reproduce the rapid cosmic evolution. We propose a new gentler model of galaxy evolution that can explain the new Herschel results and other key properties of the galaxy population.

  14. Are there laws of genome evolution?

    PubMed

    Koonin, Eugene V

    2011-08-01

    Research in quantitative evolutionary genomics and systems biology led to the discovery of several universal regularities connecting genomic and molecular phenomic variables. These universals include the log-normal distribution of the evolutionary rates of orthologous genes; the power law-like distributions of paralogous family size and node degree in various biological networks; the negative correlation between a gene's sequence evolution rate and expression level; and differential scaling of functional classes of genes with genome size. The universals of genome evolution can be accounted for by simple mathematical models similar to those used in statistical physics, such as the birth-death-innovation model. These models do not explicitly incorporate selection; therefore, the observed universal regularities do not appear to be shaped by selection but rather are emergent properties of gene ensembles. Although a complete physical theory of evolutionary biology is inconceivable, the universals of genome evolution might qualify as "laws of evolutionary genomics" in the same sense "law" is understood in modern physics.

  15. Globular clusters in high-redshift dwarf galaxies: a case study from the Local Group

    NASA Astrophysics Data System (ADS)

    Zick, Tom O.; Weisz, Daniel R.; Boylan-Kolchin, Michael

    2018-06-01

    We present the reconstructed evolution of rest-frame ultraviolet (UV) luminosities of the most massive Milky Way dwarf spheroidal satellite galaxy, Fornax, and its five globular clusters (GCs) across redshift, based on analysis of the stellar fossil record and stellar population synthesis modelling. We find that (1) Fornax's (proto-)GCs can generate 10-100 times more UV flux than the field population, despite comprising <˜{5} per cent of the stellar mass at the relevant redshifts; (2) due to their respective surface brightnesses, it is more likely that faint, compact sources in the Hubble Frontier Fields (HFFs) are GCs hosted by faint galaxies, than faint galaxies themselves. This may significantly complicate the construction of a galaxy UV luminosity function at z > 3. (3) GC formation can introduce order-of-magnitude errors in abundance matching. We also find that some compact HFF objects are consistent with the reconstructed properties of Fornax's GCs at the same redshifts (e.g. surface brightness, star formation rate), suggesting we may have already detected proto-GCs in the early Universe. Finally, we discuss the prospects for improving the connections between local GCs and proto-GCs detected in the early Universe.

  16. The Case for a Heat-Pipe Phase of Planet Evolution on the Moon

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Moore, W. B.; Webb, A. A. G.

    2015-01-01

    The prevalence of anorthosite in the lunar highlands is generally attributed to the flotation of less dense plagioclase in the late stages of the solidification of the lunar magma ocean. It is not clear, however, that these models are capable of producing the extremely high plagioclase contents (near 100%) observed in both Apollo samples and remote sensing data, since a mostly solid lithosphere forms (at 60-70% solidification) before plagioclase feldspar reaches saturation (at approximately 80% solidification). Formation as a floating cumulate is made even more problematic by the near uniformity of the alkali composition of the plagioclase, even as the mafic phases record significant variations in Mg/(Mg+Fe) ratios. These problems can be resolved for the Moon if the plagioclase-rich crust is produced and refined through a widespread episode of heat-pipe magmatism rather than a process dominated by density-driven plagioclase flotation. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io's present activity. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an early episode of heat-pipe cooling. As the Moon likely represents the most wellpreserved example of early planetary thermal evolution in our solar system, studies of the lunar surface and of lunar materials provide useful data to test the idea of a universal model of the way terrestrial bodies transition from a magma ocean state into subsequent single-plate, rigid-lid convection or plate tectonic phases.

  17. Accelerated Evolution of Developmentally Biased Genes in the Tetraphenic Ant Cardiocondyla obscurior.

    PubMed

    Schrader, Lukas; Helanterä, Heikki; Oettler, Jan

    2017-03-01

    Plastic gene expression underlies phenotypic plasticity and plastically expressed genes evolve under different selection regimes compared with ubiquitously expressed genes. Social insects are well-suited models to elucidate the evolutionary dynamics of plastic genes for their genetically and environmentally induced discrete polymorphisms. Here, we study the evolution of plastically expressed genes in the ant Cardiocondyla obscurior-a species that produces two discrete male morphs in addition to the typical female polymorphism of workers and queens. Based on individual-level gene expression data from 28 early third instar larvae, we test whether the same evolutionary dynamics that pertain to plastically expressed genes in adults also pertain to genes with plastic expression during development. In order to quantify plasticity of gene expression over multiple contrasts, we develop a novel geometric measure. For genes expressed during development, we show that plasticity of expression is positively correlated with evolutionary rates. We furthermore find a strong correlation between expression plasticity and expression variation within morphs, suggesting a close link between active and passive plasticity of gene expression. Our results support the notion of relaxed selection and neutral processes as important drivers in the evolution of adaptive plasticity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Emerging spatial curvature can resolve the tension between high-redshift CMB and low-redshift distance ladder measurements of the Hubble constant

    NASA Astrophysics Data System (ADS)

    Bolejko, Krzysztof

    2018-05-01

    The measurements of the Hubble constant reveal a tension between high-redshift (CMB) and low-redshift (distance ladder) constraints. So far neither observational systematics nor new physics has been successfully implemented to explain away this tension. This paper presents a new solution to the Hubble constant problem. The solution is based on the Simsilun simulation (relativistic simulation of the large scale structure of the Universe) with the ray-tracing algorithm implemented. The initial conditions for the Simsilun simulation were set up as perturbations around the Λ CDM model. However, unlike in the standard cosmological model (i.e., Λ CDM model +perturbations ), within the Simsilun simulation relativistic and nonlinear evolution of cosmic structures lead to the phenomenon of emerging spatial curvature, where the mean spatial curvature evolves from the spatial flatness of the early Universe towards the slightly curved present-day Universe. Consequently, the present-day expansion rate is slightly faster compared to the spatially flat Λ CDM model. The results of the ray-tracing analysis show that the Universe which starts with initial conditions consistent with the Planck constraints should have the Hubble constant H0=72.5 ±2.1 km s-1 Mpc-1 . When the Simsilun simulation was rerun with no inhomogeneities imposed, the Hubble constant inferred within such a homogeneous simulation was H0=68.1 ±2.0 km s-1 Mpc-1 . Thus, the inclusion of nonlinear relativistic evolution that leads to the emergence of the spatial curvature can explain why the low-redshift measurements favor higher values compared to the high-redshift constraints and alleviate the tension between the CMB and distance ladder measurements of the Hubble constant.

  19. The Evolution of Swift/BAT blazars and the origin of the MeV background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajello, M.; /SLAC /KIPAC, Menlo Park; Costamante, L.

    2009-10-17

    We use 3 years of data from the Swift/BAT survey to select a complete sample of X-ray blazars above 15 keV. This sample comprises 26 Flat-Spectrum Radio Quasars (FSRQs) and 12 BL Lac objects detected over a redshift range of 0.03 < z < 4.0. We use this sample to determine, for the first time in the 15-55 keV band, the evolution of blazars. We find that, contrary to the Seyfert-like AGNs detected by BAT, the population of blazars shows strong positive evolution. This evolution is comparable to the evolution of luminous optical QSOs and luminous X-ray selected AGNs. Wemore » also find evidence for an epoch-dependence of the evolution as determined previously for radio-quiet AGNs. We interpret both these findings as a strong link between accretion and jet activity. In our sample, the FSRQs evolve strongly, while our best-fit shows that BL Lacs might not evolve at all. The blazar population accounts for 10-20% (depending on the evolution of the BL Lacs) of the Cosmic X-ray background (CXB) in the 15-55 keV band. We find that FSRQs can explain the entire CXB emission for energies above 500 keV solving the mystery of the generation of the MeV background. The evolution of luminous FSRQs shows a peak in redshift (z{sub c} = 4.3 {+-} 0.5) which is larger than the one observed in QSOs and X-ray selected AGNs. We argue that FSRQs can be used as tracers of massive elliptical galaxies in the early Universe.« less

  20. A New Basal Sauropod Dinosaur from the Middle Jurassic of Niger and the Early Evolution of Sauropoda

    PubMed Central

    Remes, Kristian; Ortega, Francisco; Fierro, Ignacio; Joger, Ulrich; Kosma, Ralf; Marín Ferrer, José Manuel; Ide, Oumarou Amadou; Maga, Abdoulaye

    2009-01-01

    Background The early evolution of sauropod dinosaurs is poorly understood because of a highly incomplete fossil record. New discoveries of Early and Middle Jurassic sauropods have a great potential to lead to a better understanding of early sauropod evolution and to reevaluate the patterns of sauropod diversification. Principal Findings A new sauropod from the Middle Jurassic of Niger, Spinophorosaurus nigerensis n. gen. et sp., is the most complete basal sauropod currently known. The taxon shares many anatomical characters with Middle Jurassic East Asian sauropods, while it is strongly dissimilar to Lower and Middle Jurassic South American and Indian forms. A possible explanation for this pattern is a separation of Laurasian and South Gondwanan Middle Jurassic sauropod faunas by geographic barriers. Integration of phylogenetic analyses and paleogeographic data reveals congruence between early sauropod evolution and hypotheses about Jurassic paleoclimate and phytogeography. Conclusions Spinophorosaurus demonstrates that many putatively derived characters of Middle Jurassic East Asian sauropods are plesiomorphic for eusauropods, while South Gondwanan eusauropods may represent a specialized line. The anatomy of Spinophorosaurus indicates that key innovations in Jurassic sauropod evolution might have taken place in North Africa, an area close to the equator with summer-wet climate at that time. Jurassic climatic zones and phytogeography possibly controlled early sauropod diversification. PMID:19756139

  1. Development of the 2nd generation z(Redshift) and early universe spectrometer & the study of far-IR fine structure emission in high-z galaxies

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl

    The 2nd generation z (Redshift) and Early Universe Spectrometer (ZEUS-2), is a long-slit echelle-grating spectrometer (R~1000) for observations at submillimeter wavelengths from 200 to 850 microm. Its design is optimized for the detection of redshifted far-infrared spectral lines from galaxies in the early universe. Combining exquisite sensitivity, broad wavelength coverage, and large (˜2.5%) instantaneous bandwidth, ZEUS-2 is uniquely suited for studying galaxies between z˜0.2 and 5---spanning the peaks in both the star formation rate and number of AGN in the universe. ZEUS-2 saw first light at the Caltech Submillimeter Observatory (CSO) in the Spring of 2012 and was commissioned on the Atacama Pathfinder Experiment (APEX) in November 2012. Here we detail the design and performance of ZEUS-2, first however we discuss important science results that are examples of the science enabled by ZEUS-2. Using the first generation z (Redshift) and Early Universe Spectrometer (ZEUS-1) we made the first high-z detections of the [NII] 122 microm and [OIII] 88 microm lines. We detect these lines from starburst galaxies between z ˜2.5 and 4 demonstrating the utility of these lines for characterizing the properties of early galaxies. Specifically we are able to determine the most massive star still on the main sequence, the number of those stars and a lower limit on the mass of ionized gas in the source. Next we present ZEUS-2's first science result. Using ZEUS-2 on APEX we have detected the [CII] 158 microm line from the z = 1.78 galaxy H-ATLAS J091043.1-000322 with a line flux of (6.44 +/- 0.42) ˜ 10-18 W m-2. Combined with its far-infrared luminosity and a new Herschel-PACS detection of the [OI] 63 microm line we are able to conclude that H-ATLAS J091043.1-000322 is a high redshift analogue of a local ultra-luminous infrared galaxy, i.e. it is likely the site of a compact starburst due to a major merger. This detection, combined with the ZEUS-1 observations of the [NII] and [OIII] lines represent examples of work we plan to continue with ZEUS-2. As such, they demonstrate the potential of ZEUS-2 for increasing our understanding of galaxies and galaxy evolution over cosmic time.

  2. A tale of two timescales: Mixing, mass generation, and phase transitions in the early universe

    NASA Astrophysics Data System (ADS)

    Dienes, Keith R.; Kost, Jeff; Thomas, Brooks

    2016-02-01

    Light scalar fields such as axions and string moduli can play an important role in early-universe cosmology. However, many factors can significantly impact their late-time cosmological abundances. For example, in cases where the potentials for these fields are generated dynamically—such as during cosmological mass-generating phase transitions—the duration of the time interval required for these potentials to fully develop can have significant repercussions. Likewise, in scenarios with multiple scalars, mixing amongst the fields can also give rise to an effective timescale that modifies the resulting late-time abundances. Previous studies have focused on the effects of either the first or the second timescale in isolation. In this paper, by contrast, we examine the new features that arise from the interplay between these two timescales when both mixing and time-dependent phase transitions are introduced together. First, we find that the effects of these timescales can conspire to alter not only the total late-time abundance of the system—often by many orders of magnitude—but also its distribution across the different fields. Second, we find that these effects can produce large parametric resonances which render the energy densities of the fields highly sensitive to the degree of mixing as well as the duration of the time interval over which the phase transition unfolds. Finally, we find that these effects can even give rise to a "reoverdamping" phenomenon which causes the total energy density of the system to behave in novel ways that differ from those exhibited by pure dark matter or vacuum energy. All of these features therefore give rise to new possibilities for early-universe phenomenology and cosmological evolution. They also highlight the importance of taking into account the time dependence associated with phase transitions in cosmological settings.

  3. A galactic nursery

    NASA Image and Video Library

    2015-07-20

    This dramatic image shows the NASA/ESA Hubble Space Telescope’s view of dwarf galaxy known as NGC 1140, which lies 60 million light-years away in the constellation of Eridanus. As can be seen in this image NGC 1140 has an irregular form, much like the Large Magellanic Cloud — a small galaxy that orbits the Milky Way. This small galaxy is undergoing what is known as a starburst. Despite being almost ten times smaller than the Milky Way it is creating stars at about the same rate, with the equivalent of one star the size of the Sun being created per year. This is clearly visible in the image, which shows the galaxy illuminated by bright, blue-white, young stars. Galaxies like NGC 1140 — small, starbursting and containing large amounts of primordial gas with way fewer elements heavier than hydrogen and helium than present in our Sun — are of particular interest to astronomers. Their composition makes them similar to the intensely star-forming galaxies in the early Universe. And these early Universe galaxies were the building blocks of present-day large galaxies like our galaxy, the Milky Way. But, as they are so far away these early Universe galaxies are harder to study so these closer starbursting galaxies are a good substitute for learning more about galaxy evolution . The vigorous star formation will have a very destructive effect on this small dwarf galaxy in its future. When the larger stars in the galaxy die, and explode as supernovae, gas is blown into space and may easily escape the gravitational pull of the galaxy. The ejection of gas from the galaxy means it is throwing out its potential for future stars as this gas is one of the building blocks of star formation. NGC 1140’s starburst cannot last for long.

  4. Comparación de las predicciones de cosmologías alternativas al modelo estándar con datos del fondo cósmico de radiación

    NASA Astrophysics Data System (ADS)

    Piccirilli, M. P.; Landau, S. J.; León, G.

    2016-08-01

    The cosmic microwave background radiation is one of the most powerful tools to study the early Universe and its evolution, providing also a method to test different cosmological scenarios. We consider alternative inflationary models where the emergence of the seeds of cosmic structure from a perfect isotropic and homogeneous universe can be explained by the self-induced collapse of the inflaton wave function. Some of these alternative models may result indistinguishable from the standard model, while others require to be compared with observational data through statistical analysis. In this article we show results concerning the first Planck release, the Atacama Cosmology Telescope, the South Pole Telescope, the WMAP and Sloan Digital Sky Survey datasets, reaching good agreement between data and theoretical predictions. For future works, we aim to achieve better limits in the cosmological parameters using the last Planck release.

  5. Evolution of Information Systems Curriculum in an Australian University over the Last Twenty-Five Years

    NASA Astrophysics Data System (ADS)

    Tatnall, Arthur; Burgess, Stephen

    Information Systems (IS) courses began in Australia’s higher education institutions in the 1960, and have continued to evolve at a rapid rate since then. Beginning with a need by the Australian Commonwealth Government for a large number of computer professionals, Information Systems (or Business Computing) courses developed rapidly. The nature and content of these courses in the 1960s and 70s, however, was quite different to present courses and this paper traces this change and the reasons for it. After some brief discussion of the beginnings and the early days of Information Systems curriculum, we address in particular how these courses have evolved in one Australian university over the last 25 years. IS curriculum is seen to adapt, new materials are added and emphases changed as new technologies and new computing applications emerge. The paper offers a model of how curriculum change in Information Systems takes place.

  6. Horava-Lifshitz cosmology, entropic interpretation and quark-hadron phase transition

    NASA Astrophysics Data System (ADS)

    Kheyri, F.; Khodadi, M.; Sepangi, Hamid Reza

    2013-05-01

    Based on the assumptions of the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electroweak transition has occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons. We consider such a phase transition in the context of a deformed Horava-Lifshitz cosmology. The Friedmann equation for the deformed Horava-Lifshitz universe is obtained using the entropic interpretation of gravity, proposed by Verlinde. We investigate the effects of the parameter ω appearing in the theory on the evolution of the physical quantities relevant to a description of the early universe, namely, the energy density and temperature before, during and after the phase transition. Finally, we study the cross-over phase transition in both high and low temperature regions in view of the recent lattice QCD simulations data.

  7. The generation of meaningful information in molecular systems.

    PubMed

    Wills, Peter R

    2016-03-13

    The physico-chemical processes occurring inside cells are under the computational control of genetic (DNA) and epigenetic (internal structural) programming. The origin and evolution of genetic information (nucleic acid sequences) is reasonably well understood, but scant attention has been paid to the origin and evolution of the molecular biological interpreters that give phenotypic meaning to the sequence information that is quite faithfully replicated during cellular reproduction. The near universality and age of the mapping from nucleotide triplets to amino acids embedded in the functionality of the protein synthetic machinery speaks to the early development of a system of coding which is still extant in every living organism. We take the origin of genetic coding as a paradigm of the emergence of computation in natural systems, focusing on the requirement that the molecular components of an interpreter be synthesized autocatalytically. Within this context, it is seen that interpreters of increasing complexity are generated by series of transitions through stepped dynamic instabilities (non-equilibrium phase transitions). The early phylogeny of the amino acyl-tRNA synthetase enzymes is discussed in such terms, leading to the conclusion that the observed optimality of the genetic code is a natural outcome of the processes of self-organization that produced it. © 2016 The Author(s).

  8. Transition of an X-ray binary to the hard ultraluminous state in the blue compact dwarf galaxy VII Zw 403

    NASA Astrophysics Data System (ADS)

    Brorby, M.; Kaaret, P.; Feng, H.

    2015-04-01

    We examine the X-ray spectra of VII Zw 403, a nearby low-metallicity blue compact dwarf (BCD) galaxy. The galaxy has been observed to contain an X-ray source, likely a high-mass X-ray binary (HMXB), with a luminosity of 1.3-23 × 1038 erg s-1 in the 0.3-8 keV energy range. A new Suzaku observation shows a transition to a luminosity of 1.7 × 1040 erg s-1 [0.3-8 keV], higher by a factor of 7-130. The spectra from the high-flux state are hard, best described by a disc plus Comptonization model, and exhibit curvature at energies above 5 keV. This is consistent with many high-quality ultraluminous X-ray source spectra which have been interpreted as stellar mass black holes accreting at super-Eddington rates. However, this lies in contrast to another HMXB in a low-metallicity BCD, I Zw 18, that exhibits a soft spectrum at high flux, similar to Galactic black hole binaries and has been interpreted as a possible intermediate-mass black hole. Determining the spectral properties of HMXBs in BCDs has important implications for models of the Epoch of Reionization. It is thought that the main component of X-ray heating in the early Universe was dominated by HMXBs within the first galaxies. Early galaxies were small, metal-deficient, star-forming galaxies with large H I mass fractions - properties shared by local BCDs we see today. Understanding the spectral evolution of HMXBs in early Universe analogue galaxies, such as BCDs, is an important step in estimating their contribution to the heating of the intergalactic medium during the Epoch of Reionization. The strong contrast between the properties of the only two spectroscopically studied HMXBs within BCDs motivates further study on larger samples of HMXBs in low-metallicity environments in order to properly estimate the X-ray heating in the early Universe.

  9. Criticality and big brake singularities in the tachyonic evolutions of closed Friedmann universes with cold dark matter

    NASA Astrophysics Data System (ADS)

    Horváth, Zsolt; Keresztes, Zoltán; Kamenshchik, Alexander Yu.; Gergely, László Á.

    2015-05-01

    The evolution of a closed Friedmann universe filled by a tachyon scalar field with a trigonometric potential and cold dark matter (CDM) is investigated. A subset of the evolutions consistent to 1 σ confidence level with the Union 2.1 supernova data set is identified. The evolutions of the tachyon field are classified. Some of them evolve into a de Sitter attractor, while others proceed through a pseudotachyonic regime into a sudden future singularity. Critical evolutions leading to big brake singularities in the presence of CDM are found and a new type of cosmological evolution characterized by singularity avoidance in the pseudotachyon regime is presented.

  10. Quality, Evolution, and Positional Change of University Students' Argumentation Patterns about Organic Agriculture during an Argument-Critique-Argument Experience

    ERIC Educational Resources Information Center

    Yu, Shu-Mey; Yore, Larry D.

    2013-01-01

    The purpose of this study was to investigate the quality, evolution, and position of university students' argumentation about organic agriculture over a 4-week argument-critique-argument e-learning experience embedded in a first year university biology course. The participants (N = 43) were classified into three groups based on their…

  11. Cosmic strings

    NASA Technical Reports Server (NTRS)

    Bennett, David P.

    1988-01-01

    Cosmic strings are linear topological defects which are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characterisitc microwave background anisotropy. It was recently discovered that details of cosmic string evolution are very differnt from the so-called standard model that was assumed in most of the string-induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain.

  12. Chaotic universe model.

    PubMed

    Aydiner, Ekrem

    2018-01-15

    In this study, we consider nonlinear interactions between components such as dark energy, dark matter, matter and radiation in the framework of the Friedman-Robertson-Walker space-time and propose a simple interaction model based on the time evolution of the densities of these components. By using this model we show that these interactions can be given by Lotka-Volterra type equations. We numerically solve these coupling equations and show that interaction dynamics between dark energy-dark matter-matter or dark energy-dark matter-matter-radiation has a strange attractor for 0 > w de  >-1, w dm  ≥ 0, w m  ≥ 0 and w r  ≥ 0 values. These strange attractors with the positive Lyapunov exponent clearly show that chaotic dynamics appears in the time evolution of the densities. These results provide that the time evolution of the universe is chaotic. The present model may have potential to solve some of the cosmological problems such as the singularity, cosmic coincidence, big crunch, big rip, horizon, oscillation, the emergence of the galaxies, matter distribution and large-scale organization of the universe. The model also connects between dynamics of the competing species in biological systems and dynamics of the time evolution of the universe and offers a new perspective and a new different scenario for the universe evolution.

  13. Simulated star formation rate functions at z ˜ 4-7, and the role of feedback in high-z galaxies

    NASA Astrophysics Data System (ADS)

    Tescari, E.; Katsianis, A.; Wyithe, J. S. B.; Dolag, K.; Tornatore, L.; Barai, P.; Viel, M.; Borgani, S.

    2014-03-01

    We study the role of feedback from supernovae (SN) and black holes in the evolution of the star formation rate function (SFRF) of z ˜ 4-7 galaxies. We use a new set of cosmological hydrodynamic simulations, ANGUS (AustraliaN GADGET-3 early Universe Simulations), run with a modified and improved version of the parallel TreePM-smoothed particle hydrodynamics code GADGET-3 called P-GADGET3(XXL), that includes a self-consistent implementation of stellar evolution and metal enrichment. In our simulations both SN-driven galactic winds and active galactic nuclei (AGN) act simultaneously in a complex interplay. The SFRF is insensitive to feedback prescription at z > 5, meaning that it cannot be used to discriminate between feedback models during reionization. However, the SFRF is sensitive to the details of feedback prescription at lower redshift. By exploring different SN-driven wind velocities and regimes for the AGN feedback, we find that the key factor for reproducing the observed SFRFs is a combination of `strong' SN winds and early AGN feedback in low-mass galaxies. Conversely, we show that the choice of initial mass function and inclusion of metal cooling have less impact on the evolution of the SFRF. When variable winds are considered, we find that a non-aggressive wind scaling is needed to reproduce the SFRFs at z ≳ 4. Otherwise, the amount of objects with low SFRs is greatly suppressed and at the same time winds are not effective enough in the most massive systems.

  14. The mass-metallicity relations for gas and stars in star-forming galaxies: strong outflow versus variable IMF

    NASA Astrophysics Data System (ADS)

    Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Comparat, Johan; Gonzalez-Perez, Violeta; Ventura, Paolo

    2018-02-01

    We investigate the mass-metallicity relations for the gaseous (MZRgas) and stellar components (MZRstar) of local star-forming galaxies based on a representative sample from Sloan Digital Sky Survey Data Release 12. The mass-weighted average stellar metallicities are systematically lower than the gas metallicities. This difference in metallicity increases towards galaxies with lower masses and reaches 0.4-0.8 dex at 109 M⊙ (depending on the gas metallicity calibration). As a result, the MZRstar is much steeper than the MZRgas. The much lower metallicities in stars compared to the gas in low-mass galaxies imply dramatic metallicity evolution with suppressed metal enrichment at early times. The aim of this paper is to explain the observed large difference in gas and stellar metallicity and to infer the origin of the mass-metallicity relations. To this end we develop a galactic chemical evolution model accounting for star formation, gas inflow and outflow. By combining the observed mass-metallicity relation for both gas and stellar components to constrain the models, we find that only two scenarios are able to reproduce the observations. Either strong metal outflow or a steep initial mass function (IMF) slope at early epochs of galaxy evolution is needed. Based on these two scenarios, for the first time we successfully reproduce the observed MZRgas and MZRstar simultaneously, together with other independent observational constraints in the local Universe. Our model also naturally reproduces the flattening of the MZRgas at the high-mass end leaving the MZRstar intact, as seen in observational data.

  15. Hunter-Gatherers and the Origins of Religion.

    PubMed

    Peoples, Hervey C; Duda, Pavel; Marlowe, Frank W

    2016-09-01

    Recent studies of the evolution of religion have revealed the cognitive underpinnings of belief in supernatural agents, the role of ritual in promoting cooperation, and the contribution of morally punishing high gods to the growth and stabilization of human society. The universality of religion across human society points to a deep evolutionary past. However, specific traits of nascent religiosity, and the sequence in which they emerged, have remained unknown. Here we reconstruct the evolution of religious beliefs and behaviors in early modern humans using a global sample of hunter-gatherers and seven traits describing hunter-gatherer religiosity: animism, belief in an afterlife, shamanism, ancestor worship, high gods, and worship of ancestors or high gods who are active in human affairs. We reconstruct ancestral character states using a time-calibrated supertree based on published phylogenetic trees and linguistic classification and then test for correlated evolution between the characters and for the direction of cultural change. Results indicate that the oldest trait of religion, present in the most recent common ancestor of present-day hunter-gatherers, was animism, in agreement with long-standing beliefs about the fundamental role of this trait. Belief in an afterlife emerged, followed by shamanism and ancestor worship. Ancestor spirits or high gods who are active in human affairs were absent in early humans, suggesting a deep history for the egalitarian nature of hunter-gatherer societies. There is a significant positive relationship between most characters investigated, but the trait "high gods" stands apart, suggesting that belief in a single creator deity can emerge in a society regardless of other aspects of its religion.

  16. The early stages of duplicate gene evolution

    PubMed Central

    Moore, Richard C.; Purugganan, Michael D.

    2003-01-01

    Gene duplications are one of the primary driving forces in the evolution of genomes and genetic systems. Gene duplicates account for 8–20% of the genes in eukaryotic genomes, and the rates of gene duplication are estimated at between 0.2% and 2% per gene per million years. Duplicate genes are believed to be a major mechanism for the establishment of new gene functions and the generation of evolutionary novelty, yet very little is known about the early stages of the evolution of duplicated gene pairs. It is unclear, for example, to what extent selection, rather than neutral genetic drift, drives the fixation and early evolution of duplicate loci. Analysis of recently duplicated genes in the Arabidopsis thaliana genome reveals significantly reduced species-wide levels of nucleotide polymorphisms in the progenitor and/or duplicate gene copies, suggesting that selective sweeps accompany the initial stages of the evolution of these duplicated gene pairs. Our results support recent theoretical work that indicates that fates of duplicate gene pairs may be determined in the initial phases of duplicate gene evolution and that positive selection plays a prominent role in the evolutionary dynamics of the very early histories of duplicate nuclear genes. PMID:14671323

  17. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    PubMed

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O 2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O 2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O 2 , whereas in the upper atmosphere, most O 2 is formed abiotically via CO 2 photolysis. The O 2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH 4 oxidation scheme. We calculate increased CH 4 with increasing O 2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O 2 is unique. Mixing, CH 4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O 2 fluxes. Regarding exoplanets, different "states" of O 2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O 2 that masks its biosphere over a wide range of conditions). Key Words: Early Earth-Proterozoic-Archean-Oxygen-Atmosphere-Biogeochemistry-Photochemistry-Biosignatures-Earth-like planets. Astrobiology 16, 27-54.

  18. Early evolution of transversally thermalized partons

    NASA Astrophysics Data System (ADS)

    Bialas, Andrzej; Chojnacki, Mikolaj; Florkowski, Wojciech

    2008-03-01

    The idea that the parton system created in relativistic heavy-ion collisions (i) emerges in a state with transverse momenta close to thermodynamic equilibrium and (ii) its evolution at early times is dominated by the 2-dimensional (transverse) hydrodynamics of the ideal fluid is investigated. It is argued that this mechanism may help to solve the problem of early equilibration.

  19. Constraints on Thermal Evolution of Mars from Relaxation Models of Crustal and Topographic Dichotomy

    NASA Technical Reports Server (NTRS)

    Guest, A.; Smrekar, S. E.

    2005-01-01

    The early thermal evolution of Mars is largely unconstrained. Models such as degree one convection [1,2,3], plate tectonics [4], and a transition to stagnant lid [5] have been proposed to explain formation of the dichotomy, the Tharsis rise, crustal production, and dynamo evolution. Here we model both the early deformation of the dichotomy and the long-term preservation as a means of examining the plausibility of a range of early thermal evolution models. Constraints include the preservation of crustal thickness and topographic differences between the northern and southern hemispheres and the geologic history of the dichotomy [6]). Our previous modeling indicates that the lower crust must have been weak enough to allow for relaxation early on, but the Martian interior had to cool fast enough to preserve the crustal difference and the associated topographic difference (5 km) over approx. 3-3.5 Gyr [7].

  20. Enhanced transcription and translation in clay hydrogel and implications for early life evolution

    PubMed Central

    Yang, Dayong; Peng, Songming; Hartman, Mark R.; Gupton-Campolongo, Tiffany; Rice, Edward J.; Chang, Anna Kathryn; Gu, Zi; Lu, G. Q. (Max); Luo, Dan

    2013-01-01

    In most contemporary life forms, the confinement of cell membranes provides localized concentration and protection for biomolecules, leading to efficient biochemical reactions. Similarly, confinement may have also played an important role for prebiotic compartmentalization in early life evolution when the cell membrane had not yet formed. It remains an open question how biochemical reactions developed without the confinement of cell membranes. Here we mimic the confinement function of cells by creating a hydrogel made from geological clay minerals, which provides an efficient confinement environment for biomolecules. We also show that nucleic acids were concentrated in the clay hydrogel and were protected against nuclease, and that transcription and translation reactions were consistently enhanced. Taken together, our results support the importance of localized concentration and protection of biomolecules in early life evolution, and also implicate a clay hydrogel environment for biochemical reactions during early life evolution. PMID:24196527

  1. The emergence and early evolution of biological carbon-fixation.

    PubMed

    Braakman, Rogier; Smith, Eric

    2012-01-01

    The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology, making it more plausible than any modern pathway as a primitive universal ancestral form.

  2. Increasing Public Access to University Qualifications: Evolution of The University of the West Indies Open Campus

    ERIC Educational Resources Information Center

    Thomas, Michael L.; Soares, Judith

    2009-01-01

    This paper traces the evolution of The University of the West Indies' Open Campus (UWIOC), which is expected to expand service and increase access to the underserved communities of the Eastern Caribbean. At present, UWI, which caters to the needs of the 16 far flung countries of the Commonwealth Caribbean, has not been able to fully serve these…

  3. Hypotheses on the appearance of life on Earth (review).

    PubMed

    Dose, K

    1986-01-01

    It is generally accepted within the natural sciences that life emerged on Earth by a kind of proto-Darwinian evolution from molecular assemblies that were predominantly formed from the various constituents of the primitive atmosphere and hydrosphere. Evolutionary stages under discussion are: the self-organization of spontaneously formed biomolecules into early precursors of life (protobionts), their stepwise evolution via (postulated) protocells to (postulated) progenotes and the Darwinian evolution from progenotes to the three kingdoms of contemporary organisms (archaebacteria, eubacteria and eukaryotes). Considerable discrepancies between scientists have arisen because all evolutionary stages from prebiotic molecules to progenotes are entirely hypothetical and so are the postulated environmental conditions. We can only theorize that all those environmental conditions that allow the existence of the various forms of contemporary life might have allowed also the development of their precursors. Because of all these difficulties the hypothesis that life came to our planet from a remote place of our universe (panspermia) has been revived. But experimental evidence only supports the view that spores can--under favorable circumstances--survive a relatively short journey within our solar system (interplanetary transfer of life). It is extremely unlikely that spores can survive a journey of hundreds or thousands of years through interstellar space.

  4. Structural molecular components of septate junctions in cnidarians point to the origin of epithelial junctions in eukaryotes.

    PubMed

    Ganot, Philippe; Zoccola, Didier; Tambutté, Eric; Voolstra, Christian R; Aranda, Manuel; Allemand, Denis; Tambutté, Sylvie

    2015-01-01

    Septate junctions (SJs) insure barrier properties and control paracellular diffusion of solutes across epithelia in invertebrates. However, the origin and evolution of their molecular constituents in Metazoa have not been firmly established. Here, we investigated the genomes of early branching metazoan representatives to reconstruct the phylogeny of the molecular components of SJs. Although Claudins and SJ cytoplasmic adaptor components appeared successively throughout metazoan evolution, the structural components of SJs arose at the time of Placozoa/Cnidaria/Bilateria radiation. We also show that in the scleractinian coral Stylophora pistillata, the structural SJ component Neurexin IV colocalizes with the cortical actin network at the apical border of the cells, at the place of SJs. We propose a model for SJ components in Cnidaria. Moreover, our study reveals an unanticipated diversity of SJ structural component variants in cnidarians. This diversity correlates with gene-specific expression in calcifying and noncalcifying tissues, suggesting specific paracellular pathways across the cell layers of these diploblastic animals. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. The D-material universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elghozi, Thomas; Mavromatos, Nick E.; Sakellariadou, Mairi

    In a previous publication by some of the authors (N.E.M., M.S. and M.F.Y.), we have argued that the ''D-material universe'', that is a model of a brane world propagating in a higher-dimensional bulk populated by collections of D-particle stringy defects, provides a model for the growth of large-scale structure in the universe via the vector field in its spectrum. The latter corresponds to D-particle recoil velocity excitations as a result of the interactions of the defects with stringy matter and radiation on the brane world. In this article, we first elaborate further on the results of the previous study onmore » the galactic growth era and analyse the circumstances under which the D-particle recoil velocity fluid may ''mimic'' dark matter in galaxies. A lensing phenomenology is also presented for some samples of galaxies, which previously were known to provide tension for modified gravity (TeVeS) models. The current model is found in agreement with these lensing data. Then we discuss a cosmic evolution for the D-material universe by analysing the conditions under which the late eras of this universe associated with large-scale structure are connected to early epochs, where inflation takes place. It is shown that inflation is induced by dense populations of D-particles in the early universe, with the rôle of the inflaton field played by the condensate of the D-particle recoil-velocity fields under their interaction with relativistic stringy matter, only for sufficiently large brane tensions and low string mass scales compared to the Hubble scale. On the other hand, for large string scales, where the recoil-velocity condensate fields are weak, inflation cannot be driven by the D-particle defects alone. In such cases inflation may be driven by dilaton (or other moduli) fields in the underlying string theory.« less

  6. A universal minimal mass scale for present-day central black holes

    NASA Astrophysics Data System (ADS)

    Alexander, Tal; Bar-Or, Ben

    2017-08-01

    The early stages of massive black hole growth are poorly understood1. High-luminosity active galactic nuclei at very high redshift2 z further imply rapid growth soon after the Big Bang. Suggested formation mechanisms typically rely on the extreme conditions found in the early Universe (very low metallicity, very high gas or star density). It is therefore plausible that these black hole seeds were formed in dense environments, at least a Hubble time ago (z > 1.8 for a look-back time of tH = 10 Gyr)3. Intermediate-mass black holes (IMBHs) of mass M• ≈ 102-105 solar masses, M⊙, are the long-sought missing link4 between stellar black holes, born of supernovae5, and massive black holes6, tied to galaxy evolution by empirical scaling relations7,8. The relation between black hole mass, M•, and stellar velocity dispersion, σ★, that is observed in the local Universe over more than about three decades in massive black hole mass, correlates M• and σ★ on scales that are well outside the massive black hole's radius of dynamical influence6, rh≈GM•/σ★2. We show that low-mass black hole seeds that accrete stars from locally dense environments in galaxies following a universal M•/σ★ relation9,10 grow over the age of the Universe to be above M0≈3×105M⊙ (5% lower limit), independent of the unknown seed masses and formation processes. The mass M0 depends weakly on the uncertain formation redshift, and sets a universal minimal mass scale for present-day black holes. This can explain why no IMBHs have yet been found6, and it implies that present-day galaxies with σ★ < S0 ≈ 40 km s-1 lack a central black hole, or formed it only recently. A dearth of IMBHs at low redshifts has observable implications for tidal disruptions11 and gravitational wave mergers12.

  7. Higgs cosmology

    PubMed Central

    2018-01-01

    The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available. This article is part of the Theo Murphy meeting issue ‘Higgs cosmology’. PMID:29358352

  8. Higgs cosmology.

    PubMed

    Rajantie, Arttu

    2018-03-06

    The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  9. Cosmological parameter extraction and biases from type Ia supernova magnitude evolution

    NASA Astrophysics Data System (ADS)

    Linden, S.; Virey, J.-M.; Tilquin, A.

    2009-11-01

    We study different one-parametric models of type Ia supernova magnitude evolution on cosmic time scales. Constraints on cosmological and supernova evolution parameters are obtained by combined fits on the actual data coming from supernovae, the cosmic microwave background, and baryonic acoustic oscillations. We find that the best-fit values imply supernova magnitude evolution such that high-redshift supernovae appear some percent brighter than would be expected in a standard cosmos with a dark energy component. However, the errors on the evolution parameters are of the same order, and data are consistent with nonevolving magnitudes at the 1σ level, except for special cases. We simulate a future data scenario where SN magnitude evolution is allowed for, and neglect the possibility of such an evolution in the fit. We find the fiducial models for which the wrong model assumption of nonevolving SN magnitude is not detectable, and for which biases on the fitted cosmological parameters are introduced at the same time. Of the cosmological parameters, the overall mass density ΩM has the strongest chances to be biased due to the wrong model assumption. Whereas early-epoch models with a magnitude offset Δ m˜ z2 show up to be not too dangerous when neglected in the fitting procedure, late epoch models with Δ m˜√{z} have high chances of undetectably biasing the fit results. Centre de Physique Théorique is UMR 6207 - “Unité Mixte de Recherche” of CNRS and of the Universities “de Provence”, “de la Mediterranée”, and “du Sud Toulon-Var” - Laboratory affiliated with FRUMAM (FR2291).

  10. The evolution of blood pressure and the rise of mankind.

    PubMed

    Schulte, Kevin; Kunter, Uta; Moeller, Marcus J

    2015-05-01

    Why is it that only human beings continuously perform acts of heroism? Looking back at our evolutionary history can offer us some potentially useful insight. This review highlights some of the major steps in our evolution-more specifically, the evolution of high blood pressure. When we were fish, the first kidney was developed to create a standardized internal 'milieu' preserving the primordial sea within us. When we conquered land as amphibians, the evolution of the lung required a low systemic blood pressure, which explains why early land vertebrates (amphibians, reptiles) are such low performers. Gaining independence from water required the evolution of an impermeable skin and a water-retaining kidney. The latter was accomplished twice with two different solutions in the two major branches of vertebrate evolution: mammals excrete nitrogenous waste products as urea, which can be utilized by the kidney as an osmotic agent to produce more concentrated urine. Dinosaurs and birds have a distinct nitrogen metabolism and excrete nitrogen as water-insoluble uric acid-therefore, their kidneys cannot use urea to concentrate as well. Instead, some birds have developed the capability to reabsorb water from their cloacae. The convergent development of a separate small circulation of the lung in mammals and birds allowed for the evolution of 'high blood-pressure animals' with better capillarization of the peripheral tissues allowing high endurance performance. Finally, we investigate why mankind outperforms any other mammal on earth and why, to this day, we continue to perform acts of heroism on our eternal quest for personal bliss. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  11. Chemical evolution and the origin of life

    NASA Technical Reports Server (NTRS)

    Oro, J.

    1983-01-01

    A review is presented of recent advances made in the understanding of the formation of carbon compounds in the universe and the occurrence of processes of chemical evolution. Topics discussed include the principle of evolutionary continuity, evolution as a fundamental principle of the physical universe, the nuclear synthesis of biogenic elements, organic cosmochemistry and interstellar molecules, the solar nebula and the solar system in chemical evolution, the giant planets and Titan in chemical evolution, and comets and their interaction with the earth. Also examined are carbonaceous chondrites, environment of the primitive earth, energy sources available on the primitive earth, the synthesis of biochemical monomers and oligomers, the abiotic transcription of nucleotides, unified prebiotic and enzymatic mechanisms, phospholipids and membranes, and protobiological evolution.

  12. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution.

    PubMed

    Baniaga, Anthony E; Arrigo, Nils; Barker, Michael S

    2016-06-03

    The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. The Genome and Methylome of a Subsocial Small Carpenter Bee, Ceratina calcarata.

    PubMed

    Rehan, Sandra M; Glastad, Karl M; Lawson, Sarah P; Hunt, Brendan G

    2016-05-13

    Understanding the evolution of animal societies, considered to be a major transition in evolution, is a key topic in evolutionary biology. Recently, new gateways for understanding social evolution have opened up due to advances in genomics, allowing for unprecedented opportunities in studying social behavior on a molecular level. In particular, highly eusocial insect species (caste-containing societies with nonreproductives that care for siblings) have taken center stage in studies of the molecular evolution of sociality. Despite advances in genomic studies of both solitary and eusocial insects, we still lack genomic resources for early insect societies. To study the genetic basis of social traits requires comparison of genomes from a diversity of organisms ranging from solitary to complex social forms. Here we present the genome of a subsocial bee, Ceratina calcarata This study begins to address the types of genomic changes associated with the earliest origins of simple sociality using the small carpenter bee. Genes associated with lipid transport and DNA recombination have undergone positive selection in C. calcarata relative to other bee lineages. Furthermore, we provide the first methylome of a noneusocial bee. Ceratina calcarata contains the complete enzymatic toolkit for DNA methylation. As in the honey bee and many other holometabolous insects, DNA methylation is targeted to exons. The addition of this genome allows for new lines of research into the genetic and epigenetic precursors to complex social behaviors. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. ORIGIN: Metal Creation and Evolution From The Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Piro, L.; den Herder, J. W.; Ohashi, T.; Hartmann, D. H.; Kouveliotou, C.

    2011-08-01

    ORIGIN is a mission designed to use Gamma-Ray Bursts as a unique probe to study the cosmic history of baryons and the metal enrichment from the first stars up to the present Universe. Reconstructing the cosmic history of metals, from the first population of stars to the processes involved in the formation of galaxies and clusters of galaxies, is a key observational challenge. Observing any single star in the early Universe is in fact beyond the reach of presently planned mission. By measuring GRB redshifts and abundances in the circumburst medium deep into the era of re-ionization (z>6), ORIGIN will discover when star formation started and how it evolved into the present day structures. ORIGIN will collect 400 GRBs per year covering the full redshift distribution. About twice per month a GRB from the re-ionization era will trigger the instruments. The resulting multi-element abundance patterns derived from high resolution X-ray and IR observations will map the evolving chemical composition of the early Universe, ``fingerprint'' the elusive PopIII stars, and constrain the shape of the Initial Mass Function (IMF) of the first stars. While not observing GRB afterglows, ORIGIN will map element abundances in local structures (z<2) by determining the properties of the hot IGM in clusters and groups of galaxies and the Warm-Hot Intergalactic Medium (WHIM). In this paper we focus on the use of GRB to track the earliest star populations.

  15. A Universe of Questions.

    ERIC Educational Resources Information Center

    Zeldovich, Yakov

    1992-01-01

    Reprinted from the original Russian manuscript of Yakov Zeldovich, this article chronicles his studies of the universe and his attempts to construct a theory of its evolution. He provides the high school student with compelling cosmological discussions about uniformity, galactic clusters, radiation, evolution, the big bang, and gravitational…

  16. Facets of radio-loud AGN evolution : a LOFAR surveys perspective

    NASA Astrophysics Data System (ADS)

    Williams, W. L.

    2015-12-01

    Radio observations provide a unique view of black holes in the Universe. This thesis presents low frequency radio images and uses the radio sources in those images to study the evolution of black holes and galaxies through the age of the Universe.

  17. Cosmic evolution: the context for astrobiology and its cultural implications

    NASA Astrophysics Data System (ADS)

    Dick, Steven J.

    2012-10-01

    Astrobiology must be seen in the context of cosmic evolution, the 13.7 billion-year master narrative of the universe. The idea of an evolving universe dates back only to the 19th century, and became a guiding principle for astronomical research only in the second half of the 20th century. The modern synthesis in evolutionary biology hastened the acceptance of the idea in its cosmic setting, as did the confirmation of the Big Bang theory for the origin of the universe. NASA programmes such as Origins incorporated it as a guiding principle. Cosmic evolution encompasses physical, biological and cultural evolution, and may result in a physical, biological or postbiological universe, each with its own implications for long-term human destiny, and each imbuing the meaning of life with different values. It has the status of an increasingly accepted worldview that is beginning to have a profound effect not only in science but also in religion and philosophy.

  18. Age of acquisition predicts rate of lexical evolution.

    PubMed

    Monaghan, Padraic

    2014-12-01

    The processes taking place during language acquisition are proposed to influence language evolution. However, evidence demonstrating the link between language learning and language evolution is, at best, indirect, constituting studies of laboratory-based artificial language learning studies or computational simulations of diachronic change. In the current study, a direct link between acquisition and evolution is established, showing that for two hundred fundamental vocabulary items, the age at which words are acquired is a predictor of the rate at which they have changed in studies of language evolution. Early-acquired words are more salient and easier to process than late-acquired words, and these early-acquired words are also more stably represented within the community's language. Analysing the properties of these early-acquired words potentially provides insight into the origins of communication, highlighting features of words that have been ultra-conserved in language. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A universal molecular clock of protein folds and its power in tracing the early history of aerobic metabolism and planet oxygenation.

    PubMed

    Wang, Minglei; Jiang, Ying-Ying; Kim, Kyung Mo; Qu, Ge; Ji, Hong-Fang; Mittenthal, Jay E; Zhang, Hong-Yu; Caetano-Anollés, Gustavo

    2011-01-01

    The standard molecular clock describes a constant rate of molecular evolution and provides a powerful framework for evolutionary timescales. Here, we describe the existence and implications of a molecular clock of folds, a universal recurrence in the discovery of new structures in the world of proteins. Using a phylogenomic structural census in hundreds of proteomes, we build phylogenies and time lines of domains at fold and fold superfamily levels of structural complexity. These time lines correlate approximately linearly with geological timescales and were here used to date two crucial events in life history, planet oxygenation and organism diversification. We first dissected the structures and functions of enzymes in simulated metabolic networks. The placement of anaerobic and aerobic enzymes in the time line revealed that aerobic metabolism emerged about 2.9 billion years (giga-annum; Ga) ago and expanded during a period of about 400 My, reaching what is known as the Great Oxidation Event. During this period, enzymes recruited old and new folds for oxygen-mediated enzymatic activities. Remarkably, the first fold lost by a superkingdom disappeared in Archaea 2.6 Ga ago, within the span of oxygen rise, suggesting that oxygen also triggered diversification of life. The implications of a molecular clock of folds are many and important for the neutral theory of molecular evolution and for understanding the growth and diversity of the protein world. The clock also extends the standard concept that was specific to molecules and their timescales and turns it into a universal timescale-generating tool.

  20. Recent evidence for evolution of the genetic code

    NASA Technical Reports Server (NTRS)

    Osawa, S.; Jukes, T. H.; Watanabe, K.; Muto, A.

    1992-01-01

    The genetic code, formerly thought to be frozen, is now known to be in a state of evolution. This was first shown in 1979 by Barrell et al. (G. Barrell, A. T. Bankier, and J. Drouin, Nature [London] 282:189-194, 1979), who found that the universal codons AUA (isoleucine) and UGA (stop) coded for methionine and tryptophan, respectively, in human mitochondria. Subsequent studies have shown that UGA codes for tryptophan in Mycoplasma spp. and in all nonplant mitochondria that have been examined. Universal stop codons UAA and UAG code for glutamine in ciliated protozoa (except Euplotes octacarinatus) and in a green alga, Acetabularia. E. octacarinatus uses UAA for stop and UGA for cysteine. Candida species, which are yeasts, use CUG (leucine) for serine. Other departures from the universal code, all in nonplant mitochondria, are CUN (leucine) for threonine (in yeasts), AAA (lysine) for asparagine (in platyhelminths and echinoderms), UAA (stop) for tyrosine (in planaria), and AGR (arginine) for serine (in several animal orders) and for stop (in vertebrates). We propose that the changes are typically preceded by loss of a codon from all coding sequences in an organism or organelle, often as a result of directional mutation pressure, accompanied by loss of the tRNA that translates the codon. The codon reappears later by conversion of another codon and emergence of a tRNA that translates the reappeared codon with a different assignment. Changes in release factors also contribute to these revised assignments. We also discuss the use of UGA (stop) as a selenocysteine codon and the early history of the code.

  1. Early School-Leaving in Spain: Evolution, Intensity and Determinants

    ERIC Educational Resources Information Center

    Fernandez-Macias, Enrique; Anton, Jose-Ignacio; Brana, Francisco-Javier; De Bustillo, Rafael Munoz

    2013-01-01

    Spain has one of the highest levels of early school leaving and educational failure of the European Union. The purpose of this paper is to analyse the anatomy of early school leaving in Spain and its characteristics. In order to do so, in the first part we discuss the measurement problems related with this concept and the evolution of drop-out…

  2. Developing an Open Source, Reusable Platform for Distributed Collaborative Information Management in the Early Detection Research Network

    NASA Technical Reports Server (NTRS)

    Hart, Andrew F.; Verma, Rishi; Mattmann, Chris A.; Crichton, Daniel J.; Kelly, Sean; Kincaid, Heather; Hughes, Steven; Ramirez, Paul; Goodale, Cameron; Anton, Kristen; hide

    2012-01-01

    For the past decade, the NASA Jet Propulsion Laboratory, in collaboration with Dartmouth University has served as the center for informatics for the Early Detection Research Network (EDRN). The EDRN is a multi-institution research effort funded by the U.S. National Cancer Institute (NCI) and tasked with identifying and validating biomarkers for the early detection of cancer. As the distributed network has grown, increasingly formal processes have been developed for the acquisition, curation, storage, and dissemination of heterogeneous research information assets, and an informatics infrastructure has emerged. In this paper we discuss the evolution of EDRN informatics, its success as a mechanism for distributed information integration, and the potential sustainability and reuse benefits of emerging efforts to make the platform components themselves open source. We describe our experience transitioning a large closed-source software system to a community driven, open source project at the Apache Software Foundation, and point to lessons learned that will guide our present efforts to promote the reuse of the EDRN informatics infrastructure by a broader community.

  3. Evolution of CMB spectral distortion anisotropies and tests of primordial non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Chluba, Jens; Dimastrogiovanni, Emanuela; Amin, Mustafa A.; Kamionkowski, Marc

    2017-04-01

    Anisotropies in distortions to the frequency spectrum of the cosmic microwave background (CMB) can be created through spatially varying heating processes in the early Universe. For instance, the dissipation of small-scale acoustic modes does create distortion anisotropies, in particular for non-Gaussian primordial perturbations. In this work, we derive approximations that allow describing the associated distortion field. We provide a systematic formulation of the problem using Fourier-space window functions, clarifying and generalizing previous approximations. Our expressions highlight the fact that the amplitudes of the spectral-distortion fluctuations induced by non-Gaussianity depend also on the homogeneous value of those distortions. Absolute measurements are thus required to obtain model-independent distortion constraints on primordial non-Gaussianity. We also include a simple description for the evolution of distortions through photon diffusion, showing that these corrections can usually be neglected. Our formulation provides a systematic framework for computing higher order correlation functions of distortions with CMB temperature anisotropies and can be extended to describe correlations with polarization anisotropies.

  4. On gravitational waves in Born-Infeld inspired non-singular cosmologies

    NASA Astrophysics Data System (ADS)

    Beltrán Jiménez, Jose; Heisenberg, Lavinia; Olmo, Gonzalo J.; Rubiera-Garcia, Diego

    2017-10-01

    We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of the gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.

  5. A Model Connecting Galaxy Masses, Star Formation Rates, and Dust Temperatures across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Imara, Nia; Loeb, Abraham; Johnson, Benjamin D.; Conroy, Charlie; Behroozi, Peter

    2018-02-01

    We investigate the evolution of dust content in galaxies from redshifts z = 0 to z = 9.5. Using empirically motivated prescriptions, we model galactic-scale properties—including halo mass, stellar mass, star formation rate, gas mass, and metallicity—to make predictions for the galactic evolution of dust mass and dust temperature in main-sequence galaxies. Our simple analytic model, which predicts that galaxies in the early universe had greater quantities of dust than their low-redshift counterparts, does a good job of reproducing observed trends between galaxy dust and stellar mass out to z ≈ 6. We find that for fixed galaxy stellar mass, the dust temperature increases from z = 0 to z = 6. Our model forecasts a population of low-mass, high-redshift galaxies with interstellar dust as hot as, or hotter than, their more massive counterparts; but this prediction needs to be constrained by observations. Finally, we make predictions for observing 1.1 mm flux density arising from interstellar dust emission with the Atacama Large Millimeter Array.

  6. Computational complexity of the landscape II-Cosmological considerations

    NASA Astrophysics Data System (ADS)

    Denef, Frederik; Douglas, Michael R.; Greene, Brian; Zukowski, Claire

    2018-05-01

    We propose a new approach for multiverse analysis based on computational complexity, which leads to a new family of "computational" measure factors. By defining a cosmology as a space-time containing a vacuum with specified properties (for example small cosmological constant) together with rules for how time evolution will produce the vacuum, we can associate global time in a multiverse with clock time on a supercomputer which simulates it. We argue for a principle of "limited computational complexity" governing early universe dynamics as simulated by this supercomputer, which translates to a global measure for regulating the infinities of eternal inflation. The rules for time evolution can be thought of as a search algorithm, whose details should be constrained by a stronger principle of "minimal computational complexity". Unlike previously studied global measures, ours avoids standard equilibrium considerations and the well-known problems of Boltzmann Brains and the youngness paradox. We also give various definitions of the computational complexity of a cosmology, and argue that there are only a few natural complexity classes.

  7. Snippets from the past: the evolution of Wade Hampton Frost's epidemiology as viewed from the American Journal of Hygiene/Epidemiology.

    PubMed

    Morabia, Alfredo

    2013-10-01

    Wade Hampton Frost, who was a Professor of Epidemiology at Johns Hopkins University from 1919 to 1938, spurred the development of epidemiologic methods. His 6 publications in the American Journal of Hygiene, which later became the American Journal of Epidemiology, comprise a 1928 Cutter lecture on a theory of epidemics, a survey-based study of tonsillectomy and immunity to Corynebacterium diphtheriae (1931), 2 papers from a longitudinal study of the incidence of minor respiratory diseases (1933 and 1935), an attack rate ratio analysis of the decline of diphtheria in Baltimore (1936), and a 1936 lecture on the age, time, and cohort analysis of tuberculosis mortality. These 6 American Journal of Hygiene /American Journal of Epidemiology papers attest that Frost's personal evolution mirrored that of the emerging "early" epidemiology: The scope of epidemiology extended beyond the study of epidemics of acute infectious diseases, and rigorous comparative study designs and their associated quantitative methods came to light.

  8. On gravitational waves in Born-Infeld inspired non-singular cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez, Jose Beltrán; Heisenberg, Lavinia; Olmo, Gonzalo J.

    We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of themore » gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.« less

  9. Robust regression and posterior predictive simulation increase power to detect early bursts of trait evolution.

    PubMed

    Slater, Graham J; Pennell, Matthew W

    2014-05-01

    A central prediction of much theory on adaptive radiations is that traits should evolve rapidly during the early stages of a clade's history and subsequently slowdown in rate as niches become saturated--a so-called "Early Burst." Although a common pattern in the fossil record, evidence for early bursts of trait evolution in phylogenetic comparative data has been equivocal at best. We show here that this may not necessarily be due to the absence of this pattern in nature. Rather, commonly used methods to infer its presence perform poorly when when the strength of the burst--the rate at which phenotypic evolution declines--is small, and when some morphological convergence is present within the clade. We present two modifications to existing comparative methods that allow greater power to detect early bursts in simulated datasets. First, we develop posterior predictive simulation approaches and show that they outperform maximum likelihood approaches at identifying early bursts at moderate strength. Second, we use a robust regression procedure that allows for the identification and down-weighting of convergent taxa, leading to moderate increases in method performance. We demonstrate the utility and power of these approach by investigating the evolution of body size in cetaceans. Model fitting using maximum likelihood is equivocal with regards the mode of cetacean body size evolution. However, posterior predictive simulation combined with a robust node height test return low support for Brownian motion or rate shift models, but not the early burst model. While the jury is still out on whether early bursts are actually common in nature, our approach will hopefully facilitate more robust testing of this hypothesis. We advocate the adoption of similar posterior predictive approaches to improve the fit and to assess the adequacy of macroevolutionary models in general.

  10. Phonation takes precedence over articulation in development as well as evolution of language.

    PubMed

    Oller, D Kimbrough

    2014-12-01

    Early human vocal development is characterized first by emerging control of phonation and later by prosodic and supraglottal articulation. The target article has missed the opportunity to use these facts in the characterization of evolution in language-specific brain mechanisms. Phonation appears to be the initial human-specific brain change for language, and it was presumably a key target of selection in early hominin evolution.

  11. Approaches to Legacy System Evolution.

    DTIC Science & Technology

    1997-12-01

    such as migrating legacy systems, to more distributed open environments. This framework draws out the important global issues early in the planning...ongoing system evolution initiatives, for drawing out important global issues early in the planning cycle using the checklists as a guide, and for

  12. The Complete Local-Volume Groups Sample (CLoGS): Early results from X-ray and radio observations

    NASA Astrophysics Data System (ADS)

    Vrtilek, Jan M.; O'Sullivan, Ewan; David, Laurence P.; Giacintucci, Simona; Kolokythas, Konstantinos

    2017-08-01

    Although the group environment is the dominant locus of galaxy evolution (in contrast to rich clusters, which contain only a few percent of galaxies), there has been a lack of reliable, representative group samples in the local Universe. In particular, X-ray selected samples are strongly biased in favor of the X-ray bright, centrally-concentrated cool-core systems. In response, we have designed the Complete Local-Volume Groups Sample (CLoGS), an optically-selected statistically-complete sample of 53 groups within 80 Mpc which is intended to overcome the limitations of X-ray selected samples and serve as a representative survey of groups in the local Universe. We have supplemented X-ray data from Chandra and XMM (70% complete to date, using both archival and new observations, with a 26-group high richness subsample 100% complete) with GMRT radio continuum observations (at 235 and 610 MHz, complete for the entire sample). CLoGS includes groups with a wide variety of properties in terms of galaxy population, hot gas content, and AGN power. We here describe early results from the survey, including the range of AGN activity observed in the dominant galaxies, the relative fraction of cool-core and non-cool-core groups in our sample, and the degree of disturbance observed in the IGM.

  13. Gravitational Waves From The Hierarchical Buildup Of Intermediate Mass Black Holes

    NASA Astrophysics Data System (ADS)

    Micic, Miroslav; Sigurdsson, S.; Holley-Bockelmann, K.; Abel, T.

    2006-12-01

    Using high-resolution N-body simulations in LambdaCDM universe, we have constructed dark matter structure's merger tree that traces evolution of dark matter halos, their subhalos and massive black holes (MBH) formed from Population III stars. Such early black holes, formed at redshifts z > 10, could be the seed black holes for the many SMBH found in galaxies in the local universe. Mergers of MBH may be a prime signal for long wavelength gravitaional wave detectors. We study trajectories of MBH, formation of MBH binaries and calculate gravitational strain amplitude as a function of redshift. We also explore the implications of kick velocities conjectured by some formation models. The central concentration of early black holes in present day galaxies is reduced if they are born even with moderate kicks of tens km/s. The modest kicks allow the black holes to leave their parent halo, which consequently leads to dynamical friction being less effective on the lower mass black holes as compared to those still embedded in their parent halos. Therefore, merger rates may be reduced by more then an order of magnitude. We quantify the role of kicks on black hole merger rates. Our results also apply to black holes ejected by the gravitational slingshot mechanism.

  14. Early Stages of the Evolution of Life: a Cybernetic Approach

    NASA Astrophysics Data System (ADS)

    Melkikh, Alexey V.; Seleznev, Vladimir D.

    2008-08-01

    Early stages of the evolution of life are considered in terms of control theory. A model is proposed for the transport of substances in a protocell possessing the property of robustness with regard to changes in the environmental concentration of a substance.

  15. Early stages of the evolution of life: a cybernetic approach.

    PubMed

    Melkikh, Alexey V; Seleznev, Vladimir D

    2008-08-01

    Early stages of the evolution of life are considered in terms of control theory. A model is proposed for the transport of substances in a protocell possessing the property of robustness with regard to changes in the environmental concentration of a substance.

  16. Evidence for adaptive radiation from a phylogenetic study of plant defenses

    PubMed Central

    Agrawal, Anurag A.; Fishbein, Mark; Halitschke, Rayko; Hastings, Amy P.; Rabosky, Daniel L.; Rasmann, Sergio

    2009-01-01

    One signature of adaptive radiation is a high level of trait change early during the diversification process and a plateau toward the end of the radiation. Although the study of the tempo of evolution has historically been the domain of paleontologists, recently developed phylogenetic tools allow for the rigorous examination of trait evolution in a tremendous diversity of organisms. Enemy-driven adaptive radiation was a key prediction of Ehrlich and Raven's coevolutionary hypothesis [Ehrlich PR, Raven PH (1964) Evolution 18:586–608], yet has remained largely untested. Here we examine patterns of trait evolution in 51 North American milkweed species (Asclepias), using maximum likelihood methods. We study 7 traits of the milkweeds, ranging from seed size and foliar physiological traits to defense traits (cardenolides, latex, and trichomes) previously shown to impact herbivores, including the monarch butterfly. We compare the fit of simple random-walk models of trait evolution to models that incorporate stabilizing selection (Ornstein-Ulenbeck process), as well as time-varying rates of trait evolution. Early bursts of trait evolution were implicated for 2 traits, while stabilizing selection was implicated for several others. We further modeled the relationship between trait change and species diversification while allowing rates of trait evolution to vary during the radiation. Species-rich lineages underwent a proportionately greater decline in latex and cardenolides relative to species-poor lineages, and the rate of trait change was most rapid early in the radiation. An interpretation of this result is that reduced investment in defensive traits accelerated diversification, and disproportionately so, early in the adaptive radiation of milkweeds. PMID:19805160

  17. The Generation-X Vision Mission Study and Advanced Mission Concept

    NASA Astrophysics Data System (ADS)

    Brissenden, Roger J. V.; Generation-X Team

    2008-03-01

    The Generation-X (Gen-X) mission was selected as one of NASA's Vision Missions as a concept for a next generation X-ray telescope designed to study the very early universe with 1000-times greater sensitivity than current X-ray telescopes. The mission has also been proposed as an Advanced Mission Concept Study (AMCS) to further define the technology development plan and mission design. The scientific goals for Gen-X include studying the first generations of stars and black holes in the epoch z=10-20, the evolution of black holes and galaxies from high z to the present, the chemical evolution of the universe and the properties of matter under extreme conditions. The key parameters required to meet these goals define a challenging mission and include an effective area of 50 m2 at 1 keV, and an angular resolution (HPD) of 0.1 arcsec over an energy band of 0.1-10 keV. The required effective area implies that extremely lightweight grazing incidence X-ray optics must be developed. To achieve the required areal density of at least 100 times lower than in Chandra, thin ( 0.1 mm) mirrors that have active on-orbit figure control are required. We present the major findings from the Gen-X Vision Mission Study and a streamlined mission concept enabled by the Ares V launch capability, as proposed in response to the AMSC call.

  18. Universal attractor in a highly occupied non-Abelian plasma

    NASA Astrophysics Data System (ADS)

    Berges, J.; Boguslavski, K.; Schlichting, S.; Venugopalan, R.

    2014-06-01

    We study the thermalization process in highly occupied non-Abelian plasmas at weak coupling. The nonequilibrium dynamics of such systems is classical in nature and can be simulated with real-time lattice gauge theory techniques. We provide a detailed discussion of this framework and elaborate on the results reported in J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan, Phys. Rev. D 89, 074011 (2014), 10.1103/PhysRevD.89.074011 along with novel findings. We demonstrate the emergence of universal attractor solutions, which govern the nonequilibrium evolution on large time scales both for nonexpanding and expanding non-Abelian plasmas. The turbulent attractor for a nonexpanding plasma drives the system close to thermal equilibrium on a time scale t ˜Q-1αs-7/4. The attractor solution for an expanding non-Abelian plasma leads to a strongly interacting albeit highly anisotropic system at the transition to the low-occupancy or quantum regime. This evolution in the classical regime is, within the uncertainties of our simulations, consistent with the "bottom up" thermalization scenario [R. Baier, A. H. Mueller, D. Schiff, and D. T. Son, Phys. Lett. B 502, 51 (2001), 10.1016/S0370-2693(01)00191-5]. While the focus of this paper is to understand the nonequilibrium dynamics in weak coupling asymptotics, we also discuss the relevance of our results for larger couplings in the early time dynamics of heavy ion collision experiments.

  19. The characteristic black hole mass resulting from direct collapse in the early Universe

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Schleicher, D. R. G.; Schmidt, W.; Niemeyer, J. C.

    2013-12-01

    Black holes of a billion solar masses are observed in the infant Universe a few hundred million years after the big bang. The direct collapse of protogalactic gas clouds in primordial haloes with Tvir ≥ 104 K provides the most promising way to assemble massive black holes. In this study, we aim to determine the characteristic mass scale of seed black holes and the time evolution of the accretion rates resulting from the direct collapse model. We explore the formation of supermassive black holes via cosmological large eddy simulations (LES) by employing sink particles and following their evolution for 20 000 yr after the formation of the first sink. As the resulting protostars were shown to have cool atmospheres in the presence of strong accretion, we assume here that UV feedback is negligible during this calculation. We confirm this result in a comparison run without sinks. Our findings show that black hole seeds with characteristic mass of 105 M⊙ are formed in the presence of strong Lyman-Werner flux which leads to an isothermal collapse. The characteristic mass is about two times higher in LES compared to the implicit large eddy simulations. The accretion rates increase with time and reach a maximum value of 10 M⊙ yr-1 after 104 yr. Our results show that the direct collapse model is clearly feasible as it provides the expected mass of the seed black holes.

  20. Early evolution without a tree of life.

    PubMed

    Martin, William F

    2011-06-30

    Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause.

  1. Cosmocultural Evolution: Cosmic Motivation for Interstellar Travel?

    NASA Astrophysics Data System (ADS)

    Lupisella, M.

    Motivations for interstellar travel can vary widely from practical survival motivations to wider-ranging moral obligations to future generations. But it may also be fruitful to explore what, if any, "cosmic" relevance there may be regarding interstellar travel. Cosmocultural evolution can be defined as the coevolution of cosmos and culture, with cultural evolution playing an important and perhaps critical role in the overall evolution of the universe. Strong versions of cosmocultural evolution might suggest that cultural evolution may have unlimited potential as a cosmic force. In such a worldview, the advancement of cultural beings throughout the universe could have significant cosmic relevance, perhaps providing additional motivation for interstellar travel. This paper will explore some potential philosophical and policy implications for interstellar travel of a cosmocultural evolutionary perspective and other related concepts, including some from a recent NASA book, Cosmos and Culture: Cultural Evolution in a Cosmic Context.

  2. An Overview of the Swinburne Online Astronomy Courses

    NASA Astrophysics Data System (ADS)

    Dempsey, F.

    2013-06-01

    (Abstract only) An overview of the online astronomy courses at Swinburne University of Technology is presented for the benefit of AAVSO members who might be interested in the courses or programs. The decision to take the online Master's degree in astronomy at Swinburne was a natural evolution from being interested in astronomy at an early age, being an amateur astronomer all my life, and being a variable star observer and member of the AAVSO for the past several decades. This presentation provides an overview of the program and examples of the course materials, assignments, and projects that may provide some idea of the commitment and expectations for AAVSO members considering the program.

  3. Do Massive Galaxies at z~6 Present a Challenge for Hierarchical Merging?

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles L.; Capak, Peter L.; Masters, Daniel; Speagle, Josh S.; Splash

    2015-01-01

    The Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH) recently released an initial view of the massive star-forming galaxy population at 4 < z < 6 over 1.8 square degrees. SPLASH found approximately 100 galaxy candidates with best-fit stellar masses over 10^11 solar. If even 10% of these are truly this massive and at such a high redshift, the corresponding number density would be inconsistent with the halo mass functions produced at these redshifts by numerical simulations. We will discuss these candidates, prospects for followup observations, and the potential implications for our understanding of the initial formation and early evolution of galaxies in the high-redshift universe.

  4. The formation and fragmentation of disks around primordial protostars.

    PubMed

    Clark, Paul C; Glover, Simon C O; Smith, Rowan J; Greif, Thomas H; Klessen, Ralf S; Bromm, Volker

    2011-02-25

    The very first stars to form in the universe heralded an end to the cosmic dark ages and introduced new physical processes that shaped early cosmic evolution. Until now, it was thought that these stars lived short, solitary lives, with only one extremely massive star, or possibly a very wide binary system, forming in each dark-matter minihalo. Here we describe numerical simulations that show that these stars were, to the contrary, often members of tight multiple systems. Our results show that the disks that formed around the first young stars were unstable to gravitational fragmentation, possibly producing small binary and higher-order systems that had separations as small as the distance between Earth and the Sun.

  5. Black hole demography at the dawn of gravitational-wave astronomy: state-of-the art and future perspectives

    NASA Astrophysics Data System (ADS)

    Mapelli, Michela

    2018-02-01

    The first four LIGO detections have confirmed the existence of massive black holes (BHs), with mass 30-40 M⊙. Such BHs might originate from massive metal-poor stars (Z < 0:3 Z⊙) or from gravitational instabilities in the early Universe. The formation channels of merging BHs are still poorly constrained. The measure of mass, spin and redshift distribution of merging BHs will give us fundamental clues to distinguish between different models. In parallel, a better understanding of several astrophysical processes (e.g. common envelope, core-collapse SNe, and dynamical evolution of BHs) is decisive, to shed light on the formation channels of merging BHs.

  6. Chance of Necessity: Modeling Origins of Life

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2006-01-01

    The fundamental nature of processes that led to the emergence of life has been a subject of long-standing debate. One view holds that the origin of life is an event governed by chance, and the result of so many random events is unpredictable. This view was eloquently expressed by Jacques Monod in his book Chance or Necessity. In an alternative view, the origin of life is considered a deterministic event. Its details need not be deterministic in every respect, but the overall behavior is predictable. A corollary to the deterministic view is that the emergence of life must have been determined primarily by universal chemistry and biochemistry rather than by subtle details of environmental conditions. In my lecture I will explore two different paradigms for the emergence of life and discuss their implications for predictability and universality of life-forming processes. The dominant approach is that the origin of life was guided by information stored in nucleic acids (the RNA World hypothesis). In this view, selection of improved combinations of nucleic acids obtained through random mutations drove evolution of biological systems from their conception. An alternative hypothesis states that the formation of protocellular metabolism was driven by non-genomic processes. Even though these processes were highly stochastic the outcome was largely deterministic, strongly constrained by laws of chemistry. I will argue that self-replication of macromolecules was not required at the early stages of evolution; the reproduction of cellular functions alone was sufficient for self-maintenance of protocells. In fact, the precise transfer of information between successive generations of the earliest protocells was unnecessary and could have impeded the discovery of cellular metabolism. I will also show that such concepts as speciation and fitness to the environment, developed in the context of genomic evolution also hold in the absence of a genome.

  7. Selection towards different adaptive optima drove the early diversification of locomotor phenotypes in the radiation of Neotropical geophagine cichlids.

    PubMed

    Astudillo-Clavijo, Viviana; Arbour, Jessica H; López-Fernández, Hernán

    2015-05-01

    Simpson envisaged a conceptual model of adaptive radiation in which lineages diversify into "adaptive zones" within a macroevolutionary adaptive landscape. However, only a handful of studies have empirically investigated this adaptive landscape and its consequences for our interpretation of the underlying mechanisms of phenotypic evolution. In fish radiations the evolution of locomotor phenotypes may represent an important dimension of ecomorphological diversification given the implications of locomotion for feeding and habitat use. Neotropical geophagine cichlids represent a newly identified adaptive radiation and provide a useful system for studying patterns of locomotor diversification and the implications of selective constraints on phenotypic divergence in general. We use multivariate ordination, models of phenotypic evolution and posterior predictive approaches to investigate the macroevolutionary adaptive landscape and test for evidence of early divergence of locomotor phenotypes in Geophagini. The evolution of locomotor phenotypes was characterized by selection towards at least two distinct adaptive peaks and the early divergence of modern morphological disparity. One adaptive peak included the benthic and epibenthic invertivores and was characterized by fishes with deep, laterally compressed bodies that optimize precise, slow-swimming manoeuvres. The second adaptive peak resulted from a shift in adaptive optima in the species-rich ram-feeding/rheophilic Crenicichla-Teleocichla clade and was characterized by species with streamlined bodies that optimize fast starts and rapid manoeuvres. Evolutionary models and posterior predictive approaches favoured an early shift to a new adaptive peak over decreasing rates of evolution as the underlying process driving the early divergence of locomotor phenotypes. The influence of multiple adaptive peaks on the divergence of locomotor phenotypes in Geophagini is compatible with the expectations of an ecologically driven adaptive radiation. This study confirms that the diversification of locomotor phenotypes represents an important dimension of phenotypic evolution in the geophagine adaptive radiation. It also suggests that the commonly observed early burst of phenotypic evolution during adaptive radiations may be better explained by the concentration of shifts to new adaptive peaks deep in the phylogeny rather than overall decreasing rates of evolution.

  8. Astrobiology: The Search for Life in the Universe

    NASA Technical Reports Server (NTRS)

    Pacchioli, David

    2003-01-01

    Each of the 11 lead members of NASA's Astrobiology Institute has a specific mission. According to Hiroshi Ohmoto, director of Penn State s Astrobiology Research Center, Here we are mainly concerned with the origin of life and the evolution and extinction of important organisms. These include bacteria that live on methane, cyanobacteria (the inventors of photosynthesis), eukaryotes (a big category, covering anything with a nucleus, from single-celled organisms to humans), land-dwelling organisms, and early animals. Penn State astrobiologists are studying the environment before there was life on Earth, the origin of oxygen in the atmosphere, the chemical and thermal structures of oceans, and the role of metals in the evolution of life. Overall, they want to understand the connection between changes in environment and changes in life forms in the early Earth. PSARC offers research assistantships for graduate and undergraduate students, fellowships for graduate students and post-doctoral fellows, and an undergraduate minor in astrobiology. The minor covers 18 credits in earth sciences, geochemistry, geophysics, astronomy, biology, biochemistry, meteorology, and microbiology. The goal, says Ohmoto, is to teach students to critically evaluate claims related to this field that they encounter well after their college education has ended. Under a scanning electron microscope, Martian meteorite ALH84001 yields tube-like structures that look a lot like remnants of Earthly bacteria except smaller by a factor of ten.

  9. J. J. Sakurai Prize: Astrophysics, Cosmology and PQ Symmetry--Linking the Very Small and the Very Large

    NASA Astrophysics Data System (ADS)

    Quinn, Helen

    2013-04-01

    The symmetry between the laws of physics for matter and those for antimatter (technically known as CP symmetry) is broken in the weak interaction but maintained to a high level of precision in the strong interaction. In the context of the Standard Model theory of particles and their interactions this is a puzzle --what protects the strong interaction from being more ``infected'' by the lack of a symmetry of the weak interaction? I will review the history of the idea we had to solve this puzzle, its consequences, and its evolution into the versions still viable today. Our answer to this puzzle, adding a further symmetry now known as PQ symmetry, arose from thinking about the effects of quark-Higgs couplings as in the early Universe, in the phase transition that gives quarks their masses. Not only did this modification of the Standard Model arise from cosmological thinking, it turns out to have possible cosmological consequences in the form of a light, weakly-coupled particle known as the axion, a possible dark matter candidate. Furthermore astrophysical constraints on such a particle have played a role in the subsequent evolution of theories with PQ symmetry. I will review the early history of this fascinating linkage of large scale and small scale physics, leaving later developments for my collaborator and co-recipient of this prize, Roberto Peccei, to talk about.

  10. A new hypothesis of dinosaur relationships and early dinosaur evolution.

    PubMed

    Baron, Matthew G; Norman, David B; Barrett, Paul M

    2017-03-22

    For 130 years, dinosaurs have been divided into two distinct clades-Ornithischia and Saurischia. Here we present a hypothesis for the phylogenetic relationships of the major dinosaurian groups that challenges the current consensus concerning early dinosaur evolution and highlights problematic aspects of current cladistic definitions. Our study has found a sister-group relationship between Ornithischia and Theropoda (united in the new clade Ornithoscelida), with Sauropodomorpha and Herrerasauridae (as the redefined Saurischia) forming its monophyletic outgroup. This new tree topology requires redefinition and rediagnosis of Dinosauria and the subsidiary dinosaurian clades. In addition, it forces re-evaluations of early dinosaur cladogenesis and character evolution, suggests that hypercarnivory was acquired independently in herrerasaurids and theropods, and offers an explanation for many of the anatomical features previously regarded as notable convergences between theropods and early ornithischians.

  11. Science with the VLA Sky Survey (VLASS)

    NASA Astrophysics Data System (ADS)

    Murphy, Eric J.; Baum, Stefi Alison; Brandt, W. Niel; Chandler, Claire J.; Clarke, Tracy E.; Condon, James J.; Cordes, James M.; Deustua, Susana E.; Dickinson, Mark; Gugliucci, Nicole E.; Hallinan, Gregg; Hodge, Jacqueline; Lang, Cornelia C.; Law, Casey J.; Lazio, Joseph; Mao, Sui Ann; Myers, Steven T.; Osten, Rachel A.; Richards, Gordon T.; Strauss, Michael A.; White, Richard L.; Zauderer, Bevin; Extragalactic Science Working Group, Galactic Science Working Group, Transient Science Working Group

    2015-01-01

    The Very Large Array Sky Survey (VLASS) was initiated to develop and carry out a new generation large radio sky survey using the recently upgraded Karl G. Jansky Very Large Array. The proposed VLASS is a modern, multi-tiered survey with the VLA designed to provide a broad, cohesive science program with forefront scientific impact, capable of generating unexpected scientific discoveries, generating involvement from all astronomical communities, and leaving a lasting legacy value for decades.VLASS will observe from 2-4 GHz and is structured to combine comprehensive all sky coverage with sequentially deeper coverage in carefully identified parts of the sky, including the Galactic plane, and will be capable of informing time domain studies. This approach enables both focused and wide ranging scientific discovery through the coupling of deeper narrower tiers with increasing sky coverage at shallower depths, addressing key science issues and providing a statistical interpretational framework. Such an approach provides both astronomers and the citizen scientist with information for every accessible point of the radio sky, while simultaneously addressing fundamental questions about the nature and evolution of astrophysical objects.VLASS will follow the evolution of galaxies and their central black hole engines, measure the strength and topology of cosmic magnetic fields, unveil hidden explosions throughout the Universe, and chart our galaxy for stellar remnants and ionized bubbles. Multi-wavelength communities studying rare objects, the Galaxy, radio transients, or galaxy evolution out to the peak of the cosmic star formation rate density will equally benefit from VLASS.Early drafts of the VLASS proposal are available at the VLASS website (https://science.nrao.edu/science/surveys/vlass/vlass), and the final proposal will be posted in early January 2015 for community comment before undergoing review in March 2015. Upon approval, VLASS would then be on schedule to start observing in 2016.

  12. Expanding protein universe and its origin from the biological Big Bang.

    PubMed

    Dokholyan, Nikolay V; Shakhnovich, Boris; Shakhnovich, Eugene I

    2002-10-29

    The bottom-up approach to understanding the evolution of organisms is by studying molecular evolution. With the large number of protein structures identified in the past decades, we have discovered peculiar patterns that nature imprints on protein structural space in the course of evolution. In particular, we have discovered that the universe of protein structures is organized hierarchically into a scale-free network. By understanding the cause of these patterns, we attempt to glance at the very origin of life.

  13. When should we expect early bursts of trait evolution in comparative data? Predictions from an evolutionary food web model.

    PubMed

    Ingram, T; Harmon, L J; Shurin, J B

    2012-09-01

    Conceptual models of adaptive radiation predict that competitive interactions among species will result in an early burst of speciation and trait evolution followed by a slowdown in diversification rates. Empirical studies often show early accumulation of lineages in phylogenetic trees, but usually fail to detect early bursts of phenotypic evolution. We use an evolutionary simulation model to assemble food webs through adaptive radiation, and examine patterns in the resulting phylogenetic trees and species' traits (body size and trophic position). We find that when foraging trade-offs result in food webs where all species occupy integer trophic levels, lineage diversity and trait disparity are concentrated early in the tree, consistent with the early burst model. In contrast, in food webs in which many omnivorous species feed at multiple trophic levels, high levels of turnover of species' identities and traits tend to eliminate the early burst signal. These results suggest testable predictions about how the niche structure of ecological communities may be reflected by macroevolutionary patterns. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  14. Cultural Evolution and SETI

    NASA Astrophysics Data System (ADS)

    Dick, S. J.

    2009-12-01

    The Drake Equation for the number of radio communicative technological civilizations in the Galaxy encompasses three components of cosmic evolution: astronomical, biological and cultural. Of these three, cultural evolution totally dominates in terms of the rapidity of its effects. Yet, SETI scientists do not take cultural evolution into account, perhaps for understandable reasons, since cultural evolution is not well-understood even on Earth and is unpredictable in its outcome. But the one certainty for technical civilizations billions, millions, or even thousands of years older than ours is that they will have undergone cultural evolution. Cultural evolution potentially takes place in many directions, but this paper argues that its central driving force is the maintenance, improvement and perpetuation of knowledge and intelligence, and that to the extent intelligence can be improved, it will be improved. Applying this principle to life in the universe, extraterrestrials will have sought the best way to improve their intelligence. One possibility is that they may have long ago advanced beyond flesh-and-blood to artificial intelligence, constituting a postbiological universe. Although this subject has been broached, it has not been given the attention it is due from its foundation in cultural evolution. Nor has the idea of a postbiological universe been carried to its logical conclusion, including a careful analysis of the implications for SETI. SETI scientists, social scientists, and experts in AI should consider the strengths and weaknesses of this new paradigm.

  15. Unitary evolution of the quantum Universe with a Brown-Kuchař dust

    NASA Astrophysics Data System (ADS)

    Maeda, Hideki

    2015-12-01

    We study the time evolution of a wave function for the spatially flat Friedmann-Lemaître-Robertson-Walker Universe governed by the Wheeler-DeWitt equation in both analytical and numerical methods. We consider a Brown-Kuchař dust as a matter field in order to introduce a ‘clock’ in quantum cosmology and adopt the Laplace-Beltrami operator-ordering. The Hamiltonian operator admits an infinite number of self-adjoint extensions corresponding to a one-parameter family of boundary conditions at the origin in the minisuperspace. For any value of the extension parameter in the boundary condition, the evolution of a wave function is unitary and the classical initial singularity is avoided and replaced by the big bounce in the quantum system. Exact wave functions show that the expectation value of the spatial volume of the Universe obeys the classical-time evolution in the late time but its variance diverges.

  16. African Language Instruction at the University of Wisconsin: A HEA Title VI-Funded Program.

    ERIC Educational Resources Information Center

    Kuntz, Patricia S.

    This paper describes the evolution of African language instruction at the University of Wisconsin, examining how faculty and staff have utilized state and federal funding to promote the national capacity in African language proficiency. Six sections describe the program's evolution: "Language Instruction at Wisconsin"; "Origins of…

  17. Intellectual Initiatives at a Research University: Origins, Evolutions, and Challenges.

    ERIC Educational Resources Information Center

    Frost, Susan H.; Jean, Paul M.; Teodorescu, Daniel; Brown, Amy B.

    This qualitative case study explored the origins, evolutions, and challenges of 12 cross-disciplinary intellectual initiatives at 1 research university. Researchers conducted open-ended interviews with leaders of the 12 initiatives and used program literature to support the data gathered from the interviews. The study found that key factors such…

  18. Educational Entrepreneurism in Higher Education: A Comparative Case Study of Two Academic Centers within One Land-Grant University

    ERIC Educational Resources Information Center

    Wilcox, Lori

    2009-01-01

    This research explored the relationship of educational entrepreneurism and organizational culture in the creation and evolution of academic centers within one Midwestern land-grant university facing resource constraints. Particular attention was given to: (a) synthesizing current entrepreneurial and organizational culture and evolution theory as…

  19. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  20. Second Symposium on Chemical Evolution and the Origin of Life

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L. (Editor); model. (Editor)

    1986-01-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  1. Second Symposium on Chemical Evolution and the Origin of Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devincenzi, D.L.; Dufour, P.A.

    1986-05-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  2. GALAXY ZOO: THE FUNDAMENTALLY DIFFERENT CO-EVOLUTION OF SUPERMASSIVE BLACK HOLES AND THEIR EARLY- AND LATE-TYPE HOST GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schawinski, Kevin; Urry, C. Megan; Virani, Shanil

    We use data from the Sloan Digital Sky Survey and visual classifications of morphology from the Galaxy Zoo project to study black hole growth in the nearby universe (z < 0.05) and to break down the active galactic nucleus (AGN) host galaxy population by color, stellar mass, and morphology. We find that the black hole growth at luminosities L[O{sub III}]>10{sup 40} erg s{sup -1} in early- and late-type galaxies is fundamentally different. AGN host galaxies as a population have a broad range of stellar masses (10{sup 10}-10{sup 11} M{sub sun}), reside in the green valley of the color-mass diagram andmore » their central black holes have median masses around 10{sup 6.5} M{sub sun}. However, by comparing early- and late-type AGN host galaxies to their non-active counterparts, we find several key differences: in early-type galaxies, it is preferentially the galaxies with the least massive black holes that are growing, while in late-type galaxies, it is preferentially the most massive black holes that are growing. The duty cycle of AGNs in early-type galaxies is strongly peaked in the green valley below the low-mass end (10{sup 10} M{sub sun}) of the red sequence at stellar masses where there is a steady supply of blue cloud progenitors. The duty cycle of AGNs in late-type galaxies on the other hand peaks in massive (10{sup 11} M{sub sun}) green and red late-types which generally do not have a corresponding blue cloud population of similar mass. At high-Eddington ratios (L/L{sub Edd}>0.1), the only population with a substantial fraction of AGNs are the low-mass green valley early-type galaxies. Finally, the Milky Way likely resides in the 'sweet spot' on the color-mass diagram where the AGN duty cycle of late-type galaxies is highest. We discuss the implications of these results for our understanding of the role of AGNs in the evolution of galaxies.« less

  3. Understanding Sarason's concepts of school cultures and change: joining a community in school improvement efforts.

    PubMed

    Lorion, Raymond P

    2011-12-01

    This paper describes an evolving transformative partnership between a large comprehensive university, an urban school system and a predominantly African-American, low-income neighborhood. The partnership's originating intent was to apply an array of university, civic and local resources to improve the academic performance of a neighborhood's schools and the health, welfare and economic well-being of its residents. The extent to which that partnership would precipitate transactional (Sameroff and Fiese, Handbook of early childhood intervention, Cambridge University Press, Cambridge, pp. 119-149 in 1990) synergies among the partners was unanticipated; the long-term implications for each of the partners of such unfamiliar interactional processes remain unclear but are being systematically monitored over time. Evident at this point, however, it that a process has been initiated that has impacted how the university community, the local public school system, city government and the target neighborhood relate to each other, collaborate with each other and are changing each other. The pace of that process has varied over the years and challenged each partners' expectations and assumptions about the nature and consequences of their involvement. With time and perseverance, however, it appears that all are moving toward a sense of mutual learning and trust and toward extending to each other the benefit of the doubt. This paper discusses the evolution of that process and its implications for university-school-community collaborations.

  4. Cosmology in time asymmetric extensions of general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leon, Genly; Saridakis, Emmanuel N., E-mail: genly.leon@ucv.cl, E-mail: Emmanuel_Saridakis@baylor.edu

    We investigate the cosmological behavior in a universe governed by time asymmetric extensions of general relativity, which is a novel modified gravity based on the addition of new, time-asymmetric, terms on the Hamiltonian framework, in a way that the algebra of constraints and local physics remain unchanged. Nevertheless, at cosmological scales these new terms can have significant effects that can alter the universe evolution, both at early and late times, and the freedom in the choice of the involved modification function makes the scenario able to produce a huge class of cosmological behaviors. For basic ansatzes of modification, we performmore » a detailed dynamical analysis, extracting the stable late-time solutions. Amongst others, we find that the universe can result in dark-energy dominated, accelerating solutions, even in the absence of an explicit cosmological constant, in which the dark energy can be quintessence-like, phantom-like, or behave as an effective cosmological constant. Moreover, it can result to matter-domination, or to a Big Rip, or experience the sequence from matter to dark energy domination. Additionally, in the case of closed curvature, the universe may experience a cosmological bounce or turnaround, or even cyclic behavior. Finally, these scenarios can easily satisfy the observational and phenomenological requirements. Hence, time asymmetric cosmology can be a good candidate for the description of the universe.« less

  5. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?

    PubMed Central

    Koonin, Eugene V

    2006-01-01

    Background Ever since the discovery of 'genes in pieces' and mRNA splicing in eukaryotes, origin and evolution of spliceosomal introns have been considered within the conceptual framework of the 'introns early' versus 'introns late' debate. The 'introns early' hypothesis, which is closely linked to the so-called exon theory of gene evolution, posits that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. Under this scenario, the absence of spliceosomal introns in prokaryotes is considered to be a result of "genome streamlining". The 'introns late' hypothesis counters that spliceosomal introns emerged only in eukaryotes, and moreover, have been inserted into protein-coding genes continuously throughout the evolution of eukaryotes. Beyond the formal dilemma, the more substantial side of this debate has to do with possible roles of introns in the evolution of eukaryotes. Results I argue that several lines of evidence now suggest a coherent solution to the introns-early versus introns-late debate, and the emerging picture of intron evolution integrates aspects of both views although, formally, there seems to be no support for the original version of introns-early. Firstly, there is growing evidence that spliceosomal introns evolved from group II self-splicing introns which are present, usually, in small numbers, in many bacteria, and probably, moved into the evolving eukaryotic genome from the α-proteobacterial progenitor of the mitochondria. Secondly, the concept of a primordial pool of 'virus-like' genetic elements implies that self-splicing introns are among the most ancient genetic entities. Thirdly, reconstructions of the ancestral state of eukaryotic genes suggest that the last common ancestor of extant eukaryotes had an intron-rich genome. Thus, it appears that ancestors of spliceosomal introns, indeed, have existed since the earliest stages of life's evolution, in a formal agreement with the introns-early scenario. However, there is no evidence that these ancient introns ever became widespread before the emergence of eukaryotes, hence, the central tenet of introns-early, the role of introns in early evolution of proteins, has no support. However, the demonstration that numerous introns invaded eukaryotic genes at the outset of eukaryotic evolution and that subsequent intron gain has been limited in many eukaryotic lineages implicates introns as an ancestral feature of eukaryotic genomes and refutes radical versions of introns-late. Perhaps, most importantly, I argue that the intron invasion triggered other pivotal events of eukaryogenesis, including the emergence of the spliceosome, the nucleus, the linear chromosomes, the telomerase, and the ubiquitin signaling system. This concept of eukaryogenesis, in a sense, revives some tenets of the exon hypothesis, by assigning to introns crucial roles in eukaryotic evolutionary innovation. Conclusion The scenario of the origin and evolution of introns that is best compatible with the results of comparative genomics and theoretical considerations goes as follows: self-splicing introns since the earliest stages of life's evolution – numerous spliceosomal introns invading genes of the emerging eukaryote during eukaryogenesis – subsequent lineage-specific loss and gain of introns. The intron invasion, probably, spawned by the mitochondrial endosymbiont, might have critically contributed to the emergence of the principal features of the eukaryotic cell. This scenario combines aspects of the introns-early and introns-late views. Reviewers this article was reviewed by W. Ford Doolittle, James Darnell (nominated by W. Ford Doolittle), William Martin, and Anthony Poole. PMID:16907971

  6. Oxygen and Early Animal Evolution

    NASA Astrophysics Data System (ADS)

    Xiao, S.

    2012-12-01

    It is often hypothesized that the rise of animals was triggered by an increase in O2 levels in the atmosphere and oceans. However, this hypothesis is remarkably difficult to test, because the timing of animal divergences is poorly resolved, the physiology of early animals is often unknown, estimates of past pO2 levels come with large error bars, and causal relationships between oxygenation and animal evolution are difficult to establish. Nonetheless, existing phylogenetic, paleontological, and geochemical data indicate that the evolution of macroscopic animals and motile macrometazoans with energetically expensive lifestyles may be temporally coupled with ocean oxygenation events in the Ediacaran Period. Thus, it is plausible that ocean oxygenation may have been a limiting factor in the early evolution of macroscopic, complex, and metabolically aggressive animals (particularly bilaterian animals). However, ocean oxygenation and animal evolution were likely engaged in two-way interactions: Ediacaran oxygenation may have initially lifted a physiological barrier for the evolution of animal size, motility, and active lifestyles, but subsequent animal diversification in the Paleozoic may have also changed oceanic redox structures. Viewed in a broader context, the early evolutionary history of animals was contingent upon a series of events, including genetic preparation (developmental genetics), environmental facilitation (oceanic oxygenation), and ecological escalation (Cambrian explosion), but the rise of animals to ecological importance also had important geobiological impacts on oceanic redox structures, sedimentary fabrics, and global geochemical cycles.

  7. Isocurvature cold dark matter fluctuations

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Bond, J. R.

    1986-01-01

    According to Preskill et al. (1983), the axion field represents a particularly attractive candidate for the dark matter in the universe. In many respects it behaves like other forms of cold dark matter, such as massive gravitinos, photinos, and monopoles. It is, however, a pseudo-Goldstone boson of very low mass, and it is only because of rapid coherent oscillations of the field that it can dominate the mass density of the universe. In the present paper it is assumed that the isocurvature mode is dominant. The linear evolution calculations conducted do not depend upon specific details of particle physics. For this reason, the conducted discussion is applicable to any cold dark matter model with isocurvature perturbations. The results of the study lead to the conclusion that scale-invariant isocurvature perturbations do not seem an attractive possibility for the origin of large-scale structure. The findings strengthen the review that primordial adiabatic perturbations were the dominant fluctuations in the early stages of the Big Bang.

  8. Quantum Yang-Mills Dark Energy

    NASA Astrophysics Data System (ADS)

    Pasechnik, Roman

    2016-02-01

    In this short review, I discuss basic qualitative characteristics of quantum non-Abelian gauge dynamics in the non-stationary background of the expanding Universe in the framework of the standard Einstein--Yang--Mills formulation. A brief outlook of existing studies of cosmological Yang--Mills fields and their properties will be given. Quantum effects have a profound impact on the gauge field-driven cosmological evolution. In particular, a dynamical formation of the spatially-homogeneous and isotropic gauge field condensate may be responsible for both early and late-time acceleration, as well as for dynamical compensation of non-perturbative quantum vacua contributions to the ground state of the Universe. The main properties of such a condensate in the effective QCD theory at the flat Friedmann--Lema\\'itre--Robertson--Walker (FLRW) background will be discussed within and beyond perturbation theory. Finally, a phenomenologically consistent dark energy can be induced dynamically as a remnant of the QCD vacua compensation arising from leading-order graviton-mediated corrections to the QCD ground state.

  9. Solitosynthesis: Cosmological evolution of non-topological solitons

    NASA Technical Reports Server (NTRS)

    Griest, Kim; Kolb, Edward W.

    1989-01-01

    The thermal creation, fusion, evaporation, and destruction of non-topological solitons (NTS) after a phase transition in the early universe is considered. By defining and following NTS statistical equilibrium and departures from it, and depending on particle physics parameters, one of three possible scenarios occurs. If reaction rates are high enough, a period of equilibrium occurs and relic abundances are determined by the freeze-out temperature. Equilibrium first drives most NTS's into their constituents (free phi particles) and then causes rapid fusion into large NTS's. If freeze-out occurs during the first phase, the NTS's are almost entirely destroyed, while if it occurs during the second phase, solitosynthesis occurs and NTS's may be cosmically relevant. For slow reaction rates the NTS's are born frozen out and have the abundance determined by the phase transition. Analytic approximations for determining the abundances are developed, and tested by numerically integrating a reaction network in an expanding universe. Unfortunately, for most of the parameter space considered, solito-destruction/evaporation occurs.

  10. Statistics of gravitational lenses - The uncertainties

    NASA Technical Reports Server (NTRS)

    Mao, Shude

    1991-01-01

    The assumptions in the analysis of gravitational lensing statistics are examined. Special emphasis is given to the uncertainties in the theoretical predictions. It is shown that a simple redshift cutoff model, which may result from galaxy evolution, can significantly reduce the lensing probability and explain the large mean separation of images in observed gravitational lenses. This effect may affect the constraint on the contribution of the cosmological constant to producing a flat universe from the number counts of the observed lenses. For the Omega(0) = 1 (filled beam) model, the lensing probability of early-type galaxies with finite core radii is reduced roughly by a factor of 2 for high-redshift quasars as compared with the corresponding singular isothermal sphere model. The finite core radius effect is about 20 percent for a lambda-dominated flat universe. It is also shown that the most recent galaxy luminosity function gives lensing probabilities that are smaller than previously estimated roughly by a factor of 3.

  11. Detection of polarization in the cosmic microwave background using DASI. Degree Angular Scale Interferometer.

    PubMed

    Kovac, J M; Leitch, E M; Pryke, C; Carlstrom, J E; Halverson, N W; Holzapfel, W L

    The past several years have seen the emergence of a standard cosmological model, in which small temperature differences in the cosmic microwave background (CMB) radiation on angular scales of the order of a degree are understood to arise from acoustic oscillations in the hot plasma of the early Universe, arising from primordial density fluctuations. Within the context of this model, recent measurements of the temperature fluctuations have led to profound conclusions about the origin, evolution and composition of the Universe. Using the measured temperature fluctuations, the theoretical framework predicts the level of polarization of the CMB with essentially no free parameters. Therefore, a measurement of the polarization is a critical test of the theory and thus of the validity of the cosmological parameters derived from the CMB measurements. Here we report the detection of polarization of the CMB with the Degree Angular Scale Interferometer (DASI). The polarization is deteced with high confidence, and its level and spatial distribution are in excellent agreement with the predictions of the standard theory.

  12. The search for molecular gas in the most distant submillimetre galaxy at z=4.76

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Weiss, Axel; De Breuck, Carlos; Walter, Fabian; Edge, Alastair; Kovacs, Attila; Ivison, Rob; Huynh, Minh; Smail, Ian; Schinnerer, Eva; Greve, Thomas; Wardlow, Julie

    2009-07-01

    We propose to use ATCA to measure the CO(2-1) and CO(5-4) emission in the highest redshift submm-selected galaxy (SMG) known: LESS J033229 at z=4.76. These observations will measure the gas mass and dynamics of this far-infrared luminous galaxy at a time when the Universe was only 1 Gyr old. In conjunction with similar observations of three z~4-4.5 SMG, these observations will constrain the potential evolution of the star formation and dynamical mass of these high redshift, but relatively typical, young galaxies and their potential role as the precursor population to the red-and-dead galaxies seen at z~3, as well as allowing us to contrast the physical state of the gas reservoirs in these early galaxies with the well-studied and more numerous SMG population at z~2. These observations will provide a sneak-preview of the science which ALMA will provide on the formation of the earliest massive galaxies in the Universe.

  13. The Cycle of Dust in the Milky Ways: Clues from the High-Redshift and the Local Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2008-01-01

    Massive amount of dust has been observed at high-redshifts when the universe was a mere 900 Myr old. The formation and evolution of dust is there dominated by massive stars and interstellar processes. In contrast, in the local universe lower mass stars, predominantly 2-5 Msun AGB stars, play the dominant role in the production of interstellar dust. These two extreme environments offer fascinating clues about the evolution of dust in the Milky Way galaxy

  14. FRW cosmological models in Brans-Dicke theory of gravity with variable q and dynamical \\varLambda-term

    NASA Astrophysics Data System (ADS)

    Chand, Avtar; Mishra, R. K.; Pradhan, Anirudh

    2016-02-01

    Exact solution of modified Einstein's field equations are considered within the scope of spatially homogeneous and isotropic Fraidmann-Robertson-Walker (FRW) space-time filled with perfect fluid in the frame work of Brans-Dicke scalar-tensor theory of gravity. In this paper we have investigated the flat, open and closed FRW models and the effect of dynamic cosmological term on the evolution of the universe. Two types of FRW cosmological models are obtained by setting the power law between the scalar field φ and the scale factor a and deceleration parameter (DP) q as a time dependent. The concept of time dependent DP with some proper assumptions yield two type of the average scale factors (i) a(t)=[sinh(α t)]^{1/n} and (ii) a(t)=[t^{α}et]^{1/n}, α and n≠ 0 are arbitrary constants. In case (i), for 0 < n ≤ 1, it generates a class of accelerating models while for n > 1, the models of the universe exhibit phase transition from early decelerating to present accelerating phase and the transition redshift zt has been calculated and found to be in good agreement with the results from recent astrophysical observations. In case (ii), for n ≥ 2 and α = 1, we obtain a class of transit models of the universe from early decelerating to present accelerating phase. Taking into consideration the observational data, we conclude that the cosmological constant behaves as a positive decreasing function of time. The physical and geometric properties of the models are also discussed with the help of graphical presentations.

  15. Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe

    NASA Astrophysics Data System (ADS)

    Vogelsberger, Mark; Genel, Shy; Springel, Volker; Torrey, Paul; Sijacki, Debora; Xu, Dandan; Snyder, Greg; Nelson, Dylan; Hernquist, Lars

    2014-10-01

    We introduce the Illustris Project, a series of large-scale hydrodynamical simulations of galaxy formation. The highest resolution simulation, Illustris-1, covers a volume of (106.5 Mpc)3, has a dark mass resolution of 6.26 × 106 M⊙, and an initial baryonic matter mass resolution of 1.26 × 106 M⊙. At z = 0 gravitational forces are softened on scales of 710 pc, and the smallest hydrodynamical gas cells have an extent of 48 pc. We follow the dynamical evolution of 2 × 18203 resolution elements and in addition passively evolve 18203 Monte Carlo tracer particles reaching a total particle count of more than 18 billion. The galaxy formation model includes: primordial and metal-line cooling with self-shielding corrections, stellar evolution, stellar feedback, gas recycling, chemical enrichment, supermassive black hole growth, and feedback from active galactic nuclei. Here we describe the simulation suite, and contrast basic predictions of our model for the present-day galaxy population with observations of the local universe. At z = 0 our simulation volume contains about 40 000 well-resolved galaxies covering a diverse range of morphologies and colours including early-type, late-type and irregular galaxies. The simulation reproduces reasonably well the cosmic star formation rate density, the galaxy luminosity function, and baryon conversion efficiency at z = 0. It also qualitatively captures the impact of galaxy environment on the red fractions of galaxies. The internal velocity structure of selected well-resolved disc galaxies obeys the stellar and baryonic Tully-Fisher relation together with flat circular velocity curves. In the well-resolved regime, the simulation reproduces the observed mix of early-type and late-type galaxies. Our model predicts a halo mass dependent impact of baryonic effects on the halo mass function and the masses of haloes caused by feedback from supernova and active galactic nuclei.

  16. Cosmic Dawn (CoDa): the First Radiation-Hydrodynamics Simulation of Reionization and Galaxy Formation in the Local Universe

    NASA Astrophysics Data System (ADS)

    Ocvirk, Pierre; Gillet, Nicolas; Shapiro, Paul R.; Aubert, Dominique; Iliev, Ilian T.; Teyssier, Romain; Yepes, Gustavo; Choi, Jun-Hwan; Sullivan, David; Knebe, Alexander; Gottlöber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda; Stranex, Timothy

    2016-12-01

    Cosmic reionization by starlight from early galaxies affected their evolution, thereby impacting reionization itself. Star formation suppression, for example, may explain the observed underabundance of Local Group dwarfs relative to N-body predictions for cold dark matter. Reionization modelling requires simulating volumes large enough [˜ (100 Mpc)3] to sample reionization `patchiness', while resolving millions of galaxy sources above ˜108 M⊙ combining gravitational and gas dynamics with radiative transfer. Modelling the Local Group requires initial cosmological density fluctuations pre-selected to form the well-known structures of the Local Universe today. Cosmic Dawn (`CoDa') is the first such fully coupled, radiation-hydrodynamics simulation of reionization of the Local Universe. Our new hybrid CPU-GPU code, RAMSES-CUDATON, performs hundreds of radiative transfer and ionization rate-solver timesteps on the GPUs for each hydro-gravity timestep on the CPUs. CoDa simulated (91Mpc)3 with 40963 particles and cells, to redshift 4.23, on ORNL supercomputer Titan, utilizing 8192 cores and 8192 GPUs. Global reionization ended slightly later than observed. However, a simple temporal rescaling which brings the evolution of ionized fraction into agreement with observations also reconciles ionizing flux density, cosmic star formation history, CMB electron scattering optical depth and galaxy UV luminosity function with their observed values. Photoionization heating suppressed the star formation of haloes below ˜2 × 109 M⊙, decreasing the abundance of faint galaxies around MAB1600 = [-10, -12]. For most of reionization, star formation was dominated by haloes between 1010-1011 M⊙ , so low-mass halo suppression was not reflected by a distinct feature in the global star formation history. Intergalactic filaments display sheathed structures, with hot envelopes surrounding cooler cores, but do not self-shield, unlike regions denser than 100 <ρ>.

  17. Evolution and Personal Religious Belief: Christian University Biology-Related Majors' Search for Reconciliation

    ERIC Educational Resources Information Center

    Winslow, Mark W.; Staver, John R.; Scharmann, Lawrence C.

    2011-01-01

    The goal of this study was to explore Christian biology-related majors' perceptions of conflicts between evolution and their religious beliefs. This naturalistic study utilized a case study design of 15 undergraduate biology-related majors at or recent biology-related graduates from a mid-western Christian university. The broad sources of data…

  18. Reedy Creek Cleanup: The Evolution of a University Geography Service-Learning Project

    ERIC Educational Resources Information Center

    Parece, Tammy E.; Aspaas, Helen Ruth

    2007-01-01

    Service-learning courses within a university setting help students to better understand their roles as members of civil society. This article examines the evolution of an urban stream cleanup project that has been part of a world regions geography course for six years. After connecting course goals with the current best practice literature on…

  19. Evolution and acceptability of medical applications of RFID implants among early users of technology.

    PubMed

    Smith, Alan D

    2007-01-01

    RFID as a wireless identification technology that may be combined with microchip implants have tremendous potential in today's market. Although these implants have their advantages and disadvantages, recent improvements how allowed for implants designed for humans. Focus was given to the use of RFID tags and its effects on technology and CRM through a case study on VeriChip, the only corporation to hold the rights and the patent to the implantable chip for humans, and an empirically based study on working professionals to measure perceptions by early adopters of such technology. Through hypotheses-testing procedures, it was found that although some resistance to accept microchip implants was found in several applications, especially among gender, it was totally expected that healthcare and medical record keeping activities would be universally treated in a positive light and the use of authorities (namely governmental agencies) would be equally treated in a negative light by both sexes. Future trends and recommendations are presented along with statistical results collected through personal interviews.

  20. Complex Homology and the Evolution of Nervous Systems

    PubMed Central

    Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.; Hofmann, Hans A.

    2016-01-01

    We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. PMID:26746806

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning –3.3 ≤ [Fe/H] ≤ -0.2, and obtained an upper limit for a star with [Fe/H] ∼ -3.8. Combined with the only other sample of P abundances inmore » solar-type stars in the literature, which spans a range of –1 ≤ [Fe/H] ≤ +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together.« less

  2. Biopharmaceutical Innovation System in China: System Evolution and Policy Transitions (Pre-1990s-2010s)

    PubMed Central

    Hu, Hao; Chung, Chao-Chen

    2015-01-01

    Background: This article sets up the initial discussion of the evolution of biopharmaceutical innovation in China through the perspective of sectoral innovation system (SIS). Methods: Two data sources including archival documentary data and field interviews were used in this study. Archival documentary data was collected from China Food and Drug Administration (CFDA) and Chinese National Knowledge Infrastructure (CNKI). In addition, industrial practitioners and leading researchers in academia were interviewed. Results: Biopharmaceutical in China was established through international knowledge transfer. The firms played more active role in commercializing biopharmaceutical in China though universities and research institutes were starting to interact with local firms and make contribution to biopharmaceutical industrialization. The transition of the Chinese government’s policies continuously shapes the evolution of biopharmaceutical sector. Policies have been dramatic changes before and after 1980s to encourage developing biopharmaceutical as a competitive industry for China. Conclusion: A SIS for biopharmaceutical has been shaped in China. However, currently biopharmaceutical is still a small sector in China, and for the further growth of the industry more synthetic policies should be implemented. Not only the policy supports towards the research and innovation of biopharmaceuticals in the early stage of development should be attended, but also commercialization of biopharmaceutical products in the later stage of sales. PMID:26673466

  3. The Politics of Teaching Evolution, Science Education Standards, and "Being" a Creationist

    ERIC Educational Resources Information Center

    Long, David E.

    2012-01-01

    This paper analyzes recent research conclusions regarding biology teacher attitudes toward evolution, and the variable implementation of evolution in the high schools nationwide. Berkman and Plutzer (2010. "Evolution, creationism, and the battle to control America's classrooms." New York: Cambridge University Press) conclude that due to a large…

  4. Understanding Evolution: An Evolution Website for Teachers

    ERIC Educational Resources Information Center

    Scotchmoor, Judy; Janulaw, Al

    2005-01-01

    While many states are facing challenges to the teaching of evolution in their science classrooms, the University of California Museum of Paleontology, working with the National Center for Science Education, has developed a useful web-based resource for science teachers of all grade- and experience-levels. Understanding Evolution (UE) was developed…

  5. Evolutionary Biology Digital Dissection Project: Web-Based Laboratory Learning Opportunities for Students

    ERIC Educational Resources Information Center

    Fabian, Carole Ann

    2004-01-01

    A university in Buffalo introduced its students to evolution by providing them with information on evidence of evolution, mechanisms for evolution, principles of genetics, selection, adaptation, evolution and sociobiology. This method of teaching with technology enabled students to improve and expand their learning opportunities.

  6. New Postcranial Material of the Early Caseid Casea broilii Williston, 1910 (Synapsida: Caseidae) with a Review of the Evolution of the Sacrum in Paleozoic Non-Mammalian Synapsids

    PubMed Central

    LeBlanc, Aaron R. H.; Reisz, Robert R.

    2014-01-01

    Here we use the description of a new specimen of the small caseid synapsid Casea broilii that preserves the sacral, pelvic and hind limb regions in great detail and in three dimensions, as a unique opportunity to reevaluate the early stages in the evolution of the sacrum in the lineage that led to mammals. We place this new material in the context of sacral evolution in early caseid synapsids and conclude that the transition from two to three sacral vertebrae occurred in small-bodied species, suggesting that it was not an adaptation to heavy weight bearing. Furthermore, we compare descriptions of sacral anatomy among known early synapsids, including caseids, ophiacodontids, edaphosaurids, varanopids, and sphenacodontians and review sacral evolution in early synapsids. Based on the descriptions of new species of caseids, edaphosaurids, and varanopids over the past several decades, it is clear that a sacrum consisting of three vertebrae evolved independently at least four times in synapsids during the Late Carboniferous and Early Permian. Furthermore, similarities in the morphologies of the sacral vertebrae and ribs of these early synapsids lead us to conclude that an anterior caudal vertebra had been incorporated into the sacral series convergently in these groups. Given the repeated acquisition of a three-vertebra sacrum in early synapsids and no apparent link to body size, we argue that this sacral anatomy was related to more efficient terrestrial locomotion than to increased weight bearing. PMID:25545624

  7. Open Listening: Creative Evolution in Early Childhood Settings

    ERIC Educational Resources Information Center

    Davies, Bronwyn

    2011-01-01

    This article sketches out a philosophy and practice of open listening, linking open listening to Bergson's (1998) concept of creative evolution. I draw on examples of small children at play from a variety of sources, including Reggio-Emilia-inspired preschools in Sweden. The article offers a challenge to early childhood educators to listen and to…

  8. Vestibular evidence for the evolution of aquatic behaviour in early cetaceans.

    PubMed

    Spoor, F; Bajpai, S; Hussain, S T; Kumar, K; Thewissen, J G M

    2002-05-09

    Early cetaceans evolved from terrestrial quadrupeds to obligate swimmers, a change that is traditionally studied by functional analysis of the postcranial skeleton. Here we assess the evolution of cetacean locomotor behaviour from an independent perspective by looking at the semicircular canal system, one of the main sense organs involved in neural control of locomotion. Extant cetaceans are found to be unique in that their canal arc size, corrected for body mass, is approximately three times smaller than in other mammals. This reduces the sensitivity of the canal system, most plausibly to match the fast body rotations that characterize cetacean behaviour. Eocene fossils show that the new sensory regime, incompatible with terrestrial competence, developed quickly and early in cetacean evolution, as soon as the taxa are associated with marine environments. Dedicated agile swimming of cetaceans thus appeared to have originated as a rapid and fundamental shift in locomotion rather than as the gradual transition suggested by postcranial evidence. We hypothesize that the unparalleled modification of the semicircular canal system represented a key 'point of no return' event in early cetacean evolution, leading to full independence from life on land.

  9. Hubble Looks in on a Galactic Nursery

    NASA Image and Video Library

    2017-12-08

    This dramatic image shows the NASA/ESA Hubble Space Telescope’s view of dwarf galaxy known as NGC 1140, which lies 60 million light-years away in the constellation of Eridanus. As can be seen in this image NGC 1140 has an irregular form, much like the Large Magellanic Cloud — a small galaxy that orbits the Milky Way. This small galaxy is undergoing what is known as a starburst. Despite being almost ten times smaller than the Milky Way it is creating stars at about the same rate, with the equivalent of one star the size of our sun being created per year. This is clearly visible in the image, which shows the galaxy illuminated by bright, blue-white, young stars. Galaxies like NGC 1140 — small, starbursting and containing large amounts of primordial gas with far fewer elements heavier than hydrogen and helium than are present in our sun — are of particular interest to astronomers. Their composition makes them similar to the intensely star-forming galaxies in the early Universe. And these early Universe galaxies were the building blocks of present-day large galaxies like our galaxy, the Milky Way. But, as they are so far away these early Universe galaxies are harder to study so these closer starbursting galaxies are a good substitute for learning more about galaxy evolution. The vigorous star formation will have a very destructive effect on this small dwarf galaxy in its future. When the larger stars in the galaxy die, and explode as supernovae, gas is blown into space and may easily escape the gravitational pull of the galaxy. The ejection of gas from the galaxy means it is throwing out its potential for future stars as this gas is one of the building blocks of star formation. NGC 1140’s starburst cannot last for long. Image credit: ESA/Hubble & NASA

  10. Charting the Parameter Space of the 21-cm Power Spectrum

    NASA Astrophysics Data System (ADS)

    Cohen, Aviad; Fialkov, Anastasia; Barkana, Rennan

    2018-05-01

    The high-redshift 21-cm signal of neutral hydrogen is expected to be observed within the next decade and will reveal epochs of cosmic evolution that have been previously inaccessible. Due to the lack of observations, many of the astrophysical processes that took place at early times are poorly constrained. In recent work we explored the astrophysical parameter space and the resulting large variety of possible global (sky-averaged) 21-cm signals. Here we extend our analysis to the fluctuations in the 21-cm signal, accounting for those introduced by density and velocity, Lyα radiation, X-ray heating, and ionization. While the radiation sources are usually highlighted, we find that in many cases the density fluctuations play a significant role at intermediate redshifts. Using both the power spectrum and its slope, we show that properties of high-redshift sources can be extracted from the observable features of the fluctuation pattern. For instance, the peak amplitude of ionization fluctuations can be used to estimate whether heating occurred early or late and, in the early case, to also deduce the cosmic mean ionized fraction at that time. The slope of the power spectrum has a more universal redshift evolution than the power spectrum itself and can thus be used more easily as a tracer of high-redshift astrophysics. Its peaks can be used, for example, to estimate the redshift of the Lyα coupling transition and the redshift of the heating transition (and the mean gas temperature at that time). We also show that a tight correlation is predicted between features of the power spectrum and of the global signal, potentially yielding important consistency checks.

  11. Space Station evolution

    NASA Technical Reports Server (NTRS)

    Black, David C.

    1987-01-01

    The Space Station that will be launched and made operational in the early 1990s should be viewed as a beginning, a facility that will evolve with the passing of time to better meet the needs and requirements of a diverse set of users. Evolution takes several forms, ranging from simple growth through addition of infrastructure elements to upgrading of system capability through inclusion of advanced technologies. Much of the early considerations of Space Station evolution focused on physical growth. However, a series of recent workshops have revealed that the more likely mode of Space Station evolution will not be through growth but rather through a process known as 'branching'.

  12. Perspective on cells: evolution of cytopathology and the University of Pennsylvania, Philadelphia PA.

    PubMed

    Jhala, Nirag; Gupta, Prabodh K

    2015-02-01

    This document briefly captures the development of cytopathology at the Hospital of the University of Pennsylvania (HUP) in Philadelphia PA; the first medical school and the teaching hospital in the Country. Literature suggests that cells from malignancy have been described since early 1830s. While earlier accounts are not available, in the year 1895, 9th edition of the book written by Professor of Pathology, Dr. Tyson of the University of Pennsylvania describes urothelial cell morphology. It is also noted that both gynecologic as well as non-gynecologic cytopathology is routinely being practiced at this Institution since 1949. Following the administrative consolidation of the department of pathology and laboratory medicine, a separate section of cytopathology within the department was established. Growing academic and clinical enterprises of HUP have resulted in establishment of Ruth and Raymond Perelman Center for Advanced Medicine (PeCAM) in the year 2010. Currently, the section has seven full time cytopathologists. It has patented a cart for onsite cytopathology interpretation, offers state of the art cytopathology services including onsite interpretation and reporting, point of care specimen triaging, molecular cytopathology testing as well as hosts telecytopathology systems within the Health System and training program. © 2014 Wiley Periodicals, Inc.

  13. High-Resolution Observations of a Binary Black Hole Candidate

    NASA Astrophysics Data System (ADS)

    Tsai, Chao-Wei; Phillips, Chris; Norris, Ray; Jarrett, Thomas; Emonts, Bjorn; Cluver, Michelle; Eisenhardt, Peter; Stern, Daniel; Assef, Roberto

    2012-10-01

    We propose a 12-hour 2.3 GHz continuum Long Baseline Array (LBA) observation of WISE J2332-5056, a newly discovered supermassive black hole (SMBH) merger candidate that is located in the nearby universe (z = 0.3447). Our recently acquired 9 GHz ATCA map shows unusual radio morphology: a one-sided, smaller (and likely younger) FR-I jet perpendicular to a larger, Doppler-boosted FR-II jet. Follow-up Gemini-S/GMOS spectroscopy of this WISE-selected radio galaxy reveals broad emission lines blue-shifted by > 3,500 km/s with respect to the narrow lines and host galaxy, hallmarks of a dual AGN system. Combined, the optical spectroscopy and radio morphology of this object are strongly suggestive of a black hole merger system. Even in the local universe these systems are extremely difficult to identify; yet the process of supermassive blackhole growth is vital toward understanding galaxy evolution from the early to the current universe. Moreover, nearby merging SMBHs may serve as outstanding targets for gravitational wave studies. The proposed high resolution LBA map, reaching 50 pc resolution at the source redshift will allow us to investigate the SMBH merger scenario hypothesis.

  14. Astrobiology, space and the future age of discovery.

    PubMed

    Blumberg, Baruch S

    2011-02-13

    Astrobiology is the study of the origins, evolution, distribution and future of life in the Universe, and specifically seeks to understand the origin of life and to test the hypothesis that life exists elsewhere than on Earth. There is a general mathematics, physics and chemistry; that is, scientific laws that obtain on Earth also do so elsewhere. Is there a general biology? Is the Universe life-rich or is Earth an isolated island of biology? Exploration in the Age of Enlightenment required the collection of data in unexplored regions and the use of induction and empiricism to derive models and natural laws. The current search for extra-terrestrial life has a similar goal, but with a much greater amount of data and with computers to help with management, correlations, pattern recognition and analysis. There are 60 active space missions, many of them aiding in the search for life. There is not a universally accepted definition of life, but there are a series of characteristics that can aid in the identification of life elsewhere. The study of locations on Earth with similarities to early Mars and other space objects could provide a model that can be used in the search for extra-terrestrial life.

  15. A supernova origin for dust in a high-redshift quasar.

    PubMed

    Maiolino, R; Schneider, R; Oliva, E; Bianchi, S; Ferrara, A; Mannucci, F; Pedani, M; Sogorb, M Roca

    2004-09-30

    Interstellar dust plays a crucial role in the evolution of the Universe by assisting the formation of molecules, by triggering the formation of the first low-mass stars, and by absorbing stellar ultraviolet-optical light and subsequently re-emitting it at infrared/millimetre wavelengths. Dust is thought to be produced predominantly in the envelopes of evolved (age >1 Gyr), low-mass stars. This picture has, however, recently been brought into question by the discovery of large masses of dust in the host galaxies of quasars at redshift z > 6, when the age of the Universe was less than 1 Gyr. Theoretical studies, corroborated by observations of nearby supernova remnants, have suggested that supernovae provide a fast and efficient dust formation environment in the early Universe. Here we report infrared observations of a quasar at redshift 6.2, which are used to obtain directly its dust extinction curve. We then show that such a curve is in excellent agreement with supernova dust models. This result demonstrates a supernova origin for dust in this high-redshift quasar, from which we infer that most of the dust at high redshifts probably has the same origin.

  16. Cosmic acceleration in a dust only universe via energy-momentum powered gravity

    NASA Astrophysics Data System (ADS)

    Akarsu, Özgür; Katırcı, Nihan; Kumar, Suresh

    2018-01-01

    We propose a modified theory of gravitation constructed by the addition of the term f (Tμ νTμ ν) to the Einstein-Hilbert action, and elaborate a particular case f (Tμ νTμ ν)=α (Tμ νTμ ν)η, where α and η are real constants, dubbed energy-momentum powered gravity (EMPG). We search for viable cosmologies arising from EMPG, especially in the context of the late-time accelerated expansion of the Universe. We investigate the ranges of the EMPG parameters (α ,η ) on theoretical as well as observational grounds leading to the late-time acceleration of the Universe with pressureless matter only, while keeping the successes of standard general relativity at early times. We find that η =0 corresponds to the Λ CDM model, whereas η ≠0 leads to a w CDM -type model. However, the underlying physics of the EMPG model is entirely different in the sense that the energy in the EMPG Universe is sourced by pressureless matter only. Moreover, the energy of the pressureless matter is not conserved, namely, in general it does not dilute as ρ ∝a-3 with the expansion of the Universe. Finally, we constrain the parameters of an EMPG-based cosmology with a recent compilation of 28 Hubble parameter measurements, and find that this model describes an evolution of the Universe similar to that in the Λ CDM model. We briefly discuss that EMPG can be unified with Starobinsky gravity to describe the complete history of the Universe including the inflationary era.

  17. The Multi-Universe Cosmos. The Origin and Fate of our Universe

    NASA Astrophysics Data System (ADS)

    Velan, Karel

    18 billion yers ago our Universe, one of many in the Cosmos, emerged from a hot, dense fireball of matter and energy created in the 4-dimensional cosmic space-time from virtual particles receiving their rest mass from a powerful primordial radiation field, the missing link to any viable theory of creation. The cloud of elementary particles and radiation collapsed by gravity into a fireball until its trappped thermal radiation caused a titanic explosion that initiated the expansion and evolution of ours universe. As the universe expanded and cooled it spawned galaxies, stars, planets and life. Proven laws of physics, observationsl data and mathematical computations support the new cosmological model which proposes a large number of universes in the cosmos in varying stages of evolution

  18. Outcomes for Students on a Fast Track to College: Early College Entrance Programs at the University of Washington

    ERIC Educational Resources Information Center

    Hertzog, Nancy B.; Chung, Rachel U.

    2015-01-01

    Radical acceleration from middle school to university is an unusual option in the United States. The Early Entrance Program and the University of Washington (UW) Academy for Young Scholars housed in the Halbert and Nancy Robinson Center for Young Scholars are two of only 21 early university entrance programs offered in the United States. Due to…

  19. Evolution of scaling emergence in large-scale spatial epidemic spreading.

    PubMed

    Wang, Lin; Li, Xiang; Zhang, Yi-Qing; Zhang, Yan; Zhang, Kan

    2011-01-01

    Zipf's law and Heaps' law are two representatives of the scaling concepts, which play a significant role in the study of complexity science. The coexistence of the Zipf's law and the Heaps' law motivates different understandings on the dependence between these two scalings, which has still hardly been clarified. In this article, we observe an evolution process of the scalings: the Zipf's law and the Heaps' law are naturally shaped to coexist at the initial time, while the crossover comes with the emergence of their inconsistency at the larger time before reaching a stable state, where the Heaps' law still exists with the disappearance of strict Zipf's law. Such findings are illustrated with a scenario of large-scale spatial epidemic spreading, and the empirical results of pandemic disease support a universal analysis of the relation between the two laws regardless of the biological details of disease. Employing the United States domestic air transportation and demographic data to construct a metapopulation model for simulating the pandemic spread at the U.S. country level, we uncover that the broad heterogeneity of the infrastructure plays a key role in the evolution of scaling emergence. The analyses of large-scale spatial epidemic spreading help understand the temporal evolution of scalings, indicating the coexistence of the Zipf's law and the Heaps' law depends on the collective dynamics of epidemic processes, and the heterogeneity of epidemic spread indicates the significance of performing targeted containment strategies at the early time of a pandemic disease.

  20. The origin of the bifurcating style in Asteraceae (Compositae).

    PubMed

    Katinas, Liliana; Hernández, Marcelo P; Arambarri, Ana M; Funk, Vicki A

    2016-05-01

    The plant family Asteraceae (Compositae) exhibits remarkable morphological variation in the styles of its members. Lack of studies on the styles of the sister families to Asteraceae, Goodeniaceae and Calyceraceae, obscures our understanding of the origin and evolution of this reproductive feature in these groups. The aim of this work was to perform a comparative study of style morphology and to discuss the relevance of important features in the evolution of Asteraceae and its sister families. The histochemistry, venation and general morphology of the styles of members of Goodeniaceae, Calyceraceae and early branching lineages of Asteraceae were analysed and put in a phylogenetic framework to discuss the relevance of style features in the evolution of these families. The location of lipophilic substances allowed differentiation of receptive from non-receptive style papillae, and the style venation in Goodeniaceae and Calyceraceae proved to be distinctive. There were several stages of style evolution from Goodeniaceae to Asteraceae involving connation and elongation of veins, development of bilobation from an initially cup-shaped style, and a redistribution of the receptive and non-receptive papillae. These developments resulted in bifurcation in the styles of Asteraceae, with each branch face having a different function, and it is suggested here as a mechanism that promoted outcrossing, which in turn led to the great diversification in the family. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. DPTEdb, an integrative database of transposable elements in dioecious plants.

    PubMed

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gu, Lian-Feng; Gao, Wu-Jun

    2016-01-01

    Dioecious plants usually harbor 'young' sex chromosomes, providing an opportunity to study the early stages of sex chromosome evolution. Transposable elements (TEs) are mobile DNA elements frequently found in plants and are suggested to play important roles in plant sex chromosome evolution. The genomes of several dioecious plants have been sequenced, offering an opportunity to annotate and mine the TE data. However, comprehensive and unified annotation of TEs in these dioecious plants is still lacking. In this study, we constructed a dioecious plant transposable element database (DPTEdb). DPTEdb is a specific, comprehensive and unified relational database and web interface. We used a combination of de novo, structure-based and homology-based approaches to identify TEs from the genome assemblies of previously published data, as well as our own. The database currently integrates eight dioecious plant species and a total of 31 340 TEs along with classification information. DPTEdb provides user-friendly web interfaces to browse, search and download the TE sequences in the database. Users can also use tools, including BLAST, GetORF, HMMER, Cut sequence and JBrowse, to analyze TE data. Given the role of TEs in plant sex chromosome evolution, the database will contribute to the investigation of TEs in structural, functional and evolutionary dynamics of the genome of dioecious plants. In addition, the database will supplement the research of sex diversification and sex chromosome evolution of dioecious plants.Database URL: http://genedenovoweb.ticp.net:81/DPTEdb/index.php. © The Author(s) 2016. Published by Oxford University Press.

  2. Wood-feeding cockroaches as models for termite evolution (Insecta: Dictyoptera): Cryptocercus vs. Parasphaeria boleiriana.

    PubMed

    Klass, Klaus-Dieter; Nalepa, Christine; Lo, Nathan

    2008-03-01

    Isoptera are highly specialized cockroaches and are one of the few eusocial insect lineages. Cryptocercus cockroaches have appeared to many as ideal models for inference on the early evolution of termites, due to their possible phylogenetic relationship and several shared key attributes in life history. Recently, Pellens, Grandcolas, and colleagues have proposed the blaberid cockroach Parasphaeria boleiriana to be an alternative model for the early evolution in termites. We compare the usefulness of Cryptocercus and P. boleiriana as models for termite evolution. Cryptocercus and lower Isoptera (1) can both feed on comparatively recalcitrant wood, (2) have an obligate, rich and unique hypermastigid and oxymonadid fauna in the hindgut, (3) transfer these flagellates to the next generation by anal trophallaxis, (4) have social systems that involve long-lasting biparental care, and, finally, (5) are strongly suggested to be sister groups, so that the key attributes (1)-(4) appear to be homologous between the two taxa. On the other hand, P. boleiriana (1) feeds on soft, ephemeral wood sources, (2) shows no trace of the oxymonadid and hypermastigid hindgut fauna unique to Cryptocercus and lower Isoptera, nor does it have any other demonstrated obligate relationship with hindgut flagellates, (3) is likely to lack anal trophallaxis, (4) has only a short period of uniparental brood care, and (5) is phylogenetically remote from the Cryptocercus+Isoptera clade. These facts would argue against any reasonable usage of P. boleiriana as a model for the early evolution of Isoptera or even of the clade Cryptocercus+Isoptera. Cryptocercus thus remains an appropriate model-taxon-by-homology for early termite evolution. As compared to P. boleiriana, some other Blaberidae (such as the Panesthiinae Salganea) appear more useful as model-taxa-by-homoplasy for the early evolution of the Cryptocercus+Isoptera clade, as their brooding behavior is more elaborate than in P. boleiriana.

  3. Plants do not count… or do they? New perspectives on the universality of senescence

    PubMed Central

    Salguero-Gómez, Roberto; Shefferson, Richard P; Hutchings, Michael J

    2013-01-01

    1. Senescence, the physiological decline that results in decreasing survival and/or reproduction with age, remains one of the most perplexing topics in biology. Most theories explaining the evolution of senescence (i.e. antagonistic pleiotropy, accumulation of mutations, disposable soma) were developed decades ago. Even though these theories have implicitly focused on unitary animals, they have also been used as the foundation from which the universality of senescence across the tree of life is assumed. 2. Surprisingly, little is known about the general patterns, causes and consequences of whole-individual senescence in the plant kingdom. There are important differences between plants and most animals, including modular architecture, the absence of early determination of cell lines between the soma and gametes, and cellular division that does not always shorten telomere length. These characteristics violate the basic assumptions of the classical theories of senescence and therefore call the generality of senescence theories into question. 3. This Special Feature contributes to the field of whole-individual plant senescence with five research articles addressing topics ranging from physiology to demographic modelling and comparative analyses. These articles critically examine the basic assumptions of senescence theories such as age-specific gene action, the evolution of senescence regardless of the organism's architecture and environmental filtering, and the role of abiotic agents on mortality trajectories. 4. Synthesis. Understanding the conditions under which senescence has evolved is of general importance across biology, ecology, evolution, conservation biology, medicine, gerontology, law and social sciences. The question ‘why is senescence universal or why is it not?’ naturally calls for an evolutionary perspective. Senescence is a puzzling phenomenon, and new insights will be gained by uniting methods, theories and observations from formal demography, animal demography and plant population ecology. Plants are more amenable than animals to experiments investigating senescence, and there is a wealth of published plant demographic data that enable interpretation of experimental results in the context of their full life cycles. It is time to make plants count in the field of senescence. PMID:23853389

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.

    Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  5. Reliability of the Measure of Acceptance of the Theory of Evolution (MATE) Instrument with University Students

    ERIC Educational Resources Information Center

    Rutledge, Michael L.; Sadler, Kim C.

    2007-01-01

    The Measure of Acceptance of the Theory of Evolution (MATE) instrument was initially designed to assess high school biology teachers' acceptance of evolutionary theory. To determine if the MATE instrument is reliable with university students, it was administered to students in a non-majors biology course (n = 61) twice over a 3-week period.…

  6. Evolution and personal religious belief: Christian biology-related majors' search for reconciliation at a Christian university

    NASA Astrophysics Data System (ADS)

    Winslow, Mark William

    The goal of this study was to explore how Christian biology-related majors at a Christian university perceive the apparent conflicts between their understanding of evolution and their religious beliefs, and how their faith, as a structural-developmental system for ordering and making meaning of the world, plays a role in the mediating process. This naturalistic study utilized a case study design of 15 participants specified as undergraduate biology-related majors or recent biology-related graduates from a midwestern Christian university who had completed an upper-level course on evolution. Data were collected through semi-structured interviews that investigated participants' faith and their views on creationism and evolution. Fowler's theory of faith development and Parks' model of college students' faith was extensively used. Additional data were collected through an Evolution Attitudes Survey and a position paper on evolution as an assignment in the evolution course. Data analysis revealed patterns that were organized into themes and sub-themes that were the major outcomes of the study. Most participants were raised to believe in creationism, but came to accept evolution through an extended process of evaluating the scientific evidence in support of evolution, negotiating the literalness of Genesis, recognizing evolution as a non-salvation issue, and observing professors as role models of Christians who accept evolution. Participants remained committed to their personal religious beliefs despite apprehension that accompanied the reconciliation process in accepting evolution. Most participants operated from the perspective that science and religion are separate and interacting domains. Faith played an important role in how participants reconciled their understanding of evolution and their personal religious beliefs. Participants who operated in conventional faith dismissed contentious issues or collapsed dichotomies in an effort to avoid ambiguity and perceived tensions. Participants who operated in young adult and adult faith tended to confront their perceived tensions and worked towards reconciling their understanding of evolution and their personal religious beliefs. The rich description of this naturalistic study lends heuristic insight to researchers and educators seeking an understanding of the complex processes by which Christian biology-related majors approach learning about evolution and seek reconciliation between their understanding of evolution and their personal religious beliefs.

  7. The Early Retirees of Canadian Universities.

    ERIC Educational Resources Information Center

    Jefferson, Anne L.

    Because an option for early retirement in Canadian Universities has created a need to know more about the vacancies early retirement creates and the potential to fill these vacancies, a survey of 15 representative universities was conducted. The sample included institutions of faculty numbering less than 100 to institutions of faculty numbering…

  8. Early evolution of Tubulogenerina during the Paleogene of Europe

    USGS Publications Warehouse

    Gibson, T.G.; Barbin, V.; Poignant, A.; Sztrakos, K.

    1991-01-01

    The early evolution of Tubulogenerina took place in Europe where eight species occur in lower Eocene to uppermost Oligocene or lower Miocene strata. Species diversity within Tubulogenerina dropped significantly in the early Oligocne; only a single species persisted from the late Eocene, and it became extinct before the end of the early Oligocene. Morphologic changes during the European phylogeny of Tubulogenerina include (1) the development of costate and more complex tubulopore ornamentation, and (2) the change from a single elongated apertural slit with a single toothplate to multiple apertures and toothplates. Three new Tubulogenerina species are described. -from Authors

  9. "Evo in the News:" Understanding Evolution and Students' Attitudes toward the Relevance of Evolutionary Biology

    ERIC Educational Resources Information Center

    Infanti, Lynn M.; Wiles, Jason R.

    2014-01-01

    This investigation evaluated the effects of exposure to the "Evo in the News" section of the "Understanding Evolution" website on students' attitudes toward biological evolution in undergraduates in a mixed-majors introductory biology course at Syracuse University. Students' attitudes toward evolution and changes therein were…

  10. On the origin and early evolution of biological catalysis and other studies on chemical evolution

    NASA Technical Reports Server (NTRS)

    Oro, J.; Lazcano, A.

    1991-01-01

    One of the lines of research in molecular evolution which we have developed for the past three years is related to the experimental and theoretical study of the origin and early evolution of biological catalysis. In an attempt to understand the nature of the first peptidic catalysts and coenzymes, we have achieved the non-enzymatic synthesis of the coenzymes ADPG, GDPG, and CDP-ethanolamine, under conditions considered to have been prevalent on the primitive Earth. We have also accomplished the prebiotic synthesis of histidine, as well as histidyl-histidine, and we have measured the enhancing effects of this catalytic dipeptide on the dephosphorylation of deoxyribonucleotide monophosphates, the hydrolysis of oligo A, and the oligomerization 2', 3' cAMP. We reviewed and further developed the hypothesis that RNA preceded double stranded DNA molecules as a reservoir of cellular genetic information. This led us to undertake the study of extant RNA polymerases in an attempt to discover vestigial sequences preserved from early Archean times. In addition, we continued our studies of on the chemical evolution of organic compounds in the solar system and beyond.

  11. The Singular Quest for a Universal Tree of Life

    PubMed Central

    2013-01-01

    Carl Woese developed a unique research program, based on rRNA, for discerning bacterial relationships and constructing a universal tree of life. Woese's interest in the evolution of the genetic code led to him to investigate the deep roots of evolution, develop the concept of the progenote, and conceive of the Archaea. In so doing, he and his colleagues at the University of Illinois in Urbana revolutionized microbiology and brought the classification of microbes into an evolutionary framework. Woese also provided definitive evidence for the role of symbiosis in the evolution of the eukaryotic cell while underscoring the importance of lateral gene transfer in microbial evolution. Woese and colleagues' proposal of three fundamental domains of life was brought forward in direct conflict with the prokaryote-eukaryote dichotomy. Together with several colleagues and associates, he brought together diverse evidence to support the rRNA evidence for the fundamentally tripartite nature of life. This paper aims to provide insight into his accomplishments, how he achieved them, and his place in the history of biology. PMID:24296570

  12. Early Universe Higgs dynamics in the presence of the Higgs-inflaton and non-minimal Higgs-gravity couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ema, Yohei; Karčiauskas, Mindaugas; Lebedev, Oleg

    Apparent metastability of the electroweak vacuum poses a number of cosmological questions. These concern evolution of the Higgs field to the current vacuum, and its stability during and after inflation. Higgs-inflaton and non-minimal Higgs-gravity interactions can make a crucial impact on these considerations potentially solving the problems. In this work, we allow for these couplings to be present simultaneously and study their interplay. We find that different combinations of the Higgs-inflaton and non-minimal Higgs-gravity couplings induce effective Higgs mass during and after inflation. This crucially affects the Higgs stability considerations during preheating. In particular, a wide range of the couplingsmore » leading to stable solutions becomes allowed.« less

  13. Research in Computational Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina; Jaffe, Richard; Liang, Shoudan; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.

    2002-01-01

    We present results from several projects in the new field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. We have developed a procedure for calculating long-range effects in molecular dynamics using a plane wave expansion of the electrostatic potential. This method is expected to be highly efficient for simulating biological systems on massively parallel supercomputers. We have perform genomics analysis on a family of actin binding proteins. We have performed quantum mechanical calculations on carbon nanotubes and nucleic acids, which simulations will allow us to investigate possible sources of organic material on the early earth. Finally, we have developed a model of protobiological chemistry using neural networks.

  14. FLRW Cosmology with Horava-Lifshitz Gravity: Impacts of Equations of State

    NASA Astrophysics Data System (ADS)

    Tawfik, A.; Abou El Dahab, E.

    2017-07-01

    Inspired by Lifshitz theory for quantum critical phenomena in condensed matter, Horava proposed a theory for quantum gravity with an anisotropic scaling in ultraviolet. In Horava-Lifshitz gravity (HLG), we have studied the impacts of six types of equations of state on the evolution of various cosmological parameters such as Hubble parameters and scale factor. From the comparison of the general relativity gravity with the HLG with detailed and without with non-detailed balance conditions, remarkable differences are found. Also, a noticeable dependence of singular and non-singular Big Bang on the equations of state is observed. We conclude that HLG explains various epochs in the early universe and might be able to reproduce the entire cosmic history with and without singular Big Bang.

  15. NASA Structure and Evolution of the Universe Theme: Science Overview

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Margon, Bruce

    2001-01-01

    The NASA Office of Space Science Structure and Evolution of the Universe (SEU) theme covers a wide variety of scientific investigations, from the nearest bodies to the farthest observable distances just after the time of the Big Bang. SEU supports experiments that sense radiation of all wavelengths, together with particle and gravitational wave detection. Recently completed road mapping and strategic planning exercises have identified a number of near- and medium-term space initiatives for the 2003-2023 time frame. Each of these experiments pushes the state of the art technically, but will return incredible new insights on the formation and evolution of the universe, as well as probe fundamental laws of physics in regimes never before tested. The scientific goals and technological highlights of each mission are described.

  16. The Origin of Dust in the Early Universe: Probing the Star Formation History of Galaxies by Their Dust Content

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Cherchneff, Isabelle

    2010-01-01

    Two distinct scenarios for the origin of the approximately 4 x 10(exp 8) Solar Mass of dust observed in the high-redshift (z = 6.4) quasar J1148+5251 have been proposed. The first assumes that this galaxy is much younger than the age of the universe at that epoch so that only supernovae, could have produced this dust. The second scenario assumes a significantly older galactic age, so that the dust could have formed in lower-mass AGB stars. Presenting new integral solutions for the chemical evolution of metals and dust in galaxies, we offer a critical evaluation of these two scenarios. ^N;"(,, show that the AGB scenario is sensitive to the details of the galaxy's star formation history (SFH), which must consist of an early intense starburst followed by a period of low stellar activity. The presence or absence of massive amounts of dust in high-redshift galaxies can therefore be used to infer their SFH. However, a problem with the AGB scenario is that it produces a stellar mass that is significantly larger than the inferred dynamical mass of J1148+5251, an yet unresolved discrepancy. If this problem persists, then additional sites for the growth or formation of dust, such as molecular clouds or dense clouds around active galactic nuclei, must be considered.

  17. Stellar haloes in massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Buitrago, F.

    2017-03-01

    The Hubble Ultra Deep Field (HUDF) opens up an unique window to witness galaxy assembly at all cosmic distances. Thanks to its extraordinary depth, it is a privileged tool to beat the cosmological dimming, which affects any extragalactic observations and has a very strong dependence with redshift (1 +z)^4. In particular, massive (M_{stellar}>5 × 10^{10} M_⊙) Early Type Galaxies (ETGs) are the most interesting candidates for these studies, as they must grow in an inside-out fashion developing an extended stellar envelope/halo that accounts for their remarkable size evolution (˜5 times larger in the nearby Universe than at z=2-3). To this end we have analysed the 6 most massive ETGs at z <1 in the HUDF12. Because of the careful data reduction and the exhaustive treatment of the Point Spread Function (PSF), we are able to trace the galaxy surface brightness profiles up to the same levels as in the local Universe but this time at = 0.65 (31 mag arcsec^{-2} in all 8 HST bands, ˜ 29 mag arcsec^{-2} restframe or beyond 25 effective radii). This fact enables us to investigate the galactic outskirts or stellar haloes at a previously unexplored era, characterising their light and mass profiles, colors and for the first time the amount of mass in ongoing mergers.

  18. Project PHaEDRA: Preserving Harvard's Early Data and Research in Astronomy

    NASA Astrophysics Data System (ADS)

    Bouquin, Daina; Frey, Katie; Henneken, Edwin; McEachern, Maria; McGrath, Alex; Guarracino, Daniel; Koch, Jennifer; Damon, James; Brownell, Eric; Smith-Zrull, Lindsay; Daina Bouquin

    2018-01-01

    Material originally produced during 19th and early 20th century by researchers at the Harvard College Observatory (HCO) was recently re-discovered in the HCO Astronomical Plate Stacks collection. This material helps represent the history of the HCO and acts as an irreplaceable primary source on the evolution of observation methods and astronomy as a science. The material is also relevant to the history of women in science as the collection contains logbooks and notebooks produced by the Harvard Computers, women who have come back into the spotlight due to the recent release of books like "The Glass Universe," "Rise of the Rocket Girls," and movies like "Hidden Figures". To ensure that this remarkable set of items is as accessible and useful as possible Wolbach Library, in collaboration with the SAO/NASA Astrophysics Data System (ADS) and others, is working to catalog, digitize, and preserve the entire collection. The material is also being transcribed by volunteers through the Smithsonian Transcription Center in DC. The transcription will allow the collection to be full-text searchable in ADS and for the notebooks to eventually be linked to their original source material: 500,000 glass plate photographs representing the first ever picture of the visible universe. The novel workflow of this distributed repository and the significance of the PHaEDRA collection both stand to support the research of future generations.

  19. Complex Homology and the Evolution of Nervous Systems.

    PubMed

    Liebeskind, Benjamin J; Hillis, David M; Zakon, Harold H; Hofmann, Hans A

    2016-02-01

    We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. Copyright © 2015. Published by Elsevier Ltd.

  20. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that masks its biosphere over a wide range of conditions).

  1. Research activities in nuclear astrophysics and related areas

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA/GRO grant NAG 5-2081, at the University of Chicago, has provided support for a broad program of theoretical research in nuclear astrophysics and related areas, with regard to gamma-ray and hard X-ray emission from classical nova explosions. This research emphasized the possible detection of 22Na gamma-ray line emission from nearby novae involving ONeMg white dwarfs, the detailed examination of 26Al production in novae, and the possible detection of the predicted early gamma ray emission from novae that arises from the decay of the short lived, positron emitting isotopes of CNO elements. Studies of nova related problems have consumed an increasing fraction of the Principal Investigator's research efforts over the past decade. Current research addresses problems associated with the standard model for the outbursts of the classical novae: the occurrence of thermonuclear runaways (TNR) in the accreted hydrogen rich envelopes on white dwarfs in close binary systems (see, e.g., the reviews by Truran 1982; and Shara 1989). Research in progress and planned for the next three years has three main objectives: (1) to gain an improved understanding of the early evolution of the light curves of, particularly, the fastest novae; (2) to gain an improved understanding of the relative importance of the various possible mechanisms of envelope hydrogen depletion (e.g. winds, common envelope driven mass loss, and nuclear burning) to the long term evolution of novae in outburst; and (3) to seek to provide a somewhat more definitive statement of the role of classical novae in nucleosynthesis. Our proposed 2-D studies of convection during the early phases of the TNR and our systematic attempt to incorporate an improved treatment of radiation hydrodynamics into the hydrodynamic code utilized in our calculations, are particularly relevant to the first of these objectives. Further 2-D studies of the effects of common envelope evolution are intended to provide more realistic constraints on the mass depletion mechanisms. Finally, detailed calculations of the thermonuclear history of the matter ejected in novae will be carried out for representative nova configurations involving both carbon-oxygen (CO) and oxygen-neon-magnesium (ONeMg) white dwarfs.

  2. THE DOMINANT EPOCH OF STAR FORMATION IN THE MILKY WAY FORMED THE THICK DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snaith, Owain N.; Haywood, Misha; Di Matteo, Paola

    2014-02-01

    We report the first robust measurement of the Milky Way star formation history using the imprint left on chemical abundances of long-lived stars. The formation of the Galactic thick disk occurs during an intense star formation phase between 9.0 (z ∼ 1.5) and 12.5 Gyr (z ∼ 4.5) ago and is followed by a dip (at z ∼ 1.1) lasting about 1 Gyr. Our results imply that the thick disk is as massive as the Milky Way's thin disk, suggesting a fundamental role of this component in the genesis of our Galaxy, something that had been largely unrecognized. This new picture impliesmore » that huge quantities of gas necessary to feed the building of the thick disk must have been present at these epochs, in contradiction with the long-term infall assumed by chemical evolution models in the last two decades. These results allow us to fit the Milky Way within the emerging features of the evolution of disk galaxies in the early universe.« less

  3. Innovations in design and technology. The story of hip arthroplasty.

    PubMed

    Amstutz, H C

    2000-09-01

    The current study reviews the early history of surgeon-initiated trial and error development in hip joint arthroplasty and the subsequent methodological evolution to proper criteria for hypothesis testing using bioengineers and other research scientists. The interplay and relationships to industry, universities, scientific organizations, and the Food and Drug Administration with respect to device development in hip arthroplasty are reviewed. The ethics of and responsibilities to involved parties are outlined, citing the history of many contemporary developments. Examples are provided from the evolution and introduction of unsuccessful innovations, and the problems inherent in the current methodology of the approval process from the Food and Drug Administration using the 5-10K, Investigative Device Exemption, and the Pre-Market Approval protocols. The pros and cons of randomized trials for devices are outlined with the conclusion that they are not appropriate for device introduction. The proper, rational methodology for introduction of new devices is a phased-in clinical trial process after pertinent bench testing. Finally, the ethical dilemmas created by managed care are addressed. Industry involvements of the surgeon-spokesmen are cited.

  4. MEVTV Workshop on Early Tectonic and Volcanic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Frey, H. (Editor)

    1988-01-01

    Although not ignored, the problems of the early tectonic and volcanic evolution of Mars have generally received less attention than those later in the evolution of the planet. Specifically, much attention was devoted to the evolution of the Tharsis region of Mars and to the planet itself at the time following the establishment of this major tectonic and volcanic province. By contrast, little attention was directed at fundamental questions, such as the conditions that led to the development of Tharsis and the cause of the basic fundamental dichotomy of the Martian crust. It was to address these and related questions of the earliest evolution of Mars that a workshop was organized under the auspices of the Mars: Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Four sessions were held: crustal dichotomy; crustal differentiation/volcanism; Tharsis, Elysium, and Valles Marineris; and ridges and fault tectonics.

  5. On the Theory of Evolution Versus the Concept of Evolution: Three Observations

    PubMed Central

    Paz-y-Miño C., Guillermo

    2016-01-01

    Here we address three misconceptions stated by Rice et al. in their observations of our article Paz-y-Miño and Espinosa (Evo Edu Outreach 2:655-675, 2009), published in this journal. The five authors titled their note “The Theory of Evolution is Not an Explanation for the Origin of Life.” First, we argue that it is fallacious to believe that because the formulation of the theory of evolution, as conceived in the 1800s, did not include an explanation for the origin of life, nor of the universe, the concept of evolution would not allow us to hypothesize the possible beginnings of life and its connections to the cosmos. Not only Stanley Miller's experiments of 1953 led scientists to envision a continuum from the inorganic world to the origin and diversification of life, but also Darwin's own writings of 1871. Second, to dismiss the notion of Rice et al. that evolution does not provide explanations concerning the universe or the cosmos, we identify compelling scientific discussions on the topics: Zaikowski et al. (Evo Edu Outreach 1:65–73, 2008), Krauss (Evo Edu Outreach 3:193–197, 2010), Peretó et al. (Orig Life Evol Biosph 39:395–406, 2009) and Follmann and Brownson (Naturwissenschaften 96:1265-1292, 2009). Third, although we acknowledge that the term Darwinism may not be inclusive of all new discoveries in evolution, and also that creationists and Intelligent Designers hijack the term to portray evolution as ideology, we demonstrate that there is no statistical evidence suggesting that the word Darwinism interferes with public acceptance of evolution, nor does the inclusion of the origin of life or the universe within the concept of evolution. We examine the epistemological and empirical distinction between the theory of evolution and the concept of evolution and conclude that, although the distinction is important, it should not compromise scientific logic. PMID:26949441

  6. Astrobiology and the Biological Universe

    NASA Astrophysics Data System (ADS)

    Dick, S. J.

    2002-12-01

    Four hundred years ago two astronomical world views hung in the balance: the geocentric and the heliocentric. Today astronomy faces a similar choice between two grand world views: a purely physical universe, in which cosmic evolution commonly ends in planets, stars and galaxies, and a biological universe, in which cosmic evolution routinely results in life, mind and intelligence. Astrobiology is the science providing the data to make this critical choice. This 20th century overview shows how we have arrived at the view that cosmic evolution may have resulted in life and intelligence in the universe. It examines how our astronomical world view has changed over the last century, recalls the opinions of astronomical pioneers like Russell, Shapley, and Struve on life in the universe, and shows how planetary science, planetary systems science, origins of life studies and SETI have combined to form a new discipline. Astrobiology now commands \\$50 million in direct funding from NASA, funds 15 Astrobiology Institute members around the country and four affiliates around the world, and seeks to answer one of astronomy's oldest questions. Whether we live in a mostly physical universe, as exemplified in Isaac Asimov's Foundation series, or in a biological universe, as portrayed in Arthur C. Clarke's works, this reality will have profound consequences, no less than the Copernican theory. Astrobiology also looks to the future of life; taking a long-term ``Stapledonian" view, it is possible we may live in a postbiological universe.

  7. Early evolution without a tree of life

    PubMed Central

    2011-01-01

    Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause. This article was reviewed by Dan Graur, W. Ford Doolittle, Eugene V. Koonin and Christophe Malaterre. PMID:21714942

  8. Early Tracking or Finally Leaving? Determinants of Early Study Success in First-Year University Students

    ERIC Educational Resources Information Center

    Brouwer, Jasperina; Jansen, Ellen; Hofman, Adriaan; Flache, Andreas

    2016-01-01

    Two theoretical approaches underlie this investigation of the determinants of early study success among first-year university students. Specifically, to extend Walberg's educational productivity model, this study draws on the expectancy-value theory of achievement motivation in a contemporary university context. The survey data came from 407…

  9. Probing the sign-changeable interaction between dark energy and dark matter with current observations

    NASA Astrophysics Data System (ADS)

    Guo, Juan-Juan; Zhang, Jing-Fei; Li, Yun-He; He, Dong-Ze; Zhang, Xin

    2018-03-01

    We consider the models of vacuum energy interacting with cold dark matter in this study, in which the coupling can change sigh during the cosmological evolution. We parameterize the running coupling b by the form b( a) = b 0 a+ b e(1- a), where at the early-time the coupling is given by a constant b e and today the coupling is described by another constant b 0. We explore six specific models with (i) Q = b( a) H 0 ρ 0, (ii) Q = b( a) H 0 ρ de, (iii) Q = b( a) H 0 ρ c, (iv) Q = b( a) Hρ 0, (v) Q = b( a) H ρ de, and (vi) Q = b( a) Hρ c. The current observational data sets we use to constrain the models include the JLA compilation of type Ia supernova data, the Planck 2015 distance priors data of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the Hubble constant direct measurement. We find that, for all the models, we have b 0 < 0 and b e > 0 at around the 1 σ level, and b 0 and b e are in extremely strong anti-correlation. Our results show that the coupling changes sign during the evolution at about the 1 σ level, i.e., the energy transfer is from dark matter to dark energy when dark matter dominates the universe and the energy transfer is from dark energy to dark matter when dark energy dominates the universe.

  10. Darwinian evolution in the light of genomics

    PubMed Central

    Koonin, Eugene V.

    2009-01-01

    Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or ‘forest’ of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future. PMID:19213802

  11. Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life

    NASA Technical Reports Server (NTRS)

    Wharton, Robert A., Jr. (Editor); Andersen, Dale T. (Editor); Bzik, Sara E. (Editor); Rummel, John D. (Editor)

    1991-01-01

    This symposium was held at the NASA Ames Research Center, Moffett Field, California, July 24-27, 1990. The NASA exobiology investigators reported their recent research findings. Scientific papers were presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  12. Biomolecule-Mineral Interactions in the Geochemical Environment on Early Earth and in the Human Body

    NASA Astrophysics Data System (ADS)

    Sahai, N.

    2011-12-01

    We worked on four projects consistent with the broad goals of the grant to investigate (i) the potential impacts of mineral surface chemistry and particle size on the stability and viability of cell membranes, bacteria and human cells and (ii) the influence of biomolecules on mineral nucleation and growth. The projects are of relevance to the origin and early evolution of life, biomineralization, medical mineralogy, and environmental biogeochemistry. The freedom enabled by the five-year grant to explore high-risk scientific areas, and the resulting high impact outcomes, cannot be overstated. We developed an almost entirely new field of Medical Mineralogyy and extended our concepts and knowledge-base to the potential roles of mineral surfaces in the evolution of protocells and the earliest cells. These exciting connections to medical mineralogy, and to the origin and evolution of life on early Earth are fascinating topics to the general public and even to other scientists, especially when the links to mineralogy and geochemistry are highlighted. In brief, we examined the stability of lipid bilayers representing model protocell membranes comprised of phospholipid bilayers with mineral surfaces. We found that the stability of lipid bilayers depends on mineral surface charge and increases as silica glass ~ quartz < rutile ~ mica < corundum. In a second project, we investigated whether the evolution of bacterial extra-cellular polymeric substances (EPS) may have been driven by nanomineral toxicity. Results showed that EPS does protect against mineral toxicity, and toxicity increases as amorphous SiO2 < β-TiO2 (anatase) < γ-Al2O3. A commonly accepted mechanism for Biomineralization is protein-templated nucleation. We used Molecular Dynamics and Bioinformatics computational chemistry approaches and showed that the random coil structure of a specific peptide promotes formation of an amorphous Ca-PO4 cluster, but not direct templation of hydroxyapatite. The consistency between our Ca-PO4 and previous experimental Ca-CO3 studies indicates that universal principles underly biomineralization processes of relevance to environmental biogeochemistry as well as to medical mineralogy. Minerals can enter the human either inadvertently as inhaled dusts or are inserted by design such as in components of orthopedic implants. It is important to know how the mineral surface properties affect the body's immune system response. We found that adhesion/detachment force of the Jurkat -line of T-lymphocytes increased as SiO2 glass ~ quartz < rutile (100) ~ mica (001) < polycrystalline corundum, and was related to the unraveling of cell surface glycoproteins, and to mineral surface charge. The studies described above have resulted in 23 peer-reviewed publications to date (published or in review or in prep.); one MSA volume and one Elements issue edited by the P.I.; trained five graduate students, three post-doctoral research scientists and 4 undergraduate students; numerous invited presentations at international conferences and at Universities; and numerous outreach activities including interviews on National Public Radio and on Hungarian national newspapers and television at the International Mineralogical Association's Annual Meeting.

  13. Evolution of olfaction in non-avian theropod dinosaurs and birds

    PubMed Central

    Zelenitsky, Darla K.; Therrien, François; Ridgely, Ryan C.; McGee, Amanda R.; Witmer, Lawrence M.

    2011-01-01

    Little is known about the olfactory capabilities of extinct basal (non-neornithine) birds or the evolutionary changes in olfaction that occurred from non-avian theropods through modern birds. Although modern birds are known to have diverse olfactory capabilities, olfaction is generally considered to have declined during avian evolution as visual and vestibular sensory enhancements occurred in association with flight. To test the hypothesis that olfaction diminished through avian evolution, we assessed relative olfactory bulb size, here used as a neuroanatomical proxy for olfactory capabilities, in 157 species of non-avian theropods, fossil birds and living birds. We show that relative olfactory bulb size increased during non-avian maniraptoriform evolution, remained stable across the non-avian theropod/bird transition, and increased during basal bird and early neornithine evolution. From early neornithines through a major part of neornithine evolution, the relative size of the olfactory bulbs remained stable before decreasing in derived neoavian clades. Our results show that, rather than decreasing, the importance of olfaction actually increased during early bird evolution, representing a previously unrecognized sensory enhancement. The relatively larger olfactory bulbs of earliest neornithines, compared with those of basal birds, may have endowed neornithines with improved olfaction for more effective foraging or navigation skills, which in turn may have been a factor allowing them to survive the end-Cretaceous mass extinction. PMID:21490022

  14. Similar Mutation Rates but Highly Diverse Mutation Spectra in Ascomycete and Basidiomycete Yeasts

    DTIC Science & Technology

    2016-12-24

    Te, and Michael Lynch Department of Biology , Indiana University, Bloomington, IN *Corresponding author: E-mail: longhongan@gmail.com. Accepted...GBE The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access...fungal mutation spectrum. Supplementary Material Supplementary data are available at Genome Biology and Evolution online. Acknowledgments This research

  15. The Historical Evolution of Knowledge of the Universe: Errors in Secondary Education Textbooks in Spain

    ERIC Educational Resources Information Center

    Rodriguez, Uxio Perez; Lires, Maria Alvarez; Solino, Jorge Prieto

    2008-01-01

    This article analyzes how science textbooks used in secondary education (ages 12 and 13) in Spain have treated the subject of the historical evolution of the Universe. We have discovered many very important errors in the different textbooks that we reviewed. We focus on the errors that are committed most frequently. (Contains 1 table and 1 note.)

  16. The spectrum of density perturbations in an expanding universe

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1974-01-01

    The basic dynamic equations that govern the evolution of perturbations in a Friedmann-Lemaitre universe are derived. General solutions describing the evolution of adiabatic perturbations in the density of matter are obtained, and the choice of the appropriate initial conditions is examined. The various perturbation modes are compared, and the effects of decoupling on the perturbation spectrum are studied. The scheme used to follow the evolution of density perturbations through decoupling is based on an extension of the Eddington approximation to the radiative transfer equation, and is strictly valid in both optically thick and thin limits.

  17. The Interrelationships of Placental Mammals and the Limits of Phylogenetic Inference.

    PubMed

    Tarver, James E; Dos Reis, Mario; Mirarab, Siavash; Moran, Raymond J; Parker, Sean; O'Reilly, Joseph E; King, Benjamin L; O'Connell, Mary J; Asher, Robert J; Warnow, Tandy; Peterson, Kevin J; Donoghue, Philip C J; Pisani, Davide

    2016-01-05

    Placental mammals comprise three principal clades: Afrotheria (e.g., elephants and tenrecs), Xenarthra (e.g., armadillos and sloths), and Boreoeutheria (all other placental mammals), the relationships among which are the subject of controversy and a touchstone for debate on the limits of phylogenetic inference. Previous analyses have found support for all three hypotheses, leading some to conclude that this phylogenetic problem might be impossible to resolve due to the compounded effects of incomplete lineage sorting (ILS) and a rapid radiation. Here we show, using a genome scale nucleotide data set, microRNAs, and the reanalysis of the three largest previously published amino acid data sets, that the root of Placentalia lies between Atlantogenata and Boreoeutheria. Although we found evidence for ILS in early placental evolution, we are able to reject previous conclusions that the placental root is a hard polytomy that cannot be resolved. Reanalyses of previous data sets recover Atlantogenata + Boreoeutheria and show that contradictory results are a consequence of poorly fitting evolutionary models; instead, when the evolutionary process is better-modeled, all data sets converge on Atlantogenata. Our Bayesian molecular clock analysis estimates that marsupials diverged from placentals 157-170 Ma, crown Placentalia diverged 86-100 Ma, and crown Atlantogenata diverged 84-97 Ma. Our results are compatible with placental diversification being driven by dispersal rather than vicariance mechanisms, postdating early phases in the protracted opening of the Atlantic Ocean. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Experiences and Practices of Evolution Instructors at Christian Universities That Can Inform Culturally Competent Evolution Education

    ERIC Educational Resources Information Center

    Barnes, M. Elizabeth; Brownell, Sara E.

    2018-01-01

    Students' religious beliefs and religious cultures have been shown to be the main factors predicting whether they will accept evolution, yet college biology instructors teaching evolution at public institutions often have religious beliefs and cultures that are different from their religious students. This difference in religious beliefs and…

  19. Archean komatiite volcanism controlled by the evolution of early continents.

    PubMed

    Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John

    2014-07-15

    The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.

  20. Archean komatiite volcanism controlled by the evolution of early continents

    PubMed Central

    Mole, David R.; Fiorentini, Marco L.; Thebaud, Nicolas; Cassidy, Kevin F.; McCuaig, T. Campbell; Kirkland, Christopher L.; Romano, Sandra S.; Doublier, Michael P.; Belousova, Elena A.; Barnes, Stephen J.; Miller, John

    2014-01-01

    The generation and evolution of Earth’s continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50–30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean–Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits. PMID:24958873

  1. Mother Knows Best: Epigenetic Inheritance, Maternal Effects, and the Evolution of Human Intelligence

    ERIC Educational Resources Information Center

    Bjorklund, David F.

    2006-01-01

    Contemporary evolution biology has recognized the role of development in evolution. Evolutionarily oriented psychologists have similarly recognized the role that behavioral plasticity, particularly early in development, may have had on the evolution of species, harking back to the ideas of Baldwin (the Baldwin effect). Epigenetic theories of…

  2. Early Predictors of First-Year Academic Success at University: Pre-University Effort, Pre-University Self-Efficacy, and Pre-University Reasons for Attending University

    ERIC Educational Resources Information Center

    van Herpen, Sanne G. A.; Meeuwisse, Marieke; Hofman, W. H. Adriaan; Severiens, Sabine E.; Arends, Lidia R.

    2017-01-01

    Given the large number of dropouts in the 1st year at university, it is important to identify early predictors of 1st-year academic success. The present study (n = 453 first-year students) contributes to literature on the transition from secondary to higher education by investigating how the non-cognitive factors "pre-university" effort…

  3. Effect of the stellar spin history on the tidal evolution of close-in planets

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Raymond, S. N.; Leconte, J.; Matt, S. P.

    2012-08-01

    Context. The spin rate of stars evolves substantially during their lifetime, owing to the evolution of their internal structure and to external torques arising from the interaction of stars with their environments and stellar winds. Aims: We investigate how the evolution of the stellar spin rate affects, and is affected by, planets in close orbits via star-planet tidal interactions. Methods: We used a standard equilibrium tidal model to compute the orbital evolution of single planets orbiting both Sun-like stars and very low-mass stars (0.1 M⊙). We tested two stellar spin evolution profiles, one with fast initial rotation (1.2 day rotation period) and one with slow initial rotation (8 day period). We tested the effect of varying the stellar and planetary dissipations, and the planet's mass and initial orbital radius. Results: For Sun-like stars, the different tidal evolution between initially rapidly and slowly rotating stars is only evident for extremely close-in gas giants orbiting highly dissipative stars. However, for very low-mass stars the effect of the initial rotation of the star on the planet's evolution is apparent for less massive (1 M⊕) planets and typical dissipation values. We also find that planetary evolution can have significant effects on the stellar spin history. In particular, when a planet falls onto the star, it can cause the star to spin up. Conclusions: Tidal evolution allows us to differentiate between the early behaviors of extremely close-in planets orbiting either a rapidly rotating star or a slowly rotating star. The early spin-up of the star allows the close-in planets around fast rotators to survive the early evolution. For planets around M-dwarfs, surviving the early evolution means surviving on Gyr timescales, whereas for Sun-like stars the spin-down brings about late mergers of Jupiter planets. In the light of this study, we can say that differentiating one type of spin evolution from another given the present position of planets can be very tricky. Unless we can observe some markers of former evolution, it is nearly impossible to distinguish the two very different spin profiles, let alone intermediate spin-profiles. Nevertheless, some conclusions can still be drawn about statistical distributions of planets around fully convective M-dwarfs. If tidal evolution brings about a merger late in the stellar history, it can also entail a noticeable acceleration of the star at late ages, so that it is possible to have old stars that spin rapidly. This raises the question of how the age of stars can be more tightly constrained.

  4. Universal Sequence Replication, Reversible Polymerization and Early Functional Biopolymers: A Model for the Initiation of Prebiotic Sequence Evolution

    PubMed Central

    Walker, Sara Imari; Grover, Martha A.; Hud, Nicholas V.

    2012-01-01

    Many models for the origin of life have focused on understanding how evolution can drive the refinement of a preexisting enzyme, such as the evolution of efficient replicase activity. Here we present a model for what was, arguably, an even earlier stage of chemical evolution, when polymer sequence diversity was generated and sustained before, and during, the onset of functional selection. The model includes regular environmental cycles (e.g. hydration-dehydration cycles) that drive polymers between times of replication and functional activity, which coincide with times of different monomer and polymer diffusivity. Template-directed replication of informational polymers, which takes place during the dehydration stage of each cycle, is considered to be sequence-independent. New sequences are generated by spontaneous polymer formation, and all sequences compete for a finite monomer resource that is recycled via reversible polymerization. Kinetic Monte Carlo simulations demonstrate that this proposed prebiotic scenario provides a robust mechanism for the exploration of sequence space. Introduction of a polymer sequence with monomer synthetase activity illustrates that functional sequences can become established in a preexisting pool of otherwise non-functional sequences. Functional selection does not dominate system dynamics and sequence diversity remains high, permitting the emergence and spread of more than one functional sequence. It is also observed that polymers spontaneously form clusters in simulations where polymers diffuse more slowly than monomers, a feature that is reminiscent of a previous proposal that the earliest stages of life could have been defined by the collective evolution of a system-wide cooperation of polymer aggregates. Overall, the results presented demonstrate the merits of considering plausible prebiotic polymer chemistries and environments that would have allowed for the rapid turnover of monomer resources and for regularly varying monomer/polymer diffusivities. PMID:22493682

  5. Evolution of SUMO Function and Chain Formation in Insects.

    PubMed

    Ureña, Enric; Pirone, Lucia; Chafino, Silvia; Pérez, Coralia; Sutherland, James D; Lang, Valérie; Rodriguez, Manuel S; Lopitz-Otsoa, Fernando; Blanco, Francisco J; Barrio, Rosa; Martín, David

    2016-02-01

    SUMOylation, the covalent binding of Small Ubiquitin-like Modifier (SUMO) to target proteins, is a posttranslational modification that regulates critical cellular processes in eukaryotes. In insects, SUMOylation has been studied in holometabolous species, particularly in the dipteran Drosophila melanogaster, which contains a single SUMO gene (smt3). This has led to the assumption that insects contain a single SUMO gene. However, the analysis of insect genomes shows that basal insects contain two SUMO genes, orthologous to vertebrate SUMO1 and SUMO2/3. Our phylogenetical analysis reveals that the SUMO gene has been duplicated giving rise to SUMO1 and SUMO2/3 families early in Metazoan evolution, and that later in insect evolution the SUMO1 gene has been lost after the Hymenoptera divergence. To explore the consequences of this loss, we have examined the characteristics and different biological functions of the two SUMO genes (SUMO1 and SUMO3) in the hemimetabolous cockroach Blattella germanica and compared them with those of Drosophila Smt3. Here, we show that the metamorphic role of the SUMO genes is evolutionary conserved in insects, although there has been a regulatory switch from SUMO1 in basal insects to SUMO3 in more derived ones. We also show that, unlike vertebrates, insect SUMO3 proteins cannot form polySUMO chains due to the loss of critical lysine residues within the N-terminal part of the protein. Furthermore, the formation of polySUMO chains by expression of ectopic human SUMO3 has a deleterious effect in Drosophila. These findings contribute to the understanding of the functional consequences of the evolution of SUMO genes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Self-accelerated Universe Induced by Repulsive Effects as an Alternative to Dark Energy and Modified Gravities

    NASA Astrophysics Data System (ADS)

    Luongo, Orlando; Quevedo, Hernando

    2018-01-01

    The existence of current-time universe's acceleration is usually modeled by means of two main strategies. The first makes use of a dark energy barotropic fluid entering by hand the energy-momentum tensor of Einstein's theory. The second lies on extending the Hilbert-Einstein action giving rise to the class of extended theories of gravity. In this work, we propose a third approach, derived as an intrinsic geometrical effect of space-time, which provides repulsive regions under certain circumstances. We demonstrate that the effects of repulsive gravity naturally emerge in the field of a homogeneous and isotropic universe. To this end, we use an invariant definition of repulsive gravity based upon the behavior of the curvature eigenvalues. Moreover, we show that repulsive gravity counterbalances the standard gravitational attraction influencing both late and early times of the universe evolution. This phenomenon leads to the present speed up and to the fast expansion due to the inflationary epoch. In so doing, we are able to unify both dark energy and inflation in a single scheme, showing that the universe changes its dynamics when {\\ddot{H}\\over H}=-2 \\dot{H}, at the repulsion onset time where this condition is satisfied. Further, we argue that the spatial scalar curvature can be taken as vanishing because it does not affect at all the emergence of repulsive gravity. We check the goodness of our approach through two cosmological fits involving the most recent union 2.1 supernova compilation.

  7. Dynamically avoiding fine-tuning the cosmological constant: the ``Relaxed Universe''

    NASA Astrophysics Data System (ADS)

    Bauer, Florian; Solà, Joan; Štefancić, Hrvoje

    2010-12-01

    We demonstrate that there exists a large class of Script F(R,Script G) action functionals of the scalar curvature and of the Gauß-Bonnet invariant which are able to relax dynamically a large cosmological constant (CC), whatever it be its starting value in the early universe. Hence, it is possible to understand, without fine-tuning, the very small current value Λ0 ~ H02 of the CC as compared to its theoretically expected large value in quantum field theory and string theory. In our framework, this relaxation appears as a pure gravitational effect, where no ad hoc scalar fields are needed. The action involves a positive power of a characteristic mass parameter, Script M, whose value can be, interestingly enough, of the order of a typical particle physics mass of the Standard Model of the strong and electroweak interactions or extensions thereof, including the neutrino mass. The model universe emerging from this scenario (the ``Relaxed Universe'') falls within the class of the so-called ΛXCDM models of the cosmic evolution. Therefore, there is a ``cosmon'' entity X (represented by an effective object, not a field), which in this case is generated by the effective functional Script F(R,Script G) and is responsible for the dynamical adjustment of the cosmological constant. This model universe successfully mimics the essential past epochs of the standard (or ``concordance'') cosmological model (ΛCDM). Furthermore, it provides interesting clues to the coincidence problem and it may even connect naturally with primordial inflation.

  8. [An encounter with extraterrestrial intelligence].

    PubMed

    Hisabayashi, Hisashi

    2003-12-01

    It is much easier to find extraterrestrial intelligence than to detect simple organisms living on other planets. However, it is hard to communicate with such intelligence without the mutual understanding of inter-stellar communication protocol. The radio SETI (The Search for Extra-Terrestrial Intelligence) was initiated with the pioneering work of F. Drake in 1960, one year after the historical SETI paper by Cocconi and Morrison. This talk explains that SETI evolves with two bases of science; the understanding of our universe and the development of technology. Since SETI has had strong connection with radio astronomy from its early beginning, the impacts of radio astronomical findings and technological breakthrough can be seen in many aspects of the SETI history. Topics of this talk include the detection of microwave 3 K background radiation in the universe. Interstellar atomic and molecular lines found in radio-wave spectra provide the evidence of pre-biotic chemical evolution in such region. Radio telescope imaging and spectral technique are closely associated with methodology of SETI. Topics of the talk extend to new Allen Telescope Array and projected Square Kilometer Array. Recent optical SETI and the discoveries of extra solar planets are also explained. In the end, the recent understanding of our universe is briefly introduced in terms of matter, dark matter and dark energy. Even our understanding of the universe has been evolutionarily revolved and accumulated after 1960, we must recognize that our universe is still poorly understood and that astronomy and SETI are required to proceed hand in hand.

  9. High-resolution conodont oxygen isotope record of Ordovician climate change

    NASA Astrophysics Data System (ADS)

    Chen, J.; Chen, Z.; Algeo, T. J.

    2013-12-01

    The Ordovician Period was characterized by several major events, including a prolonged 'super greenhouse' during the Early Ordovician, the 'Great Ordovician Biodiversification Event (GOBE)' of the Middle and early Late Ordovician, and the Hirnantian ice age and mass extinction of the latest Ordovician (Webby et al., 2004, The Great Ordovician Biodiversification Event, Columbia University Press). The cause of the rapid diversification of marine invertebrates during the GOBE is not clear, however, and several scenarios have been proposed including widespread development of shallow cratonic seas, strong magmatic and tectonic activity, and climate moderation. In order to investigate relationships between climate change and marine ecosystem evolution during the Ordovician, we measured the oxygen isotopic composition of single coniform conodonts using a Cameca secondary ion mass spectrometer. Our δ18O profile shows a shift at the Early/Middle Ordovician transition that is indicative of a rapid 6 to 8 °C cooling. This cooling event marks the termination of the Early Ordovician 'super greenhouse' and may have established cooler tropical seawater temperatures that were more favorable for invertebrate animals, setting the stage for the GOBE. Additional cooling episodes occurred during the early Sandbian, early Katian, and Hirnantian, the last culminating in a short-lived (<1-Myr) end-Ordovician ice age. The much cooler conditions that prevailed at that time may have been an important factor in the end-Ordovician mass extinction. Our results differ from those of Trotter et al. (2008, 'Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry,' Science 321:550-554). Instead of a slow, protracted cooling through the Early and Middle Ordovician, our high-resolution record shows that cooling occurred in several discrete steps, with the largest step being at the Early/Middle Ordovician transition.

  10. Teaching Early Childhood Assessment Online: A State-Wide Multi-University Collaboration

    ERIC Educational Resources Information Center

    Murray, Ann D.; McDonald, Angie; York, Marti A.

    2006-01-01

    This paper describes an online early childhood assessment course that was developed through a multi-university collaboration with support from a state improvement grant. Collaborators from three universities developed the course to address a new early childhood unified license (birth to age 8, regular and special education) in the state of Kansas.…

  11. The Evolving Universe: Structure and Evolution of the Universe Roadmap 2000-2020

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Roadmap for the Structure and Evolution of the Universe (SEU) theme embraces three fundamental, scientific quests: (1) To explain structure in the Universe and forecast our cosmic destiny. (2) To explore the cycles of matter and energy in the evolving Universe. (3) To examine the ultimate limits of gravity and energy in the Universe. These quests are developed into six, focused research campaigns addressing the objectives of one or more quests: Identify dark matter and learn how it shapes galaxies and systems of galaxies; Find out where and when the chemical elements were made; Understand the cycles in which matter, energy, and magnetic field are exchanged between stars and the gas between stars; Discover how gas flows in disks and how cosmic jets are formed; Identify the sources of gamma-ray bursts and high-energy cosmic rays; and Measure how strong gravity operates near black holes and how it affects the early Universe. These campaigns lead to a portfolio of future major missions of strong scientific and popular appeal, strongly endorsed by the scientific community and which has undergone significant initial study. Some of these missions are in a state of readiness that makes ideal candidates for the present Office of Space Science Strategic Plan; others may well feature in the next Strategic Plan. Each provides a golden scientific opportunity to advance our understanding of the Universe. Our highest priority science objectives are addressed by five Observatory Class Missions, unranked by science, but in approximate order of readiness: A high-energy gamma-ray facility that will observe relativistic jets and study the sources of cosmic gamma ray bursts; An ultra-sensitive X-ray telescope, optimized for spectroscopy, to examine the hot gas linked with clusters of galaxies, the disks around black holes, and supernova explosions; A large, radio telescope in deep space to map central regions of distant quasars and perform astrometric investigations; An orbiting gravitational coalescing, massive black holes and test how gravity waves distort spacetime; A pair of Earth-orbiting, optical telescopes that will detect flashes of light produced when ultra high-energy cosmic rays impact the upper atmosphere so as to determine their arrival directions and energies. A new program for supporting pertinent international collaboration is strongly endorsed and maintaining a strong Explorer program is important. The flexibility to exploit exceptional opportunities, such as attaching payloads to space station, should also be acquired. A strong technology development program must be initiated now to enable this mission set.

  12. Size evolution of star-forming galaxies with 2

    NASA Astrophysics Data System (ADS)

    Ribeiro, B.; Le Fèvre, O.; Tasca, L. A. M.; Lemaux, B. C.; Cassata, P.; Garilli, B.; Maccagni, D.; Zamorani, G.; Zucca, E.; Amorín, R.; Bardelli, S.; Fontana, A.; Giavalisco, M.; Hathi, N. P.; Koekemoer, A.; Pforr, J.; Tresse, L.; Dunlop, J.

    2016-08-01

    Context. The size of a galaxy encapsulates the signature of the different physical processes driving its evolution. The distribution of galaxy sizes in the Universe as a function of cosmic time is therefore a key to understand galaxy evolution. Aims: We aim to measure the average sizes and size distributions of galaxies as they are assembling before the peak in the comoving star formation rate density of the Universe to better understand the evolution of galaxies across cosmic time. Methods: We used a sample of ~1200 galaxies in the COSMOS and ECDFS fields with confirmed spectroscopic redshifts 2 ≤ zspec ≤ 4.5 in the VIMOS Ultra Deep Survey (VUDS), representative of star-forming galaxies with IAB ≤ 25. We first derived galaxy sizes by applying a classical parametric profile-fitting method using GALFIT. We then measured the total pixel area covered by a galaxy above a given surface brightness threshold, which overcomes the difficulty of measuring sizes of galaxies with irregular shapes. We then compared the results obtained for the equivalent circularized radius enclosing 100% of the measured galaxy light r100T ~2.2 to those obtained with the effective radius re,circ measured with GALFIT. Results: We find that the sizes of galaxies computed with our non-parametric approach span a wide range but remain roughly constant on average with a median value r100T ~2.2 kpc for galaxies with 2

  13. Vocal Development as a Guide to Modeling the Evolution of Language.

    PubMed

    Oller, D Kimbrough; Griebel, Ulrike; Warlaumont, Anne S

    2016-04-01

    Modeling of evolution and development of language has principally utilized mature units of spoken language, phonemes and words, as both targets and inputs. This approach cannot address the earliest phases of development because young infants are unable to produce such language features. We argue that units of early vocal development-protophones and their primitive illocutionary/perlocutionary forces-should be targeted in evolutionary modeling because they suggest likely units of hominin vocalization/communication shortly after the split from the chimpanzee/bonobo lineage, and because early development of spontaneous vocal capability is a logically necessary step toward vocal language, a root capability without which other crucial steps toward vocal language capability are impossible. Modeling of language evolution/development must account for dynamic change in early communicative units of form/function across time. We argue for interactive contributions of sender/infants and receiver/caregivers in a feedback loop involving both development and evolution and propose to begin computational modeling at the hominin break from the primate communicative background. Copyright © 2016 Cognitive Science Society, Inc.

  14. The VIMOS Public Extragalactic Redshift Survey (VIPERS). The coevolution of galaxy morphology and colour to z 1

    NASA Astrophysics Data System (ADS)

    Krywult, J.; Tasca, L. A. M.; Pollo, A.; Vergani, D.; Bolzonella, M.; Davidzon, I.; Iovino, A.; Gargiulo, A.; Haines, C. P.; Scodeggio, M.; Guzzo, L.; Zamorani, G.; Garilli, B.; Granett, B. R.; de la Torre, S.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Franzetti, P.; Fritz, A.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Tojeiro, R.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Coupon, J.; De Lucia, G.; Ilbert, O.; McCracken, H. J.; Moscardini, L.; Takeuchi, T. T.

    2017-02-01

    Context. The study of the separation of galaxy types into different classes that share the same characteristics, and of the evolution of the specific parameters used in the classification are fundamental for understanding galaxy evolution. Aims: We explore the evolution of the statistical distribution of galaxy morphological properties and colours combining high-quality imaging data from the CFHT Legacy Survey with the large number of redshifts and extended photometry from the VIPERS survey. Methods: Galaxy structural parameters were combined with absolute magnitudes, colours and redshifts in order to trace evolution in a multi-parameter space. Using a new method we analysed the combination of colours and structural parameters of early- and late-type galaxies in luminosity-redshift space. Results: We find that both the rest-frame colour distributions in the (U-B) vs. (B-V) plane and the Sérsic index distributions are well fitted by a sum of two Gaussians, with a remarkable consistency of red-spheroidal and blue-disky galaxy populations, over the explored redshift (0.5 < z < 1) and luminosity (-1.5 < B-B∗ < 1.0) ranges. The combination of the rest-frame colour and Sérsic index as a function of redshift and luminosity allows us to present the structure of both galaxy types and their evolution. We find that early-type galaxies display only a slow change in their concentrations after z = 1. Their high concentrations were already established at z 1 and depend much more strongly on their luminosity than redshift. In contrast, late-type galaxies clearly become more concentrated with cosmic time with only little evolution in colour, which remains dependent mainly on their luminosity. Conclusions: The combination of rest-frame colours and Sérsic index as a function of redshift and luminosity leads to a precise statistical description of the structure of galaxies and their evolution. Additionally, the proposed method provides a robust way to split galaxies into early and late types. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://vipers.inaf.it/A table of the fitted parameters is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A120

  15. Black-hole universe: time evolution.

    PubMed

    Yoo, Chul-Moon; Okawa, Hirotada; Nakao, Ken-ichi

    2013-10-18

    Time evolution of a black hole lattice toy model universe is simulated. The vacuum Einstein equations in a cubic box with a black hole at the origin are numerically solved with periodic boundary conditions on all pairs of faces opposite to each other. Defining effective scale factors by using the area of a surface and the length of an edge of the cubic box, we compare them with that in the Einstein-de Sitter universe. It is found that the behavior of the effective scale factors is well approximated by that in the Einstein-de Sitter universe. In our model, if the box size is sufficiently larger than the horizon radius, local inhomogeneities do not significantly affect the global expansion law of the Universe even though the inhomogeneity is extremely nonlinear.

  16. Understanding protein evolution: from protein physics to Darwinian selection.

    PubMed

    Zeldovich, Konstantin B; Shakhnovich, Eugene I

    2008-01-01

    Efforts in whole-genome sequencing and structural proteomics start to provide a global view of the protein universe, the set of existing protein structures and sequences. However, approaches based on the selection of individual sequences have not been entirely successful at the quantitative description of the distribution of structures and sequences in the protein universe because evolutionary pressure acts on the entire organism, rather than on a particular molecule. In parallel to this line of study, studies in population genetics and phenomenological molecular evolution established a mathematical framework to describe the changes in genome sequences in populations of organisms over time. Here, we review both microscopic (physics-based) and macroscopic (organism-level) models of protein-sequence evolution and demonstrate that bridging the two scales provides the most complete description of the protein universe starting from clearly defined, testable, and physiologically relevant assumptions.

  17. Building an optomechatronics group in a young university in Western Romania

    NASA Astrophysics Data System (ADS)

    Duma, Virgil-Florin; Hutiu, Gheorghe; Cira, Octavian; Demian, Dorin; Mnerie, Corina; Kaposta, Iosif

    2014-07-01

    We present our experience regarding the establishing of an interdisciplinary group with Optics as one of its main topic at the Aurel Vlaicu University of Arad (UAVA) - linked with the improvement through research of our educational activities. The 3OM Group (in Opto-Mechatronics, Optical Metrology, and Optics and Mechanics) is described in its evolution from optomechanics to photonics, the latter with a focus on OCT (Optical Coherence Tomography) - with the national and the international collaborations established, with universities from Romania, Europe and USA. While the research directions of the 3OM Group are presented, they are linked with the educational components implemented in the various subjects we teach, for both undergraduate and graduate students, both in Mechanical and in Electrical Engineering. The main effort is to integrate education and research, to move teaching beyond the classical aspects to put the stress on hands-on-experiments, as well as on research-based activities - even with undergraduates. The main goals of this approach are to obtain an early orientation towards innovation and discovery, with a taste for novelties and with a clear focus on international standards. While this account is only one of many, it offers our experience in passing through the difficulties of developing both research and education in Optics in a young university in an emergent economy in Eastern Europe.

  18. Energy Feedback from X-ray Binaries in the Early Universe

    NASA Technical Reports Server (NTRS)

    Fragos, T.; Lehmer, B..; Naoz, S.; Zezas, A.; Basu-Zych, A.

    2013-01-01

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z (redshift) approximately equal to 20) until today.We estimate that X-ray emission from XRBs dominates over AGN at z (redshift) greater than or approximately equal to 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by approximately 4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of approximately 300 Myr (million years) and then decreases gradually at later times, showing little variation for mean stellar ages 3 Gyr (Giga years, or billion years). Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  19. An intriguing young-looking dwarf galaxy

    NASA Image and Video Library

    2015-03-16

    The bright streak of glowing gas and stars in this NASA/ESA Hubble Space Telescope image is known as PGC 51017, or SBSG 1415+437. It is type of galaxy known as a blue compact dwarf. This particular dwarf is well studied and has an interesting star formation history. Astronomers initially thought that SBS 1415+437 was a very young galaxy currently undergoing its very first burst of star formation, but more recent studies have suggested that the galaxy is in fact a little older, containing stars over 1.3 billion years old. Starbursts are an area of ongoing research for astronomers — short-lived and intense periods of star formation, during which huge amounts of gas within a galaxy are hungrily used up to form newborn stars. They have been seen in gas-rich disc galaxies, and in some lower-mass dwarfs. However, it is still unclear whether all dwarf galaxies experience starbursts as part of their evolution. It is possible that dwarf galaxies undergo a star formation cycle, with bursts occurring repeatedly over time. SBS 1415+437 is an interesting target for another reason. Dwarf galaxies like this are thought to have formed early in the Universe, producing some of the very first stars before merging together to create more massive galaxies. Dwarf galaxies which contain very few of the heavier elements formed from having several generations of stars, like SBS 1415+437, remain some of the best places to study star-forming processes similar to those thought to occur in the early Universe. However, it seems that our nearby patch of the Universe may not contain any galaxies that are currently undergoing their first burst of star formation. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Nick Rose.

  20. The order of the quantum chromodynamics transition predicted by the standard model of particle physics.

    PubMed

    Aoki, Y; Endrodi, G; Fodor, Z; Katz, S D; Szabó, K K

    2006-10-12

    Quantum chromodynamics (QCD) is the theory of the strong interaction, explaining (for example) the binding of three almost massless quarks into a much heavier proton or neutron--and thus most of the mass of the visible Universe. The standard model of particle physics predicts a QCD-related transition that is relevant for the evolution of the early Universe. At low temperatures, the dominant degrees of freedom are colourless bound states of hadrons (such as protons and pions). However, QCD is asymptotically free, meaning that at high energies or temperatures the interaction gets weaker and weaker, causing hadrons to break up. This behaviour underlies the predicted cosmological transition between the low-temperature hadronic phase and a high-temperature quark-gluon plasma phase (for simplicity, we use the word 'phase' to characterize regions with different dominant degrees of freedom). Despite enormous theoretical effort, the nature of this finite-temperature QCD transition (that is, first-order, second-order or analytic crossover) remains ambiguous. Here we determine the nature of the QCD transition using computationally demanding lattice calculations for physical quark masses. Susceptibilities are extrapolated to vanishing lattice spacing for three physical volumes, the smallest and largest of which differ by a factor of five. This ensures that a true transition should result in a dramatic increase of the susceptibilities. No such behaviour is observed: our finite-size scaling analysis shows that the finite-temperature QCD transition in the hot early Universe was not a real phase transition, but an analytic crossover (involving a rapid change, as opposed to a jump, as the temperature varied). As such, it will be difficult to find experimental evidence of this transition from astronomical observations.

  1. Bulk viscous quintessential inflation

    NASA Astrophysics Data System (ADS)

    Haro, Jaume; Pan, Supriya

    In a spatially-flat Friedmann-Lemaître-Robertson-Walker universe, the incorporation of bulk viscous process in general relativity leads to an appearance of a nonsingular background of the universe that both at early and late times depicts an accelerated universe. These early and late scenarios of the universe can be analytically calculated and mimicked, in the context of general relativity, by a single scalar field whose potential could also be obtained analytically where the early inflationary phase is described by a one-dimensional Higgs potential and the current acceleration is realized by an exponential potential. We show that the early inflationary universe leads to a power spectrum of the cosmological perturbations which match with current observational data, and after leaving the inflationary phase, the universe suffers a phase transition needed to explain the reheating of the universe via gravitational particle production. Furthermore, we find that at late times, the universe enters into the de Sitter phase that can explain the current cosmic acceleration. Finally, we also find that such bulk viscous-dominated universe attains the thermodynamical equilibrium, but in an asymptotic manner.

  2. Expanding the Scope of Anatomical Sciences: The Case of "Human Evolution--The Fossil Evidence" Course at the Sackler School of Medicine, Tel-Aviv University

    ERIC Educational Resources Information Center

    Notzer, Netta; Abramovitz, Ruth

    2012-01-01

    The Anatomy Department at Tel-Aviv University Medical School offers its students an elective course of 26 didactic hours on human evolution. The course is open to students from all faculties, who must fulfill all academic requirements, without a prerequisite of a background in anatomy. Approximately 120 students attend annually, a third of them…

  3. Conceptual Inventory of Natural Selection as a Tool for Measuring Greek University Students' Evolution Knowledge: Differences between Novice and Advanced Students

    ERIC Educational Resources Information Center

    Athanasiou, Kyriacos; Mavrikaki, Evangelia

    2014-01-01

    The primary objective of this research was to compare various groups of Greek university students for their level of knowledge of Evolution by means of Natural Selection (ENS). For the purpose of the study, we used a well known questionnaire the Conceptual Inventory of Natural Selection (CINS) and 352 biology majors and non-majors students from…

  4. Obituary: Chushiro Hayashi (1920-2010)

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yoshitsugu

    2011-12-01

    Chushiro Hayashi, the greatest Japanese theoretical astrophysicist, died of old age at a hospital in Kyoto on 28 February, 2010; he was 89 years old. C. Hayashi was born in Kyoto on July 25, 1920 as the fourth son of his parents Mume and Seijiro Hayashi. His father Seijiro managed a small finance company and the family "Hayashi" can trace its history back to honorable master carpenters who engaged in construction of the historic Kamigamo-shrine and Daitokuji-temple in Kyoto. In his high-school days in Kyoto, Hayashi enjoyed judo, and he was interested in philosophy and read a lot of philosophy books. Some of his schoolmates thought that Hayashi would become a philosopher. After graduating high school, he moved to Tokyo and entered the University of Tokyo, Department of physics in 1940, where he encountered astrophysics through a paper by G. Gamow and M. Schönberg on the URCA process (1941), A.S. Eddington's book "Internal Constitution of the Stars" (1926), etc. It was a difficult time of World War II. After a short time at university of two and half years, he graduated and was conscripted into the Navy. In 1945 the war was over he returned to his hometown Kyoto, where he joined a group of Professor Hideki Yukawa at Kyoto University, and studied elementary particle physics as well as astrophysics. In his early outstanding paper (1950), Hayashi pointed out an important effect of neutrinos in the expanding early hot universe, resulting in chemical equilibrium between neutrons and protons, while Gamow et al. (1948) did not notice the effect in their abg-theory, where they assumed a pure neutron state as an initial state. Also Hayashi investigated the structures of red giant stars; he showed how red giant stars kept such large radius structures, in terms of stellar models with energy source of nuclear shell-burning (1949, 1957). He received a DSc in 1954; the title of his thesis was "Hamiltonian Formalism in Non-local Field Theories." After that, Hayashi concentrated on astrophysics. In 1957 he was appointed as Professor at Kyoto University. In the study of pre-main-sequence stellar evolution, he discovered the famous "Hayashi phase," which was described in a three-page paper published (1961). He also compiled his studies of stellar evolution into a thick paper of 183 pages published in Supplement of Progress of Theoretical Physics with co-authors R. Hoshi and D. Sugimoto (1962). The paper was quite comprehensive, involving the whole stellar evolution from birth as protostars through death as supernovae, and frequently referred to as HHS. It was a bible in the field of stellar evolution for a long time, and may be so still. The study of pre-main-sequence stellar evolution made Hayashi himself become interested in star formation and then planetary formation. Hayashi and his co-worker T. Nakano found that dynamical collapse of an interstellar cloud (which we should call a molecular cloud core, today) proceeded isothermally, by comparing the cooling time with the free-fall time (1965). Also, Hayashi and his co-workers made computer simulation of spherical collapse of a cloud to form a star (1970), resulting in rather high flare-up luminosity than Larson's simulation (1969). These studies were really pioneer works in the field of star formation. From 1970s through 1980s, Hayashi investigated the origin of the solar system extensively together with his co-workers (mostly his graduate students or former students). Once a year at Kyoto University there was held a small workshop on the origin of solar system by Hayashi; in addition to astrophysicists and astronomers, geochemists, cosmochemists and mineralogists came to the workshop from everywhere in Japan. Discussion was always active and tough. Hayashi and his co-workers presented many theoretical studies in the workshop every year, and they compiled those studies into a chapter in the Protostars and Planets II Book (1985). Like HHS above, the chapter gives a quite comprehensive planetary cosmogony, which includes formation of solar nebula, solid particle settling, planetesimal formation due to gravitational instability, coalescence of planetesimals, formation of terrestrial and Jovian planets, and, finally, nebula dissipation. It is called the "Kyoto model" and is now considered as a standard model of solar system formation. In his tenure at Kyoto University was 30 years long, Hayashi had many graduate students and thoroughly drummed physics into them. Every Saturday afternoon, Hayashi held a colloquium in his office, but presenting in front of him was the most fearful training for his students. His disciplined methods of education and training, however, resulted in many of his students becoming university professors. Hayashi was honored with many prizes; Eddington Medal from RAS (1970), Imperial Prize of the Japan Academy (1971), Order of Culture (1986), Order of the Sacred Treasure, the first class (1994), the Kyoto Prize of Inamori Foundation (1995), the Bruce Medal for outstanding lifetime contributions from ASP (2004), etc. In 1984 Hayashi retired from Kyoto University. Even after that, Hayashi kept a small private seminar with his former students S. Narita and M. Kiguchi at a guest room of the university once a week and later at his home less frequently, and enjoyed discussion on astrophysics. The seminar lasted for 25 years until he was hospitalized for old age, i.e., a few months before his death.

  5. History Forum Addresses Creation/Evolution Controversy.

    ERIC Educational Resources Information Center

    Schweinsberg, John

    1997-01-01

    A series of programs entitled Creationism and Evolution: The History of a Controversy was presented at the University of Alabama in Huntsville. The controversy was addressed from an historical and sociological, rather than a scientific perspective. Speakers addressed the evolution of scientific creationism, ancient texts versus sedimentary rocks…

  6. Toward the inflationary paradigm: Lectures on inflationary cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, M.S.

    1987-02-01

    Guth's inflationary Universe scenario has revolutionized our thinking about the very early Universe. The inflationary scenario offers the possibility of explaining a handful of very fundamental cosmological facts - the homogeneity, isotropy, and flatness of the Universe, the origin of density inhomogeneities and the origin of the baryon asymmetry, while at the same time avoiding the monopole problem. It is based upon microphysical events which occurred early (t less than or equal to 10/sup -34/ sec) in the history of the Universe, but well after the planck epoc (t greater than or equal to 10/sup -43/ sec). While Guth's originalmore » model was fundamentally flawed, the variant based on the slow-rollover transition proposed by Linde, and Albrecht and Steinhardt (dubbed 'new inflation') appears viable. Although old inflation and the earliest models of new inflation were based upon first order phase transitions associated with spontaneous-symmetry breaking (SSB), it now appears that the inflationary transition is a much more generic phenomenon, being associated with the evolution of a weakly-coupled scalar field which for some reason or other was initially displaced from the minimum of its potential. Models now exist which are based on a wide variety of microphysics: SSB, SUSY/SUGR, compactification of extra dimensions, R/sup 2/ gravity, induced gravity, and some random, weakly-coupled scalar field. While there are several models which successfully implement the inflation, none is particularly compelling and all seem somewhat ad hoc. The common distasteful feature of all the successful models is the necessity of a small dimensionless number in the model - usually in the form of a dimensionless coupling of order 10/sup -15/. All inflationary scenarios rely upon the assumption that vacuum energy was once dynamically very significant, whereas today there exists every evidence that it is not. 133 refs., 17 figs.« less

  7. The Program for climate Model diagnosis and Intercomparison: 20-th anniversary Symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potter, Gerald L; Bader, David C; Riches, Michael

    Twenty years ago, W. Lawrence (Larry) Gates approached the U.S. Department of Energy (DOE) Office of Energy Research (now the Office of Science) with a plan to coordinate the comparison and documentation of climate model differences. This effort would help improve our understanding of climate change through a systematic approach to model intercomparison. Early attempts at comparing results showed a surprisingly large range in control climate from such parameters as cloud cover, precipitation, and even atmospheric temperature. The DOE agreed to fund the effort at the Lawrence Livermore National Laboratory (LLNL), in part because of the existing computing environment andmore » because of a preexisting atmospheric science group that contained a wide variety of expertise. The project was named the Program for Climate Model Diagnosis and Intercomparison (PCMDI), and it has changed the international landscape of climate modeling over the past 20 years. In spring 2009 the DOE hosted a 1-day symposium to celebrate the twentieth anniversary of PCMDI and to honor its founder, Larry Gates. Through their personal experiences, the morning presenters painted an image of climate science in the 1970s and 1980s, that generated early support from the international community for model intercomparison, thereby bringing PCMDI into existence. Four talks covered Gates's early contributions to climate research at the University of California, Los Angeles (UCLA), the RAND Corporation, and Oregon State University through the founding of PCMDI to coordinate the Atmospheric Model Intercomparison Project (AMIP). The speakers were, in order of presentation, Warren Washington [National Center for Atmospheric Research (NCAR)], Kelly Redmond (Western Regional Climate Center), George Boer (Canadian Centre for Climate Modelling and Analysis), and Lennart Bengtsson [University of Reading, former director of the European Centre for Medium-Range Weather Forecasts (ECMWF)]. The afternoon session emphasized the scientific ideas that are the basis of PCMDI's success, summarizing their evolution and impact. Four speakers followed the various PCMDI-supported climate model intercomparison projects, beginning with early work on cloud representations in models, presented by Robert D. Cess (Distinguished Professor Emeritus, Stony Brook University), and then the latest Cloud Feedback Model Intercomparison Projects (CFMIPs) led by Sandrine Bony (Laboratoire de M'©t'©orologie Dynamique). Benjamin Santer (LLNL) presented a review of the climate change detection and attribution (D & A) work pioneered at PCMDI, and Gerald A. Meehl (NCAR) ended the day with a look toward the future of climate change research.« less

  8. The influence of an innovative locomotor strategy on the phenotypic diversification of triggerfish (family: Balistidae).

    PubMed

    Dornburg, Alex; Sidlauskas, Brian; Santini, Francesco; Sorenson, Laurie; Near, Thomas J; Alfaro, Michael E

    2011-07-01

    Innovations in locomotor morphology have been invoked as important drivers of vertebrate diversification, although the influence of novel locomotion strategies on marine fish diversification remains largely unexplored. Using triggerfish as a case study, we determine whether the evolution of the distinctive synchronization of enlarged dorsal and anal fins that triggerfish use to swim may have catalyzed the ecological diversification of the group. By adopting a comparative phylogenetic approach to quantify median fin and body shape integration and to assess the tempo of functional and morphological evolution in locomotor traits, we find that: (1) functional and morphological components of the locomotive system exhibit a strong signal of correlated evolution; (2) triggerfish partitioned locomotor morphological and functional spaces early in their history; and (3) there is no strong evidence that a pulse of lineage diversification accompanied the major episode of phenotypic diversification. Together these findings suggest that the acquisition of a distinctive mode of locomotion drove an early radiation of shape and function in triggerfish, but not an early radiation of species. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  9. Evolution of the universe

    NASA Astrophysics Data System (ADS)

    Novikov, I. D.

    The underlying principles and discoveries of cosmology are presented in a qualitative form. The General Theory of Relativity is the basis for the science of the structure of the Universe, and Friedmann in 1922-4 demonstrated that the Universe is either expanding or contracting; Hubble in 1929 provided evidence for expansion. The physical processes of the evolution of the Universe to date have been projected to include origins in a superdense, superhot state with violent reactions between elementary particles. The resulting matter fragmented into the stellar systems and agglomerations presently observed. Observational data of the most distant galaxies now covers a range of 10 Gpc. Current studies focus on the missing matter in the Universe and the mean density of matter, the gravitation of vacuum, relict radiation from the Big Bang, the curvature of space-time, and theories for the earliest moments of the Universe, including pancake theories, the synthesis of light elements, and black and white holes.

  10. A Passion for Learning: The Theory and Practice of Optimal Match at the University of Washington

    ERIC Educational Resources Information Center

    Noble, Kathleen D.; Childers, Sarah A.

    2008-01-01

    Early entrance from secondary school to university, based on the principle of optimal match, is a rare but highly effective educational strategy for many gifted students. The University of Washington offers two early entrance options for gifted adolescents: the Early Entrance Program for students prior to age 15, and the UW Academy for Young…

  11. THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.

    2015-02-20

    We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increasesmore » for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M {sub *} = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  12. The SL2S galaxy-scale lens sample. V. dark matter halos and stellar IMF of massive early-type galaxies out to redshift 0.8

    DOE PAGES

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; ...

    2015-02-17

    Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  13. Relativistic numerical cosmology with silent universes

    NASA Astrophysics Data System (ADS)

    Bolejko, Krzysztof

    2018-01-01

    Relativistic numerical cosmology is most often based either on the exact solutions of the Einstein equations, or perturbation theory, or weak-field limit, or the BSSN formalism. The silent universe provides an alternative approach to investigate relativistic evolution of cosmological systems. The silent universe is based on the solution of the Einstein equations in 1  +  3 comoving coordinates with additional constraints imposed. These constraints include: the gravitational field is sourced by dust and cosmological constant only, both rotation and magnetic part of the Weyl tensor vanish, and the shear is diagnosable. This paper describes the code simsilun (free software distributed under the terms of the reposi General Public License), which implements the equations of the silent universe. The paper also discusses applications of the silent universe and it uses the Millennium simulation to set up the initial conditions for the code simsilun. The simulation obtained this way consists of 16 777 216 worldlines, which are evolved from z  =  80 to z  =  0. Initially, the mean evolution (averaged over the whole domain) follows the evolution of the background ΛCDM model. However, once the evolution of cosmic structures becomes nonlinear, the spatial curvature evolves from ΩK =0 to ΩK ≈ 0.1 at the present day. The emergence of the spatial curvature is associated with ΩM and Ω_Λ being smaller by approximately 0.05 compared to the ΛCDM.

  14. Le Changement linguistique: Evolution, variation, and heterogeneite. Actes du colloque de Neuchatel Universite (Neuchatel, Suisse, 2-4 Octobre 2000) (Linguistic Change: Evolution, Variation, Heterogeneity. Proceedings of the University of Neuchatel Colloquium [Neuchatel, Switzerland, October 2-4, 2000]).

    ERIC Educational Resources Information Center

    Matthey, Marinette, Ed.

    2001-01-01

    Articles in this issue focus on language evolution, variation, and heterogeneity. The following are English translations of the French article titles appearing in the issue: "Irregular Phonetic Development Due to Frequency; Regional Traits in Proto-Romance"; "Linguistic Evolution and Evolution of Perspective in the Comparative…

  15. Thermal fluctuations of dark matter in bouncing cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Changhong, E-mail: changhongli@ynu.edu.cn

    We investigate the statistical nature of the dark matter particles produced in bouncing cosmology, especially, the evolution of its thermal fluctuations. By explicitly deriving and solving the equation of motion of super-horizon mode, we fully determine the evolution of thermal perturbation of dark matter in a generic bouncing background. And we also show that the evolution of super-horizon modes is stable and will not ruin the background evolution of a generic bouncing universe till the Planck scale. Given no super-horizon thermal perturbation of dark matter appears in standard inflation scenario such as WIMP(-less) miracles, such super-horizon thermal perturbation of darkmore » matter generated during the generic bouncing universe scenario may be significant for testing and distinguishing these two scenario in near future.« less

  16. The early evolution of feathers: fossil evidence from Cretaceous amber of France

    PubMed Central

    Perrichot, Vincent; Marion, Loïc; Néraudeau, Didier; Vullo, Romain; Tafforeau, Paul

    2008-01-01

    The developmental stages of feathers are of major importance in the evolution of body covering and the origin of avian flight. Until now, there were significant gaps in knowledge of early morphologies in theoretical stages of feathers as well as in palaeontological material. Here we report fossil evidence of an intermediate and critical stage in the incremental evolution of feathers which has been predicted by developmental theories but hitherto undocumented by evidence from both the recent and the fossil records. Seven feathers have been found in an Early Cretaceous (Late Albian, ca 100 Myr) amber of western France, which display a flattened shaft composed by the still distinct and incompletely fused bases of the barbs forming two irregular vanes. Considering their remarkably primitive features, and since recent discoveries have yielded feathers of modern type in some derived theropod dinosaurs, the Albian feathers from France might have been derived either from an early bird or from a non-avian dinosaur. PMID:18285280

  17. Early post-metamorphic, Carboniferous blastoid reveals the evolution and development of the digestive system in echinoderms.

    PubMed

    Rahman, Imran A; Waters, Johnny A; Sumrall, Colin D; Astolfo, Alberto

    2015-10-01

    Inferring the development of the earliest echinoderms is critical to uncovering the evolutionary assembly of the phylum-level body plan but has long proven problematic because early ontogenetic stages are rarely preserved as fossils. Here, we use synchrotron tomography to describe a new early post-metamorphic blastoid echinoderm from the Carboniferous (approx. 323 Ma) of China. The resulting three-dimensional reconstruction reveals a U-shaped tubular structure in the fossil interior, which is interpreted as the digestive tract. Comparisons with the developing gut of modern crinoids demonstrate that crinoids are an imperfect analogue for many extinct groups. Furthermore, consideration of our findings in a phylogenetic context allows us to reconstruct the evolution and development of the digestive system in echinoderms more broadly; there was a transition from a straight to a simple curved gut early in the phylum's evolution, but additional loops and coils of the digestive tract (as seen in crinoids) were not acquired until much later. © 2015 The Author(s).

  18. Remnants of an ancient forest provide ecological context for Early Miocene fossil apes.

    PubMed

    Michel, Lauren A; Peppe, Daniel J; Lutz, James A; Driese, Steven G; Dunsworth, Holly M; Harcourt-Smith, William E H; Horner, William H; Lehmann, Thomas; Nightingale, Sheila; McNulty, Kieran P

    2014-01-01

    The lineage of apes and humans (Hominoidea) evolved and radiated across Afro-Arabia in the early Neogene during a time of global climatic changes and ongoing tectonic processes that formed the East African Rift. These changes probably created highly variable environments and introduced selective pressures influencing the diversification of early apes. However, interpreting the connection between environmental dynamics and adaptive evolution is hampered by difficulties in locating taxa within specific ecological contexts: time-averaged or reworked deposits may not faithfully represent individual palaeohabitats. Here we present multiproxy evidence from Early Miocene deposits on Rusinga Island, Kenya, which directly ties the early ape Proconsul to a widespread, dense, multistoried, closed-canopy tropical seasonal forest set in a warm and relatively wet, local climate. These results underscore the importance of forested environments in the evolution of early apes.

  19. Carbon in the Universe

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.

    2013-01-01

    Over the past few decades, NASA missions have revealed that we live in a Universe that is not a hydrogen-dominated, physicist's paradise, but in a molecular Universe with complex molecules directly interwoven into its fabric. These missions have shown that molecules are an abundant and important component of astronomical objects at all stages of their evolution and that they play a key role in many processes that dominate the structure and evolution of galaxies. Closer to home in our galaxy, the Milky Way, they have revealed a unique and complex organic inventory of regions of star and planet formation that may well represent some of the prebiotic roots to life. Astrobiology emerges from the great interest in understanding astrochemical evolution from simple to complex molecules, especially those with biogenic potential and the roles they may play as primordial seeds in the origin of life on habitable worlds. The first part of this talk will highlight how infrared spectroscopic studies of interstellar space, combined with dedicated laboratory simulations, have revealed the widespread presence of complex organics across deep space. The remainder of the presentation will focus on the evolution of these materials and astrobiology.

  20. New Genes and Functional Innovation in Mammals.

    PubMed

    Luis Villanueva-Cañas, José; Ruiz-Orera, Jorge; Agea, M Isabel; Gallo, Maria; Andreu, David; Albà, M Mar

    2017-07-01

    The birth of genes that encode new protein sequences is a major source of evolutionary innovation. However, we still understand relatively little about how these genes come into being and which functions they are selected for. To address these questions, we have obtained a large collection of mammalian-specific gene families that lack homologues in other eukaryotic groups. We have combined gene annotations and de novo transcript assemblies from 30 different mammalian species, obtaining ∼6,000 gene families. In general, the proteins in mammalian-specific gene families tend to be short and depleted in aromatic and negatively charged residues. Proteins which arose early in mammalian evolution include milk and skin polypeptides, immune response components, and proteins involved in reproduction. In contrast, the functions of proteins which have a more recent origin remain largely unknown, despite the fact that these proteins also have extensive proteomics support. We identify several previously described cases of genes originated de novo from noncoding genomic regions, supporting the idea that this mechanism frequently underlies the evolution of new protein-coding genes in mammals. Finally, we show that most young mammalian genes are preferentially expressed in testis, suggesting that sexual selection plays an important role in the emergence of new functional genes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

Top