Sample records for early visual experience

  1. Modification of visual function by early visual experience.

    PubMed

    Blakemore, C

    1976-07-01

    Physiological experiments, involving recording from the visual cortex in young kittens and monkeys, have given new insight into human developmental disorders. In the visual cortex of normal cats and monkeys most neurones are selectively sensitive to the orientation of moving edges and they receive very similar signals from both eyes. Even in very young kittens without visual experience, most neurones are binocularly driven and a small proportion of them are genuinely orientation selective. There is no passive maturation of the system in the absence of visual experience, but even very brief exposure to patterned images produces rapid emergence of the adult organization. These results are compared to observations on humans who have "recovered" from early blindness. Covering one eye in a kitten or a monkey, during a sensitive period early in life, produces a virtually complete loss of input from that eye in the cortex. These results can be correlated with the production of "stimulus deprivation amblyopia" in infants who have had one eye patched. Induction of a strabismus causes a loss of binocularity in the visual cortex, and in humans it leads to a loss of stereoscopic vision and binocular fusion. Exposing kittens to lines of one orientation modifies the preferred orientations of cortical cells and there is an analogous "meridional amblyopia" in astigmatic humans. The existence of a sensitive period in human vision is discussed, as well as the possibility of designing remedial and preventive treatments for human developmental disorders.

  2. Cognitive load effects on early visual perceptual processing.

    PubMed

    Liu, Ping; Forte, Jason; Sewell, David; Carter, Olivia

    2018-05-01

    Contrast-based early visual processing has largely been considered to involve autonomous processes that do not need the support of cognitive resources. However, as spatial attention is known to modulate early visual perceptual processing, we explored whether cognitive load could similarly impact contrast-based perception. We used a dual-task paradigm to assess the impact of a concurrent working memory task on the performance of three different early visual tasks. The results from Experiment 1 suggest that cognitive load can modulate early visual processing. No effects of cognitive load were seen in Experiments 2 or 3. Together, the findings provide evidence that under some circumstances cognitive load effects can penetrate the early stages of visual processing and that higher cognitive function and early perceptual processing may not be as independent as was once thought.

  3. Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind.

    PubMed

    Kitada, Ryo; Okamoto, Yuko; Sasaki, Akihiro T; Kochiyama, Takanori; Miyahara, Motohide; Lederman, Susan J; Sadato, Norihiro

    2013-01-01

    Face perception is critical for social communication. Given its fundamental importance in the course of evolution, the innate neural mechanisms can anticipate the computations necessary for representing faces. However, the effect of visual deprivation on the formation of neural mechanisms that underlie face perception is largely unknown. We previously showed that sighted individuals can recognize basic facial expressions by haptics surprisingly well. Moreover, the inferior frontal gyrus (IFG) and posterior superior temporal sulcus (pSTS) in the sighted subjects are involved in haptic and visual recognition of facial expressions. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI) experiments to determine the nature of the neural representation that subserves the recognition of basic facial expressions in early blind individuals. In a psychophysical experiment, both early blind and sighted subjects haptically identified basic facial expressions at levels well above chance. In the subsequent fMRI experiment, both groups haptically identified facial expressions and shoe types (control). The sighted subjects then completed the same task visually. Within brain regions activated by the visual and haptic identification of facial expressions (relative to that of shoes) in the sighted group, corresponding haptic identification in the early blind activated regions in the inferior frontal and middle temporal gyri. These results suggest that the neural system that underlies the recognition of basic facial expressions develops supramodally even in the absence of early visual experience.

  4. Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind

    PubMed Central

    Kitada, Ryo; Okamoto, Yuko; Sasaki, Akihiro T.; Kochiyama, Takanori; Miyahara, Motohide; Lederman, Susan J.; Sadato, Norihiro

    2012-01-01

    Face perception is critical for social communication. Given its fundamental importance in the course of evolution, the innate neural mechanisms can anticipate the computations necessary for representing faces. However, the effect of visual deprivation on the formation of neural mechanisms that underlie face perception is largely unknown. We previously showed that sighted individuals can recognize basic facial expressions by haptics surprisingly well. Moreover, the inferior frontal gyrus (IFG) and posterior superior temporal sulcus (pSTS) in the sighted subjects are involved in haptic and visual recognition of facial expressions. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI) experiments to determine the nature of the neural representation that subserves the recognition of basic facial expressions in early blind individuals. In a psychophysical experiment, both early blind and sighted subjects haptically identified basic facial expressions at levels well above chance. In the subsequent fMRI experiment, both groups haptically identified facial expressions and shoe types (control). The sighted subjects then completed the same task visually. Within brain regions activated by the visual and haptic identification of facial expressions (relative to that of shoes) in the sighted group, corresponding haptic identification in the early blind activated regions in the inferior frontal and middle temporal gyri. These results suggest that the neural system that underlies the recognition of basic facial expressions develops supramodally even in the absence of early visual experience. PMID:23372547

  5. Cortical activation during Braille reading is influenced by early visual experience in subjects with severe visual disability: a correlational fMRI study.

    PubMed

    Melzer, P; Morgan, V L; Pickens, D R; Price, R R; Wall, R S; Ebner, F F

    2001-11-01

    Functional magnetic resonance imaging was performed on blind adults resting and reading Braille. The strongest activation was found in primary somatic sensory/motor cortex on both cortical hemispheres. Additional foci of activation were situated in the parietal, temporal, and occipital lobes where visual information is processed in sighted persons. The regions were differentiated most in the correlation of their time courses of activation with resting and reading. Differences in magnitude and expanse of activation were substantially less significant. Among the traditionally visual areas, the strength of correlation was greatest in posterior parietal cortex and moderate in occipitotemporal, lateral occipital, and primary visual cortex. It was low in secondary visual cortex as well as in dorsal and ventral inferior temporal cortex and posterior middle temporal cortex. Visual experience increased the strength of correlation in all regions except dorsal inferior temporal and posterior parietal cortex. The greatest statistically significant increase, i.e., approximately 30%, was in ventral inferior temporal and posterior middle temporal cortex. In these regions, words are analyzed semantically, which may be facilitated by visual experience. In contrast, visual experience resulted in a slight, insignificant diminution of the strength of correlation in dorsal inferior temporal cortex where language is analyzed phonetically. These findings affirm that posterior temporal regions are engaged in the processing of written language. Moreover, they suggest that this function is modified by early visual experience. Furthermore, visual experience significantly strengthened the correlation of activation and Braille reading in occipital regions traditionally involved in the processing of visual features and object recognition suggesting a role for visual imagery. Copyright 2001 Wiley-Liss, Inc.

  6. Experience-Dependent Hemispheric Specialization of Letters and Numbers is Revealed in Early Visual Processing

    PubMed Central

    Park, Joonkoo; Chiang, Crystal; Brannon, Elizabeth M.; Woldorff, Marty G.

    2014-01-01

    Recent functional magnetic resonance imaging research has demonstrated that letters and numbers are preferentially processed in distinct regions and hemispheres in the visual cortex. In particular, the left visual cortex preferentially processes letters compared to numbers, while the right visual cortex preferentially processes numbers compared to letters. Because letters and numbers are cultural inventions and are otherwise physically arbitrary, such a double dissociation is strong evidence for experiential effects on neural architecture. Here, we use the high temporal resolution of event-related potentials (ERPs) to investigate the temporal dynamics of the neural dissociation between letters and numbers. We show that the divergence between ERP traces to letters and numbers emerges very early in processing. Letters evoked greater N1 waves (latencies 140–170 ms) than did numbers over left occipital channels, while numbers evoked greater N1s than letters over the right, suggesting letters and numbers are preferentially processed in opposite hemispheres early in visual encoding. Moreover, strings of letters, but not single letters, elicited greater P2 ERP waves, (starting around 250 ms) than numbers did over the left hemisphere, suggesting that the visual cortex is tuned to selectively process combinations of letters, but not numbers, further along in the visual processing stream. Additionally, the processing of both of these culturally defined stimulus types differentiated from similar but unfamiliar visual stimulus forms (false fonts) even earlier in the processing stream (the P1 at 100 ms). These findings imply major cortical specialization processes within the visual system driven by experience with reading and mathematics. PMID:24669789

  7. Experience-dependent hemispheric specialization of letters and numbers is revealed in early visual processing.

    PubMed

    Park, Joonkoo; Chiang, Crystal; Brannon, Elizabeth M; Woldorff, Marty G

    2014-10-01

    Recent fMRI research has demonstrated that letters and numbers are preferentially processed in distinct regions and hemispheres in the visual cortex. In particular, the left visual cortex preferentially processes letters compared with numbers, whereas the right visual cortex preferentially processes numbers compared with letters. Because letters and numbers are cultural inventions and are otherwise physically arbitrary, such a double dissociation is strong evidence for experiential effects on neural architecture. Here, we use the high temporal resolution of ERPs to investigate the temporal dynamics of the neural dissociation between letters and numbers. We show that the divergence between ERP traces to letters and numbers emerges very early in processing. Letters evoked greater N1 waves (latencies 140-170 msec) than did numbers over left occipital channels, whereas numbers evoked greater N1s than letters over the right, suggesting letters and numbers are preferentially processed in opposite hemispheres early in visual encoding. Moreover, strings of letters, but not single letters, elicited greater P2 ERP waves (starting around 250 msec) than numbers did over the left hemisphere, suggesting that the visual cortex is tuned to selectively process combinations of letters, but not numbers, further along in the visual processing stream. Additionally, the processing of both of these culturally defined stimulus types differentiated from similar but unfamiliar visual stimulus forms (false fonts) even earlier in the processing stream (the P1 at 100 msec). These findings imply major cortical specialization processes within the visual system driven by experience with reading and mathematics.

  8. Real-Time Strategy Video Game Experience and Visual Perceptual Learning.

    PubMed

    Kim, Yong-Hwan; Kang, Dong-Wha; Kim, Dongho; Kim, Hye-Jin; Sasaki, Yuka; Watanabe, Takeo

    2015-07-22

    Visual perceptual learning (VPL) is defined as long-term improvement in performance on a visual-perception task after visual experiences or training. Early studies have found that VPL is highly specific for the trained feature and location, suggesting that VPL is associated with changes in the early visual cortex. However, the generality of visual skills enhancement attributable to action video-game experience suggests that VPL can result from improvement in higher cognitive skills. If so, experience in real-time strategy (RTS) video-game play, which may heavily involve cognitive skills, may also facilitate VPL. To test this hypothesis, we compared VPL between RTS video-game players (VGPs) and non-VGPs (NVGPs) and elucidated underlying structural and functional neural mechanisms. Healthy young human subjects underwent six training sessions on a texture discrimination task. Diffusion-tensor and functional magnetic resonance imaging were performed before and after training. VGPs performed better than NVGPs in the early phase of training. White-matter connectivity between the right external capsule and visual cortex and neuronal activity in the right inferior frontal gyrus (IFG) and anterior cingulate cortex (ACC) were greater in VGPs than NVGPs and were significantly correlated with RTS video-game experience. In both VGPs and NVGPs, there was task-related neuronal activity in the right IFG, ACC, and striatum, which was strengthened after training. These results indicate that RTS video-game experience, associated with changes in higher-order cognitive functions and connectivity between visual and cognitive areas, facilitates VPL in early phases of training. The results support the hypothesis that VPL can occur without involvement of only visual areas. Significance statement: Although early studies found that visual perceptual learning (VPL) is associated with involvement of the visual cortex, generality of visual skills enhancement by action video-game experience

  9. The Impact of Early Visual Deprivation on Spatial Hearing: A Comparison between Totally and Partially Visually Deprived Children

    PubMed Central

    Cappagli, Giulia; Finocchietti, Sara; Cocchi, Elena; Gori, Monica

    2017-01-01

    The specific role of early visual deprivation on spatial hearing is still unclear, mainly due to the difficulty of comparing similar spatial skills at different ages and to the difficulty in recruiting young blind children from birth. In this study, the effects of early visual deprivation on the development of auditory spatial localization have been assessed in a group of seven 3–5 years old children with congenital blindness (n = 2; light perception or no perception of light) or low vision (n = 5; visual acuity range 1.1–1.7 LogMAR), with the main aim to understand if visual experience is fundamental to the development of specific spatial skills. Our study led to three main findings: firstly, totally blind children performed overall more poorly compared sighted and low vision children in all the spatial tasks performed; secondly, low vision children performed equally or better than sighted children in the same auditory spatial tasks; thirdly, higher residual levels of visual acuity are positively correlated with better spatial performance in the dynamic condition of the auditory localization task indicating that the more residual vision the better spatial performance. These results suggest that early visual experience has an important role in the development of spatial cognition, even when the visual input during the critical period of visual calibration is partially degraded like in the case of low vision children. Overall these results shed light on the importance of early assessment of spatial impairments in visually impaired children and early intervention to prevent the risk of isolation and social exclusion. PMID:28443040

  10. The onset of visual experience gates auditory cortex critical periods

    PubMed Central

    Mowery, Todd M.; Kotak, Vibhakar C.; Sanes, Dan H.

    2016-01-01

    Sensory systems influence one another during development and deprivation can lead to cross-modal plasticity. As auditory function begins before vision, we investigate the effect of manipulating visual experience during auditory cortex critical periods (CPs) by assessing the influence of early, normal and delayed eyelid opening on hearing loss-induced changes to membrane and inhibitory synaptic properties. Early eyelid opening closes the auditory cortex CPs precociously and dark rearing prevents this effect. In contrast, delayed eyelid opening extends the auditory cortex CPs by several additional days. The CP for recovery from hearing loss is also closed prematurely by early eyelid opening and extended by delayed eyelid opening. Furthermore, when coupled with transient hearing loss that animals normally fully recover from, very early visual experience leads to inhibitory deficits that persist into adulthood. Finally, we demonstrate a functional projection from the visual to auditory cortex that could mediate these effects. PMID:26786281

  11. Resting-State Retinotopic Organization in the Absence of Retinal Input and Visual Experience

    PubMed Central

    Binda, Paola; Benson, Noah C.; Bridge, Holly; Watkins, Kate E.

    2015-01-01

    Early visual areas have neuronal receptive fields that form a sampling mosaic of visual space, resulting in a series of retinotopic maps in which the same region of space is represented in multiple visual areas. It is not clear to what extent the development and maintenance of this retinotopic organization in humans depend on retinal waves and/or visual experience. We examined the corticocortical receptive field organization of resting-state BOLD data in normally sighted, early blind, and anophthalmic (in which both eyes fail to develop) individuals and found that resting-state correlations between V1 and V2/V3 were retinotopically organized for all subject groups. These results show that the gross retinotopic pattern of resting-state connectivity across V1-V3 requires neither retinal waves nor visual experience to develop and persist into adulthood. SIGNIFICANCE STATEMENT Evidence from resting-state BOLD data suggests that the connections between early visual areas develop and are maintained even in the absence of retinal waves and visual experience. PMID:26354906

  12. Characteristics of Early Work Experiences and Their Association with Future Employment

    ERIC Educational Resources Information Center

    McDonnall, Michele Capella; O'Mally, Jamie

    2012-01-01

    Introduction: Early work experiences are a key predictor of future employment for transition-age youths with visual impairments. We investigated how specific characteristics of early work experiences influence future employment and whether the receipt of Supplemental Security Income (SSI) benefits is associated with early work experiences among…

  13. Prosodic Phonological Representations Early in Visual Word Recognition

    ERIC Educational Resources Information Center

    Ashby, Jane; Martin, Andrea E.

    2008-01-01

    Two experiments examined the nature of the phonological representations used during visual word recognition. We tested whether a minimality constraint (R. Frost, 1998) limits the complexity of early representations to a simple string of phonemes. Alternatively, readers might activate elaborated representations that include prosodic syllable…

  14. Saliency affects feedforward more than feedback processing in early visual cortex.

    PubMed

    Emmanouil, Tatiana Aloi; Avigan, Philip; Persuh, Marjan; Ro, Tony

    2013-07-01

    Early visual cortex activity is influenced by both bottom-up and top-down factors. To investigate the influences of bottom-up (saliency) and top-down (task) factors on different stages of visual processing, we used transcranial magnetic stimulation (TMS) of areas V1/V2 to induce visual suppression at varying temporal intervals. Subjects were asked to detect and discriminate the color or the orientation of briefly-presented small lines that varied on color saliency based on color contrast with the surround. Regardless of task, color saliency modulated the magnitude of TMS-induced visual suppression, especially at earlier temporal processing intervals that reflect the feedforward stage of visual processing in V1/V2. In a second experiment we found that our color saliency effects were also influenced by an inherent advantage of the color red relative to other hues and that color discrimination difficulty did not affect visual suppression. These results support the notion that early visual processing is stimulus driven and that feedforward and feedback processing encode different types of information about visual scenes. They further suggest that certain hues can be prioritized over others within our visual systems by being more robustly represented during early temporal processing intervals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The role of early visual cortex in visual short-term memory and visual attention.

    PubMed

    Offen, Shani; Schluppeck, Denis; Heeger, David J

    2009-06-01

    We measured cortical activity with functional magnetic resonance imaging to probe the involvement of early visual cortex in visual short-term memory and visual attention. In four experimental tasks, human subjects viewed two visual stimuli separated by a variable delay period. The tasks placed differential demands on short-term memory and attention, but the stimuli were visually identical until after the delay period. Early visual cortex exhibited sustained responses throughout the delay when subjects performed attention-demanding tasks, but delay-period activity was not distinguishable from zero when subjects performed a task that required short-term memory. This dissociation reveals different computational mechanisms underlying the two processes.

  16. Visual cortex activity predicts subjective experience after reading books with colored letters.

    PubMed

    Colizoli, Olympia; Murre, Jaap M J; Scholte, H Steven; van Es, Daniel M; Knapen, Tomas; Rouw, Romke

    2016-07-29

    One of the most astonishing properties of synesthesia is that the evoked concurrent experiences are perceptual. Is it possible to acquire similar effects after learning cross-modal associations that resemble synesthetic mappings? In this study, we examine whether brain activation in early visual areas can be directly related to letter-color associations acquired by training. Non-synesthetes read specially prepared books with colored letters for several weeks and were scanned using functional magnetic resonance imaging. If the acquired letter-color associations were visual in nature, then brain activation in visual cortex while viewing the trained black letters (compared to untrained black letters) should predict the strength of the associations, the quality of the color experience, or the vividness of visual mental imagery. Results showed that training-related activation of area V4 was correlated with differences in reported subjective color experience. Trainees who were classified as having stronger 'associator' types of color experiences also had more negative activation for trained compared to untrained achromatic letters in area V4. In contrast, the strength of the acquired associations (measured as the Stroop effect) was not reliably reflected in visual cortex activity. The reported vividness of visual mental imagery was related to veridical color activation in early visual cortex, but not to the acquired color associations. We show for the first time that subjective experience related to a synesthesia-training paradigm was reflected in visual brain activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Decoding the future from past experience: learning shapes predictions in early visual cortex.

    PubMed

    Luft, Caroline D B; Meeson, Alan; Welchman, Andrew E; Kourtzi, Zoe

    2015-05-01

    Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex. Copyright © 2015 the American Physiological Society.

  18. Audiovisual plasticity following early abnormal visual experience: Reduced McGurk effect in people with one eye.

    PubMed

    Moro, Stefania S; Steeves, Jennifer K E

    2018-04-13

    Previously, we have shown that people who have had one eye surgically removed early in life during visual development have enhanced sound localization [1] and lack visual dominance, commonly observed in binocular and monocular (eye-patched) viewing controls [2]. Despite these changes, people with one eye integrate auditory and visual components of multisensory events optimally [3]. The current study investigates how people with one eye perceive the McGurk effect, an audiovisual illusion where a new syllable is perceived when visual lip movements do not match the corresponding sound [4]. We compared individuals with one eye to binocular and monocular viewing controls and found that they have a significantly smaller McGurk effect compared to binocular controls. Additionally, monocular controls tended to perceive the McGurk effect less often than binocular controls suggesting a small transient modulation of the McGurk effect. These results suggest altered weighting of the auditory and visual modalities with both short and long-term monocular viewing. These results indicate the presence of permanent adaptive perceptual accommodations in people who have lost one eye early in life that may serve to mitigate the loss of binocularity during early brain development. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  19. Acquiring skill at medical image inspection: learning localized in early visual processes

    NASA Astrophysics Data System (ADS)

    Sowden, Paul T.; Davies, Ian R. L.; Roling, Penny; Watt, Simon J.

    1997-04-01

    Acquisition of the skill of medical image inspection could be due to changes in visual search processes, 'low-level' sensory learning, and higher level 'conceptual learning.' Here, we report two studies that investigate the extent to which learning in medical image inspection involves low- level learning. Early in the visual processing pathway cells are selective for direction of luminance contrast. We exploit this in the present studies by using transfer across direction of contrast as a 'marker' to indicate the level of processing at which learning occurs. In both studies twelve observers trained for four days at detecting features in x- ray images (experiment one equals discs in the Nijmegen phantom, experiment two equals micro-calcification clusters in digitized mammograms). Half the observers examined negative luminance contrast versions of the images and the remainder examined positive contrast versions. On the fifth day, observers swapped to inspect their respective opposite contrast images. In both experiments leaning occurred across sessions. In experiment one, learning did not transfer across direction of luminance contrast, while in experiment two there was only partial transfer. These findings are consistent with the contention that some of the leaning was localized early in the visual processing pathway. The implications of these results for current medical image inspection training schedules are discussed.

  20. Gestalten of today: early processing of visual contours and surfaces.

    PubMed

    Kovács, I

    1996-12-01

    While much is known about the specialized, parallel processing streams of low-level vision that extract primary visual cues, there is only limited knowledge about the dynamic interactions between them. How are the fragments, caught by local analyzers, assembled together to provide us with a unified percept? How are local discontinuities in texture, motion or depth evaluated with respect to object boundaries and surface properties? These questions are presented within the framework of orientation-specific spatial interactions of early vision. Key observations of psychophysics, anatomy and neurophysiology on interactions of various spatial and temporal ranges are reviewed. Aspects of the functional architecture and possible neural substrates of local orientation-specific interactions are discussed, underlining their role in the integration of information across the visual field, and particularly in contour integration. Examples are provided demonstrating that global context, such as contour closure and figure-ground assignment, affects these local interactions. It is illustrated that figure-ground assignment is realized early in visual processing, and that the pattern of early interactions also brings about an effective and sparse coding of visual shape. Finally, it is concluded that the underlying functional architecture is not only dynamic and context dependent, but the pattern of connectivity depends as much on past experience as on actual stimulation.

  1. Adequacy of the Regular Early Education Classroom Environment for Students with Visual Impairment

    ERIC Educational Resources Information Center

    Brown, Cherylee M.; Packer, Tanya L.; Passmore, Anne

    2013-01-01

    This study describes the classroom environment that students with visual impairment typically experience in regular Australian early education. Adequacy of the classroom environment (teacher training and experience, teacher support, parent involvement, adult involvement, inclusive attitude, individualization of the curriculum, physical…

  2. Numerosity processing in early visual cortex.

    PubMed

    Fornaciai, Michele; Brannon, Elizabeth M; Woldorff, Marty G; Park, Joonkoo

    2017-08-15

    While parietal cortex is thought to be critical for representing numerical magnitudes, we recently reported an event-related potential (ERP) study demonstrating selective neural sensitivity to numerosity over midline occipital sites very early in the time course, suggesting the involvement of early visual cortex in numerosity processing. However, which specific brain area underlies such early activation is not known. Here, we tested whether numerosity-sensitive neural signatures arise specifically from the initial stages of visual cortex, aiming to localize the generator of these signals by taking advantage of the distinctive folding pattern of early occipital cortices around the calcarine sulcus, which predicts an inversion of polarity of ERPs arising from these areas when stimuli are presented in the upper versus lower visual field. Dot arrays, including 8-32dots constructed systematically across various numerical and non-numerical visual attributes, were presented randomly in either the upper or lower visual hemifields. Our results show that neural responses at about 90ms post-stimulus were robustly sensitive to numerosity. Moreover, the peculiar pattern of polarity inversion of numerosity-sensitive activity at this stage suggested its generation primarily in V2 and V3. In contrast, numerosity-sensitive ERP activity at occipito-parietal channels later in the time course (210-230ms) did not show polarity inversion, indicating a subsequent processing stage in the dorsal stream. Overall, these results demonstrate that numerosity processing begins in one of the earliest stages of the cortical visual stream. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Absence of visual experience modifies the neural basis of numerical thinking.

    PubMed

    Kanjlia, Shipra; Lane, Connor; Feigenson, Lisa; Bedny, Marina

    2016-10-04

    In humans, the ability to reason about mathematical quantities depends on a frontoparietal network that includes the intraparietal sulcus (IPS). How do nature and nurture give rise to the neurobiology of numerical cognition? We asked how visual experience shapes the neural basis of numerical thinking by studying numerical cognition in congenitally blind individuals. Blind (n = 17) and blindfolded sighted (n = 19) participants solved math equations that varied in difficulty (e.g., 27 - 12 = x vs. 7 - 2 = x), and performed a control sentence comprehension task while undergoing fMRI. Whole-cortex analyses revealed that in both blind and sighted participants, the IPS and dorsolateral prefrontal cortices were more active during the math task than the language task, and activity in the IPS increased parametrically with equation difficulty. Thus, the classic frontoparietal number network is preserved in the total absence of visual experience. However, surprisingly, blind but not sighted individuals additionally recruited a subset of early visual areas during symbolic math calculation. The functional profile of these "visual" regions was identical to that of the IPS in blind but not sighted individuals. Furthermore, in blindness, number-responsive visual cortices exhibited increased functional connectivity with prefrontal and IPS regions that process numbers. We conclude that the frontoparietal number network develops independently of visual experience. In blindness, this number network colonizes parts of deafferented visual cortex. These results suggest that human cortex is highly functionally flexible early in life, and point to frontoparietal input as a mechanism of cross-modal plasticity in blindness.

  4. Changes in Visual Object Recognition Precede the Shape Bias in Early Noun Learning

    PubMed Central

    Yee, Meagan; Jones, Susan S.; Smith, Linda B.

    2012-01-01

    Two of the most formidable skills that characterize human beings are language and our prowess in visual object recognition. They may also be developmentally intertwined. Two experiments, a large sample cross-sectional study and a smaller sample 6-month longitudinal study of 18- to 24-month-olds, tested a hypothesized developmental link between changes in visual object representation and noun learning. Previous findings in visual object recognition indicate that children’s ability to recognize common basic level categories from sparse structural shape representations of object shape emerges between the ages of 18 and 24 months, is related to noun vocabulary size, and is lacking in children with language delay. Other research shows in artificial noun learning tasks that during this same developmental period, young children systematically generalize object names by shape, that this shape bias predicts future noun learning, and is lacking in children with language delay. The two experiments examine the developmental relation between visual object recognition and the shape bias for the first time. The results show that developmental changes in visual object recognition systematically precede the emergence of the shape bias. The results suggest a developmental pathway in which early changes in visual object recognition that are themselves linked to category learning enable the discovery of higher-order regularities in category structure and thus the shape bias in novel noun learning tasks. The proposed developmental pathway has implications for understanding the role of specific experience in the development of both visual object recognition and the shape bias in early noun learning. PMID:23227015

  5. Visualizing the Effects of a Positive Early Experience, Tactile Stimulation, on Dendritic Morphology and Synaptic Connectivity with Golgi-Cox Staining

    PubMed Central

    Mychasiuk, Richelle; Gibb, Robbin; Kolb, Bryan

    2013-01-01

    To generate longer-term changes in behavior, experiences must be producing stable changes in neuronal morphology and synaptic connectivity. Tactile stimulation is a positive early experience that mimics maternal licking and grooming in the rat. Exposing rat pups to this positive experience can be completed easily and cost-effectively by using highly accessible materials such as a household duster. Using a cross-litter design, pups are either stroked or left undisturbed, for 15 min, three times per day throughout the perinatal period. To measure the neuroplastic changes related to this positive early experience, Golgi-Cox staining of brain tissue is utilized. Owing to the fact that Golgi-Cox impregnation stains a discrete number of neurons rather than all of the cells, staining of the rodent brain with Golgi-Cox solution permits the visualization of entire neuronal elements, including the cell body, dendrites, axons, and dendritic spines. The staining procedure is carried out over several days and requires that the researcher pay close attention to detail. However, once staining is completed, the entire brain has been impregnated and can be preserved indefinitely for ongoing analysis. Therefore, Golgi-Cox staining is a valuable resource for studying experience-dependent plasticity. PMID:24121525

  6. Absence of visual experience modifies the neural basis of numerical thinking

    PubMed Central

    Kanjlia, Shipra; Lane, Connor; Feigenson, Lisa; Bedny, Marina

    2016-01-01

    In humans, the ability to reason about mathematical quantities depends on a frontoparietal network that includes the intraparietal sulcus (IPS). How do nature and nurture give rise to the neurobiology of numerical cognition? We asked how visual experience shapes the neural basis of numerical thinking by studying numerical cognition in congenitally blind individuals. Blind (n = 17) and blindfolded sighted (n = 19) participants solved math equations that varied in difficulty (e.g., 27 − 12 = x vs. 7 − 2 = x), and performed a control sentence comprehension task while undergoing fMRI. Whole-cortex analyses revealed that in both blind and sighted participants, the IPS and dorsolateral prefrontal cortices were more active during the math task than the language task, and activity in the IPS increased parametrically with equation difficulty. Thus, the classic frontoparietal number network is preserved in the total absence of visual experience. However, surprisingly, blind but not sighted individuals additionally recruited a subset of early visual areas during symbolic math calculation. The functional profile of these “visual” regions was identical to that of the IPS in blind but not sighted individuals. Furthermore, in blindness, number-responsive visual cortices exhibited increased functional connectivity with prefrontal and IPS regions that process numbers. We conclude that the frontoparietal number network develops independently of visual experience. In blindness, this number network colonizes parts of deafferented visual cortex. These results suggest that human cortex is highly functionally flexible early in life, and point to frontoparietal input as a mechanism of cross-modal plasticity in blindness. PMID:27638209

  7. The Effect of Early Visual Deprivation on the Development of Face Detection

    ERIC Educational Resources Information Center

    Mondloch, Catherine J.; Segalowitz, Sidney J.; Lewis, Terri L.; Dywan, Jane; Le Grand, Richard; Maurer, Daphne

    2013-01-01

    The expertise of adults in face perception is facilitated by their ability to rapidly detect that a stimulus is a face. In two experiments, we examined the role of early visual input in the development of face detection by testing patients who had been treated as infants for bilateral congenital cataract. Experiment 1 indicated that, at age 9 to…

  8. ERP Evidence of Visualization at Early Stages of Visual Processing

    ERIC Educational Resources Information Center

    Page, Jonathan W.; Duhamel, Paul; Crognale, Michael A.

    2011-01-01

    Recent neuroimaging research suggests that early visual processing circuits are activated similarly during visualization and perception but have not demonstrated that the cortical activity is similar in character. We found functional equivalency in cortical activity by recording evoked potentials while color and luminance patterns were viewed and…

  9. Early Decomposition in Visual Word Recognition: Dissociating Morphology, Form, and Meaning

    ERIC Educational Resources Information Center

    Marslen-Wilson, William D.; Bozic, Mirjana; Randall, Billi

    2008-01-01

    The role of morphological, semantic, and form-based factors in the early stages of visual word recognition was investigated across different SOAs in a masked priming paradigm, focusing on English derivational morphology. In a first set of experiments, stimulus pairs co-varying in morphological decomposability and in semantic and orthographic…

  10. Experience-dependent plasticity from eye opening enables lasting, visual cortex-dependent enhancement of motion vision.

    PubMed

    Prusky, Glen T; Silver, Byron D; Tschetter, Wayne W; Alam, Nazia M; Douglas, Robert M

    2008-09-24

    Developmentally regulated plasticity of vision has generally been associated with "sensitive" or "critical" periods in juvenile life, wherein visual deprivation leads to loss of visual function. Here we report an enabling form of visual plasticity that commences in infant rats from eye opening, in which daily threshold testing of optokinetic tracking, amid otherwise normal visual experience, stimulates enduring, visual cortex-dependent enhancement (>60%) of the spatial frequency threshold for tracking. The perceptual ability to use spatial frequency in discriminating between moving visual stimuli is also improved by the testing experience. The capacity for inducing enhancement is transitory and effectively limited to infancy; however, enhanced responses are not consolidated and maintained unless in-kind testing experience continues uninterrupted into juvenile life. The data show that selective visual experience from infancy can alone enable visual function. They also indicate that plasticity associated with visual deprivation may not be the only cause of developmental visual dysfunction, because we found that experientially inducing enhancement in late infancy, without subsequent reinforcement of the experience in early juvenile life, can lead to enduring loss of function.

  11. Conversational Pedagogy: Exploring Interactions between a Teaching Artist and Young Learners during Visual Arts Experiences

    ERIC Educational Resources Information Center

    Eckhoff, Angela

    2013-01-01

    In many early childhood classrooms, visual arts experiences occur around a communal arts table. A shared workspace allows for spontaneous conversation and exploration of the art-making process of peers and teachers. In this setting, conversation can play an important role in visual arts experiences as children explore new media, skills, and ideas.…

  12. Evolution of attention mechanisms for early visual processing

    NASA Astrophysics Data System (ADS)

    Müller, Thomas; Knoll, Alois

    2011-03-01

    Early visual processing as a method to speed up computations on visual input data has long been discussed in the computer vision community. The general target of a such approaches is to filter nonrelevant information from the costly higher-level visual processing algorithms. By insertion of this additional filter layer the overall approach can be speeded up without actually changing the visual processing methodology. Being inspired by the layered architecture of the human visual processing apparatus, several approaches for early visual processing have been recently proposed. Most promising in this field is the extraction of a saliency map to determine regions of current attention in the visual field. Such saliency can be computed in a bottom-up manner, i.e. the theory claims that static regions of attention emerge from a certain color footprint, and dynamic regions of attention emerge from connected blobs of textures moving in a uniform way in the visual field. Top-down saliency effects are either unconscious through inherent mechanisms like inhibition-of-return, i.e. within a period of time the attention level paid to a certain region automatically decreases if the properties of that region do not change, or volitional through cognitive feedback, e.g. if an object moves consistently in the visual field. These bottom-up and top-down saliency effects have been implemented and evaluated in a previous computer vision system for the project JAST. In this paper an extension applying evolutionary processes is proposed. The prior vision system utilized multiple threads to analyze the regions of attention delivered from the early processing mechanism. Here, in addition, multiple saliency units are used to produce these regions of attention. All of these saliency units have different parameter-sets. The idea is to let the population of saliency units create regions of attention, then evaluate the results with cognitive feedback and finally apply the genetic mechanism

  13. Language experience shapes early electrophysiological responses to visual stimuli: the effects of writing system, stimulus length, and presentation duration.

    PubMed

    Xue, Gui; Jiang, Ting; Chen, Chuansheng; Dong, Qi

    2008-02-15

    How language experience affects visual word recognition has been a topic of intense interest. Using event-related potentials (ERPs), the present study compared the early electrophysiological responses (i.e., N1) to familiar and unfamiliar writings under different conditions. Thirteen native Chinese speakers (with English as their second language) were recruited to passively view four types of scripts: Chinese (familiar logographic writings), English (familiar alphabetic writings), Korean Hangul (unfamiliar logographic writings), and Tibetan (unfamiliar alphabetic writings). Stimuli also differed in lexicality (words vs. non-words, for familiar writings only), length (characters/letters vs. words), and presentation duration (100 ms vs. 750 ms). We found no significant differences between words and non-words, and the effect of language experience (familiar vs. unfamiliar) was significantly modulated by stimulus length and writing system, and to a less degree, by presentation duration. That is, the language experience effect (i.e., a stronger N1 response to familiar writings than to unfamiliar writings) was significant only for alphabetic letters, but not for alphabetic and logographic words. The difference between Chinese characters and unfamiliar logographic characters was significant under the condition of short presentation duration, but not under the condition of long presentation duration. Long stimuli elicited a stronger N1 response than did short stimuli, but this effect was significantly attenuated for familiar writings. These results suggest that N1 response might not reliably differentiate familiar and unfamiliar writings. More importantly, our results suggest that N1 is modulated by visual, linguistic, and task factors, which has important implications for the visual expertise hypothesis.

  14. Is nevtral NEUTRAL? Visual similarity effects in the early phases of written-word recognition.

    PubMed

    Marcet, Ana; Perea, Manuel

    2017-08-01

    For simplicity, contemporary models of written-word recognition and reading have unspecified feature/letter levels-they predict that the visually similar substituted-letter nonword PEQPLE is as effective at activating the word PEOPLE as the visually dissimilar substituted-letter nonword PEYPLE. Previous empirical evidence on the effects of visual similarly across letters during written-word recognition is scarce and nonconclusive. To examine whether visual similarity across letters plays a role early in word processing, we conducted two masked priming lexical decision experiments (stimulus-onset asynchrony = 50 ms). The substituted-letter primes were visually very similar to the target letters (u/v in Experiment 1 and i/j in Experiment 2; e.g., nevtral-NEUTRAL). For comparison purposes, we included an identity prime condition (neutral-NEUTRAL) and a dissimilar-letter prime condition (neztral-NEUTRAL). Results showed that the similar-letter prime condition produced faster word identification times than the dissimilar-letter prime condition. We discuss how models of written-word recognition should be amended to capture visual similarity effects across letters.

  15. Athletic training in badminton players modulates the early C1 component of visual evoked potentials: a preliminary investigation.

    PubMed

    Jin, Hua; Xu, Guiping; Zhang, John X; Ye, Zuoer; Wang, Shufang; Zhao, Lun; Lin, Chong-De; Mo, Lei

    2010-12-01

    One basic question in brain plasticity research is whether individual life experience in the normal population can affect very early sensory-perceptual processing. Athletes provide a possible model to explore plasticity of the visual cortex as athletic training in confrontational ball games is quite often accompanied by training of the visual system. We asked professional badminton players to watch video clips related to their training experience and predict where the ball would land and examined whether they differed from non-player controls in the elicited C1, a visual evoked potential indexing V1 activity. Compared with controls, the players made judgments significantly more accurately, albeit not faster. An early ERP component peaking around 65 ms post-stimulus with a scalp topography centering at the occipital pole (electrode Oz) was observed in both groups and interpreted as the C1 component. With comparable latency, amplitudes of this component were significantly enhanced for the players than for the non-players, suggesting that it can be modulated by long-term physical training. The results present a clear case of experience-induced brain plasticity in primary visual cortex for very early sensory processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Increased regional cerebral blood flow but normal distribution of GABAA receptor in the visual cortex of subjects with early-onset blindness.

    PubMed

    Mishina, Masahiro; Senda, Michio; Kiyosawa, Motohiro; Ishiwata, Kiichi; De Volder, Anne G; Nakano, Hideki; Toyama, Hinako; Oda, Kei-ichi; Kimura, Yuichi; Ishii, Kenji; Sasaki, Touru; Ohyama, Masashi; Komaba, Yuichi; Kobayashi, Shirou; Kitamura, Shin; Katayama, Yasuo

    2003-05-01

    Before the completion of visual development, visual deprivation impairs synaptic elimination in the visual cortex. The purpose of this study was to determine whether the distribution of central benzodiazepine receptor (BZR) is also altered in the visual cortex in subjects with early-onset blindness. Positron emission tomography was carried out with [(15)O]water and [(11)C]flumazenil on six blind subjects and seven sighted controls at rest. We found that the CBF was significantly higher in the visual cortex for the early-onset blind subjects than for the sighted control subjects. However, there was no significant difference in the BZR distribution in the visual cortex for the subject with early-onset blindness than for the sighted control subjects. These results demonstrated that early visual deprivation does not affect the distribution of GABA(A) receptors in the visual cortex with the sensitivity of our measurements. Synaptic elimination may be independent of visual experience in the GABAergic system of the human visual cortex during visual development.

  17. The role of visual deprivation and experience on the performance of sensory substitution devices.

    PubMed

    Stronks, H Christiaan; Nau, Amy C; Ibbotson, Michael R; Barnes, Nick

    2015-10-22

    It is commonly accepted that the blind can partially compensate for their loss of vision by developing enhanced abilities with their remaining senses. This visual compensation may be related to the fact that blind people rely on their other senses in everyday life. Many studies have indeed shown that experience plays an important role in visual compensation. Numerous neuroimaging studies have shown that the visual cortices of the blind are recruited by other functional brain areas and can become responsive to tactile or auditory input instead. These cross-modal plastic changes are more pronounced in the early blind compared to late blind individuals. The functional consequences of cross-modal plasticity on visual compensation in the blind are debated, as are the influences of various etiologies of vision loss (i.e., blindness acquired early or late in life). Distinguishing between the influences of experience and visual deprivation on compensation is especially relevant for rehabilitation of the blind with sensory substitution devices. The BrainPort artificial vision device and The vOICe are assistive devices for the blind that redirect visual information to another intact sensory system. Establishing how experience and different etiologies of vision loss affect the performance of these devices may help to improve existing rehabilitation strategies, formulate effective selection criteria and develop prognostic measures. In this review we will discuss studies that investigated the influence of training and visual deprivation on the performance of various sensory substitution approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Visual experience sculpts whole-cortex spontaneous infraslow activity patterns through an Arc-dependent mechanism

    PubMed Central

    Kraft, Andrew W.; Mitra, Anish; Bauer, Adam Q.; Raichle, Marcus E.; Culver, Joseph P.; Lee, Jin-Moo

    2017-01-01

    Decades of work in experimental animals has established the importance of visual experience during critical periods for the development of normal sensory-evoked responses in the visual cortex. However, much less is known concerning the impact of early visual experience on the systems-level organization of spontaneous activity. Human resting-state fMRI has revealed that infraslow fluctuations in spontaneous activity are organized into stereotyped spatiotemporal patterns across the entire brain. Furthermore, the organization of spontaneous infraslow activity (ISA) is plastic in that it can be modulated by learning and experience, suggesting heightened sensitivity to change during critical periods. Here we used wide-field optical intrinsic signal imaging in mice to examine whole-cortex spontaneous ISA patterns. Using monocular or binocular visual deprivation, we examined the effects of critical period visual experience on the development of ISA correlation and latency patterns within and across cortical resting-state networks. Visual modification with monocular lid suturing reduced correlation between left and right cortices (homotopic correlation) within the visual network, but had little effect on internetwork correlation. In contrast, visual deprivation with binocular lid suturing resulted in increased visual homotopic correlation and increased anti-correlation between the visual network and several extravisual networks, suggesting cross-modal plasticity. These network-level changes were markedly attenuated in mice with genetic deletion of Arc, a gene known to be critical for activity-dependent synaptic plasticity. Taken together, our results suggest that critical period visual experience induces global changes in spontaneous ISA relationships, both within the visual network and across networks, through an Arc-dependent mechanism. PMID:29087327

  19. The two-visual-systems hypothesis and the perspectival features of visual experience.

    PubMed

    Foley, Robert T; Whitwell, Robert L; Goodale, Melvyn A

    2015-09-01

    Some critics of the two-visual-systems hypothesis (TVSH) argue that it is incompatible with the fundamentally egocentric nature of visual experience (what we call the 'perspectival account'). The TVSH proposes that the ventral stream, which delivers up our visual experience of the world, works in an allocentric frame of reference, whereas the dorsal stream, which mediates the visual control of action, uses egocentric frames of reference. Given that the TVSH is also committed to the claim that dorsal-stream processing does not contribute to the contents of visual experience, it has been argued that the TVSH cannot account for the egocentric features of our visual experience. This argument, however, rests on a misunderstanding about how the operations mediating action and the operations mediating perception are specified in the TVSH. In this article, we emphasize the importance of the 'outputs' of the two-systems to the specification of their respective operations. We argue that once this point is appreciated, it becomes evident that the TVSH is entirely compatible with a perspectival account of visual experience. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. [Quality of life in visual impaired children treated for Early Visual Stimulation].

    PubMed

    Messa, Alcione Aparecida; Nakanami, Célia Regina; Lopes, Marcia Caires Bestilleiro

    2012-01-01

    To evaluate the quality of life in visually impaired children followed in the Early Visual Stimulation Ambulatory of Unifesp in two moments, before and after rehabilitational intervention of multiprofessional team. A CVFQ quality of life questionnaire was used. This instrument has a version for less than three years old children and another one for children older than three years (three to seven years) divided in six subscales: General health, General vision health, Competence, Personality, Family impact and Treatment. The correlation between the subscales on two moments was significant. There was a statistically significant difference in general vision health (p=0,029) and other important differences obtained in general health, family impact and quality of life general score. The questionnaire showed to be effective in order to measure the quality of life related to vision on families followed on this ambulatory. The multidisciplinary interventions provided visual function and familiar quality of life improvement. The quality of life related to vision in children followed in Early Visual Stimulation Ambulatory of Unifesp showed a significant improvement on general vision health.

  1. [Associative Learning between Orientation and Color in Early Visual Areas].

    PubMed

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2017-08-01

    Associative learning is an essential neural phenomenon where the contingency of different items increases after training. Although associative learning has been found to occur in many brain regions, there is no clear evidence that associative learning of visual features occurs in early visual areas. Here, we developed an associative decoded functional magnetic resonance imaging (fMRI) neurofeedback (A-DecNef) to determine whether associative learning of color and orientation can be induced in early visual areas. During the three days' training, A-DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was simultaneously, physically presented to participants. Consequently, participants' perception of "red" was significantly more frequently than that of "green" in an achromatic vertical grating. This effect was also observed 3 to 5 months after training. These results suggest that long-term associative learning of two different visual features such as color and orientation, was induced most likely in early visual areas. This newly extended technique that induces associative learning may be used as an important tool for understanding and modifying brain function, since associations are fundamental and ubiquitous with respect to brain function.

  2. Emotional words facilitate lexical but not early visual processing.

    PubMed

    Trauer, Sophie M; Kotz, Sonja A; Müller, Matthias M

    2015-12-12

    Emotional scenes and faces have shown to capture and bind visual resources at early sensory processing stages, i.e. in early visual cortex. However, emotional words have led to mixed results. In the current study ERPs were assessed simultaneously with steady-state visual evoked potentials (SSVEPs) to measure attention effects on early visual activity in emotional word processing. Neutral and negative words were flickered at 12.14 Hz whilst participants performed a Lexical Decision Task. Emotional word content did not modulate the 12.14 Hz SSVEP amplitude, neither did word lexicality. However, emotional words affected the ERP. Negative compared to neutral words as well as words compared to pseudowords lead to enhanced deflections in the P2 time range indicative of lexico-semantic access. The N400 was reduced for negative compared to neutral words and enhanced for pseudowords compared to words indicating facilitated semantic processing of emotional words. LPC amplitudes reflected word lexicality and thus the task-relevant response. In line with previous ERP and imaging evidence, the present results indicate that written emotional words are facilitated in processing only subsequent to visual analysis.

  3. The Effect of Visual Experience on Perceived Haptic Verticality When Tilted in the Roll Plane

    PubMed Central

    Cuturi, Luigi F.; Gori, Monica

    2017-01-01

    The orientation of the body in space can influence perception of verticality leading sometimes to biases consistent with priors peaked at the most common head and body orientation, that is upright. In this study, we investigate haptic perception of verticality in sighted individuals and early and late blind adults when tilted counterclockwise in the roll plane. Participants were asked to perform a stimulus orientation discrimination task with their body tilted to their left ear side 90° relative to gravity. Stimuli were presented by using a motorized haptic bar. In order to test whether different reference frames relative to the head influenced perception of verticality, we varied the position of the stimulus on the body longitudinal axis. Depending on the stimulus position sighted participants tended to have biases away or toward their body tilt. Visually impaired individuals instead show a different pattern of verticality estimations. A bias toward head and body tilt (i.e., Aubert effect) was observed in late blind individuals. Interestingly, no strong biases were observed in early blind individuals. Overall, these results posit visual sensory information to be fundamental in influencing the haptic readout of proprioceptive and vestibular information about body orientation relative to gravity. The acquisition of an idiotropic vector signaling the upright might take place through vision during development. Regarding early blind individuals, independent spatial navigation experience likely enhanced by echolocation behavior might have a role in such acquisition. In the case of participants with late onset blindness, early experience of vision might lead them to anchor their visually acquired priors to the haptic modality with no disambiguation between head and body references as observed in sighted individuals (Fraser et al., 2015). With our study, we aim to investigate haptic perception of gravity direction in unusual body tilts when vision is absent due to visual

  4. Assessing the Effect of Early Visual Cortex Transcranial Magnetic Stimulation on Working Memory Consolidation.

    PubMed

    van Lamsweerde, Amanda E; Johnson, Jeffrey S

    2017-07-01

    Maintaining visual working memory (VWM) representations recruits a network of brain regions, including the frontal, posterior parietal, and occipital cortices; however, it is unclear to what extent the occipital cortex is engaged in VWM after sensory encoding is completed. Noninvasive brain stimulation data show that stimulation of this region can affect working memory (WM) during the early consolidation time period, but it remains unclear whether it does so by influencing the number of items that are stored or their precision. In this study, we investigated whether single-pulse transcranial magnetic stimulation (spTMS) to the occipital cortex during VWM consolidation affects the quantity or quality of VWM representations. In three experiments, we disrupted VWM consolidation with either a visual mask or spTMS to retinotopic early visual cortex. We found robust masking effects on the quantity of VWM representations up to 200 msec poststimulus offset and smaller, more variable effects on WM quality. Similarly, spTMS decreased the quantity of VWM representations, but only when it was applied immediately following stimulus offset. Like visual masks, spTMS also produced small and variable effects on WM precision. The disruptive effects of both masks and TMS were greatly reduced or entirely absent within 200 msec of stimulus offset. However, there was a reduction in swap rate across all time intervals, which may indicate a sustained role of the early visual cortex in maintaining spatial information.

  5. Emotion Separation Is Completed Early and It Depends on Visual Field Presentation

    PubMed Central

    Liu, Lichan; Ioannides, Andreas A.

    2010-01-01

    It is now apparent that the visual system reacts to stimuli very fast, with many brain areas activated within 100 ms. It is, however, unclear how much detail is extracted about stimulus properties in the early stages of visual processing. Here, using magnetoencephalography we show that the visual system separates different facial expressions of emotion well within 100 ms after image onset, and that this separation is processed differently depending on where in the visual field the stimulus is presented. Seven right-handed males participated in a face affect recognition experiment in which they viewed happy, fearful and neutral faces. Blocks of images were shown either at the center or in one of the four quadrants of the visual field. For centrally presented faces, the emotions were separated fast, first in the right superior temporal sulcus (STS; 35–48 ms), followed by the right amygdala (57–64 ms) and medial pre-frontal cortex (83–96 ms). For faces presented in the periphery, the emotions were separated first in the ipsilateral amygdala and contralateral STS. We conclude that amygdala and STS likely play a different role in early visual processing, recruiting distinct neural networks for action: the amygdala alerts sub-cortical centers for appropriate autonomic system response for fight or flight decisions, while the STS facilitates more cognitive appraisal of situations and links appropriate cortical sites together. It is then likely that different problems may arise when either network fails to initiate or function properly. PMID:20339549

  6. Level-2 Milestone 4797: Early Users on Max, Sequoia Visualization Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cupps, Kim C.

    This report documents the fact that an early user has run successfully on Max, the Sequoia visualization cluster, ASC L2 milestone 4797: Early Users on Sequoia Visualization System (Max), due December 31, 2013. The Max visualization and data analysis cluster will provide Sequoia users with compute cycles and an interactive option for data exploration and analysis. The system will be integrated in the first quarter of FY14 and the system is expected to be moved to the classified network by the second quarter of FY14. The goal of this milestone is to have early users running their visualization and datamore » analysis work on the Max cluster on the classified network.« less

  7. Spatial Working Memory Effects in Early Visual Cortex

    ERIC Educational Resources Information Center

    Munneke, Jaap; Heslenfeld, Dirk J.; Theeuwes, Jan

    2010-01-01

    The present study investigated how spatial working memory recruits early visual cortex. Participants were required to maintain a location in working memory while changes in blood oxygen level dependent (BOLD) signals were measured during the retention interval in which no visual stimulation was present. We show working memory effects during the…

  8. Gestalt perception modulates early visual processing.

    PubMed

    Herrmann, C S; Bosch, V

    2001-04-17

    We examined whether early visual processing reflects perceptual properties of a stimulus in addition to physical features. We recorded event-related potentials (ERPs) of 13 subjects in a visual classification task. We used four different stimuli which were all composed of four identical elements. One of the stimuli constituted an illusory Kanizsa square, another was composed of the same number of collinear line segments but the elements did not form a Gestalt. In addition, a target and a control stimulus were used which were arranged differently. These stimuli allow us to differentiate the processing of colinear line elements (stimulus features) and illusory figures (perceptual properties). The visual N170 in response to the illusory figure was significantly larger as compared to the other collinear stimulus. This is taken to indicate that the visual N170 reflects cognitive processes of Gestalt perception in addition to attentional processes and physical stimulus properties.

  9. Topographic contribution of early visual cortex to short-term memory consolidation: a transcranial magnetic stimulation study.

    PubMed

    van de Ven, Vincent; Jacobs, Christianne; Sack, Alexander T

    2012-01-04

    The neural correlates for retention of visual information in visual short-term memory are considered separate from those of sensory encoding. However, recent findings suggest that sensory areas may play a role also in short-term memory. We investigated the functional relevance, spatial specificity, and temporal characteristics of human early visual cortex in the consolidation of capacity-limited topographic visual memory using transcranial magnetic stimulation (TMS). Topographically specific TMS pulses were delivered over lateralized occipital cortex at 100, 200, or 400 ms into the retention phase of a modified change detection task with low or high memory loads. For the high but not the low memory load, we found decreased memory performance for memory trials in the visual field contralateral, but not ipsilateral to the side of TMS, when pulses were delivered at 200 ms into the retention interval. A behavioral version of the TMS experiment, in which a distractor stimulus (memory mask) replaced the TMS pulses, further corroborated these findings. Our findings suggest that retinotopic visual cortex contributes to the short-term consolidation of topographic visual memory during early stages of the retention of visual information. Further, TMS-induced interference decreased the strength (amplitude) of the memory representation, which most strongly affected the high memory load trials.

  10. Adult Visual Experience Promotes Recovery of Primary Visual Cortex from Long-Term Monocular Deprivation

    ERIC Educational Resources Information Center

    Fischer, Quentin S.; Aleem, Salman; Zhou, Hongyi; Pham, Tony A.

    2007-01-01

    Prolonged visual deprivation from early childhood to maturity is believed to cause permanent visual impairment. However, there have been case reports of substantial improvement of binocular vision in human adults following lifelong visual impairment or deprivation. These observations, together with recent findings of adult ocular dominance…

  11. Asymmetrical Interhemispheric Connections Develop in Cat Visual Cortex after Early Unilateral Convergent Strabismus: Anatomy, Physiology, and Mechanisms

    PubMed Central

    Bui Quoc, Emmanuel; Ribot, Jérôme; Quenech’Du, Nicole; Doutremer, Suzette; Lebas, Nicolas; Grantyn, Alexej; Aushana, Yonane; Milleret, Chantal

    2011-01-01

    In the mammalian primary visual cortex, the corpus callosum contributes to the unification of the visual hemifields that project to the two hemispheres. Its development depends on visual experience. When this is abnormal, callosal connections must undergo dramatic anatomical and physiological changes. However, data concerning these changes are sparse and incomplete. Thus, little is known about the impact of abnormal postnatal visual experience on the development of callosal connections and their role in unifying representation of the two hemifields. Here, the effects of early unilateral convergent strabismus (a model of abnormal visual experience) were fully characterized with respect to the development of the callosal connections in cat visual cortex, an experimental model for humans. Electrophysiological responses and 3D reconstruction of single callosal axons show that abnormally asymmetrical callosal connections develop after unilateral convergent strabismus, resulting from an extension of axonal branches of specific orders in the hemisphere ipsilateral to the deviated eye and a decreased number of nodes and terminals in the other (ipsilateral to the non-deviated eye). Furthermore this asymmetrical organization prevents the establishment of a unifying representation of the two visual hemifields. As a general rule, we suggest that crossed and uncrossed retino-geniculo-cortical pathways contribute successively to the development of the callosal maps in visual cortex. PMID:22275883

  12. Theta Oscillations in Visual Cortex Emerge with Experience to Convey Expected Reward Time and Experienced Reward Rate

    PubMed Central

    Zold, Camila L.

    2015-01-01

    The primary visual cortex (V1) is widely regarded as faithfully conveying the physical properties of visual stimuli. Thus, experience-induced changes in V1 are often interpreted as improving visual perception (i.e., perceptual learning). Here we describe how, with experience, cue-evoked oscillations emerge in V1 to convey expected reward time as well as to relate experienced reward rate. We show, in chronic multisite local field potential recordings from rat V1, that repeated presentation of visual cues induces the emergence of visually evoked oscillatory activity. Early in training, the visually evoked oscillations relate to the physical parameters of the stimuli. However, with training, the oscillations evolve to relate the time in which those stimuli foretell expected reward. Moreover, the oscillation prevalence reflects the reward rate recently experienced by the animal. Thus, training induces experience-dependent changes in V1 activity that relate to what those stimuli have come to signify behaviorally: when to expect future reward and at what rate. PMID:26134643

  13. Experience and information loss in auditory and visual memory.

    PubMed

    Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K

    2017-07-01

    Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.

  14. Multifocal visual evoked potentials for early glaucoma detection.

    PubMed

    Weizer, Jennifer S; Musch, David C; Niziol, Leslie M; Khan, Naheed W

    2012-07-01

    To compare multifocal visual evoked potentials (mfVEP) with other detection methods in early open-angle glaucoma. Ten patients with suspected glaucoma and 5 with early open-angle glaucoma underwent mfVEP, standard automated perimetry (SAP), short-wave automated perimetry, frequency-doubling technology perimetry, and nerve fiber layer optical coherence tomography. Nineteen healthy control subjects underwent mfVEP and SAP for comparison. Comparisons between groups involving continuous variables were made using independent t tests; for categorical variables, Fisher's exact test was used. Monocular mfVEP cluster defects were associated with an increased SAP pattern standard deviation (P = .0195). Visual fields that showed interocular mfVEP cluster defects were more likely to also show superior quadrant nerve fiber layer thinning by OCT (P = .0152). Multifocal visual evoked potential cluster defects are associated with a functional and an anatomic measure that both relate to glaucomatous optic neuropathy. Copyright 2012, SLACK Incorporated.

  15. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate.

    PubMed

    Rademaker, Rosanne L; van de Ven, Vincent G; Tong, Frank; Sack, Alexander T

    2017-01-01

    Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise.

  16. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate

    PubMed Central

    van de Ven, Vincent G.; Tong, Frank; Sack, Alexander T.

    2017-01-01

    Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise. PMID:28384347

  17. Feature-selective attention enhances color signals in early visual areas of the human brain.

    PubMed

    Müller, M M; Andersen, S; Trujillo, N J; Valdés-Sosa, P; Malinowski, P; Hillyard, S A

    2006-09-19

    We used an electrophysiological measure of selective stimulus processing (the steady-state visual evoked potential, SSVEP) to investigate feature-specific attention to color cues. Subjects viewed a display consisting of spatially intermingled red and blue dots that continually shifted their positions at random. The red and blue dots flickered at different frequencies and thereby elicited distinguishable SSVEP signals in the visual cortex. Paying attention selectively to either the red or blue dot population produced an enhanced amplitude of its frequency-tagged SSVEP, which was localized by source modeling to early levels of the visual cortex. A control experiment showed that this selection was based on color rather than flicker frequency cues. This signal amplification of attended color items provides an empirical basis for the rapid identification of feature conjunctions during visual search, as proposed by "guided search" models.

  18. Development of visual category selectivity in ventral visual cortex does not require visual experience

    PubMed Central

    van den Hurk, Job; Van Baelen, Marc; Op de Beeck, Hans P.

    2017-01-01

    To what extent does functional brain organization rely on sensory input? Here, we show that for the penultimate visual-processing region, ventral-temporal cortex (VTC), visual experience is not the origin of its fundamental organizational property, category selectivity. In the fMRI study reported here, we presented 14 congenitally blind participants with face-, body-, scene-, and object-related natural sounds and presented 20 healthy controls with both auditory and visual stimuli from these categories. Using macroanatomical alignment, response mapping, and surface-based multivoxel pattern analysis, we demonstrated that VTC in blind individuals shows robust discriminatory responses elicited by the four categories and that these patterns of activity in blind subjects could successfully predict the visual categories in sighted controls. These findings were confirmed in a subset of blind participants born without eyes and thus deprived from all light perception since conception. The sounds also could be decoded in primary visual and primary auditory cortex, but these regions did not sustain generalization across modalities. Surprisingly, although not as strong as visual responses, selectivity for auditory stimulation in visual cortex was stronger in blind individuals than in controls. The opposite was observed in primary auditory cortex. Overall, we demonstrated a striking similarity in the cortical response layout of VTC in blind individuals and sighted controls, demonstrating that the overall category-selective map in extrastriate cortex develops independently from visual experience. PMID:28507127

  19. Early Childhood Special Education for Children with Visual Impairments: Problems and Solutions

    ERIC Educational Resources Information Center

    Kesiktas, A. Dolunay

    2009-01-01

    Studies showing developmental delays in infants and children with visual impairments have triggered early childhood special education studies for this population. Early childhood special education guidelines for visually impaired infants and children range from individualized services to personnel preparation issues while all display certain…

  20. Developing Verbal and Visual Literacy through Experiences in the Visual Arts: 25 Tips for Teachers

    ERIC Educational Resources Information Center

    Johnson, Margaret H.

    2008-01-01

    Including talk about art--conversing with children about artwork, their own and others'--as a component of visual art activities extends children's experiences in and understanding of visual messages. Johnson discusses practices that help children develop visual and verbal expression through active experiences with the visual arts. She offers 25…

  1. Early visual processing is enhanced in the midluteal phase of the menstrual cycle.

    PubMed

    Lusk, Bethany R; Carr, Andrea R; Ranson, Valerie A; Bryant, Richard A; Felmingham, Kim L

    2015-12-01

    Event-related potential (ERP) studies have revealed an early attentional bias in processing unpleasant emotional images in women. Recent neuroimaging data suggests there are significant differences in cortical emotional processing according to menstrual phase. This study examined the impact of menstrual phase on visual emotional processing in women compared to men. ERPs were recorded from 28 early follicular women, 29 midluteal women, and 27 men while they completed a passive viewing task of neutral and low- and high- arousing pleasant and unpleasant images. There was a significant effect of menstrual phase in early visual processing, as midluteal women displayed significantly greater P1 amplitude at occipital regions to all visual images compared to men. Both midluteal and early follicular women displayed larger N1 amplitudes than men (although this only reached significance for the midluteal group) to the visual images. No sex or menstrual phase differences were apparent in later N2, P3, or LPP. A condition effect demonstrated greater P3 and LPP amplitude to highly-arousing unpleasant images relative to all other stimuli conditions. These results indicate that women have greater early automatic visual processing compared to men, and suggests that this effect is particularly strong in women in the midluteal phase at the earliest stage of visual attention processing. Our findings highlight the importance of considering menstrual phase when examining sex differences in the cortical processing of visual stimuli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Experience-enabled enhancement of adult visual cortex function.

    PubMed

    Tschetter, Wayne W; Alam, Nazia M; Yee, Christopher W; Gorz, Mario; Douglas, Robert M; Sagdullaev, Botir; Prusky, Glen T

    2013-03-20

    We previously reported in adult mice that visuomotor experience during monocular deprivation (MD) augmented enhancement of visual-cortex-dependent behavior through the non-deprived eye (NDE) during deprivation, and enabled enhanced function to persist after MD. We investigated the physiological substrates of this experience-enabled form of adult cortical plasticity by measuring visual behavior and visually evoked potentials (VEPs) in binocular visual cortex of the same mice before, during, and after MD. MD on its own potentiated VEPs contralateral to the NDE during MD and shifted ocular dominance (OD) in favor of the NDE in both hemispheres. Whereas we expected visuomotor experience during MD to augment these effects, instead enhanced responses contralateral to the NDE, and the OD shift ipsilateral to the NDE were attenuated. However, in the same animals, we measured NMDA receptor-dependent VEP potentiation ipsilateral to the NDE during MD, which persisted after MD. The results indicate that visuomotor experience during adult MD leads to enduring enhancement of behavioral function, not simply by amplifying MD-induced changes in cortical OD, but through an independent process of increasing NDE drive in ipsilateral visual cortex. Because the plasticity is resident in the mature visual cortex and selectively effects gain of visual behavior through experiential means, it may have the therapeutic potential to target and non-invasively treat eye- or visual-field-specific cortical impairment.

  3. Experience-dependent central vision deficits: Neurobiology and visual acuity.

    PubMed

    Williams, Kate; Balsor, Justin L; Beshara, Simon; Beston, Brett R; Jones, David G; Murphy, Kathryn M

    2015-09-01

    Abnormal visual experience during childhood often leads to amblyopia, with strong links to binocular dysfunction that can include poor acuity in both eyes, especially in central vision. In animal models of amblyopia, the non-deprived eye is often considered normal and what limits binocular acuity. This leaves open the question whether monocular deprivation (MD) induces binocular dysfunction similar to what is found in amblyopia. In previous studies of MD cats, we found a loss of excitatory receptors restricted to the central visual field representation in visual cortex (V1), including both eyes' columns. This led us to ask two questions about the effects of MD: how quickly are receptors lost in V1? and is there an impact on binocular acuity? We found that just a few hours of MD caused a rapid loss of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor proteins across all of V1. But after a few days of MD, there was recovery in the visual periphery, leaving a loss of AMPA receptors only in the central region of V1. We reared animals with early MD followed by a long period of binocular vision and found binocular acuity deficits that were greatest in the central visual field. Our results suggest that the greater binocular acuity deficits in the central visual field are driven in part by the long-term loss of AMPA receptors in the central region of V1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Early event related fields during visually evoked pain anticipation.

    PubMed

    Gopalakrishnan, Raghavan; Burgess, Richard C; Plow, Ela B; Floden, Darlene P; Machado, Andre G

    2016-03-01

    Pain experience is not only a function of somatosensory inputs. Rather, it is strongly influenced by cognitive and affective pathways. Pain anticipatory phenomena, an important limitation to rehabilitative efforts in the chronic state, are processed by associative and limbic networks, along with primary sensory cortices. Characterization of neurophysiological correlates of pain anticipation, particularly during very early stages of neural processing is critical for development of therapeutic interventions. Here, we utilized magnetoencephalography to study early event-related fields (ERFs) in healthy subjects exposed to a 3 s visual countdown task that preceded a painful stimulus, a non-painful stimulus or no stimulus. We found that the first countdown cue, but not the last cue, evoked critical ERFs signaling anticipation, attention and alertness to the noxious stimuli. Further, we found that P2 and N2 components were significantly different in response to first-cues that signaled incoming painful stimuli when compared to non-painful or no stimuli. The findings indicate that early ERFs are relevant neural substrates of pain anticipatory phenomena and could be potentially serve as biomarkers. These measures could assist in the development of neurostimulation approaches aimed at curbing the negative effects of pain anticipation during rehabilitation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Shifting Attention within Memory Representations Involves Early Visual Areas

    PubMed Central

    Munneke, Jaap; Belopolsky, Artem V.; Theeuwes, Jan

    2012-01-01

    Prior studies have shown that spatial attention modulates early visual cortex retinotopically, resulting in enhanced processing of external perceptual representations. However, it is not clear whether the same visual areas are modulated when attention is focused on, and shifted within a working memory representation. In the current fMRI study participants were asked to memorize an array containing four stimuli. After a delay, participants were presented with a verbal cue instructing them to actively maintain the location of one of the stimuli in working memory. Additionally, on a number of trials a second verbal cue instructed participants to switch attention to the location of another stimulus within the memorized representation. Results of the study showed that changes in the BOLD pattern closely followed the locus of attention within the working memory representation. A decrease in BOLD-activity (V1–V3) was observed at ROIs coding a memory location when participants switched away from this location, whereas an increase was observed when participants switched towards this location. Continuous increased activity was obtained at the memorized location when participants did not switch. This study shows that shifting attention within memory representations activates the earliest parts of visual cortex (including V1) in a retinotopic fashion. We conclude that even in the absence of visual stimulation, early visual areas support shifting of attention within memorized representations, similar to when attention is shifted in the outside world. The relationship between visual working memory and visual mental imagery is discussed in light of the current findings. PMID:22558165

  6. Adaptive design of visual perception experiments

    NASA Astrophysics Data System (ADS)

    O'Connor, John D.; Hixson, Jonathan; Thomas, James M., Jr.; Peterson, Matthew S.; Parasuraman, Raja

    2010-04-01

    Meticulous experimental design may not always prevent confounds from affecting experimental data acquired during visual perception experiments. Although experimental controls reduce the potential effects of foreseen sources of interference, interaction, or noise, they are not always adequate for preventing the confounding effects of unforeseen forces. Visual perception experimentation is vulnerable to unforeseen confounds because of the nature of the associated cognitive processes involved in the decision task. Some confounds are beyond the control of experimentation, such as what a participant does immediately prior to experimental participation, or the participant's attitude or emotional state. Other confounds may occur through ignorance of practical control methods on the part of the experiment's designer. The authors conducted experiments related to experimental fatigue and initially achieved significant results that were, upon re-examination, attributable to a lack of adequate controls. Re-examination of the original results and the processes and events that led to them yielded a second experimental design with more experimental controls and significantly different results. The authors propose that designers of visual perception experiments can benefit from planning to use a test-fix-test or adaptive experimental design cycle, so that unforeseen confounds in the initial design can be remedied.

  7. Reduced adaptability, but no fundamental disruption, of norm-based face coding following early visual deprivation from congenital cataracts.

    PubMed

    Rhodes, Gillian; Nishimura, Mayu; de Heering, Adelaide; Jeffery, Linda; Maurer, Daphne

    2017-05-01

    Faces are adaptively coded relative to visual norms that are updated by experience, and this adaptive coding is linked to face recognition ability. Here we investigated whether adaptive coding of faces is disrupted in individuals (adolescents and adults) who experience face recognition difficulties following visual deprivation from congenital cataracts in infancy. We measured adaptive coding using face identity aftereffects, where smaller aftereffects indicate less adaptive updating of face-coding mechanisms by experience. We also examined whether the aftereffects increase with adaptor identity strength, consistent with norm-based coding of identity, as in typical populations, or whether they show a different pattern indicating some more fundamental disruption of face-coding mechanisms. Cataract-reversal patients showed significantly smaller face identity aftereffects than did controls (Experiments 1 and 2). However, their aftereffects increased significantly with adaptor strength, consistent with norm-based coding (Experiment 2). Thus we found reduced adaptability but no fundamental disruption of norm-based face-coding mechanisms in cataract-reversal patients. Our results suggest that early visual experience is important for the normal development of adaptive face-coding mechanisms. © 2016 John Wiley & Sons Ltd.

  8. Early-Stage Visual Processing and Cortical Amplification Deficits in Schizophrenia

    PubMed Central

    Butler, Pamela D.; Zemon, Vance; Schechter, Isaac; Saperstein, Alice M.; Hoptman, Matthew J.; Lim, Kelvin O.; Revheim, Nadine; Silipo, Gail; Javitt, Daniel C.

    2005-01-01

    Background Patients with schizophrenia show deficits in early-stage visual processing, potentially reflecting dysfunction of the magnocellular visual pathway. The magnocellular system operates normally in a nonlinear amplification mode mediated by glutamatergic (N-methyl-d-aspartate) receptors. Investigating magnocellular dysfunction in schizophrenia therefore permits evaluation of underlying etiologic hypotheses. Objectives To evaluate magnocellular dysfunction in schizophrenia, relative to known neurochemical and neuroanatomical substrates, and to examine relationships between electrophysiological and behavioral measures of visual pathway dysfunction and relationships with higher cognitive deficits. Design, Setting, and Participants Between-group study at an inpatient state psychiatric hospital and out-patient county psychiatric facilities. Thirty-three patients met DSM-IV criteria for schizophrenia or schizoaffective disorder, and 21 nonpsychiatric volunteers of similar ages composed the control group. Main Outcome Measures (1) Magnocellular and parvocellular evoked potentials, analyzed using nonlinear (Michaelis-Menten) and linear contrast gain approaches; (2) behavioral contrast sensitivity measures; (3) white matter integrity; (4) visual and nonvisual neuropsychological measures, and (5) clinical symptom and community functioning measures. Results Patients generated evoked potentials that were significantly reduced in response to magnocellular-biased, but not parvocellular-biased, stimuli (P=.001). Michaelis-Menten analyses demonstrated reduced contrast gain of the magnocellular system (P=.001). Patients showed decreased contrast sensitivity to magnocellular-biased stimuli (P<.001). Evoked potential deficits were significantly related to decreased white matter integrity in the optic radiations (P<.03). Evoked potential deficits predicted impaired contrast sensitivity (P=.002), which was in turn related to deficits in complex visual processing (P≤.04). Both

  9. Reading Acquisition Enhances an Early Visual Process of Contour Integration

    ERIC Educational Resources Information Center

    Szwed, Marcin; Ventura, Paulo; Querido, Luis; Cohen, Laurent; Dehaene, Stanislas

    2012-01-01

    The acquisition of reading has an extensive impact on the developing brain and leads to enhanced abilities in phonological processing and visual letter perception. Could this expertise also extend to early visual abilities outside the reading domain? Here we studied the performance of illiterate, ex-illiterate and literate adults closely matched…

  10. Altered Evoked Gamma-Band Responses Reveal Impaired Early Visual Processing in ADHD Children

    ERIC Educational Resources Information Center

    Lenz, Daniel; Krauel, Kerstin; Flechtner, Hans-Henning; Schadow, Jeanette; Hinrichs, Hermann; Herrmann, Christoph S.

    2010-01-01

    Neurophysiological studies yield contrary results whether attentional problems of patients with attention-deficit/hyperactivity disorder (ADHD) are related to early visual processing deficits or not. Evoked gamma-band responses (GBRs), being among the first cortical responses occurring as early as 90 ms after visual stimulation in human EEG, have…

  11. Decoding Visual Object Categories in Early Somatosensory Cortex

    PubMed Central

    Smith, Fraser W.; Goodale, Melvyn A.

    2015-01-01

    Neurons, even in the earliest sensory areas of cortex, are subject to a great deal of contextual influence from both within and across modality connections. In the present work, we investigated whether the earliest regions of somatosensory cortex (S1 and S2) would contain content-specific information about visual object categories. We reasoned that this might be possible due to the associations formed through experience that link different sensory aspects of a given object. Participants were presented with visual images of different object categories in 2 fMRI experiments. Multivariate pattern analysis revealed reliable decoding of familiar visual object category in bilateral S1 (i.e., postcentral gyri) and right S2. We further show that this decoding is observed for familiar but not unfamiliar visual objects in S1. In addition, whole-brain searchlight decoding analyses revealed several areas in the parietal lobe that could mediate the observed context effects between vision and somatosensation. These results demonstrate that even the first cortical stages of somatosensory processing carry information about the category of visually presented familiar objects. PMID:24122136

  12. Early screening of an infant's visual system

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F. M.; Jorge, Jorge M.

    1999-06-01

    It is of utmost importance to the development of the child's visual system that she perceives clear focused retinal images. Furthermore if the refractive problems are not corrected in due time amblyopia may occur--myopia and hyperopia can only cause important problems in the future when they are significantly large, however for the astigmatism (rather frequent in infants) and anisometropia the problems tend to be more stringent. The early evaluation of the visual status of human infants is thus of critical importance. Photorefraction is a convenient technique for this kind of subjects. Essentially a light beam is delivered into the eyes. It is refracted by the ocular media, strikes the retina, focusing or not, reflects off and is collected by a camera. The photorefraction setup we established using new technological breakthroughs on the fields of imaging devices, digital image processing and fiber optics, allows a fast noninvasive evaluation of children visual status (refractive errors, accommodation, strabismus, ...). Results of the visual screening of a group of risk' child descents of blinds or amblyopes will be presented.

  13. Structural reorganization of the early visual cortex following Braille training in sighted adults.

    PubMed

    Bola, Łukasz; Siuda-Krzywicka, Katarzyna; Paplińska, Małgorzata; Sumera, Ewa; Zimmermann, Maria; Jednoróg, Katarzyna; Marchewka, Artur; Szwed, Marcin

    2017-12-12

    Training can induce cross-modal plasticity in the human cortex. A well-known example of this phenomenon is the recruitment of visual areas for tactile and auditory processing. It remains unclear to what extent such plasticity is associated with changes in anatomy. Here we enrolled 29 sighted adults into a nine-month tactile Braille-reading training, and used voxel-based morphometry and diffusion tensor imaging to describe the resulting anatomical changes. In addition, we collected resting-state fMRI data to relate these changes to functional connectivity between visual and somatosensory-motor cortices. Following Braille-training, we observed substantial grey and white matter reorganization in the anterior part of early visual cortex (peripheral visual field). Moreover, relative to its posterior, foveal part, the peripheral representation of early visual cortex had stronger functional connections to somatosensory and motor cortices even before the onset of training. Previous studies show that the early visual cortex can be functionally recruited for tactile discrimination, including recognition of Braille characters. Our results demonstrate that reorganization in this region induced by tactile training can also be anatomical. This change most likely reflects a strengthening of existing connectivity between the peripheral visual cortex and somatosensory cortices, which suggests a putative mechanism for cross-modal recruitment of visual areas.

  14. Brachytherapy in early prostate cancer--early experience.

    PubMed

    Jose, B O; Bailen, J L; Albrink, F H; Steinbock, G S; Cornett, M S; Benson, D C; Schmied, W K; Medley, R N; Spanos, W J; Paris, K J; Koerner, P D; Gatenby, R A; Wilson, D L; Meyer, R

    1999-01-01

    Use of brachytherapy with radioactive seeds in the management of early prostate cancer is commonly used in the United States. The early experience has been reported from the prostate treatment centers in Seattle for the last 10 years. In this manuscript we are reporting our early experience of 150 radioactive seed implantations in early stage prostate cancer using either Iodine 125 or Palladium 103 seeds. The average age of the patient is 66 years and the median Gleason score is 5.4 with a median PSA of 6. A brief description of the evolution of the treatment of prostate cancer as well as the preparation for the seed implantation using the volume study with ultrasound of the prostate, pubic arch study using CT scan of the pelvis and the complete planning using the treatment planning computers are discussed. We also have described the current technique which is used in our experience based on the Seattle guidelines. We plan a follow-up report with the results of the studies with longer follow-up.

  15. Independent Deficits of Visual Word and Motion Processing in Aging and Early Alzheimer's Disease

    PubMed Central

    Velarde, Carla; Perelstein, Elizabeth; Ressmann, Wendy; Duffy, Charles J.

    2013-01-01

    We tested whether visual processing impairments in aging and Alzheimer's disease (AD) reflect uniform posterior cortical decline, or independent disorders of visual processing for reading and navigation. Young and older normal controls were compared to early AD patients using psychophysical measures of visual word and motion processing. We find elevated perceptual thresholds for letters and word discrimination from young normal controls, to older normal controls, to early AD patients. Across subject groups, visual motion processing showed a similar pattern of increasing thresholds, with the greatest impact on radial pattern motion perception. Combined analyses show that letter, word, and motion processing impairments are independent of each other. Aging and AD may be accompanied by independent impairments of visual processing for reading and navigation. This suggests separate underlying disorders and highlights the need for comprehensive evaluations to detect early deficits. PMID:22647256

  16. Visual recognition and visually guided action after early bilateral lesion of occipital cortex: a behavioral study of a 4.6-year-old girl.

    PubMed

    Amicuzi, Ileana; Stortini, Massimo; Petrarca, Maurizio; Di Giulio, Paola; Di Rosa, Giuseppe; Fariello, Giuseppe; Longo, Daniela; Cannatà, Vittorio; Genovese, Elisabetta; Castelli, Enrico

    2006-10-01

    We report the case of a 4.6-year-old girl born pre-term with early bilateral occipital damage. It was revealed that the child had non-severely impaired basic visual abilities and ocular motility, a selective perceptual deficit of figure-ground segregation, impaired visual recognition and abnormal navigating through space. Even if the child's visual functioning was not optimal, this was the expression of adaptive anatomic and functional brain modifications that occurred following the early lesion. Anatomic brain structure was studied with anatomic MRI and Diffusor Tensor Imaging (DTI)-MRI. This behavioral study may provide an important contribution to understanding the impact of an early lesion of the visual system on the development of visual functions and on the immature brain's potential for reorganisation related to when the damage occurred.

  17. Multiple adaptable mechanisms early in the primate visual pathway

    PubMed Central

    Dhruv, Neel T.; Tailby, Chris; Sokol, Sach H.; Lennie, Peter

    2011-01-01

    We describe experiments that isolate and characterize multiple adaptable mechanisms that influence responses of orientation-selective neurons in primary visual cortex (V1) of anesthetized macaque (Macaca fascicularis). The results suggest that three adaptable stages of machinery shape neural responses in V1: a broadly-tuned early stage and a spatio-temporally tuned later stage, both of which provide excitatory input, and a normalization pool that is also broadly tuned. The early stage and the normalization pool are revealed by adapting gratings that themselves fail to evoke a response from the neuron: either low temporal frequency gratings at the null orientation or gratings of any orientation drifting at high temporal frequencies. When effective, adapting stimuli that altered the sensitivity of these two mechanisms caused reductions of contrast gain and often brought about a paradoxical increase in response gain due to a relatively greater desensitization of the normalization pool. The tuned mechanism is desensitized only by stimuli well-matched to a neuron’s receptive field. We could thus infer desensitization of the tuned mechanism by comparing effects obtained with adapting gratings of preferred and null orientation modulated at low temporal frequencies. PMID:22016535

  18. Two critical periods in early visual cortex during figure-ground segregation.

    PubMed

    Wokke, Martijn E; Sligte, Ilja G; Steven Scholte, H; Lamme, Victor A F

    2012-11-01

    The ability to distinguish a figure from its background is crucial for visual perception. To date, it remains unresolved where and how in the visual system different stages of figure-ground segregation emerge. Neural correlates of figure border detection have consistently been found in early visual cortex (V1/V2). However, areas V1/V2 have also been frequently associated with later stages of figure-ground segregation (such as border ownership or surface segregation). To causally link activity in early visual cortex to different stages of figure-ground segregation, we briefly disrupted activity in areas V1/V2 at various moments in time using transcranial magnetic stimulation (TMS). Prior to stimulation we presented stimuli that made it possible to differentiate between figure border detection and surface segregation. We concurrently recorded electroencephalographic (EEG) signals to examine how neural correlates of figure-ground segregation were affected by TMS. Results show that disruption of V1/V2 in an early time window (96-119 msec) affected detection of figure stimuli and affected neural correlates of figure border detection, border ownership, and surface segregation. TMS applied in a relatively late time window (236-259 msec) selectively deteriorated performance associated with surface segregation. We conclude that areas V1/V2 are not only essential in an early stage of figure-ground segregation when figure borders are detected, but subsequently causally contribute to more sophisticated stages of figure-ground segregation such as surface segregation.

  19. Two critical periods in early visual cortex during figure–ground segregation

    PubMed Central

    Wokke, Martijn E; Sligte, Ilja G; Steven Scholte, H; Lamme, Victor A F

    2012-01-01

    The ability to distinguish a figure from its background is crucial for visual perception. To date, it remains unresolved where and how in the visual system different stages of figure–ground segregation emerge. Neural correlates of figure border detection have consistently been found in early visual cortex (V1/V2). However, areas V1/V2 have also been frequently associated with later stages of figure–ground segregation (such as border ownership or surface segregation). To causally link activity in early visual cortex to different stages of figure–ground segregation, we briefly disrupted activity in areas V1/V2 at various moments in time using transcranial magnetic stimulation (TMS). Prior to stimulation we presented stimuli that made it possible to differentiate between figure border detection and surface segregation. We concurrently recorded electroencephalographic (EEG) signals to examine how neural correlates of figure–ground segregation were affected by TMS. Results show that disruption of V1/V2 in an early time window (96–119 msec) affected detection of figure stimuli and affected neural correlates of figure border detection, border ownership, and surface segregation. TMS applied in a relatively late time window (236–259 msec) selectively deteriorated performance associated with surface segregation. We conclude that areas V1/V2 are not only essential in an early stage of figure–ground segregation when figure borders are detected, but subsequently causally contribute to more sophisticated stages of figure–ground segregation such as surface segregation. PMID:23170239

  20. Decoding visual object categories in early somatosensory cortex.

    PubMed

    Smith, Fraser W; Goodale, Melvyn A

    2015-04-01

    Neurons, even in the earliest sensory areas of cortex, are subject to a great deal of contextual influence from both within and across modality connections. In the present work, we investigated whether the earliest regions of somatosensory cortex (S1 and S2) would contain content-specific information about visual object categories. We reasoned that this might be possible due to the associations formed through experience that link different sensory aspects of a given object. Participants were presented with visual images of different object categories in 2 fMRI experiments. Multivariate pattern analysis revealed reliable decoding of familiar visual object category in bilateral S1 (i.e., postcentral gyri) and right S2. We further show that this decoding is observed for familiar but not unfamiliar visual objects in S1. In addition, whole-brain searchlight decoding analyses revealed several areas in the parietal lobe that could mediate the observed context effects between vision and somatosensation. These results demonstrate that even the first cortical stages of somatosensory processing carry information about the category of visually presented familiar objects. © The Author 2013. Published by Oxford University Press.

  1. Selective visual attention to emotional words: Early parallel frontal and visual activations followed by interactive effects in visual cortex.

    PubMed

    Schindler, Sebastian; Kissler, Johanna

    2016-10-01

    Human brains spontaneously differentiate between various emotional and neutral stimuli, including written words whose emotional quality is symbolic. In the electroencephalogram (EEG), emotional-neutral processing differences are typically reflected in the early posterior negativity (EPN, 200-300 ms) and the late positive potential (LPP, 400-700 ms). These components are also enlarged by task-driven visual attention, supporting the assumption that emotional content naturally drives attention. Still, the spatio-temporal dynamics of interactions between emotional stimulus content and task-driven attention remain to be specified. Here, we examine this issue in visual word processing. Participants attended to negative, neutral, or positive nouns while high-density EEG was recorded. Emotional content and top-down attention both amplified the EPN component in parallel. On the LPP, by contrast, emotion and attention interacted: Explicit attention to emotional words led to a substantially larger amplitude increase than did explicit attention to neutral words. Source analysis revealed early parallel effects of emotion and attention in bilateral visual cortex and a later interaction of both in right visual cortex. Distinct effects of attention were found in inferior, middle and superior frontal, paracentral, and parietal areas, as well as in the anterior cingulate cortex (ACC). Results specify separate and shared mechanisms of emotion and attention at distinct processing stages. Hum Brain Mapp 37:3575-3587, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Reduction in the retinotopic early visual cortex with normal aging and magnitude of perceptual learning.

    PubMed

    Chang, Li-Hung; Yotsumoto, Yuko; Salat, David H; Andersen, George J; Watanabe, Takeo; Sasaki, Yuka

    2015-01-01

    Although normal aging is known to reduce cortical structures globally, the effects of aging on local structures and functions of early visual cortex are less understood. Here, using standard retinotopic mapping and magnetic resonance imaging morphologic analyses, we investigated whether aging affects areal size of the early visual cortex, which were retinotopically localized, and whether those morphologic measures were associated with individual performance on visual perceptual learning. First, significant age-associated reduction was found in the areal size of V1, V2, and V3. Second, individual ability of visual perceptual learning was significantly correlated with areal size of V3 in older adults. These results demonstrate that aging changes local structures of the early visual cortex, and the degree of change may be associated with individual visual plasticity. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Stroke survivors' views and experiences on impact of visual impairment.

    PubMed

    Rowe, Fiona J

    2017-09-01

    We sought to determine stroke survivors' views on impact of stroke-related visual impairment to quality of life. Stroke survivors with visual impairment, more than 1 year post stroke onset, were recruited. Semistructured biographical narrative interviews were audio-recorded and transcribed verbatim. A thematic approach to analysis of the qualitative data was adopted. Transcripts were systematically coded using NVivo10 software. Thirty-five stroke survivors were interviewed across the UK: 16 females, 19 males; aged 20-75 years at stroke onset. Five qualitative themes emerged: "Formal care," "Symptoms and self," "Adaptations," "Daily life," and "Information." Where visual problems existed, they were often not immediately recognized as part of the stroke syndrome and attributed to other causes such as migraine. Many participants did not receive early vision assessment or treatment for their visual problems. Visual problems included visual field loss, double vision, and perceptual problems. Impact of visual problems included loss in confidence, being a burden to others, increased collisions/accidents, and fear of falling. They made many self-identified adaptations to compensate for visual problems: magnifiers, large print, increased lighting, use of white sticks. There was a consistent lack of support and provision of information about visual problems. Poststroke visual impairment causes considerable impact to daily life which could be substantially improved by simple measures including early formal visual assessment, management and advice on adaptive strategies and self-management options. Improved education about poststroke visual impairment for the public and clinicians could aid earlier diagnosis of visual impairments.

  4. 6th Yahya Cohen Lecture: visual experience during cataract surgery.

    PubMed

    Au Eong, K G

    2002-09-01

    The visual sensations many patients experience during cataract surgery under local anaesthesia have received little attention until recently. This paper reviews the recent studies on this phenomenon, discusses its clinical significance and suggests novel approaches to reduce its negative impact on the surgery. Literature review. Many patients who have cataract surgery under retrobulbar, peribulbar or topical anaesthesia experience a variety of visual sensations in their operated eye during surgery. These visual sensations include perception of light, movements, flashes, one or more colours, surgical instruments, the surgeon's hand/fingers, the surgeon and changes in light brightness. Some patients experience transient no light perception, even if the operation is performed under topical anaesthesia. The clinical significance of this phenomenon lies in the fact that approximately 7.1% to 15.4% of patients find their visual experience frightening. This fear and anxiety may cause some patients to become uncooperative during surgery and trigger a sympathetic surge, causing such undesirable effects as hypertension, tachycardia, ischaemic strain on the heart, hyperventilation and acute panic attack. Several approaches to reduce the negative impact of patients' visual experience are suggested, including appropriate preoperative counselling and reducing the ability of patients to see during surgery. The findings that some patients find their intraoperative visual experience distressing have a major impact on the way ophthalmologists manage their cataract patients. To reduce its negative impact, surgeons should consider incorporating appropriate preoperative counselling on potential intraoperative visual experience when obtaining informed consent for surgery.

  5. Modernized Approach for Generating Reproducible Heterogeneity Using Transmitted-Light for Flow Visualization Experiments

    NASA Astrophysics Data System (ADS)

    Jones, A. A.; Holt, R. M.

    2017-12-01

    Image capturing in flow experiments has been used for fluid mechanics research since the early 1970s. Interactions of fluid flow between the vadose zone and permanent water table are of great interest because this zone is responsible for all recharge waters, pollutant transport and irrigation efficiency for agriculture. Griffith, et al. (2011) developed an approach where constructed reproducible "geologically realistic" sand configurations are deposited in sandfilled experimental chambers for light-transmitted flow visualization experiments. This method creates reproducible, reverse graded, layered (stratified) thin-slab sand chambers for point source experiments visualizing multiphase flow through porous media. Reverse-graded stratification of sand chambers mimic many naturally occurring sedimentary deposits. Sandfilled chambers use light as nonintrusive tools for measuring water saturation in two-dimensions (2-D). Homogeneous and heterogeneous sand configurations can be produced to visualize the complex physics of the unsaturated zone. The experimental procedure developed by Griffith, et al. (2011) was designed using now outdated and obsolete equipment. We have modernized this approach with new Parker Deadel linear actuator and programed projects/code for multiple configurations. We have also updated the Roper CCD software and image processing software with the latest in industry standards. Modernization of transmitted-light source, robotic equipment, redesigned experimental chambers, and newly developed analytical procedures have greatly reduced time and cost per experiment. We have verified the ability of the new equipment to generate reproducible heterogeneous sand-filled chambers and demonstrated the functionality of the new equipment and procedures by reproducing several gravity-driven fingering experiments conducted by Griffith (2008).

  6. Sustained multifocal attentional enhancement of stimulus processing in early visual areas predicts tracking performance.

    PubMed

    Störmer, Viola S; Winther, Gesche N; Li, Shu-Chen; Andersen, Søren K

    2013-03-20

    Keeping track of multiple moving objects is an essential ability of visual perception. However, the mechanisms underlying this ability are not well understood. We instructed human observers to track five or seven independent randomly moving target objects amid identical nontargets and recorded steady-state visual evoked potentials (SSVEPs) elicited by these stimuli. Visual processing of moving targets, as assessed by SSVEP amplitudes, was continuously facilitated relative to the processing of identical but irrelevant nontargets. The cortical sources of this enhancement were located to areas including early visual cortex V1-V3 and motion-sensitive area MT, suggesting that the sustained multifocal attentional enhancement during multiple object tracking already operates at hierarchically early stages of visual processing. Consistent with this interpretation, the magnitude of attentional facilitation during tracking in a single trial predicted the speed of target identification at the end of the trial. Together, these findings demonstrate that attention can flexibly and dynamically facilitate the processing of multiple independent object locations in early visual areas and thereby allow for tracking of these objects.

  7. Effects of visual attention on chromatic and achromatic detection sensitivities.

    PubMed

    Uchikawa, Keiji; Sato, Masayuki; Kuwamura, Keiko

    2014-05-01

    Visual attention has a significant effect on various visual functions, such as response time, detection and discrimination sensitivity, and color appearance. It has been suggested that visual attention may affect visual functions in the early visual pathways. In this study we examined selective effects of visual attention on sensitivities of the chromatic and achromatic pathways to clarify whether visual attention modifies responses in the early visual system. We used a dual task paradigm in which the observer detected a peripheral test stimulus presented at 4 deg eccentricities while the observer concurrently carried out an attention task in the central visual field. In experiment 1, it was confirmed that peripheral spectral sensitivities were reduced more for short and long wavelengths than for middle wavelengths with the central attention task so that the spectral sensitivity function changed its shape by visual attention. This indicated that visual attention affected the chromatic response more strongly than the achromatic response. In experiment 2 it was obtained that the detection thresholds increased in greater degrees in the red-green and yellow-blue chromatic directions than in the white-black achromatic direction in the dual task condition. In experiment 3 we showed that the peripheral threshold elevations depended on the combination of color-directions of the central and peripheral stimuli. Since the chromatic and achromatic responses were separately processed in the early visual pathways, the present results provided additional evidence that visual attention affects responses in the early visual pathways.

  8. Normal aging delays and compromises early multifocal visual attention during object tracking.

    PubMed

    Störmer, Viola S; Li, Shu-Chen; Heekeren, Hauke R; Lindenberger, Ulman

    2013-02-01

    Declines in selective attention are one of the sources contributing to age-related impairments in a broad range of cognitive functions. Most previous research on mechanisms underlying older adults' selection deficits has studied the deployment of visual attention to static objects and features. Here we investigate neural correlates of age-related differences in spatial attention to multiple objects as they move. We used a multiple object tracking task, in which younger and older adults were asked to keep track of moving target objects that moved randomly in the visual field among irrelevant distractor objects. By recording the brain's electrophysiological responses during the tracking period, we were able to delineate neural processing for targets and distractors at early stages of visual processing (~100-300 msec). Older adults showed less selective attentional modulation in the early phase of the visual P1 component (100-125 msec) than younger adults, indicating that early selection is compromised in old age. However, with a 25-msec delay relative to younger adults, older adults showed distinct processing of targets (125-150 msec), that is, a delayed yet intact attentional modulation. The magnitude of this delayed attentional modulation was related to tracking performance in older adults. The amplitude of the N1 component (175-210 msec) was smaller in older adults than in younger adults, and the target amplification effect of this component was also smaller in older relative to younger adults. Overall, these results indicate that normal aging affects the efficiency and timing of early visual processing during multiple object tracking.

  9. Final visual acuity results in the early treatment for retinopathy of prematurity study.

    PubMed

    Good, William V; Hardy, Robert J; Dobson, Velma; Palmer, Earl A; Phelps, Dale L; Tung, Betty; Redford, Maryann

    2010-06-01

    To compare visual acuity at 6 years of age in eyes that received early treatment for high-risk prethreshold retinopathy of prematurity (ROP) with conventionally managed eyes. Infants with symmetrical, high-risk prethreshold ROP (n = 317) had one eye randomized to earlier treatment at high-risk prethreshold disease and the other eye managed conventionally, treated if ROP progressed to threshold severity. For asymmetric cases (n = 84), the high-risk prethreshold eye was randomized to either early treatment or conventional management. The main outcome measure was ETDRS visual acuity measured at 6 years of age by masked testers. Retinal structure was assessed as a secondary outcome. Analysis of all subjects with high-risk prethreshold ROP showed no statistically significant benefit for early treatment (24.3% vs 28.6% [corrected] unfavorable outcome; P = .15). Analysis of 6-year visual acuity results according to the Type 1 and 2 clinical algorithm showed a benefit for Type 1 eyes (25.1% vs 32.8%; P = .02) treated early but not Type 2 eyes (23.6% vs 19.4%; P = .37). Early-treated eyes showed a significantly better structural outcome compared with conventionally managed eyes (8.9% vs 15.2% unfavorable outcome; P < .001), with no greater risk of ocular complications. Early treatment for Type 1 high-risk prethreshold eyes improved visual acuity outcomes at 6 years of age. Early treatment for Type 2 high-risk prethreshold eyes did not. Application to Clinical Practice Type 1 eyes, not Type 2 eyes, should be treated early. These results are particularly important considering that 52% of Type 2 high-risk prethreshold eyes underwent regression of ROP without requiring treatment. Trial Registration clinicaltrials.gov Identifier: NCT00027222.

  10. Social Identity, Autism and Visual Impairment (VI) in the Early Years

    ERIC Educational Resources Information Center

    Dale, Naomi; Salt, Alison

    2008-01-01

    This article explores how visual impairment might impact on early social and emotional development including self-awareness and communication with others. Some children show a "developmental setback" and other worrying developmental trajectories in the early years, including autistic related behaviours and autistic spectrum disorders.…

  11. The Effect of Early Visual Deprivation on the Neural Bases of Auditory Processing.

    PubMed

    Guerreiro, Maria J S; Putzar, Lisa; Röder, Brigitte

    2016-02-03

    Transient congenital visual deprivation affects visual and multisensory processing. In contrast, the extent to which it affects auditory processing has not been investigated systematically. Research in permanently blind individuals has revealed brain reorganization during auditory processing, involving both intramodal and crossmodal plasticity. The present study investigated the effect of transient congenital visual deprivation on the neural bases of auditory processing in humans. Cataract-reversal individuals and normally sighted controls performed a speech-in-noise task while undergoing functional magnetic resonance imaging. Although there were no behavioral group differences, groups differed in auditory cortical responses: in the normally sighted group, auditory cortex activation increased with increasing noise level, whereas in the cataract-reversal group, no activation difference was observed across noise levels. An auditory activation of visual cortex was not observed at the group level in cataract-reversal individuals. The present data suggest prevailing auditory processing advantages after transient congenital visual deprivation, even many years after sight restoration. The present study demonstrates that people whose sight was restored after a transient period of congenital blindness show more efficient cortical processing of auditory stimuli (here speech), similarly to what has been observed in congenitally permanently blind individuals. These results underscore the importance of early sensory experience in permanently shaping brain function. Copyright © 2016 the authors 0270-6474/16/361620-11$15.00/0.

  12. Determinants of motion response anisotropies in human early visual cortex: the role of configuration and eccentricity.

    PubMed

    Maloney, Ryan T; Watson, Tamara L; Clifford, Colin W G

    2014-10-15

    Anisotropies in the cortical representation of various stimulus parameters can reveal the fundamental mechanisms by which sensory properties are analysed and coded by the brain. One example is the preference for motion radial to the point of fixation (i.e. centripetal or centrifugal) exhibited in mammalian visual cortex. In two experiments, this study used functional magnetic resonance imaging (fMRI) to explore the determinants of these radial biases for motion in functionally-defined areas of human early visual cortex, and in particular their dependence upon eccentricity which has been indicated in recent reports. In one experiment, the cortical response to wide-field random dot kinematograms forming 16 different complex motion patterns (including centrifugal, centripetal, rotational and spiral motion) was measured. The response was analysed according to preferred eccentricity within four different eccentricity ranges. Response anisotropies were characterised by enhanced activity for centripetal or centrifugal patterns that changed systematically with eccentricity in visual areas V1-V3 and hV4 (but not V3A/B or V5/MT+). Responses evolved from a preference for centrifugal over centripetal patterns close to the fovea, to a preference for centripetal over centrifugal at the most peripheral region stimulated, in agreement with previous work. These effects were strongest in V2 and V3. In a second experiment, the stimuli were restricted to within narrow annuli either close to the fovea (0.75-1.88°) or further in the periphery (4.82-6.28°), in a way that preserved the local motion information available in the first experiment. In this configuration a preference for radial motion (centripetal or centrifugal) persisted but the dependence upon eccentricity disappeared. Again this was clearest in V2 and V3. A novel interpretation of the dependence upon eccentricity of motion anisotropies in early visual cortex is offered that takes into account the spatiotemporal

  13. Early Visual Word Processing Is Flexible: Evidence from Spatiotemporal Brain Dynamics.

    PubMed

    Chen, Yuanyuan; Davis, Matthew H; Pulvermüller, Friedemann; Hauk, Olaf

    2015-09-01

    Visual word recognition is often described as automatic, but the functional locus of top-down effects is still a matter of debate. Do task demands modulate how information is retrieved, or only how it is used? We used EEG/MEG recordings to assess whether, when, and how task contexts modify early retrieval of specific psycholinguistic information in occipitotemporal cortex, an area likely to contribute to early stages of visual word processing. Using a parametric approach, we analyzed the spatiotemporal response patterns of occipitotemporal cortex for orthographic, lexical, and semantic variables in three psycholinguistic tasks: silent reading, lexical decision, and semantic decision. Task modulation of word frequency and imageability effects occurred simultaneously in ventral occipitotemporal regions-in the vicinity of the putative visual word form area-around 160 msec, following task effects on orthographic typicality around 100 msec. Frequency and typicality also produced task-independent effects in anterior temporal lobe regions after 200 msec. The early task modulation for several specific psycholinguistic variables indicates that occipitotemporal areas integrate perceptual input with prior knowledge in a task-dependent manner. Still, later task-independent effects in anterior temporal lobes suggest that word recognition eventually leads to retrieval of semantic information irrespective of task demands. We conclude that even a highly overlearned visual task like word recognition should be described as flexible rather than automatic.

  14. Experience, Context, and the Visual Perception of Human Movement

    ERIC Educational Resources Information Center

    Jacobs, Alissa; Pinto, Jeannine; Shiffrar, Maggie

    2004-01-01

    Why are human observers particularly sensitive to human movement? Seven experiments examined the roles of visual experience and motor processes in human movement perception by comparing visual sensitivities to point-light displays of familiar, unusual, and impossible gaits across gait-speed and identity discrimination tasks. In both tasks, visual…

  15. Learning to associate orientation with color in early visual areas by associative decoded fMRI neurofeedback

    PubMed Central

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-01-01

    Summary Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded functional magnetic resonance imaging (fMRI) neurofeedback, termed “DecNef” [9], we tested whether associative learning of color and orientation can be created in early visual areas. During three days' training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive “red” significantly more frequently than “green” in an achromatic vertical grating. This effect was also observed 3 to 5 months after the training. These results suggest that long-term associative learning of the two different visual features such as color and orientation was created most likely in early visual areas. This newly extended technique that induces associative learning is called “A(ssociative)-DecNef” and may be used as an important tool for understanding and modifying brain functions, since associations are fundamental and ubiquitous functions in the brain. PMID:27374335

  16. Learning to Associate Orientation with Color in Early Visual Areas by Associative Decoded fMRI Neurofeedback.

    PubMed

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-07-25

    Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded fMRI neurofeedback termed "DecNef" [9], we tested whether associative learning of orientation and color can be created in early visual areas. During 3 days of training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive "red" significantly more frequently than "green" in an achromatic vertical grating. This effect was also observed 3-5 months after the training. These results suggest that long-term associative learning of two different visual features such as orientation and color was created, most likely in early visual areas. This newly extended technique that induces associative learning is called "A-DecNef," and it may be used as an important tool for understanding and modifying brain functions because associations are fundamental and ubiquitous functions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Audio-visual speech experience with age influences perceived audio-visual asynchrony in speech.

    PubMed

    Alm, Magnus; Behne, Dawn

    2013-10-01

    Previous research indicates that perception of audio-visual (AV) synchrony changes in adulthood. Possible explanations for these age differences include a decline in hearing acuity, a decline in cognitive processing speed, and increased experience with AV binding. The current study aims to isolate the effect of AV experience by comparing synchrony judgments from 20 young adults (20 to 30 yrs) and 20 normal-hearing middle-aged adults (50 to 60 yrs), an age range for which a decline of cognitive processing speed is expected to be minimal. When presented with AV stop consonant syllables with asynchronies ranging from 440 ms audio-lead to 440 ms visual-lead, middle-aged adults showed significantly less tolerance for audio-lead than young adults. Middle-aged adults also showed a greater shift in their point of subjective simultaneity than young adults. Natural audio-lead asynchronies are arguably more predictable than natural visual-lead asynchronies, and this predictability may render audio-lead thresholds more prone to experience-related fine-tuning.

  18. Altered white matter in early visual pathways of humans with amblyopia.

    PubMed

    Allen, Brian; Spiegel, Daniel P; Thompson, Benjamin; Pestilli, Franco; Rokers, Bas

    2015-09-01

    Amblyopia is a visual disorder caused by poorly coordinated binocular input during development. Little is known about the impact of amblyopia on the white matter within the visual system. We studied the properties of six major visual white-matter pathways in a group of adults with amblyopia (n=10) and matched controls (n=10) using diffusion weighted imaging (DWI) and fiber tractography. While we did not find significant differences in diffusion properties in cortico-cortical pathways, patients with amblyopia exhibited increased mean diffusivity in thalamo-cortical visual pathways. These findings suggest that amblyopia may systematically alter the white matter properties of early visual pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effects of chronic iTBS-rTMS and enriched environment on visual cortex early critical period and visual pattern discrimination in dark-reared rats.

    PubMed

    Castillo-Padilla, Diana V; Funke, Klaus

    2016-01-01

    Early cortical critical period resembles a state of enhanced neuronal plasticity enabling the establishment of specific neuronal connections during first sensory experience. Visual performance with regard to pattern discrimination is impaired if the cortex is deprived from visual input during the critical period. We wondered how unspecific activation of the visual cortex before closure of the critical period using repetitive transcranial magnetic stimulation (rTMS) could affect the critical period and the visual performance of the experimental animals. Would it cause premature closure of the plastic state and thus worsen experience-dependent visual performance, or would it be able to preserve plasticity? Effects of intermittent theta-burst stimulation (iTBS) were compared with those of an enriched environment (EE) during dark-rearing (DR) from birth. Rats dark-reared in a standard cage showed poor improvement in a visual pattern discrimination task, while rats housed in EE or treated with iTBS showed a performance indistinguishable from rats reared in normal light/dark cycle. The behavioral effects were accompanied by correlated changes in the expression of brain-derived neurotrophic factor (BDNF) and atypical PKC (PKCζ/PKMζ), two factors controlling stabilization of synaptic potentiation. It appears that not only nonvisual sensory activity and exercise but also cortical activation induced by rTMS has the potential to alleviate the effects of DR on cortical development, most likely due to stimulation of BDNF synthesis and release. As we showed previously, iTBS reduced the expression of parvalbumin in inhibitory cortical interneurons, indicating that modulation of the activity of fast-spiking interneurons contributes to the observed effects of iTBS. © 2015 Wiley Periodicals, Inc.

  20. Global motion perception deficits in autism are reflected as early as primary visual cortex

    PubMed Central

    Thomas, Cibu; Kravitz, Dwight J.; Wallace, Gregory L.; Baron-Cohen, Simon; Martin, Alex; Baker, Chris I.

    2014-01-01

    Individuals with autism are often characterized as ‘seeing the trees, but not the forest’—attuned to individual details in the visual world at the expense of the global percept they compose. Here, we tested the extent to which global processing deficits in autism reflect impairments in (i) primary visual processing; or (ii) decision-formation, using an archetypal example of global perception, coherent motion perception. In an event-related functional MRI experiment, 43 intelligence quotient and age-matched male participants (21 with autism, age range 15–27 years) performed a series of coherent motion perception judgements in which the amount of local motion signals available to be integrated into a global percept was varied by controlling stimulus viewing duration (0.2 or 0.6 s) and the proportion of dots moving in the correct direction (coherence: 4%, 15%, 30%, 50%, or 75%). Both typical participants and those with autism evidenced the same basic pattern of accuracy in judging the direction of motion, with performance decreasing with reduced coherence and shorter viewing durations. Critically, these effects were exaggerated in autism: despite equal performance at the long duration, performance was more strongly reduced by shortening viewing duration in autism (P < 0.015) and decreasing stimulus coherence (P < 0.008). To assess the neural correlates of these effects we focused on the responses of primary visual cortex and the middle temporal area, critical in the early visual processing of motion signals, as well as a region in the intraparietal sulcus thought to be involved in perceptual decision-making. The behavioural results were mirrored in both primary visual cortex and the middle temporal area, with a greater reduction in response at short, compared with long, viewing durations in autism compared with controls (both P < 0.018). In contrast, there was no difference between the groups in the intraparietal sulcus (P > 0.574). These findings suggest that

  1. Experience Report: Visual Programming in the Real World

    NASA Technical Reports Server (NTRS)

    Baroth, E.; Hartsough, C

    1994-01-01

    This paper reports direct experience with two commercial, widely used visual programming environments. While neither of these systems is object oriented, the tools have transformed the development process and indicate a direction for visual object oriented tools to proceed.

  2. Early visual language exposure and emergent literacy in preschool deaf children: findings from a national longitudinal study.

    PubMed

    Allen, Thomas E; Letteri, Amy; Choi, Song Hoa; Dang, Daqian

    2014-01-01

    Brief review is provided of recent research on the impact of early visual language exposure on a variety of developmental outcomes, including literacy, cognition, and social adjustment. This body of work points to the great importance of giving young deaf children early exposure to a visual language as a critical precursor to the acquisition of literacy. Four analyses of data from the Visual Language and Visual Learning (VL2) Early Education Longitudinal Study are summarized. Each confirms findings from previously published laboratory findings and points to the positive effects of early sign language on, respectively, letter knowledge, social adaptability, sustained visual attention, and cognitive-behavioral milestones necessary for academic success. The article concludes with a consideration of the qualitative similarity hypothesis and a finding that the hypothesis is valid, but only if it can be presented as being modality independent.

  3. Family-Centered Early Intervention Visual Impairment Services through Matrix Session Planning

    ERIC Educational Resources Information Center

    Ely, Mindy S.; Gullifor, Kateri; Hollinshead, Tara

    2017-01-01

    Early intervention visual impairment services are built on a model that values family. Matrix session planning pulls together parent priorities, family routines, and identified strategies in a way that helps families and early intervention professionals outline a plan that can both highlight long-term goals and focus on what can be done today.…

  4. Multifocal blue-on-yellow visual evoked potentials in early glaucoma.

    PubMed

    Klistorner, Alexander; Graham, Stuart L; Martins, Alessandra; Grigg, John R; Arvind, Hemamalini; Kumar, Rajesh S; James, Andrew C; Billson, Francis A

    2007-09-01

    To determine the sensitivity and specificity of blue-on-yellow multifocal visual evoked potentials (mfVEPs) in early glaucoma. Cross-sectional study. Fifty patients with a confirmed diagnosis of early glaucoma and 60 normal participants. Black-and-white mfVEPs and blue-on-yellow mfVEPs were recorded using the Accumap version 2.0 (ObjectiVision Pty. Ltd., Sydney, Australia). All patients also underwent achromatic standard automated perimetry (SAP). Multifocal VEP amplitude and latency values in glaucoma patients were analyzed and compared with those of the normal controls. Based on the definition of visual field defect, in the group of glaucomatous eyes with SAP defects, amplitude of blue-on-yellow mfVEP was abnormal in all 64 cases (100% sensitivity), whereas black-and-white mfVEP missed 5 cases (92.2% sensitivity). Generally, larger scotomata were noted on blue-on-yellow mfVEP compared with black-and-white mfVEP for the same eyes. There was high topographic correspondence between SAP and amplitude of blue-on-yellow mfVEP and significant (P<0.0001) correlation between them (correlation coefficient, 0.73). Abnormal amplitude was detected in 3 of 60 eyes of control subjects (95% specificity). There was, however, no correlation between visual field defect and latency delay in glaucoma patients. Although there was a significant difference between averaged latency of control and glaucoma eyes, values considerably overlapped. The blue-on-yellow mfVEP is a sensitive and specific tool for detecting early glaucoma based on amplitude analysis.

  5. Activity in early visual areas predicts interindividual differences in binocular rivalry dynamics

    PubMed Central

    Yamashiro, Hiroyuki; Mano, Hiroaki; Umeda, Masahiro; Higuchi, Toshihiro; Saiki, Jun

    2013-01-01

    When dissimilar images are presented to the two eyes, binocular rivalry (BR) occurs, and perception alternates spontaneously between the images. Although neural correlates of the oscillating perception during BR have been found in multiple sites along the visual pathway, the source of BR dynamics is unclear. Psychophysical and modeling studies suggest that both low- and high-level cortical processes underlie BR dynamics. Previous neuroimaging studies have demonstrated the involvement of high-level regions by showing that frontal and parietal cortices responded time locked to spontaneous perceptual alternation in BR. However, a potential contribution of early visual areas to BR dynamics has been overlooked, because these areas also responded to the physical stimulus alternation mimicking BR. In the present study, instead of focusing on activity during perceptual switches, we highlighted brain activity during suppression periods to investigate a potential link between activity in human early visual areas and BR dynamics. We used a strong interocular suppression paradigm called continuous flash suppression to suppress and fluctuate the visibility of a probe stimulus and measured retinotopic responses to the onset of the invisible probe using functional MRI. There were ∼130-fold differences in the median suppression durations across 12 subjects. The individual differences in suppression durations could be predicted by the amplitudes of the retinotopic activity in extrastriate visual areas (V3 and V4v) evoked by the invisible probe. Weaker responses were associated with longer suppression durations. These results demonstrate that retinotopic representations in early visual areas play a role in the dynamics of perceptual alternations during BR. PMID:24353304

  6. Characterizing the effects of feature salience and top-down attention in the early visual system.

    PubMed

    Poltoratski, Sonia; Ling, Sam; McCormack, Devin; Tong, Frank

    2017-07-01

    The visual system employs a sophisticated balance of attentional mechanisms: salient stimuli are prioritized for visual processing, yet observers can also ignore such stimuli when their goals require directing attention elsewhere. A powerful determinant of visual salience is local feature contrast: if a local region differs from its immediate surround along one or more feature dimensions, it will appear more salient. We used high-resolution functional MRI (fMRI) at 7T to characterize the modulatory effects of bottom-up salience and top-down voluntary attention within multiple sites along the early visual pathway, including visual areas V1-V4 and the lateral geniculate nucleus (LGN). Observers viewed arrays of spatially distributed gratings, where one of the gratings immediately to the left or right of fixation differed from all other items in orientation or motion direction, making it salient. To investigate the effects of directed attention, observers were cued to attend to the grating to the left or right of fixation, which was either salient or nonsalient. Results revealed reliable additive effects of top-down attention and stimulus-driven salience throughout visual areas V1-hV4. In comparison, the LGN exhibited significant attentional enhancement but was not reliably modulated by orientation- or motion-defined salience. Our findings indicate that top-down effects of spatial attention can influence visual processing at the earliest possible site along the visual pathway, including the LGN, whereas the processing of orientation- and motion-driven salience primarily involves feature-selective interactions that take place in early cortical visual areas. NEW & NOTEWORTHY While spatial attention allows for specific, goal-driven enhancement of stimuli, salient items outside of the current focus of attention must also be prioritized. We used 7T fMRI to compare salience and spatial attentional enhancement along the early visual hierarchy. We report additive effects of

  7. The Influence of Averageness on Adults' Perceptions of Attractiveness: The Effect of Early Visual Deprivation.

    PubMed

    Vingilis-Jaremko, Larissa; Maurer, Daphne; Rhodes, Gillian; Jeffery, Linda

    2016-08-03

    Adults who missed early visual input because of congenital cataracts later have deficits in many aspects of face processing. Here we investigated whether they make normal judgments of facial attractiveness. In particular, we studied whether their perceptions are affected normally by a face's proximity to the population mean, as is true of typically developing adults, who find average faces to be more attractive than most other faces. We compared the judgments of facial attractiveness of 12 cataract-reversal patients to norms established from 36 adults with normal vision. Participants viewed pairs of adult male and adult female faces that had been transformed 50% toward and 50% away from their respective group averages, and selected which face was more attractive. Averageness influenced patients' judgments of attractiveness, but to a lesser extent than controls. The results suggest that cataract-reversal patients are able to develop a system for representing faces with a privileged position for an average face, consistent with evidence from identity aftereffects. However, early visual experience is necessary to set up the neural architecture necessary for averageness to influence perceptions of attractiveness with its normal potency. © The Author(s) 2016.

  8. EEG reveals an early influence of social conformity on visual processing in group pressure situations.

    PubMed

    Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried

    2013-01-01

    Humans are social beings and often have to perceive and perform within groups. In conflict situations, this puts them under pressure to either adhere to the group opinion or to risk controversy with the group. Psychological experiments have demonstrated that study participants adapt to erroneous group opinions in visual perception tasks, which they can easily solve correctly when performing on their own. Until this point, however, it is unclear whether this phenomenon of social conformity influences early stages of perception that might not even reach awareness or later stages of conscious decision-making. Using electroencephalography, this study has revealed that social conformity to the wrong group opinion resulted in a decrease of the posterior-lateral P1 in line with a decrease of the later centro-parietal P3. These results suggest that group pressure situations impact early unconscious visual perceptual processing, which results in a later diminished stimulus discrimination and an adaptation even to the wrong group opinion. These findings might have important implications for understanding social behavior in group settings and are discussed within the framework of social influence on eyewitness testimony.

  9. Relational Associative Learning Induces Cross-Modal Plasticity in Early Visual Cortex

    PubMed Central

    Headley, Drew B.; Weinberger, Norman M.

    2015-01-01

    Neurobiological theories of memory posit that the neocortex is a storage site of declarative memories, a hallmark of which is the association of two arbitrary neutral stimuli. Early sensory cortices, once assumed uninvolved in memory storage, recently have been implicated in associations between neutral stimuli and reward or punishment. We asked whether links between neutral stimuli also could be formed in early visual or auditory cortices. Rats were presented with a tone paired with a light using a sensory preconditioning paradigm that enabled later evaluation of successful association. Subjects that acquired this association developed enhanced sound evoked potentials in their primary and secondary visual cortices. Laminar recordings localized this potential to cortical Layers 5 and 6. A similar pattern of activation was elicited by microstimulation of primary auditory cortex in the same subjects, consistent with a cortico-cortical substrate of association. Thus, early sensory cortex has the capability to form neutral stimulus associations. This plasticity may constitute a declarative memory trace between sensory cortices. PMID:24275832

  10. Experiences of Students with Visual Impairments in Canadian Higher Education

    ERIC Educational Resources Information Center

    Reed, Maureen; Curtis, Kathryn

    2012-01-01

    Introduction: This article presents a study of the higher education experiences of students with visual impairments in Canada. Methods: Students with visual impairments and the staff members of disability programs were surveyed and interviewed regarding the students' experiences in entering higher education and completing their higher education…

  11. Early visual ERPs are influenced by individual emotional skills.

    PubMed

    Meaux, Emilie; Roux, Sylvie; Batty, Magali

    2014-08-01

    Processing information from faces is crucial to understanding others and to adapting to social life. Many studies have investigated responses to facial emotions to provide a better understanding of the processes and the neural networks involved. Moreover, several studies have revealed abnormalities of emotional face processing and their neural correlates in affective disorders. The aim of this study was to investigate whether early visual event-related potentials (ERPs) are affected by the emotional skills of healthy adults. Unfamiliar faces expressing the six basic emotions were presented to 28 young adults while recording visual ERPs. No specific task was required during the recording. Participants also completed the Social Skills Inventory (SSI) which measures social and emotional skills. The results confirmed that early visual ERPs (P1, N170) are affected by the emotions expressed by a face and also demonstrated that N170 and P2 are correlated to the emotional skills of healthy subjects. While N170 is sensitive to the subject's emotional sensitivity and expressivity, P2 is modulated by the ability of the subjects to control their emotions. We therefore suggest that N170 and P2 could be used as individual markers to assess strengths and weaknesses in emotional areas and could provide information for further investigations of affective disorders. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Early visual ERPs are influenced by individual emotional skills

    PubMed Central

    Roux, Sylvie; Batty, Magali

    2014-01-01

    Processing information from faces is crucial to understanding others and to adapting to social life. Many studies have investigated responses to facial emotions to provide a better understanding of the processes and the neural networks involved. Moreover, several studies have revealed abnormalities of emotional face processing and their neural correlates in affective disorders. The aim of this study was to investigate whether early visual event-related potentials (ERPs) are affected by the emotional skills of healthy adults. Unfamiliar faces expressing the six basic emotions were presented to 28 young adults while recording visual ERPs. No specific task was required during the recording. Participants also completed the Social Skills Inventory (SSI) which measures social and emotional skills. The results confirmed that early visual ERPs (P1, N170) are affected by the emotions expressed by a face and also demonstrated that N170 and P2 are correlated to the emotional skills of healthy subjects. While N170 is sensitive to the subject’s emotional sensitivity and expressivity, P2 is modulated by the ability of the subjects to control their emotions. We therefore suggest that N170 and P2 could be used as individual markers to assess strengths and weaknesses in emotional areas and could provide information for further investigations of affective disorders. PMID:23720573

  13. Development of the Visual Word Form Area Requires Visual Experience: Evidence from Blind Braille Readers

    PubMed Central

    Kanjlia, Shipra; Merabet, Lotfi B.

    2017-01-01

    Learning to read causes the development of a letter- and word-selective region known as the visual word form area (VWFA) within the human ventral visual object stream. Why does a reading-selective region develop at this anatomical location? According to one hypothesis, the VWFA develops at the nexus of visual inputs from retinotopic cortices and linguistic input from the frontotemporal language network because reading involves extracting linguistic information from visual symbols. Surprisingly, the anatomical location of the VWFA is also active when blind individuals read Braille by touch, suggesting that vision is not required for the development of the VWFA. In this study, we tested the alternative prediction that VWFA development is in fact influenced by visual experience. We predicted that in the absence of vision, the “VWFA” is incorporated into the frontotemporal language network and participates in high-level language processing. Congenitally blind (n = 10, 9 female, 1 male) and sighted control (n = 15, 9 female, 6 male), male and female participants each took part in two functional magnetic resonance imaging experiments: (1) word reading (Braille for blind and print for sighted participants), and (2) listening to spoken sentences of different grammatical complexity (both groups). We find that in blind, but not sighted participants, the anatomical location of the VWFA responds both to written words and to the grammatical complexity of spoken sentences. This suggests that in blindness, this region takes on high-level linguistic functions, becoming less selective for reading. More generally, the current findings suggest that experience during development has a major effect on functional specialization in the human cortex. SIGNIFICANCE STATEMENT The visual word form area (VWFA) is a region in the human cortex that becomes specialized for the recognition of written letters and words. Why does this particular brain region become specialized for reading? We

  14. A topology visualization early warning distribution algorithm for large-scale network security incidents.

    PubMed

    He, Hui; Fan, Guotao; Ye, Jianwei; Zhang, Weizhe

    2013-01-01

    It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system's emergency response capabilities, alleviate the cyber attacks' damage, and strengthen the system's counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system's plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks' topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  15. Peripersonal space representation develops independently from visual experience.

    PubMed

    Ricciardi, Emiliano; Menicagli, Dario; Leo, Andrea; Costantini, Marcello; Pietrini, Pietro; Sinigaglia, Corrado

    2017-12-15

    Our daily-life actions are typically driven by vision. When acting upon an object, we need to represent its visual features (e.g. shape, orientation, etc.) and to map them into our own peripersonal space. But what happens with people who have never had any visual experience? How can they map object features into their own peripersonal space? Do they do it differently from sighted agents? To tackle these questions, we carried out a series of behavioral experiments in sighted and congenitally blind subjects. We took advantage of a spatial alignment effect paradigm, which typically refers to a decrease of reaction times when subjects perform an action (e.g., a reach-to-grasp pantomime) congruent with that afforded by a presented object. To systematically examine peripersonal space mapping, we presented visual or auditory affording objects both within and outside subjects' reach. The results showed that sighted and congenitally blind subjects did not differ in mapping objects into their own peripersonal space. Strikingly, this mapping occurred also when objects were presented outside subjects' reach, but within the peripersonal space of another agent. This suggests that (the lack of) visual experience does not significantly affect the development of both one's own and others' peripersonal space representation.

  16. ASSOCIATION BETWEEN VISUAL FUNCTION AND SUBRETINAL DRUSENOID DEPOSITS IN NORMAL AND EARLY AGE-RELATED MACULAR DEGENERATION EYES.

    PubMed

    Neely, David; Zarubina, Anna V; Clark, Mark E; Huisingh, Carrie E; Jackson, Gregory R; Zhang, Yuhua; McGwin, Gerald; Curcio, Christine A; Owsley, Cynthia

    2017-07-01

    To examine the association between subretinal drusenoid deposits (SDDs) identified by multimodal retinal imaging and visual function in older eyes with normal macular health or in the earliest phases of age-related macular degeneration (AMD). Age-related macular degeneration status for each eye was defined according to the Age-Related Eye Disease Study (AREDS) 9-step classification system (normal = Step 1, early AMD = Steps 2-4) based on color fundus photographs. Visual functions measured were best-corrected photopic visual acuity, contrast and light sensitivity, mesopic visual acuity, low-luminance deficit, and rod-mediated dark adaptation. Subretinal drusenoid deposits were identified through multimodal imaging (color fundus photographs, infrared reflectance and fundus autofluorescence images, and spectral domain optical coherence tomography). The sample included 1,202 eyes (958 eyes with normal health and 244 eyes with early AMD). In normal eyes, SDDs were not associated with any visual function evaluated. In eyes with early AMD, dark adaptation was markedly delayed in eyes with SDDs versus no SDD (a 4-minute delay on average), P = 0.0213. However, this association diminished after age adjustment, P = 0.2645. Other visual functions in early AMD eyes were not associated with SDDs. In a study specifically focused on eyes in normal macular health and in the earliest phases of AMD, early AMD eyes with SDDs have slower dark adaptation, largely attributable to the older ages of eyes with SDD; they did not exhibit deficits in other visual functions. Subretinal drusenoid deposits in older eyes in normal macular health are not associated with any visual functions evaluated.

  17. Reading in the dark: neural correlates and cross-modal plasticity for learning to read entire words without visual experience.

    PubMed

    Sigalov, Nadine; Maidenbaum, Shachar; Amedi, Amir

    2016-03-01

    Cognitive neuroscience has long attempted to determine the ways in which cortical selectivity develops, and the impact of nature vs. nurture on it. Congenital blindness (CB) offers a unique opportunity to test this question as the brains of blind individuals develop without visual experience. Here we approach this question through the reading network. Several areas in the visual cortex have been implicated as part of the reading network, and one of the main ones among them is the VWFA, which is selective to the form of letters and words. But what happens in the CB brain? On the one hand, it has been shown that cross-modal plasticity leads to the recruitment of occipital areas, including the VWFA, for linguistic tasks. On the other hand, we have recently demonstrated VWFA activity for letters in contrast to other visual categories when the information is provided via other senses such as touch or audition. Which of these tasks is more dominant? By which mechanism does the CB brain process reading? Using fMRI and visual-to-auditory sensory substitution which transfers the topographical features of the letters we compare reading with semantic and scrambled conditions in a group of CB. We found activation in early auditory and visual cortices during the early processing phase (letter), while the later phase (word) showed VWFA and bilateral dorsal-intraparietal activations for words. This further supports the notion that many visual regions in general, even early visual areas, also maintain a predilection for task processing even when the modality is variable and in spite of putative lifelong linguistic cross-modal plasticity. Furthermore, we find that the VWFA is recruited preferentially for letter and word form, while it was not recruited, and even exhibited deactivation, for an immediately subsequent semantic task suggesting that despite only short sensory substitution experience orthographic task processing can dominate semantic processing in the VWFA. On a wider

  18. Evidence for Early Morphological Decomposition in Visual Word Recognition

    ERIC Educational Resources Information Center

    Solomyak, Olla; Marantz, Alec

    2010-01-01

    We employ a single-trial correlational MEG analysis technique to investigate early processing in the visual recognition of morphologically complex words. Three classes of affixed words were presented in a lexical decision task: free stems (e.g., taxable), bound roots (e.g., tolerable), and unique root words (e.g., vulnerable, the root of which…

  19. The Social Experiences of High School Students with Visual Impairments

    ERIC Educational Resources Information Center

    Jessup, Glenda; Bundy, Anita C.; Broom, Alex; Hancock, Nicola

    2017-01-01

    Introduction: This study explores the social experiences in high school of students with visual impairments. Methods: Experience sampling methodology was used to examine (a) how socially included students with visual impairments feel, (b) the internal qualities of their activities, and (c) the factors that influence a sense of inclusion. Twelve…

  20. Experience-dependent emergence of beta and gamma band oscillations in the primary visual cortex during the critical period

    PubMed Central

    Chen, Guang; Rasch, Malte J.; Wang, Ran; Zhang, Xiao-hui

    2015-01-01

    Neural oscillatory activities have been shown to play important roles in neural information processing and the shaping of circuit connections during development. However, it remains unknown whether and how specific neural oscillations emerge during a postnatal critical period (CP), in which neuronal connections are most substantially modified by neural activity and experience. By recording local field potentials (LFPs) and single unit activity in developing primary visual cortex (V1) of head-fixed awake mice, we here demonstrate an emergence of characteristic oscillatory activities during the CP. From the pre-CP to CP, the peak frequency of spontaneous fast oscillatory activities shifts from the beta band (15–35 Hz) to the gamma band (40–70 Hz), accompanied by a decrease of cross-frequency coupling (CFC) and broadband spike-field coherence (SFC). Moreover, visual stimulation induced a large increase of beta-band activity but a reduction of gamma-band activity specifically from the CP onwards. Dark rearing of animals from the birth delayed this emergence of oscillatory activities during the CP, suggesting its dependence on early visual experience. These findings suggest that the characteristic neuronal oscillatory activities emerged specifically during the CP may represent as neural activity trait markers for the experience-dependent maturation of developing visual cortical circuits. PMID:26648548

  1. Within-Hemifield Competition in Early Visual Areas Limits the Ability to Track Multiple Objects with Attention

    PubMed Central

    Alvarez, George A.; Cavanagh, Patrick

    2014-01-01

    It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. PMID:25164651

  2. Visualization experiences and issues in Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Wright, John; Burleigh, Scott; Maruya, Makoto; Maxwell, Scott; Pischel, Rene

    2003-01-01

    The panelists will discuss their experiences in collecting data in deep space, transmitting it to Earth, processing and visualizing it here, and using the visualization to drive the continued mission. This closes the loop, making missions more responsive to their environment, particularly in-situ operations on planetary surfaces and within planetary atmospheres.

  3. Population Response Profiles in Early Visual Cortex Are Biased in Favor of More Valuable Stimuli

    PubMed Central

    Saproo, Sameer

    2010-01-01

    Voluntary and stimulus-driven shifts of attention can modulate the representation of behaviorally relevant stimuli in early areas of visual cortex. In turn, attended items are processed faster and more accurately, facilitating the selection of appropriate behavioral responses. Information processing is also strongly influenced by past experience and recent studies indicate that the learned value of a stimulus can influence relatively late stages of decision making such as the process of selecting a motor response. However, the learned value of a stimulus can also influence the magnitude of cortical responses in early sensory areas such as V1 and S1. These early effects of stimulus value are presumed to improve the quality of sensory representations; however, the nature of these modulations is not clear. They could reflect nonspecific changes in response amplitude associated with changes in general arousal or they could reflect a bias in population responses so that high-value features are represented more robustly. To examine this issue, subjects performed a two-alternative forced choice paradigm with a variable-interval payoff schedule to dynamically manipulate the relative value of two stimuli defined by their orientation (one was rotated clockwise from vertical, the other counterclockwise). Activation levels in visual cortex were monitored using functional MRI and feature-selective voxel tuning functions while subjects performed the behavioral task. The results suggest that value not only modulates the relative amplitude of responses in early areas of human visual cortex, but also sharpens the response profile across the populations of feature-selective neurons that encode the critical stimulus feature (orientation). Moreover, changes in space- or feature-based attention cannot easily explain the results because representations of both the selected and the unselected stimuli underwent a similar feature-selective modulation. This sharpening in the population

  4. Global motion perception deficits in autism are reflected as early as primary visual cortex.

    PubMed

    Robertson, Caroline E; Thomas, Cibu; Kravitz, Dwight J; Wallace, Gregory L; Baron-Cohen, Simon; Martin, Alex; Baker, Chris I

    2014-09-01

    Individuals with autism are often characterized as 'seeing the trees, but not the forest'-attuned to individual details in the visual world at the expense of the global percept they compose. Here, we tested the extent to which global processing deficits in autism reflect impairments in (i) primary visual processing; or (ii) decision-formation, using an archetypal example of global perception, coherent motion perception. In an event-related functional MRI experiment, 43 intelligence quotient and age-matched male participants (21 with autism, age range 15-27 years) performed a series of coherent motion perception judgements in which the amount of local motion signals available to be integrated into a global percept was varied by controlling stimulus viewing duration (0.2 or 0.6 s) and the proportion of dots moving in the correct direction (coherence: 4%, 15%, 30%, 50%, or 75%). Both typical participants and those with autism evidenced the same basic pattern of accuracy in judging the direction of motion, with performance decreasing with reduced coherence and shorter viewing durations. Critically, these effects were exaggerated in autism: despite equal performance at the long duration, performance was more strongly reduced by shortening viewing duration in autism (P < 0.015) and decreasing stimulus coherence (P < 0.008). To assess the neural correlates of these effects we focused on the responses of primary visual cortex and the middle temporal area, critical in the early visual processing of motion signals, as well as a region in the intraparietal sulcus thought to be involved in perceptual decision-making. The behavioural results were mirrored in both primary visual cortex and the middle temporal area, with a greater reduction in response at short, compared with long, viewing durations in autism compared with controls (both P < 0.018). In contrast, there was no difference between the groups in the intraparietal sulcus (P > 0.574). These findings suggest that reduced

  5. Early IGF-1 primes visual cortex maturation and accelerates developmental switch between NKCC1 and KCC2 chloride transporters in enriched animals.

    PubMed

    Baroncelli, Laura; Cenni, Maria Cristina; Melani, Riccardo; Deidda, Gabriele; Landi, Silvia; Narducci, Roberta; Cancedda, Laura; Maffei, Lamberto; Berardi, Nicoletta

    2017-02-01

    Environmental enrichment (EE) has a remarkable impact on brain development. Continuous exposure to EE from birth determines a significant acceleration of visual system maturation both at retinal and cortical levels. A pre-weaning enriched experience is sufficient to trigger the accelerated maturation of the visual system, suggesting that factors affected by EE during the first days of life might prime visual circuits towards a faster development. The search for such factors is crucial not only to gain a better understanding of the molecular hierarchy of brain development but also to identify molecular pathways amenable to be targeted to correct atypical brain developmental trajectories. Here, we showed that IGF-1 levels are increased in the visual cortex of EE rats as early as P6 and this is a crucial event for setting in motion the developmental program induced by EE. Early intracerebroventricular (i.c.v.) infusion of IGF-1 in standard rats was sufficient to mimic the action of EE on visual acuity development, whereas blocking IGF-1 signaling by i.c.v. injections of the IGF-1 receptor antagonist JB1 prevented the deployment of EE effects. Early IGF-1 decreased the ratio between the expression of NKCC1 and KCC2 cation/chloride transporters, and the reversal potential for GABA A R-driven Cl - currents (E Cl ) was shifted toward more negative potentials, indicating that IGF-1 is a crucial factor in accelerating the maturation of GABAergic neurotransmission and promoting the developmental switch of GABA polarity from excitation to inhibition. In addition, early IGF-1 promoted a later occurring increase in its own expression, suggesting a priming effect of early IGF-1 in driving post-weaning cortical maturation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Visualizing desirable patient healthcare experiences.

    PubMed

    Liu, Sandra S; Kim, Hyung T; Chen, Jie; An, Lingling

    2010-01-01

    High healthcare cost has drawn much attention and healthcare service providers (HSPs) are expected to deliver high-quality and consistent care. Therefore, an intimate understanding of the most desirable experience from a patient's and/or family's perspective as well as effective mapping and communication of such findings should facilitate HSPs' efforts in attaining sustainable competitive advantage in an increasingly discerning environment. This study describes (a) the critical quality attributes (CQAs) of the experience desired by patients and (b) the application of two visualization tools that are relatively new to the healthcare sector, namely the "spider-web diagram" and "promotion and detraction matrix." The visualization tools are tested with primary data collected from telephone surveys of 1,800 patients who had received care during calendar year 2005 at 6 of 61 hospitals within St. Louis, Missouri-based, Ascension Health. Five CQAs were found by factor analysis. The spider-web diagram illustrates that communication and empowerment and compassionate and respectful care are the most important CQAs, and accordingly, the promotion and detraction matrix shows those attributes that have the greatest effect for creating promoters, preventing detractors, and improving consumer's likelihood to recommend the healthcare provider.

  7. Development of the Visual Word Form Area Requires Visual Experience: Evidence from Blind Braille Readers.

    PubMed

    Kim, Judy S; Kanjlia, Shipra; Merabet, Lotfi B; Bedny, Marina

    2017-11-22

    Learning to read causes the development of a letter- and word-selective region known as the visual word form area (VWFA) within the human ventral visual object stream. Why does a reading-selective region develop at this anatomical location? According to one hypothesis, the VWFA develops at the nexus of visual inputs from retinotopic cortices and linguistic input from the frontotemporal language network because reading involves extracting linguistic information from visual symbols. Surprisingly, the anatomical location of the VWFA is also active when blind individuals read Braille by touch, suggesting that vision is not required for the development of the VWFA. In this study, we tested the alternative prediction that VWFA development is in fact influenced by visual experience. We predicted that in the absence of vision, the "VWFA" is incorporated into the frontotemporal language network and participates in high-level language processing. Congenitally blind ( n = 10, 9 female, 1 male) and sighted control ( n = 15, 9 female, 6 male), male and female participants each took part in two functional magnetic resonance imaging experiments: (1) word reading (Braille for blind and print for sighted participants), and (2) listening to spoken sentences of different grammatical complexity (both groups). We find that in blind, but not sighted participants, the anatomical location of the VWFA responds both to written words and to the grammatical complexity of spoken sentences. This suggests that in blindness, this region takes on high-level linguistic functions, becoming less selective for reading. More generally, the current findings suggest that experience during development has a major effect on functional specialization in the human cortex. SIGNIFICANCE STATEMENT The visual word form area (VWFA) is a region in the human cortex that becomes specialized for the recognition of written letters and words. Why does this particular brain region become specialized for reading? We

  8. Within-hemifield competition in early visual areas limits the ability to track multiple objects with attention.

    PubMed

    Störmer, Viola S; Alvarez, George A; Cavanagh, Patrick

    2014-08-27

    It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. Copyright © 2014 the authors 0270-6474/14/3311526-08$15.00/0.

  9. Relationship between macular pigment and visual function in subjects with early age-related macular degeneration.

    PubMed

    Akuffo, Kwadwo Owusu; Nolan, John M; Peto, Tunde; Stack, Jim; Leung, Irene; Corcoran, Laura; Beatty, Stephen

    2017-02-01

    To investigate the relationship between macular pigment (MP) and visual function in subjects with early age-related macular degeneration (AMD). 121 subjects with early AMD enrolled as part of the Central Retinal Enrichment Supplementation Trial (CREST; ISRCTN13894787) were assessed using a range of psychophysical measures of visual function, including best corrected visual acuity (BCVA), letter contrast sensitivity (CS), mesopic and photopic CS, mesopic and photopic glare disability (GD), photostress recovery time (PRT), reading performance and subjective visual function, using the National Eye Institute Visual Function Questionnaire-25 (NEI VFQ-25). MP was measured using customised heterochromatic flicker photometry. Letter CS, mesopic and photopic CS, photopic GD and mean reading speed were each significantly (p<0.05) associated with MP across a range of retinal eccentricities, and these statistically significant relationships persisted after controlling for age, sex and cataract grade. BCVA, NEI VFQ-25 score, PRT and mesopic GD were unrelated to MP after controlling for age, sex and cataract grade (p>0.05, for all). MP relates positively to many measures of visual function in unsupplemented subjects with early AMD. The CREST trial will investigate whether enrichment of MP influences visual function among those afflicted with this condition. ISRCTN13894787. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. How (and why) the visual control of action differs from visual perception

    PubMed Central

    Goodale, Melvyn A.

    2014-01-01

    Vision not only provides us with detailed knowledge of the world beyond our bodies, but it also guides our actions with respect to objects and events in that world. The computations required for vision-for-perception are quite different from those required for vision-for-action. The former uses relational metrics and scene-based frames of reference while the latter uses absolute metrics and effector-based frames of reference. These competing demands on vision have shaped the organization of the visual pathways in the primate brain, particularly within the visual areas of the cerebral cortex. The ventral ‘perceptual’ stream, projecting from early visual areas to inferior temporal cortex, helps to construct the rich and detailed visual representations of the world that allow us to identify objects and events, attach meaning and significance to them and establish their causal relations. By contrast, the dorsal ‘action’ stream, projecting from early visual areas to the posterior parietal cortex, plays a critical role in the real-time control of action, transforming information about the location and disposition of goal objects into the coordinate frames of the effectors being used to perform the action. The idea of two visual systems in a single brain might seem initially counterintuitive. Our visual experience of the world is so compelling that it is hard to believe that some other quite independent visual signal—one that we are unaware of—is guiding our movements. But evidence from a broad range of studies from neuropsychology to neuroimaging has shown that the visual signals that give us our experience of objects and events in the world are not the same ones that control our actions. PMID:24789899

  11. Early multisensory interactions affect the competition among multiple visual objects.

    PubMed

    Van der Burg, Erik; Talsma, Durk; Olivers, Christian N L; Hickey, Clayton; Theeuwes, Jan

    2011-04-01

    In dynamic cluttered environments, audition and vision may benefit from each other in determining what deserves further attention and what does not. We investigated the underlying neural mechanisms responsible for attentional guidance by audiovisual stimuli in such an environment. Event-related potentials (ERPs) were measured during visual search through dynamic displays consisting of line elements that randomly changed orientation. Search accuracy improved when a target orientation change was synchronized with an auditory signal as compared to when the auditory signal was absent or synchronized with a distractor orientation change. The ERP data show that behavioral benefits were related to an early multisensory interaction over left parieto-occipital cortex (50-60 ms post-stimulus onset), which was followed by an early positive modulation (80-100 ms) over occipital and temporal areas contralateral to the audiovisual event, an enhanced N2pc (210-250 ms), and a contralateral negative slow wave (CNSW). The early multisensory interaction was correlated with behavioral search benefits, indicating that participants with a strong multisensory interaction benefited the most from the synchronized auditory signal. We suggest that an auditory signal enhances the neural response to a synchronized visual event, which increases the chances of selection in a multiple object environment. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Brightness and transparency in the early visual cortex.

    PubMed

    Salmela, Viljami R; Vanni, Simo

    2013-06-24

    Several psychophysical studies have shown that transparency can have drastic effects on brightness and lightness. However, the neural processes generating these effects have remained unresolved. Several lines of evidence suggest that the early visual cortex is important for brightness perception. While single cell recordings suggest that surface brightness is represented in the primary visual cortex, the results of functional magnetic resonance imaging (fMRI) studies have been discrepant. In addition, the location of the neural representation of transparency is not yet known. We investigated whether the fMRI responses in areas V1, V2, and V3 correlate with brightness and transparency. To dissociate the blood oxygen level-dependent (BOLD) response to brightness from the response to local border contrast and mean luminance, we used variants of White's brightness illusion, both opaque and transparent, in which luminance increments and decrements cancel each other out. The stimuli consisted of a target surface and a surround. The surround luminance was always sinusoidally modulated at 0.5 Hz to induce brightness modulation to the target. The target luminance was constant or modulated in counterphase to null brightness modulation. The mean signal changes were calculated from the voxels in V1, V2, and V3 corresponding to the retinotopic location of the target surface. The BOLD responses were significantly stronger for modulating brightness than for stimuli with constant brightness. In addition, the responses were stronger for transparent than for opaque stimuli, but there was more individual variation. No interaction between brightness and transparency was found. The results show that the early visual areas V1-V3 are sensitive to surface brightness and transparency and suggest that brightness and transparency are represented separately.

  13. Differential effect of visual motion adaption upon visual cortical excitability.

    PubMed

    Lubeck, Astrid J A; Van Ombergen, Angelique; Ahmad, Hena; Bos, Jelte E; Wuyts, Floris L; Bronstein, Adolfo M; Arshad, Qadeer

    2017-03-01

    The objectives of this study were 1 ) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2 ) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing. NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual

  14. Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder.

    PubMed

    Vlamings, Petra Hendrika Johanna Maria; Jonkman, Lisa Marthe; van Daalen, Emma; van der Gaag, Rutger Jan; Kemner, Chantal

    2010-12-15

    A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD and the relation with abnormal SF processing. We investigated whether young ASD children show abnormalities in low spatial frequency (LSF, global) and high spatial frequency (HSF, detailed) processing and explored whether these are crucially involved in the early development of face processing. Three- to 4-year-old children with ASD (n = 22) were compared with developmentally delayed children without ASD (n = 17). Spatial frequency processing was studied by recording visual evoked potentials from visual brain areas while children passively viewed gratings (HSF/LSF). In addition, children watched face stimuli with different expressions, filtered to include only HSF or LSF. Enhanced activity in visual brain areas was found in response to HSF versus LSF information in children with ASD, in contrast to control subjects. Furthermore, facial-expression processing was also primarily driven by detail in ASD. Enhanced visual processing of detailed (HSF) information is present early in ASD and occurs for neutral (gratings), as well as for socially relevant stimuli (facial expressions). These data indicate that there is a general abnormality in visual SF processing in early ASD and are in agreement with suggestions that a fast LSF subcortical face processing route might be affected in ASD. This could suggest that abnormal visual processing is causative in the development of social problems in ASD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Exploring the Early Literacy Practices of Teachers of Infants, Toddlers, and Preschoolers with Visual Impairments

    ERIC Educational Resources Information Center

    Murphy, Jeanne Lovo; Hatton, Deborah; Erickson, Karen A.

    2008-01-01

    Practices endorsed by 192 teachers of young children with visual impairments who completed an online early literacy survey included facilitating early attachment (70%), providing early literacy support to families (74%), and providing adaptations to increase accessibility (55%). Few teachers reported using assistive technology, providing…

  16. Early Practicum Experiences: Preservice Early Childhood Students' Perceptions and Sense of Efficacy

    ERIC Educational Resources Information Center

    Van Schagen Johnson, Amy; La Paro, Karen M.; Crosby, Danielle A.

    2017-01-01

    The current study explored early practicum experiences (those occurring before student teaching) in an early childhood birth to kindergarten teacher education program. Undergraduates enrolled in practicum courses completed questionnaires about their overall practicum experience including: socio-emotional components (their perceived fit with their…

  17. Youth with Visual Impairments: Experiences in General Physical Education

    ERIC Educational Resources Information Center

    Lieberman, Lauren J.; Robinson, Barbara L.; Rollheiser, Heidi

    2006-01-01

    The rapid increase in the number of students with visual impairments currently being educated in inclusive general physical education makes it important that physical education instructors know how best to serve them. Assessment of the experiences of students with visual impairments during general physical education classes, knowledge of students'…

  18. Tobacco Induced Mutations: A Fun, Visually Impressive Experiment

    ERIC Educational Resources Information Center

    Milholland, Rebecca B. R.; Hines, Stefani D.

    2004-01-01

    A modified version "Tobacco Induced Mutations" of Ames assay experiment provides a meaningful context for students to learn about the concept of mutations by using a known carcinogen that is tobacco. This experiment shows toxicological concept of the dose/response relationship and visually demonstrates when a mutation have occurred in bacteria…

  19. Early Visual Language Exposure and Emergent Literacy in Preschool Deaf Children: Findings from a National Longitudinal Study

    ERIC Educational Resources Information Center

    Allen, Thomas E.; Letteri, Amy; Choi, Song Hoa; Dang, Daqian

    2014-01-01

    A brief review is provided of recent research on the impact of early visual language exposure on a variety of developmental outcomes, including literacy, cognition, and social adjustment. This body of work points to the great importance of giving young deaf children early exposure to a visual language as a critical precursor to the acquisition of…

  20. Food experiences and eating patterns of visually impaired and blind people.

    PubMed

    Bilyk, Marie Claire; Sontrop, Jessica M; Chapman, Gwen E; Barr, Susan I; Mamer, Linda

    2009-01-01

    The number of visually impaired and blind Canadians will rise dramatically as our population ages, and yet little is known about the impact of blindness on the experience of food and eating. In this qualitative study, the food experiences and eating patterns of visually impaired and blind people were examined. Influencing factors were also explored. In 2000, nine blind or severely visually impaired subjects were recruited through blindness-related organizations in British Columbia. Participants completed individual semi-structured, in-depth interviews. These were transcribed verbatim, coded, and analyzed to explicate participants' experiences. Participants experienced blindness-related obstacles when shopping for food, preparing food, and eating in restaurants. Inaccessible materials and environments left participants with a diet lacking in variety and limited access to physical activity. Seven participants were overweight or obese, a finding that may be related to limited physical activity and higher-than-average restaurant use. This is the first study in which the experience of food and eating is described from the perspective of visually impaired Canadians. Nutrition and blindness professionals must work together to reduce the food-related obstacles faced by visually impaired and blind people. Professionals must address both individual skill development and social and structural inequities.

  1. Interocular suppression in strabismic amblyopia results in an attenuated and delayed hemodynamic response function in early visual cortex.

    PubMed

    Farivar, Reza; Thompson, Benjamin; Mansouri, Behzad; Hess, Robert F

    2011-12-20

    Factors such as strabismus or anisometropia during infancy can disrupt normal visual development and result in amblyopia, characterized by reduced visual function in an otherwise healthy eye and often associated with persistent suppression of inputs from the amblyopic eye by those from the dominant eye. It has become evident from fMRI studies that the cortical response to stimulation of the amblyopic eye is also affected. We were interested to compare the hemodynamic response function (HRF) of early visual cortex to amblyopic vs. dominant eye stimulation. In the first experiment, we found that stimulation of the amblyopic eye resulted in a signal that was both attenuated and delayed in its time to peak. We postulated that this delay may be due to suppressive effects of the dominant eye and, in our second experiment, measured the cortical response of amblyopic eye stimulation under two conditions--where the dominant eye was open and seeing a static pattern (high suppression) or where the dominant eye was patched and closed (low suppression). We found that the HRF in response to amblyopic eye stimulation depended on whether the dominant eye was open. This effect was manifested as both a delayed HRF under the suppressed condition and an amplitude reduction.

  2. Correlates of Bulimia Nervosa: Early Family Mealtime Experiences.

    ERIC Educational Resources Information Center

    Miller, Debra A. F.; And Others

    1993-01-01

    Examined relationship of early mealtime experiences to later bulimia in 128 female college students. Found significant group differences among bulimics, nonbulimics, and repeat dieters on early meal experience questionnaire, with bulimic group reporting most negative and unusual experiences. Found significant differences among groups on depression…

  3. The Legacy of Early Experiences in Development: Formalizing Alternative Models of How Early Experiences Are Carried Forward over Time

    ERIC Educational Resources Information Center

    Fraley, R. Chris; Roisman, Glenn I.; Haltigan, John D.

    2013-01-01

    Psychologists have long debated the role of early experience in social and cognitive development. However, traditional approaches to studying this issue are not well positioned to address this debate. The authors present simulations that indicate that the associations between early experiences and later outcomes should approach different…

  4. Endogenously generated gamma-band oscillations in early visual cortex: A neurofeedback study.

    PubMed

    Merkel, Nina; Wibral, Michael; Bland, Gareth; Singer, Wolf

    2018-04-26

    Human subjects were trained with neurofeedback (NFB) to enhance the power of narrow-band gamma oscillations in circumscribed regions of early visual cortex. To select the region and the oscillation frequency for NFB training, gamma oscillations were induced with locally presented drifting gratings. The source and frequency of these induced oscillations were determined using beamforming methods. During NFB training the power of narrow band gamma oscillations was continuously extracted from this source with online beamforming and converted into the pitch of a tone signal. We found that seven out of ten subjects were able to selectively increase the amplitude of gamma oscillations in the absence of visual stimulation. One subject however failed completely and two subjects succeeded to manipulate the feedback signal by contraction of muscles. In all subjects the attempts to enhance visual gamma oscillations were associated with an increase of beta oscillations over precentral/frontal regions. Only successful subjects exhibited an additional marked increase of theta oscillations over precentral/prefrontal and temporal regions whereas unsuccessful subjects showed an increase of alpha band oscillations over occipital regions. We argue that spatially confined networks in early visual cortex can be entrained to engage in narrow band gamma oscillations not only by visual stimuli but also by top down signals. We interpret the concomitant increase in beta oscillations as indication for an engagement of the fronto-parietal attention network and the increase of theta oscillations as a correlate of imagery. Our finding support the application of NFB in disease conditions associated with impaired gamma synchronization. © 2018 Wiley Periodicals, Inc.

  5. Verbal and visual memory in patients with early Parkinson's disease: effect of levodopa.

    PubMed

    Singh, Sumit; Behari, Madhuri

    2006-03-01

    The effect of initiation of levodopa therapy on the memory functions in patients with Parkinson's disease remains poorly understood. To evaluate the effect of initiation of levodopa therapy on memory, in patients with early Parkinson's disease. Prospective case control study. Seventeen patients with early Parkinson's disease were evaluated for verbal memory using Rey's auditory verbal learning test, and visual memory using the Benton's visual retention test and Form sequence learning test. UPDRS scores, Hoehn and Yahr's Staging and Schwab and England scores of Activities of daily living. Hamilton's depression rating scale and MMSE were also evaluated. Six controls were also evaluated according to similar study protocol. Levodopa was then prescribed to the cases. Same tests were repeated on all the subjects after 12 weeks. The mean age of the patients was 59.8 (+ 12.9 yrs); mean disease duration of 3.26 (+ 2.06 yrs). The mean UPDRS scores of patients were 36.52 (+ 15.84). Controls were of a similar age and sex distribution. A statistically significant improvement in the scores on the UPDRS, Hamilton's depression scale, Schwab and England scale, and a statistically significant deterioration in the scores of visual memory was observed in patients with PD after starting levodopa, as compared to their baseline scores. There was no correlation between degree of deterioration and the dose of levodopa. Initiation of levodopa therapy in patients with early and stable Parkinson's disease is associated with deterioration in visual memory functions, with relative preservation of the verbal memory.

  6. Correlation between Macular Thickness and Visual Field in Early Open Angle Glaucoma: A Cross-Sectional Study.

    PubMed

    Fallahi Motlagh, Behzad; Sadeghi, Ali

    2017-01-01

    The aim of this study was to correlate macular thickness and visual field parameters in early glaucoma. A total of 104 eyes affected with early glaucoma were examined in a cross-sectional, prospective study. Visual field testing using both standard automated perimetry (SAP) and shortwave automated perimetry (SWAP) was performed. Global visual field parameters, including mean deviation (MD) and pattern standard deviation (PSD), were recorded and correlated with spectral domain optical coherence tomography (SD-OCT)-measured macular thickness and asymmetry. Average macular thickness correlated significantly with all measures of visual field including MD-SWAP (r = 0.42), MD-SAP (r = 0.41), PSD-SWAP (r = -0.23), and PSD-SAP (r = -0.21), with P-values <0.001 for all correlations. The mean MD scores (using both SWAP and SAP) were significantly higher in the eyes with thin than in those with intermediate average macular thickness. Intraeye (superior macula thickness - inferior macula thickness) asymmetries correlated significantly with both PSD-SWAP (r = 0.63, P < 0.001) and PSD-SAP (r = 0.26, P = 0.01) scores. This study revealed a significant correlation between macular thickness and visual field parameters in early glaucoma. The results of this study should make macular thickness measurements even more meaningful to glaucoma specialists.

  7. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.

    PubMed

    Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R

    2016-03-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.

  8. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex

    PubMed Central

    Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C.; Roelfsema, Pieter R.

    2016-01-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons’ receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex. PMID:27015604

  9. Astronaut Charles Conrad during visual acuity experiments over Laredo

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Astronaut Charles Conrad Jr., pilot for the prime crew on the Gemini 5 space flight, takes pictures of predetermined land areas during visual acuity experiments over Laredo, Texas. The experiments will aid in learning to identify known terrestrial features under controlled conditions.

  10. Development of cortical orientation selectivity in the absence of visual experience with contour

    PubMed Central

    Hussain, Shaista; Weliky, Michael

    2011-01-01

    Visual cortical neurons are selective for the orientation of lines, and the full development of this selectivity requires natural visual experience after eye opening. Here we examined whether this selectivity develops without seeing lines and contours. Juvenile ferrets were reared in a dark room and visually trained by being shown a movie of flickering, sparse spots. We found that despite the lack of contour visual experience, the cortical neurons of these ferrets developed strong orientation selectivity and exhibited simple-cell receptive fields. This finding suggests that overt contour visual experience is unnecessary for the maturation of orientation selectivity and is inconsistent with the computational models that crucially require the visual inputs of lines and contours for the development of orientation selectivity. We propose that a correlation-based model supplemented with a constraint on synaptic strength dynamics is able to account for our experimental result. PMID:21753023

  11. Abnormal early brain responses during visual search are evident in schizophrenia but not bipolar affective disorder.

    PubMed

    VanMeerten, Nicolaas J; Dubke, Rachel E; Stanwyck, John J; Kang, Seung Suk; Sponheim, Scott R

    2016-01-01

    People with schizophrenia show deficits in processing visual stimuli but neural abnormalities underlying the deficits are unclear and it is unknown whether such functional brain abnormalities are present in other severe mental disorders or in individuals who carry genetic liability for schizophrenia. To better characterize brain responses underlying visual search deficits and test their specificity to schizophrenia we gathered behavioral and electrophysiological responses during visual search (i.e., Span of Apprehension [SOA] task) from 38 people with schizophrenia, 31 people with bipolar disorder, 58 biological relatives of people with schizophrenia, 37 biological relatives of people with bipolar disorder, and 65 non-psychiatric control participants. Through subtracting neural responses associated with purely sensory aspects of the stimuli we found that people with schizophrenia exhibited reduced early posterior task-related neural responses (i.e., Span Endogenous Negativity [SEN]) while other groups showed normative responses. People with schizophrenia exhibited longer reaction times than controls during visual search but nearly identical accuracy. Those individuals with schizophrenia who had larger SENs performed more efficiently (i.e., shorter reaction times) on the SOA task suggesting that modulation of early visual cortical responses facilitated their visual search. People with schizophrenia also exhibited a diminished P300 response compared to other groups. Unaffected first-degree relatives of people with bipolar disorder and schizophrenia showed an amplified N1 response over posterior brain regions in comparison to other groups. Diminished early posterior brain responses are associated with impaired visual search in schizophrenia and appear to be specifically associated with the neuropathology of schizophrenia. Published by Elsevier B.V.

  12. Early Sign Language Experience Goes Along with an Increased Cross-modal Gain for Affective Prosodic Recognition in Congenitally Deaf CI Users.

    PubMed

    Fengler, Ineke; Delfau, Pia-Céline; Röder, Brigitte

    2018-04-01

    It is yet unclear whether congenitally deaf cochlear implant (CD CI) users' visual and multisensory emotion perception is influenced by their history in sign language acquisition. We hypothesized that early-signing CD CI users, relative to late-signing CD CI users and hearing, non-signing controls, show better facial expression recognition and rely more on the facial cues of audio-visual emotional stimuli. Two groups of young adult CD CI users-early signers (ES CI users; n = 11) and late signers (LS CI users; n = 10)-and a group of hearing, non-signing, age-matched controls (n = 12) performed an emotion recognition task with auditory, visual, and cross-modal emotionally congruent and incongruent speech stimuli. On different trials, participants categorized either the facial or the vocal expressions. The ES CI users more accurately recognized affective prosody than the LS CI users in the presence of congruent facial information. Furthermore, the ES CI users, but not the LS CI users, gained more than the controls from congruent visual stimuli when recognizing affective prosody. Both CI groups performed overall worse than the controls in recognizing affective prosody. These results suggest that early sign language experience affects multisensory emotion perception in CD CI users.

  13. Linguistic experience and audio-visual perception of non-native fricatives.

    PubMed

    Wang, Yue; Behne, Dawn M; Jiang, Haisheng

    2008-09-01

    This study examined the effects of linguistic experience on audio-visual (AV) perception of non-native (L2) speech. Canadian English natives and Mandarin Chinese natives differing in degree of English exposure [long and short length of residence (LOR) in Canada] were presented with English fricatives of three visually distinct places of articulation: interdentals nonexistent in Mandarin and labiodentals and alveolars common in both languages. Stimuli were presented in quiet and in a cafe-noise background in four ways: audio only (A), visual only (V), congruent AV (AVc), and incongruent AV (AVi). Identification results showed that overall performance was better in the AVc than in the A or V condition and better in quiet than in cafe noise. While the Mandarin long LOR group approximated the native English patterns, the short LOR group showed poorer interdental identification, more reliance on visual information, and greater AV-fusion with the AVi materials, indicating the failure of L2 visual speech category formation with the short LOR non-natives and the positive effects of linguistic experience with the long LOR non-natives. These results point to an integrated network in AV speech processing as a function of linguistic background and provide evidence to extend auditory-based L2 speech learning theories to the visual domain.

  14. High-frequency spectral ultrasound imaging (SUSI) visualizes early post-traumatic heterotopic ossification (HO) in a mouse model.

    PubMed

    Ranganathan, Kavitha; Hong, Xiaowei; Cholok, David; Habbouche, Joe; Priest, Caitlin; Breuler, Christopher; Chung, Michael; Li, John; Kaura, Arminder; Hsieh, Hsiao Hsin Sung; Butts, Jonathan; Ucer, Serra; Schwartz, Ean; Buchman, Steven R; Stegemann, Jan P; Deng, Cheri X; Levi, Benjamin

    2018-04-01

    Early treatment of heterotopic ossification (HO) is currently limited by delayed diagnosis due to limited visualization at early time points. In this study, we validate the use of spectral ultrasound imaging (SUSI) in an animal model to detect HO as early as one week after burn tenotomy. Concurrent SUSI, micro CT, and histology at 1, 2, 4, and 9weeks post-injury were used to follow the progression of HO after an Achilles tenotomy and 30% total body surface area burn (n=3-5 limbs per time point). To compare the use of SUSI in different types of injury models, mice (n=5 per group) underwent either burn/tenotomy or skin incision injury and were imaged using a 55MHz probe on VisualSonics VEVO 770 system at one week post injury to evaluate the ability of SUSI to distinguish between edema and HO. Average acoustic concentration (AAC) and average scatterer diameter (ASD) were calculated for each ultrasound image frame. Micro CT was used to calculate the total volume of HO. Histology was used to confirm bone formation. Using SUSI, HO was visualized as early as 1week after injury. HO was visualized earliest by 4weeks after injury by micro CT. The average acoustic concentration of HO was 33% more than that of the control limb (n=5). Spectroscopic foci of HO present at 1week that persisted throughout all time points correlated with the HO present at 9weeks on micro CT imaging. SUSI visualizes HO as early as one week after injury in an animal model. SUSI represents a new imaging modality with promise for early diagnosis of HO. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Improving Empathy and Communication Skills of Visually Impaired Early Adolescents through a Psycho-Education Program

    ERIC Educational Resources Information Center

    Yildiz, Mehmet Ali; Duy, Baki

    2013-01-01

    The purpose of this study was to investigate the effectiveness of an interpersonal communication skills psycho-education program to improve empathy and communication skills of visually impaired adolescents. Participants of the study were sixteen early adolescents schooling in an elementary school for visually impaired youth in Diyarbakir. The…

  16. Perceptual learning selectively refines orientation representations in early visual cortex.

    PubMed

    Jehee, Janneke F M; Ling, Sam; Swisher, Jascha D; van Bergen, Ruben S; Tong, Frank

    2012-11-21

    Although practice has long been known to improve perceptual performance, the neural basis of this improvement in humans remains unclear. Using fMRI in conjunction with a novel signal detection-based analysis, we show that extensive practice selectively enhances the neural representation of trained orientations in the human visual cortex. Twelve observers practiced discriminating small changes in the orientation of a laterally presented grating over 20 or more daily 1 h training sessions. Training on average led to a twofold improvement in discrimination sensitivity, specific to the trained orientation and the trained location, with minimal improvement found for untrained orthogonal orientations or for orientations presented in the untrained hemifield. We measured the strength of orientation-selective responses in individual voxels in early visual areas (V1-V4) using signal detection measures, both before and after training. Although the overall amplitude of the BOLD response was no greater after training, practice nonetheless specifically enhanced the neural representation of the trained orientation at the trained location. This training-specific enhancement of orientation-selective responses was observed in the primary visual cortex (V1) as well as higher extrastriate visual areas V2-V4, and moreover, reliably predicted individual differences in the behavioral effects of perceptual learning. These results demonstrate that extensive training can lead to targeted functional reorganization of the human visual cortex, refining the cortical representation of behaviorally relevant information.

  17. Visual Contrast Sensitivity in Early-Stage Parkinson's Disease.

    PubMed

    Ming, Wendy; Palidis, Dimitrios J; Spering, Miriam; McKeown, Martin J

    2016-10-01

    Visual impairments are frequent in Parkinson's disease (PD) and impact normal functioning in daily activities. Visual contrast sensitivity is a powerful nonmotor sign for discriminating PD patients from controls. However, it is usually assessed with static visual stimuli. Here we examined the interaction between perception and eye movements in static and dynamic contrast sensitivity tasks in a cohort of mildly impaired, early-stage PD patients. Patients (n = 13) and healthy age-matched controls (n = 12) viewed stimuli of various spatial frequencies (0-8 cyc/deg) and speeds (0°/s, 10°/s, 30°/s) on a computer monitor. Detection thresholds were determined by asking participants to adjust luminance contrast until they could just barely see the stimulus. Eye position was recorded with a video-based eye tracker. Patients' static contrast sensitivity was impaired in the intermediate spatial-frequency range and this impairment correlated with fixational instability. However, dynamic contrast sensitivity and patients' smooth pursuit were relatively normal. An independent component analysis revealed contrast sensitivity profiles differentiating patients and controls. Our study simultaneously assesses perceptual contrast sensitivity and eye movements in PD, revealing a possible link between fixational instability and perceptual deficits. Spatiotemporal contrast sensitivity profiles may represent an easily measurable metric as a component of a broader combined biometric for nonmotor features observed in PD.

  18. Affective facilitation of early visual cortex during rapid picture presentation at 6 and 15 Hz

    PubMed Central

    Bekhtereva, Valeria

    2015-01-01

    The steady-state visual evoked potential (SSVEP), a neurophysiological marker of attentional resource allocation with its generators in early visual cortex, exhibits enhanced amplitude for emotional compared to neutral complex pictures. Emotional cue extraction for complex images is linked to the N1-EPN complex with a peak latency of ∼140–160 ms. We tested whether neural facilitation in early visual cortex with affective pictures requires emotional cue extraction of individual images, even when a stream of images of the same valence category is presented. Images were shown at either 6 Hz (167 ms, allowing for extraction) or 15 Hz (67 ms per image, causing disruption of processing by the following image). Results showed SSVEP amplitude enhancement for emotional compared to neutral images at a presentation rate of 6 Hz but no differences at 15 Hz. This was not due to featural differences between the two valence categories. Results strongly suggest that individual images need to be displayed for sufficient time allowing for emotional cue extraction to drive affective neural modulation in early visual cortex. PMID:25971598

  19. Biological Perspectives on the Effects of Early Psychosocial Experience

    ERIC Educational Resources Information Center

    Marshall, Peter J.; Kenney, Justin W.

    2009-01-01

    There is much current interest in how adverse experiences early in life might affect certain elements of physiological, behavioral, and psychological functioning across the lifespan. Recent conceptual frameworks for studying the effects of early experience have involved constructs such as experience-expectant, experience-dependent, and…

  20. Long-Lasting Crossmodal Cortical Reorganization Triggered by Brief Postnatal Visual Deprivation.

    PubMed

    Collignon, Olivier; Dormal, Giulia; de Heering, Adelaide; Lepore, Franco; Lewis, Terri L; Maurer, Daphne

    2015-09-21

    Animal and human studies have demonstrated that transient visual deprivation early in life, even for a very short period, permanently alters the response properties of neurons in the visual cortex and leads to corresponding behavioral visual deficits. While it is acknowledged that early-onset and longstanding blindness leads the occipital cortex to respond to non-visual stimulation, it remains unknown whether a short and transient period of postnatal visual deprivation is sufficient to trigger crossmodal reorganization that persists after years of visual experience. In the present study, we characterized brain responses to auditory stimuli in 11 adults who had been deprived of all patterned vision at birth by congenital cataracts in both eyes until they were treated at 9 to 238 days of age. When compared to controls with typical visual experience, the cataract-reversal group showed enhanced auditory-driven activity in focal visual regions. A combination of dynamic causal modeling with Bayesian model selection indicated that this auditory-driven activity in the occipital cortex was better explained by direct cortico-cortical connections with the primary auditory cortex than by subcortical connections. Thus, a short and transient period of visual deprivation early in life leads to enduring large-scale crossmodal reorganization of the brain circuitry typically dedicated to vision. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. How Visual Is the Visual Cortex? Comparing Connectional and Functional Fingerprints between Congenitally Blind and Sighted Individuals.

    PubMed

    Wang, Xiaoying; Peelen, Marius V; Han, Zaizhu; He, Chenxi; Caramazza, Alfonso; Bi, Yanchao

    2015-09-09

    Classical animal visual deprivation studies and human neuroimaging studies have shown that visual experience plays a critical role in shaping the functionality and connectivity of the visual cortex. Interestingly, recent studies have additionally reported circumscribed regions in the visual cortex in which functional selectivity was remarkably similar in individuals with and without visual experience. Here, by directly comparing resting-state and task-based fMRI data in congenitally blind and sighted human subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. We found a close agreement between connectional and functional maps, pointing to a strong interdependence of connectivity and function. Visual experience (or the absence thereof) had a pronounced effect on the resting-state connectivity and functional response profile of occipital cortex and the posterior lateral fusiform gyrus. By contrast, connectional and functional fingerprints in the anterior medial and posterior lateral parts of the ventral visual cortex were statistically indistinguishable between blind and sighted individuals. These results provide a large-scale mapping of the influence of visual experience on the development of both functional and connectivity properties of visual cortex, which serves as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions. Significance statement: How is the functionality and connectivity of the visual cortex shaped by visual experience? By directly comparing resting-state and task-based fMRI data in congenitally blind and sighted subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. In addition to revealing regions that are strongly dependent on visual experience (early visual

  2. Tactile stimulation partially prevents neurodevelopmental changes in visual tract caused by early iron deficiency.

    PubMed

    Horiquini-Barbosa, Everton; Gibb, Robbin; Kolb, Bryan; Bray, Douglas; Lachat, Joao-Jose

    2017-02-15

    Iron deficiency has a critical impact on maturational mechanisms of the brain and the damage related to neuroanatomical parameters is not satisfactorily reversed after iron replacement. However, emerging evidence suggest that enriched early experience may offer great therapeutic efficacy in cases of nutritional disorders postnatally, since the brain is remarkably responsive to its interaction with the environment. Given the fact that tactile stimulation (TS) treatment has been previously shown to be an effective therapeutic approach and with potential application to humans, here we ask whether exposure to TS treatment, from postnatal day (P) 1 to P32 for 3min/day, could also be employed to prevent neuroanatomical changes in the optic nerve of rats maintained on an iron-deficient diet during brain development. We found that iron deficiency changed astrocyte, oligodendrocyte, damaged fiber, and myelinated fiber density, however, TS reversed the iron-deficiency-induced alteration in oligodendrocyte, damaged fiber and myelinated fiber density, but failed to reverse astrocyte density. Our results suggest that early iron deficiency may act by disrupting the timing of key steps in visual system development thereby modifying the normal progression of optic nerve maturation. However, optic nerve development is sensitive to enriching experiences, and in the current study we show that this sensitivity can be used to prevent damage from postnatal iron deficiency during the critical period. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli

    PubMed Central

    Störmer, Viola S.; McDonald, John J.; Hillyard, Steven A.

    2009-01-01

    The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex. PMID:20007778

  4. Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli.

    PubMed

    Störmer, Viola S; McDonald, John J; Hillyard, Steven A

    2009-12-29

    The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex.

  5. Are visual peripheries forever young?

    PubMed

    Burnat, Kalina

    2015-01-01

    The paper presents a concept of lifelong plasticity of peripheral vision. Central vision processing is accepted as critical and irreplaceable for normal perception in humans. While peripheral processing chiefly carries information about motion stimuli features and redirects foveal attention to new objects, it can also take over functions typical for central vision. Here I review the data showing the plasticity of peripheral vision found in functional, developmental, and comparative studies. Even though it is well established that afferent projections from central and peripheral retinal regions are not established simultaneously during early postnatal life, central vision is commonly used as a general model of development of the visual system. Based on clinical studies and visually deprived animal models, I describe how central and peripheral visual field representations separately rely on early visual experience. Peripheral visual processing (motion) is more affected by binocular visual deprivation than central visual processing (spatial resolution). In addition, our own experimental findings show the possible recruitment of coarse peripheral vision for fine spatial analysis. Accordingly, I hypothesize that the balance between central and peripheral visual processing, established in the course of development, is susceptible to plastic adaptations during the entire life span, with peripheral vision capable of taking over central processing.

  6. Early Visual Deprivation Alters Multisensory Processing in Peripersonal Space

    ERIC Educational Resources Information Center

    Collignon, Olivier; Charbonneau, Genevieve; Lassonde, Maryse; Lepore, Franco

    2009-01-01

    Multisensory peripersonal space develops in a maturational process that is thought to be influenced by early sensory experience. We investigated the role of vision in the effective development of audiotactile interactions in peripersonal space. Early blind (EB), late blind (LB) and sighted control (SC) participants were asked to lateralize…

  7. Beyond Phonology: Visual Processes Predict Alphanumeric and Nonalphanumeric Rapid Naming in Poor Early Readers

    ERIC Educational Resources Information Center

    Kruk, Richard S.; Luther Ruban, Cassia

    2018-01-01

    Visual processes in Grade 1 were examined for their predictive influences in nonalphanumeric and alphanumeric rapid naming (RAN) in 51 poor early and 69 typical readers. In a lagged design, children were followed longitudinally from Grade 1 to Grade 3 over 5 testing occasions. RAN outcomes in early Grade 2 were predicted by speeded and nonspeeded…

  8. Visual Arts for Emotionally Handicapped Early Adolescents Theory and Resultant Guidelines.

    ERIC Educational Resources Information Center

    Shields, Roscoe, Jr.

    The paper discusses the theory and implementation guidelines of a visual arts curriculum for emotionally handicapped adolescents. The author stresses the importance of expressive arts and of identification with the art experience, and suggests that a curriculum should start with themes, experiences, and ideas worth communicating. Expressive…

  9. Core formation in the early solar system through percolation: 4-D in-situ visualization of melt migration

    NASA Astrophysics Data System (ADS)

    Bromiley, G.; Berg, M.; Le Godec, Y.; Mezouar, N.; Atwood, R. C.; Phillipe, J.

    2015-12-01

    Although core formation was a key stage in the evolution of terrestrial planets, the physical processes which resulted in segregation of iron and silicate remain poorly understood. Formation of a silicate magma oceans provides an obvious mechanism for segregation of core-forming liquids, although recent work has strengthened arguments for a complex, multi-stage model of core formation. Extreme pressure1 and the effects of deformation2 have both been shown to promote percolation of Fe-rich melts in a solid silicate matrix, providing mechanisms for early, low temperature core-formation. However, the efficiency of these processes remains untested and we lack meaningful experimental data on resulting melt segregation velocities. Arguments regarding the efficiency of core formation through percolation of Fe-rich melts in solid silicate are based on simple, empirical models. Here, we review textural evidence from recent experiments which supports early core formation driven by deformation-aided percolation of Fe-rich melts. We then present results of novel in-situ synchrotron studies designed to provide time-resolved 3-D microimaging of percolating melt in model systems under extreme conditions. Under low strain rates characteristic of deformation-aided core formation, segregation of metallic (core-forming) melts by percolation is driven by stress gradients. This is expected to ultimately result in channelization and efficient segregation of melts noted in high-strain, low pressure experiments3. In-situ visualization also demonstrates that percolation of viscous metallic melts is surprisingly rapid. A combination of melt channelization and hydraulic fracture results in rapid, episodic melt migration, even over the limited time scale of experiments. The efficiency of this process depends strongly on the geometry of the melt network and is scaled to grain size in the matrix. We use both in-situ visualization and high-resolution ex-situ analysis to provide accurate

  10. Attention Priority Map of Face Images in Human Early Visual Cortex.

    PubMed

    Mo, Ce; He, Dongjun; Fang, Fang

    2018-01-03

    Attention priority maps are topographic representations that are used for attention selection and guidance of task-related behavior during visual processing. Previous studies have identified attention priority maps of simple artificial stimuli in multiple cortical and subcortical areas, but investigating neural correlates of priority maps of natural stimuli is complicated by the complexity of their spatial structure and the difficulty of behaviorally characterizing their priority map. To overcome these challenges, we reconstructed the topographic representations of upright/inverted face images from fMRI BOLD signals in human early visual areas primary visual cortex (V1) and the extrastriate cortex (V2 and V3) based on a voxelwise population receptive field model. We characterized the priority map behaviorally as the first saccadic eye movement pattern when subjects performed a face-matching task relative to the condition in which subjects performed a phase-scrambled face-matching task. We found that the differential first saccadic eye movement pattern between upright/inverted and scrambled faces could be predicted from the reconstructed topographic representations in V1-V3 in humans of either sex. The coupling between the reconstructed representation and the eye movement pattern increased from V1 to V2/3 for the upright faces, whereas no such effect was found for the inverted faces. Moreover, face inversion modulated the coupling in V2/3, but not in V1. Our findings provide new evidence for priority maps of natural stimuli in early visual areas and extend traditional attention priority map theories by revealing another critical factor that affects priority maps in extrastriate cortex in addition to physical salience and task goal relevance: image configuration. SIGNIFICANCE STATEMENT Prominent theories of attention posit that attention sampling of visual information is mediated by a series of interacting topographic representations of visual space known as

  11. Perceptual Learning Selectively Refines Orientation Representations in Early Visual Cortex

    PubMed Central

    Jehee, Janneke F.M.; Ling, Sam; Swisher, Jascha D.; van Bergen, Ruben S.; Tong, Frank

    2013-01-01

    Although practice has long been known to improve perceptual performance, the neural basis of this improvement in humans remains unclear. Using fMRI in conjunction with a novel signal detection-based analysis, we show that extensive practice selectively enhances the neural representation of trained orientations in the human visual cortex. Twelve observers practiced discriminating small changes in the orientation of a laterally presented grating over 20 or more daily one-hour training sessions. Training on average led to a two-fold improvement in discrimination sensitivity, specific to the trained orientation and the trained location, with minimal improvement found for untrained orthogonal orientations or for orientations presented in the untrained hemifield. We measured the strength of orientation-selective responses in individual voxels in early visual areas (V1–V4) using signal detection measures, both pre- and post-training. Although the overall amplitude of the BOLD response was no greater after training, practice nonetheless specifically enhanced the neural representation of the trained orientation at the trained location. This training-specific enhancement of orientation-selective responses was observed in the primary visual cortex (V1) as well as higher extrastriate visual areas V2–V4, and moreover, reliably predicted individual differences in the behavioral effects of perceptual learning. These results demonstrate that extensive training can lead to targeted functional reorganization of the human visual cortex, refining the cortical representation of behaviorally relevant information. PMID:23175828

  12. Visualization of early influenza A virus trafficking in human dendritic cells using STED microscopy.

    PubMed

    Baharom, Faezzah; Thomas, Oliver S; Lepzien, Rico; Mellman, Ira; Chalouni, Cécile; Smed-Sörensen, Anna

    2017-01-01

    Influenza A viruses (IAV) primarily target respiratory epithelial cells, but can also replicate in immune cells, including human dendritic cells (DCs). Super-resolution microscopy provides a novel method of visualizing viral trafficking by overcoming the resolution limit imposed by conventional light microscopy, without the laborious sample preparation of electron microscopy. Using three-color Stimulated Emission Depletion (STED) microscopy, we visualized input IAV nucleoprotein (NP), early and late endosomal compartments (EEA1 and LAMP1 respectively), and HLA-DR (DC membrane/cytosol) by immunofluorescence in human DCs. Surface bound IAV were internalized within 5 min of infection. The association of virus particles with early endosomes peaked at 5 min when 50% of NP+ signals were also EEA1+. Peak association with late endosomes occurred at 15 min when 60% of NP+ signals were LAMP1+. At 30 min of infection, the majority of NP signals were in the nucleus. Our findings illustrate that early IAV trafficking in human DCs proceeds via the classical endocytic pathway.

  13. Sensory experience modifies feature map relationships in visual cortex

    PubMed Central

    Cloherty, Shaun L; Hughes, Nicholas J; Hietanen, Markus A; Bhagavatula, Partha S

    2016-01-01

    The extent to which brain structure is influenced by sensory input during development is a critical but controversial question. A paradigmatic system for studying this is the mammalian visual cortex. Maps of orientation preference (OP) and ocular dominance (OD) in the primary visual cortex of ferrets, cats and monkeys can be individually changed by altered visual input. However, the spatial relationship between OP and OD maps has appeared immutable. Using a computational model we predicted that biasing the visual input to orthogonal orientation in the two eyes should cause a shift of OP pinwheels towards the border of OD columns. We then confirmed this prediction by rearing cats wearing orthogonally oriented cylindrical lenses over each eye. Thus, the spatial relationship between OP and OD maps can be modified by visual experience, revealing a previously unknown degree of brain plasticity in response to sensory input. DOI: http://dx.doi.org/10.7554/eLife.13911.001 PMID:27310531

  14. Using Visual Literacy to Teach Science Academic Language: Experiences from Three Preservice Teachers

    ERIC Educational Resources Information Center

    Kelly-Jackson, Charlease; Delacruz, Stacy

    2014-01-01

    This original pedagogical study captured three preservice teachers' experiences using visual literacy strategies as an approach to teaching English language learners (ELLs) science academic language. The following research questions guided this study: (1) What are the experiences of preservice teachers' use of visual literacy to teach science…

  15. Blindness and social trust: The effect of early visual deprivation on judgments of trustworthiness.

    PubMed

    Ferrari, C; Vecchi, T; Merabet, L B; Cattaneo, Z

    2017-10-01

    Investigating the impact of early visual deprivation on evaluations related to social trust has received little attention to date. This is despite consistent evidence suggesting that early onset blindness may interfere with the normal development of social skills. In this study, we investigated whether early blindness affects judgments of trustworthiness regarding the actions of an agent, with trustworthiness representing the fundamental dimension in the social evaluation. Specifically, we compared performance between a group of early blind individuals with that of sighted controls in their evaluation of trustworthiness of an agent after hearing a pair of two positive or two negative social behaviors (impression formation). Participants then repeated the same evaluation following the presentation of a third (consistent or inconsistent) behavior regarding the same agent (impression updating). Overall, blind individuals tended to give similar evaluations compared to their sighted counterparts. However, they also valued positive behaviors significantly more than sighted controls when forming their impression of an agent's trustworthiness. Moreover, when inconsistent information was provided, blind individuals were more prone to revise their initial evaluation compared to controls. These results suggest that early visual deprivation may have a dramatic effect on the evaluation of social factors such as trustworthiness. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. [Nursing Experience of Using Mirror Visual Feedback for a Schizophrenia Patient With Visual Hallucinations].

    PubMed

    Lan, Shu-Ling; Chen, Yu-Chi; Chang, Hsiu-Ju

    2018-06-01

    The aim of this paper was to describe the nursing application of mirror visual feedback in a patient suffering from long-term visual hallucinations. The intervention period was from May 15th to October 19th, 2015. Using the five facets of psychiatric nursing assessment, several health problems were observed, including disturbed sensory perceptions (prominent visual hallucinations) and poor self-care (e.g. limited abilities to self-bathe and put on clothing). Furthermore, "caregiver role strain" due to the related intense care burden was noted. After building up a therapeutic interpersonal relationship, the technique of brain plasticity and mirror visual feedback were performed using multiple nursing care methods in order to help the patient suppress her visual hallucinations by enhancing a different visual stimulus. We also taught her how to cope with visual hallucinations in a proper manner. The frequency and content of visual hallucinations were recorded to evaluate the effects of management. The therapeutic plan was formulated together with the patient in order to boost her self-confidence, and a behavior contract was implemented in order to improve her personal hygiene. In addition, psychoeducation on disease-related topics was provided to the patient's family, and they were encouraged to attend relevant therapeutic activities. As a result, her family became less passive and negative and more engaged in and positive about her future. The crisis of "caregiver role strain" was successfully resolved. The current experience is hoped to serve as a model for enhancing communication and cooperation between family and staff in similar medical settings.

  17. 'Visual’ parsing can be taught quickly without visual experience during critical periods

    PubMed Central

    Reich, Lior; Amedi, Amir

    2015-01-01

    Cases of invasive sight-restoration in congenital blind adults demonstrated that acquiring visual abilities is extremely challenging, presumably because visual-experience during critical-periods is crucial for learning visual-unique concepts (e.g. size constancy). Visual rehabilitation can also be achieved using sensory-substitution-devices (SSDs) which convey visual information non-invasively through sounds. We tested whether one critical concept – visual parsing, which is highly-impaired in sight-restored patients – can be learned using SSD. To this end, congenitally blind adults participated in a unique, relatively short (~70 hours), SSD-‘vision’ training. Following this, participants successfully parsed 2D and 3D visual objects. Control individuals naïve to SSDs demonstrated that while some aspects of parsing with SSD are intuitive, the blind’s success could not be attributed to auditory processing alone. Furthermore, we had a unique opportunity to compare the SSD-users’ abilities to those reported for sight-restored patients who performed similar tasks visually, and who had months of eyesight. Intriguingly, the SSD-users outperformed the patients on most criteria tested. These suggest that with adequate training and technologies, key high-order visual features can be quickly acquired in adulthood, and lack of visual-experience during critical-periods can be somewhat compensated for. Practically, these highlight the potential of SSDs as standalone-aids or combined with invasive restoration approaches. PMID:26482105

  18. Psychic blindness or visual agnosia: early descriptions of a nervous disorder.

    PubMed

    Baumann, Christian

    2011-01-01

    This article briefly reports on three early contributions to the understanding of visual agnosia as a syndrome sui generis. The authors of the respective papers worked in different fields such as physiology, ophthalmology, and neurology, and, although they were not in direct contact with each other, their results converged upon a consistent view of a nervous disorder that they called psychic blindness.

  19. Visual Aversive Learning Compromises Sensory Discrimination.

    PubMed

    Shalev, Lee; Paz, Rony; Avidan, Galia

    2018-03-14

    Aversive learning is thought to modulate perceptual thresholds, which can lead to overgeneralization. However, it remains undetermined whether this modulation is domain specific or a general effect. Moreover, despite the unique role of the visual modality in human perception, it is unclear whether this aspect of aversive learning exists in this modality. The current study was designed to examine the effect of visual aversive outcomes on the perception of basic visual and auditory features. We tested the ability of healthy participants, both males and females, to discriminate between neutral stimuli, before and after visual learning. In each experiment, neutral stimuli were associated with aversive images in an experimental group and with neutral images in a control group. Participants demonstrated a deterioration in discrimination (higher discrimination thresholds) only after aversive learning. This deterioration was measured for both auditory (tone frequency) and visual (orientation and contrast) features. The effect was replicated in five different experiments and lasted for at least 24 h. fMRI neural responses and pupil size were also measured during learning. We showed an increase in neural activations in the anterior cingulate cortex, insula, and amygdala during aversive compared with neutral learning. Interestingly, the early visual cortex showed increased brain activity during aversive compared with neutral context trials, with identical visual information. Our findings imply the existence of a central multimodal mechanism, which modulates early perceptual properties, following exposure to negative situations. Such a mechanism could contribute to abnormal responses that underlie anxiety states, even in new and safe environments. SIGNIFICANCE STATEMENT Using a visual aversive-learning paradigm, we found deteriorated discrimination abilities for visual and auditory stimuli that were associated with visual aversive stimuli. We showed increased neural

  20. Newborn chickens generate invariant object representations at the onset of visual object experience

    PubMed Central

    Wood, Justin N.

    2013-01-01

    To recognize objects quickly and accurately, mature visual systems build invariant object representations that generalize across a range of novel viewing conditions (e.g., changes in viewpoint). To date, however, the origins of this core cognitive ability have not yet been established. To examine how invariant object recognition develops in a newborn visual system, I raised chickens from birth for 2 weeks within controlled-rearing chambers. These chambers provided complete control over all visual object experiences. In the first week of life, subjects’ visual object experience was limited to a single virtual object rotating through a 60° viewpoint range. In the second week of life, I examined whether subjects could recognize that virtual object from novel viewpoints. Newborn chickens were able to generate viewpoint-invariant representations that supported object recognition across large, novel, and complex changes in the object’s appearance. Thus, newborn visual systems can begin building invariant object representations at the onset of visual object experience. These abstract representations can be generated from sparse data, in this case from a visual world containing a single virtual object seen from a limited range of viewpoints. This study shows that powerful, robust, and invariant object recognition machinery is an inherent feature of the newborn brain. PMID:23918372

  1. Early visual cortical structural changes in diabetic patients without diabetic retinopathy.

    PubMed

    Ferreira, Fábio S; Pereira, João M S; Reis, Aldina; Sanches, Mafalda; Duarte, João V; Gomes, Leonor; Moreno, Carolina; Castelo-Branco, Miguel

    2017-11-01

    It is known that diabetic patients have changes in cortical morphometry as compared to controls, but it remains to be clarified whether the visual cortex is a disease target, even when diabetes complications such as retinopathy are absent. Therefore, we compared type 2 diabetes patients without diabetic retinopathy with control subjects using magnetic resonance imaging to assess visual cortical changes when retinal damage is not yet present. We performed T1-weighted imaging in 24 type 2 diabetes patients without diabetic retinopathy and 27 age- and gender-matched controls to compare gray matter changes in the occipital cortex between groups using voxel based morphometry. Patients without diabetic retinopathy showed reduced gray matter volume in the occipital lobe when compared with controls. Reduced gray matter volume in the occipital cortex was found in diabetic patients without retinal damage. We conclude that cortical early visual processing regions may be affected in diabetic patients even before retinal damage occurs.

  2. Visual Processing Deficits in Children with Slow RAN Performance

    ERIC Educational Resources Information Center

    Stainthorp, Rhona; Stuart, Morag; Powell, Daisy; Quinlan, Philip; Garwood, Holly

    2010-01-01

    Two groups of 8- to 10-year-olds differing in rapid automatized naming speed but matched for age, verbal and nonverbal ability, phonological awareness, phonological memory, and visual acuity participated in four experiments investigating early visual processing. As low RAN children had significantly slower simple reaction times (SRT) this was…

  3. Survey Results for Training and Resource Needs Cited by Early Intervention Professionals in the Field of Visual Impairment

    ERIC Educational Resources Information Center

    Ely, Mindy S.; Ostrosky, Michaelene M.

    2017-01-01

    Introduction: Professionals working with infants and toddlers with visual impairments (that is, those who are blind or have low vision) were surveyed regarding their preservice training and their awareness and use of 29 resources related to young children who are visually impaired. Methods: Early intervention visual impairment professionals (n =…

  4. Early Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to GPU-Accelerated OpenPOWER Platforms

    PubMed Central

    Stone, John E.; Hynninen, Antti-Pekka; Phillips, James C.; Schulten, Klaus

    2017-01-01

    All-atom molecular dynamics simulations of biomolecules provide a powerful tool for exploring the structure and dynamics of large protein complexes within realistic cellular environments. Unfortunately, such simulations are extremely demanding in terms of their computational requirements, and they present many challenges in terms of preparation, simulation methodology, and analysis and visualization of results. We describe our early experiences porting the popular molecular dynamics simulation program NAMD and the simulation preparation, analysis, and visualization tool VMD to GPU-accelerated OpenPOWER hardware platforms. We report our experiences with compiler-provided autovectorization and compare with hand-coded vector intrinsics for the POWER8 CPU. We explore the performance benefits obtained from unique POWER8 architectural features such as 8-way SMT and its value for particular molecular modeling tasks. Finally, we evaluate the performance of several GPU-accelerated molecular modeling kernels and relate them to other hardware platforms. PMID:29202130

  5. Role of early visual cortex in trans-saccadic memory of object features.

    PubMed

    Malik, Pankhuri; Dessing, Joost C; Crawford, J Douglas

    2015-08-01

    Early visual cortex (EVC) participates in visual feature memory and the updating of remembered locations across saccades, but its role in the trans-saccadic integration of object features is unknown. We hypothesized that if EVC is involved in updating object features relative to gaze, feature memory should be disrupted when saccades remap an object representation into a simultaneously perturbed EVC site. To test this, we applied transcranial magnetic stimulation (TMS) over functional magnetic resonance imaging-localized EVC clusters corresponding to the bottom left/right visual quadrants (VQs). During experiments, these VQs were probed psychophysically by briefly presenting a central object (Gabor patch) while subjects fixated gaze to the right or left (and above). After a short memory interval, participants were required to detect the relative change in orientation of a re-presented test object at the same spatial location. Participants either sustained fixation during the memory interval (fixation task) or made a horizontal saccade that either maintained or reversed the VQ of the object (saccade task). Three TMS pulses (coinciding with the pre-, peri-, and postsaccade intervals) were applied to the left or right EVC. This had no effect when (a) fixation was maintained, (b) saccades kept the object in the same VQ, or (c) the EVC quadrant corresponding to the first object was stimulated. However, as predicted, TMS reduced performance when saccades (especially larger saccades) crossed the remembered object location and brought it into the VQ corresponding to the TMS site. This suppression effect was statistically significant for leftward saccades and followed a weaker trend for rightward saccades. These causal results are consistent with the idea that EVC is involved in the gaze-centered updating of object features for trans-saccadic memory and perception.

  6. Footprints of "experiment" in early Arabic optics.

    PubMed

    Kheirandish, Elaheh

    2009-01-01

    This study traces the early developments of the concept of experiment with a view of extending the subject in both content and approach. It extends the content of the subject slightly backward, prior to the methodological breakthroughs of the Optics of Ibn al-Haytham (Alhazen or Alhacen, d. ca. 1040), which are credited as a "significant landmark in the history of experimental science." And it extends the approach to the subject slightly forward, from the premise that early science was "largely carried out in books," to a close examination of the books through which the footprints of'experiment' may be traced. The point of departure is the Optics of Ahmad ibn 'Isă, a revealing text for the early developments of concepts such as 'demonstration' and 'experiment', and one through which some modern discussions are examined and extended with reference to this and other historical sources.

  7. MBARI CANON Experiment Visualization and Analysis

    NASA Astrophysics Data System (ADS)

    Fatland, R.; Oscar, N.; Ryan, J. P.; Bellingham, J. G.

    2013-12-01

    We describe the task of understanding a marine drift experiment conducted by MBARI in Fall 2012 ('CANON'). Datasets were aggregated from a drifting ADCP, from the MBARI Environmental Sample Processor, from Long Range Autonomous Underwater Vehicles (LRAUVs), from other in situ sensors, from NASA and NOAA remote sensing platforms, from moorings, from shipboard CTD casts and from post-experiment metagenomic analysis. We seek to combine existing approaches to data synthesis -- visual inspection, cross correlation and co.-- with three new ideas. This approach has the purpose of differentiating biological signals into three causal categories: Microcurrent advection, physical factors and microbe metabolism. Respective examples are aberrance from Lagrangian frame drift due to windage, changes in solar flux over several days, and microbial population responses to shifts in nitrate concentration. The three ideas we implemented are as follows: First, we advect LRAUV data to look for patterns in time series data for conserved quanitities such as salinity. We investigate whether such patterns can be used to support or undermine the premise of Lagrangian motion of the experiment ensemble. Second we built a set of configurable filters that enable us to visually isolate segments of data: By type, value, time, anomaly and location. Third we associated data hypotheses with a Bayesian inferrence engine for the purpose of model validation, again across sections taken from within the complete data complex. The end result is towards a free-form exploration of experimental data with low latency: from question to view, from hypothesis to test (albeit with considerable preparatory effort.) Preliminary results show the three causal categories shifting in relative influence.

  8. How Can Visual Experience Be Depicted? A Study of Close-Up Double Vision

    ERIC Educational Resources Information Center

    Green, James; Pepperell, Robert

    2014-01-01

    The attempt to record visual experience has been of central importance to many artists throughout the history of art. Vision itself is made up of many processes, both psychological and physiological, and is still only partially understood. This paper presents research into an aspect of visual experience descried as "close-up double…

  9. How does interhemispheric communication in visual word recognition work? Deciding between early and late integration accounts of the split fovea theory.

    PubMed

    Van der Haegen, Lise; Brysbaert, Marc; Davis, Colin J

    2009-02-01

    It has recently been shown that interhemispheric communication is needed for the processing of foveally presented words. In this study, we examine whether the integration of information happens at an early stage, before word recognition proper starts, or whether the integration is part of the recognition process itself. Two lexical decision experiments are reported in which words were presented at different fixation positions. In Experiment 1, a masked form priming task was used with primes that had two adjacent letters transposed. The results showed that although the fixation position had a substantial influence on the transposed letter priming effect, the priming was not smaller when the transposed letters were sent to different hemispheres than when they were projected to the same hemisphere. In Experiment 2, stimuli were presented that either had high frequency hemifield competitors or could be identified unambiguously on the basis of the information in one hemifield. Again, the lexical decision times did not vary as a function of hemifield competitors. These results are consistent with the early integration account, as presented in the SERIOL model of visual word recognition.

  10. Memory for Complex Visual Objects but Not for Allocentric Locations during the First Year of Life

    ERIC Educational Resources Information Center

    Dupierrix, Eve; Hillairet de Boisferon, Anne; Barbeau, Emmanuel; Pascalis, Olivier

    2015-01-01

    Although human infants demonstrate early competence to retain visual information, memory capacities during infancy remain largely undocumented. In three experiments, we used a Visual Paired Comparison (VPC) task to examine abilities to encode identity (Experiment 1) and spatial properties (Experiments 2a and 2b) of unfamiliar complex visual…

  11. Vernier But Not Grating Acuity Contributes to an Early Stage of Visual Word Processing.

    PubMed

    Tan, Yufei; Tong, Xiuhong; Chen, Wei; Weng, Xuchu; He, Sheng; Zhao, Jing

    2018-03-28

    The process of reading words depends heavily on efficient visual skills, including analyzing and decomposing basic visual features. Surprisingly, previous reading-related studies have almost exclusively focused on gross aspects of visual skills, while only very few have investigated the role of finer skills. The present study filled this gap and examined the relations of two finer visual skills measured by grating acuity (the ability to resolve periodic luminance variations across space) and Vernier acuity (the ability to detect/discriminate relative locations of features) to Chinese character-processing as measured by character form-matching and lexical decision tasks in skilled adult readers. The results showed that Vernier acuity was significantly correlated with performance in character form-matching but not visual symbol form-matching, while no correlation was found between grating acuity and character processing. Interestingly, we found no correlation of the two visual skills with lexical decision performance. These findings provide for the first time empirical evidence that the finer visual skills, particularly as reflected in Vernier acuity, may directly contribute to an early stage of hierarchical word processing.

  12. ABCs of Early Mathematics Experiences

    ERIC Educational Resources Information Center

    Hensen, Laurie E.

    2005-01-01

    Children begin to develop mathematical thinking before they enter school. Art, baking, playing with blocks, counting numbers, games, puzzles, singing, playing with pretend money, water play all these early mathematical experiences help the children to learn in the elementary school years.

  13. Varieties of cognitive penetration in visual perception.

    PubMed

    Vetter, Petra; Newen, Albert

    2014-07-01

    Is our perceptual experience a veridical representation of the world or is it a product of our beliefs and past experiences? Cognitive penetration describes the influence of higher level cognitive factors on perceptual experience and has been a debated topic in philosophy of mind and cognitive science. Here, we focus on visual perception, particularly early vision, and how it is affected by contextual expectations and memorized cognitive contents. We argue for cognitive penetration based on recent empirical evidence demonstrating contextual and top-down influences on early visual processes. On the basis of a perceptual model, we propose different types of cognitive penetration depending on the processing level on which the penetration happens and depending on where the penetrating influence comes from. Our proposal has two consequences: (1) the traditional controversy on whether cognitive penetration occurs or not is ill posed, and (2) a clear-cut perception-cognition boundary cannot be maintained. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The lived experience of visual creative expression for young adult cancer survivors.

    PubMed

    Green, A R; Young, R A

    2015-09-01

    Engaging in visual creative expression individually and in a therapeutic setting can be a beneficial experience for cancer survivors; however, most research in this field has been conducted with older adults. The current study aimed to address this gap by utilising van Manen's hermeneutic phenomenology to answer the following question: 'What is the lived experience and meaning of visual creative expression for young adult cancer survivors?' Seven young adults, diagnosed with cancer between the ages of 18 and 35, were interviewed about creative expression experiences, which they engaged in individually and/or in a therapeutic setting. Data analysis included a thematic reflection, guided existential reflection, and a process of writing and rewriting. Two superordinate themes were identified: increased self-understanding and a healing experience. Seven subthemes were also identified and included the following: being in the flow, allowing the body to express itself, renegotiating control, changing one's environment, being seen, respect for art as a separate entity and giving back. Findings suggest that visual creative expression can be a meaningful experience for young adult cancer survivors, and that this experience espouses both similarities and differences from experiences of older adult survivors. Recommendations are made for future research, in addition to implications for practitioners. © 2014 John Wiley & Sons Ltd.

  15. Role of the visual experience-dependent nascent proteome in neuronal plasticity

    PubMed Central

    Liu, Han-Hsuan; McClatchy, Daniel B; Schiapparelli, Lucio; Shen, Wanhua; Yates, John R

    2018-01-01

    Experience-dependent synaptic plasticity refines brain circuits during development. To identify novel protein synthesis-dependent mechanisms contributing to experience-dependent plasticity, we conducted a quantitative proteomic screen of the nascent proteome in response to visual experience in Xenopus optic tectum using bio-orthogonal metabolic labeling (BONCAT). We identified 83 differentially synthesized candidate plasticity proteins (CPPs). The CPPs form strongly interconnected networks and are annotated to a variety of biological functions, including RNA splicing, protein translation, and chromatin remodeling. Functional analysis of select CPPs revealed the requirement for eukaryotic initiation factor three subunit A (eIF3A), fused in sarcoma (FUS), and ribosomal protein s17 (RPS17) in experience-dependent structural plasticity in tectal neurons and behavioral plasticity in tadpoles. These results demonstrate that the nascent proteome is dynamic in response to visual experience and that de novo synthesis of machinery that regulates RNA splicing and protein translation is required for experience-dependent plasticity. PMID:29412139

  16. Neural representation of form-contingent color filling-in in the early visual cortex.

    PubMed

    Hong, Sang Wook; Tong, Frank

    2017-11-01

    Perceptual filling-in exemplifies the constructive nature of visual processing. Color, a prominent surface property of visual objects, can appear to spread to neighboring areas that lack any color. We investigated cortical responses to a color filling-in illusion that effectively dissociates perceived color from the retinal input (van Lier, Vergeer, & Anstis, 2009). Observers adapted to a star-shaped stimulus with alternating red- and cyan-colored points to elicit a complementary afterimage. By presenting an achromatic outline that enclosed one of the two afterimage colors, perceptual filling-in of that color was induced in the unadapted central region. Visual cortical activity was monitored with fMRI, and analyzed using multivariate pattern analysis. Activity patterns in early visual areas (V1-V4) reliably distinguished between the two color-induced filled-in conditions, but only higher extrastriate visual areas showed the predicted correspondence with color perception. Activity patterns allowed for reliable generalization between filled-in colors and physical presentations of perceptually matched colors in areas V3 and V4, but not in earlier visual areas. These findings suggest that the perception of filled-in surface color likely requires more extensive processing by extrastriate visual areas, in order for the neural representation of surface color to become aligned with perceptually matched real colors.

  17. Black–white asymmetry in visual perception

    PubMed Central

    Lu, Zhong-Lin; Sperling, George

    2012-01-01

    With eleven different types of stimuli that exercise a wide gamut of spatial and temporal visual processes, negative perturbations from mean luminance are found to be typically 25% more effective visually than positive perturbations of the same magnitude (range 8–67%). In Experiment 12, the magnitude of the black–white asymmetry is shown to be a saturating function of stimulus contrast. Experiment 13 shows black–white asymmetry primarily involves a nonlinearity in the visual representation of decrements. Black–white asymmetry in early visual processing produces even-harmonic distortion frequencies in all ordinary stimuli and in illusions such as the perceived asymmetry of optically perfect sine wave gratings. In stimuli intended to stimulate exclusively second-order processing in which motion or shape are defined not by luminance differences but by differences in texture contrast, the black–white asymmetry typically generates artifactual luminance (first-order) motion and shape components. Because black–white asymmetry pervades psychophysical and neurophysiological procedures that utilize spatial or temporal variations of luminance, it frequently needs to be considered in the design and evaluation of experiments that involve visual stimuli. Simple procedures to compensate for black–white asymmetry are proposed. PMID:22984221

  18. The Concept of Happiness as Conveyed in Visual Representations: Analysis of the Work of Early Childhood Educators

    ERIC Educational Resources Information Center

    Russo-Zimet, Gila; Segel, Sarit

    2014-01-01

    This research was designed to examine how early-childhood educators pursuing their graduate degrees perceive the concept of happiness, as conveyed in visual representations. The research methodology combines qualitative and quantitative paradigms using the metaphoric collage, a tool used to analyze visual and verbal aspects. The research…

  19. Connectivity Reveals Sources of Predictive Coding Signals in Early Visual Cortex During Processing of Visual Optic Flow.

    PubMed

    Schindler, Andreas; Bartels, Andreas

    2017-05-01

    Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Posttraining transcranial magnetic stimulation of striate cortex disrupts consolidation early in visual skill learning.

    PubMed

    De Weerd, Peter; Reithler, Joel; van de Ven, Vincent; Been, Marin; Jacobs, Christianne; Sack, Alexander T

    2012-02-08

    Practice-induced improvements in skilled performance reflect "offline " consolidation processes extending beyond daily training sessions. According to visual learning theories, an early, fast learning phase driven by high-level areas is followed by a late, asymptotic learning phase driven by low-level, retinotopic areas when higher resolution is required. Thus, low-level areas would not contribute to learning and offline consolidation until late learning. Recent studies have challenged this notion, demonstrating modified responses to trained stimuli in primary visual cortex (V1) and offline activity after very limited training. However, the behavioral relevance of modified V1 activity for offline consolidation of visual skill memory in V1 after early training sessions remains unclear. Here, we used neuronavigated transcranial magnetic stimulation (TMS) directed to a trained retinotopic V1 location to test for behaviorally relevant consolidation in human low-level visual cortex. Applying TMS to the trained V1 location within 45 min of the first or second training session strongly interfered with learning, as measured by impaired performance the next day. The interference was conditional on task context and occurred only when training in the location targeted by TMS was followed by training in a second location before TMS. In this condition, high-level areas may become coupled to the second location and uncoupled from the previously trained low-level representation, thereby rendering consolidation vulnerable to interference. Our data show that, during the earliest phases of skill learning in the lowest-level visual areas, a behaviorally relevant form of consolidation exists of which the robustness is controlled by high-level, contextual factors.

  1. Evidence for unlimited capacity processing of simple features in visual cortex

    PubMed Central

    White, Alex L.; Runeson, Erik; Palmer, John; Ernst, Zachary R.; Boynton, Geoffrey M.

    2017-01-01

    Performance in many visual tasks is impaired when observers attempt to divide spatial attention across multiple visual field locations. Correspondingly, neuronal response magnitudes in visual cortex are often reduced during divided compared with focused spatial attention. This suggests that early visual cortex is the site of capacity limits, where finite processing resources must be divided among attended stimuli. However, behavioral research demonstrates that not all visual tasks suffer such capacity limits: The costs of divided attention are minimal when the task and stimulus are simple, such as when searching for a target defined by orientation or contrast. To date, however, every neuroimaging study of divided attention has used more complex tasks and found large reductions in response magnitude. We bridged that gap by using functional magnetic resonance imaging to measure responses in the human visual cortex during simple feature detection. The first experiment used a visual search task: Observers detected a low-contrast Gabor patch within one or four potentially relevant locations. The second experiment used a dual-task design, in which observers made independent judgments of Gabor presence in patches of dynamic noise at two locations. In both experiments, blood-oxygen level–dependent (BOLD) signals in the retinotopic cortex were significantly lower for ignored than attended stimuli. However, when observers divided attention between multiple stimuli, BOLD signals were not reliably reduced and behavioral performance was unimpaired. These results suggest that processing of simple features in early visual cortex has unlimited capacity. PMID:28654964

  2. Visual Function Metrics in Early and Intermediate Dry Age-related Macular Degeneration for Use as Clinical Trial Endpoints.

    PubMed

    Cocce, Kimberly J; Stinnett, Sandra S; Luhmann, Ulrich F O; Vajzovic, Lejla; Horne, Anupama; Schuman, Stefanie G; Toth, Cynthia A; Cousins, Scott W; Lad, Eleonora M

    2018-05-01

    To evaluate and quantify visual function metrics to be used as endpoints of age-related macular degeneration (AMD) stages and visual acuity (VA) loss in patients with early and intermediate AMD. Cross-sectional analysis of baseline data from a prospective study. One hundred and one patients were enrolled at Duke Eye Center: 80 patients with early AMD (Age-Related Eye Disease Study [AREDS] stage 2 [n = 33] and intermediate stage 3 [n = 47]) and 21 age-matched, normal controls. A dilated retinal examination, macular pigment optical density measurements, and several functional assessments (best-corrected visual acuity, macular integrity assessment mesopic microperimety, dark adaptometry, low-luminance visual acuity [LLVA] [standard using a log 2.0 neutral density filter and computerized method], and cone contrast test [CCT]) were performed. Low-luminance deficit (LLD) was defined as the difference in numbers of letters read at standard vs low luminance. Group comparisons were performed to evaluate differences between the control and the early and intermediate AMD groups using 2-sided significance tests. Functional measures that significantly distinguished between normal and intermediate AMD were standard and computerized (0.5 cd/m 2 ) LLVA, percent reduced threshold and average threshold on microperimetry, CCTs, and rod intercept on dark adaptation (P < .05). The intermediate group demonstrated deficits in microperimetry reduced threshhold, computerized LLD2, and dark adaptation (P < .05) relative to early AMD. Our study suggests that LLVA, microperimetry, CCT, and dark adaptation may serve as functional measures differentiating early-to-intermediate stages of dry AMD. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Visualization experiments on steam injection in Hele-Shaw cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Xianli; Haghighi, M.; Yortsos, Y.C.

    1992-03-01

    Flow visualization experiments have been successfully employed in reservoir engineering research for many years. They involve 2-D geometries in transparent Hele-Shaw cells and glass micromodels. Although much work has been done on immiscible flows (drainage or imbibition), visualization of steamfloods, which constitute a major part of current EOR methods, has not been attempted to data. In this paper, we present experimental results on steam injection in a transparent, pyrex glass Hele-Shaw cell. Both synthetic (Dutrex 739) and natural heavy oils were used under a variety of conditions, including effects of gravity.

  4. Impaired early visual response modulations to spatial information in chronic schizophrenia

    PubMed Central

    Knebel, Jean-François; Javitt, Daniel C.; Murray, Micah M.

    2011-01-01

    Early visual processing stages have been demonstrated to be impaired in schizophrenia patients and their first-degree relatives. The amplitude and topography of the P1 component of the visual evoked potential (VEP) are both affected; the latter of which indicates alterations in active brain networks between populations. At least two issues remain unresolved. First, the specificity of this deficit (and suitability as an endophenotype) has yet to be established, with evidence for impaired P1 responses in other clinical populations. Second, it remains unknown whether schizophrenia patients exhibit intact functional modulation of the P1 VEP component; an aspect that may assist in distinguishing effects specific to schizophrenia. We applied electrical neuroimaging analyses to VEPs from chronic schizophrenia patients and healthy controls in response to variation in the parafoveal spatial extent of stimuli. Healthy controls demonstrated robust modulation of the VEP strength and topography as a function of the spatial extent of stimuli during the P1 component. By contrast, no such modulations were evident at early latencies in the responses from patients with schizophrenia. Source estimations localized these deficits to the left precuneus and medial inferior parietal cortex. These findings provide insights on potential underlying low-level impairments in schizophrenia. PMID:21764264

  5. Studying the Effects of Early Experiences on Women's Career Achievement.

    ERIC Educational Resources Information Center

    Lykes, M. Brinton; Stewart, Abigail J.

    Virtually all psychological theories assume that early life experiences have an impact on later life choices. However, increasing doubts have been expressed about the universality and permanence of the relationship between women's work and family lives. To explore how early family experiences and early adult decisions affect women's later career…

  6. Sparing of Sensitivity to Biological Motion but Not of Global Motion after Early Visual Deprivation

    ERIC Educational Resources Information Center

    Hadad, Bat-Sheva; Maurer, Daphne; Lewis, Terri L.

    2012-01-01

    Patients deprived of visual experience during infancy by dense bilateral congenital cataracts later show marked deficits in the perception of global motion (dorsal visual stream) and global form (ventral visual stream). We expected that they would also show marked deficits in sensitivity to biological motion, which is normally processed in the…

  7. Recent Visual Experience Shapes Visual Processing in Rats through Stimulus-Specific Adaptation and Response Enhancement.

    PubMed

    Vinken, Kasper; Vogels, Rufin; Op de Beeck, Hans

    2017-03-20

    From an ecological point of view, it is generally suggested that the main goal of vision in rats and mice is navigation and (aerial) predator evasion [1-3]. The latter requires fast and accurate detection of a change in the visual environment. An outstanding question is whether there are mechanisms in the rodent visual system that would support and facilitate visual change detection. An experimental protocol frequently used to investigate change detection in humans is the oddball paradigm, in which a rare, unexpected stimulus is presented in a train of stimulus repetitions [4]. A popular "predictive coding" theory of cortical responses states that neural responses should decrease for expected sensory input and increase for unexpected input [5, 6]. Despite evidence for response suppression and enhancement in noninvasive scalp recordings in humans with this paradigm [7, 8], it has proven challenging to observe both phenomena in invasive action potential recordings in other animals [9-11]. During a visual oddball experiment, we recorded multi-unit spiking activity in rat primary visual cortex (V1) and latero-intermediate area (LI), which is a higher area of the rodent ventral visual stream. In rat V1, there was only evidence for response suppression related to stimulus-specific adaptation, and not for response enhancement. However, higher up in area LI, spiking activity showed clear surprise-based response enhancement in addition to stimulus-specific adaptation. These results show that neural responses along the rat ventral visual stream become increasingly sensitive to changes in the visual environment, suggesting a system specialized in the detection of unexpected events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Concerns of Teacher Candidates in an Early Field Experience

    ERIC Educational Resources Information Center

    Chang, Sau Hou

    2009-01-01

    The present study examined the concerns of teacher candidates in an early field experience. Thirty-five teacher candidates completed the Teacher Concerns Checklist (TCC, Fuller & Borich, 2000) at the beginning, middle and end of their early field experiences. Results showed that teacher candidates ranked impact as the highest concern, self as…

  9. Building effective learning experiences around visualizations: NASA Eyes on the Solar System and Infiniscope

    NASA Astrophysics Data System (ADS)

    Tamer, A. J. J.; Anbar, A. D.; Elkins-Tanton, L. T.; Klug Boonstra, S.; Mead, C.; Swann, J. L.; Hunsley, D.

    2017-12-01

    Advances in scientific visualization and public access to data have transformed science outreach and communication, but have yet to realize their potential impacts in the realm of education. Computer-based learning is a clear bridge between visualization and education, but creating high-quality learning experiences that leverage existing visualizations requires close partnerships among scientists, technologists, and educators. The Infiniscope project is working to foster such partnerships in order to produce exploration-driven learning experiences around NASA SMD data and images, leveraging the principles of ETX (Education Through eXploration). The visualizations inspire curiosity, while the learning design promotes improved reasoning skills and increases understanding of space science concepts. Infiniscope includes both a web portal to host these digital learning experiences, as well as a teaching network of educators using and modifying these experiences. Our initial efforts to enable student discovery through active exploration of the concepts associated with Small Worlds, Kepler's Laws, and Exoplanets led us to develop our own visualizations at Arizona State University. Other projects focused on Astrobiology and Mars geology led us to incorporate an immersive Virtual Field Trip platform into the Infiniscope portal in support of virtual exploration of scientifically significant locations. Looking to apply ETX design practices with other visualizations, our team at Arizona State partnered with the Jet Propulsion Lab to integrate the web-based version of NASA Eyes on the Eclipse within Smart Sparrow's digital learning platform in a proof-of-concept focused on the 2017 Eclipse. This goes a step beyond the standard features of "Eyes" by wrapping guided exploration, focused on a specific learning goal into standards-aligned lesson built around the visualization, as well as its distribution through Infiniscope and it's digital teaching network. Experience from this

  10. Virtually simulated social pressure influences early visual processing more in low compared to high autonomous participants.

    PubMed

    Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried

    2014-02-01

    In a previous study, we showed that virtually simulated social group pressure could influence early stages of perception after only 100  ms. In the present EEG study, we investigated the influence of social pressure on visual perception in participants with high (HA) and low (LA) levels of autonomy. Ten HA and ten LA individuals were asked to accomplish a visual discrimination task in an adapted paradigm of Solomon Asch. Results indicate that LA participants adapted to the incorrect group opinion more often than HA participants (42% vs. 30% of the trials, respectively). LA participants showed a larger posterior P1 component contralateral to targets presented in the right visual field when conforming to the correct compared to conforming to the incorrect group decision. In conclusion, our ERP data suggest that the group context can have early effects on our perception rather than on conscious decision processes in LA, but not HA participants. Copyright © 2013 Society for Psychophysiological Research.

  11. Video game experience and its influence on visual attention parameters: an investigation using the framework of the Theory of Visual Attention (TVA).

    PubMed

    Schubert, Torsten; Finke, Kathrin; Redel, Petra; Kluckow, Steffen; Müller, Hermann; Strobach, Tilo

    2015-05-01

    Experts with video game experience, in contrast to non-experienced persons, are superior in multiple domains of visual attention. However, it is an open question which basic aspects of attention underlie this superiority. We approached this question using the framework of Theory of Visual Attention (TVA) with tools that allowed us to assess various parameters that are related to different visual attention aspects (e.g., perception threshold, processing speed, visual short-term memory storage capacity, top-down control, spatial distribution of attention) and that are measurable on the same experimental basis. In Experiment 1, we found advantages of video game experts in perception threshold and visual processing speed; the latter being restricted to the lower positions of the used computer display. The observed advantages were not significantly moderated by general person-related characteristics such as personality traits, sensation seeking, intelligence, social anxiety, or health status. Experiment 2 tested a potential causal link between the expert advantages and video game practice with an intervention protocol. It found no effects of action video gaming on perception threshold, visual short-term memory storage capacity, iconic memory storage, top-down control, and spatial distribution of attention after 15 days of training. However, observations of a selected improvement of processing speed at the lower positions of the computer screen after video game training and of retest effects are suggestive for limited possibilities to improve basic aspects of visual attention (TVA) with practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Differential contribution of early visual areas to the perceptual process of contour processing.

    PubMed

    Schira, Mark M; Fahle, Manfred; Donner, Tobias H; Kraft, Antje; Brandt, Stephan A

    2004-04-01

    We investigated contour processing and figure-ground detection within human retinotopic areas using event-related functional magnetic resonance imaging (fMRI) in 6 healthy and naïve subjects. A figure (6 degrees side length) was created by a 2nd-order texture contour. An independent and demanding foveal letter-discrimination task prevented subjects from noticing this more peripheral contour stimulus. The contour subdivided our stimulus into a figure and a ground. Using localizers and retinotopic mapping stimuli we were able to subdivide each early visual area into 3 eccentricity regions corresponding to 1) the central figure, 2) the area along the contour, and 3) the background. In these subregions we investigated the hemodynamic responses to our stimuli and compared responses with or without the contour defining the figure. No contour-related blood oxygenation level-dependent modulation in early visual areas V1, V3, VP, and MT+ was found. Significant signal modulation in the contour subregions of V2v, V2d, V3a, and LO occurred. This activation pattern was different from comparable studies, which might be attributable to the letter-discrimination task reducing confounding attentional modulation. In V3a, but not in any other retinotopic area, signal modulation corresponding to the central figure could be detected. Such contextual modulation will be discussed in light of the recurrent processing hypothesis and the role of visual awareness.

  13. Early Childhood Pre-Service Teachers' Views about Visual Arts Education and Aesthetics

    ERIC Educational Resources Information Center

    Bilir-Seyhan, Gamze; Ocak-Karabay, Sakire

    2018-01-01

    Purpose: Pre-service teachers start their university study with only a limited knowledge of art and aesthetics. Early childhood pre-service teachers should be equipped with visual arts education and aesthetics so they will be able to direct artistic activities. Elective courses about art and aesthetics raise pre-service teachers' awareness of…

  14. Retinotopically specific reorganization of visual cortex for tactile pattern recognition

    PubMed Central

    Cheung, Sing-Hang; Fang, Fang; He, Sheng; Legge, Gordon E.

    2009-01-01

    Although previous studies have shown that Braille reading and other tactile-discrimination tasks activate the visual cortex of blind and sighted people [1–5], it is not known whether this kind of cross-modal reorganization is influenced by retinotopic organization. We have addressed this question by studying S, a visually impaired adult with the rare ability to read print visually and Braille by touch. S had normal visual development until age six years, and thereafter severe acuity reduction due to corneal opacification, but no evidence of visual-field loss. Functional magnetic resonance imaging (fMRI) revealed that, in S’s early visual areas, tactile information processing activated what would be the foveal representation for normally-sighted individuals, and visual information processing activated what would be the peripheral representation. Control experiments showed that this activation pattern was not due to visual imagery. S’s high-level visual areas which correspond to shape- and object-selective areas in normally-sighted individuals were activated by both visual and tactile stimuli. The retinotopically specific reorganization in early visual areas suggests an efficient redistribution of neural resources in the visual cortex. PMID:19361999

  15. Visual Search in Typically Developing Toddlers and Toddlers with Fragile X or Williams Syndrome

    ERIC Educational Resources Information Center

    Scerif, Gaia; Cornish, Kim; Wilding, John; Driver, Jon; Karmiloff-Smith, Annette

    2004-01-01

    Visual selective attention is the ability to attend to relevant visual information and ignore irrelevant stimuli. Little is known about its typical and atypical development in early childhood. Experiment 1 investigates typically developing toddlers' visual search for multiple targets on a touch-screen. Time to hit a target, distance between…

  16. JoVE: the Journal of Visualized Experiments.

    PubMed

    Vardell, Emily

    2015-01-01

    The Journal of Visualized Experiments (JoVE) is the world's first scientific video journal and is designed to communicate research and scientific methods in an innovative, intuitive way. JoVE includes a wide range of biomedical videos, from biology to immunology and bioengineering to clinical and translation medicine. This column describes the browsing and searching capabilities of JoVE, as well as its additional features (including the JoVE Scientific Education Database designed for students in scientific fields).

  17. Experiences of Visually Impaired Students in Community College Math Courses

    NASA Astrophysics Data System (ADS)

    Swan, S. Tomeka

    Blind and visually impaired students who attend community colleges face challenges in learning mathematics (Forrest, 2010). Scoy, McLaughlin, Walls, and Zuppuhaur (2006) claim these students are at a disadvantage in studying mathematics due to the visual and interactive nature of the subject, and by the way mathematics is taught. In this qualitative study six blind and visually impaired students attended three community colleges in one Mid-Atlantic state. They shared their experiences inside the mathematics classroom. Five of the students were enrolled in developmental level math, and one student was enrolled in college level math. The conceptual framework used to explore how blind and visually impaired students persist and succeed in math courses was Piaget's theory on constructivism. The data from this qualitative study was obtained through personal interviews. Based on the findings of this study, blind and visually impaired students need the following accommodations in order to succeed in community college math courses: Accommodating instructors who help to keep blind and visually impaired students motivated and facilitate their academic progress towards math completion, tutorial support, assistive technology, and a positive and inclusive learning environment.

  18. Sensitivity of visual evoked potentials and spectral domain optical coherence tomography in early relapsing remitting multiple sclerosis.

    PubMed

    Behbehani, Raed; Ahmed, Samar; Al-Hashel, Jasem; Rousseff, Rossen T; Alroughani, Raed

    2017-02-01

    Visual evoked potentials and spectral-domain optical coherence tomography are common ancillary studies that assess the visual pathways from a functional and structural aspect, respectively. To compare prevalence of abnormalities of Visual evoked potentials (VEP) and spectral-domain optical coherence tomography (SDOCT) in patients with relapsing remitting multiple sclerosis (RRMS). A cross-sectional study of 100 eyes with disease duration of less than 5 years since the diagnosis. Correlation between retinal nerve fiber layer and ganglion-cell/inner plexiform layer with pattern-reversal visual evoked potentials amplitude and latency and contrast sensitivity was performed. The prevalence of abnormalities in pattern-reversal visual VEP was 56% while that of SOCT was 48% in all eyes. There was significant negative correlations between the average RNFL (r=-0.34, p=0.001) and GCIPL (r=-0.39, p<0.001) with VEP latency. In eyes with prior optic neuritis, a significant negative correlation was seen between average RNFL (r=-0.33, p=0.037) and GCIPL (r=-0.40, p=0.010) with VEP latency. We have found higher prevalence of VEP abnormalities than SCOCT in early relapsing-remitting multiple sclerosis. This suggests that VEP has a higher sensitivity for detecting lesions of the visual pathway in patients with early RRMS. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Early auditory change detection implicitly facilitated by ignored concurrent visual change during a Braille reading task.

    PubMed

    Aoyama, Atsushi; Haruyama, Tomohiro; Kuriki, Shinya

    2013-09-01

    Unconscious monitoring of multimodal stimulus changes enables humans to effectively sense the external environment. Such automatic change detection is thought to be reflected in auditory and visual mismatch negativity (MMN) and mismatch negativity fields (MMFs). These are event-related potentials and magnetic fields, respectively, evoked by deviant stimuli within a sequence of standard stimuli, and both are typically studied during irrelevant visual tasks that cause the stimuli to be ignored. Due to the sensitivity of MMN/MMF to potential effects of explicit attention to vision, however, it is unclear whether multisensory co-occurring changes can purely facilitate early sensory change detection reciprocally across modalities. We adopted a tactile task involving the reading of Braille patterns as a neutral ignore condition, while measuring magnetoencephalographic responses to concurrent audiovisual stimuli that were infrequently deviated either in auditory, visual, or audiovisual dimensions; 1000-Hz standard tones were switched to 1050-Hz deviant tones and/or two-by-two standard check patterns displayed on both sides of visual fields were switched to deviant reversed patterns. The check patterns were set to be faint enough so that the reversals could be easily ignored even during Braille reading. While visual MMFs were virtually undetectable even for visual and audiovisual deviants, significant auditory MMFs were observed for auditory and audiovisual deviants, originating from bilateral supratemporal auditory areas. Notably, auditory MMFs were significantly enhanced for audiovisual deviants from about 100 ms post-stimulus, as compared with the summation responses for auditory and visual deviants or for each of the unisensory deviants recorded in separate sessions. Evidenced by high tactile task performance with unawareness of visual changes, we conclude that Braille reading can successfully suppress explicit attention and that simultaneous multisensory changes can

  20. Chinese and Korean Characters Engage the Same Visual Word Form Area in Proficient Early Chinese-Korean Bilinguals

    PubMed Central

    Bai, Jian'e; Shi, Jinfu; Jiang, Yi; He, Sheng; Weng, Xuchu

    2011-01-01

    A number of recent studies consistently show an area, known as the visual word form area (VWFA), in the left fusiform gyrus that is selectively responsive for visual words in alphabetic scripts as well as in logographic scripts, such as Chinese characters. However, given the large difference between Chinese characters and alphabetic scripts in terms of their orthographic rules, it is not clear at a fine spatial scale, whether Chinese characters engage the same VWFA in the occipito-temporal cortex as alphabetic scripts. We specifically compared Chinese with Korean script, with Korean script serving as a good example of alphabetic writing system, but matched to Chinese in the overall square shape. Sixteen proficient early Chinese-Korean bilinguals took part in the fMRI experiment. Four types of stimuli (Chinese characters, Korean characters, line drawings and unfamiliar Chinese faces) were presented in a block-design paradigm. By contrasting characters (Chinese or Korean) to faces, presumed VWFAs could be identified for both Chinese and Korean characters in the left occipito-temporal sulcus in each subject. The location of peak response point in these two VWFAs were essentially the same. Further analysis revealed a substantial overlap between the VWFA identified for Chinese and that for Korean. At the group level, there was no significant difference in amplitude of response to Chinese and Korean characters. Spatial patterns of response to Chinese and Korean are similar. In addition to confirming that there is an area in the left occipito-temporal cortex that selectively responds to scripts in both Korean and Chinese in early Chinese-Korean bilinguals, our results show that these two scripts engage essentially the same VWFA, even at the level of fine spatial patterns of activation across voxels. These results suggest that similar populations of neurons are engaged in processing the different scripts within the same VWFA in early bilinguals. PMID:21818386

  1. Development of a vocabulary of object shapes in a child with a very-early-acquired visual agnosia: a unique case.

    PubMed

    Funnell, Elaine; Wilding, John

    2011-02-01

    We report a longitudinal study of an exceptional child (S.R.) whose early-acquired visual agnosia, following encephalitis at 8 weeks of age, did not prevent her from learning to construct an increasing vocabulary of visual object forms (drawn from different categories), albeit slowly. S.R. had problems perceiving subtle differences in shape; she was unable to segment local letters within global displays; and she would bring complex scenes close to her eyes: a symptom suggestive of an attempt to reduce visual crowding. Investigations revealed a robust ability to use the gestalt grouping factors of proximity and collinearity to detect fragmented forms in noisy backgrounds, compared with a very weak ability to segment fragmented forms on the basis of contrasts of shape. When contrasts in spatial grouping and shape were pitted against each other, shape made little contribution, consistent with problems in perceiving complex scenes, but when shape contrast was varied, and spatial grouping was held constant, S.R. showed the same hierarchy of difficulty as the controls, although her responses were slowed. This is the first report of a child's visual-perceptual development following very early neurological impairments to the visual cortex. Her ability to learn to perceive visual shape following damage at a rudimentary stage of perceptual development contrasts starkly with the loss of such ability in childhood cases of acquired visual agnosia that follow damage to the established perceptual system. Clearly, there is a critical period during which neurological damage to the highly active, early developing visual-perceptual system does not prevent but only impairs further learning.

  2. Precedents of perceived social support: personality and early life experiences.

    PubMed

    Kitamura, T; Kijima, N; Watanabe, K; Takezaki, Y; Tanaka, E

    1999-12-01

    In order to examine the effects of personality and early life experiences on perceived social support, a total of 97 young Japanese women were investigated. Current interpersonal relationships were measured by an interview modified from Henderson et al.'s Interview Schedule for Social Interaction (ISSI). Personality was measured by Cloninger et al.'s Temperament and Character Inventory. Early life experiences at home and outside of home were also identified in the interview. The number of sources of perceived support was correlated with self-directness, while satisfaction with perceived support was correlated with novelty seeking and with low harm avoidance. No early life experiences--early loss of a parent, perceived parenting, childhood abuse experiences, experiences of being bullied and/or other life events--showed significant correlations with the number or satisfaction of supportive people. The quantity and quality of perception of social support differ in their link to personality, and perceived social support may, to some extent, be explainable in terms of personality.

  3. Binocular visual training to promote recovery from monocular deprivation.

    PubMed

    Murphy, Kathryn M; Roumeliotis, Grayson; Williams, Kate; Beston, Brett R; Jones, David G

    2015-01-08

    Abnormal early visual experience often leads to poor vision, a condition called amblyopia. Two recent approaches to treating amblyopia include binocular therapies and intensive visual training. These reflect the emerging view that amblyopia is a binocular deficit caused by increased neural noise and poor signal-in-noise integration. Most perceptual learning studies have used monocular training; however, a recent study has shown that binocular training is effective for improving acuity in adult human amblyopes. We used an animal model of amblyopia, based on monocular deprivation, to compare the effect of binocular training either during or after the critical period for ocular dominance plasticity (early binocular training vs. late binocular training). We used a high-contrast, orientation-in-noise stimulus to drive the visual cortex because neurophysiological findings suggest that binocular training may allow the nondeprived eye to teach the deprived eye's circuits to function. We found that both early and late binocular training promoted good visual recovery. Surprisingly, we found that monocular deprivation caused a permanent deficit in the vision of both eyes, which became evident only as a sleeper effect following many weeks of visual training. © 2015 ARVO.

  4. Cultural sensitivity or professional acculturation in early clinical experience?

    PubMed

    Whitford, David L; Hubail, Amal Redha

    2014-11-01

    This study aimed to explore the early clinical experience of medical students following the adaptation of an Early Patient Contact curriculum from a European culture in Ireland to an Arab culture in Bahrain. Medical students in Bahrain took part in an Early Patient Contact module modelled on a similar module from a partner medical school in Ireland. We used a qualitative approach employing thematic analysis of 54 student reflective logbooks. Particular attention was placed on reflections of cultural influences of experience in the course. Medical students undergoing this module received reported documented benefits of early clinical experience. However, students in Bahrain were exposed to cultural norms of the local Arab society including gender values, visiting the homes of strangers, language barriers and generous hospitality that led to additional challenges and learning for the medical students in acculturating to norms of the medical profession. Modules intended for curriculum adaptation between two cultures would be best served by a group of "core" learning outcomes with "secondary" outcomes culturally appropriate to each site. Within the context of the Arab culture, early clinical experience has the added benefit of allowing students to learn about both local and professional cultural norms, thereby facilitating integration of these two cultures.

  5. Reduced response cluster size in early visual areas explains the acuity deficit in amblyopia.

    PubMed

    Huang, Yufeng; Feng, Lixia; Zhou, Yifeng

    2017-05-03

    Focal visual stimulation typically results in the activation of a large portion of the early visual cortex. This spread of activity is attributed to long-range lateral interactions. Such long-range interactions may serve to stabilize a visual representation or to simply modulate incoming signals, and any associated dysfunction in long-range activation may reduce sensitivity to visual information in conditions such as amblyopia. We sought to measure the dispersion of cortical activity following local visual stimulation in a group of patients with amblyopia and matched normal. Twenty adult anisometropic amblyopes and 10 normal controls participated in this study. Using a multifocal stimulation, we simultaneously measured cluster sizes to multiple stimulation points in the visual field. We found that the functional MRI (fMRI) response cluster size that corresponded to the fellow eye was significantly larger as opposed to that corresponding to the amblyopic eye and that the fMRI response cluster size at the two more central retinotopic locations correlated with amblyopia acuity deficit. Our results suggest that the amblyopic visual cortex has a diminished long-range communication as evidenced by significantly smaller cluster of activity as measured with fMRI. These results have important implications for models of amblyopia and approaches to treatment.

  6. Infants' Early Visual Attention and Social Engagement as Developmental Precursors to Joint Attention

    ERIC Educational Resources Information Center

    Salley, Brenda; Sheinkopf, Stephen J.; Neal-Beevers, A. Rebecca; Tenenbaum, Elena J.; Miller-Loncar, Cynthia L.; Tronick, Ed; Lagasse, Linda L.; Shankaran, Seetha; Bada, Henrietta; Bauer, Charles; Whitaker, Toni; Hammond, Jane; Lester, Barry M.

    2016-01-01

    This study examined infants' early visual attention (at 1 month of age) and social engagement (4 months) as predictors of their later joint attention (12 and 18 months). The sample (n = 325), drawn from the Maternal Lifestyle Study, a longitudinal multicenter project conducted at 4 centers of the National Institute of Child Health and Human…

  7. Acquired color vision and visual field defects in patients with ocular hypertension and early glaucoma.

    PubMed

    Papaconstantinou, Dimitris; Georgalas, Ilias; Kalantzis, George; Karmiris, Efthimios; Koutsandrea, Chrysanthi; Diagourtas, Andreas; Ladas, Ioannis; Georgopoulos, Gerasimos

    2009-01-01

    To study acquired color vision and visual field defects in patients with ocular hypertension (OH) and early glaucoma. In a prospective study we evaluated 99 eyes of 56 patients with OH without visual field defects and no hereditary color deficiencies, followed up for 4 to 6 years (mean = 4.7 +/- 0.6 years). Color vision defects were studied using a special computer program for Farnsworth-Munsell 100 hue test and visual field tests were performed with Humphrey analyzer using program 30-2. Both tests were repeated every six months. In fifty-six eyes, glaucomatous defects were observed during the follow-up period. There was a statistically significant difference in total error score (TES) between eyes that eventually developed glaucoma (157.89 +/- 31.79) and OH eyes (75.51 +/- 31.57) at the first examination (t value 12.816, p < 0.001). At the same time visual field indices were within normal limits in both groups. In the glaucomatous eyes the earliest statistical significant change in TES was identified at the first year of follow-up and was -20.62 +/- 2.75 (t value 9.08, p < 0.001) while in OH eyes was -2.11 +/- 4.36 (t value 1.1, p = 0.276). Pearson's coefficient was high in all examinations and showed a direct correlation between TES and mean deviation and corrected pattern standard deviation in both groups. Quantitative analysis of color vision defects provides the possibility of follow-up and can prove a useful means for detecting early glaucomatous changes in patients with normal visual fields.

  8. When Early Experiences Build a Wall to Others’ Emotions: An Electrophysiological and Autonomic Study

    PubMed Central

    Ardizzi, Martina; Martini, Francesca; Umiltà, Maria Alessandra; Sestito, Mariateresa; Ravera, Roberto; Gallese, Vittorio

    2013-01-01

    Facial expression of emotions is a powerful vehicle for communicating information about others’ emotional states and it normally induces facial mimicry in the observers. The aim of this study was to investigate if early aversive experiences could interfere with emotion recognition, facial mimicry, and with the autonomic regulation of social behaviors. We conducted a facial emotion recognition task in a group of “street-boys” and in an age-matched control group. We recorded facial electromyography (EMG), a marker of facial mimicry, and respiratory sinus arrhythmia (RSA), an index of the recruitment of autonomic system promoting social behaviors and predisposition, in response to the observation of facial expressions of emotions. Results showed an over-attribution of anger, and reduced EMG responses during the observation of both positive and negative expressions only among street-boys. Street-boys also showed lower RSA after observation of facial expressions and ineffective RSA suppression during presentation of non-threatening expressions. Our findings suggest that early aversive experiences alter not only emotion recognition but also facial mimicry of emotions. These deficits affect the autonomic regulation of social behaviors inducing lower social predisposition after the visualization of facial expressions and an ineffective recruitment of defensive behavior in response to non-threatening expressions. PMID:23593374

  9. Visual inspection reliability for precision manufactured parts

    DOE PAGES

    See, Judi E.

    2015-09-04

    Sandia National Laboratories conducted an experiment for the National Nuclear Security Administration to determine the reliability of visual inspection of precision manufactured parts used in nuclear weapons. In addition visual inspection has been extensively researched since the early 20th century; however, the reliability of visual inspection for nuclear weapons parts has not been addressed. In addition, the efficacy of using inspector confidence ratings to guide multiple inspections in an effort to improve overall performance accuracy is unknown. Further, the workload associated with inspection has not been documented, and newer measures of stress have not been applied.

  10. Experiences of Individuals With Visual Impairments in Integrated Physical Education: A Retrospective Study.

    PubMed

    Haegele, Justin A; Zhu, Xihe

    2017-12-01

    The purpose of this retrospective study was to examine the experiences of adults with visual impairments during school-based integrated physical education (PE). An interpretative phenomenological analysis (IPA) research approach was used and 16 adults (ages 21-48 years; 10 women, 6 men) with visual impairments acted as participants for this study. The primary sources of data were semistructured audiotaped telephone interviews and reflective field notes, which were recorded during and immediately following each interview. Thematic development was undertaken utilizing a 3-step analytical process guided by IPA. Based on the data analysis, 3 interrelated themes emerged from the participant transcripts: (a) feelings about "being put to the side," frustration and inadequacy; (b) "She is blind, she can't do it," debilitating feelings from physical educators' attitudes; and (c) "not self-esteem raising," feelings about peer interactions. The 1st theme described the participants' experiences and ascribed meaning to exclusionary practices. The 2nd theme described the participants' frustration over being treated differently by their PE teachers because of their visual impairments. Lastly, "not self-esteem raising," feelings about peer interactions demonstrated how participants felt about issues regarding challenging social situations with peers in PE. Utilizing an IPA approach, the researchers uncovered 3 interrelated themes that depicted central feelings, experiences, and reflections, which informed the meaning of the participants' PE experiences. The emerged themes provide unique insight into the embodied experiences of those with visual impairments in PE and fill a previous gap in the extant literature.

  11. Music Experiences in Early Childhood.

    ERIC Educational Resources Information Center

    Andress, Barbara

    This book presents a program of music experiences for young children (3-5-year-olds) which focuses on an experiential discovery approach to music, rather than on imposing ideas and a repertoire on the child. Early sections of the book discuss the importance of the child-centered music program, its process and characteristics, and the role of the…

  12. Biochemical, histological and behavioural aspects of visual function during early development of rainbow trout

    USGS Publications Warehouse

    Carvalho, Paulo S. M.; Noltie, Douglas B.; Tillitt, D.E.

    2004-01-01

    Retinal structure and concentration of retinoids involved in phototransduction changed during early development of rainbow trout Oncorhynchus mykiss, correlating with improvements in visual function. A test chamber was used to evaluate the presence of optokinetic or optomotor responses and to assess the functionality of the integrated cellular, physiological and biochemical components of the visual system. The results indicated that in rainbow trout optomotor responses start at 10 days post-hatch, and demonstrated for the first time that increases in acuity, sensitivity to low light as well as in motion detection abilities occur from this stage until exogenous feeding starts. The structure of retinal cells such as cone ellipsoids increased in length as photopic visual acuity improved, and rod densities increased concurrently with improvements in scotopic thresholds (2.2 log10 units). An increase in the concentrations of the chromophore all-trans-retinal correlated with improvements of all behavioural measures of visual function during the same developmental phase. ?? 2004 The Fisheries Society of the British Isles.

  13. Effect of visual experience on structural organization of the human brain: a voxel based morphometric study using DARTEL.

    PubMed

    Modi, Shilpi; Bhattacharya, Manisha; Singh, Namita; Tripathi, Rajendra Prasad; Khushu, Subash

    2012-10-01

    To investigate structural reorganization in the brain with differential visual experience using Voxel-Based Morphometry with Diffeomorphic Anatomic Registration Through Exponentiated Lie algebra algorithm (DARTEL) approach. High resolution structural MR images were taken in fifteen normal sighted healthy controls, thirteen totally blind subjects and six partial blind subjects. The analysis was carried out using SPM8 software on MATLAB 7.6.0 platform. VBM study revealed gray matter volume atrophy in the cerebellum and left inferior parietal cortex in total blind subjects and in left inferior parietal cortex, right caudate nucleus, and left primary visual cortex in partial blind subjects as compared to controls. White matter volume loss was found in calcarine gyrus in total blind subjects and Thlamus-somatosensory region in partially blind subjects as compared to controls. Besides, an increase in Gray Matter volume was also found in left middle occipital and middle frontal gyrus and right entorhinal cortex, and an increase in White Matter volume was found in superior frontal gyrus, left middle temporal gyrus and right Heschl's gyrus in totally blind subjects as compared to controls. Comparison between total and partial blind subjects revealed a greater Gray Matter volume in left cerebellum of partial blinds and left Brodmann area 18 of total blind subjects. Results suggest that, loss of vision at an early age can induce significant structural reorganization on account of the loss of visual input. These plastic changes are different in early onset of total blindness as compared to partial blindness. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. In-Situ Visualization Experiments with ParaView Cinema in RAGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kares, Robert John

    2015-10-15

    A previous paper described some numerical experiments performed using the ParaView/Catalyst in-situ visualization infrastructure deployed in the Los Alamos RAGE radiation-hydrodynamics code to produce images from a running large scale 3D ICF simulation. One challenge of the in-situ approach apparent in these experiments was the difficulty of choosing parameters likes isosurface values for the visualizations to be produced from the running simulation without the benefit of prior knowledge of the simulation results and the resultant cost of recomputing in-situ generated images when parameters are chosen suboptimally. A proposed method of addressing this difficulty is to simply render multiple images atmore » runtime with a range of possible parameter values to produce a large database of images and to provide the user with a tool for managing the resulting database of imagery. Recently, ParaView/Catalyst has been extended to include such a capability via the so-called Cinema framework. Here I describe some initial experiments with the first delivery of Cinema and make some recommendations for future extensions of Cinema’s capabilities.« less

  15. Right away: A late, right-lateralized category effect complements an early, left-lateralized category effect in visual search.

    PubMed

    Constable, Merryn D; Becker, Stefanie I

    2017-10-01

    According to the Sapir-Whorf hypothesis, learned semantic categories can influence early perceptual processes. A central finding in support of this view is the lateralized category effect-namely, the finding that categorically different colors (e.g., blue and green hues) can be discriminated faster than colors within the same color category (e.g., different hues of green), especially when they are presented in the right visual field. Because the right visual field projects to the left hemisphere, this finding has been popularly couched in terms of the left-lateralization of language. However, other studies have reported bilateral category effects, which has led some researchers to question the linguistic origins of the effect. Here we examined the time course of lateralized and bilateral category effects in the classical visual search paradigm by means of eyetracking and RT distribution analyses. Our results show a bilateral category effect in the manual responses, which is combined of an early, left-lateralized category effect and a later, right-lateralized category effect. The newly discovered late, right-lateralized category effect occurred only when observers had difficulty locating the target, indicating a specialization of the right hemisphere to find categorically different targets after an initial error. The finding that early and late stages of visual search show different lateralized category effects can explain a wide range of previously discrepant findings.

  16. Predicting Cortical Dark/Bright Asymmetries from Natural Image Statistics and Early Visual Transforms

    PubMed Central

    Cooper, Emily A.; Norcia, Anthony M.

    2015-01-01

    The nervous system has evolved in an environment with structure and predictability. One of the ubiquitous principles of sensory systems is the creation of circuits that capitalize on this predictability. Previous work has identified predictable non-uniformities in the distributions of basic visual features in natural images that are relevant to the encoding tasks of the visual system. Here, we report that the well-established statistical distributions of visual features -- such as visual contrast, spatial scale, and depth -- differ between bright and dark image components. Following this analysis, we go on to trace how these differences in natural images translate into different patterns of cortical input that arise from the separate bright (ON) and dark (OFF) pathways originating in the retina. We use models of these early visual pathways to transform natural images into statistical patterns of cortical input. The models include the receptive fields and non-linear response properties of the magnocellular (M) and parvocellular (P) pathways, with their ON and OFF pathway divisions. The results indicate that there are regularities in visual cortical input beyond those that have previously been appreciated from the direct analysis of natural images. In particular, several dark/bright asymmetries provide a potential account for recently discovered asymmetries in how the brain processes visual features, such as violations of classic energy-type models. On the basis of our analysis, we expect that the dark/bright dichotomy in natural images plays a key role in the generation of both cortical and perceptual asymmetries. PMID:26020624

  17. Macular photostress and visual experience between microscope and intracameral illumination during cataract surgery.

    PubMed

    Seo, Hyejin; Nam, Dong Heun; Lee, Jong Yeon; Park, Su Jin; Kim, Yu Jeong; Kim, Seong-Woo; Chung, Tae-Young; Inoue, Makoto; Kim, Terry

    2018-02-01

    To evaluate macular photostress and visual experience between coaxial microscope illumination versus oblique intracameral illumination during cataract surgery. Gachon University Gil Hospital, Incheon, South Korea. Prospective case series. Consecutive patients who had cataract surgery using microscope illumination and intracameral illumination were included. The patients were asked to complete a questionnaire (seeing strong lights, feeling photophobia, feeling startled (fright) when seeing lights, seeing any colors, seeing any instruments or surgical procedures, and estimating intraoperative visual function) designed to describe their cataract surgery experience. The images projected on the retina of the model eye (rear view) with artificial opaque fragments in the anterior chamber during simulating cataract surgery were compared between the 2 illumination types. Sixty patients completed the questionnaire. Scores for strong lights, photophobia, fright, and color perception were significantly higher with microscope illumination than with intracameral illumination (all P < .001). More patients preferred the intracameral illumination (45 [75.0%]) to the microscope illumination (13 [21.7%]). In the rear-view images created in a model eye, only the bright microscope light in the center was seen without any lens image in the microscope illumination. However, in the intracameral illumination, the less bright light from the light pipe in the periphery and the lens fragments were seen more clearly. In a view of the patients' visual experience, oblique intracameral illumination caused less subjective photostress and was preferred over coaxial microscope illumination. Objective findings from the model-eye experiment correlated to the result of visual experience. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. Acquired color vision and visual field defects in patients with ocular hypertension and early glaucoma

    PubMed Central

    Papaconstantinou, Dimitris; Georgalas, Ilias; Kalantzis, George; Karmiris, Efthimios; Koutsandrea, Chrysanthi; Diagourtas, Andreas; Ladas, Ioannis; Georgopoulos, Gerasimos

    2009-01-01

    Purpose: To study acquired color vision and visual field defects in patients with ocular hypertension (OH) and early glaucoma. Methods: In a prospective study we evaluated 99 eyes of 56 patients with OH without visual field defects and no hereditary color deficiencies, followed up for 4 to 6 years (mean = 4.7 ± 0.6 years). Color vision defects were studied using a special computer program for Farnsworth–Munsell 100 hue test and visual field tests were performed with Humphrey analyzer using program 30–2. Both tests were repeated every six months. Results: In fifty-six eyes, glaucomatous defects were observed during the follow-up period. There was a statistically significant difference in total error score (TES) between eyes that eventually developed glaucoma (157.89 ± 31.79) and OH eyes (75.51 ± 31.57) at the first examination (t value 12.816, p < 0.001). At the same time visual field indices were within normal limits in both groups. In the glaucomatous eyes the earliest statistical significant change in TES was identified at the first year of follow-up and was −20.62 ± 2.75 (t value 9.08, p < 0.001) while in OH eyes was −2.11 ± 4.36 (t value 1.1, p = 0.276). Pearson’s coefficient was high in all examinations and showed a direct correlation between TES and mean deviation and corrected pattern standard deviation in both groups. Conclusion: Quantitative analysis of color vision defects provides the possibility of follow-up and can prove a useful means for detecting early glaucomatous changes in patients with normal visual fields. PMID:19668575

  19. Effects of Visual Speech on Early Auditory Evoked Fields - From the Viewpoint of Individual Variance.

    PubMed

    Yahata, Izumi; Kawase, Tetsuaki; Kanno, Akitake; Hidaka, Hiroshi; Sakamoto, Shuichi; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio

    2017-01-01

    The effects of visual speech (the moving image of the speaker's face uttering speech sound) on early auditory evoked fields (AEFs) were examined using a helmet-shaped magnetoencephalography system in 12 healthy volunteers (9 males, mean age 35.5 years). AEFs (N100m) in response to the monosyllabic sound /be/ were recorded and analyzed under three different visual stimulus conditions, the moving image of the same speaker's face uttering /be/ (congruent visual stimuli) or uttering /ge/ (incongruent visual stimuli), and visual noise (still image processed from speaker's face using a strong Gaussian filter: control condition). On average, latency of N100m was significantly shortened in the bilateral hemispheres for both congruent and incongruent auditory/visual (A/V) stimuli, compared to the control A/V condition. However, the degree of N100m shortening was not significantly different between the congruent and incongruent A/V conditions, despite the significant differences in psychophysical responses between these two A/V conditions. Moreover, analysis of the magnitudes of these visual effects on AEFs in individuals showed that the lip-reading effects on AEFs tended to be well correlated between the two different audio-visual conditions (congruent vs. incongruent visual stimuli) in the bilateral hemispheres but were not significantly correlated between right and left hemisphere. On the other hand, no significant correlation was observed between the magnitudes of visual speech effects and psychophysical responses. These results may indicate that the auditory-visual interaction observed on the N100m is a fundamental process which does not depend on the congruency of the visual information.

  20. Early detection of glaucoma by means of a novel 3D computer‐automated visual field test

    PubMed Central

    Nazemi, Paul P; Fink, Wolfgang; Sadun, Alfredo A; Francis, Brian; Minckler, Donald

    2007-01-01

    Purpose A recently devised 3D computer‐automated threshold Amsler grid test was used to identify early and distinctive defects in people with suspected glaucoma. Further, the location, shape and depth of these field defects were characterised. Finally, the visual fields were compared with those obtained by standard automated perimetry. Patients and methods Glaucoma suspects were defined as those having elevated intraocular pressure (>21 mm Hg) or cup‐to‐disc ratio of >0.5. 33 patients and 66 eyes with risk factors for glaucoma were examined. 15 patients and 23 eyes with no risk factors were tested as controls. The recently developed 3D computer‐automated threshold Amsler grid test was used. The test exhibits a grid on a computer screen at a preselected greyscale and angular resolution, and allows patients to trace those areas on the grid that are missing in their visual field using a touch screen. The 5‐minute test required that the patients repeatedly outline scotomas on a touch screen with varied displays of contrast while maintaining their gaze on a central fixation marker. A 3D depiction of the visual field defects was then obtained that was further characterised by the location, shape and depth of the scotomas. The exam was repeated three times per eye. The results were compared to Humphrey visual field tests (ie, achromatic standard or SITA standard 30‐2 or 24‐2). Results In this pilot study 79% of the eyes tested in the glaucoma‐suspect group repeatedly demonstrated visual field loss with the 3D perimetry. The 3D depictions of visual field loss associated with these risk factors were all characteristic of or compatible with glaucoma. 71% of the eyes demonstrated arcuate defects or a nasal step. Constricted visual fields were shown in 29% of the eyes. No visual field changes were detected in the control group. Conclusions The 3D computer‐automated threshold Amsler grid test may demonstrate visual field abnormalities characteristic of

  1. The Importance of Early Experiences: Clinical, Research, and Policy Perspectives

    ERIC Educational Resources Information Center

    Zeanah, Charles H.

    2009-01-01

    The degree to which early adverse experiences exert long term effects on development and how much early adversity may be overcome through subsequent experiences are important mental health questions. The clinical, research and policy perspectives on these questions lead to different answers. From a clinical perspective, change is always possible,…

  2. Does silent reading speed in normal adult readers depend on early visual processes? evidence from event-related brain potentials.

    PubMed

    Korinth, Sebastian Peter; Sommer, Werner; Breznitz, Zvia

    2012-01-01

    Little is known about the relationship of reading speed and early visual processes in normal readers. Here we examined the association of the early P1, N170 and late N1 component in visual event-related potentials (ERPs) with silent reading speed and a number of additional cognitive skills in a sample of 52 adult German readers utilizing a Lexical Decision Task (LDT) and a Face Decision Task (FDT). Amplitudes of the N170 component in the LDT but, interestingly, also in the FDT correlated with behavioral tests measuring silent reading speed. We suggest that reading speed performance can be at least partially accounted for by the extraction of essential structural information from visual stimuli, consisting of a domain-general and a domain-specific expertise-based portion. © 2011 Elsevier Inc. All rights reserved.

  3. Top-down beta oscillatory signaling conveys behavioral context in early visual cortex.

    PubMed

    Richter, Craig G; Coppola, Richard; Bressler, Steven L

    2018-05-03

    Top-down modulation of sensory processing is a critical neural mechanism subserving numerous important cognitive roles, one of which may be to inform lower-order sensory systems of the current 'task at hand' by conveying behavioral context to these systems. Accumulating evidence indicates that top-down cortical influences are carried by directed interareal synchronization of oscillatory neuronal populations, with recent results pointing to beta-frequency oscillations as particularly important for top-down processing. However, it remains to be determined if top-down beta-frequency oscillations indeed convey behavioral context. We measured spectral Granger Causality (sGC) using local field potentials recorded from microelectrodes chronically implanted in visual areas V1/V2, V4, and TEO of two rhesus macaque monkeys, and applied multivariate pattern analysis to the spatial patterns of top-down sGC. We decoded behavioral context by discriminating patterns of top-down (V4/TEO-to-V1/V2) beta-peak sGC for two different task rules governing correct responses to identical visual stimuli. The results indicate that top-down directed influences are carried to visual cortex by beta oscillations, and differentiate task demands even before visual stimulus processing. They suggest that top-down beta-frequency oscillatory processes coordinate processing of sensory information by conveying global knowledge states to early levels of the sensory cortical hierarchy independently of bottom-up stimulus-driven processing.

  4. Defining Quality in Visual Art Education for Young Children: Building on the Position Statement of the Early Childhood Art Educators

    ERIC Educational Resources Information Center

    McClure, Marissa; Tarr, Patricia; Thompson, Christine Marmé; Eckhoff, Angela

    2017-01-01

    This article reflects the collective voices of four early childhood visual arts educators, each of whom is a member of the Early Childhood Art Educators (ECAE) Issues Group of the National Arts Educators Association. The authors frame the article around the ECAE position statement, "Art: Essential for Early Learning" (2016), which…

  5. Experiences of Individuals with Visual Impairments in Integrated Physical Education: A Retrospective Study

    ERIC Educational Resources Information Center

    Haegele, Justin A.; Zhu, Xihe

    2017-01-01

    Purpose: The purpose of this retrospective study was to examine the experiences of adults with visual impairments during school-based integrated physical education (PE). Method: An interpretative phenomenological analysis (IPA) research approach was used and 16 adults (ages 21-48 years; 10 women, 6 men) with visual impairments acted as…

  6. Effects of Visual Speech on Early Auditory Evoked Fields - From the Viewpoint of Individual Variance

    PubMed Central

    Yahata, Izumi; Kanno, Akitake; Hidaka, Hiroshi; Sakamoto, Shuichi; Nakasato, Nobukazu; Kawashima, Ryuta; Katori, Yukio

    2017-01-01

    The effects of visual speech (the moving image of the speaker’s face uttering speech sound) on early auditory evoked fields (AEFs) were examined using a helmet-shaped magnetoencephalography system in 12 healthy volunteers (9 males, mean age 35.5 years). AEFs (N100m) in response to the monosyllabic sound /be/ were recorded and analyzed under three different visual stimulus conditions, the moving image of the same speaker’s face uttering /be/ (congruent visual stimuli) or uttering /ge/ (incongruent visual stimuli), and visual noise (still image processed from speaker’s face using a strong Gaussian filter: control condition). On average, latency of N100m was significantly shortened in the bilateral hemispheres for both congruent and incongruent auditory/visual (A/V) stimuli, compared to the control A/V condition. However, the degree of N100m shortening was not significantly different between the congruent and incongruent A/V conditions, despite the significant differences in psychophysical responses between these two A/V conditions. Moreover, analysis of the magnitudes of these visual effects on AEFs in individuals showed that the lip-reading effects on AEFs tended to be well correlated between the two different audio-visual conditions (congruent vs. incongruent visual stimuli) in the bilateral hemispheres but were not significantly correlated between right and left hemisphere. On the other hand, no significant correlation was observed between the magnitudes of visual speech effects and psychophysical responses. These results may indicate that the auditory-visual interaction observed on the N100m is a fundamental process which does not depend on the congruency of the visual information. PMID:28141836

  7. Relationships between Childhood Traumatic Experiences, Early Maladaptive Schemas and Interpersonal Styles

    PubMed Central

    KAYA TEZEL, Fulya; TUTAREL KIŞLAK, Şennur; BOYSAN, Murat

    2015-01-01

    Introduction Cognitive theories of psychopathology have generally proposed that early experiences of childhood abuse and neglect may result in the development of early maladaptive self-schemas. Maladaptive core schemas are central in the development and maintenance of psychological symptoms in a schema-focused approach. Psychosocial dysfunction in individuals with psychological problems has been consistently found to be associated with symptom severity. However, till date, linkages between psychosocial functioning, early traumatic experiences and core schemas have received little attention. The aim of the present study was to explore the relations among maladaptive interpersonal styles, negative experiences in childhood and core self-schemas in non-clinical adults. Methods A total of 300 adults (58% women) participated in the study. The participants completed a socio-demographic questionnaire, Young Schema Questionnaire, Childhood Trauma Questionnaire and Interpersonal Style Scale. Results Hierarchical regression analyses revealed that the Disconnection and Rejection and Impaired Limits schema domains were significant antecedents of maladaptive interpersonal styles after controlling for demographic characteristics and childhood abuse and neglect. Associations of child sexual abuse with Emotionally Avoidant, Manipulative and Abusive interpersonal styles were mediated by early maladaptive schemas. Early maladaptive schemas mediated the relations of emotional abuse with Emotionally Avoidant and Avoidant interpersonal styles as well as the relations of physical abuse with Avoidant and Abusive interpersonal styles. Conclusion Interpersonal styles in adulthood are significantly associated with childhood traumatic experiences. Significant relations between early traumatic experiences and maladaptive interpersonal styles are mediated by early maladaptive schemas. PMID:28360715

  8. Relationships between Childhood Traumatic Experiences, Early Maladaptive Schemas and Interpersonal Styles.

    PubMed

    Kaya Tezel, Fulya; Tutarel Kişlak, Şennur; Boysan, Murat

    2015-09-01

    Cognitive theories of psychopathology have generally proposed that early experiences of childhood abuse and neglect may result in the development of early maladaptive self-schemas. Maladaptive core schemas are central in the development and maintenance of psychological symptoms in a schema-focused approach. Psychosocial dysfunction in individuals with psychological problems has been consistently found to be associated with symptom severity. However, till date, linkages between psychosocial functioning, early traumatic experiences and core schemas have received little attention. The aim of the present study was to explore the relations among maladaptive interpersonal styles, negative experiences in childhood and core self-schemas in non-clinical adults. A total of 300 adults (58% women) participated in the study. The participants completed a socio-demographic questionnaire, Young Schema Questionnaire, Childhood Trauma Questionnaire and Interpersonal Style Scale. Hierarchical regression analyses revealed that the Disconnection and Rejection and Impaired Limits schema domains were significant antecedents of maladaptive interpersonal styles after controlling for demographic characteristics and childhood abuse and neglect. Associations of child sexual abuse with Emotionally Avoidant, Manipulative and Abusive interpersonal styles were mediated by early maladaptive schemas. Early maladaptive schemas mediated the relations of emotional abuse with Emotionally Avoidant and Avoidant interpersonal styles as well as the relations of physical abuse with Avoidant and Abusive interpersonal styles. Interpersonal styles in adulthood are significantly associated with childhood traumatic experiences. Significant relations between early traumatic experiences and maladaptive interpersonal styles are mediated by early maladaptive schemas.

  9. Infants’ Early Visual Attention and Social Engagement as Developmental Precursors to Joint Attention

    PubMed Central

    Salley, Brenda; Sheinkopf, Stephen J.; Neal-Beevers, A. Rebecca; Tenenbaum, Elena J.; Miller-Loncar, Cynthia L.; Tronick, Ed; Lagasse, Linda L.; Shankaran, Seetha; Bada, Henrietta; Bauer, Charles; Whitaker, Toni; Hammond, Jane; Lester, Barry M.

    2016-01-01

    This study examined infants’ early visual attention (at 1 month of age) and social engagement (4 months) as predictors of their later joint attention (12 and 18 months). The sample (n=325), drawn from the Maternal Lifestyle Study, a longitudinal multicenter project conducted at four centers of the NICHD Neonatal Research Network, included high-risk (cocaine exposed) and matched non-cocaine exposed infants. Hierarchical regressions revealed that infants’ attention orienting at 1 month significantly predicted more frequent initiating joint attention at 12 (but not 18) months of age. Social engagement at 4 months predicted initiating joint attention at 18 months. Results provide the first empirical evidence for the role of visual attention and social engagement behaviors as developmental precursors for later joint attention outcome. PMID:27786527

  10. Tactile Radar: experimenting a computer game with visually disabled.

    PubMed

    Kastrup, Virgínia; Cassinelli, Alvaro; Quérette, Paulo; Bergstrom, Niklas; Sampaio, Eliana

    2017-09-18

    Visually disabled people increasingly use computers in everyday life, thanks to novel assistive technologies better tailored to their cognitive functioning. Like sighted people, many are interested in computer games - videogames and audio-games. Tactile-games are beginning to emerge. The Tactile Radar is a device through which a visually disabled person is able to detect distal obstacles. In this study, it is connected to a computer running a tactile-game. The game consists in finding and collecting randomly arranged coins in a virtual room. The study was conducted with nine congenital blind people including both sexes, aged 20-64 years old. Complementary methods of first and third person were used: the debriefing interview and the quasi-experimental design. The results indicate that the Tactile Radar is suitable for the creation of computer games specifically tailored for visually disabled people. Furthermore, the device seems capable of eliciting a powerful immersive experience. Methodologically speaking, this research contributes to the consolidation and development of first and third person complementary methods, particularly useful in disabled people research field, including the evaluation by users of the Tactile Radar effectiveness in a virtual reality context. Implications for rehabilitation Despite the growing interest in virtual games for visually disabled people, they still find barriers to access such games. Through the development of assistive technologies such as the Tactile Radar, applied in virtual games, we can create new opportunities for leisure, socialization and education for visually disabled people. The results of our study indicate that the Tactile Radar is adapted to the creation of video games for visually disabled people, providing a playful interaction with the players.

  11. Age, School Experience and the Development of Visual-Perceptual Memory. Final Report, Part 2.

    ERIC Educational Resources Information Center

    Goulet, L. R.

    This study attempted to investigate the effects of school experience on visual perception tests involving line figures and forms. There were two experiments in this study. Experiment 1 examined the independent and interactive influences of school experience and chronological age in kindergarten children. Experiment 2 compared the effects of…

  12. Suppressive and enhancing effects in early visual cortex during illusory shape perception: A comment on.

    PubMed

    Moors, Pieter

    2015-01-01

    In a recent functional magnetic resonance imaging study, Kok and de Lange (2014) observed that BOLD activity for a Kanizsa illusory shape stimulus, in which pacmen-like inducers elicit an illusory shape percept, was either enhanced or suppressed relative to a nonillusory control configuration depending on whether the spatial profile of BOLD activity in early visual cortex was related to the illusory shape or the inducers, respectively. The authors argued that these findings fit well with the predictive coding framework, because top-down predictions related to the illusory shape are not met with bottom-up sensory input and hence the feedforward error signal is enhanced. Conversely, for the inducing elements, there is a match between top-down predictions and input, leading to a decrease in error. Rather than invoking predictive coding as the explanatory framework, the suppressive effect related to the inducers might be caused by neural adaptation to perceptually stable input due to the trial sequence used in the experiment.

  13. Regional brain activity during early visual perception in unaffected siblings of schizophrenia patients.

    PubMed

    Lee, Junghee; Cohen, Mark S; Engel, Stephen A; Glahn, David; Nuechterlein, Keith H; Wynn, Jonathan K; Green, Michael F

    2010-07-01

    Visual masking paradigms assess the early part of visual information processing, which may reflect vulnerability measures for schizophrenia. We examined the neural substrates of visual backward performance in unaffected sibling of schizophrenia patients using functional magnetic resonance imaging (fMRI). Twenty-one unaffected siblings of schizophrenia patients and 19 healthy controls performed a backward masking task and three functional localizer tasks to identify three visual processing regions of interest (ROI): lateral occipital complex (LO), the motion-sensitive area, and retinotopic areas. In the masking task, we systematically manipulated stimulus onset asynchronies (SOAs). We analyzed fMRI data in two complementary ways: 1) an ROI approach for three visual areas, and 2) a whole-brain analysis. The groups did not differ in behavioral performance. For ROI analysis, both groups increased activation as SOAs increased in LO. Groups did not differ in activation levels of the three ROIs. For whole-brain analysis, controls increased activation as a function of SOAs, compared with siblings in several regions (i.e., anterior cingulate cortex, posterior cingulate cortex, inferior prefrontal cortex, inferior parietal lobule). The study found: 1) area LO showed sensitivity to the masking effect in both groups; 2) siblings did not differ from controls in activation of LO; and 3) groups differed significantly in several brain regions outside visual processing areas that have been related to attentional or re-entrant processes. These findings suggest that LO dysfunction may be a disease indicator rather than a risk indicator for schizophrenia. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Visual working memory gives up attentional control early in learning: ruling out interhemispheric cancellation.

    PubMed

    Reinhart, Robert M G; Carlisle, Nancy B; Woodman, Geoffrey F

    2014-08-01

    Current research suggests that we can watch visual working memory surrender the control of attention early in the process of learning to search for a specific object. This inference is based on the observation that the contralateral delay activity (CDA) rapidly decreases in amplitude across trials when subjects search for the same target object. Here, we tested the alternative explanation that the role of visual working memory does not actually decline across learning, but instead lateralized representations accumulate in both hemispheres across trials and wash out the lateralized CDA. We show that the decline in CDA amplitude occurred even when the target objects were consistently lateralized to a single visual hemifield. Our findings demonstrate that reductions in the amplitude of the CDA during learning are not simply due to the dilution of the CDA from interhemispheric cancellation. Copyright © 2014 Society for Psychophysiological Research.

  15. Dipole source localization of event-related brain activity indicative of an early visual selective attention deficit in ADHD children.

    PubMed

    Jonkman, L M; Kenemans, J L; Kemner, C; Verbaten, M N; van Engeland, H

    2004-07-01

    This study was aimed at investigating whether attention-deficit hyperactivity disorder (ADHD) children suffer from specific early selective attention deficits in the visual modality with the aid of event-related brain potentials (ERPs). Furthermore, brain source localization was applied to identify brain areas underlying possible deficits in selective visual processing in ADHD children. A two-channel visual color selection task was administered to 18 ADHD and 18 control subjects in the age range of 7-13 years and ERP activity was derived from 30 electrodes. ADHD children exhibited lower perceptual sensitivity scores resulting in poorer target selection. The ERP data suggested an early selective-attention deficit as manifested in smaller frontal positive activity (frontal selection positivity; FSP) in ADHD children around 200 ms whereas later occipital and fronto-central negative activity (OSN and N2b; 200-400 ms latency) appeared to be unaffected. Source localization explained the FSP by posterior-medial equivalent dipoles in control subjects, which may reflect the contribution of numerous surrounding areas. ADHD children have problems with selective visual processing that might be caused by a specific early filtering deficit (absent FSP) occurring around 200 ms. The neural sources underlying these problems have to be further identified. Source localization also suggested abnormalities in the 200-400 ms time range, pertaining to the distribution of attention-modulated activity in lateral frontal areas.

  16. Arousal Rules: An Empirical Investigation into the Aesthetic Experience of Cross-Modal Perception with Emotional Visual Music

    PubMed Central

    Lee, Irene Eunyoung; Latchoumane, Charles-Francois V.; Jeong, Jaeseung

    2017-01-01

    Emotional visual music is a promising tool for the study of aesthetic perception in human psychology; however, the production of such stimuli and the mechanisms of auditory-visual emotion perception remain poorly understood. In Experiment 1, we suggested a literature-based, directive approach to emotional visual music design, and inspected the emotional meanings thereof using the self-rated psychometric and electroencephalographic (EEG) responses of the viewers. A two-dimensional (2D) approach to the assessment of emotion (the valence-arousal plane) with frontal alpha power asymmetry EEG (as a proposed index of valence) validated our visual music as an emotional stimulus. In Experiment 2, we used our synthetic stimuli to investigate possible underlying mechanisms of affective evaluation mechanisms in relation to audio and visual integration conditions between modalities (namely congruent, complementation, or incongruent combinations). In this experiment, we found that, when arousal information between auditory and visual modalities was contradictory [for example, active (+) on the audio channel but passive (−) on the video channel], the perceived emotion of cross-modal perception (visual music) followed the channel conveying the stronger arousal. Moreover, we found that an enhancement effect (heightened and compacted in subjects' emotional responses) in the aesthetic perception of visual music might occur when the two channels contained contradictory arousal information and positive congruency in valence and texture/control. To the best of our knowledge, this work is the first to propose a literature-based directive production of emotional visual music prototypes and the validations thereof for the study of cross-modally evoked aesthetic experiences in human subjects. PMID:28421007

  17. Arousal Rules: An Empirical Investigation into the Aesthetic Experience of Cross-Modal Perception with Emotional Visual Music.

    PubMed

    Lee, Irene Eunyoung; Latchoumane, Charles-Francois V; Jeong, Jaeseung

    2017-01-01

    Emotional visual music is a promising tool for the study of aesthetic perception in human psychology; however, the production of such stimuli and the mechanisms of auditory-visual emotion perception remain poorly understood. In Experiment 1, we suggested a literature-based, directive approach to emotional visual music design, and inspected the emotional meanings thereof using the self-rated psychometric and electroencephalographic (EEG) responses of the viewers. A two-dimensional (2D) approach to the assessment of emotion (the valence-arousal plane) with frontal alpha power asymmetry EEG (as a proposed index of valence) validated our visual music as an emotional stimulus. In Experiment 2, we used our synthetic stimuli to investigate possible underlying mechanisms of affective evaluation mechanisms in relation to audio and visual integration conditions between modalities (namely congruent, complementation, or incongruent combinations). In this experiment, we found that, when arousal information between auditory and visual modalities was contradictory [for example, active (+) on the audio channel but passive (-) on the video channel], the perceived emotion of cross-modal perception (visual music) followed the channel conveying the stronger arousal. Moreover, we found that an enhancement effect (heightened and compacted in subjects' emotional responses) in the aesthetic perception of visual music might occur when the two channels contained contradictory arousal information and positive congruency in valence and texture/control. To the best of our knowledge, this work is the first to propose a literature-based directive production of emotional visual music prototypes and the validations thereof for the study of cross-modally evoked aesthetic experiences in human subjects.

  18. A Different View on the Checkerboard? Alterations in Early and Late Visually Evoked EEG Potentials in Asperger Observers

    PubMed Central

    Kornmeier, Juergen; Wörner, Rike; Riedel, Andreas; Bach, Michael; Tebartz van Elst, Ludger

    2014-01-01

    Background Asperger Autism is a lifelong psychiatric condition with highly circumscribed interests and routines, problems in social cognition, verbal and nonverbal communication, and also perceptual abnormalities with sensory hypersensitivity. To objectify both lower-level visual and cognitive alterations we looked for differences in visual event-related potentials (EEG) between Asperger observers and matched controls while they observed simple checkerboard stimuli. Methods In a balanced oddball paradigm checkerboards of two checksizes (0.6° and 1.2°) were presented with different frequencies. Participants counted the occurrence times of the rare fine or rare coarse checkerboards in different experimental conditions. We focused on early visual ERP differences as a function of checkerboard size and the classical P3b ERP component as an indicator of cognitive processing. Results We found an early (100–200 ms after stimulus onset) occipital ERP effect of checkerboard size (dominant spatial frequency). This effect was weaker in the Asperger than in the control observers. Further a typical parietal/central oddball-P3b occurred at 500 ms with the rare checkerboards. The P3b showed a right-hemispheric lateralization, which was more prominent in Asperger than in control observers. Discussion The difference in the early occipital ERP effect between the two groups may be a physiological marker of differences in the processing of small visual details in Asperger observers compared to normal controls. The stronger lateralization of the P3b in Asperger observers may indicate a stronger involvement of the right-hemispheric network of bottom-up attention. The lateralization of the P3b signal might be a compensatory consequence of the compromised early checksize effect. Higher-level analytical information processing units may need to compensate for difficulties in low-level signal analysis. PMID:24632708

  19. A different view on the checkerboard? Alterations in early and late visually evoked EEG potentials in Asperger observers.

    PubMed

    Kornmeier, Juergen; Wörner, Rike; Riedel, Andreas; Bach, Michael; Tebartz van Elst, Ludger

    2014-01-01

    Asperger Autism is a lifelong psychiatric condition with highly circumscribed interests and routines, problems in social cognition, verbal and nonverbal communication, and also perceptual abnormalities with sensory hypersensitivity. To objectify both lower-level visual and cognitive alterations we looked for differences in visual event-related potentials (EEG) between Asperger observers and matched controls while they observed simple checkerboard stimuli. In a balanced oddball paradigm checkerboards of two checksizes (0.6° and 1.2°) were presented with different frequencies. Participants counted the occurrence times of the rare fine or rare coarse checkerboards in different experimental conditions. We focused on early visual ERP differences as a function of checkerboard size and the classical P3b ERP component as an indicator of cognitive processing. We found an early (100-200 ms after stimulus onset) occipital ERP effect of checkerboard size (dominant spatial frequency). This effect was weaker in the Asperger than in the control observers. Further a typical parietal/central oddball-P3b occurred at 500 ms with the rare checkerboards. The P3b showed a right-hemispheric lateralization, which was more prominent in Asperger than in control observers. The difference in the early occipital ERP effect between the two groups may be a physiological marker of differences in the processing of small visual details in Asperger observers compared to normal controls. The stronger lateralization of the P3b in Asperger observers may indicate a stronger involvement of the right-hemispheric network of bottom-up attention. The lateralization of the P3b signal might be a compensatory consequence of the compromised early checksize effect. Higher-level analytical information processing units may need to compensate for difficulties in low-level signal analysis.

  20. On the role of visual experience in mathematical development: Evidence from blind mathematicians.

    PubMed

    Amalric, Marie; Denghien, Isabelle; Dehaene, Stanislas

    2018-04-01

    Advanced mathematical reasoning, regardless of domain or difficulty, activates a reproducible set of bilateral brain areas including intraparietal, inferior temporal and dorsal prefrontal cortex. The respective roles of genetics, experience and education in the development of this math-responsive network, however, remain unresolved. Here, we investigate the role of visual experience by studying the exceptional case of three professional mathematicians who were blind from birth (n=1) or became blind during childhood (n=2). Subjects were scanned with fMRI while they judged the truth value of spoken mathematical and nonmathematical statements. Blind mathematicians activated the classical network of math-related areas during mathematical reflection, similar to that found in a group of sighted professional mathematicians. Thus, brain networks for advanced mathematical reasoning can develop in the absence of visual experience. Additional activations were found in occipital cortex, even in individuals who became blind during childhood, suggesting that either mental imagery or a more radical repurposing of visual cortex may occur in blind mathematicians. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Early Language Development in Blind and Severely Visually Impaired Children. Interim Report on Pilot Study.

    ERIC Educational Resources Information Center

    Moore, Vanessa; McConachie, Helen

    This study investigated variables that might be associated with outcome differences in language development of 10 children (ages 10-20 months) with blindness or severe visual impairments, attending a developmental vision clinic in southern England. Subjects' early patterns of expressive language development were examined and related to observed…

  2. STS-47 Payload Specialist Mohri conducts visual stability experiment in SLJ

    NASA Image and Video Library

    1992-09-20

    STS047-204-006 (12 - 20 Sept 1992) --- Dr. Mamoru Mohri, payload specialist representing Japan's National Space Development Agency (NASDA), participates in an experiment designed to learn more about Space Adaptation Syndrome (SAS). The experiment is titled, "Comparative Measurement of Visual Stability in Earth and Cosmic Space." During the experiment, Dr. Mohri tracked a flickering light target while eye movements and neck muscle tension were measured. This 45-degree angle position was one of four studied during the eight-day Spacelab-J mission.

  3. Grating visual acuity results in the early treatment for retinopathy of prematurity study.

    PubMed

    Dobson, Velma; Quinn, Graham E; Summers, C Gail; Hardy, Robert J; Tung, Betty; Good, William V

    2011-07-01

    To compare grating (resolution) visual acuity at 6 years of age in eyes that received early treatment (ET) for high-risk prethreshold retinopathy of prematurity (ROP) with that in eyes that underwent conventional management (CM). In a randomized clinical trial, infants with bilateral, high-risk prethreshold ROP (n = 317) had one eye undergo ET and the other eye undergo CM, with treatment only if ROP progressed to threshold severity. For asymmetric cases (n = 84), the high-risk prethreshold eye was randomized to ET or CM. Grating visual acuity measured at 6 years of age by masked testers using Teller acuity cards. Monocular grating acuity results were obtained from 317 of 370 surviving children (85.6%). Analysis of grating acuity results for all study participants with high-risk prethreshold ROP showed no statistically significant overall benefit of ET (18.1% vs 22.8% unfavorable outcomes; P = .08). When the 6-year grating acuity results were analyzed according to a clinical algorithm (high-risk types 1 and 2 prethreshold ROP), a benefit was seen in type 1 eyes (16.4% vs 25.2%; P = .004) undergoing ET, but not in type 2 eyes (21.3% vs 15.9%; P = .29). Early treatment of eyes with type 1 ROP improves grating acuity outcomes, but ET for eyes with type 2 ROP does not. APPLICATION TO CLINICAL MEDICINE: Type 1 eyes should be treated early; however, based on acuity results at 6 years of age, type 2 eyes should be cautiously monitored for progression to type 1 ROP. Trial Registration clinicaltrials.gov Identifier: NCT00027222.

  4. Delayed Early Primary Visual Pathway Development in Premature Infants: High Density Electrophysiological Evidence

    PubMed Central

    Tremblay, Emmanuel; Vannasing, Phetsamone; Roy, Marie-Sylvie; Lefebvre, Francine; Kombate, Damelan; Lassonde, Maryse; Lepore, Franco; McKerral, Michelle; Gallagher, Anne

    2014-01-01

    In the past decades, multiple studies have been interested in developmental patterns of the visual system in healthy infants. During the first year of life, differential maturational changes have been observed between the Magnocellular (P) and the Parvocellular (P) visual pathways. However, few studies investigated P and M system development in infants born prematurely. The aim of the present study was to characterize P and M system maturational differences between healthy preterm and fullterm infants through a critical period of visual maturation: the first year of life. Using a cross-sectional design, high-density electroencephalogram (EEG) was recorded in 31 healthy preterms and 41 fullterm infants of 3, 6, or 12 months (corrected age for premature babies). Three visual stimulations varying in contrast and spatial frequency were presented to stimulate preferentially the M pathway, the P pathway, or both systems simultaneously during EEG recordings. Results from early visual evoked potentials in response to the stimulation that activates simultaneously both systems revealed longer N1 latencies and smaller P1 amplitudes in preterm infants compared to fullterms. Moreover, preterms showed longer N1 and P1 latencies in response to stimuli assessing the M pathway at 3 months. No differences between preterms and fullterms were found when using the preferential P system stimulation. In order to identify the cerebral generator of each visual response, distributed source analyses were computed in 12-month-old infants using LORETA. Source analysis demonstrated an activation of the parietal dorsal region in fullterm infants, in response to the preferential M pathway, which was not seen in the preterms. Overall, these findings suggest that the Magnocellular pathway development is affected in premature infants. Although our VEP results suggest that premature children overcome, at least partially, the visual developmental delay with time, source analyses reveal abnormal brain

  5. Impact of audio-visual storytelling in simulation learning experiences of undergraduate nursing students.

    PubMed

    Johnston, Sandra; Parker, Christina N; Fox, Amanda

    2017-09-01

    Use of high fidelity simulation has become increasingly popular in nursing education to the extent that it is now an integral component of most nursing programs. Anecdotal evidence suggests that students have difficulty engaging with simulation manikins due to their unrealistic appearance. Introduction of the manikin as a 'real patient' with the use of an audio-visual narrative may engage students in the simulated learning experience and impact on their learning. A paucity of literature currently exists on the use of audio-visual narratives to enhance simulated learning experiences. This study aimed to determine if viewing an audio-visual narrative during a simulation pre-brief altered undergraduate nursing student perceptions of the learning experience. A quasi-experimental post-test design was utilised. A convenience sample of final year baccalaureate nursing students at a large metropolitan university. Participants completed a modified version of the Student Satisfaction with Simulation Experiences survey. This 12-item questionnaire contained questions relating to the ability to transfer skills learned in simulation to the real clinical world, the realism of the simulation and the overall value of the learning experience. Descriptive statistics were used to summarise demographic information. Two tailed, independent group t-tests were used to determine statistical differences within the categories. Findings indicated that students reported high levels of value, realism and transferability in relation to the viewing of an audio-visual narrative. Statistically significant results (t=2.38, p<0.02) were evident in the subscale of transferability of learning from simulation to clinical practice. The subgroups of age and gender although not significant indicated some interesting results. High satisfaction with simulation was indicated by all students in relation to value and realism. There was a significant finding in relation to transferability on knowledge and this

  6. Intermittently-visual Tracking Experiments Reveal the Roles of Error-correction and Predictive Mechanisms in the Human Visual-motor Control System

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshikatsu; Tamura, Yurie; Sase, Kazuya; Sugawara, Ken; Sawada, Yasuji

    Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.

  7. Brain Structure Changes Visualized in Early- and Late-Onset Blind Subjects

    PubMed Central

    Leporé, Natasha; Voss, Patrice; Lepore, Franco; Chou, Yi-Yu; Fortin, Madeleine; Gougoux, Frédéric; Lee, Agatha D.; Brun, Caroline; Lassonde, Maryse; Madsen, Sarah K.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    We examine 3D patterns of volume differences in the brain associated with blindness, in subjects grouped according to early and late onset. Using tensor-based morphometry, we map volume reductions and gains in 16 early-onset (EB) and 16 late-onset (LB) blind adults (onset <5 and >14 years old, respectively) relative to 16 matched sighted controls. Each subject’s structural MRI was fluidly registered to a common template. Anatomical differences between groups were mapped based on statistical analysis of the resulting deformation fields revealing profound deficits in primary and secondary visual cortices for both blind groups. Regions outside the occipital lobe showed significant hypertrophy, suggesting widespread compensatory adaptations. EBs but not LBs showed deficits in the splenium and hypertrophy in the isthmus. Gains in the isthmus and non-occipital white matter were more widespread in the EBs. These differences may reflect regional alterations in late neurodevelopmental processes, such as myelination, that continue into adulthood. PMID:19643183

  8. Analysis of experience-regulated transcriptome and imprintome during critical periods of mouse visual system development reveals spatiotemporal dynamics.

    PubMed

    Hsu, Chi-Lin; Chou, Chih-Hsuan; Huang, Shih-Chuan; Lin, Chia-Yi; Lin, Meng-Ying; Tung, Chun-Che; Lin, Chun-Yen; Lai, Ivan Pochou; Zou, Yan-Fang; Youngson, Neil A; Lin, Shau-Ping; Yang, Chang-Hao; Chen, Shih-Kuo; Gau, Susan Shur-Fen; Huang, Hsien-Sung

    2018-03-15

    Visual system development is light-experience dependent, which strongly implicates epigenetic mechanisms in light-regulated maturation. Among many epigenetic processes, genomic imprinting is an epigenetic mechanism through which monoallelic gene expression occurs in a parent-of-origin-specific manner. It is unknown if genomic imprinting contributes to visual system development. We profiled the transcriptome and imprintome during critical periods of mouse visual system development under normal- and dark-rearing conditions using B6/CAST F1 hybrid mice. We identified experience-regulated, isoform-specific and brain-region-specific imprinted genes. We also found imprinted microRNAs were predominantly clustered into the Dlk1-Dio3 imprinted locus with light experience affecting some imprinted miRNA expression. Our findings provide the first comprehensive analysis of light-experience regulation of the transcriptome and imprintome during critical periods of visual system development. Our results may contribute to therapeutic strategies for visual impairments and circadian rhythm disorders resulting from a dysfunctional imprintome.

  9. A Quantitative Analysis of the Work Experiences of Adults with Visual Impairments in Nigeria

    ERIC Educational Resources Information Center

    Wolffe, Karen E.; Ajuwon, Paul M.; Kelly, Stacy M.

    2013-01-01

    Introduction: Worldwide, people with visual impairments often struggle to gain employment. This study attempts to closely evaluate the work experiences of employed individuals with visual impairments living in one of the world's most populous developing nations, Nigeria. Methods: The researchers developed a questionnaire that assessed personal and…

  10. Garbage Patch Visualization Experiment

    NASA Image and Video Library

    2015-08-20

    Goddard visualizers show us how five garbage patches formed in the world's oceans using 35 years of data. Read more: 1.usa.gov/1Lnj7xV Credit: NASA's Scientific Visualization Studio NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Rapid Simultaneous Enhancement of Visual Sensitivity and Perceived Contrast during Saccade Preparation

    PubMed Central

    Rolfs, Martin; Carrasco, Marisa

    2012-01-01

    Humans and other animals with foveate vision make saccadic eye movements to prioritize the visual analysis of behaviorally relevant information. Even before movement onset, visual processing is selectively enhanced at the target of a saccade, presumably gated by brain areas controlling eye movements. Here we assess concurrent changes in visual performance and perceived contrast before saccades, and show that saccade preparation enhances perception rapidly, altering early visual processing in a manner akin to increasing the physical contrast of the visual input. Observers compared orientation and contrast of a test stimulus, appearing briefly before a saccade, to a standard stimulus, presented previously during a fixation period. We found simultaneous progressive enhancement in both orientation discrimination performance and perceived contrast as time approached saccade onset. These effects were robust as early as 60 ms after the eye movement was cued, much faster than the voluntary deployment of covert attention (without eye movements), which takes ~300 ms. Our results link the dynamics of saccade preparation, visual performance, and subjective experience and show that upcoming eye movements alter visual processing by increasing the signal strength. PMID:23035086

  12. Visual quality evaluation of urban commercial streetscape for the development of landscape visual planning system in provincial street corridors in Malang, Indonesia

    NASA Astrophysics Data System (ADS)

    Santosa, H.; Ernawati, J.; Wulandari, L. D.

    2018-03-01

    The visual aesthetic experience in urban spaces is important in establishing a comfortable and satisfying experience for the community. The embodiment of a good visual image of urban space will encourage the emergence of positive perceptions and meanings stimulating the community to produce a good reaction to its urban space. Moreover, to establish a Good Governance in urban planning and design, it is necessary to boost and promote a community participation in the process of controlling the visual quality of urban space through the visual quality evaluation on urban street corridors. This study is an early stage as part of the development of ‘Landscape Visual Planning System’ on the commercial street corridor in Malang. Accordingly, the research aims to evaluate the physical characteristics and the public preferences of the spatial and visual aspects in five provincial road corridors in Malang. This study employs a field survey methods, and an environmental aesthetics approach through semantic differential method. The result of the identification of physical characteristics and the assessment of public preferences on the spatial and visual aspects of the five provincial streets serve as the basis for constructing the 3d interactive simulation scenarios in the Landscape Visual Planning System.

  13. The Early Experiments

    NASA Astrophysics Data System (ADS)

    Garvey, Gerald

    2013-04-01

    Stuart Freedman obtained his PhD at Berkley with an experimental thesis providing very strong evidence against theories requiring local hidden variables. He then came to Princeton in 1972 and began collaboration on a search for second-class currents. These measurements are quite difficult as the effects are the order of 1%, demonstrating Freedman's drive to take on hard but important experiments. After carrying out some relatively standard nuclear physics measurements he moved on to Stanford in 1976. There, Freedman was involved in identifying measurements sensitive to the existence of light axions. He also carried out searches for various exotica that might be produced from cosmic rays or the SLAC beam stop. During this time he was collaborating with us at Argonne investigating nuclear parity violation and time-like axial beta decay. In 1982 Freedman came to Argonne where he worked on fundamental issues in neutron beta decay. He also initiated what was to become one of his trademarks, demonstrating that surprising peaks in the e^+-e^- spectrum observed in very heavy ion collisions were spurious. He further launched his first neutrino oscillation experiment. This period of early research was marked by a remarkable diversity of subject matter and approach.

  14. Early Intervention for Children with Disabilities: The Australian Experience.

    ERIC Educational Resources Information Center

    Pieterse, Moira, Ed.; And Others

    A collection of papers on the Australian experience with early intervention for children with disabilities gives regional overviews, describes specific intervention programs, and discusses a variety of issues. Overviews are given of early intervention in Australia in general, New South Wales, Victoria, Queensland, South Australia, Western…

  15. Electrophysiological evidence of altered visual processing in adults who experienced visual deprivation during infancy.

    PubMed

    Segalowitz, Sidney J; Sternin, Avital; Lewis, Terri L; Dywan, Jane; Maurer, Daphne

    2017-04-01

    We examined the role of early visual input in visual system development by testing adults who had been born with dense bilateral cataracts that blocked all patterned visual input during infancy until the cataractous lenses were removed surgically and the eyes fitted with compensatory contact lenses. Patients viewed checkerboards and textures to explore early processing regions (V1, V2), Glass patterns to examine global form processing (V4), and moving stimuli to explore global motion processing (V5). Patients' ERPs differed from those of controls in that (1) the V1 component was much smaller for all but the simplest stimuli and (2) extrastriate components did not differentiate amongst texture stimuli, Glass patterns, or motion stimuli. The results indicate that early visual deprivation contributes to permanent abnormalities at early and mid levels of visual processing, consistent with enduring behavioral deficits in the ability to process complex textures, global form, and global motion. © 2017 Wiley Periodicals, Inc.

  16. AWBAT: early clinical experience.

    PubMed

    Vandenberg, Victoria B

    2010-03-15

    The purpose of this article is to describe the early clinical experience with AWBAT. Burn patients requiring (1) donor sites or (2) treatment of a superficial burn wound injury were treated. A total of 45 patients with 69 distinct wounds were included. AWBAT-D was evaluated in donor sites and AWBAT-S was evaluated in superficial partial-thickness burns. Days to healing, pain, hematoma/seroma formation, and infection were noted. Ease of application, adherence, transparency, and physical adaptability details were collected. Average period to healing of donor sites treated with AWBAT-D (n=22 patients with n=26 wounds) was 11.2 days, sigma =1.95, with a range of 8-15 days and a median of 11 days. Pain rating at 24 hours was 1.2, sigma =0.43 (n=18) and at 48 hours mean was 1.2, sigma =0.46 (n=15). Average period to healing of superficial burns treated with AWBAT-S (n=15 patients with n=18 wounds) was 8.1 days, sigma =2.48, with a range of 5-13 days and a median of 7 days. Pain rating at 24 hours was 1.5, sigma =0.85 (n=10) and at 48 hours mean was 1.75, sigma =0.89 (n=8). There was zero incidence of hematoma/seroma. No infections were seen. Results indicate that AWBAT was easily applied with good initial adherence. It was noted to be transparent, conformant, and pliable. Early experience demonstrates that AWBAT performs well on donor sites and superficial partial-thickness burns and delivers the desired attributes of a temporary skin substitute including good adherence, infection control, transparency, adapatability, and pain control.

  17. High resolution renderings and interactive visualization of the 2006 Huntington Beach experiment

    NASA Astrophysics Data System (ADS)

    Im, T.; Nayak, A.; Keen, C.; Samilo, D.; Matthews, J.

    2006-12-01

    The Visualization Center at the Scripps Institution of Oceanography investigates innovative ways to represent graphically interactive 3D virtual landscapes and to produce high resolution, high quality renderings of Earth sciences data and the sensors and instruments used to collect the data . Among the Visualization Center's most recent work is the visualization of the Huntington Beach experiment, a study launched in July 2006 by the Southern California Ocean Observing System (http://www.sccoos.org/) to record and synthesize data of the Huntington Beach coastal region. Researchers and students at the Visualization Center created visual presentations that combine bathymetric data provided by SCCOOS with USGS aerial photography and with 3D polygonal models of sensors created in Maya into an interactive 3D scene using the Fledermaus suite of visualization tools (http://www.ivs3d.com). In addition, the Visualization Center has produced high definition (HD) animations of SCCOOS sensor instruments (e.g. REMUS, drifters, spray glider, nearshore mooring, OCSD/USGS mooring and CDIP mooring) using the Maya modeling and animation software and rendered over multiple nodes of the OptIPuter Visualization Cluster at Scripps. These visualizations are aimed at providing researchers with a broader context of sensor locations relative to geologic characteristics, to promote their use as an educational resource for informal education settings and increasing public awareness, and also as an aid for researchers' proposals and presentations. These visualizations are available for download on the Visualization Center website at http://siovizcenter.ucsd.edu/sccoos/hb2006.php.

  18. Stress Potentiates Early and Attenuates Late Stages of Visual Processing

    DTIC Science & Technology

    2011-01-19

    threat (M 6.5, SD 20.0) than during safety (M 19.3, SD 11.6), t(31) 6.7, p 0.001. They also expressed more intense negative emotion on their...threats increase risk assessment (Kava- liers and Choleris, 2001), and fearful facial expressions enhance sensory intake (Susskind et al., 2008). These...visual analog scales to rate the intensity of their emotional experience (anxious, happy, safe, or stressed) during safety and threat blocks. To minimize

  19. Audiovisual associations alter the perception of low-level visual motion

    PubMed Central

    Kafaligonul, Hulusi; Oluk, Can

    2015-01-01

    Motion perception is a pervasive nature of vision and is affected by both immediate pattern of sensory inputs and prior experiences acquired through associations. Recently, several studies reported that an association can be established quickly between directions of visual motion and static sounds of distinct frequencies. After the association is formed, sounds are able to change the perceived direction of visual motion. To determine whether such rapidly acquired audiovisual associations and their subsequent influences on visual motion perception are dependent on the involvement of higher-order attentive tracking mechanisms, we designed psychophysical experiments using regular and reverse-phi random dot motions isolating low-level pre-attentive motion processing. Our results show that an association between the directions of low-level visual motion and static sounds can be formed and this audiovisual association alters the subsequent perception of low-level visual motion. These findings support the view that audiovisual associations are not restricted to high-level attention based motion system and early-level visual motion processing has some potential role. PMID:25873869

  20. Teaching Early Braille Literacy Skills within a Stimulus Equivalence Paradigm to Children with Degenerative Visual Impairments

    ERIC Educational Resources Information Center

    Toussaint, Karen A.; Tiger, Jeffrey H.

    2010-01-01

    Despite the need for braille literacy, there has been little attempt to systematically evaluate braille-instruction programs. The current study evaluated an instructive procedure for teaching early braille-reading skills with 4 school-aged children with degenerative visual impairments. Following a series of pretests, braille instruction involved…

  1. Gunslinger Effect and Müller-Lyer Illusion: Examining Early Visual Information Processing for Late Limb-Target Control.

    PubMed

    Roberts, James W; Lyons, James; Garcia, Daniel B L; Burgess, Raquel; Elliott, Digby

    2017-07-01

    The multiple process model contends that there are two forms of online control for manual aiming: impulse regulation and limb-target control. This study examined the impact of visual information processing for limb-target control. We amalgamated the Gunslinger protocol (i.e., faster movements following a reaction to an external trigger compared with the spontaneous initiation of movement) and Müller-Lyer target configurations into the same aiming protocol. The results showed the Gunslinger effect was isolated at the early portions of the movement (peak acceleration and peak velocity). Reacted aims reached a longer displacement at peak deceleration, but no differences for movement termination. The target configurations manifested terminal biases consistent with the illusion. We suggest the visual information processing demands imposed by reacted aims can be adapted by integrating early feedforward information for limb-target control.

  2. The Mechanism for Processing Random-Dot Motion at Various Speeds in Early Visual Cortices

    PubMed Central

    An, Xu; Gong, Hongliang; McLoughlin, Niall; Yang, Yupeng; Wang, Wei

    2014-01-01

    All moving objects generate sequential retinotopic activations representing a series of discrete locations in space and time (motion trajectory). How direction-selective neurons in mammalian early visual cortices process motion trajectory remains to be clarified. Using single-cell recording and optical imaging of intrinsic signals along with mathematical simulation, we studied response properties of cat visual areas 17 and 18 to random dots moving at various speeds. We found that, the motion trajectory at low speed was encoded primarily as a direction signal by groups of neurons preferring that motion direction. Above certain transition speeds, the motion trajectory is perceived as a spatial orientation representing the motion axis of the moving dots. In both areas studied, above these speeds, other groups of direction-selective neurons with perpendicular direction preferences were activated to encode the motion trajectory as motion-axis information. This applied to both simple and complex neurons. The average transition speed for switching between encoding motion direction and axis was about 31°/s in area 18 and 15°/s in area 17. A spatio-temporal energy model predicted the transition speeds accurately in both areas, but not the direction-selective indexes to random-dot stimuli in area 18. In addition, above transition speeds, the change of direction preferences of population responses recorded by optical imaging can be revealed using vector maximum but not vector summation method. Together, this combined processing of motion direction and axis by neurons with orthogonal direction preferences associated with speed may serve as a common principle of early visual motion processing. PMID:24682033

  3. Acuity-independent effects of visual deprivation on human visual cortex

    PubMed Central

    Hou, Chuan; Pettet, Mark W.; Norcia, Anthony M.

    2014-01-01

    Visual development depends on sensory input during an early developmental critical period. Deviation of the pointing direction of the two eyes (strabismus) or chronic optical blur (anisometropia) separately and together can disrupt the formation of normal binocular interactions and the development of spatial processing, leading to a loss of stereopsis and visual acuity known as amblyopia. To shed new light on how these two different forms of visual deprivation affect the development of visual cortex, we used event-related potentials (ERPs) to study the temporal evolution of visual responses in patients who had experienced either strabismus or anisometropia early in life. To make a specific statement about the locus of deprivation effects, we took advantage of a stimulation paradigm in which we could measure deprivation effects that arise either before or after a configuration-specific response to illusory contours (ICs). Extraction of ICs is known to first occur in extrastriate visual areas. Our ERP measurements indicate that deprivation via strabismus affects both the early part of the evoked response that occurs before ICs are formed as well as the later IC-selective response. Importantly, these effects are found in the normal-acuity nonamblyopic eyes of strabismic amblyopes and in both eyes of strabismic patients without amblyopia. The nonamblyopic eyes of anisometropic amblyopes, by contrast, are normal. Our results indicate that beyond the well-known effects of strabismus on the development of normal binocularity, it also affects the early stages of monocular feature processing in an acuity-independent fashion. PMID:25024230

  4. Early auditory evoked potential is modulated by selective attention and related to individual differences in visual working memory capacity.

    PubMed

    Giuliano, Ryan J; Karns, Christina M; Neville, Helen J; Hillyard, Steven A

    2014-12-01

    A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual's capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70-90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals.

  5. Effect of oculomotor vision rehabilitation on the visual-evoked potential and visual attention in mild traumatic brain injury.

    PubMed

    Yadav, Naveen K; Thiagarajan, Preethi; Ciuffreda, Kenneth J

    2014-01-01

    The purpose of the experiment was to investigate the effect of oculomotor vision rehabilitation (OVR) on the visual-evoked potential (VEP) and visual attention in the mTBI population. Subjects (n = 7) were adults with a history of mild traumatic brain injury (mTBI). Each received 9 hours of OVR over a 6-week period. The effects of OVR on VEP amplitude and latency, the attention-related alpha band (8-13 Hz) power (µV(2)) and the clinical Visual Search and Attention Test (VSAT) were assessed before and after the OVR. After the OVR, the VEP amplitude increased and its variability decreased. There was no change in VEP latency, which was normal. Alpha band power increased, as did the VSAT score, following the OVR. The significant changes in most test parameters suggest that OVR affects the visual system at early visuo-cortical levels, as well as other pathways which are involved in visual attention.

  6. Publisher Correction: Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex.

    PubMed

    Hrvatin, Sinisa; Hochbaum, Daniel R; Nagy, M Aurel; Cicconet, Marcelo; Robertson, Keiramarie; Cheadle, Lucas; Zilionis, Rapolas; Ratner, Alex; Borges-Monroy, Rebeca; Klein, Allon M; Sabatini, Bernardo L; Greenberg, Michael E

    2018-05-11

    In the version of this article initially published, the x-axis labels in Fig. 3c read Vglut, Gad1/2, Aldh1l1 and Pecam1; they should have read Vglut + , Gad1/2 + , Aldh1l1 + and Pecam1 + . In Fig. 4, the range values were missing from the color scales; they are, from left to right, 4-15, 0-15, 4-15 and 0-15 in Fig. 4a and 4-15, 4-15 and 4-8 in Fig. 4h. In the third paragraph of the main text, the phrase reading "Previous approaches have analyzed a limited number of inhibitory cell types, thus masking the full diversity of excitatory populations" should have read "Previous approaches have analyzed a limited number of inhibitory cell types and masked the full diversity of excitatory populations." In the second paragraph of Results section "Diversity of experience-regulated ERGs," the phrase reading "thus suggesting considerable divergence within the gene expression program responding to early stimuli" should have read "thus suggesting considerable divergence within the early stimulus-responsive gene expression program." In the fourth paragraph of Results section "Excitatory neuronal LRGs," the sentence reading "The anatomical organization of these cell types into sublayers, coupled with divergent transcriptional responses to a sensory stimulus, suggested previously unappreciated functional subdivisions located within the laminae of the mouse visual cortex and resembling the cytoarchitecture in higher mammals" should have read "The anatomical organization of these cell types into sublayers, coupled with divergent transcriptional responses to a sensory stimulus, suggests previously unappreciated functional subdivisions located within the laminae of the mouse visual cortex, resembling the cytoarchitecture in higher mammals." In the last sentence of the Results, "sensory-responsive genes" should have read "sensory-stimulus-responsive genes." The errors have been corrected in the HTML and PDF versions of the article.

  7. Insensitivity of visual short-term memory to irrelevant visual information.

    PubMed

    Andrade, Jackie; Kemps, Eva; Werniers, Yves; May, Jon; Szmalec, Arnaud

    2002-07-01

    Several authors have hypothesized that visuo-spatial working memory is functionally analogous to verbal working memory. Irrelevant background speech impairs verbal short-term memory. We investigated whether irrelevant visual information has an analogous effect on visual short-term memory, using a dynamic visual noise (DVN) technique known to disrupt visual imagery (Quinn & McConnell, 1996b). Experiment I replicated the effect of DVN on pegword imagery. Experiments 2 and 3 showed no effect of DVN on recall of static matrix patterns, despite a significant effect of a concurrent spatial tapping task. Experiment 4 showed no effect of DVN on encoding or maintenance of arrays of matrix patterns, despite testing memory by a recognition procedure to encourage visual rather than spatial processing. Serial position curves showed a one-item recency effect typical of visual short-term memory. Experiment 5 showed no effect of DVN on short-term recognition of Chinese characters, despite effects of visual similarity and a concurrent colour memory task that confirmed visual processing of the characters. We conclude that irrelevant visual noise does not impair visual short-term memory. Visual working memory may not be functionally analogous to verbal working memory, and different cognitive processes may underlie visual short-term memory and visual imagery.

  8. Visual Indicators on Vaccine Boxes as Early Warning Tools to Identify Potential Freeze Damage.

    PubMed

    Angoff, Ronald; Wood, Jillian; Chernock, Maria C; Tipping, Diane

    2015-07-01

    The aim of this study was to determine whether the use of visual freeze indicators on vaccines would assist health care providers in identifying vaccines that may have been exposed to potentially damaging temperatures. Twenty-seven sites in Connecticut involved in the Vaccine for Children Program participated. In addition to standard procedures, visual freeze indicators (FREEZEmarker ® L; Temptime Corporation, Morris Plains, NJ) were affixed to each box of vaccine that required refrigeration but must not be frozen. Temperatures were monitored twice daily. During the 24 weeks, all 27 sites experienced triggered visual freeze indicator events in 40 of the 45 refrigerators. A total of 66 triggered freeze indicator events occurred in all 4 types of refrigerators used. Only 1 of the freeze events was identified by a temperature-monitoring device. Temperatures recorded on vaccine data logs before freeze indicator events were within the 35°F to 46°F (2°C to 8°C) range in all but 1 instance. A total of 46,954 doses of freeze-sensitive vaccine were stored at the time of a visual freeze indicator event. Triggered visual freeze indicators were found on boxes containing 6566 doses (14.0% of total doses). Of all doses stored, 14,323 doses (30.5%) were of highly freeze-sensitive vaccine; 1789 of these doses (12.5%) had triggered indicators on the boxes. Visual freeze indicators are useful in the early identification of freeze events involving vaccines. Consideration should be given to including these devices as a component of the temperature-monitoring system for vaccines.

  9. Masking disrupts reentrant processing in human visual cortex.

    PubMed

    Fahrenfort, J J; Scholte, H S; Lamme, V A F

    2007-09-01

    In masking, a stimulus is rendered invisible through the presentation of a second stimulus shortly after the first. Over the years, authors have typically explained masking by postulating some early disruption process. In these feedforward-type explanations, the mask somehow "catches up" with the target stimulus, disrupting its processing either through lateral or interchannel inhibition. However, studies from recent years indicate that visual perception--and most notably visual awareness itself--may depend strongly on cortico-cortical feedback connections from higher to lower visual areas. This has led some researchers to propose that masking derives its effectiveness from selectively interrupting these reentrant processes. In this experiment, we used electroencephalogram measurements to determine what happens in the human visual cortex during detection of a texture-defined square under nonmasked (seen) and masked (unseen) conditions. Electro-encephalogram derivatives that are typically associated with reentrant processing turn out to be absent in the masked condition. Moreover, extrastriate visual areas are still activated early on by both seen and unseen stimuli, as shown by scalp surface Laplacian current source-density maps. This conclusively shows that feedforward processing is preserved, even when subject performance is at chance as determined by objective measures. From these results, we conclude that masking derives its effectiveness, at least partly, from disrupting reentrant processing, thereby interfering with the neural mechanisms of figure-ground segmentation and visual awareness itself.

  10. Interactive Visualization of Infrared Spectral Data: Synergy of Computation, Visualization, and Experiment for Learning Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lahti, Paul M.; Motyka, Eric J.; Lancashire, Robert J.

    2000-05-01

    A straightforward procedure is described to combine computation of molecular vibrational modes using commonly available molecular modeling programs with visualization of the modes using advanced features of the MDL Information Systems Inc. Chime World Wide Web browser plug-in. Minor editing of experimental spectra that are stored in the JCAMP-DX format allows linkage of IR spectral frequency ranges to Chime molecular display windows. The spectra and animation files can be combined by Hypertext Markup Language programming to allow interactive linkage between experimental spectra and computationally generated vibrational displays. Both the spectra and the molecular displays can be interactively manipulated to allow the user maximum control of the objects being viewed. This procedure should be very valuable not only for aiding students through visual linkage of spectra and various vibrational animations, but also by assisting them in learning the advantages and limitations of computational chemistry by comparison to experiment.

  11. AWBATTM: Early Clinical Experience

    PubMed Central

    Vandenberg, Victoria B.

    2010-01-01

    Objective: The purpose of this article is to describe the early clinical experience with AWBAT. Methods: Burn patients requiring (1) donor sites or (2) treatment of a superficial burn wound injury were treated. A total of 45 patients with 69 distinct wounds were included. AWBATTM-D was evaluated in donor sites and AWBATTM-S was evaluated in superficial partial-thickness burns. Days to healing, pain, hematoma/seroma formation, and infection were noted. Ease of application, adherence, transparency, and physical adaptability details were collected. Results: Average period to healing of donor sites treated with AWBAT-D (n=22 patients with n=26 wounds) was 11.2 days, σ =1.95, with a range of 8–15 days and a median of 11 days. Pain rating at 24 hours was 1.2, σ =0.43 (n=18) and at 48 hours mean was 1.2, σ =0.46 (n=15). Average period to healing of superficial burns treated with AWBAT-S (n=15 patients with n=18 wounds) was 8.1 days, σ =2.48, with a range of 5–13 days and a median of 7 days. Pain rating at 24 hours was 1.5, σ =0.85 (n=10) and at 48 hours mean was 1.75, σ =0.89 (n=8). There was zero incidence of hematoma/seroma. No infections were seen. Results indicate that AWBAT was easily applied with good initial adherence. It was noted to be transparent, conformant, and pliable. Discussion: Early experience demonstrates that AWBAT performs well on donor sites and superficial partial-thickness burns and delivers the desired attributes of a temporary skin substitute including good adherence, infection control, transparency, adapatability, and pain control. PMID:20361005

  12. Braille and Tactile Graphics: Youths with Visual Impairments Share Their Experiences

    ERIC Educational Resources Information Center

    Rosenblum, L. Penny; Herzberg, Tina S.

    2015-01-01

    Introduction: Data were collected from youths with visual impairment about their experiences with tactile graphics and braille materials used in mathematics and science classes. Methods: Youths answered questions and explored four tactile graphics made using different production methods. They located specific information on each graphic and shared…

  13. Vestibular Activation Differentially Modulates Human Early Visual Cortex and V5/MT Excitability and Response Entropy

    PubMed Central

    Guzman-Lopez, Jessica; Arshad, Qadeer; Schultz, Simon R; Walsh, Vincent; Yousif, Nada

    2013-01-01

    Head movement imposes the additional burdens on the visual system of maintaining visual acuity and determining the origin of retinal image motion (i.e., self-motion vs. object-motion). Although maintaining visual acuity during self-motion is effected by minimizing retinal slip via the brainstem vestibular-ocular reflex, higher order visuovestibular mechanisms also contribute. Disambiguating self-motion versus object-motion also invokes higher order mechanisms, and a cortical visuovestibular reciprocal antagonism is propounded. Hence, one prediction is of a vestibular modulation of visual cortical excitability and indirect measures have variously suggested none, focal or global effects of activation or suppression in human visual cortex. Using transcranial magnetic stimulation-induced phosphenes to probe cortical excitability, we observed decreased V5/MT excitability versus increased early visual cortex (EVC) excitability, during vestibular activation. In order to exclude nonspecific effects (e.g., arousal) on cortical excitability, response specificity was assessed using information theory, specifically response entropy. Vestibular activation significantly modulated phosphene response entropy for V5/MT but not EVC, implying a specific vestibular effect on V5/MT responses. This is the first demonstration that vestibular activation modulates human visual cortex excitability. Furthermore, using information theory, not previously used in phosphene response analysis, we could distinguish between a specific vestibular modulation of V5/MT excitability from a nonspecific effect at EVC. PMID:22291031

  14. Asymmetric latent semantic indexing for gene expression experiments visualization.

    PubMed

    González, Javier; Muñoz, Alberto; Martos, Gabriel

    2016-08-01

    We propose a new method to visualize gene expression experiments inspired by the latent semantic indexing technique originally proposed in the textual analysis context. By using the correspondence word-gene document-experiment, we define an asymmetric similarity measure of association for genes that accounts for potential hierarchies in the data, the key to obtain meaningful gene mappings. We use the polar decomposition to obtain the sources of asymmetry of the similarity matrix, which are later combined with previous knowledge. Genetic classes of genes are identified by means of a mixture model applied in the genes latent space. We describe the steps of the procedure and we show its utility in the Human Cancer dataset.

  15. Augmented Visual Experience of Simulated Solar Phenomena

    NASA Astrophysics Data System (ADS)

    Tucker, A. O., IV; Berardino, R. A.; Hahne, D.; Schreurs, B.; Fox, N. J.; Raouafi, N.

    2017-12-01

    The Parker Solar Probe (PSP) mission will explore the Sun's corona, studying solar wind, flares and coronal mass ejections. The effects of these phenomena can impact the technology that we use in ways that are not readily apparent, including affecting satellite communications and power grids. Determining the structure and dynamics of corona magnetic fields, tracing the flow of energy that heats the corona, and exploring dusty plasma near the Sun to understand its influence on solar wind and energetic particle formation requires a suite of sensors on board the PSP spacecraft that are engineered to observe specific phenomena. Using models of these sensors and simulated observational data, we can visualize what the PSP spacecraft will "see" during its multiple passes around the Sun. Augmented reality (AR) technologies enable convenient user access to massive data sets. We are developing an application that allows users to experience environmental data from the point of view of the PSP spacecraft in AR using the Microsoft HoloLens. Observational data, including imagery, magnetism, temperature, and density are visualized in 4D within the user's immediate environment. Our application provides an educational tool for comprehending the complex relationships of observational data, which aids in our understanding of the Sun.

  16. Early treatment of penile fractures: our experience.

    PubMed

    García Gómez, Borja; Romero, Javier; Villacampa, Felipe; Tejido, Angel; Díaz, Rafael

    2012-09-01

    To report our experience in early surgery of penile fractures. We review retrospectively all the cases that underwent surgery at our center from 1989 to 2009, with a total of 24. The cause of the fracture was sexual intercourse in most cases, and in all of them, surgical management was performed according to clinical presentation and physical exploration. In only 7 cases an ultrasound was performed as a complementary test. Early surgery allows prompt resolution of the problem with excellent functional outcomes and little side effects. The prognosis after emergency surgery was excellent in this review.

  17. LSD alters eyes-closed functional connectivity within the early visual cortex in a retinotopic fashion.

    PubMed

    Roseman, Leor; Sereno, Martin I; Leech, Robert; Kaelen, Mendel; Orban, Csaba; McGonigle, John; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L

    2016-08-01

    The question of how spatially organized activity in the visual cortex behaves during eyes-closed, lysergic acid diethylamide (LSD)-induced "psychedelic imagery" (e.g., visions of geometric patterns and more complex phenomena) has never been empirically addressed, although it has been proposed that under psychedelics, with eyes-closed, the brain may function "as if" there is visual input when there is none. In this work, resting-state functional connectivity (RSFC) data was analyzed from 10 healthy subjects under the influence of LSD and, separately, placebo. It was suspected that eyes-closed psychedelic imagery might involve transient local retinotopic activation, of the sort typically associated with visual stimulation. To test this, it was hypothesized that, under LSD, patches of the visual cortex with congruent retinotopic representations would show greater RSFC than incongruent patches. Using a retinotopic localizer performed during a nondrug baseline condition, nonadjacent patches of V1 and V3 that represent the vertical or the horizontal meridians of the visual field were identified. Subsequently, RSFC between V1 and V3 was measured with respect to these a priori identified patches. Consistent with our prior hypothesis, the difference between RSFC of patches with congruent retinotopic specificity (horizontal-horizontal and vertical-vertical) and those with incongruent specificity (horizontal-vertical and vertical-horizontal) increased significantly under LSD relative to placebo, suggesting that activity within the visual cortex becomes more dependent on its intrinsic retinotopic organization in the drug condition. This result may indicate that under LSD, with eyes-closed, the early visual system behaves as if it were seeing spatially localized visual inputs. Hum Brain Mapp 37:3031-3040, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Aesthetic Experience in the World of Visual Culture

    ERIC Educational Resources Information Center

    Moore, Ronald

    2004-01-01

    This article draws attention to three important aesthetic ideas--ideas which have become, in the early twenty-first century, so widely endorsed in Western culture that they have become the stock platform of much theorizing and teaching about our experience of art and its relation to the rest of life. All of these ideas sprang from Beat thought in…

  19. Early visual responses predict conscious face perception within and between subjects during binocular rivalry

    PubMed Central

    Sandberg, Kristian; Bahrami, Bahador; Kanai, Ryota; Barnes, Gareth Robert; Overgaard, Morten; Rees, Geraint

    2014-01-01

    Previous studies indicate that conscious face perception may be related to neural activity in a large time window around 170-800ms after stimulus presentation, yet in the majority of these studies changes in conscious experience are confounded with changes in physical stimulation. Using multivariate classification on MEG data recorded when participants reported changes in conscious perception evoked by binocular rivalry between a face and a grating, we showed that only MEG signals in the 120-320ms time range, peaking at the M170 around 180ms and the P2m at around 260ms, reliably predicted conscious experience. Conscious perception could not only be decoded significantly better than chance from the sensors that showed the largest average difference, as previous studies suggest, but also from patterns of activity across groups of occipital sensors that individually were unable to predict perception better than chance. Additionally, source space analyses showed that sources in the early and late visual system predicted conscious perception more accurately than frontal and parietal sites, although conscious perception could also be decoded there. Finally, the patterns of neural activity associated with conscious face perception generalized from one participant to another around the times of maximum prediction accuracy. Our work thus demonstrates that the neural correlates of particular conscious contents (here, faces) are highly consistent in time and space within individuals and that these correlates are shared to some extent between individuals. PMID:23281780

  20. Teaching the Mammalian Heart to the Visually Handicapped--A Lesson in Concrete Experience

    ERIC Educational Resources Information Center

    Francoeur, Pearl; Eilam, Bihah

    1975-01-01

    Utilizes programmed instruction with concrete experiences and raised diagrams to teach the mammalian heart to an integrated high school classroom (one containing sighted and visually handicapped students). (LS)

  1. Potentiation of the early visual response to learned danger signals in adults and adolescents

    PubMed Central

    Howsley, Philippa; Jordan, Jeff; Johnston, Pat

    2015-01-01

    The reinforcing effects of aversive outcomes on avoidance behaviour are well established. However, their influence on perceptual processes is less well explored, especially during the transition from adolescence to adulthood. Using electroencephalography, we examined whether learning to actively or passively avoid harm can modulate early visual responses in adolescents and adults. The task included two avoidance conditions, active and passive, where two different warning stimuli predicted the imminent, but avoidable, presentation of an aversive tone. To avoid the aversive outcome, participants had to learn to emit an action (active avoidance) for one of the warning stimuli and omit an action for the other (passive avoidance). Both adults and adolescents performed the task with a high degree of accuracy. For both adolescents and adults, increased N170 event-related potential amplitudes were found for both the active and the passive warning stimuli compared with control conditions. Moreover, the potentiation of the N170 to the warning stimuli was stable and long lasting. Developmental differences were also observed; adolescents showed greater potentiation of the N170 component to danger signals. These findings demonstrate, for the first time, that learned danger signals in an instrumental avoidance task can influence early visual sensory processes in both adults and adolescents. PMID:24652856

  2. Visualizing the Impact of Art: An Update and Comparison of Current Psychological Models of Art Experience

    PubMed Central

    Pelowski, Matthew; Markey, Patrick S.; Lauring, Jon O.; Leder, Helmut

    2016-01-01

    The last decade has witnessed a renaissance of empirical and psychological approaches to art study, especially regarding cognitive models of art processing experience. This new emphasis on modeling has often become the basis for our theoretical understanding of human interaction with art. Models also often define areas of focus and hypotheses for new empirical research, and are increasingly important for connecting psychological theory to discussions of the brain. However, models are often made by different researchers, with quite different emphases or visual styles. Inputs and psychological outcomes may be differently considered, or can be under-reported with regards to key functional components. Thus, we may lose the major theoretical improvements and ability for comparison that can be had with models. To begin addressing this, this paper presents a theoretical assessment, comparison, and new articulation of a selection of key contemporary cognitive or information-processing-based approaches detailing the mechanisms underlying the viewing of art. We review six major models in contemporary psychological aesthetics. We in turn present redesigns of these models using a unified visual form, in some cases making additions or creating new models where none had previously existed. We also frame these approaches in respect to their targeted outputs (e.g., emotion, appraisal, physiological reaction) and their strengths within a more general framework of early, intermediate, and later processing stages. This is used as a basis for general comparison and discussion of implications and future directions for modeling, and for theoretically understanding our engagement with visual art. PMID:27199697

  3. Visualizing the Impact of Art: An Update and Comparison of Current Psychological Models of Art Experience.

    PubMed

    Pelowski, Matthew; Markey, Patrick S; Lauring, Jon O; Leder, Helmut

    2016-01-01

    The last decade has witnessed a renaissance of empirical and psychological approaches to art study, especially regarding cognitive models of art processing experience. This new emphasis on modeling has often become the basis for our theoretical understanding of human interaction with art. Models also often define areas of focus and hypotheses for new empirical research, and are increasingly important for connecting psychological theory to discussions of the brain. However, models are often made by different researchers, with quite different emphases or visual styles. Inputs and psychological outcomes may be differently considered, or can be under-reported with regards to key functional components. Thus, we may lose the major theoretical improvements and ability for comparison that can be had with models. To begin addressing this, this paper presents a theoretical assessment, comparison, and new articulation of a selection of key contemporary cognitive or information-processing-based approaches detailing the mechanisms underlying the viewing of art. We review six major models in contemporary psychological aesthetics. We in turn present redesigns of these models using a unified visual form, in some cases making additions or creating new models where none had previously existed. We also frame these approaches in respect to their targeted outputs (e.g., emotion, appraisal, physiological reaction) and their strengths within a more general framework of early, intermediate, and later processing stages. This is used as a basis for general comparison and discussion of implications and future directions for modeling, and for theoretically understanding our engagement with visual art.

  4. The Influence of Technology-Rich Early Childhood Field Experiences on Preservice Teachers

    ERIC Educational Resources Information Center

    Lux, Nicholas; Lux, Christine

    2015-01-01

    Despite a comprehensive body of research on field experiences in teacher education, technology-rich early field experiences in early childhood environments is one particular area of inquiry lacking substantive current research. Therefore, this study was conducted to better understand how preservice teachers' perceptions of global concepts related…

  5. Visual Experience Enhances Infants' Use of Task-Relevant Information in an Action Task

    ERIC Educational Resources Information Center

    Wang, Su-hua; Kohne, Lisa

    2007-01-01

    Four experiments examined whether infants' use of task-relevant information in an action task could be facilitated by visual experience in the laboratory. Twelve- but not 9-month-old infants spontaneously used height information and chose an appropriate (taller) cover in search of a hidden tall toy. After watching examples of covering events in a…

  6. The ego-moving metaphor of time relies on visual experience: No representation of time along the sagittal space in the blind.

    PubMed

    Rinaldi, Luca; Vecchi, Tomaso; Fantino, Micaela; Merabet, Lotfi B; Cattaneo, Zaira

    2018-03-01

    In many cultures, humans conceptualize the past as behind the body and the future as in front. Whether this spatial mapping of time depends on visual experience is still not known. Here, we addressed this issue by testing early-blind participants in a space-time motor congruity task requiring them to classify a series of words as referring to the past or the future by moving their hand backward or forward. Sighted participants showed a preferential mapping between forward movements and future-words and backward movements and past-words. Critically, blind participants did not show any such preferential time-space mapping. Furthermore, in a questionnaire requiring participants to think about past and future events, blind participants did not appear to perceive the future as psychologically closer than the past, as it is the case of sighted individuals. These findings suggest that normal visual development is crucial for representing time along the sagittal space. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Overview of long-term field experiments in Germany - metadata visualization

    NASA Astrophysics Data System (ADS)

    Muqit Zoarder, Md Abdul; Heinrich, Uwe; Svoboda, Nikolai; Grosse, Meike; Hierold, Wilfried

    2017-04-01

    BonaRes ("soil as a sustainable resource for the bioeconomy") is conducting to collect data and metadata of agricultural long-term field experiments (LTFE) of Germany. It is funded by the German Federal Ministry of Education and Research (BMBF) under the umbrella of the National Research Strategy BioEconomy 2030. BonaRes consists of ten interdisciplinary research project consortia and the 'BonaRes - Centre for Soil Research'. BonaRes Data Centre is responsible for collecting all LTFE data and regarding metadata into an enterprise database upon higher level of security and visualization of the data and metadata through data portal. In the frame of the BonaRes project, we are compiling an overview of long-term field experiments in Germany that is based on a literature review, the results of the online survey and direct contacts with LTFE operators. Information about research topic, contact person, website, experiment setup and analyzed parameters are collected. Based on the collected LTFE data, an enterprise geodatabase is developed and a GIS-based web-information system about LTFE in Germany is also settled. Various aspects of the LTFE, like experiment type, land-use type, agricultural category and duration of experiment, are presented in thematic maps. This information system is dynamically linked to the database, which means changes in the data directly affect the presentation. An easy data searching option using LTFE name, -location or -operators and the dynamic layer selection ensure a user-friendly web application. Dispersion and visualization of the overlapping LTFE points on the overview map are also challenging and we make it automatized at very zoom level which is also a consistent part of this application. The application provides both, spatial location and meta-information of LTFEs, which is backed-up by an enterprise geodatabase, GIS server for hosting map services and Java script API for web application development.

  8. How the Timing and Quality of Early Experiences Influence the Development of Brain Architecture

    PubMed Central

    Fox, Sharon E.; Levitt, Pat; Nelson, Charles A.

    2009-01-01

    Early life events can exert a powerful influence on both the pattern of brain architecture and behavioral development. In this paper a conceptual framework is provided for considering how the structure of early experience gets “under the skin.” The paper begins with a description of the genetic framework that lays the foundation for brain development, and then to the ways experience interacts with and modifies the structures and functions of the developing brain. Much of the attention is focused on early experience and sensitive periods, although it is made clear that later experience also plays an important role in maintaining and elaborating this early wiring diagram, which is critical to establishing a solid footing for development beyond the early years. PMID:20331653

  9. Early Auditory Evoked Potential Is Modulated by Selective Attention and Related to Individual Differences in Visual Working Memory Capacity

    PubMed Central

    Giuliano, Ryan J.; Karns, Christina M.; Neville, Helen J.; Hillyard, Steven A.

    2015-01-01

    A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual’s capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70–90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals. PMID:25000526

  10. The contributions of visual and central attention to visual working memory.

    PubMed

    Souza, Alessandra S; Oberauer, Klaus

    2017-10-01

    We investigated the role of two kinds of attention-visual and central attention-for the maintenance of visual representations in working memory (WM). In Experiment 1 we directed attention to individual items in WM by presenting cues during the retention interval of a continuous delayed-estimation task, and instructing participants to think of the cued items. Attending to items improved recall commensurate with the frequency with which items were attended (0, 1, or 2 times). Experiments 1 and 3 further tested which kind of attention-visual or central-was involved in WM maintenance. We assessed the dual-task costs of two types of distractor tasks, one tapping sustained visual attention and one tapping central attention. Only the central attention task yielded substantial dual-task costs, implying that central attention substantially contributes to maintenance of visual information in WM. Experiment 2 confirmed that the visual-attention distractor task was demanding enough to disrupt performance in a task relying on visual attention. We combined the visual-attention and the central-attention distractor tasks with a multiple object tracking (MOT) task. Distracting visual attention, but not central attention, impaired MOT performance. Jointly, the three experiments provide a double dissociation between visual and central attention, and between visual WM and visual object tracking: Whereas tracking multiple targets across the visual filed depends on visual attention, visual WM depends mostly on central attention.

  11. Selective attention modulates visual and haptic repetition priming: effects in aging and Alzheimer's disease.

    PubMed

    Ballesteros, Soledad; Reales, José M; Mayas, Julia; Heller, Morton A

    2008-08-01

    In two experiments, we examined the effect of selective attention at encoding on repetition priming in normal aging and Alzheimer's disease (AD) patients for objects presented visually (experiment 1) or haptically (experiment 2). We used a repetition priming paradigm combined with a selective attention procedure at encoding. Reliable priming was found for both young adults and healthy older participants for visually presented pictures (experiment 1) as well as for haptically presented objects (experiment 2). However, this was only found for attended and not for unattended stimuli. The results suggest that independently of the perceptual modality, repetition priming requires attention at encoding and that perceptual facilitation is maintained in normal aging. However, AD patients did not show priming for attended stimuli, or for unattended visual or haptic objects. These findings suggest an early deficit of selective attention in AD. Results are discussed from a cognitive neuroscience approach.

  12. Music Experience in Early Childhood: Potential for Emotion Knowledge?

    ERIC Educational Resources Information Center

    Vist, Torill

    2011-01-01

    Most cultures carry an idea of music being connected to emotion. New research suggests that we may also acquire emotion knowledge from our music experiences. This article investigates music experience as a mediating tool for emotion knowledge in early childhood, as revealed through qualitative interviews of adults. The interviewees describe music…

  13. An interdisciplinary visual team in an acute and sub-acute stroke unit: Providing assessment and early rehabilitation.

    PubMed

    Norup, Anne; Guldberg, Anne-Mette; Friis, Claus Radmer; Deurell, Eva Maria; Forchhammer, Hysse Birgitte

    2016-07-15

    To describe the work of an interdisciplinary visual team in a stroke unit providing early identification and assessment of patients with visual symptoms, and secondly to investigate frequency, type of visual deficits after stroke and self-evaluated impact on everyday life after stroke. For a period of three months, all stroke patients with visual or visuo-attentional deficits were registered, and data concerning etiology, severity and localization of the stroke and initial visual symptoms were registered. One month after discharge patients were contacted for follow-up. Of 349 acute stroke admissions, 84 (24.1%) had visual or visuo-attentional deficits initially. Of these 84 patients, informed consent was obtained from 22 patients with a mean age of 67.7 years(SD 10.1), and the majority was female (59.1%). Based on the initial neurological examination, 45.4% had some kind of visual field defect, 27.2% had some kind of oculomotor nerve palsy, and about 31.8% had some kind of inattention or visual neglect. The patients were contacted for a phone-based follow-up one month after discharge, where 85.7% reported changes in their vision since their stroke. In this consecutive sample, a quarter of all stroke patients had visual or visuo-attentional deficits initially. This emphasizes how professionals should have increased awareness of the existence of such deficits after stroke in order to provide the necessary interdisciplinary assessment and rehabilitation.

  14. Development of Early Handwriting: Visual-Motor Control During Letter Copying

    PubMed Central

    Maldarelli, Jennifer E.; Kahrs, Björn A.; Hunt, Sarah C.; Lockman, Jeffrey J.

    2015-01-01

    Despite the importance of handwriting for school readiness and early academic progress, prior research on the development of handwriting has focused primarily on the product rather than the process by which young children write letters. In contrast, in the present work, early handwriting is viewed as involving a suite of perceptual, motor and cognitive abilities, which must work in unison if children are to write letters efficiently. To study such coordination, head-mounted eye-tracking technology was used to investigate the process of visual-motor coordination while kindergarten children (N=23) and adults (N=11) copied individual letters and strings of letters that differed in terms of their phonemic properties. Results indicated that kindergarten children were able to copy single letters efficiently, as did adults. When the cognitive demands of the task increased and children were presented with strings of letters, however, their ability to copy letters efficiently was compromised: children frequently interrupted their writing mid-letter, whereas they did not do so on single letter trials. Yet, with increasing age, children became more efficient in copying letter strings, in part by using vision more prospectively when writing. Taken together, the results illustrate how the coordination of perceptual, motor and cognitive processes contributes to advances in the development of letter writing skill. PMID:26029821

  15. Decision making and action implementation: evidence for an early visually triggered motor activation specific to potential actions.

    PubMed

    Tandonnet, Christophe; Garry, Michael I; Summers, Jeffery J

    2013-07-01

    To make a decision may rely on accumulating evidence in favor of one alternative until a threshold is reached. Sequential-sampling models differ by the way of accumulating evidence and the link with action implementation. Here, we tested a model's prediction of an early action implementation specific to potential actions. We assessed the dynamics of action implementation in go/no-go and between-hand choice tasks by transcranial magnetic stimulation of the motor cortex (single- or paired-pulse TMS; 3-ms interstimulus interval). Prior to implementation of the selected action, the amplitude of the motor evoked potential first increased whatever the visual stimulus but only for the hand potentially involved in the to-be-produced action. These findings suggest that visual stimuli can trigger an early motor activation specific to potential actions, consistent with race-like models with continuous transmission between decision making and action implementation. Copyright © 2013 Society for Psychophysiological Research.

  16. Recreational Physical Activity Experiences Among Guatemalan Families With Children With Visual Impairments.

    PubMed

    Columna, Luis; Fernández-Vivó, Margarita; Lieberman, Lauren; Arndt, Katrina

    2015-08-01

    Nationwide research indicates that children with visual impairment have limited participation in recreational and sport activities than their peers. This is due in part to the lack of recreational opportunities and facilities, as well as a lack of awareness by parents of how and where their children can participate. The purpose of the current study was to explore the experiences of Latino families of children with visual impairments living in Guatemala regarding physical recreation. Participants were Latino parents (N = 13) who have children with visual impairments recruited from a sport camp. Qualitative data were gathered through one-on-one interviews that were transcribed and analyzed through a constant comparative analysis. Participating Latino families who resided in Guatemala City participated at least once a month in low budget recreational activities with their children with visual impairments. Activities were mostly done in local surroundings and led mainly by their mother. Benefits identified by the participants related to relaxation, socialization, and sense of independence, with minimal mention of health related benefits. There is a need to disseminate information to the Latino community with children with visual impairments regarding the multiple benefits that arise from being involved in recreational physical activities.

  17. Examining the Content of Preservice Teachers' Reflections of Early Field Experiences

    ERIC Educational Resources Information Center

    Subramaniam, Karthigeyan

    2013-01-01

    This paper describes an exploratory study that examined the content of preservice elementary teachers' reflections of their documented early field experiences of science teaching in authentic contexts. The study used an early field experience model that was focused on the objective of profiling an elementary science teacher as the practical…

  18. Audio-visual synchrony and feature-selective attention co-amplify early visual processing.

    PubMed

    Keitel, Christian; Müller, Matthias M

    2016-05-01

    Our brain relies on neural mechanisms of selective attention and converging sensory processing to efficiently cope with rich and unceasing multisensory inputs. One prominent assumption holds that audio-visual synchrony can act as a strong attractor for spatial attention. Here, we tested for a similar effect of audio-visual synchrony on feature-selective attention. We presented two superimposed Gabor patches that differed in colour and orientation. On each trial, participants were cued to selectively attend to one of the two patches. Over time, spatial frequencies of both patches varied sinusoidally at distinct rates (3.14 and 3.63 Hz), giving rise to pulse-like percepts. A simultaneously presented pure tone carried a frequency modulation at the pulse rate of one of the two visual stimuli to introduce audio-visual synchrony. Pulsed stimulation elicited distinct time-locked oscillatory electrophysiological brain responses. These steady-state responses were quantified in the spectral domain to examine individual stimulus processing under conditions of synchronous versus asynchronous tone presentation and when respective stimuli were attended versus unattended. We found that both, attending to the colour of a stimulus and its synchrony with the tone, enhanced its processing. Moreover, both gain effects combined linearly for attended in-sync stimuli. Our results suggest that audio-visual synchrony can attract attention to specific stimulus features when stimuli overlap in space.

  19. Layered Worlds: A Metaphor of Time, Visualizing the Experience of Alzheimer's.

    ERIC Educational Resources Information Center

    Grady, Ann M.

    This paper describes an exhibit, "Layered Worlds: The Look of Alzheimer's," which uses photography as the medium to interpret Alzheimer's disease visually. The goal was not to photograph the victims of the disease, but to interpret the experience of Alzheimer's for the patient, family members, and caregivers. The metaphor of layers was…

  20. Vividness of Visual Imagery Depends on the Neural Overlap with Perception in Visual Areas.

    PubMed

    Dijkstra, Nadine; Bosch, Sander E; van Gerven, Marcel A J

    2017-02-01

    Research into the neural correlates of individual differences in imagery vividness point to an important role of the early visual cortex. However, there is also great fluctuation of vividness within individuals, such that only looking at differences between people necessarily obscures the picture. In this study, we show that variation in moment-to-moment experienced vividness of visual imagery, within human subjects, depends on the activity of a large network of brain areas, including frontal, parietal, and visual areas. Furthermore, using a novel multivariate analysis technique, we show that the neural overlap between imagery and perception in the entire visual system correlates with experienced imagery vividness. This shows that the neural basis of imagery vividness is much more complicated than studies of individual differences seemed to suggest. Visual imagery is the ability to visualize objects that are not in our direct line of sight: something that is important for memory, spatial reasoning, and many other tasks. It is known that the better people are at visual imagery, the better they can perform these tasks. However, the neural correlates of moment-to-moment variation in visual imagery remain unclear. In this study, we show that the more the neural response during imagery is similar to the neural response during perception, the more vivid or perception-like the imagery experience is. Copyright © 2017 the authors 0270-6474/17/371367-07$15.00/0.

  1. Perceptual learning as improved probabilistic inference in early sensory areas.

    PubMed

    Bejjanki, Vikranth R; Beck, Jeffrey M; Lu, Zhong-Lin; Pouget, Alexandre

    2011-05-01

    Extensive training on simple tasks such as fine orientation discrimination results in large improvements in performance, a form of learning known as perceptual learning. Previous models have argued that perceptual learning is due to either sharpening and amplification of tuning curves in early visual areas or to improved probabilistic inference in later visual areas (at the decision stage). However, early theories are inconsistent with the conclusions of psychophysical experiments manipulating external noise, whereas late theories cannot explain the changes in neural responses that have been reported in cortical areas V1 and V4. Here we show that we can capture both the neurophysiological and behavioral aspects of perceptual learning by altering only the feedforward connectivity in a recurrent network of spiking neurons so as to improve probabilistic inference in early visual areas. The resulting network shows modest changes in tuning curves, in line with neurophysiological reports, along with a marked reduction in the amplitude of pairwise noise correlations.

  2. Snow, Ice, & Satellites: An Early Career Researcher's Experience with Twitter

    NASA Astrophysics Data System (ADS)

    Pope, A.; Scambos, T. A.

    2014-12-01

    As a doctoral student, I was lucky enough to be able to experiment with a variety of communication and outreach activities (classroom visits, museum events, science festivals, blogging, social media, etc.) to build communication skills and learn how to talk about my science without writing a journal article. More importantly, the wide range of experience helped me identify what worked for me. My favorite way to share my science now? Twitter. To many, Twitter is a frivolous platform for sharing snippets 140 characters or less. To me, however, it is how I can connect directly with the elusive "wider public" and share my science. Specifically, I use satellite imagery (mostly Landsat 8) to study glaciers around the world. I look at long-term change related to climate, and I also investigate new, innovative ways to use satellite imagery to better understand glaciers and ice sheets. Luckily for me, my research is very visual. Whether fieldwork snapshots or satellite data, images make for great, shareable, accessible tweets. In this presentation, I propose to share my experience of tweeting as an early career researcher. I will include successful strategies (e.g. particular #hashtags, creating new content, using story-telling, timely tweets), as well as some not-so-successful attempts. I will also talk about how I built my Twitter network. In addition to anecdotes, I will include evaluation of my Twitter activity using available metrics and analytics (e.g. followers, favorites, re-tweets, Klout score, etc.). While misunderstood by many in the scientific community, Twitter is a platform increasingly being adopted by researchers. Used correctly, it can be a great tool for connecting directly with an interested, non-technical audience eager to learn about your research. With my experiences and evaluation, I will show how both scientists and the networks that they join and create can benefit by using Twitter as a platform for science communication.

  3. Visual-Motor Symbol Production Facilitates Letter Recognition in Young Children

    ERIC Educational Resources Information Center

    Zemlock, Deborah; Vinci-Booher, Sophia; James, Karin H.

    2018-01-01

    Previous research has suggested that handwriting letters may be an important exerciser to facilitate early letter understanding. Experimental studies to date, however, have not investigated whether this effect is general to any visual-motor experience or specific to handwriting letters. In the present work, we addressed this issue by testing…

  4. Artful Dodgers: An Arts Education Research Project in Early Education Settings

    ERIC Educational Resources Information Center

    Hayes, Nóirín; Maguire, Jackie; Corcoran, Lucie; O'Sullivan, Carmel

    2017-01-01

    Artful Dodgers is an arts education project developed by two artists and delivered in two early years settings located in two areas of urban disadvantage. It is a music and visual arts programme designed and implemented with early years teachers of children aged 3-5 years. It explored whether the provision of high-quality arts experiences could…

  5. Experiences of visually impaired students in higher education: Bodily perspectives on inclusive education.

    PubMed

    Lourens, Heidi; Swartz, Leslie

    Although previous literature sheds light on the experiences of visually impaired students on tertiary grounds, these studies failed to provide an embodied understanding of their lives. In-depth interviews with 15 visually impaired students at one university demonstrated the ways in which they experienced their disability and the built environment in their bodies. At the same time, lost, fearful, shameful and aching bodies revealed prevailing gaps in provision for disabled students. Through this research it becomes clear how the environment is acutely felt within fleshly worlds, while bodies do not fail to tell of disabling societal structures. Based on the bodily stories, we thus make recommendations to improve the lives of visually impaired students on tertiary campuses.

  6. Experiences of visually impaired students in higher education: Bodily perspectives on inclusive education

    PubMed Central

    Lourens, Heidi; Swartz, Leslie

    2016-01-01

    Although previous literature sheds light on the experiences of visually impaired students on tertiary grounds, these studies failed to provide an embodied understanding of their lives. In-depth interviews with 15 visually impaired students at one university demonstrated the ways in which they experienced their disability and the built environment in their bodies. At the same time, lost, fearful, shameful and aching bodies revealed prevailing gaps in provision for disabled students. Through this research it becomes clear how the environment is acutely felt within fleshly worlds, while bodies do not fail to tell of disabling societal structures. Based on the bodily stories, we thus make recommendations to improve the lives of visually impaired students on tertiary campuses. PMID:27917028

  7. Coral Reef Early Warning System (CREWS) RPC Experiment

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.; Hall, Callie

    2007-01-01

    This viewgraph document reviews the background, objectives, methodology, validation, and present status of the Coral Reef Early Warning System (CREWS) Rapid Prototyping Capability (RPC) experiment. The potential NASA contribution to CREWS Decision Support Tool (DST) centers on remotely sensed imagery products.

  8. Neocortical Rebound Depolarization Enhances Visual Perception

    PubMed Central

    Funayama, Kenta; Ban, Hiroshi; Chan, Allen W.; Matsuki, Norio; Murphy, Timothy H.; Ikegaya, Yuji

    2015-01-01

    Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features. Using in vivo whole-cell patch-clamp recording and functional two-photon calcium imaging from the primary visual cortex (V1) of awake mice, we discovered that a flash of sinusoidal grating per se induces an early, transient activation as well as a long-delayed reactivation in V1 neurons. This late response, which started hundreds of milliseconds after the flash and persisted for approximately 2 s, was also observed in human V1 electroencephalogram. When another drifting grating stimulus arrived during the late response, the V1 neurons exhibited a sublinear, but apparently increased response, especially to the same grating orientation. In behavioral tests of mice and humans, the flashing stimulation enhanced the detection power of the identically orientated visual stimulation only when the second stimulation was presented during the time window of the late response. Therefore, V1 late responses likely provide a neural basis for admixing temporally separated stimuli and extracting identical features in time-varying visual environments. PMID:26274866

  9. Visual Prediction of Rover Slip: Learning Algorithms and Field Experiments

    DTIC Science & Technology

    2008-01-01

    DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Visual Prediction of Rover Slip: Learning Algorithms and Field Experiments 5a...rover mobility [23, 78]. Remote slip prediction will enable safe traversals on large slopes covered with sand, drift material or loose crater ejecta...aqueous processes, e.g., mineral-rich out- crops which imply exposure to water [92] or putative lake formations or shorelines, layered deposits, etc

  10. Macular pigment and its contribution to visual performance and experience

    PubMed Central

    Loughman, James; Davison, Peter A.; Nolan, John M.; Akkali, Mukunda C.; Beatty, Stephen

    2010-01-01

    There is now a consensus, based on histological, biochemical and spectral absorption data, that the yellow colour observed at the macula lutea is a consequence of the selective accumulation of dietary xanthophylls in the central retina of the living eye. Scientific research continues to explore the function(s) of MP in the human retina, with two main hypotheses premised on its putative capacity to (1) protect the retina from (photo)-oxidative damage by means of its optical filtration and/or antioxidant properties, the so-called protective hypothesis and (2) influence the quality of visual performance by means of selective short wavelength light absorption prior to photoreceptor light capture, thereby attenuating the effects of chromatic aberration and light scatter, the so-called acuity and visibility hypotheses. The current epidemic of age-related macular degeneration has directed researchers to investigate the protective hypothesis of MP, while there has been a conspicuous lack of work designed to investigate the role of MP in visual performance. The aim of this review is to present and critically appraise the current literature germane to the contribution of MP, if any, to visual performance and experience.

  11. Supranormal orientation selectivity of visual neurons in orientation-restricted animals.

    PubMed

    Sasaki, Kota S; Kimura, Rui; Ninomiya, Taihei; Tabuchi, Yuka; Tanaka, Hiroki; Fukui, Masayuki; Asada, Yusuke C; Arai, Toshiya; Inagaki, Mikio; Nakazono, Takayuki; Baba, Mika; Kato, Daisuke; Nishimoto, Shinji; Sanada, Takahisa M; Tani, Toshiki; Imamura, Kazuyuki; Tanaka, Shigeru; Ohzawa, Izumi

    2015-11-16

    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure.

  12. Supranormal orientation selectivity of visual neurons in orientation-restricted animals

    PubMed Central

    Sasaki, Kota S.; Kimura, Rui; Ninomiya, Taihei; Tabuchi, Yuka; Tanaka, Hiroki; Fukui, Masayuki; Asada, Yusuke C.; Arai, Toshiya; Inagaki, Mikio; Nakazono, Takayuki; Baba, Mika; Kato, Daisuke; Nishimoto, Shinji; Sanada, Takahisa M.; Tani, Toshiki; Imamura, Kazuyuki; Tanaka, Shigeru; Ohzawa, Izumi

    2015-01-01

    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure. PMID:26567927

  13. Four-Month-Old Infants' Visual Investigation of Cats and Dogs: Relations with Pet Experience and Attentional Strategy

    ERIC Educational Resources Information Center

    Kovack-Lesh, Kristine A.; McMurray, Bob; Oakes, Lisa M.

    2014-01-01

    We assessed the eye-movements of 4-month-old infants (N = 38) as they visually inspected pairs of images of cats or dogs. In general, infants who had previous experience with pets exhibited more sophisticated inspection than did infants without pet experience, both directing more visual attention to the informative head regions of the animals,…

  14. Multisensory integration and the concert experience: An overview of how visual stimuli can affect what we hear

    NASA Astrophysics Data System (ADS)

    Hyde, Jerald R.

    2004-05-01

    It is clear to those who ``listen'' to concert halls and evaluate their degree of acoustical success that it is quite difficult to separate the acoustical response at a given seat from the multi-modal perception of the whole event. Objective concert hall data have been collected for the purpose of finding a link with their related subjective evaluation and ultimately with the architectural correlates which produce the sound field. This exercise, while important, tends to miss the point that a concert or opera event utilizes all the senses of which the sound field and visual stimuli are both major contributors to the experience. Objective acoustical factors point to visual input as being significant in the perception of ``acoustical intimacy'' and with the perception of loudness versus distance in large halls. This paper will review the evidence of visual input as a factor in what we ``hear'' and introduce concepts of perceptual constancy, distance perception, static and dynamic visual stimuli, and the general process of the psychology of the integrated experience. A survey of acousticians on their opinions about the auditory-visual aspects of the concert hall experience will be presented. [Work supported in part from the Veneklasen Research Foundation and Veneklasen Associates.

  15. iOS--Worthy of the Hype as Assistive Technology for Visual Impairments? A Phenomenological Study of iOS Device Use by Individuals with Visual Impairments

    ERIC Educational Resources Information Center

    Scott, Shari

    2013-01-01

    This qualitative study sought to explore the shared essence of the lived experiences of early adopters of iOS devices as assistive technology by persons with visual impairments. The capstone question addressed the idea of whether any one device could fully meet the assistive technology needs of this population. Purposeful sampling methods were…

  16. Progressive Decrease of Peripapillary Angioflow Vessel Density During Structural and Visual Field Progression in Early Primary Open-angle Glaucoma.

    PubMed

    Holló, Gábor

    2017-07-01

    To present a case of early primary open-angle glaucoma in which retinal nerve fiber layer thickness (RNFLT), ganglion cell complex (GCC), and visual field progression were accompanied with significant progression of peripapillary angioflow vessel density (PAFD) measured with optical coherence tomographic angiography. A 68-year-old female patient who was under topical intraocular pressure (IOP) lowering medication for 20 years for ocular hypertension of the right and preperimetric primary open-angle glaucoma of the left eye (with reproducible inferotemporal and superotemporal neuroretinal rim and RNFL loss) was prospectively imaged with the AngioVue OCT for RNFLT, GCC thickness, and PAFD, and investigated with the Octopus Normal G2 visual field test on the same days at 6-month intervals for 18 months, while the IOP of the left eye escaped from control. IOP of the left eye fluctuated between 14 and 30 mm Hg in the study period. RNFLT, GCC thickness, and peripapillary PAFD all decreased significantly (linear regression analysis, P=0.030, 0.040, and 0.020, respectively), and a significant 2.1 dB/y progression was seen for a superior visual field cluster. The RNFLT, peripapillary PAFD, and visual field of the right eye remained normal and unchanged. In our case IOP elevation, glaucomatous visual field conversion, and structural progression were accompanied with significant progressive decrease of peripapillary PAFD. The simultaneous thinning of RNFLT and GCC and decrease of peripapillary PAFD suggest that PAFD may potentially be an additional indicator of early progression in primary open-angle glaucoma.

  17. Two functions of early language experience.

    PubMed

    Arshavsky, Yuri I

    2009-05-01

    The unique human ability of linguistic communication, defined as the ability to produce a practically infinite number of meaningful messages using a finite number of lexical items, is determined by an array of "linguistic" genes, which are expressed in neurons forming domain-specific linguistic centers in the brain. In this review, I discuss the idea that infants' early language experience performs two complementary functions. In addition to allowing infants to assimilate the words and grammar rules of their mother language, early language experience initiates genetic programs underlying language production and comprehension. This hypothesis explains many puzzling characteristics of language acquisition, such as the existence of a critical period for acquiring the first language and the absence of a critical period for the acquisition of additional language(s), a similar timetable for language acquisition in children belonging to families of different social and cultural status, the strikingly similar timetables in the acquisition of oral and sign languages, and the surprisingly small correlation between individuals' final linguistic competence and the intensity of their training. Based on the studies of microcephalic individuals, I argue that genetic factors determine not only the number of neurons and organization of interneural connections within linguistic centers, but also the putative internal properties of neurons that are not limited to their electrophysiological and synaptic properties.

  18. 3D Data Mapping and Real-Time Experiment Control and Visualization in Brain Slices.

    PubMed

    Navarro, Marco A; Hibbard, Jaime V K; Miller, Michael E; Nivin, Tyler W; Milescu, Lorin S

    2015-10-20

    Here, we propose two basic concepts that can streamline electrophysiology and imaging experiments in brain slices and enhance data collection and analysis. The first idea is to interface the experiment with a software environment that provides a 3D scene viewer in which the experimental rig, the brain slice, and the recorded data are represented to scale. Within the 3D scene viewer, the user can visualize a live image of the sample and 3D renderings of the recording electrodes with real-time position feedback. Furthermore, the user can control the instruments and visualize their status in real time. The second idea is to integrate multiple types of experimental data into a spatial and temporal map of the brain slice. These data may include low-magnification maps of the entire brain slice, for spatial context, or any other type of high-resolution structural and functional image, together with time-resolved electrical and optical signals. The entire data collection can be visualized within the 3D scene viewer. These concepts can be applied to any other type of experiment in which high-resolution data are recorded within a larger sample at different spatial and temporal coordinates. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Improving the User Experience of Finding and Visualizing Oceanographic Data

    NASA Astrophysics Data System (ADS)

    Rauch, S.; Allison, M. D.; Groman, R. C.; Chandler, C. L.; Galvarino, C.; Gegg, S. R.; Kinkade, D.; Shepherd, A.; Wiebe, P. H.; Glover, D. M.

    2013-12-01

    Searching for and locating data of interest can be a challenge to researchers as increasing volumes of data are made available online through various data centers, repositories, and archives. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) is keenly aware of this challenge and, as a result, has implemented features and technologies aimed at improving data discovery and enhancing the user experience. BCO-DMO was created in 2006 to manage and publish data from research projects funded by the Division of Ocean Sciences (OCE) Biological and Chemical Oceanography Sections and the Division of Polar Programs (PLR) Antarctic Sciences Organisms and Ecosystems Program (ANT) of the US National Science Foundation (NSF). The BCO-DMO text-based and geospatial-based data access systems provide users with tools to search, filter, and visualize data in order to efficiently find data of interest. The geospatial interface, developed using a suite of open-source software (including MapServer [1], OpenLayers [2], ExtJS [3], and MySQL [4]), allows users to search and filter/subset metadata based on program, project, or deployment, or by using a simple word search. The map responds based on user selections, presents options that allow the user to choose specific data parameters (e.g., a species or an individual drifter), and presents further options for visualizing those data on the map or in "quick-view" plots. The data managed and made available by BCO-DMO are very heterogeneous in nature, from in-situ biogeochemical, ecological, and physical data, to controlled laboratory experiments. Due to the heterogeneity of the data types, a 'one size fits all' approach to visualization cannot be applied. Datasets are visualized in a way that will best allow users to assess fitness for purpose. An advanced geospatial interface, which contains a semantically-enabled faceted search [5], is also available. These search facets are highly interactive and responsive, allowing

  20. Health services experiences of parents of recently diagnosed visually impaired children

    PubMed Central

    Rahi, J S; Manaras, I; Tuomainen, H; Lewando Hundt, G

    2005-01-01

    Aim: To investigate the health service experiences and needs of parents in the period around diagnosis of ophthalmic disorders in their children. Methods: Parents of children newly diagnosed with visual impairment and/or ophthalmic disorders at a tertiary level hospital in London participated in a questionnaire survey, using standard instruments, followed by in-depth individual interviews, to elicit their views about the processes of care, their overall level of satisfaction, and their unmet needs. Results: 67% (147) of eligible families (135 mothers, 76 fathers) participated. Overall satisfaction with care was high, being greater among parents of children with milder visual loss or isolated ophthalmic disorders than those with more severe visual loss or multiple impairments. Nevertheless, parents’ reported greatest need was the provision of general information, including about their child’s ophthalmic disorder and educational and social services and support. Mothers reported greater information needs than fathers, as did white parents compared to those from ethnic minorities. White parents also regarded the processes of care to be less comprehensive and coordinated, as well as less enabling, than did parents from ethnic minorities. Conclusions: Although parents reported high overall satisfaction with services, improving the medium, content, and scope of general information provided by professionals to parents of visually impaired children emerges as a priority. Equitable planning and provision of health services for families of children with visual impairment needs to take into account that informational and other needs vary by whether the parent is the primary carer or not and their ethnicity, as well as by the severity and complexity of their child’s visual loss. PMID:15665355

  1. Visual attention and the apprehension of spatial relations: the case of depth.

    PubMed

    Moore, C M; Elsinger, C L; Lleras, A

    2001-05-01

    Several studies have shown that targets defined on the basis of the spatial relations between objects yield highly inefficient visual search performance (e.g., Logan, 1994; Palmer, 1994), suggesting that the apprehension of spatial relations may require the selective allocation of attention within the scene. In the present study, we tested the hypothesis that depth relations might be different in this regard and might support efficient visual search. This hypothesis was based, in part, on the fact that many perceptual organization processes that are believed to occur early and in parallel, such as figure-ground segregation and perceptual completion, seem to depend on the assignment of depth relations. Despite this, however, using increasingly salient cues to depth (Experiments 2-4) and including a separate test of the sufficiency of the most salient depth cue used (Experiment 5), no evidence was found to indicate that search for a target defined by depth relations is any different than search for a target defined by other types of spatial relations, with regard to efficiency of search. These findings are discussed within the context of the larger literature on early processing of three-dimensional characteristics of visual scenes.

  2. Loss of Neurofilament Labeling in the Primary Visual Cortex of Monocularly Deprived Monkeys

    PubMed Central

    Duffy, Kevin R.; Livingstone, Margaret S.

    2009-01-01

    Visual experience during early life is important for the development of neural organizations that support visual function. Closing one eye (monocular deprivation) during this sensitive period can cause a reorganization of neural connections within the visual system that leaves the deprived eye functionally disconnected. We have assessed the pattern of neurofilament labeling in monocularly deprived macaque monkeys to examine the possibility that a cytoskeleton change contributes to deprivation-induced reorganization of neural connections within the primary visual cortex (V-1). Monocular deprivation for three months starting around the time of birth caused a significant loss of neurofilament labeling within deprived-eye ocular dominance columns. Three months of monocular deprivation initiated in adulthood did not produce a loss of neurofilament labeling. The evidence that neurofilament loss was found only when deprivation occurred during the sensitive period supports the notion that the loss permits restructuring of deprived-eye neural connections within the visual system. These results provide evidence that, in addition to reorganization of LGN inputs, the intrinsic circuitry of V-1 neurons is altered when monocular deprivation occurs early in development. PMID:15563721

  3. Behavioral and neural plasticity caused by early social experiences: the case of the honeybee

    PubMed Central

    Arenas, Andrés; Ramírez, Gabriela P.; Balbuena, María Sol; Farina, Walter M.

    2013-01-01

    Cognitive experiences during the early stages of life play an important role in shaping future behavior. Behavioral and neural long-term changes after early sensory and associative experiences have been recently reported in the honeybee. This invertebrate is an excellent model for assessing the role of precocious experiences on later behavior due to its extraordinarily tuned division of labor based on age polyethism. These studies are mainly focused on the role and importance of experiences occurred during the first days of the adult lifespan, their impact on foraging decisions, and their contribution to coordinate food gathering. Odor-rewarded experiences during the first days of honeybee adulthood alter the responsiveness to sucrose, making young hive bees more sensitive to assess gustatory features about the nectar brought back to the hive and affecting the dynamic of the food transfers and the propagation of food-related information within the colony. Early olfactory experiences lead to stable and long-term associative memories that can be successfully recalled after many days, even at foraging ages. Also they improve memorizing of new associative learning events later in life. The establishment of early memories promotes stable reorganization of the olfactory circuits inducing structural and functional changes in the antennal lobe (AL). Early rewarded experiences have relevant consequences at the social level too, biasing dance and trophallaxis partner choice and affecting recruitment. Here, we revised recent results in bees' physiology, behavior, and sociobiology to depict how the early experiences affect their cognition abilities and neural-related circuits. PMID:23986708

  4. [Parental self-efficacy in family-centered early intervention].

    PubMed

    Sarimski, Klaus; Hintermair, Manfred; Lang, Markus

    2012-01-01

    Parental self-efficacy is seen as an important concern in family-centered early intervention. This article reports the data from 125 parents of young children with intellectual disabilities, hearing impairment or visual impairment. The relationship between parental self-efficacy, parental stress and several parent and child variables is analyzed. The results support the relevance of parental self-efficacy for parental coping. Some recommendations for promoting their experience of participation and partnership in early intervention services are discussed.

  5. GABAergic Inhibition in Visual Cortical Plasticity

    PubMed Central

    Sale, Alessandro; Berardi, Nicoletta; Spolidoro, Maria; Baroncelli, Laura; Maffei, Lamberto

    2010-01-01

    Experience is required for the shaping and refinement of developing neural circuits during well defined periods of early postnatal development called critical periods. Many studies in the visual cortex have shown that intracortical GABAergic circuitry plays a crucial role in defining the time course of the critical period for ocular dominance plasticity. With the end of the critical period, neural plasticity wanes and recovery from the effects of visual defects on visual acuity (amblyopia) or binocularity is much reduced or absent. Recent results pointed out that intracortical inhibition is a fundamental limiting factor for adult cortical plasticity and that its reduction by means of different pharmacological and environmental strategies makes it possible to greatly enhance plasticity in the adult visual cortex, promoting ocular dominance plasticity and recovery from amblyopia. Here we focus on the role of intracortical GABAergic circuitry in controlling both developmental and adult cortical plasticity. We shall also discuss the potential clinical application of these findings to neurological disorders in which synaptic plasticity is compromised because of excessive intracortical inhibition. PMID:20407586

  6. Inferring the direction of implied motion depends on visual awareness

    PubMed Central

    Faivre, Nathan; Koch, Christof

    2014-01-01

    Visual awareness of an event, object, or scene is, by essence, an integrated experience, whereby different visual features composing an object (e.g., orientation, color, shape) appear as an unified percept and are processed as a whole. Here, we tested in human observers whether perceptual integration of static motion cues depends on awareness by measuring the capacity to infer the direction of motion implied by a static visible or invisible image under continuous flash suppression. Using measures of directional adaptation, we found that visible but not invisible implied motion adaptors biased the perception of real motion probes. In a control experiment, we found that invisible adaptors implying motion primed the perception of subsequent probes when they were identical (i.e., repetition priming), but not when they only shared the same direction (i.e., direction priming). Furthermore, using a model of visual processing, we argue that repetition priming effects are likely to arise as early as in the primary visual cortex. We conclude that although invisible images implying motion undergo some form of nonconscious processing, visual awareness is necessary to make inferences about motion direction. PMID:24706951

  7. Inferring the direction of implied motion depends on visual awareness.

    PubMed

    Faivre, Nathan; Koch, Christof

    2014-04-04

    Visual awareness of an event, object, or scene is, by essence, an integrated experience, whereby different visual features composing an object (e.g., orientation, color, shape) appear as an unified percept and are processed as a whole. Here, we tested in human observers whether perceptual integration of static motion cues depends on awareness by measuring the capacity to infer the direction of motion implied by a static visible or invisible image under continuous flash suppression. Using measures of directional adaptation, we found that visible but not invisible implied motion adaptors biased the perception of real motion probes. In a control experiment, we found that invisible adaptors implying motion primed the perception of subsequent probes when they were identical (i.e., repetition priming), but not when they only shared the same direction (i.e., direction priming). Furthermore, using a model of visual processing, we argue that repetition priming effects are likely to arise as early as in the primary visual cortex. We conclude that although invisible images implying motion undergo some form of nonconscious processing, visual awareness is necessary to make inferences about motion direction.

  8. Development of early handwriting: Visual-motor control during letter copying.

    PubMed

    Maldarelli, Jennifer E; Kahrs, Björn A; Hunt, Sarah C; Lockman, Jeffrey J

    2015-07-01

    Despite the importance of handwriting for school readiness and early academic progress, prior research on the development of handwriting has focused primarily on the product rather than the process by which young children write letters. In contrast, in the present work, early handwriting is viewed as involving a suite of perceptual, motor, and cognitive abilities, which must work in unison if children are to write letters efficiently. To study such coordination, head-mounted eye-tracking technology was used to investigate the process of visual-motor coordination while kindergarten children (N = 23) and adults (N = 11) copied individual letters and strings of letters that differed in terms of their phonemic properties. Results indicated that kindergarten children were able to copy single letters efficiently, as did adults. When the cognitive demands of the task increased and children were presented with strings of letters, however, their ability to copy letters efficiently was compromised: Children frequently interrupted their writing midletter, whereas they did not do so on single letter trials. Yet, with increasing age, children became more efficient in copying letter strings, in part by using vision more prospectively when writing. Taken together, the results illustrate how the coordination of perceptual, motor, and cognitive processes contributes to advances in the development of letter writing skill. (c) 2015 APA, all rights reserved).

  9. Assessment of visual perception in adolescents with a history of central coordination disorder in early life – 15-year follow-up study

    PubMed Central

    Kowalski, Ireneusz M.; Domagalska, Małgorzata; Szopa, Andrzej; Dwornik, Michał; Kujawa, Jolanta; Stępień, Agnieszka; Śliwiński, Zbigniew

    2012-01-01

    Introduction Central nervous system damage in early life results in both quantitative and qualitative abnormalities of psychomotor development. Late sequelae of these disturbances may include visual perception disorders which not only affect the ability to read and write but also generally influence the child's intellectual development. This study sought to determine whether a central coordination disorder (CCD) in early life treated according to Vojta's method with elements of the sensory integration (S-I) and neuro-developmental treatment (NDT)/Bobath approaches affects development of visual perception later in life. Material and methods The study involved 44 participants aged 15-16 years, including 19 diagnosed with moderate or severe CCD in the neonatal period, i.e. during the first 2-3 months of life, with diagnosed mild degree neonatal encephalopathy due to perinatal anoxia, and 25 healthy people without a history of developmental psychomotor disturbances in the neonatal period. The study tool was a visual perception IQ test comprising 96 graphic tasks. Results The study revealed equal proportions of participants (p < 0.05) defined as very skilled (94-96), skilled (91-94), aerage (71-91), poor (67-71), and very poor (0-67) in both groups. These results mean that adolescents with a history of CCD in the neonatal period did not differ with regard to the level of visual perception from their peers who had not demonstrated psychomotor development disorders in the neonatal period. Conclusions Early treatment of children with CCD affords a possibility of normalising their psychomotor development early enough to prevent consequences in the form of cognitive impairments in later life. PMID:23185199

  10. The influence of anaesthetists' experience on workload, performance and visual attention during simulated critical incidents.

    PubMed

    Schulz, Christian M; Schneider, Erich; Kohlbecher, Stefan; Hapfelmeier, Alexander; Heuser, Fabian; Wagner, Klaus J; Kochs, Eberhard F; Schneider, Gerhard

    2014-10-01

    Development of accurate Situation Awareness (SA) depends on experience and may be impaired during excessive workload. In order to gain adequate SA for decision making and performance, anaesthetists need to distribute visual attention effectively. Therefore, we hypothesized that in more experienced anaesthetists performance is better and increase of physiological workload is less during critical incidents. Additionally, we investigated the relation between physiological workload indicators and distribution of visual attention. In fifteen anaesthetists, the increase of pupil size and heart rate was assessed in course of a simulated critical incident. Simulator log files were used for performance assessment. An eye-tracking device (EyeSeeCam) provided data about the anaesthetists' distribution of visual attention. Performance was assessed as time until definitive treatment. T tests and multivariate generalized linear models (MANOVA) were used for retrospective statistical analysis. Mean pupil diameter increase was 8.1% (SD ± 4.3) in the less experienced and 15.8% (±10.4) in the more experienced subjects (p = 0.191). Mean heart rate increase was 10.2% (±6.7) and 10.5% (±8.3, p = 0.956), respectively. Performance did not depend on experience. Pupil diameter and heart rate increases were associated with a shift of visual attention from monitoring towards manual tasks (not significant). For the first time, the following four variables were assessed simultaneously: physiological workload indicators, performance, experience, and distribution of visual attention between "monitoring" and "manual" tasks. However, we were unable to detect significant interactions between these variables. This experimental model could prove valuable in the investigation of gaining and maintaining SA in the operation theatre.

  11. The Impact of Visual Communication on the Intersubjective Development of Early Parent?Child Interaction with 18- to 24-Month-Old Deaf Toddlers

    ERIC Educational Resources Information Center

    Loots, Gerrit; Devise, Isabel; Jacquet, Wolfgang

    2005-01-01

    This article presents a study that examined the impact of visual communication on the quality of the early interaction between deaf and hearing mothers and fathers and their deaf children aged between 18 and 24 months. Three communication mode groups of parent?deaf child dyads that differed by the use of signing and visual?tactile communication…

  12. Early thinning experiments established by the Fort Valley Experimental Forest

    Treesearch

    Benjamin P. De Blois; Alex. J. Finkral; Andrew J. Sanchez Meador; Margaret M. Moore

    2008-01-01

    Between 1925 and 1936, the Fort Valley Experimental Forest (FVEF) scientists initiated a study to examine a series of forest thinning experiments in second growth ponderosa pine stands in Arizona and New Mexico. These early thinning plots furnished much of the early background for the development of methods used in forest management in the Southwest. The plots ranged...

  13. New Directions in the Study of Early Experience.

    ERIC Educational Resources Information Center

    Bertenthal, Bennett I; Campos, Joseph J.

    1987-01-01

    Reviews Greenough, Black, and Wallace's (1987) conceptual framework for understanding the effects of early experience and sensitive periods on development, and illustrates the applicability of their model with recent data on the consequences for animals and human infants of the acquistion of self-produced locomotion. (BN)

  14. The role of early stages of cortical visual processing in size and distance judgment: a transcranial direct current stimulation study.

    PubMed

    Costa, Thiago L; Costa, Marcelo F; Magalhães, Adsson; Rêgo, Gabriel G; Nagy, Balázs V; Boggio, Paulo S; Ventura, Dora F

    2015-02-19

    Recent research suggests that V1 plays an active role in the judgment of size and distance. Nevertheless, no research has been performed using direct brain stimulation to address this issue. We used transcranial direct-current stimulation (tDCS) to directly modulate the early stages of cortical visual processing while measuring size and distance perception with a psychophysical scaling method of magnitude estimation in a repeated-measures design. The subjects randomly received anodal, cathodal, and sham tDCS in separate sessions starting with size or distance judgment tasks. Power functions were fit to the size judgment data, whereas logarithmic functions were fit to distance judgment data. Slopes and R(2) were compared with separate repeated-measures analyses of variance with two factors: task (size vs. distance) and tDCS (anodal vs. cathodal vs. sham). Anodal tDCS significantly decreased slopes, apparently interfering with size perception. No effects were found for distance perception. Consistent with previous studies, the results of the size task appeared to reflect a prothetic continuum, whereas the results of the distance task seemed to reflect a metathetic continuum. The differential effects of tDCS on these tasks may support the hypothesis that different physiological mechanisms underlie judgments on these two continua. The results further suggest the complex involvement of the early visual cortex in size judgment tasks that go beyond the simple representation of low-level stimulus properties. This supports predictive coding models and experimental findings that suggest that higher-order visual areas may inhibit incoming information from the early visual cortex through feedback connections when complex tasks are performed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Visual variability affects early verb learning.

    PubMed

    Twomey, Katherine E; Lush, Lauren; Pearce, Ruth; Horst, Jessica S

    2014-09-01

    Research demonstrates that within-category visual variability facilitates noun learning; however, the effect of visual variability on verb learning is unknown. We habituated 24-month-old children to a novel verb paired with an animated star-shaped actor. Across multiple trials, children saw either a single action from an action category (identical actions condition, for example, travelling while repeatedly changing into a circle shape) or multiple actions from that action category (variable actions condition, for example, travelling while changing into a circle shape, then a square shape, then a triangle shape). Four test trials followed habituation. One paired the habituated verb with a new action from the habituated category (e.g., 'dacking' + pentagon shape) and one with a completely novel action (e.g., 'dacking' + leg movement). The others paired a new verb with a new same-category action (e.g., 'keefing' + pentagon shape), or a completely novel category action (e.g., 'keefing' + leg movement). Although all children discriminated novel verb/action pairs, children in the identical actions condition discriminated trials that included the completely novel verb, while children in the variable actions condition discriminated the out-of-category action. These data suggest that - as in noun learning - visual variability affects verb learning and children's ability to form action categories. © 2014 The British Psychological Society.

  16. Early Workplace Learning Experiences: What Are the Pedagogical Possibilities beyond Retention and Employability?

    ERIC Educational Resources Information Center

    Trede, Franziska; McEwen, Celina

    2015-01-01

    With this paper, we explore early placement experiences and their pedagogical potential, including ways of keeping students enrolled and persisting with their studies. Few university courses offer early placements because traditionally placement experiences have a focus on employability and work readiness of graduates, hence occur towards the end…

  17. Efficient visualization of high-throughput targeted proteomics experiments: TAPIR.

    PubMed

    Röst, Hannes L; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2015-07-15

    Targeted mass spectrometry comprises a set of powerful methods to obtain accurate and consistent protein quantification in complex samples. To fully exploit these techniques, a cross-platform and open-source software stack based on standardized data exchange formats is required. We present TAPIR, a fast and efficient Python visualization software for chromatograms and peaks identified in targeted proteomics experiments. The input formats are open, community-driven standardized data formats (mzML for raw data storage and TraML encoding the hierarchical relationships between transitions, peptides and proteins). TAPIR is scalable to proteome-wide targeted proteomics studies (as enabled by SWATH-MS), allowing researchers to visualize high-throughput datasets. The framework integrates well with existing automated analysis pipelines and can be extended beyond targeted proteomics to other types of analyses. TAPIR is available for all computing platforms under the 3-clause BSD license at https://github.com/msproteomicstools/msproteomicstools. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. The 1980 and 1981 accident experience of civil airmen with selected visual pathology.

    DOT National Transportation Integrated Search

    1983-07-01

    In studies of the 1974-76 accident experience of U.S. general aviation pilots with static physical defects, all the significantly increased rates and ratios were for visual defect categories--blindness, or absence of either eye, deficient distant vis...

  19. The sensory timecourses associated with conscious visual item memory and source memory.

    PubMed

    Thakral, Preston P; Slotnick, Scott D

    2015-09-01

    Previous event-related potential (ERP) findings have suggested that during visual item and source memory, nonconscious and conscious sensory (occipital-temporal) activity onsets may be restricted to early (0-800 ms) and late (800-1600 ms) temporal epochs, respectively. In an ERP experiment, we tested this hypothesis by separately assessing whether the onset of conscious sensory activity was restricted to the late epoch during source (location) memory and item (shape) memory. We found that conscious sensory activity had a late (>800 ms) onset during source memory and an early (<200 ms) onset during item memory. In a follow-up fMRI experiment, conscious sensory activity was localized to BA17, BA18, and BA19. Of primary importance, the distinct source memory and item memory ERP onsets contradict the hypothesis that there is a fixed temporal boundary separating nonconscious and conscious processing during all forms of visual conscious retrieval. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Starflo glaucoma implant: early experience in Hungary

    PubMed Central

    István, Cseke; Péter, Vámosi; Mária, Bausz

    2016-01-01

    Aim: To present the early experience with the implantation technique, safety and efficiency of STARflo™ device for open angle glaucoma (OAG). Methods: referring intra- and postoperative clinical experience with a series of seven cases in three glaucoma centers in Hungary. Results: No intraoperative complications were observed. Postoperative inflammatory signs disappeared rapidly. The mean IOP reduction was from 27,6 ± 5,0 mmHg to 18,9±3,4 mmHg (32% reduction/ patient) at six months postoperatively. Conclusion: STARflo™ implant was safe and (except for one case with neovascular glaucoma) effective in our cases. The learning curve for experienced anterior segment surgeons was short. PMID:27220226

  1. Early vitrectomy effective for Norrie disease.

    PubMed

    Walsh, Mark K; Drenser, Kimberly A; Capone, Antonio; Trese, Michael T

    2010-04-01

    To review our experience with Norrie disease to determine if early vitrectomy abrogates the natural history of this rare disease; namely, bilateral no light perception visual acuity and phthisis bulbi. We retrospectively reviewed the medical records of all patients seen in our tertiary care pediatric retinal clinical practice from 1988 through 2008 with a potential diagnosis of Norrie disease. Inclusion required not only clinical findings consistent with Norrie disease but also genetics and/or a family history consistent with Norrie disease. Medical record review revealed 14 boys with clinically diagnosed Norrie disease and either Norrie disease gene (NDP) mutations noted on genetic testing (13 patients) and/or a clear family history consistent with Norrie disease (4 patients). All 14 boys with definite Norrie disease had vitrectomy with or without lensectomy in at least 1 eye prior to 12 months of age. Of the 14 boys with definite Norrie disease, 7 maintained at least light perception visual acuity in 1 eye and 3 had no light perception visual acuity bilaterally; visual acuity data were not available for 4 patients. Only 2 of 24 (8%) eyes became phthisical. Historically, no treatment has been offered to mitigate the dismal natural history of Norrie disease. We recommend consideration of early vitrectomy in Norrie disease.

  2. Words, shape, visual search and visual working memory in 3-year-old children.

    PubMed

    Vales, Catarina; Smith, Linda B

    2015-01-01

    Do words cue children's visual attention, and if so, what are the relevant mechanisms? Across four experiments, 3-year-old children (N = 163) were tested in visual search tasks in which targets were cued with only a visual preview versus a visual preview and a spoken name. The experiments were designed to determine whether labels facilitated search times and to examine one route through which labels could have their effect: By influencing the visual working memory representation of the target. The targets and distractors were pictures of instances of basic-level known categories and the labels were the common name for the target category. We predicted that the label would enhance the visual working memory representation of the target object, guiding attention to objects that better matched the target representation. Experiments 1 and 2 used conjunctive search tasks, and Experiment 3 varied shape discriminability between targets and distractors. Experiment 4 compared the effects of labels to repeated presentations of the visual target, which should also influence the working memory representation of the target. The overall pattern fits contemporary theories of how the contents of visual working memory interact with visual search and attention, and shows that even in very young children heard words affect the processing of visual information. © 2014 John Wiley & Sons Ltd.

  3. Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input.

    PubMed

    Hunt, Jonathan J; Dayan, Peter; Goodhill, Geoffrey J

    2013-01-01

    Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields.

  4. Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input

    PubMed Central

    Hunt, Jonathan J.; Dayan, Peter; Goodhill, Geoffrey J.

    2013-01-01

    Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields. PMID:23675290

  5. Using the Workforce Investment Act of 1998 to Benefit Youth with Blindness and Visual Impairment

    ERIC Educational Resources Information Center

    Mitchell, Patrick J.; Zampitella-Freese, Christina

    2003-01-01

    Overbrook School for the Blind (OSB), a specialized school serving students with blindness and visual impairment, has provided, since the early 1990s, paid summer work experiences as part of the school's Work Experience Program. In this article, the authors discuss how OSB has strengthened its original program as a result of the Workforce…

  6. Visual and motion cueing in helicopter simulation

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1985-01-01

    Early experience in fixed-cockpit simulators, with limited field of view, demonstrated the basic difficulties of simulating helicopter flight at the level of subjective fidelity required for confident evaluation of vehicle characteristics. More recent programs, utilizing large-amplitude cockpit motion and a multiwindow visual-simulation system have received a much higher degree of pilot acceptance. However, none of these simulations has presented critical visual-flight tasks that have been accepted by the pilots as the full equivalent of flight. In this paper, the visual cues presented in the simulator are compared with those of flight in an attempt to identify deficiencies that contribute significantly to these assessments. For the low-amplitude maneuvering tasks normally associated with the hover mode, the unique motion capabilities of the Vertical Motion Simulator (VMS) at Ames Research Center permit nearly a full representation of vehicle motion. Especially appreciated in these tasks are the vertical-acceleration responses to collective control. For larger-amplitude maneuvering, motion fidelity must suffer diminution through direct attenuation through high-pass filtering washout of the computer cockpit accelerations or both. Experiments were conducted in an attempt to determine the effects of these distortions on pilot performance of height-control tasks.

  7. The relationship of subepidermal moisture and early stage pressure injury by visual skin assessment.

    PubMed

    Kim, Chul-Gyu; Park, Seungmi; Ko, Ji Woon; Jo, Sungho

    2018-05-08

    The purpose of this study was to examine the relationship of subepidermal moisture and early stage pressure injury by visual skin assessment in elderly Korean. Twenty-nine elderly participated at a particular nursing home. Data were collected for 12 weeks by one wound care nurse. Visual skin assessment and subepidermal moisture value were measured at both buttocks, both ischia, both trochanters, sacrum, and coccyx of each subject once a week. Subepidermal moisture value of stage 1 pressure injury was significantly higher than that of no injury and blanching erythema. After adjustment with covariates, odds ratios of blanching erythema to normal skin and stage 1 pressure injury to blanching erythema/normal skin were statistically significant (p < 0.05). Odds ratio of blanching erythema to normal skin was 1.003 (p = .047) by 1-week prior subepidermal moisture value, and that of concurrent subepidermal moisture value was 1.004 (p = .011). Odds ratio of stage 1 pressure injury to normal skin/blanching erythema was 1.003 (p = .005) by 1-week prior subepidermal moisture value, and that for concurrent subepidermal moisture value was 1.007 (p = .030). Subepidermal moisture was associated with concurrent and future (1 week later) skin damage at both trochanters. Subepidermal moisture would be used to predict early skin damage in clinical nursing field for the effective pressure injury prevention. Copyright © 2018. Published by Elsevier Ltd.

  8. Early Visual Deprivation Severely Compromises the Auditory Sense of Space in Congenitally Blind Children

    ERIC Educational Resources Information Center

    Vercillo, Tiziana; Burr, David; Gori, Monica

    2016-01-01

    A recent study has shown that congenitally blind adults, who have never had visual experience, are impaired on an auditory spatial bisection task (Gori, Sandini, Martinoli, & Burr, 2014). In this study we investigated how thresholds for auditory spatial bisection and auditory discrimination develop with age in sighted and congenitally blind…

  9. How do musical tonality and experience affect visual working memory?

    PubMed

    Yang, Hua; Lu, Jing; Gong, Diankun; Yao, Dezhong

    2016-01-20

    The influence of music on the human brain has continued to attract increasing attention from neuroscientists and musicologists. Currently, tonal music is widely present in people's daily lives; however, atonal music has gradually become an important part of modern music. In this study, we conducted two experiments: the first one tested for differences in perception of distractibility between tonal music and atonal music. The second experiment tested how tonal music and atonal music affect visual working memory by comparing musicians and nonmusicians who were placed in contexts with background tonal music, atonal music, and silence. They were instructed to complete a delay matching memory task. The results show that musicians and nonmusicians have different evaluations of the distractibility of tonal music and atonal music, possibly indicating that long-term training may lead to a higher auditory perception threshold among musicians. For the working memory task, musicians reacted faster than nonmusicians in all background music cases, and musicians took more time to respond in the tonal background music condition than in the other conditions. Therefore, our results suggest that for a visual memory task, background tonal music may occupy more cognitive resources than atonal music or silence for musicians, leaving few resources left for the memory task. Moreover, the musicians outperformed the nonmusicians because of the higher sensitivity to background music, which also needs a further longitudinal study to be confirmed.

  10. The Development and Activity-Dependent Expression of Aggrecan in the Cat Visual Cortex

    PubMed Central

    Sengpiel, F.; Beaver, C. J.; Crocker-Buque, A.; Kelly, G. M.; Matthews, R. T.; Mitchell, D. E.

    2013-01-01

    The Cat-301 monoclonal antibody identifies aggrecan, a chondroitin sulfate proteoglycan in the cat visual cortex and dorsal lateral geniculate nucleus (dLGN). During development, aggrecan expression increases in the dLGN with a time course that matches the decline in plasticity. Moreover, examination of tissue from selectively visually deprived cats shows that expression is activity dependent, suggesting a role for aggrecan in the termination of the sensitive period. Here, we demonstrate for the first time that the onset of aggrecan expression in area 17 also correlates with the decline in experience-dependent plasticity in visual cortex and that this expression is experience dependent. Dark rearing until 15 weeks of age dramatically reduced the density of aggrecan-positive neurons in the extragranular layers, but not in layer IV. This effect was reversible as dark-reared animals that were subsequently exposed to light showed normal numbers of Cat-301-positive cells. The reduction in aggrecan following certain early deprivation regimens is the first biochemical correlate of the functional changes to the γ-aminobutyric acidergic system that have been reported following early deprivation in cats. PMID:22368089

  11. Visual Semiotics & Uncertainty Visualization: An Empirical Study.

    PubMed

    MacEachren, A M; Roth, R E; O'Brien, J; Li, B; Swingley, D; Gahegan, M

    2012-12-01

    This paper presents two linked empirical studies focused on uncertainty visualization. The experiments are framed from two conceptual perspectives. First, a typology of uncertainty is used to delineate kinds of uncertainty matched with space, time, and attribute components of data. Second, concepts from visual semiotics are applied to characterize the kind of visual signification that is appropriate for representing those different categories of uncertainty. This framework guided the two experiments reported here. The first addresses representation intuitiveness, considering both visual variables and iconicity of representation. The second addresses relative performance of the most intuitive abstract and iconic representations of uncertainty on a map reading task. Combined results suggest initial guidelines for representing uncertainty and discussion focuses on practical applicability of results.

  12. The flanker compatibility effect as a function of visual angle, attentional focus, visual transients, and perceptual load: a search for boundary conditions.

    PubMed

    Miller, J

    1991-03-01

    When subjects must respond to a relevant center letter and ignore irrelevant flanking letters, the identities of the flankers produce a response compatibility effect, indicating that they are processed semantically at least to some extent. Because this effect decreases as the separation between target and flankers increases, the effect appears to result from imperfect early selection (attenuation). In the present experiments, several features of the focused attention paradigm were examined, in order to determine whether they might produce the flanker compatibility effect by interfering with the operation of an early selective mechanism. Specifically, the effect might be produced because the paradigm requires subjects to (1) attend exclusively to stimuli within a very small visual angle, (2) maintain a long-term attentional focus on a constant display location, (3) focus attention on an empty display location, (4) exclude onset-transient flankers from semantic processing, or (5) ignore some of the few stimuli in an impoverished visual field. The results indicate that none of these task features is required for semantic processing of unattended stimuli to occur. In fact, visual angle is the only one of the task features that clearly has a strong influence on the size of the flanker compatibility effect. The invariance of the flanker compatibility effect across these conditions suggests that the mechanism for early selection rarely, if ever, completely excludes unattended stimuli from semantic analysis. In addition, it shows that selective mechanisms are relatively insensitive to several factors that might be expected to influence them, thereby supporting the view that spatial separation has a special status for visual selective attention.

  13. Competitive interactions of attentional resources in early visual cortex during sustained visuospatial attention within or between visual hemifields: evidence for the different-hemifield advantage.

    PubMed

    Walter, Sabrina; Quigley, Cliodhna; Mueller, Matthias M

    2014-05-01

    Performing a task across the left and right visual hemifields results in better performance than in a within-hemifield version of the task, termed the different-hemifield advantage. Although recent studies used transient stimuli that were presented with long ISIs, here we used a continuous objective electrophysiological (EEG) measure of competitive interactions for attentional processing resources in early visual cortex, the steady-state visual evoked potential (SSVEP). We frequency-tagged locations in each visual quadrant and at central fixation by flickering light-emitting diodes (LEDs) at different frequencies to elicit distinguishable SSVEPs. Stimuli were presented for several seconds, and participants were cued to attend to two LEDs either in one (Within) or distributed across left and right visual hemifields (Across). In addition, we introduced two reference measures: one for suppressive interactions between the peripheral LEDs by using a task at fixation where attention was withdrawn from the periphery and another estimating the upper bound of SSVEP amplitude by cueing participants to attend to only one of the peripheral LEDs. We found significantly greater SSVEP amplitude modulations in Across compared with Within hemifield conditions. No differences were found between SSVEP amplitudes elicited by the peripheral LEDs when participants attended to the centrally located LEDs compared with when peripheral LEDs had to be ignored in Across and Within trials. Attending to only one LED elicited the same SSVEP amplitude as Across conditions. Although behavioral data displayed a more complex pattern, SSVEP amplitudes were well in line with the predictions of the different-hemifield advantage account during sustained visuospatial attention.

  14. Showing the Unsayable: Participatory Visual Approaches and the Constitution of 'Patient Experience' in Healthcare Quality Improvement.

    PubMed

    Papoulias, Constantina

    2018-06-01

    This article considers the strengths and potential contributions of participatory visual methods for healthcare quality improvement research. It argues that such approaches may enable us to expand our understanding of 'patient experience' and of its potential for generating new knowledge for health systems. In particular, they may open up dimensions of people's engagement with services and treatments which exceed both the declarative nature of responses to questionnaires and the narrative sequencing of self reports gathered through qualitative interviewing. I will suggest that working with such methods may necessitate a more reflexive approach to the constitution of evidence in quality improvement work. To this end, the article will first consider the emerging rationale for the use of visual participatory methods in improvement before outlining the implications of two related approaches-photo-elicitation and PhotoVoice-for the constitution of 'experience'. It will then move to a participatory model for healthcare improvement work, Experience Based Co-Design (EBCD). It will argue that EBCD exemplifies both the strengths and the limitations of adequating visual participatory approaches to quality improvement ends. The article will conclude with a critical reflection on a small photographic study, in which the author participated, and which sought to harness service user perspectives for the design of psychiatric facilities, as a way of considering the potential contribution of visual participatory methods for quality improvement.

  15. Early suppression effect in human primary visual cortex during Kanizsa illusion processing: A magnetoencephalographic evidence.

    PubMed

    Chernyshev, Boris V; Pronko, Platon K; Stroganova, Tatiana A

    2016-01-01

    Detection of illusory contours (ICs) such as Kanizsa figures is known to depend primarily upon the lateral occipital complex. Yet there is no universal agreement on the role of the primary visual cortex in this process; some existing evidence hints that an early stage of the visual response in V1 may involve relative suppression to Kanizsa figures compared with controls. Iso-oriented luminance borders, which are responsible for Kanizsa illusion, may evoke surround suppression in V1 and adjacent areas leading to the reduction in the initial response to Kanizsa figures. We attempted to test the existence, as well as to find localization and timing of the early suppression effect produced by Kanizsa figures in adult nonclinical human participants. We used two sizes of visual stimuli (4.5 and 9.0°) in order to probe the effect at two different levels of eccentricity; the stimuli were presented centrally in passive viewing conditions. We recorded magnetoencephalogram, which is more sensitive than electroencephalogram to activity originating from V1 and V2 areas. We restricted our analysis to the medial occipital area and the occipital pole, and to a 40-120 ms time window after the stimulus onset. By applying threshold-free cluster enhancement technique in combination with permutation statistics, we were able to detect the inverted IC effect-a relative suppression of the response to the Kanizsa figures compared with the control stimuli. The current finding is highly compatible with the explanation involving surround suppression evoked by iso-oriented collinear borders. The effect may be related to the principle of sparse coding, according to which V1 suppresses representations of inner parts of collinear assemblies as being informationally redundant. Such a mechanism is likely to be an important preliminary step preceding object contour detection.

  16. Experiments on Auditory-Visual Perception of Sentences by Users of Unilateral, Bimodal, and Bilateral Cochlear Implants

    ERIC Educational Resources Information Center

    Dorman, Michael F.; Liss, Julie; Wang, Shuai; Berisha, Visar; Ludwig, Cimarron; Natale, Sarah Cook

    2016-01-01

    Purpose: Five experiments probed auditory-visual (AV) understanding of sentences by users of cochlear implants (CIs). Method: Sentence material was presented in auditory (A), visual (V), and AV test conditions to listeners with normal hearing and CI users. Results: (a) Most CI users report that most of the time, they have access to both A and V…

  17. Aesthetic Experience and Early Language and Literacy Development

    ERIC Educational Resources Information Center

    Johnson, Helen L.

    2007-01-01

    The present paper explores the connections between theory and research in language development and aesthetic education and their implications for early childhood classroom practice. The present paper posits that arts experiences make a unique and vital contribution to the child's development of language and literacy, as well as to the sense of…

  18. Repetition blindness and illusory conjunctions: errors in binding visual types with visual tokens.

    PubMed

    Kanwisher, N

    1991-05-01

    Repetition blindness (Kanwisher, 1986, 1987) has been defined as the failure to detect or recall repetitions of words presented in rapid serial visual presentation (RSVP). The experiments presented here suggest that repetition blindness (RB) is a more general visual phenomenon, and examine its relationship to feature integration theory (Treisman & Gelade, 1980). Experiment 1 shows RB for letters distributed through space, time, or both. Experiment 2 demonstrates RB for repeated colors in RSVP lists. In Experiments 3 and 4, RB was found for repeated letters and colors in spatial arrays. Experiment 5 provides evidence that the mental representations of discrete objects (called "visual tokens" here) that are necessary to detect visual repetitions (Kanwisher, 1987) are the same as the "object files" (Kahneman & Treisman, 1984) in which visual features are conjoined. In Experiment 6, repetition blindness for the second occurrence of a repeated letter resulted only when the first occurrence was attended to. The overall results suggest that a general dissociation between types and tokens in visual information processing can account for both repetition blindness and illusory conjunctions.

  19. An Empirical Study on Using Visual Embellishments in Visualization.

    PubMed

    Borgo, R; Abdul-Rahman, A; Mohamed, F; Grant, P W; Reppa, I; Floridi, L; Chen, Min

    2012-12-01

    In written and spoken communications, figures of speech (e.g., metaphors and synecdoche) are often used as an aid to help convey abstract or less tangible concepts. However, the benefits of using rhetorical illustrations or embellishments in visualization have so far been inconclusive. In this work, we report an empirical study to evaluate hypotheses that visual embellishments may aid memorization, visual search and concept comprehension. One major departure from related experiments in the literature is that we make use of a dual-task methodology in our experiment. This design offers an abstraction of typical situations where viewers do not have their full attention focused on visualization (e.g., in meetings and lectures). The secondary task introduces "divided attention", and makes the effects of visual embellishments more observable. In addition, it also serves as additional masking in memory-based trials. The results of this study show that visual embellishments can help participants better remember the information depicted in visualization. On the other hand, visual embellishments can have a negative impact on the speed of visual search. The results show a complex pattern as to the benefits of visual embellishments in helping participants grasp key concepts from visualization.

  20. Combining universal beauty and cultural context in a unifying model of visual aesthetic experience.

    PubMed

    Redies, Christoph

    2015-01-01

    In this work, I propose a model of visual aesthetic experience that combines formalist and contextual aspects of aesthetics. The model distinguishes between two modes of processing. First, perceptual processing is based on the intrinsic form of an artwork, which may or may not be beautiful. If it is beautiful, a beauty-responsive mechanism is activated in the brain. This bottom-up mechanism is universal amongst humans; it is widespread in the visual brain and responsive across visual modalities. Second, cognitive processing is based on contextual information, such as the depicted content, the intentions of the artist or the circumstances of the presentation of the artwork. Cognitive processing is partially top-down and varies between individuals according to their cultural experience. Processing in the two channels is parallel and largely independent. In the general case, an aesthetic experience is induced if processing in both channels is favorable, i.e., if there is resonance in the perceptual processing channel ("aesthetics of perception"), and successful mastering in the cognitive processing channel ("aesthetics of cognition"). I speculate that this combinatorial mechanism has evolved to mediate social bonding between members of a (cultural) group of people. Primary emotions can be elicited via both channels and modulate the degree of the aesthetic experience. Two special cases are discussed. First, in a subset of (post-)modern art, beauty no longer plays a prominent role. Second, in some forms of abstract art, beautiful form can be enjoyed with minimal cognitive processing. The model is applied to examples of Western art. Finally, implications of the model are discussed. In summary, the proposed model resolves the seeming contradiction between formalist perceptual approaches to aesthetic experience, which are based on the intrinsic beauty of artworks, and contextual approaches, which account for highly individual and culturally dependent aspects of aesthetics.

  1. Combining universal beauty and cultural context in a unifying model of visual aesthetic experience

    PubMed Central

    Redies, Christoph

    2015-01-01

    In this work, I propose a model of visual aesthetic experience that combines formalist and contextual aspects of aesthetics. The model distinguishes between two modes of processing. First, perceptual processing is based on the intrinsic form of an artwork, which may or may not be beautiful. If it is beautiful, a beauty-responsive mechanism is activated in the brain. This bottom–up mechanism is universal amongst humans; it is widespread in the visual brain and responsive across visual modalities. Second, cognitive processing is based on contextual information, such as the depicted content, the intentions of the artist or the circumstances of the presentation of the artwork. Cognitive processing is partially top–down and varies between individuals according to their cultural experience. Processing in the two channels is parallel and largely independent. In the general case, an aesthetic experience is induced if processing in both channels is favorable, i.e., if there is resonance in the perceptual processing channel (“aesthetics of perception”), and successful mastering in the cognitive processing channel (“aesthetics of cognition”). I speculate that this combinatorial mechanism has evolved to mediate social bonding between members of a (cultural) group of people. Primary emotions can be elicited via both channels and modulate the degree of the aesthetic experience. Two special cases are discussed. First, in a subset of (post-)modern art, beauty no longer plays a prominent role. Second, in some forms of abstract art, beautiful form can be enjoyed with minimal cognitive processing. The model is applied to examples of Western art. Finally, implications of the model are discussed. In summary, the proposed model resolves the seeming contradiction between formalist perceptual approaches to aesthetic experience, which are based on the intrinsic beauty of artworks, and contextual approaches, which account for highly individual and culturally dependent aspects of

  2. Sensori-motor experience leads to changes in visual processing in the developing brain.

    PubMed

    James, Karin Harman

    2010-03-01

    Since Broca's studies on language processing, cortical functional specialization has been considered to be integral to efficient neural processing. A fundamental question in cognitive neuroscience concerns the type of learning that is required for functional specialization to develop. To address this issue with respect to the development of neural specialization for letters, we used functional magnetic resonance imaging (fMRI) to compare brain activation patterns in pre-school children before and after different letter-learning conditions: a sensori-motor group practised printing letters during the learning phase, while the control group practised visual recognition. Results demonstrated an overall left-hemisphere bias for processing letters in these pre-literate participants, but, more interestingly, showed enhanced blood oxygen-level-dependent activation in the visual association cortex during letter perception only after sensori-motor (printing) learning. It is concluded that sensori-motor experience augments processing in the visual system of pre-school children. The change of activation in these neural circuits provides important evidence that 'learning-by-doing' can lay the foundation for, and potentially strengthen, the neural systems used for visual letter recognition.

  3. Visual Spatial Cognition in Neurodegenerative Disease

    PubMed Central

    Possin, Katherine L.

    2011-01-01

    Visual spatial impairment is often an early symptom of neurodegenerative disease; however, this multi-faceted domain of cognition is not well-assessed by most typical dementia evaluations. Neurodegenerative diseases cause circumscribed atrophy in distinct neural networks, and accordingly, they impact visual spatial cognition in different and characteristic ways. Anatomically-focused visual spatial assessment can assist the clinician in making an early and accurate diagnosis. This article will review the literature on visual spatial cognition in neurodegenerative disease clinical syndromes, and where research is available, by neuropathologic diagnoses. Visual spatial cognition will be organized primarily according to the following schemes: bottom-up / top-down processing, dorsal / ventral stream processing, and egocentric / allocentric frames of reference. PMID:20526954

  4. Anomalous visual experiences, negative symptoms, perceptual organization and the magnocellular pathway in schizophrenia: a shared construct?

    PubMed

    Kéri, Szabolcs; Kiss, Imre; Kelemen, Oguz; Benedek, György; Janka, Zoltán

    2005-10-01

    Schizophrenia is associated with impaired visual information processing. The aim of this study was to investigate the relationship between anomalous perceptual experiences, positive and negative symptoms, perceptual organization, rapid categorization of natural images and magnocellular (M) and parvocellular (P) visual pathway functioning. Thirty-five unmedicated patients with schizophrenia and 20 matched healthy control volunteers participated. Anomalous perceptual experiences were assessed with the Bonn Scale for the Assessment Basic Symptoms (BSABS). General intellectual functions were evaluated with the revised version of the Wechsler Adult Intelligence Scale. The 1-9 version of the Continuous Performance Test (CPT) was used to investigate sustained attention. The following psychophysical tests were used: detection of Gabor patches with collinear and orthogonal flankers (perceptual organization), categorization of briefly presented natural scenes (rapid visual processing), low-contrast and frequency-doubling vernier threshold (M pathway functioning), isoluminant colour vernier threshold and high spatial frequency discrimination (P pathway functioning). The patients with schizophrenia were impaired on test of perceptual organization, rapid visual processing and M pathway functioning. There was a significant correlation between BSABS scores, negative symptoms, perceptual organization, rapid visual processing and M pathway functioning. Positive symptoms, IQ, CPT and P pathway measures did not correlate with these parameters. The best predictor of the BSABS score was the perceptual organization deficit. These results raise the possibility that multiple facets of visual information processing deficits can be explained by M pathway dysfunctions in schizophrenia, resulting in impaired attentional modulation of perceptual organization and of natural image categorization.

  5. When memory is not enough: Electrophysiological evidence for goal-dependent use of working memory representations in guiding visual attention

    PubMed Central

    Carlisle, Nancy B.; Woodman, Geoffrey F.

    2014-01-01

    Biased competition theory proposes that representations in working memory drive visual attention to select similar inputs. However, behavioral tests of this hypothesis have led to mixed results. These inconsistent findings could be due to the inability of behavioral measures to reliably detect the early, automatic effects on attentional deployment that the memory representations exert. Alternatively, executive mechanisms may govern how working memory representations influence attention based on higher-level goals. In the present study, we tested these hypotheses using the N2pc component of participants’ event-related potentials (ERPs) to directly measure the early deployments of covert attention. Participants searched for a target in an array that sometimes contained a memory-matching distractor. In Experiments 1–3, we manipulated the difficulty of the target discrimination and the proximity of distractors, but consistently observed that covert attention was deployed to the search targets and not the memory-matching distractors. In Experiment 4, we showed that when participants’ goal involved attending to memory-matching items that these items elicited a large and early N2pc. Our findings demonstrate that working memory representations alone are not sufficient to guide early deployments of visual attention to matching inputs and that goal-dependent executive control mediates the interactions between working memory representations and visual attention. PMID:21254796

  6. Can I order a burger at rnacdonalds.com? Visual similarity effects of multi-letter combinations at the early stages of word recognition.

    PubMed

    Marcet, Ana; Perea, Manuel

    2018-05-01

    Previous research has shown that early in the word recognition process, there is some degree of uncertainty concerning letter identity and letter position. Here, we examined whether this uncertainty also extends to the mapping of letter features onto letters, as predicted by the Bayesian Reader (Norris & Kinoshita, 2012). Indeed, anecdotal evidence suggests that nonwords containing multi-letter homoglyphs (e.g., rn→m), such as docurnent, can be confusable with their base word. We conducted 2 masked priming lexical decision experiments in which the words/nonwords contained a middle letter that was visually similar to a multi-letter homoglyph (e.g., docurnent [rn-m], presiclent [cl-d]). Three types of primes were employed: identity, multi-letter homoglyph, and orthographic control. We used 2 commonly used fonts: Tahoma in Experiment 1 and Calibri in Experiment 2. Results in both experiments showed faster word identification times in the homoglyph condition than in the control condition (e.g., docurnento-DOCUMENTO faster than docusnento-DOCUMENTO). Furthermore, the homoglyph condition produced nearly the same latencies as the identity condition. These findings have important implications not only at a theoretical level (models of printed word recognition) but also at an applied level (Internet administrators/users). (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Words, Shape, Visual Search and Visual Working Memory in 3-Year-Old Children

    ERIC Educational Resources Information Center

    Vales, Catarina; Smith, Linda B.

    2015-01-01

    Do words cue children's visual attention, and if so, what are the relevant mechanisms? Across four experiments, 3-year-old children (N = 163) were tested in visual search tasks in which targets were cued with only a visual preview versus a visual preview and a spoken name. The experiments were designed to determine whether labels facilitated…

  8. Visual Half-Field Experiments Are a Good Measure of Cerebral Language Dominance if Used Properly: Evidence from fMRI

    ERIC Educational Resources Information Center

    Hunter, Zoe R.; Brysbaert, Marc

    2008-01-01

    Traditional neuropsychology employs visual half-field (VHF) experiments to assess cerebral language dominance. This approach is based on the assumption that left cerebral dominance for language leads to faster and more accurate recognition of words in the right visual half-field (RVF) than in the left visual half-field (LVF) during tachistoscopic…

  9. Age-related differences in event-related potentials for early visual processing of emotional faces.

    PubMed

    Hilimire, Matthew R; Mienaltowski, Andrew; Blanchard-Fields, Fredda; Corballis, Paul M

    2014-07-01

    With advancing age, processing resources are shifted away from negative emotional stimuli and toward positive ones. Here, we explored this 'positivity effect' using event-related potentials (ERPs). Participants identified the presence or absence of a visual probe that appeared over photographs of emotional faces. The ERPs elicited by the onsets of angry, sad, happy and neutral faces were recorded. We examined the frontocentral emotional positivity (FcEP), which is defined as a positive deflection in the waveforms elicited by emotional expressions relative to neutral faces early on in the time course of the ERP. The FcEP is thought to reflect enhanced early processing of emotional expressions. The results show that within the first 130 ms young adults show an FcEP to negative emotional expressions, whereas older adults show an FcEP to positive emotional expressions. These findings provide additional evidence that the age-related positivity effect in emotion processing can be traced to automatic processes that are evident very early in the processing of emotional facial expressions. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses

  11. Perceptual learning increases the strength of the earliest signals in visual cortex.

    PubMed

    Bao, Min; Yang, Lin; Rios, Cristina; He, Bin; Engel, Stephen A

    2010-11-10

    Training improves performance on most visual tasks. Such perceptual learning can modify how information is read out from, and represented in, later visual areas, but effects on early visual cortex are controversial. In particular, it remains unknown whether learning can reshape neural response properties in early visual areas independent from feedback arising in later cortical areas. Here, we tested whether learning can modify feedforward signals in early visual cortex as measured by the human electroencephalogram. Fourteen subjects were trained for >24 d to detect a diagonal grating pattern in one quadrant of the visual field. Training improved performance, reducing the contrast needed for reliable detection, and also reliably increased the amplitude of the earliest component of the visual evoked potential, the C1. Control orientations and locations showed smaller effects of training. Because the C1 arises rapidly and has a source in early visual cortex, our results suggest that learning can increase early visual area response through local receptive field changes without feedback from later areas.

  12. Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses

    PubMed Central

    Molloy, Katharine; Griffiths, Timothy D.; Lavie, Nilli

    2015-01-01

    Due to capacity limits on perception, conditions of high perceptual load lead to reduced processing of unattended stimuli (Lavie et al., 2014). Accumulating work demonstrates the effects of visual perceptual load on visual cortex responses, but the effects on auditory processing remain poorly understood. Here we establish the neural mechanisms underlying “inattentional deafness”—the failure to perceive auditory stimuli under high visual perceptual load. Participants performed a visual search task of low (target dissimilar to nontarget items) or high (target similar to nontarget items) load. On a random subset (50%) of trials, irrelevant tones were presented concurrently with the visual stimuli. Brain activity was recorded with magnetoencephalography, and time-locked responses to the visual search array and to the incidental presence of unattended tones were assessed. High, compared to low, perceptual load led to increased early visual evoked responses (within 100 ms from onset). This was accompanied by reduced early (∼100 ms from tone onset) auditory evoked activity in superior temporal sulcus and posterior middle temporal gyrus. A later suppression of the P3 “awareness” response to the tones was also observed under high load. A behavioral experiment revealed reduced tone detection sensitivity under high visual load, indicating that the reduction in neural responses was indeed associated with reduced awareness of the sounds. These findings support a neural account of shared audiovisual resources, which, when depleted under load, leads to failures of sensory perception and awareness. SIGNIFICANCE STATEMENT The present work clarifies the neural underpinning of inattentional deafness under high visual load. The findings of near-simultaneous load effects on both visual and auditory evoked responses suggest shared audiovisual processing capacity. Temporary depletion of shared capacity in perceptually demanding visual tasks leads to a momentary reduction in

  13. Differential effects of visual attention and working memory on binocular rivalry.

    PubMed

    Scocchia, Lisa; Valsecchi, Matteo; Gegenfurtner, Karl R; Triesch, Jochen

    2014-05-30

    The investigation of cognitive influence on binocular rivalry has a long history. However, the effects of visual WM on rivalry have never been studied so far. We examined top-down modulation of rivalry perception in four experiments to compare the effects of visual WM and sustained selective attention: In the first three experiments we failed to observe any sustained effect of the WM content; only the color of the memory probe was found to prime the initially dominant percept. In Experiment 4 we found a clear effect of sustained attention on rivalry both in terms of the first dominant percept and of the overall dominance when participants were involved in a tracking task. Our results provide an example of dissociation between visual WM and selective attention, two phenomena which otherwise functionally overlap to a large extent. Furthermore, our study highlights the importance of the task employed to engage cognitive resources: The observed perceptual epiphenomena of binocular rivalry are indicative of visual competition at an early stage, which is not affected by WM but is still susceptible to attention influence as long as the observer’s attention is constrained to one of the two rival images via a specific concomitant task. © 2014 ARVO.

  14. Early experience shapes vocal neural coding and perception in songbirds

    PubMed Central

    Woolley, Sarah M. N.

    2012-01-01

    Songbirds, like humans, are highly accomplished vocal learners. The many parallels between speech and birdsong and conserved features of mammalian and avian auditory systems have led to the emergence of the songbird as a model system for studying the perceptual mechanisms of vocal communication. Laboratory research on songbirds allows the careful control of early life experience and high-resolution analysis of brain function during vocal learning, production and perception. Here, I review what songbird studies have revealed about the role of early experience in the development of vocal behavior, auditory perception and the processing of learned vocalizations by auditory neurons. The findings of these studies suggest general principles for how exposure to vocalizations during development and into adulthood influences the perception of learned vocal signals. PMID:22711657

  15. Visual Detection Under Uncertainty Operates Via an Early Static, Not Late Dynamic, Non-Linearity

    PubMed Central

    Neri, Peter

    2010-01-01

    Signals in the environment are rarely specified exactly: our visual system may know what to look for (e.g., a specific face), but not its exact configuration (e.g., where in the room, or in what orientation). Uncertainty, and the ability to deal with it, is a fundamental aspect of visual processing. The MAX model is the current gold standard for describing how human vision handles uncertainty: of all possible configurations for the signal, the observer chooses the one corresponding to the template associated with the largest response. We propose an alternative model in which the MAX operation, which is a dynamic non-linearity (depends on multiple inputs from several stimulus locations) and happens after the input stimulus has been matched to the possible templates, is replaced by an early static non-linearity (depends only on one input corresponding to one stimulus location) which is applied before template matching. By exploiting an integrated set of analytical and experimental tools, we show that this model is able to account for a number of empirical observations otherwise unaccounted for by the MAX model, and is more robust with respect to the realistic limitations imposed by the available neural hardware. We then discuss how these results, currently restricted to a simple visual detection task, may extend to a wider range of problems in sensory processing. PMID:21212835

  16. Timing the impact of literacy on visual processing

    PubMed Central

    Pegado, Felipe; Comerlato, Enio; Ventura, Fabricio; Jobert, Antoinette; Nakamura, Kimihiro; Buiatti, Marco; Ventura, Paulo; Dehaene-Lambertz, Ghislaine; Kolinsky, Régine; Morais, José; Braga, Lucia W.; Cohen, Laurent; Dehaene, Stanislas

    2014-01-01

    Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼100–150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing. PMID:25422460

  17. Timing the impact of literacy on visual processing.

    PubMed

    Pegado, Felipe; Comerlato, Enio; Ventura, Fabricio; Jobert, Antoinette; Nakamura, Kimihiro; Buiatti, Marco; Ventura, Paulo; Dehaene-Lambertz, Ghislaine; Kolinsky, Régine; Morais, José; Braga, Lucia W; Cohen, Laurent; Dehaene, Stanislas

    2014-12-09

    Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼ 100-150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing.

  18. The Perspective Structure of Visual Space

    PubMed Central

    2015-01-01

    Luneburg’s model has been the reference for experimental studies of visual space for almost seventy years. His claim for a curved visual space has been a source of inspiration for visual scientists as well as philosophers. The conclusion of many experimental studies has been that Luneburg’s model does not describe visual space in various tasks and conditions. Remarkably, no alternative model has been suggested. The current study explores perspective transformations of Euclidean space as a model for visual space. Computations show that the geometry of perspective spaces is considerably different from that of Euclidean space. Collinearity but not parallelism is preserved in perspective space and angles are not invariant under translation and rotation. Similar relationships have shown to be properties of visual space. Alley experiments performed early in the nineteenth century have been instrumental in hypothesizing curved visual spaces. Alleys were computed in perspective space and compared with reconstructed alleys of Blumenfeld. Parallel alleys were accurately described by perspective geometry. Accurate distance alleys were derived from parallel alleys by adjusting the interstimulus distances according to the size-distance invariance hypothesis. Agreement between computed and experimental alleys and accommodation of experimental results that rejected Luneburg’s model show that perspective space is an appropriate model for how we perceive orientations and angles. The model is also appropriate for perceived distance ratios between stimuli but fails to predict perceived distances. PMID:27648222

  19. Making Visible Teacher Reports of Their Teaching Experiences: The Early Childhood Teacher Experiences Scale

    ERIC Educational Resources Information Center

    Fantuzzo, John; Perlman, Staci; Sproul, Faith; Minney, Ashley; Perry, Marlo A.; Li, Feifei

    2012-01-01

    The study developed multiple independent scales of early childhood teacher experiences (ECTES). ECTES was co-constructed with preschool, kindergarten, and first grade teachers in a large urban school district. Demographic, ECTES, and teaching practices data were collected from 584 teachers. Factor analyses documented three teacher experience…

  20. Medical students, early general practice placements and positive supervisor experiences.

    PubMed

    Henderson, Margaret; Upham, Susan; King, David; Dick, Marie-Louise; van Driel, Mieke

    2018-03-01

    Introduction Community-based longitudinal clinical placements for medical students are becoming more common globally. The perspective of supervising clinicians about their experiences and processes involved in maximising these training experiences has received less attention than that of students. Aims This paper explores the general practitioner (GP) supervisor perspective of positive training experiences with medical students undertaking urban community-based, longitudinal clinical placements in the early years of medical training. Methods Year 2 medical students spent a half-day per week in general practice for either 13 or 26 weeks. Transcribed semi-structured interviews from a convenience sample of participating GPs were thematically analysed by two researchers, using a general inductive approach. Results Identified themes related to the attributes of participating persons and organisations: GPs, students, patients, practices and their supporting institution; GPs' perceptions of student development; and triggers enhancing the experience. A model was developed to reflect these themes. Conclusions Training experiences were enhanced for GPs supervising medical students in early longitudinal clinical placements by the synergy of motivated students and keen teachers with support from patients, practice staff and academic institutions. We developed an explanatory model to better understand the mechanism of positive experiences. Understanding the interaction of factors enhancing teaching satisfaction is important for clinical disciplines wishing to maintain sustainable, high quality teaching.

  1. Starting Smart: How Early Experiences Affect Brain Development. An Ounce of Prevention Fund Paper.

    ERIC Educational Resources Information Center

    Ounce of Prevention Fund.

    Recent research has provided great insight into the impact of early experience on brain development. It is now believed that brain growth is highly dependent upon early experiences. Neurons allow communication and coordinated functioning among various brain areas. Brain development after birth consists of an ongoing process of wiring and rewiring…

  2. Rapid modulation of spoken word recognition by visual primes.

    PubMed

    Okano, Kana; Grainger, Jonathan; Holcomb, Phillip J

    2016-02-01

    In a masked cross-modal priming experiment with ERP recordings, spoken Japanese words were primed with words written in one of the two syllabary scripts of Japanese. An early priming effect, peaking at around 200ms after onset of the spoken word target, was seen in left lateral electrode sites for Katakana primes, and later effects were seen for both Hiragana and Katakana primes on the N400 ERP component. The early effect is thought to reflect the efficiency with which words in Katakana script make contact with sublexical phonological representations involved in spoken language comprehension, due to the particular way this script is used by Japanese readers. This demonstrates fast-acting influences of visual primes on the processing of auditory target words, and suggests that briefly presented visual primes can influence sublexical processing of auditory target words. The later N400 priming effects, on the other hand, most likely reflect cross-modal influences on activity at the level of whole-word phonology and semantics.

  3. Rapid modulation of spoken word recognition by visual primes

    PubMed Central

    Okano, Kana; Grainger, Jonathan; Holcomb, Phillip J.

    2015-01-01

    In a masked cross-modal priming experiment with ERP recordings, spoken Japanese words were primed with words written in one of the two syllabary scripts of Japanese. An early priming effect, peaking at around 200ms after onset of the spoken word target, was seen in left lateral electrode sites for Katakana primes, and later effects were seen for both Hiragana and Katakana primes on the N400 ERP component. The early effect is thought to reflect the efficiency with which words in Katakana script make contact with sublexical phonological representations involved in spoken language comprehension, due to the particular way this script is used by Japanese readers. This demonstrates fast-acting influences of visual primes on the processing of auditory target words, and suggests that briefly presented visual primes can influence sublexical processing of auditory target words. The later N400 priming effects, on the other hand, most likely reflect cross-modal influences on activity at the level of whole-word phonology and semantics. PMID:26516296

  4. Rapid Extraction of Lexical Tone Phonology in Chinese Characters: A Visual Mismatch Negativity Study

    PubMed Central

    Wang, Xiao-Dong; Liu, A-Ping; Wu, Yin-Yuan; Wang, Peng

    2013-01-01

    Background In alphabetic languages, emerging evidence from behavioral and neuroimaging studies shows the rapid and automatic activation of phonological information in visual word recognition. In the mapping from orthography to phonology, unlike most alphabetic languages in which there is a natural correspondence between the visual and phonological forms, in logographic Chinese, the mapping between visual and phonological forms is rather arbitrary and depends on learning and experience. The issue of whether the phonological information is rapidly and automatically extracted in Chinese characters by the brain has not yet been thoroughly addressed. Methodology/Principal Findings We continuously presented Chinese characters differing in orthography and meaning to adult native Mandarin Chinese speakers to construct a constant varying visual stream. In the stream, most stimuli were homophones of Chinese characters: The phonological features embedded in these visual characters were the same, including consonants, vowels and the lexical tone. Occasionally, the rule of phonology was randomly violated by characters whose phonological features differed in the lexical tone. Conclusions/Significance We showed that the violation of the lexical tone phonology evoked an early, robust visual response, as revealed by whole-head electrical recordings of the visual mismatch negativity (vMMN), indicating the rapid extraction of phonological information embedded in Chinese characters. Source analysis revealed that the vMMN was involved in neural activations of the visual cortex, suggesting that the visual sensory memory is sensitive to phonological information embedded in visual words at an early processing stage. PMID:23437235

  5. Entwining Psychology and Visual Arts: A Classroom Experience

    ERIC Educational Resources Information Center

    Bahia, Sara; Trindade, Jose Pedro

    2012-01-01

    The purpose of this paper is to show how activating perception, imagery and creativity facilitate the mastery of specific skills of visual arts education. Specifically, the study aimed at answering two questions: How can teachers enhance visual and creative expression?; and What criteria should be used to evaluate specific learning of visual arts…

  6. Components of the Early Apollo Scientific Experiments Package (EASEP)

    NASA Image and Video Library

    1969-07-20

    AS11-37-5551 (20 July 1969) --- Two components of the Early Apollo Scientific Experiments Package (EASEP) are seen deployed on the lunar surface in this view photographed from inside the Lunar Module (LM). In the far background is the Passive Seismic Experiment Package (PSEP); and to the right and closer to the camera is the Laser Ranging Retro-Reflector (LR-3). The footprints of Apollo 11 astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. are very distinct in the lunar soil.

  7. A Brief Period of Postnatal Visual Deprivation Alters the Balance between Auditory and Visual Attention.

    PubMed

    de Heering, Adélaïde; Dormal, Giulia; Pelland, Maxime; Lewis, Terri; Maurer, Daphne; Collignon, Olivier

    2016-11-21

    Is a short and transient period of visual deprivation early in life sufficient to induce lifelong changes in how we attend to, and integrate, simple visual and auditory information [1, 2]? This question is of crucial importance given the recent demonstration in both animals and humans that a period of blindness early in life permanently affects the brain networks dedicated to visual, auditory, and multisensory processing [1-16]. To address this issue, we compared a group of adults who had been treated for congenital bilateral cataracts during early infancy with a group of normally sighted controls on a task requiring simple detection of lateralized visual and auditory targets, presented alone or in combination. Redundancy gains obtained from the audiovisual conditions were similar between groups and surpassed the reaction time distribution predicted by Miller's race model. However, in comparison to controls, cataract-reversal patients were faster at processing simple auditory targets and showed differences in how they shifted attention across modalities. Specifically, they were faster at switching attention from visual to auditory inputs than in the reverse situation, while an opposite pattern was observed for controls. Overall, these results reveal that the absence of visual input during the first months of life does not prevent the development of audiovisual integration but enhances the salience of simple auditory inputs, leading to a different crossmodal distribution of attentional resources between auditory and visual stimuli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Immediate early gene expression following exposure to acoustic and visual components of courtship in zebra finches.

    PubMed

    Avey, Marc T; Phillmore, Leslie S; MacDougall-Shackleton, Scott A

    2005-12-07

    Sensory driven immediate early gene expression (IEG) has been a key tool to explore auditory perceptual areas in the avian brain. Most work on IEG expression in songbirds such as zebra finches has focused on playback of acoustic stimuli and its effect on auditory processing areas such as caudal medial mesopallium (CMM) caudal medial nidopallium (NCM). However, in a natural setting, the courtship displays of songbirds (including zebra finches) include visual as well as acoustic components. To determine whether the visual stimulus of a courting male modifies song-induced expression of the IEG ZENK in the auditory forebrain we exposed male and female zebra finches to acoustic (song) and visual (dancing) components of courtship. Birds were played digital movies with either combined audio and video, audio only, video only, or neither audio nor video (control). We found significantly increased levels of Zenk response in the auditory region CMM in the two treatment groups exposed to acoustic stimuli compared to the control group. The video only group had an intermediate response, suggesting potential effect of visual input on activity in these auditory brain regions. Finally, we unexpectedly found a lateralization of Zenk response that was independent of sex, brain region, or treatment condition, such that Zenk immunoreactivity was consistently higher in the left hemisphere than in the right and the majority of individual birds were left-hemisphere dominant.

  9. Supporting Learning to Teach in Early Field Experiences: The UTE Model

    ERIC Educational Resources Information Center

    Bieda, Kristen N.; Dillman, Brittany; Gundlach, Michael; Voogt, Kevin

    2017-01-01

    Most teacher preparation programs require prospective teachers (PTs) to engage in early field experiences (EFEs) prior to completing required coursework. These EFEs, however, may lack meaningful connections to course content and provide limited opportunities to experience the demands of classroom teaching. In this paper, we share evidence from the…

  10. Visual Memories Bypass Normalization.

    PubMed

    Bloem, Ilona M; Watanabe, Yurika L; Kibbe, Melissa M; Ling, Sam

    2018-05-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores-neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation.

  11. Early and Late Inhibitions Elicited by a Peripheral Visual Cue on Manual Response to a Visual Target: Are They Based on Cartesian Coordinates?

    ERIC Educational Resources Information Center

    Gawryszewski, Luiz G.; Carreiro, Luiz Renato R.; Magalhaes, Fabio V.

    2005-01-01

    A non-informative cue (C) elicits an inhibition of manual reaction time (MRT) to a visual target (T). We report an experiment to examine if the spatial distribution of this inhibitory effect follows Polar or Cartesian coordinate systems. C appeared at one out of 8 isoeccentric (7[degrees]) positions, the C-T angular distances (in polar…

  12. Flexible Coding of Visual Working Memory Representations during Distraction.

    PubMed

    Lorenc, Elizabeth S; Sreenivasan, Kartik K; Nee, Derek E; Vandenbroucke, Annelinde R E; D'Esposito, Mark

    2018-06-06

    Visual working memory (VWM) recruits a broad network of brain regions, including prefrontal, parietal, and visual cortices. Recent evidence supports a "sensory recruitment" model of VWM, whereby precise visual details are maintained in the same stimulus-selective regions responsible for perception. A key question in evaluating the sensory recruitment model is how VWM representations persist through distracting visual input, given that the early visual areas that putatively represent VWM content are susceptible to interference from visual stimulation.To address this question, we used a functional magnetic resonance imaging inverted encoding model approach to quantitatively assess the effect of distractors on VWM representations in early visual cortex and the intraparietal sulcus (IPS), another region previously implicated in the storage of VWM information. This approach allowed us to reconstruct VWM representations for orientation, both before and after visual interference, and to examine whether oriented distractors systematically biased these representations. In our human participants (both male and female), we found that orientation information was maintained simultaneously in early visual areas and IPS in anticipation of possible distraction, and these representations persisted in the absence of distraction. Importantly, early visual representations were susceptible to interference; VWM orientations reconstructed from visual cortex were significantly biased toward distractors, corresponding to a small attractive bias in behavior. In contrast, IPS representations did not show such a bias. These results provide quantitative insight into the effect of interference on VWM representations, and they suggest a dynamic tradeoff between visual and parietal regions that allows flexible adaptation to task demands in service of VWM. SIGNIFICANCE STATEMENT Despite considerable evidence that stimulus-selective visual regions maintain precise visual information in working

  13. A Qualitatively Different Experience: Mainstreaming Pupils with a Visual Impairment in Northern Ireland

    ERIC Educational Resources Information Center

    Gray, Colette

    2009-01-01

    This paper reports the experiences of special education needs co-ordinators (SENCOs) on the inclusion of pupils with a visual impairment (VI) in mainstream schools in Northern Ireland. A mixed method approach (postal questionnaire survey (n=113) and interviews (n=6)) was utilised to triangulate the findings. The results indicate an inverse…

  14. "Visual" Cortex Responds to Spoken Language in Blind Children.

    PubMed

    Bedny, Marina; Richardson, Hilary; Saxe, Rebecca

    2015-08-19

    Plasticity in the visual cortex of blind individuals provides a rare window into the mechanisms of cortical specialization. In the absence of visual input, occipital ("visual") brain regions respond to sound and spoken language. Here, we examined the time course and developmental mechanism of this plasticity in blind children. Nineteen blind and 40 sighted children and adolescents (4-17 years old) listened to stories and two auditory control conditions (unfamiliar foreign speech, and music). We find that "visual" cortices of young blind (but not sighted) children respond to sound. Responses to nonlanguage sounds increased between the ages of 4 and 17. By contrast, occipital responses to spoken language were maximal by age 4 and were not related to Braille learning. These findings suggest that occipital plasticity for spoken language is independent of plasticity for Braille and for sound. We conclude that in the absence of visual input, spoken language colonizes the visual system during brain development. Our findings suggest that early in life, human cortex has a remarkably broad computational capacity. The same cortical tissue can take on visual perception and language functions. Studies of plasticity provide key insights into how experience shapes the human brain. The "visual" cortex of adults who are blind from birth responds to touch, sound, and spoken language. To date, all existing studies have been conducted with adults, so little is known about the developmental trajectory of plasticity. We used fMRI to study the emergence of "visual" cortex responses to sound and spoken language in blind children and adolescents. We find that "visual" cortex responses to sound increase between 4 and 17 years of age. By contrast, responses to spoken language are present by 4 years of age and are not related to Braille-learning. These findings suggest that, early in development, human cortex can take on a strikingly wide range of functions. Copyright © 2015 the authors 0270-6474/15/3511674-08$15.00/0.

  15. A Road Like No Other: Mothers' Experiences with Early Intervention Professionals

    ERIC Educational Resources Information Center

    Piper, Amy Wickizer

    2010-01-01

    This dual case study utilizes qualitative research methods to examine the experiences of two mothers of young children with special needs. Over the course of ten months, the researcher spent many hours interviewing both mothers about their experiences with Early Intervention (EI) professionals. Observations of medical appointments, team meetings,…

  16. The Impact of a Visual Imagery Intervention on Army ROTC Cadets' Marksmanship Performance and Flow Experiences

    ERIC Educational Resources Information Center

    Rakes, Edward Lee

    2012-01-01

    This investigation used an experimental design to examine how a visual imagery intervention and two levels of challenge would affect the flow experiences and performance of cadets engaged in Army ROTC marksmanship training. I employed MANCOVA analyses, with gender and prior marksmanship training experience as covariates, to assess cadets' (n =…

  17. From genes to brain oscillations: is the visual pathway the epigenetic clue to schizophrenia?

    PubMed

    González-Hernández, J A; Pita-Alcorta, C; Cedeño, I R

    2006-01-01

    Molecular data and gene expression data and recently mitochondrial genes and possible epigenetic regulation by non-coding genes is revolutionizing our views on schizophrenia. Genes and epigenetic mechanisms are triggered by cell-cell interaction and by external stimuli. A number of recent clinical and molecular observations indicate that epigenetic factors may be operational in the origin of the illness. Based on the molecular insights, gene expression profiles and epigenetic regulation of gene, we went back to the neurophysiology (brain oscillations) and found a putative role of the visual experiences (i.e. visual stimuli) as epigenetic factor. The functional evidences provided here, establish a direct link between the striate and extrastriate unimodal visual cortex and the neurobiology of the schizophrenia. This result support the hypothesis that 'visual experience' has a potential role as epigenetic factor and contribute to trigger and/or to maintain the progression of the schizophrenia. In this case, candidate genes sensible for the visual 'insult' may be located within the visual cortex including associative areas, while the integrity of the visual pathway before reaching the primary visual cortex is preserved. The same effect can be perceived if target genes are localised within the visual pathway, which actually, is more sensitive for 'insult' during the early life than the cortex per se. If this process affects gene expression at these sites a stably sensory specific 'insult', i.e. distorted visual information, is entering the visual system and expanded to fronto-temporo-parietal multimodal areas even from early maturation periods. The difference in the timing of postnatal neuroanatomical events between such areas and the primary visual cortex in humans (with the formers reaching the same development landmarks later in life than the latter) is 'optimal' to establish an abnormal 'cell- communication' mediated by the visual system that may further interfere

  18. Dissociation mediates the relationship between peer victimization and hallucinatory experiences among early adolescents.

    PubMed

    Yamasaki, Syudo; Ando, Shuntaro; Koike, Shinsuke; Usami, Satoshi; Endo, Kaori; French, Paul; Sasaki, Tsukasa; Furukawa, Toshi A; Hasegawa-Hiraiwa, Mariko; Kasai, Kiyoto; Nishida, Atsushi

    2016-06-01

    Peer victimization increases the risk of experiencing psychotic symptoms among clinical and general populations, but the mechanism underlying this association remains unclear. Dissociation, which is related to peer victimization and hallucinatory experiences, has been demonstrated as a significant mediator in the relation between childhood victimization and hallucinatory experience among adult patients with psychosis. However, no studies have examined the mediating effect of dissociation in a general early adolescent population. We examined whether dissociation mediates the relationship between peer victimization and hallucinatory experiences among 10-year-old adolescents using a population-based cross-sectional survey of early adolescents and their main parent (Tokyo Early Adolescence Survey; N  = 4478). We examined the mediating effect of dissociation, as well as external locus of control and depressive symptoms, on the relationship between peer victimization and hallucinatory experiences using path analysis. The model assuming mediation effects indicated good model fit (comparative fit index = .999; root mean square error of approximation = .015). The mediation effect between peer victimization and hallucination via dissociation (standardized indirect effect = .038, p  < .001) was statistically significant, whereas the mediation effects of depressive symptoms (standardized indirect effect = -.0066, p  = 0.318) and external locus of control (standardized indirect effect = .0024, p  = 0.321) were not significant. These results suggest that dissociation is a mediator in the relation between peer victimization and hallucinatory experiences in early adolescence. For appropriate intervention strategies, assessing dissociation and peer victimization as they affect hallucinatory experiences is necessary.

  19. Visual hallucinatory syndromes and the anatomy of the visual brain.

    PubMed

    Santhouse, A M; Howard, R J; ffytche, D H

    2000-10-01

    We have set out to identify phenomenological correlates of cerebral functional architecture within Charles Bonnet syndrome (CBS) hallucinations by looking for associations between specific hallucination categories. Thirty-four CBS patients were examined with a structured interview/questionnaire to establish the presence of 28 different pathological visual experiences. Associations between categories of pathological experience were investigated by an exploratory factor analysis. Twelve of the pathological experiences partitioned into three segregated syndromic clusters. The first cluster consisted of hallucinations of extended landscape scenes and small figures in costumes with hats; the second, hallucinations of grotesque, disembodied and distorted faces with prominent eyes and teeth; and the third, visual perseveration and delayed palinopsia. The three visual psycho-syndromes mirror the segregation of hierarchical visual pathways into streams and suggest a novel theoretical framework for future research into the pathophysiology of neuropsychiatric syndromes.

  20. Exploring a Comprehensive Model for Early Childhood Vocabulary Instruction: A Design Experiment

    ERIC Educational Resources Information Center

    Wang, X. Christine; Christ, Tanya; Chiu, Ming Ming

    2014-01-01

    Addressing a critical need for effective vocabulary practices in early childhood classrooms, we conducted a design experiment to achieve three goals: (1) developing a comprehensive model for early childhood vocabulary instruction, (2) examining the effectiveness of this model, and (3) discerning the contextual conditions that hinder or facilitate…

  1. Early, Equivalent ERP Masked Priming Effects for Regular and Irregular Morphology

    ERIC Educational Resources Information Center

    Morris, Joanna; Stockall, Linnaea

    2012-01-01

    Converging evidence from behavioral masked priming (Rastle & Davis, 2008), EEG masked priming (Morris, Frank, Grainger, & Holcomb, 2007) and single word MEG (Zweig & Pylkkanen, 2008) experiments has provided robust support for a model of lexical processing which includes an early, automatic, visual word form based stage of morphological parsing…

  2. The severity of the visual impairment and practice matter for drawing ability in children.

    PubMed

    Vinter, Annie; Bonin, Patrick; Morgan, Pascal

    2018-07-01

    Astonishing drawing capacities have been reported in children with early visual impairments. However, most of the evidence relies on single case studies. Hitherto, no study has systematically jointly investigated, in these children, the role of (1) the severity of the visual handicap, (2) age and (3) practice in drawing. The study aimed at revealing the specificities of the drawing in children deprived from vision, as compared to children with less severe visual handicap and to sighted children performing under haptic or usual visual control. 148 children aged 6-14 years had to produce 12 drawings of familiar objects. 38 had a severe visual impairment, 41 suffered from low vision, and 69 were sighted children performing either under visual condition or blindfolded under haptic control. Recognizability and other characteristics of the drawings were highly dependent on the child's degree of vision and level of drawing practice, and progressed with chronological age more clearly in the sighted children or those with low vision than in those deprived of vision. The study confirmed that all groups showed significant drawing ability, even the group totally deprived of visual experience. Furthermore, the specificities of the drawings produced by visually-impaired children appeared clearly related to their practice and the severity of their visual impairment. This should incite parents and professionals to encourage these children to practice drawing as early as possible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Early Career Teachers' Emotional Experiences and Development--A Norwegian Case Study

    ERIC Educational Resources Information Center

    Jakhelln, Rachel

    2011-01-01

    Emotional experiences that are an integral part of the process of becoming teachers have been insufficiently explored in the research literature. The early experiences of three new teachers in a Norwegian upper secondary school are analysed using a collective case-study design and a socio-cultural theoretical framework. Emotions arising in the…

  4. Early detection of subclinical visual damage after blast-mediated TBI enables prevention of chronic visual deficit by treatment with P7C3-S243.

    PubMed

    Dutca, Laura M; Stasheff, Steven F; Hedberg-Buenz, Adam; Rudd, Danielle S; Batra, Nikhil; Blodi, Frederick R; Yorek, Matthew S; Yin, Terry; Shankar, Malini; Herlein, Judith A; Naidoo, Jacinth; Morlock, Lorraine; Williams, Noelle; Kardon, Randy H; Anderson, Michael G; Pieper, Andrew A; Harper, Matthew M

    2014-12-02

    Traumatic brain injury (TBI) frequently leads to chronic visual dysfunction. The purpose of this study was to investigate the effect of TBI on retinal ganglion cells (RGCs), and to test whether treatment with the novel neuroprotective compound P7C3-S243 could prevent in vivo functional deficits in the visual system. Blast-mediated TBI was modeled using an enclosed over-pressure blast chamber. The RGC physiology was evaluated using a multielectrode array and pattern electroretinogram (PERG). Histological analysis of RGC dendritic field and cell number were evaluated at the end of the study. Visual outcome measures also were evaluated based on treatment of mice with P7C3-S243 or vehicle control. We show that deficits in neutral position PERG after blast-mediated TBI occur in a temporally bimodal fashion, with temporary recovery 4 weeks after injury followed by chronically persistent dysfunction 12 weeks later. This later time point is associated with development of dendritic abnormalities and irreversible death of RGCs. We also demonstrate that ongoing pathologic processes during the temporary recovery latent period (including abnormalities of RGC physiology) lead to future dysfunction of the visual system. We report that modification of PERG to provocative postural tilt testing elicits changes in PERG measurements that correlate with a key in vitro measures of damage: the spontaneous and light-evoked activity of RGCs. Treatment with P7C3-S243 immediately after injury and throughout the temporary recovery latent period protects mice from developing chronic visual system dysfunction. Provocative PERG testing serves as a noninvasive test in the living organism to identify early damage to the visual system, which may reflect corresponding damage in the brain that is not otherwise detectable by noninvasive means. This provides the basis for developing an earlier diagnostic test to identify patients at risk for developing chronic CNS and visual system damage after TBI at

  5. Early Detection of Subclinical Visual Damage After Blast-Mediated TBI Enables Prevention of Chronic Visual Deficit by Treatment With P7C3-S243

    PubMed Central

    Dutca, Laura M.; Stasheff, Steven F.; Hedberg-Buenz, Adam; Rudd, Danielle S.; Batra, Nikhil; Blodi, Frederick R.; Yorek, Matthew S.; Yin, Terry; Shankar, Malini; Herlein, Judith A.; Naidoo, Jacinth; Morlock, Lorraine; Williams, Noelle; Kardon, Randy H.; Anderson, Michael G.; Pieper, Andrew A.; Harper, Matthew M.

    2014-01-01

    Purpose. Traumatic brain injury (TBI) frequently leads to chronic visual dysfunction. The purpose of this study was to investigate the effect of TBI on retinal ganglion cells (RGCs), and to test whether treatment with the novel neuroprotective compound P7C3-S243 could prevent in vivo functional deficits in the visual system. Methods. Blast-mediated TBI was modeled using an enclosed over-pressure blast chamber. The RGC physiology was evaluated using a multielectrode array and pattern electroretinogram (PERG). Histological analysis of RGC dendritic field and cell number were evaluated at the end of the study. Visual outcome measures also were evaluated based on treatment of mice with P7C3-S243 or vehicle control. Results. We show that deficits in neutral position PERG after blast-mediated TBI occur in a temporally bimodal fashion, with temporary recovery 4 weeks after injury followed by chronically persistent dysfunction 12 weeks later. This later time point is associated with development of dendritic abnormalities and irreversible death of RGCs. We also demonstrate that ongoing pathologic processes during the temporary recovery latent period (including abnormalities of RGC physiology) lead to future dysfunction of the visual system. We report that modification of PERG to provocative postural tilt testing elicits changes in PERG measurements that correlate with a key in vitro measures of damage: the spontaneous and light-evoked activity of RGCs. Treatment with P7C3-S243 immediately after injury and throughout the temporary recovery latent period protects mice from developing chronic visual system dysfunction. Conclusions. Provocative PERG testing serves as a noninvasive test in the living organism to identify early damage to the visual system, which may reflect corresponding damage in the brain that is not otherwise detectable by noninvasive means. This provides the basis for developing an earlier diagnostic test to identify patients at risk for developing chronic

  6. Visual Memories Bypass Normalization

    PubMed Central

    Bloem, Ilona M.; Watanabe, Yurika L.; Kibbe, Melissa M.; Ling, Sam

    2018-01-01

    How distinct are visual memory representations from visual perception? Although evidence suggests that briefly remembered stimuli are represented within early visual cortices, the degree to which these memory traces resemble true visual representations remains something of a mystery. Here, we tested whether both visual memory and perception succumb to a seemingly ubiquitous neural computation: normalization. Observers were asked to remember the contrast of visual stimuli, which were pitted against each other to promote normalization either in perception or in visual memory. Our results revealed robust normalization between visual representations in perception, yet no signature of normalization occurring between working memory stores—neither between representations in memory nor between memory representations and visual inputs. These results provide unique insight into the nature of visual memory representations, illustrating that visual memory representations follow a different set of computational rules, bypassing normalization, a canonical visual computation. PMID:29596038

  7. Early life experience alters behavior during social defeat: focus on serotonergic systems.

    PubMed

    Gardner, K L; Thrivikraman, K V; Lightman, S L; Plotsky, P M; Lowry, C A

    2005-01-01

    Early life experience can have prolonged effects on neuroendocrine, autonomic, and behavioral responses to stress. The objective of this study was to investigate the effects of early life experience on behavior during social defeat, as well as on associated functional cellular responses in serotonergic and non-serotonergic neurons within the dorsal raphe nucleus, a structure which plays an important role in modulation of stress-related physiology and behavior. Male Long Evans rat pups were exposed to either normal animal facility rearing or 15 min or 180 min of maternal separation from postnatal days 2-14. As adults, these rats were exposed to a social defeat protocol. Differences in behavior were seen among the early life treatment groups during social defeat; rats exposed to 180 min of maternal separation from postnatal days 2-14 displayed more passive-submissive behaviors and less proactive coping behaviors. Analysis of the distribution of tryptophan hydroxylase and c-Fos-like immunoreactivity in control rats exposed to a novel cage and rats exposed to social defeat revealed that, independent of the early life experience, rats exposed to social defeat showed an increase in the number of c-Fos-like immunoreactive nuclei in serotonergic neurons in the middle and caudal parts of the dorsal dorsal raphe nucleus and caudal part of the ventral dorsal raphe nucleus, regions known to contain serotonergic neurons projecting to central autonomic and emotional motor control systems. This is the first study to show that the dorsomedial part of the mid-rostrocaudal dorsal raphe nucleus is engaged by a naturalistic stressor and supports the hypothesis that early life experience alters behavioral coping strategies during social conflict; furthermore, this study is consistent with the hypothesis that topographically organized subpopulations of serotonergic neurons principally within the mid-rostrocaudal and caudal part of the dorsal dorsal raphe nucleus modulate stress

  8. Experience with early postoperative feeding after abdominal aortic surgery.

    PubMed

    Ko, Po-Jen; Hsieh, Hung-Chang; Liu, Yun-Hen; Liu, Hui-Ping

    2004-03-01

    Abdominal aortic surgery is a form of major vascular surgery, which traditionally involves long hospital stays and significant postoperative morbidity. Experiences with transit ileus are often encountered after the aortic surgery. Thus traditional postoperative care involves delayed oral feeding until the patients regain their normal bowel activities. This report examines the feasibility of early postoperative feeding after abdominal aortic aneurysm (AAA) open-repair. From May 2002 through May 2003, 10 consecutive patients with infrarenal AAA who underwent elective surgical open-repair by the same surgeon in our department were reviewed. All of them had been operated upon and cared for according to the early feeding postoperative care protocol, which comprised of adjuvant epidural anesthesia, postoperative patient controlled analgesia, early postoperative feeding and early rehabilitation. The postoperative recovery and length of hospital stay were reviewed and analyzed. All patients were able to sip water within 1 day postoperatively without trouble (Average; 12.4 hours postoperatively). All but one patient was put on regular diet within 3 days postoperatively (Average; 2.2 days postoperatively). The average postoperative length of stay in hospital was 5.8 days. No patient died or had major morbidity. Early postoperative feeding after open repair of abdominal aorta is safe and feasible. The postoperative recovery could be improved and the length of stay reduced by simply using adjuvant epidural anesthesia during surgery, postoperative epidural patient-controlled analgesia, early feeding, early ambulation, and early rehabilitation. The initial success of our postoperative recovery program of aortic repair was demonstrated.

  9. Monitoring Processes in Visual Search Enhanced by Professional Experience: The Case of Orange Quality-Control Workers

    PubMed Central

    Visalli, Antonino; Vallesi, Antonino

    2018-01-01

    Visual search tasks have often been used to investigate how cognitive processes change with expertise. Several studies have shown visual experts' advantages in detecting objects related to their expertise. Here, we tried to extend these findings by investigating whether professional search experience could boost top-down monitoring processes involved in visual search, independently of advantages specific to objects of expertise. To this aim, we recruited a group of quality-control workers employed in citrus farms. Given the specific features of this type of job, we expected that the extensive employment of monitoring mechanisms during orange selection could enhance these mechanisms even in search situations in which orange-related expertise is not suitable. To test this hypothesis, we compared performance of our experimental group and of a well-matched control group on a computerized visual search task. In one block the target was an orange (expertise target) while in the other block the target was a Smurfette doll (neutral target). The a priori hypothesis was to find an advantage for quality-controllers in those situations in which monitoring was especially involved, that is, when deciding the presence/absence of the target required a more extensive inspection of the search array. Results were consistent with our hypothesis. Quality-controllers were faster in those conditions that extensively required monitoring processes, specifically, the Smurfette-present and both target-absent conditions. No differences emerged in the orange-present condition, which resulted to mainly rely on bottom-up processes. These results suggest that top-down processes in visual search can be enhanced through immersive real-life experience beyond visual expertise advantages. PMID:29497392

  10. Social visual engagement in infants and toddlers with autism: Early developmental transitions and a model of pathogenesis

    PubMed Central

    Klin, Ami; Shultz, Sarah; Jones, Warren

    2014-01-01

    Efforts to determine and understand the causes of autism are currently hampered by a large disconnect between recent molecular genetics findings that are associated with the condition and the core behavioral symptoms that define the condition. In this perspective piece, we propose a systems biology framework to bridge that gap between genes and symptoms. The framework focuses on basic mechanisms of socialization that are highly-conserved in evolution and are early-emerging in development. By conceiving of these basic mechanisms of socialization as quantitative endophenotypes, we hope to connect genes and behavior in autism through integrative studies of neurodevelopmental, behavioral, and epigenetic changes. These changes both lead to and are led by the accomplishment of specific social adaptive tasks in a typical infant's life. However, based on recent research that indicates that infants later diagnosed with autism fail to accomplish at least some of these tasks, we suggest that a narrow developmental period, spanning critical transitions from reflexive, subcortically-controlled visual behavior to interactional, cortically-controlled and social visual behavior be prioritized for future study. Mapping epigenetic, neural, and behavioral changes that both drive and are driven by these early transitions may shed a bright light on the pathogenesis of autism. PMID:25445180

  11. Social visual engagement in infants and toddlers with autism: early developmental transitions and a model of pathogenesis.

    PubMed

    Klin, Ami; Shultz, Sarah; Jones, Warren

    2015-03-01

    Efforts to determine and understand the causes of autism are currently hampered by a large disconnect between recent molecular genetics findings that are associated with the condition and the core behavioral symptoms that define the condition. In this perspective piece, we propose a systems biology framework to bridge that gap between genes and symptoms. The framework focuses on basic mechanisms of socialization that are highly-conserved in evolution and are early-emerging in development. By conceiving of these basic mechanisms of socialization as quantitative endophenotypes, we hope to connect genes and behavior in autism through integrative studies of neurodevelopmental, behavioral, and epigenetic changes. These changes both lead to and are led by the accomplishment of specific social adaptive tasks in a typical infant's life. However, based on recent research that indicates that infants later diagnosed with autism fail to accomplish at least some of these tasks, we suggest that a narrow developmental period, spanning critical transitions from reflexive, subcortically-controlled visual behavior to interactional, cortically-controlled and social visual behavior be prioritized for future study. Mapping epigenetic, neural, and behavioral changes that both drive and are driven by these early transitions may shed a bright light on the pathogenesis of autism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Evidence for two attentional components in visual working memory.

    PubMed

    Allen, Richard J; Baddeley, Alan D; Hitch, Graham J

    2014-11-01

    How does executive attentional control contribute to memory for sequences of visual objects, and what does this reveal about storage and processing in working memory? Three experiments examined the impact of a concurrent executive load (backward counting) on memory for sequences of individually presented visual objects. Experiments 1 and 2 found disruptive concurrent load effects of equivalent magnitude on memory for shapes, colors, and colored shape conjunctions (as measured by single-probe recognition). These effects were present only for Items 1 and 2 in a 3-item sequence; the final item was always impervious to this disruption. This pattern of findings was precisely replicated in Experiment 3 when using a cued verbal recall measure of shape-color binding, with error analysis providing additional insights concerning attention-related loss of early-sequence items. These findings indicate an important role for executive processes in maintaining representations of earlier encountered stimuli in an active form alongside privileged storage of the most recent stimulus. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Enhancing Research and Practice in Early Childhood through Formative and Design Experiments

    ERIC Educational Resources Information Center

    Bradley, Barbara A.; Reinking, David

    2011-01-01

    This article describes formative and design experiments and how they can advance research and instructional practices in early childhood education. We argue that this relatively new approach to education research closes the gap between research and practice, and it addresses limitations that have been identified in early childhood research. We…

  14. Mothers' Attention-Getting Utterances during Shared Book Reading: Links to Low-Income Preschoolers' Verbal Engagement, Visual Attention, and Early Literacy

    ERIC Educational Resources Information Center

    Son, Seung-Hee Claire; Tineo, Maria F.

    2016-01-01

    This study examined associations among low-income mothers' use of attention-getting utterances during shared book reading, preschoolers' verbal engagement and visual attention to reading, and their early literacy skills (N = 51). Mother-child shared book reading sessions were videotaped and coded for each utterance, including attention talk,…

  15. Early ERP Signature of Hearing Impairment in Visual Rhyme Judgment

    PubMed Central

    Classon, Elisabet; Rudner, Mary; Johansson, Mikael; Rönnberg, Jerker

    2013-01-01

    Postlingually acquired hearing impairment (HI) is associated with changes in the representation of sound in semantic long-term memory. An indication of this is the lower performance on visual rhyme judgment tasks in conditions where phonological and orthographic cues mismatch, requiring high reliance on phonological representations. In this study, event-related potentials (ERPs) were used for the first time to investigate the neural correlates of phonological processing in visual rhyme judgments in participants with acquired HI and normal hearing (NH). Rhyme task word pairs rhymed or not and had matching or mismatching orthography. In addition, the inter-stimulus interval (ISI) was manipulated to be either long (800 ms) or short (50 ms). Long ISIs allow for engagement of explicit, top-down processes, while short ISIs limit the involvement of such mechanisms. We hypothesized lower behavioral performance and N400 and N2 deviations in HI in the mismatching rhyme judgment conditions, particularly in short ISI. However, the results showed a different pattern. As expected, behavioral performance in the mismatch conditions was lower in HI than in NH in short ISI, but ERPs did not differ across groups. In contrast, HI performed on a par with NH in long ISI. Further, HI, but not NH, showed an amplified N2-like response in the non-rhyming, orthographically mismatching condition in long ISI. This was also the rhyme condition in which participants in both groups benefited the most from the possibility to engage top-down processes afforded with the longer ISI. Taken together, these results indicate an early ERP signature of HI in this challenging phonological task, likely reflecting use of a compensatory strategy. This strategy is suggested to involve increased reliance on explicit mechanisms such as articulatory recoding and grapheme-to-phoneme conversion. PMID:23653613

  16. Mothers' experience of caring for a child with early onset scoliosis: A qualitative descriptive study.

    PubMed

    Lauder, Bonnie; Sinclair, Peter M; Maguire, Jane

    2018-04-01

    This study aimed to identify and describe the experience of parents of children diagnosed with early onset scoliosis living in Australia. Chronic childhood disease has a major impact on health-related quality of life. Caring for a child with a chronic illness is well documented but the specific experiences of parents who care for children with early onset scoliosis, a rare but devastating illness, has not been explored. Numerous studies have described the interrelated psychological, financial, social, physical and logistical factors that impact the experience of the caregiver role with various diseases, but in the case of early onset scoliosis, limited studies have been conducted about the parental experience. A qualitative descriptive design was used. A snowball sampling technique assisted in the recruitment. Parents invited to the study included mothers, fathers and guardians. Data were collected through semistructured interviews and transcribed verbatim. Transcripts were analysed thematically. Data collection complied with the Consolidated criteria for reporting qualitative research guidelines. Twelve mothers of children with early onset scoliosis were interviewed, as only mothers consented to participate. Four major themes emerged: emotional rollercoaster ride, a lack of resources, money talks and pervasive burden. Factors that impacted on the participants' ability to confront, manage and endure caring for a child with early onset scoliosis emerged from the data. The findings suggest there are multiple factors that influence the experience of mothers' caring for a child with early onset scoliosis. The recognition and appropriate management of these factors by healthcare professionals have the potential to improve the quality of life of parents who care for a child with early onset scoliosis. Healthcare professionals have first-line contact with parents of children with early onset scoliosis and are well placed to provide parents with evidence-based education

  17. Videothoracoscopy in the diagnosis of intrathoracic pathology: early experience.

    PubMed Central

    Waller, D. A.; Hasan, A.; Forty, J.; Morritt, G. N.

    1994-01-01

    We report our experience using the new technique of videothoracoscopy in the diagnosis of intrathoracic pathology. In the last 12 months, 40 patients (24 male; 16 female) have undergone investigation by this method. Lung biopsy has been performed in 17 patients, pleural biopsy in 20 patients and mediastinal biopsy in three patients. The majority had been referred after other investigations had been inconclusive. All biopsies were diagnostic except one mediastinal biopsy. This early experience suggests that videothoracoscopic biopsy is a well-tolerated technique with high diagnostic yield. PMID:8154806

  18. Seeing sounds and hearing colors: an event-related potential study of auditory-visual synesthesia.

    PubMed

    Goller, Aviva I; Otten, Leun J; Ward, Jamie

    2009-10-01

    In auditory-visual synesthesia, sounds automatically elicit conscious and reliable visual experiences. It is presently unknown whether this reflects early or late processes in the brain. It is also unknown whether adult audiovisual synesthesia resembles auditory-induced visual illusions that can sometimes occur in the general population or whether it resembles the electrophysiological deflection over occipital sites that has been noted in infancy and has been likened to synesthesia. Electrical brain activity was recorded from adult synesthetes and control participants who were played brief tones and required to monitor for an infrequent auditory target. The synesthetes were instructed to attend either to the auditory or to the visual (i.e., synesthetic) dimension of the tone, whereas the controls attended to the auditory dimension alone. There were clear differences between synesthetes and controls that emerged early (100 msec after tone onset). These differences tended to lie in deflections of the auditory-evoked potential (e.g., the auditory N1, P2, and N2) rather than the presence of an additional posterior deflection. The differences occurred irrespective of what the synesthetes attended to (although attention had a late effect). The results suggest that differences between synesthetes and others occur early in time, and that synesthesia is qualitatively different from similar effects found in infants and certain auditory-induced visual illusions in adults. In addition, we report two novel cases of synesthesia in which colors elicit sounds, and vice versa.

  19. Does visual short-term memory have a high-capacity stage?

    PubMed

    Matsukura, Michi; Hollingworth, Andrew

    2011-12-01

    Visual short-term memory (VSTM) has long been considered a durable, limited-capacity system for the brief retention of visual information. However, a recent work by Sligte et al. (Plos One 3:e1699, 2008) reported that, relatively early after the removal of a memory array, a cue allowed participants to access a fragile, high-capacity stage of VSTM that is distinct from iconic memory. In the present study, we examined whether this stage division is warranted by attempting to corroborate the existence of an early, high-capacity form of VSTM. The results of four experiments did not support Sligte et al.'s claim, since we did not obtain evidence for VSTM retention that exceeded traditional estimates of capacity. However, performance approaching that observed in Sligte et al. can be achieved through extensive practice, providing a clear explanation for their findings. Our evidence favors the standard view of VSTM as a limited-capacity system that maintains a few object representations in a relatively durable form.

  20. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Boynton, Geoffrey M.; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness—competition across different cortical areas for functional role. PMID:27458357

  1. The Importance of Visual Experience, Gender, and Emotion in the Assessment of an Assistive Tactile Mouse.

    PubMed

    Brayda, Luca; Campus, Claudio; Memeo, Mariacarla; Lucagrossi, Laura

    2015-01-01

    Tactile maps are efficient tools to improve spatial understanding and mobility skills of visually impaired people. Their limited adaptability can be compensated with haptic devices which display graphical information, but their assessment is frequently limited to performance-based metrics only which can hide potential spatial abilities in O&M protocols. We assess a low-tech tactile mouse able to deliver three-dimensional content considering how performance, mental workload, behavior, and anxiety status vary with task difficulty and gender in congenitally blind, late blind, and sighted subjects. Results show that task difficulty coherently modulates the efficiency and difficulty to build mental maps, regardless of visual experience. Although exhibiting attitudes that were similar and gender-independent, the females had lower performance and higher cognitive load, especially when congenitally blind. All groups showed a significant decrease in anxiety after using the device. Tactile graphics with our device seems therefore to be applicable with different visual experiences, with no negative emotional consequences of mentally demanding spatial tasks. Going beyond performance-based assessment, our methodology can help with better targeting technological solutions in orientation and mobility protocols.

  2. Pointing to Shaun Tan's The Arrival and Re-Imagining Visual Poetics in Research

    ERIC Educational Resources Information Center

    Bjartveit, Carolyn J.; Panayotidis, E. Lisa

    2014-01-01

    In this article, the authors discuss how Shaun Tan's graphic novel "The Arrival" (2006) opened a polyphonic dialogue with culturally diverse early childhood educators. Using visual, graphic and symbolic languages provided alternative ways for the research participants to express their experiences and understandings of being recent…

  3. Nogo Receptor 1 Confines a Disinhibitory Microcircuit to the Critical Period in Visual Cortex.

    PubMed

    Stephany, Céleste-Élise; Ikrar, Taruna; Nguyen, Collins; Xu, Xiangmin; McGee, Aaron W

    2016-10-26

    A characteristic of the developing mammalian visual system is a brief interval of plasticity, termed the "critical period," when the circuitry of primary visual cortex is most sensitive to perturbation of visual experience. Depriving one eye of vision (monocular deprivation [MD]) during the critical period alters ocular dominance (OD) by shifting the responsiveness of neurons in visual cortex to favor the nondeprived eye. A disinhibitory microcircuit involving parvalbumin-expressing (PV) interneurons initiates this OD plasticity. The gene encoding the neuronal nogo-66-receptor 1 (ngr1/rtn4r) is required to close the critical period. Here we combined mouse genetics, electrophysiology, and circuit mapping with laser-scanning photostimulation to investigate whether disinhibition is confined to the critical period by ngr1 We demonstrate that ngr1 mutant mice retain plasticity characteristic of the critical period as adults, and that ngr1 operates within PV interneurons to restrict the loss of intracortical excitatory synaptic input following MD in adult mice, and this disinhibition induces a "lower PV network configuration" in both critical-period wild-type mice and adult ngr1 -/- mice. We propose that ngr1 limits disinhibition to close the critical period for OD plasticity and that a decrease in PV expression levels reports the diminished recent cumulative activity of these interneurons. Life experience refines brain circuits throughout development during specified critical periods. Abnormal experience during these critical periods can yield enduring maladaptive changes in neural circuits that impair brain function. In the developing visual system, visual deprivation early in life can result in amblyopia (lazy-eye), a prevalent childhood disorder comprising permanent deficits in spatial vision. Here we identify that the nogo-66 receptor 1 gene restricts an early and essential step in OD plasticity to the critical period. These findings link the emerging circuit

  4. Infant Visual Recognition Memory

    ERIC Educational Resources Information Center

    Rose, Susan A.; Feldman, Judith F.; Jankowski, Jeffery J.

    2004-01-01

    Visual recognition memory is a robust form of memory that is evident from early infancy, shows pronounced developmental change, and is influenced by many of the same factors that affect adult memory; it is surprisingly resistant to decay and interference. Infant visual recognition memory shows (a) modest reliability, (b) good discriminant…

  5. Neural correlates of visualizations of concrete and abstract words in preschool children: a developmental embodied approach

    PubMed Central

    D’Angiulli, Amedeo; Griffiths, Gordon; Marmolejo-Ramos, Fernando

    2015-01-01

    The neural correlates of visualization underlying word comprehension were examined in preschool children. On each trial, a concrete or abstract word was delivered binaurally (part 1: post-auditory visualization), followed by a four-picture array (a target plus three distractors; part 2: matching visualization). Children were to select the picture matching the word they heard in part 1. Event-related potentials (ERPs) locked to each stimulus presentation and task interval were averaged over sets of trials of increasing word abstractness. ERP time-course during both parts of the task showed that early activity (i.e., <300 ms) was predominant in response to concrete words, while activity in response to abstract words became evident only at intermediate (i.e., 300–699 ms) and late (i.e., 700–1000 ms) ERP intervals. Specifically, ERP topography showed that while early activity during post-auditory visualization was linked to left temporo-parietal areas for concrete words, early activity during matching visualization occurred mostly in occipito-parietal areas for concrete words, but more anteriorly in centro-parietal areas for abstract words. In intermediate ERPs, post-auditory visualization coincided with parieto-occipital and parieto-frontal activity in response to both concrete and abstract words, while in matching visualization a parieto-central activity was common to both types of words. In the late ERPs for both types of words, the post-auditory visualization involved right-hemispheric activity following a “post-anterior” pathway sequence: occipital, parietal, and temporal areas; conversely, matching visualization involved left-hemispheric activity following an “ant-posterior” pathway sequence: frontal, temporal, parietal, and occipital areas. These results suggest that, similarly, for concrete and abstract words, meaning in young children depends on variably complex visualization processes integrating visuo-auditory experiences and supramodal embodying

  6. The Role of Visual Experience on the Representation and Updating of Novel Haptic Scenes

    ERIC Educational Resources Information Center

    Pasqualotto, Achille; Newell, Fiona N.

    2007-01-01

    We investigated the role of visual experience on the spatial representation and updating of haptic scenes by comparing recognition performance across sighted, congenitally and late blind participants. We first established that spatial updating occurs in sighted individuals to haptic scenes of novel objects. All participants were required to…

  7. Color Processing in the Early Visual System of Drosophila.

    PubMed

    Schnaitmann, Christopher; Haikala, Väinö; Abraham, Eva; Oberhauser, Vitus; Thestrup, Thomas; Griesbeck, Oliver; Reiff, Dierk F

    2018-01-11

    Color vision extracts spectral information by comparing signals from photoreceptors with different visual pigments. Such comparisons are encoded by color-opponent neurons that are excited at one wavelength and inhibited at another. Here, we examine the circuit implementation of color-opponent processing in the Drosophila visual system by combining two-photon calcium imaging with genetic dissection of visual circuits. We report that color-opponent processing of UV short /blue and UV long /green is already implemented in R7/R8 inner photoreceptor terminals of "pale" and "yellow" ommatidia, respectively. R7 and R8 photoreceptors of the same type of ommatidia mutually inhibit each other directly via HisCl1 histamine receptors and receive additional feedback inhibition that requires the second histamine receptor Ort. Color-opponent processing at the first visual synapse represents an unexpected commonality between Drosophila and vertebrates; however, the differences in the molecular and cellular implementation suggest that the same principles evolved independently. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Priming and the guidance by visual and categorical templates in visual search.

    PubMed

    Wilschut, Anna; Theeuwes, Jan; Olivers, Christian N L

    2014-01-01

    Visual search is thought to be guided by top-down templates that are held in visual working memory. Previous studies have shown that a search-guiding template can be rapidly and strongly implemented from a visual cue, whereas templates are less effective when based on categorical cues. Direct visual priming from cue to target may underlie this difference. In two experiments we first asked observers to remember two possible target colors. A postcue then indicated which of the two would be the relevant color. The task was to locate a briefly presented and masked target of the cued color among irrelevant distractor items. Experiment 1 showed that overall search accuracy improved more rapidly on the basis of a direct visual postcue that carried the target color, compared to a neutral postcue that pointed to the memorized color. However, selectivity toward the target feature, i.e., the extent to which observers searched selectively among items of the cued vs. uncued color, was found to be relatively unaffected by the presence of the visual signal. In Experiment 2 we compared search that was based on either visual or categorical information, but now controlled for direct visual priming. This resulted in no differences in overall performance nor selectivity. Altogether the results suggest that perceptual processing of visual search targets is facilitated by priming from visual cues, whereas attentional selectivity is enhanced by a working memory template that can formed from both visual and categorical input. Furthermore, if the priming is controlled for, categorical- and visual-based templates similarly enhance search guidance.

  9. Early Life Experience and Gut Microbiome: The Brain-Gut-Microbiota Signaling System.

    PubMed

    Cong, Xiaomei; Henderson, Wendy A; Graf, Joerg; McGrath, Jacqueline M

    2015-10-01

    Over the past decades, advances in neonatal care have led to substantial increases in survival among preterm infants. With these gains, recent concerns have focused on increases in neurodevelopment morbidity related to the interplay between stressful early life experiences and the immature neuroimmune systems. This interplay between these complex mechanisms is often described as the brain-gut signaling system. The role of the gut microbiome and the brain-gut signaling system have been found to be remarkably related to both short- and long-term stress and health. Recent evidence supports that microbial species, ligands, and/or products within the developing intestine play a key role in early programming of the central nervous system and regulation of the intestinal innate immunity. The purpose of this state-of-the-science review is to explore the supporting evidence demonstrating the importance of the brain-gut-microbiota axis in regulation of early life experience. We also discuss the role of gut microbiome in modulating stress and pain responses in high-risk infants. A conceptual framework has been developed to illustrate the regulation mechanisms involved in early life experience. The science in this area is just beginning to be uncovered; having a fundamental understanding of these relationships will be important as new discoveries continue to change our thinking, leading potentially to changes in practice and targeted interventions.

  10. Recurrent V1-V2 interaction in early visual boundary processing.

    PubMed

    Neumann, H; Sepp, W

    1999-11-01

    A majority of cortical areas are connected via feedforward and feedback fiber projections. In feedforward pathways we mainly observe stages of feature detection and integration. The computational role of the descending pathways at different stages of processing remains mainly unknown. Based on empirical findings we suggest that the top-down feedback pathways subserve a context-dependent gain control mechanism. We propose a new computational model for recurrent contour processing in which normalized activities of orientation selective contrast cells are fed forward to the next processing stage. There, the arrangement of input activation is matched against local patterns of contour shape. The resulting activities are subsequently fed back to the previous stage to locally enhance those initial measurements that are consistent with the top-down generated responses. In all, we suggest a computational theory for recurrent processing in the visual cortex in which the significance of local measurements is evaluated on the basis of a broader visual context that is represented in terms of contour code patterns. The model serves as a framework to link physiological with perceptual data gathered in psychophysical experiments. It handles a variety of perceptual phenomena, such as the local grouping of fragmented shape outline, texture surround and density effects, and the interpolation of illusory contours.

  11. Cross-species 3D virtual reality toolbox for visual and cognitive experiments.

    PubMed

    Doucet, Guillaume; Gulli, Roberto A; Martinez-Trujillo, Julio C

    2016-06-15

    Although simplified visual stimuli, such as dots or gratings presented on homogeneous backgrounds, provide strict control over the stimulus parameters during visual experiments, they fail to approximate visual stimulation in natural conditions. Adoption of virtual reality (VR) in neuroscience research has been proposed to circumvent this problem, by combining strict control of experimental variables and behavioral monitoring within complex and realistic environments. We have created a VR toolbox that maximizes experimental flexibility while minimizing implementation costs. A free VR engine (Unreal 3) has been customized to interface with any control software via text commands, allowing seamless introduction into pre-existing laboratory data acquisition frameworks. Furthermore, control functions are provided for the two most common programming languages used in visual neuroscience: Matlab and Python. The toolbox offers milliseconds time resolution necessary for electrophysiological recordings and is flexible enough to support cross-species usage across a wide range of paradigms. Unlike previously proposed VR solutions whose implementation is complex and time-consuming, our toolbox requires minimal customization or technical expertise to interface with pre-existing data acquisition frameworks as it relies on already familiar programming environments. Moreover, as it is compatible with a variety of display and input devices, identical VR testing paradigms can be used across species, from rodents to humans. This toolbox facilitates the addition of VR capabilities to any laboratory without perturbing pre-existing data acquisition frameworks, or requiring any major hardware changes. Copyright © 2016 Z. All rights reserved.

  12. Visual brain plasticity induced by central and peripheral visual field loss.

    PubMed

    Sanda, Nicolae; Cerliani, Leonardo; Authié, Colas N; Sabbah, Norman; Sahel, José-Alain; Habas, Christophe; Safran, Avinoam B; Thiebaut de Schotten, Michel

    2018-06-23

    Disorders that specifically affect central and peripheral vision constitute invaluable models to study how the human brain adapts to visual deafferentation. We explored cortical changes after the loss of central or peripheral vision. Cortical thickness (CoTks) and resting-state cortical entropy (rs-CoEn), as a surrogate for neural and synaptic complexity, were extracted in 12 Stargardt macular dystrophy, 12 retinitis pigmentosa (tunnel vision stage), and 14 normally sighted subjects. When compared to controls, both groups with visual loss exhibited decreased CoTks in dorsal area V3d. Peripheral visual field loss also showed a specific CoTks decrease in early visual cortex and ventral area V4, while central visual field loss in dorsal area V3A. Only central visual field loss exhibited increased CoEn in LO-2 area and FG1. Current results revealed biomarkers of brain plasticity within the dorsal and the ventral visual streams following central and peripheral visual field defects.

  13. Supporting Young Artists: The Development of the Visual Arts in Young Children.

    ERIC Educational Resources Information Center

    Epstein, Ann S.; Trimis, Eli

    Based on the view that art should be a vital component of young childrens experiences, this book examines the High/Scope approach to the visual arts for young children in early care and education settings and highlights an in-depth studio approach to developing art. The book is organized in two parts. Chapters in Part 1 present the High/Scope…

  14. What has changed in the evidence for early experience? Update of a BEME systematic review.

    PubMed

    Yardley, Sarah; Littlewood, Sonia; Margolis, Stephen A; Scherpbier, Albert; Spencer, John; Ypinazar, Valmae; Dornan, Tim

    2010-01-01

    We previously reviewed evidence published from 1992 to 2001 concerning early experience for healthcare undergraduates (Dornan T, Littlewood S, Margolis S, Scherpbier A, Spencer J, Ypinazar V. 2006. How can experience in clinical and community settings contribute to early medical education? A BEME systematic review. Med Teach 28:3-18). This subsequent study reviews evidence published from 2002 to 2008. Identify changes in the evidence base; determine the value of re-reviewing; set a future research agenda. The same search strategy as in the original review was repeated. Newly identified publications were critically appraised against the same benchmarks of strength and educational importance. Twenty-four new empirical studies of early authentic experience in education of health professionals met our inclusion criteria, yielding 96 outcomes. Sixty five outcomes (from 22 studies) were both educationally important and based on strong evidence. A new significant theme was found: the use of early experience to help students understand and align themselves with patient and community perspectives on illness and healthcare. More publications were now from outside Europe and North America. In addition to supporting the findings of our original review, this update shows an expansion in research sources, and a shift in research content focus. There are still questions, however, about how early authentic experience leads to particular learning outcomes and what will make it most educationally effective.

  15. Is that a belt or a snake? object attentional selection affects the early stages of visual sensory processing

    PubMed Central

    2012-01-01

    Background There is at present crescent empirical evidence deriving from different lines of ERPs research that, unlike previously observed, the earliest sensory visual response, known as C1 component or P/N80, generated within the striate cortex, might be modulated by selective attention to visual stimulus features. Up to now, evidence of this modulation has been related to space location, and simple features such as spatial frequency, luminance, and texture. Additionally, neurophysiological conditions, such as emotion, vigilance, the reflexive or voluntary nature of input attentional selection, and workload have also been related to C1 modulations, although at least the workload status has received controversial indications. No information is instead available, at present, for objects attentional selection. Methods In this study object- and space-based attention mechanisms were conjointly investigated by presenting complex, familiar shapes of artefacts and animals, intermixed with distracters, in different tasks requiring the selection of a relevant target-category within a relevant spatial location, while ignoring the other shape categories within this location, and, overall, all the categories at an irrelevant location. EEG was recorded from 30 scalp electrode sites in 21 right-handed participants. Results and Conclusions ERP findings showed that visual processing was modulated by both shape- and location-relevance per se, beginning separately at the latency of the early phase of a precocious negativity (60-80 ms) at mesial scalp sites consistent with the C1 component, and a positivity at more lateral sites. The data also showed that the attentional modulation progressed conjointly at the latency of the subsequent P1 (100-120 ms) and N1 (120-180 ms), as well as later-latency components. These findings support the views that (1) V1 may be precociously modulated by direct top-down influences, and participates to object, besides simple features, attentional

  16. Numerical cognition is resilient to dramatic changes in early sensory experience.

    PubMed

    Kanjlia, Shipra; Feigenson, Lisa; Bedny, Marina

    2018-06-20

    Humans and non-human animals can approximate large visual quantities without counting. The approximate number representations underlying this ability are noisy, with the amount of noise proportional to the quantity being represented. Numerate humans also have access to a separate system for representing exact quantities using number symbols and words; it is this second, exact system that supports most of formal mathematics. Although numerical approximation abilities and symbolic number abilities are distinct in representational format and in their phylogenetic and ontogenetic histories, they appear to be linked throughout development--individuals who can more precisely discriminate quantities without counting are better at math. The origins of this relationship are debated. On the one hand, symbolic number abilities may be directly linked to, perhaps even rooted in, numerical approximation abilities. On the other hand, the relationship between the two systems may simply reflect their independent relationships with visual abilities. To test this possibility, we asked whether approximate number and symbolic math abilities are linked in congenitally blind individuals who have never experienced visual sets or used visual strategies to learn math. Congenitally blind and blind-folded sighted participants completed an auditory numerical approximation task, as well as a symbolic arithmetic task and non-math control tasks. We found that the precision of approximate number representations was identical across congenitally blind and sighted groups, suggesting that the development of the Approximate Number System (ANS) does not depend on visual experience. Crucially, the relationship between numerical approximation and symbolic math abilities is preserved in congenitally blind individuals. These data support the idea that the Approximate Number System and symbolic number abilities are intrinsically linked, rather than indirectly linked through visual abilities. Copyright

  17. Predictors of Employment for Youths with Visual Impairments: Findings from the Second National Longitudinal Transition Study

    ERIC Educational Resources Information Center

    McDonnall, Michele Capella

    2011-01-01

    The study reported here identified factors that predict employment for transition-age youths with visual impairments. Logistic regression was used to predict employment at two levels. Significant variables were early and recent work experiences, completion of a postsecondary program, difficulty with transportation, independent travel skills, and…

  18. Early results from the ultra heavy cosmic ray experiment

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Thompson, A.; Bosch, J.; Keegan, R.; Wenzel, K.-P.; Jansen, F.; Domingo, C.

    1995-01-01

    Data extraction and analysis of the LDEF Ultra Heavy Cosmic Ray Experiment is continuing. Almost twice the pre LDEF world sample has been investigated and some details of the charge spectrum in the region from Z approximately 70 up to and including the actinides are presented. The early results indicate r process enhancement over solar system source abundances.

  19. Early Academic Experiences of Recently Incarcerated African American Males

    ERIC Educational Resources Information Center

    Jeffers, Adam R.

    2010-01-01

    This project examines the early educational experiences of 6 young African American males (ages 18-25) who attended urban schools in San Diego, California. All 6 men were incarcerated for at least 1-year before participating in a pre-release program. The participants were part of a pre-release program in San Diego, California, which was selected…

  20. Development of the Play Experience Model to Enhance Desirable Qualifications of Early Childhood

    ERIC Educational Resources Information Center

    Panpum, Watchara; Soonthornrojana, Wimonrat; Nakunsong, Thatsanee

    2015-01-01

    The objectives of this research were to develop the play experience model and to study the effect of usage in play experience model for enhancing the early childhood's desirable qualification. There were 3 phases of research: 1) the document and context in experience management were studied, 2) the play experience model was developed, and 3) the…

  1. Early Care, Education, and Family Life in Rural Fiji: Experiences and Reflections

    ERIC Educational Resources Information Center

    Bullock, Janis

    2005-01-01

    As a member of a delegation of educators, physicians, and lay people to rural Fiji the author shares her experiences and reflections of early care, education, and family life on a small, remote island. She discusses her visits to the village and boarding school, and her interactions with teachers, children, and parents in the early childhood…

  2. Early thinning experiments established by the Fort Valley Experimental Forest (P-53)

    Treesearch

    Benjamin P. De Blois; Alex. J. Finkral; Andrew J. Sánchez Meador; Margaret M. Moore

    2008-01-01

    Between 1925 and 1936, the Fort Valley Experimental Forest (FVEF) scientists initiated a study to examine a series of forest thinning experiments in second growth ponderosa pine stands in Arizona and New Mexico. These early thinning plots furnished much of the early background for the development of methods used in forest management in the Southwest. The plots ranged...

  3. Which visual functions depend on intermediate visual regions? Insights from a case of developmental visual form agnosia.

    PubMed

    Gilaie-Dotan, Sharon

    2016-03-01

    A key question in visual neuroscience is the causal link between specific brain areas and perceptual functions; which regions are necessary for which visual functions? While the contribution of primary visual cortex and high-level visual regions to visual perception has been extensively investigated, the contribution of intermediate visual areas (e.g. V2/V3) to visual processes remains unclear. Here I review more than 20 visual functions (early, mid, and high-level) of LG, a developmental visual agnosic and prosopagnosic young adult, whose intermediate visual regions function in a significantly abnormal fashion as revealed through extensive fMRI and ERP investigations. While expectedly, some of LG's visual functions are significantly impaired, some of his visual functions are surprisingly normal (e.g. stereopsis, color, reading, biological motion). During the period of eight-year testing described here, LG trained on a perceptual learning paradigm that was successful in improving some but not all of his visual functions. Following LG's visual performance and taking into account additional findings in the field, I propose a framework for how different visual areas contribute to different visual functions, with an emphasis on intermediate visual regions. Thus, although rewiring and plasticity in the brain can occur during development to overcome and compensate for hindering developmental factors, LG's case seems to indicate that some visual functions are much less dependent on strict hierarchical flow than others, and can develop normally in spite of abnormal mid-level visual areas, thereby probably less dependent on intermediate visual regions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A Comparison of Premenarcheal Expectations and Postmenarcheal Experiences in Chinese Early Adolescents

    ERIC Educational Resources Information Center

    Tang, Catherine So-Kum; Yeung, Dannii Y. L.; Lee, Antoinette Marie

    2004-01-01

    The present study examined Chinese early adolescents' expectations and experiences of their first menstruation. It included 952 participants, 476 premenarcheal and 476 postmenarcheal girls matched by age and by grade level. Results showed that compared to experiences of postmenarcheal girls, premenarcheal girls anticipated more negative emotional…

  5. Autonomous visual exploration creates developmental change in familiarity and novelty seeking behaviors

    PubMed Central

    Perone, Sammy; Spencer, John P.

    2013-01-01

    What motivates children to radically transform themselves during early development? We addressed this question in the domain of infant visual exploration. Over the first year, infants' exploration shifts from familiarity to novelty seeking. This shift is delayed in preterm relative to term infants and is stable within individuals over the course of the first year. Laboratory tasks have shed light on the nature of this familiarity-to-novelty shift, but it is not clear what motivates the infant to change her exploratory style. We probed this by letting a Dynamic Neural Field (DNF) model of visual exploration develop itself via accumulating experience in a virtual world. We then situated it in a canonical laboratory task. Much like infants, the model exhibited a familiarity-to-novelty shift. When we manipulated the initial conditions of the model, the model's performance was developmentally delayed much like preterm infants. This delay was overcome by enhancing the model's experience during development. We also found that the model's performance was stable at the level of the individual. Our simulations indicate that novelty seeking emerges with no explicit motivational source via the accumulation of visual experience within a complex, dynamical exploratory system. PMID:24065948

  6. Early Life Experiences and Exercise Associate with Canine Anxieties.

    PubMed

    Tiira, Katriina; Lohi, Hannes

    2015-01-01

    Personality and anxiety disorders across species are affected by genetic and environmental factors. Shyness-boldness personality continuum exists across species, including the domestic dog, with a large within- and across-breed variation. Domestic dogs are also diagnosed for several anxiety-related behavioral conditions, such as generalized anxiety disorders, phobias, and separation anxiety. Genetic and environmental factors contributing to personality and anxiety are largely unknown. We collected questionnaire data from a Finnish family dog population (N = 3264) in order to study the associating environmental factors for canine fearfulness, noise sensitivity, and separation anxiety. Early life experiences and exercise were found to associate with anxiety prevalence. We found that fearful dogs had less socialization experiences (p = 0.002) and lower quality of maternal care (p < 0.0001) during puppyhood. Surprisingly, the largest environmental factor associating with noise sensitivity (p < 0.0001) and separation anxiety (p = 0.007) was the amount of daily exercise; dogs with noise sensitivity and separation anxiety had less daily exercise. Our findings suggest that dogs share many of the same environmental factors that contribute to anxiety in other species as well, such as humans and rodents. Our study highlights the importance of early life experiences, especially the quality of maternal care and daily exercise for the welfare and management of the dogs, and reveals important confounding factors to be considered in the genetic characterization of canine anxiety.

  7. Simulated in vivo Electrophysiology Experiments Provide Previously Inaccessible Insights into Visual Physiology

    PubMed Central

    Quiroga, Maria del Mar; Price, Nicholas SC

    2016-01-01

    Lecture content and practical laboratory classes are ideally complementary. However, the types of experiments that have led to our detailed understanding of sensory neuroscience are often not amenable to classroom experimentation as they require expensive equipment, time-consuming surgeries, specialized experimental techniques, and the use of animals. While sometimes feasible in small group teaching, these experiments are not suitable for large cohorts of students. Previous attempts to expose students to sensory neuroscience experiments include: the use of electrophysiology preparations in invertebrates, data-driven simulations that do not replicate the experience of conducting an experiment, or simply observing an experiment in a research laboratory. We developed an online simulation of a visual neuroscience experiment in which extracellular recordings are made from a motion sensitive neuron. Students have control over stimulation parameters (direction and contrast) and can see and hear the action potential responses to stimuli as they are presented. The simulation provides an intuitive way for students to gain insight into neurophysiology, including experimental design, data collection and data analysis. Our simulation allows large cohorts of students to cost-effectively “experience” the results of animal research without ethical concerns, to be exposed to realistic data variability, and to develop their understanding of how sensory neuroscience experiments are conducted. PMID:27980465

  8. Perceptions Concerning Visual Culture Dialogues of Visual Art Pre-Service Teachers

    ERIC Educational Resources Information Center

    Mamur, Nuray

    2012-01-01

    The visual art which is commented by the visual art teachers to help processing of the visual culture is important. In this study it is tried to describe the effect of visual culture based on the usual aesthetic experiences to be included in the learning process art education. The action research design, which is a qualitative study, is conducted…

  9. The role of visuohaptic experience in visually perceived depth.

    PubMed

    Ho, Yun-Xian; Serwe, Sascha; Trommershäuser, Julia; Maloney, Laurence T; Landy, Michael S

    2009-06-01

    Berkeley suggested that "touch educates vision," that is, haptic input may be used to calibrate visual cues to improve visual estimation of properties of the world. Here, we test whether haptic input may be used to "miseducate" vision, causing observers to rely more heavily on misleading visual cues. Human subjects compared the depth of two cylindrical bumps illuminated by light sources located at different positions relative to the surface. As in previous work using judgments of surface roughness, we find that observers judge bumps to have greater depth when the light source is located eccentric to the surface normal (i.e., when shadows are more salient). Following several sessions of visual judgments of depth, subjects then underwent visuohaptic training in which haptic feedback was artificially correlated with the "pseudocue" of shadow size and artificially decorrelated with disparity and texture. Although there were large individual differences, almost all observers demonstrated integration of haptic cues during visuohaptic training. For some observers, subsequent visual judgments of bump depth were unaffected by the training. However, for 5 of 12 observers, training significantly increased the weight given to pseudocues, causing subsequent visual estimates of shape to be less veridical. We conclude that haptic information can be used to reweight visual cues, putting more weight on misleading pseudocues, even when more trustworthy visual cues are available in the scene.

  10. Feature-Based Memory-Driven Attentional Capture: Visual Working Memory Content Affects Visual Attention

    ERIC Educational Resources Information Center

    Olivers, Christian N. L.; Meijer, Frank; Theeuwes, Jan

    2006-01-01

    In 7 experiments, the authors explored whether visual attention (the ability to select relevant visual information) and visual working memory (the ability to retain relevant visual information) share the same content representations. The presence of singleton distractors interfered more strongly with a visual search task when it was accompanied by…

  11. The Relation of Ocular Surface Irregularity and Visual Disturbance in Early Stage Acanthamoeba Keratitis.

    PubMed

    Matsumoto, Yukihiro; Kodama, Asako; Goto, Eiki; Kawakita, Tetsuya; Dogru, Murat; Tsubota, Kazuo

    2017-01-01

    To evaluate the relation between ocular surface irregularity and visual disturbance in early stage Acanthamoeba keratitis (AK). Fifteen patients with culture-proven AK underwent routine ophthalmic examinations, including best-corrected visual acuity (BCVA) measurement, slitlamp biomicroscope examination, and corneal fluorescein dye staining test, in both the eyes. We also evaluated the corneal sensitivity with Cochet-Bonnet esthesiometer, tear functions by Schirmer's test, and ocular surface irregularity by corneal topography and compared the results with the contralateral healthy eyes in this study. The mean logarithm of the minimum angle of resolution BCVA (0.71±0.77) was significantly lower in the eyes with AK (P=0.002). Epithelial disorders were present in all eyes, and radial keratoneuritis in 14 eyes (93.3%). The mean corneal sensitivity (39.3±24.1 mm) was significantly lower in eyes with AK compared with the healthy eyes (P=0.005). The mean Schirmer's test value (22.5±12.0 mm) in eyes with AK was significantly higher compared with the healthy eyes (P=0.01). The ocular surface irregularity indices (the surface regularity index, 2.47±0.42; the surface asymmetry index, 3.24±1.31) were significantly higher in eyes with AK compared with contralateral healthy eyes (P<0.0001 and P<0.0001, respectively). The ocular surface disease in AK is associated with decrease in corneal sensitivity and increase in Schirmer's test value and ocular surface irregularity indices. The visual disturbance in AK may owe not only to corneal haze but also to ocular surface irregularity.

  12. An fMRI-study of locally oriented perception in autism: altered early visual processing of the block design test.

    PubMed

    Bölte, S; Hubl, D; Dierks, T; Holtmann, M; Poustka, F

    2008-01-01

    Autism has been associated with enhanced local processing on visual tasks. Originally, this was based on findings that individuals with autism exhibited peak performance on the block design test (BDT) from the Wechsler Intelligence Scales. In autism, the neurofunctional correlates of local bias on this test have not yet been established, although there is evidence of alterations in the early visual cortex. Functional MRI was used to analyze hemodynamic responses in the striate and extrastriate visual cortex during BDT performance and a color counting control task in subjects with autism compared to healthy controls. In autism, BDT processing was accompanied by low blood oxygenation level-dependent signal changes in the right ventral quadrant of V2. Findings indicate that, in autism, locally oriented processing of the BDT is associated with altered responses of angle and grating-selective neurons, that contribute to shape representation, figure-ground, and gestalt organization. The findings favor a low-level explanation of BDT performance in autism.

  13. Bias to pollen odors is affected by early exposure and foraging experience.

    PubMed

    Arenas, A; Farina, W M

    2014-07-01

    In many pollinating insects, foraging preferences are adjusted on the basis of floral cues learned at the foraging site. In addition, olfactory experiences gained at early adult stages might also help them to initially choose food sources. To understand pollen search behavior of honeybees, we studied how responses elicited by pollen-based odors are biased in foraging-age workers according to (i) their genetic predisposition to collect pollen, (ii) pollen related information gained during foraging and (iii) different experiences with pollen gained at early adult ages. Bees returning to the hive carrying pollen loads, were strongly biased to unfamiliar pollen bouquets when tested in a food choice device against pure odors. Moreover, pollen foragers' orientation response was specific to the odors emitted by the pollen type they were carrying on their baskets, which suggests that foragers retrieve pollen odor information to recognize rewarding flowers outside the hive. We observed that attraction to pollen odor was mediated by the exposure to a pollen diet during the first week of life. We did not observe the same attraction in foraging-age bees early exposed to an artificial diet that did not contain pollen. Contrary to the specific response observed to cues acquired during foraging, early exposure to single-pollen diets did not bias orientation response towards a specific pollen odor in foraging-age bees (i.e. bees chose equally between the exposed and the novel monofloral pollen odors). Our results show that pollen exposure at early ages together with olfactory experiences gained in a foraging context are both relevant to bias honeybees' pollen search behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Visual influences on auditory spatial learning

    PubMed Central

    King, Andrew J.

    2008-01-01

    The visual and auditory systems frequently work together to facilitate the identification and localization of objects and events in the external world. Experience plays a critical role in establishing and maintaining congruent visual–auditory associations, so that the different sensory cues associated with targets that can be both seen and heard are synthesized appropriately. For stimulus location, visual information is normally more accurate and reliable and provides a reference for calibrating the perception of auditory space. During development, vision plays a key role in aligning neural representations of space in the brain, as revealed by the dramatic changes produced in auditory responses when visual inputs are altered, and is used throughout life to resolve short-term spatial conflicts between these modalities. However, accurate, and even supra-normal, auditory localization abilities can be achieved in the absence of vision, and the capacity of the mature brain to relearn to localize sound in the presence of substantially altered auditory spatial cues does not require visuomotor feedback. Thus, while vision is normally used to coordinate information across the senses, the neural circuits responsible for spatial hearing can be recalibrated in a vision-independent fashion. Nevertheless, early multisensory experience appears to be crucial for the emergence of an ability to match signals from different sensory modalities and therefore for the outcome of audiovisual-based rehabilitation of deaf patients in whom hearing has been restored by cochlear implantation. PMID:18986967

  15. Experience with Using Multiple Types of Visual Educational Tools during Problem-Based Learning.

    PubMed

    Kang, Bong Jin

    2012-06-01

    This study describes the experience of using multiple types of visual educational tools in the setting of problem-based learning (PBL). The author intends to demonstrate their roles in diverse and efficient ways of clinical reasoning and problem solving. Visual educational tools were introduced in a lecture that included their various types, possible benefits, and some examples. Each group made one mechanistic case diagram per week, and each student designed one diagnostic schema or therapeutic algorithm per week, based on their learning issues. The students were also told to provide commentary, which was intended to give insights into their truthfulness. Subsequently, the author administered a questionnaire about the usefulness and weakness of visual educational tools and the difficulties with performing the work. Also, the qualities of the products were assessed by the author. There were many complaints about the adequacy of the introduction of visual educational tools, also revealed by the many initial inappropriate types of products. However, the exercise presentation in the first week improved the level of understanding regarding their purposes and the method of design. In general, students agreed on the benefits of their help in providing a deep understanding of the cases and the possibility of solving clinical problems efficiently. The commentary was helpful in evaluating the truthfulness of their efforts. Students gave suggestions for increasing the percentage of their scores, considering the efforts. Using multiple types of visual educational tools during PBL can be useful in understanding the diverse routes of clinical reasoning and clinical features.

  16. Sensory experience ratings (SERs) for 1,659 French words: Relationships with other psycholinguistic variables and visual word recognition.

    PubMed

    Bonin, Patrick; Méot, Alain; Ferrand, Ludovic; Bugaïska, Aurélia

    2015-09-01

    We collected sensory experience ratings (SERs) for 1,659 French words in adults. Sensory experience for words is a recently introduced variable that corresponds to the degree to which words elicit sensory and perceptual experiences (Juhasz & Yap Behavior Research Methods, 45, 160-168, 2013; Juhasz, Yap, Dicke, Taylor, & Gullick Quarterly Journal of Experimental Psychology, 64, 1683-1691, 2011). The relationships of the sensory experience norms with other psycholinguistic variables (e.g., imageability and age of acquisition) were analyzed. We also investigated the degree to which SER predicted performance in visual word recognition tasks (lexical decision, word naming, and progressive demasking). The analyses indicated that SER reliably predicted response times in lexical decision, but not in word naming or progressive demasking. The findings are discussed in relation to the status of SER, the role of semantic code activation in visual word recognition, and the embodied view of cognition.

  17. Designing Informal Learning Experiences for Early Career Academics Using a Knowledge Ecosystem Model

    ERIC Educational Resources Information Center

    Miller, Faye; Partridge, Helen; Bruce, Christine; Hemmings, Brian

    2017-01-01

    This article presents a "knowledge ecosystem" model of how early career academics experience using information to learn while building their social networks for developmental purposes. Developed using grounded theory methodology, the model offers a way of conceptualising how to empower early career academics through (1) agency…

  18. Perceived visual speed constrained by image segmentation

    NASA Technical Reports Server (NTRS)

    Verghese, P.; Stone, L. S.

    1996-01-01

    Little is known about how or where the visual system parses the visual scene into objects or surfaces. However, it is generally assumed that the segmentation and grouping of pieces of the image into discrete entities is due to 'later' processing stages, after the 'early' processing of the visual image by local mechanisms selective for attributes such as colour, orientation, depth, and motion. Speed perception is also thought to be mediated by early mechanisms tuned for speed. Here we show that manipulating the way in which an image is parsed changes the way in which local speed information is processed. Manipulations that cause multiple stimuli to appear as parts of a single patch degrade speed discrimination, whereas manipulations that perceptually divide a single large stimulus into parts improve discrimination. These results indicate that processes as early as speed perception may be constrained by the parsing of the visual image into discrete entities.

  19. Preparedness to Teach: Experiences of the University of Ibadan Early Career Academics

    ERIC Educational Resources Information Center

    Udegbe, I. Bola

    2016-01-01

    This research examined the experiences of early career academics (ECAs) in terms of their preparedness to teach. Using a survey design involving 104 ECAs in a large Nigeria university, quantitative and qualitative data were obtained to address the research questions raised. Findings showed that (1) prior experience and training impacted on…

  20. Multisensory emotion perception in congenitally, early, and late deaf CI users

    PubMed Central

    Nava, Elena; Villwock, Agnes K.; Büchner, Andreas; Lenarz, Thomas; Röder, Brigitte

    2017-01-01

    Emotions are commonly recognized by combining auditory and visual signals (i.e., vocal and facial expressions). Yet it is unknown whether the ability to link emotional signals across modalities depends on early experience with audio-visual stimuli. In the present study, we investigated the role of auditory experience at different stages of development for auditory, visual, and multisensory emotion recognition abilities in three groups of adolescent and adult cochlear implant (CI) users. CI users had a different deafness onset and were compared to three groups of age- and gender-matched hearing control participants. We hypothesized that congenitally deaf (CD) but not early deaf (ED) and late deaf (LD) CI users would show reduced multisensory interactions and a higher visual dominance in emotion perception than their hearing controls. The CD (n = 7), ED (deafness onset: <3 years of age; n = 7), and LD (deafness onset: >3 years; n = 13) CI users and the control participants performed an emotion recognition task with auditory, visual, and audio-visual emotionally congruent and incongruent nonsense speech stimuli. In different blocks, participants judged either the vocal (Voice task) or the facial expressions (Face task). In the Voice task, all three CI groups performed overall less efficiently than their respective controls and experienced higher interference from incongruent facial information. Furthermore, the ED CI users benefitted more than their controls from congruent faces and the CD CI users showed an analogous trend. In the Face task, recognition efficiency of the CI users and controls did not differ. Our results suggest that CI users acquire multisensory interactions to some degree, even after congenital deafness. When judging affective prosody they appear impaired and more strongly biased by concurrent facial information than typically hearing individuals. We speculate that limitations inherent to the CI contribute to these group differences. PMID:29023525

  1. Multisensory emotion perception in congenitally, early, and late deaf CI users.

    PubMed

    Fengler, Ineke; Nava, Elena; Villwock, Agnes K; Büchner, Andreas; Lenarz, Thomas; Röder, Brigitte

    2017-01-01

    Emotions are commonly recognized by combining auditory and visual signals (i.e., vocal and facial expressions). Yet it is unknown whether the ability to link emotional signals across modalities depends on early experience with audio-visual stimuli. In the present study, we investigated the role of auditory experience at different stages of development for auditory, visual, and multisensory emotion recognition abilities in three groups of adolescent and adult cochlear implant (CI) users. CI users had a different deafness onset and were compared to three groups of age- and gender-matched hearing control participants. We hypothesized that congenitally deaf (CD) but not early deaf (ED) and late deaf (LD) CI users would show reduced multisensory interactions and a higher visual dominance in emotion perception than their hearing controls. The CD (n = 7), ED (deafness onset: <3 years of age; n = 7), and LD (deafness onset: >3 years; n = 13) CI users and the control participants performed an emotion recognition task with auditory, visual, and audio-visual emotionally congruent and incongruent nonsense speech stimuli. In different blocks, participants judged either the vocal (Voice task) or the facial expressions (Face task). In the Voice task, all three CI groups performed overall less efficiently than their respective controls and experienced higher interference from incongruent facial information. Furthermore, the ED CI users benefitted more than their controls from congruent faces and the CD CI users showed an analogous trend. In the Face task, recognition efficiency of the CI users and controls did not differ. Our results suggest that CI users acquire multisensory interactions to some degree, even after congenital deafness. When judging affective prosody they appear impaired and more strongly biased by concurrent facial information than typically hearing individuals. We speculate that limitations inherent to the CI contribute to these group differences.

  2. Ground-plane influences on size estimation in early visual processing.

    PubMed

    Champion, Rebecca A; Warren, Paul A

    2010-07-21

    Ground-planes have an important influence on the perception of 3D space (Gibson, 1950) and it has been shown that the assumption that a ground-plane is present in the scene plays a role in the perception of object distance (Bruno & Cutting, 1988). Here, we investigate whether this influence is exerted at an early stage of processing, to affect the rapid estimation of 3D size. Participants performed a visual search task in which they searched for a target object that was larger or smaller than distracter objects. Objects were presented against a background that contained either a frontoparallel or slanted 3D surface, defined by texture gradient cues. We measured the effect on search performance of target location within the scene (near vs. far) and how this was influenced by scene orientation (which, e.g., might be consistent with a ground or ceiling plane, etc.). In addition, we investigated how scene orientation interacted with texture gradient information (indicating surface slant), to determine how these separate cues to scene layout were combined. We found that the difference in target detection performance between targets at the front and rear of the simulated scene was maximal when the scene was consistent with a ground-plane - consistent with the use of an elevation cue to object distance. In addition, we found a significant increase in the size of this effect when texture gradient information (indicating surface slant) was present, but no interaction between texture gradient and scene orientation information. We conclude that scene orientation plays an important role in the estimation of 3D size at an early stage of processing, and suggest that elevation information is linearly combined with texture gradient information for the rapid estimation of 3D size. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Wearable ultrasonic guiding device with white cane for the visually impaired: A preliminary verisimilitude experiment.

    PubMed

    Cheng, Po-Hsun

    2016-01-01

    Several assistive technologies are available to help visually impaired individuals avoid obstructions while walking. Unfortunately, white canes and medical walkers are unable to detect obstacles on the road or react to encumbrances located above the waist. In this study, I adopted the cyber-physical system approach in the development of a cap-connected device to compensate for gaps in detection associated with conventional aids for the visually impaired. I developed a verisimilar, experimental route involving the participation of seven individuals with visual impairment, including straight sections, left turns, right turns, curves, and suspended objects. My aim was to facilitate the collection of information required for the practical use of the device. My findings demonstrate the feasibility of the proposed guiding device in alerting walkers to the presence of some kinds of obstacles from the small number of subjects. That is, it shows promise for future work and research with the proposed device. My findings provide a valuable reference for the further improvement of these devices as well as the establishment of experiments involving the visually impaired.

  4. Systems-Oriented Workplace Learning Experiences for Early Learners: Three Models.

    PubMed

    O'Brien, Bridget C; Bachhuber, Melissa R; Teherani, Arianne; Iker, Theresa M; Batt, Joanne; O'Sullivan, Patricia S

    2017-05-01

    Early workplace learning experiences may be effective for learning systems-based practice. This study explores systems-oriented workplace learning experiences (SOWLEs) for early learners to suggest a framework for their development. The authors used a two-phase qualitative case study design. In Phase 1 (spring 2014), they prepared case write-ups based on transcribed interviews from 10 SOWLE leaders at the authors' institution and, through comparative analysis of cases, identified three SOWLE models. In Phase 2 (summer 2014), studying seven 8-week SOWLE pilots, the authors used interview and observational data collected from the seven participating medical students, two pharmacy students, and site leaders to construct case write-ups of each pilot and to verify and elaborate the models. In Model 1, students performed specific patient care activities that addressed a system gap. Some site leaders helped students connect the activities to larger systems problems and potential improvements. In Model 2, students participated in predetermined systems improvement (SI) projects, gaining experience in the improvement process. Site leaders had experience in SI and often had significant roles in the projects. In Model 3, students worked with key stakeholders to develop a project and conduct a small test of change. They experienced most elements of an improvement cycle. Site leaders often had experience with SI and knew how to guide and support students' learning. Each model could offer systems-oriented learning opportunities provided that key elements are in place including site leaders facile in SI concepts and able to guide students in SOWLE activities.

  5. Attention biases visual activity in visual short-term memory.

    PubMed

    Kuo, Bo-Cheng; Stokes, Mark G; Murray, Alexandra M; Nobre, Anna Christina

    2014-07-01

    In the current study, we tested whether representations in visual STM (VSTM) can be biased via top-down attentional modulation of visual activity in retinotopically specific locations. We manipulated attention using retrospective cues presented during the retention interval of a VSTM task. Retrospective cues triggered activity in a large-scale network implicated in attentional control and led to retinotopically specific modulation of activity in early visual areas V1-V4. Importantly, shifts of attention during VSTM maintenance were associated with changes in functional connectivity between pFC and retinotopic regions within V4. Our findings provide new insights into top-down control mechanisms that modulate VSTM representations for flexible and goal-directed maintenance of the most relevant memoranda.

  6. Healthcare experiences of women with visual impairment.

    PubMed

    Sharts-Hopko, Nancy C; Smeltzer, Suzanne; Ott, Barbara B; Zimmerman, Vanessa; Duffin, Janice

    2010-01-01

    This investigation was a secondary analysis of focus group transcripts to address the question of how women with low vision or blindness have experienced healthcare. Secondary analysis of qualitative data was performed on transcripts from 2 focus groups. These focus groups were conducted at an agency serving visually impaired people in Philadelphia. The 2 focus groups included 7 and 11 women, respectively, having low-vision or who are blind who had been part of an original study of reaching hard-to-reach women with disabilities. Content analysis for the identification of thematic clusters was performed on transcriptions of the focus group data. Findings are consistent with existing research on the health needs of women with disabilities but add specific understanding related to visual impairment. Six thematic categories were identified: health professionals' awareness, information access, healthcare access, isolation, the need for self-advocacy, and perception by others. Secondary analysis of qualitative data affords in-depth understanding of a particular subset of participants within a larger study. Clinical nurse specialists and other health professionals need to increase their sensitivity to the challenges faced by women with visual impairment, and plan and provide care accordingly. Health professions students need to be prepared to interact with people who are visually impaired and healthcare settings need to respond to their needs.

  7. Early Visual Cortex Dynamics during Top-Down Modulated Shifts of Feature-Selective Attention.

    PubMed

    Müller, Matthias M; Trautmann, Mireille; Keitel, Christian

    2016-04-01

    Shifting attention from one color to another color or from color to another feature dimension such as shape or orientation is imperative when searching for a certain object in a cluttered scene. Most attention models that emphasize feature-based selection implicitly assume that all shifts in feature-selective attention underlie identical temporal dynamics. Here, we recorded time courses of behavioral data and steady-state visual evoked potentials (SSVEPs), an objective electrophysiological measure of neural dynamics in early visual cortex to investigate temporal dynamics when participants shifted attention from color or orientation toward color or orientation, respectively. SSVEPs were elicited by four random dot kinematograms that flickered at different frequencies. Each random dot kinematogram was composed of dashes that uniquely combined two features from the dimensions color (red or blue) and orientation (slash or backslash). Participants were cued to attend to one feature (such as color or orientation) and respond to coherent motion targets of the to-be-attended feature. We found that shifts toward color occurred earlier after the shifting cue compared with shifts toward orientation, regardless of the original feature (i.e., color or orientation). This was paralleled in SSVEP amplitude modulations as well as in the time course of behavioral data. Overall, our results suggest different neural dynamics during shifts of attention from color and orientation and the respective shifting destinations, namely, either toward color or toward orientation.

  8. Independent sources of anisotropy in visual orientation representation: a visual and a cognitive oblique effect.

    PubMed

    Balikou, Panagiota; Gourtzelidis, Pavlos; Mantas, Asimakis; Moutoussis, Konstantinos; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2015-11-01

    The representation of visual orientation is more accurate for cardinal orientations compared to oblique, and this anisotropy has been hypothesized to reflect a low-level visual process (visual, "class 1" oblique effect). The reproduction of directional and orientation information also leads to a mean error away from cardinal orientations or directions. This anisotropy has been hypothesized to reflect a high-level cognitive process of space categorization (cognitive, "class 2," oblique effect). This space categorization process would be more prominent when the visual representation of orientation degrades such as in the case of working memory with increasing cognitive load, leading to increasing magnitude of the "class 2" oblique effect, while the "class 1" oblique effect would remain unchanged. Two experiments were performed in which an array of orientation stimuli (1-4 items) was presented and then subjects had to realign a probe stimulus within the previously presented array. In the first experiment, the delay between stimulus presentation and probe varied, while in the second experiment, the stimulus presentation time varied. The variable error was larger for oblique compared to cardinal orientations in both experiments reproducing the visual "class 1" oblique effect. The mean error also reproduced the tendency away from cardinal and toward the oblique orientations in both experiments (cognitive "class 2" oblique effect). The accuracy or the reproduced orientation degraded (increasing variable error) and the cognitive "class 2" oblique effect increased with increasing memory load (number of items) in both experiments and presentation time in the second experiment. In contrast, the visual "class 1" oblique effect was not significantly modulated by any one of these experimental factors. These results confirmed the theoretical predictions for the two anisotropies in visual orientation reproduction and provided support for models proposing the categorization of

  9. Molecular Mechanisms at the Basis of Plasticity in the Developing Visual Cortex: Epigenetic Processes and Gene Programs

    PubMed Central

    Maya-Vetencourt, José Fernando; Pizzorusso, Tommaso

    2013-01-01

    Neuronal circuitries in the mammalian visual system change as a function of experience. Sensory experience modifies neuronal networks connectivity via the activation of different physiological processes such as excitatory/inhibitory synaptic transmission, neurotrophins, and signaling of extracellular matrix molecules. Long-lasting phenomena of plasticity occur when intracellular signal transduction pathways promote epigenetic alterations of chromatin structure that regulate the induction of transcription factors that in turn drive the expression of downstream targets, the products of which then work via the activation of structural and functional mechanisms that modify synaptic connectivity. Here, we review recent findings in the field of visual cortical plasticity while focusing on how physiological mechanisms associated with experience promote structural changes that determine functional modifications of neural circuitries in V1. We revise the role of microRNAs as molecular transducers of environmental stimuli and the role of immediate early genes that control gene expression programs underlying plasticity in the developing visual cortex. PMID:25157210

  10. Early Learning Visual Impairment Services Training and Advancement (EL VISTA) Project: Leading the Way for a New Profession within a Profession

    ERIC Educational Resources Information Center

    Landa-Vialard, Olaya; Ely, Mindy S.; Lartz, Maribeth Nelson

    2018-01-01

    The Frank Porter Graham (FPG) Child Development Institute, Early Intervention Training Center for Infants and Toddlers with Visual Impairments and Their Families, University of North Carolina at Chapel Hill, was a national project that developed resources with the goal of building the capacity of colleges and universities to prepare personnel to…

  11. Reward associations impact both iconic and visual working memory.

    PubMed

    Infanti, Elisa; Hickey, Clayton; Turatto, Massimo

    2015-02-01

    Reward plays a fundamental role in human behavior. A growing number of studies have shown that stimuli associated with reward become salient and attract attention. The aim of the present study was to extend these results into the investigation of iconic memory and visual working memory. In two experiments we asked participants to perform a visual-search task where different colors of the target stimuli were paired with high or low reward. We then tested whether the pre-established feature-reward association affected performance on a subsequent visual memory task, in which no reward was provided. In this test phase participants viewed arrays of 8 objects, one of which had unique color that could match the color associated with reward during the previous visual-search task. A probe appeared at varying intervals after stimulus offset to identify the to-be-reported item. Our results suggest that reward biases the encoding of visual information such that items characterized by a reward-associated feature interfere with mnemonic representations of other items in the test display. These results extend current knowledge regarding the influence of reward on early cognitive processes, suggesting that feature-reward associations automatically interact with the encoding and storage of visual information, both in iconic memory and visual working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Visual imagery without visual perception: lessons from blind subjects

    NASA Astrophysics Data System (ADS)

    Bértolo, Helder

    2014-08-01

    The question regarding visual imagery and visual perception remain an open issue. Many studies have tried to understand if the two processes share the same mechanisms or if they are independent, using different neural substrates. Most research has been directed towards the need of activation of primary visual areas during imagery. Here we review some of the works providing evidence for both claims. It seems that studying visual imagery in blind subjects can be used as a way of answering some of those questions, namely if it is possible to have visual imagery without visual perception. We present results from the work of our group using visual activation in dreams and its relation with EEG's spectral components, showing that congenitally blind have visual contents in their dreams and are able to draw them; furthermore their Visual Activation Index is negatively correlated with EEG alpha power. This study supports the hypothesis that it is possible to have visual imagery without visual experience.

  13. Preparing Beginning Reading Teachers: An Experimental Comparison of Initial Early Literacy Field Experiences

    ERIC Educational Resources Information Center

    Al Otaiba, Stephanie; Lake, Vickie E.; Greulich, Luana; Folsom, Jessica S.; Guidry, Lisa

    2012-01-01

    This randomized-control trial examined the learning of preservice teachers taking an initial Early Literacy course in an early childhood education program and of the kindergarten or first grade students they tutored in their field experience. Preservice teachers were randomly assigned to one of two tutoring programs: Book Buddies and Tutor…

  14. Visual search, visual streams, and visual architectures.

    PubMed

    Green, M

    1991-10-01

    Most psychological, physiological, and computational models of early vision suggest that retinal information is divided into a parallel set of feature modules. The dominant theories of visual search assume that these modules form a "blackboard" architecture: a set of independent representations that communicate only through a central processor. A review of research shows that blackboard-based theories, such as feature-integration theory, cannot easily explain the existing data. The experimental evidence is more consistent with a "network" architecture, which stresses that: (1) feature modules are directly connected to one another, (2) features and their locations are represented together, (3) feature detection and integration are not distinct processing stages, and (4) no executive control process, such as focal attention, is needed to integrate features. Attention is not a spotlight that synthesizes objects from raw features. Instead, it is better to conceptualize attention as an aperture which masks irrelevant visual information.

  15. Ego depletion in visual perception: Ego-depleted viewers experience less ambiguous figure reversal.

    PubMed

    Wimmer, Marina C; Stirk, Steven; Hancock, Peter J B

    2017-10-01

    This study examined the effects of ego depletion on ambiguous figure perception. Adults (N = 315) received an ego depletion task and were subsequently tested on their inhibitory control abilities that were indexed by the Stroop task (Experiment 1) and their ability to perceive both interpretations of ambiguous figures that was indexed by reversal (Experiment 2). Ego depletion had a very small effect on reducing inhibitory control (Cohen's d = .15) (Experiment 1). Ego-depleted participants had a tendency to take longer to respond in Stroop trials. In Experiment 2, ego depletion had small to medium effects on the experience of reversal. Ego-depleted viewers tended to take longer to reverse ambiguous figures (duration to first reversal) when naïve of the ambiguity and experienced less reversal both when naïve and informed of the ambiguity. Together, findings suggest that ego depletion has small effects on inhibitory control and small to medium effects on bottom-up and top-down perceptual processes. The depletion of cognitive resources can reduce our visual perceptual experience.

  16. Goal-Directed Visual Processing Differentially Impacts Human Ventral and Dorsal Visual Representations

    PubMed Central

    2017-01-01

    Recent studies have challenged the ventral/“what” and dorsal/“where” two-visual-processing-pathway view by showing the existence of “what” and “where” information in both pathways. Is the two-pathway distinction still valid? Here, we examined how goal-directed visual information processing may differentially impact visual representations in these two pathways. Using fMRI and multivariate pattern analysis, in three experiments on human participants (57% females), by manipulating whether color or shape was task-relevant and how they were conjoined, we examined shape-based object category decoding in occipitotemporal and parietal regions. We found that object category representations in all the regions examined were influenced by whether or not object shape was task-relevant. This task effect, however, tended to decrease as task-relevant and irrelevant features were more integrated, reflecting the well-known object-based feature encoding. Interestingly, task relevance played a relatively minor role in driving the representational structures of early visual and ventral object regions. They were driven predominantly by variations in object shapes. In contrast, the effect of task was much greater in dorsal than ventral regions, with object category and task relevance both contributing significantly to the representational structures of the dorsal regions. These results showed that, whereas visual representations in the ventral pathway are more invariant and reflect “what an object is,” those in the dorsal pathway are more adaptive and reflect “what we do with it.” Thus, despite the existence of “what” and “where” information in both visual processing pathways, the two pathways may still differ fundamentally in their roles in visual information representation. SIGNIFICANCE STATEMENT Visual information is thought to be processed in two distinctive pathways: the ventral pathway that processes “what” an object is and the dorsal pathway

  17. Aesthetic perception of visual textures: a holistic exploration using texture analysis, psychological experiment, and perception modeling.

    PubMed

    Liu, Jianli; Lughofer, Edwin; Zeng, Xianyi

    2015-01-01

    Modeling human aesthetic perception of visual textures is important and valuable in numerous industrial domains, such as product design, architectural design, and decoration. Based on results from a semantic differential rating experiment, we modeled the relationship between low-level basic texture features and aesthetic properties involved in human aesthetic texture perception. First, we compute basic texture features from textural images using four classical methods. These features are neutral, objective, and independent of the socio-cultural context of the visual textures. Then, we conduct a semantic differential rating experiment to collect from evaluators their aesthetic perceptions of selected textural stimuli. In semantic differential rating experiment, eights pairs of aesthetic properties are chosen, which are strongly related to the socio-cultural context of the selected textures and to human emotions. They are easily understood and connected to everyday life. We propose a hierarchical feed-forward layer model of aesthetic texture perception and assign 8 pairs of aesthetic properties to different layers. Finally, we describe the generation of multiple linear and non-linear regression models for aesthetic prediction by taking dimensionality-reduced texture features and aesthetic properties of visual textures as dependent and independent variables, respectively. Our experimental results indicate that the relationships between each layer and its neighbors in the hierarchical feed-forward layer model of aesthetic texture perception can be fitted well by linear functions, and the models thus generated can successfully bridge the gap between computational texture features and aesthetic texture properties.

  18. Experiences in using DISCUS for visualizing human communication

    NASA Astrophysics Data System (ADS)

    Groehn, Matti; Nieminen, Marko; Haho, Paeivi; Smeds, Riitta

    2000-02-01

    In this paper, we present further improvement to the DISCUS software that can be used to record and analyze the flow and constants of business process simulation session discussion. The tool was initially introduced in 'visual data exploration and analysis IV' conference. The initial features of the tool enabled the visualization of discussion flow in business process simulation sessions and the creation of SOM analyses. The improvements of the tool consists of additional visualization possibilities that enable quick on-line analyses and improved graphical statistics. We have also created the very first interface to audio data and implemented two ways to visualize it. We also outline additional possibilities to use the tool in other application areas: these include usability testing and the possibility to use the tool for capturing design rationale in a product development process. The data gathered with DISCUS may be used in other applications, and further work may be done with data ming techniques.

  19. Hiding and finding: the relationship between visual concealment and visual search.

    PubMed

    Smilek, Daniel; Weinheimer, Laura; Kwan, Donna; Reynolds, Mike; Kingstone, Alan

    2009-11-01

    As an initial step toward developing a theory of visual concealment, we assessed whether people would use factors known to influence visual search difficulty when the degree of concealment of objects among distractors was varied. In Experiment 1, participants arranged search objects (shapes, emotional faces, and graphemes) to create displays in which the targets were in plain sight but were either easy or hard to find. Analyses of easy and hard displays created during Experiment 1 revealed that the participants reliably used factors known to influence search difficulty (e.g., eccentricity, target-distractor similarity, presence/absence of a feature) to vary the difficulty of search across displays. In Experiment 2, a new participant group searched for the targets in the displays created by the participants in Experiment 1. Results indicated that search was more difficult in the hard than in the easy condition. In Experiments 3 and 4, participants used presence versus absence of a feature to vary search difficulty with several novel stimulus sets. Taken together, the results reveal a close link between the factors that govern concealment and the factors known to influence search difficulty, suggesting that a visual search theory can be extended to form the basis of a theory of visual concealment.

  20. Early, but not late visual distractors affect movement synchronization to a temporal-spatial visual cue.

    PubMed

    Booth, Ashley J; Elliott, Mark T

    2015-01-01

    The ease of synchronizing movements to a rhythmic cue is dependent on the modality of the cue presentation: timing accuracy is much higher when synchronizing with discrete auditory rhythms than an equivalent visual stimulus presented through flashes. However, timing accuracy is improved if the visual cue presents spatial as well as temporal information (e.g., a dot following an oscillatory trajectory). Similarly, when synchronizing with an auditory target metronome in the presence of a second visual distracting metronome, the distraction is stronger when the visual cue contains spatial-temporal information rather than temporal only. The present study investigates individuals' ability to synchronize movements to a temporal-spatial visual cue in the presence of same-modality temporal-spatial distractors. Moreover, we investigated how increasing the number of distractor stimuli impacted on maintaining synchrony with the target cue. Participants made oscillatory vertical arm movements in time with a vertically oscillating white target dot centered on a large projection screen. The target dot was surrounded by 2, 8, or 14 distractor dots, which had an identical trajectory to the target but at a phase lead or lag of 0, 100, or 200 ms. We found participants' timing performance was only affected in the phase-lead conditions and when there were large numbers of distractors present (8 and 14). This asymmetry suggests participants still rely on salient events in the stimulus trajectory to synchronize movements. Subsequently, distractions occurring in the window of attention surrounding those events have the maximum impact on timing performance.