Sample records for early visual experience

  1. Cognitive load effects on early visual perceptual processing.

    PubMed

    Liu, Ping; Forte, Jason; Sewell, David; Carter, Olivia

    2018-05-01

    Contrast-based early visual processing has largely been considered to involve autonomous processes that do not need the support of cognitive resources. However, as spatial attention is known to modulate early visual perceptual processing, we explored whether cognitive load could similarly impact contrast-based perception. We used a dual-task paradigm to assess the impact of a concurrent working memory task on the performance of three different early visual tasks. The results from Experiment 1 suggest that cognitive load can modulate early visual processing. No effects of cognitive load were seen in Experiments 2 or 3. Together, the findings provide evidence that under some circumstances cognitive load effects can penetrate the early stages of visual processing and that higher cognitive function and early perceptual processing may not be as independent as was once thought.

  2. Resting-State Retinotopic Organization in the Absence of Retinal Input and Visual Experience

    PubMed Central

    Binda, Paola; Benson, Noah C.; Bridge, Holly; Watkins, Kate E.

    2015-01-01

    Early visual areas have neuronal receptive fields that form a sampling mosaic of visual space, resulting in a series of retinotopic maps in which the same region of space is represented in multiple visual areas. It is not clear to what extent the development and maintenance of this retinotopic organization in humans depend on retinal waves and/or visual experience. We examined the corticocortical receptive field organization of resting-state BOLD data in normally sighted, early blind, and anophthalmic (in which both eyes fail to develop) individuals and found that resting-state correlations between V1 and V2/V3 were retinotopically organized for all subject groups. These results show that the gross retinotopic pattern of resting-state connectivity across V1-V3 requires neither retinal waves nor visual experience to develop and persist into adulthood. SIGNIFICANCE STATEMENT Evidence from resting-state BOLD data suggests that the connections between early visual areas develop and are maintained even in the absence of retinal waves and visual experience. PMID:26354906

  3. Real-Time Strategy Video Game Experience and Visual Perceptual Learning.

    PubMed

    Kim, Yong-Hwan; Kang, Dong-Wha; Kim, Dongho; Kim, Hye-Jin; Sasaki, Yuka; Watanabe, Takeo

    2015-07-22

    Visual perceptual learning (VPL) is defined as long-term improvement in performance on a visual-perception task after visual experiences or training. Early studies have found that VPL is highly specific for the trained feature and location, suggesting that VPL is associated with changes in the early visual cortex. However, the generality of visual skills enhancement attributable to action video-game experience suggests that VPL can result from improvement in higher cognitive skills. If so, experience in real-time strategy (RTS) video-game play, which may heavily involve cognitive skills, may also facilitate VPL. To test this hypothesis, we compared VPL between RTS video-game players (VGPs) and non-VGPs (NVGPs) and elucidated underlying structural and functional neural mechanisms. Healthy young human subjects underwent six training sessions on a texture discrimination task. Diffusion-tensor and functional magnetic resonance imaging were performed before and after training. VGPs performed better than NVGPs in the early phase of training. White-matter connectivity between the right external capsule and visual cortex and neuronal activity in the right inferior frontal gyrus (IFG) and anterior cingulate cortex (ACC) were greater in VGPs than NVGPs and were significantly correlated with RTS video-game experience. In both VGPs and NVGPs, there was task-related neuronal activity in the right IFG, ACC, and striatum, which was strengthened after training. These results indicate that RTS video-game experience, associated with changes in higher-order cognitive functions and connectivity between visual and cognitive areas, facilitates VPL in early phases of training. The results support the hypothesis that VPL can occur without involvement of only visual areas. Significance statement: Although early studies found that visual perceptual learning (VPL) is associated with involvement of the visual cortex, generality of visual skills enhancement by action video-game experience suggests that higher-order cognition may be involved in VPL. If so, real-time strategy (RTS) video-game experience may facilitate VPL as a result of heavy involvement of cognitive skills. Here, we compared VPL between RTS video-game players (VGPs) and non-VGPs (NVGPs) and investigated the underlying neural mechanisms. VGPs showed better performance in the early phase of training on the texture discrimination task and greater level of neuronal activity in cognitive areas and structural connectivity between visual and cognitive areas than NVGPs. These results support the hypothesis that VPL can occur beyond the visual cortex. Copyright © 2015 the authors 0270-6474/15/3510485-08$15.00/0.

  4. Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind

    PubMed Central

    Kitada, Ryo; Okamoto, Yuko; Sasaki, Akihiro T.; Kochiyama, Takanori; Miyahara, Motohide; Lederman, Susan J.; Sadato, Norihiro

    2012-01-01

    Face perception is critical for social communication. Given its fundamental importance in the course of evolution, the innate neural mechanisms can anticipate the computations necessary for representing faces. However, the effect of visual deprivation on the formation of neural mechanisms that underlie face perception is largely unknown. We previously showed that sighted individuals can recognize basic facial expressions by haptics surprisingly well. Moreover, the inferior frontal gyrus (IFG) and posterior superior temporal sulcus (pSTS) in the sighted subjects are involved in haptic and visual recognition of facial expressions. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI) experiments to determine the nature of the neural representation that subserves the recognition of basic facial expressions in early blind individuals. In a psychophysical experiment, both early blind and sighted subjects haptically identified basic facial expressions at levels well above chance. In the subsequent fMRI experiment, both groups haptically identified facial expressions and shoe types (control). The sighted subjects then completed the same task visually. Within brain regions activated by the visual and haptic identification of facial expressions (relative to that of shoes) in the sighted group, corresponding haptic identification in the early blind activated regions in the inferior frontal and middle temporal gyri. These results suggest that the neural system that underlies the recognition of basic facial expressions develops supramodally even in the absence of early visual experience. PMID:23372547

  5. Early visual experience and the recognition of basic facial expressions: involvement of the middle temporal and inferior frontal gyri during haptic identification by the early blind.

    PubMed

    Kitada, Ryo; Okamoto, Yuko; Sasaki, Akihiro T; Kochiyama, Takanori; Miyahara, Motohide; Lederman, Susan J; Sadato, Norihiro

    2013-01-01

    Face perception is critical for social communication. Given its fundamental importance in the course of evolution, the innate neural mechanisms can anticipate the computations necessary for representing faces. However, the effect of visual deprivation on the formation of neural mechanisms that underlie face perception is largely unknown. We previously showed that sighted individuals can recognize basic facial expressions by haptics surprisingly well. Moreover, the inferior frontal gyrus (IFG) and posterior superior temporal sulcus (pSTS) in the sighted subjects are involved in haptic and visual recognition of facial expressions. Here, we conducted both psychophysical and functional magnetic-resonance imaging (fMRI) experiments to determine the nature of the neural representation that subserves the recognition of basic facial expressions in early blind individuals. In a psychophysical experiment, both early blind and sighted subjects haptically identified basic facial expressions at levels well above chance. In the subsequent fMRI experiment, both groups haptically identified facial expressions and shoe types (control). The sighted subjects then completed the same task visually. Within brain regions activated by the visual and haptic identification of facial expressions (relative to that of shoes) in the sighted group, corresponding haptic identification in the early blind activated regions in the inferior frontal and middle temporal gyri. These results suggest that the neural system that underlies the recognition of basic facial expressions develops supramodally even in the absence of early visual experience.

  6. Effects of visual attention on chromatic and achromatic detection sensitivities.

    PubMed

    Uchikawa, Keiji; Sato, Masayuki; Kuwamura, Keiko

    2014-05-01

    Visual attention has a significant effect on various visual functions, such as response time, detection and discrimination sensitivity, and color appearance. It has been suggested that visual attention may affect visual functions in the early visual pathways. In this study we examined selective effects of visual attention on sensitivities of the chromatic and achromatic pathways to clarify whether visual attention modifies responses in the early visual system. We used a dual task paradigm in which the observer detected a peripheral test stimulus presented at 4 deg eccentricities while the observer concurrently carried out an attention task in the central visual field. In experiment 1, it was confirmed that peripheral spectral sensitivities were reduced more for short and long wavelengths than for middle wavelengths with the central attention task so that the spectral sensitivity function changed its shape by visual attention. This indicated that visual attention affected the chromatic response more strongly than the achromatic response. In experiment 2 it was obtained that the detection thresholds increased in greater degrees in the red-green and yellow-blue chromatic directions than in the white-black achromatic direction in the dual task condition. In experiment 3 we showed that the peripheral threshold elevations depended on the combination of color-directions of the central and peripheral stimuli. Since the chromatic and achromatic responses were separately processed in the early visual pathways, the present results provided additional evidence that visual attention affects responses in the early visual pathways.

  7. Adequacy of the Regular Early Education Classroom Environment for Students with Visual Impairment

    ERIC Educational Resources Information Center

    Brown, Cherylee M.; Packer, Tanya L.; Passmore, Anne

    2013-01-01

    This study describes the classroom environment that students with visual impairment typically experience in regular Australian early education. Adequacy of the classroom environment (teacher training and experience, teacher support, parent involvement, adult involvement, inclusive attitude, individualization of the curriculum, physical…

  8. The onset of visual experience gates auditory cortex critical periods

    PubMed Central

    Mowery, Todd M.; Kotak, Vibhakar C.; Sanes, Dan H.

    2016-01-01

    Sensory systems influence one another during development and deprivation can lead to cross-modal plasticity. As auditory function begins before vision, we investigate the effect of manipulating visual experience during auditory cortex critical periods (CPs) by assessing the influence of early, normal and delayed eyelid opening on hearing loss-induced changes to membrane and inhibitory synaptic properties. Early eyelid opening closes the auditory cortex CPs precociously and dark rearing prevents this effect. In contrast, delayed eyelid opening extends the auditory cortex CPs by several additional days. The CP for recovery from hearing loss is also closed prematurely by early eyelid opening and extended by delayed eyelid opening. Furthermore, when coupled with transient hearing loss that animals normally fully recover from, very early visual experience leads to inhibitory deficits that persist into adulthood. Finally, we demonstrate a functional projection from the visual to auditory cortex that could mediate these effects. PMID:26786281

  9. Characteristics of Early Work Experiences and Their Association with Future Employment

    ERIC Educational Resources Information Center

    McDonnall, Michele Capella; O'Mally, Jamie

    2012-01-01

    Introduction: Early work experiences are a key predictor of future employment for transition-age youths with visual impairments. We investigated how specific characteristics of early work experiences influence future employment and whether the receipt of Supplemental Security Income (SSI) benefits is associated with early work experiences among…

  10. The Impact of Early Visual Deprivation on Spatial Hearing: A Comparison between Totally and Partially Visually Deprived Children

    PubMed Central

    Cappagli, Giulia; Finocchietti, Sara; Cocchi, Elena; Gori, Monica

    2017-01-01

    The specific role of early visual deprivation on spatial hearing is still unclear, mainly due to the difficulty of comparing similar spatial skills at different ages and to the difficulty in recruiting young blind children from birth. In this study, the effects of early visual deprivation on the development of auditory spatial localization have been assessed in a group of seven 3–5 years old children with congenital blindness (n = 2; light perception or no perception of light) or low vision (n = 5; visual acuity range 1.1–1.7 LogMAR), with the main aim to understand if visual experience is fundamental to the development of specific spatial skills. Our study led to three main findings: firstly, totally blind children performed overall more poorly compared sighted and low vision children in all the spatial tasks performed; secondly, low vision children performed equally or better than sighted children in the same auditory spatial tasks; thirdly, higher residual levels of visual acuity are positively correlated with better spatial performance in the dynamic condition of the auditory localization task indicating that the more residual vision the better spatial performance. These results suggest that early visual experience has an important role in the development of spatial cognition, even when the visual input during the critical period of visual calibration is partially degraded like in the case of low vision children. Overall these results shed light on the importance of early assessment of spatial impairments in visually impaired children and early intervention to prevent the risk of isolation and social exclusion. PMID:28443040

  11. The Effect of Early Visual Deprivation on the Development of Face Detection

    ERIC Educational Resources Information Center

    Mondloch, Catherine J.; Segalowitz, Sidney J.; Lewis, Terri L.; Dywan, Jane; Le Grand, Richard; Maurer, Daphne

    2013-01-01

    The expertise of adults in face perception is facilitated by their ability to rapidly detect that a stimulus is a face. In two experiments, we examined the role of early visual input in the development of face detection by testing patients who had been treated as infants for bilateral congenital cataract. Experiment 1 indicated that, at age 9 to…

  12. Memory for Complex Visual Objects but Not for Allocentric Locations during the First Year of Life

    ERIC Educational Resources Information Center

    Dupierrix, Eve; Hillairet de Boisferon, Anne; Barbeau, Emmanuel; Pascalis, Olivier

    2015-01-01

    Although human infants demonstrate early competence to retain visual information, memory capacities during infancy remain largely undocumented. In three experiments, we used a Visual Paired Comparison (VPC) task to examine abilities to encode identity (Experiment 1) and spatial properties (Experiments 2a and 2b) of unfamiliar complex visual…

  13. Increased regional cerebral blood flow but normal distribution of GABAA receptor in the visual cortex of subjects with early-onset blindness.

    PubMed

    Mishina, Masahiro; Senda, Michio; Kiyosawa, Motohiro; Ishiwata, Kiichi; De Volder, Anne G; Nakano, Hideki; Toyama, Hinako; Oda, Kei-ichi; Kimura, Yuichi; Ishii, Kenji; Sasaki, Touru; Ohyama, Masashi; Komaba, Yuichi; Kobayashi, Shirou; Kitamura, Shin; Katayama, Yasuo

    2003-05-01

    Before the completion of visual development, visual deprivation impairs synaptic elimination in the visual cortex. The purpose of this study was to determine whether the distribution of central benzodiazepine receptor (BZR) is also altered in the visual cortex in subjects with early-onset blindness. Positron emission tomography was carried out with [(15)O]water and [(11)C]flumazenil on six blind subjects and seven sighted controls at rest. We found that the CBF was significantly higher in the visual cortex for the early-onset blind subjects than for the sighted control subjects. However, there was no significant difference in the BZR distribution in the visual cortex for the subject with early-onset blindness than for the sighted control subjects. These results demonstrated that early visual deprivation does not affect the distribution of GABA(A) receptors in the visual cortex with the sensitivity of our measurements. Synaptic elimination may be independent of visual experience in the GABAergic system of the human visual cortex during visual development.

  14. Conversational Pedagogy: Exploring Interactions between a Teaching Artist and Young Learners during Visual Arts Experiences

    ERIC Educational Resources Information Center

    Eckhoff, Angela

    2013-01-01

    In many early childhood classrooms, visual arts experiences occur around a communal arts table. A shared workspace allows for spontaneous conversation and exploration of the art-making process of peers and teachers. In this setting, conversation can play an important role in visual arts experiences as children explore new media, skills, and ideas.…

  15. Athletic training in badminton players modulates the early C1 component of visual evoked potentials: a preliminary investigation.

    PubMed

    Jin, Hua; Xu, Guiping; Zhang, John X; Ye, Zuoer; Wang, Shufang; Zhao, Lun; Lin, Chong-De; Mo, Lei

    2010-12-01

    One basic question in brain plasticity research is whether individual life experience in the normal population can affect very early sensory-perceptual processing. Athletes provide a possible model to explore plasticity of the visual cortex as athletic training in confrontational ball games is quite often accompanied by training of the visual system. We asked professional badminton players to watch video clips related to their training experience and predict where the ball would land and examined whether they differed from non-player controls in the elicited C1, a visual evoked potential indexing V1 activity. Compared with controls, the players made judgments significantly more accurately, albeit not faster. An early ERP component peaking around 65 ms post-stimulus with a scalp topography centering at the occipital pole (electrode Oz) was observed in both groups and interpreted as the C1 component. With comparable latency, amplitudes of this component were significantly enhanced for the players than for the non-players, suggesting that it can be modulated by long-term physical training. The results present a clear case of experience-induced brain plasticity in primary visual cortex for very early sensory processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Visual cortex activity predicts subjective experience after reading books with colored letters.

    PubMed

    Colizoli, Olympia; Murre, Jaap M J; Scholte, H Steven; van Es, Daniel M; Knapen, Tomas; Rouw, Romke

    2016-07-29

    One of the most astonishing properties of synesthesia is that the evoked concurrent experiences are perceptual. Is it possible to acquire similar effects after learning cross-modal associations that resemble synesthetic mappings? In this study, we examine whether brain activation in early visual areas can be directly related to letter-color associations acquired by training. Non-synesthetes read specially prepared books with colored letters for several weeks and were scanned using functional magnetic resonance imaging. If the acquired letter-color associations were visual in nature, then brain activation in visual cortex while viewing the trained black letters (compared to untrained black letters) should predict the strength of the associations, the quality of the color experience, or the vividness of visual mental imagery. Results showed that training-related activation of area V4 was correlated with differences in reported subjective color experience. Trainees who were classified as having stronger 'associator' types of color experiences also had more negative activation for trained compared to untrained achromatic letters in area V4. In contrast, the strength of the acquired associations (measured as the Stroop effect) was not reliably reflected in visual cortex activity. The reported vividness of visual mental imagery was related to veridical color activation in early visual cortex, but not to the acquired color associations. We show for the first time that subjective experience related to a synesthesia-training paradigm was reflected in visual brain activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Cortical activation during Braille reading is influenced by early visual experience in subjects with severe visual disability: a correlational fMRI study.

    PubMed

    Melzer, P; Morgan, V L; Pickens, D R; Price, R R; Wall, R S; Ebner, F F

    2001-11-01

    Functional magnetic resonance imaging was performed on blind adults resting and reading Braille. The strongest activation was found in primary somatic sensory/motor cortex on both cortical hemispheres. Additional foci of activation were situated in the parietal, temporal, and occipital lobes where visual information is processed in sighted persons. The regions were differentiated most in the correlation of their time courses of activation with resting and reading. Differences in magnitude and expanse of activation were substantially less significant. Among the traditionally visual areas, the strength of correlation was greatest in posterior parietal cortex and moderate in occipitotemporal, lateral occipital, and primary visual cortex. It was low in secondary visual cortex as well as in dorsal and ventral inferior temporal cortex and posterior middle temporal cortex. Visual experience increased the strength of correlation in all regions except dorsal inferior temporal and posterior parietal cortex. The greatest statistically significant increase, i.e., approximately 30%, was in ventral inferior temporal and posterior middle temporal cortex. In these regions, words are analyzed semantically, which may be facilitated by visual experience. In contrast, visual experience resulted in a slight, insignificant diminution of the strength of correlation in dorsal inferior temporal cortex where language is analyzed phonetically. These findings affirm that posterior temporal regions are engaged in the processing of written language. Moreover, they suggest that this function is modified by early visual experience. Furthermore, visual experience significantly strengthened the correlation of activation and Braille reading in occipital regions traditionally involved in the processing of visual features and object recognition suggesting a role for visual imagery. Copyright 2001 Wiley-Liss, Inc.

  18. Modification of visual function by early visual experience.

    PubMed

    Blakemore, C

    1976-07-01

    Physiological experiments, involving recording from the visual cortex in young kittens and monkeys, have given new insight into human developmental disorders. In the visual cortex of normal cats and monkeys most neurones are selectively sensitive to the orientation of moving edges and they receive very similar signals from both eyes. Even in very young kittens without visual experience, most neurones are binocularly driven and a small proportion of them are genuinely orientation selective. There is no passive maturation of the system in the absence of visual experience, but even very brief exposure to patterned images produces rapid emergence of the adult organization. These results are compared to observations on humans who have "recovered" from early blindness. Covering one eye in a kitten or a monkey, during a sensitive period early in life, produces a virtually complete loss of input from that eye in the cortex. These results can be correlated with the production of "stimulus deprivation amblyopia" in infants who have had one eye patched. Induction of a strabismus causes a loss of binocularity in the visual cortex, and in humans it leads to a loss of stereoscopic vision and binocular fusion. Exposing kittens to lines of one orientation modifies the preferred orientations of cortical cells and there is an analogous "meridional amblyopia" in astigmatic humans. The existence of a sensitive period in human vision is discussed, as well as the possibility of designing remedial and preventive treatments for human developmental disorders.

  19. Prosodic Phonological Representations Early in Visual Word Recognition

    ERIC Educational Resources Information Center

    Ashby, Jane; Martin, Andrea E.

    2008-01-01

    Two experiments examined the nature of the phonological representations used during visual word recognition. We tested whether a minimality constraint (R. Frost, 1998) limits the complexity of early representations to a simple string of phonemes. Alternatively, readers might activate elaborated representations that include prosodic syllable…

  20. Long-Lasting Crossmodal Cortical Reorganization Triggered by Brief Postnatal Visual Deprivation.

    PubMed

    Collignon, Olivier; Dormal, Giulia; de Heering, Adelaide; Lepore, Franco; Lewis, Terri L; Maurer, Daphne

    2015-09-21

    Animal and human studies have demonstrated that transient visual deprivation early in life, even for a very short period, permanently alters the response properties of neurons in the visual cortex and leads to corresponding behavioral visual deficits. While it is acknowledged that early-onset and longstanding blindness leads the occipital cortex to respond to non-visual stimulation, it remains unknown whether a short and transient period of postnatal visual deprivation is sufficient to trigger crossmodal reorganization that persists after years of visual experience. In the present study, we characterized brain responses to auditory stimuli in 11 adults who had been deprived of all patterned vision at birth by congenital cataracts in both eyes until they were treated at 9 to 238 days of age. When compared to controls with typical visual experience, the cataract-reversal group showed enhanced auditory-driven activity in focal visual regions. A combination of dynamic causal modeling with Bayesian model selection indicated that this auditory-driven activity in the occipital cortex was better explained by direct cortico-cortical connections with the primary auditory cortex than by subcortical connections. Thus, a short and transient period of visual deprivation early in life leads to enduring large-scale crossmodal reorganization of the brain circuitry typically dedicated to vision. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Is nevtral NEUTRAL? Visual similarity effects in the early phases of written-word recognition.

    PubMed

    Marcet, Ana; Perea, Manuel

    2017-08-01

    For simplicity, contemporary models of written-word recognition and reading have unspecified feature/letter levels-they predict that the visually similar substituted-letter nonword PEQPLE is as effective at activating the word PEOPLE as the visually dissimilar substituted-letter nonword PEYPLE. Previous empirical evidence on the effects of visual similarly across letters during written-word recognition is scarce and nonconclusive. To examine whether visual similarity across letters plays a role early in word processing, we conducted two masked priming lexical decision experiments (stimulus-onset asynchrony = 50 ms). The substituted-letter primes were visually very similar to the target letters (u/v in Experiment 1 and i/j in Experiment 2; e.g., nevtral-NEUTRAL). For comparison purposes, we included an identity prime condition (neutral-NEUTRAL) and a dissimilar-letter prime condition (neztral-NEUTRAL). Results showed that the similar-letter prime condition produced faster word identification times than the dissimilar-letter prime condition. We discuss how models of written-word recognition should be amended to capture visual similarity effects across letters.

  2. Acquiring skill at medical image inspection: learning localized in early visual processes

    NASA Astrophysics Data System (ADS)

    Sowden, Paul T.; Davies, Ian R. L.; Roling, Penny; Watt, Simon J.

    1997-04-01

    Acquisition of the skill of medical image inspection could be due to changes in visual search processes, 'low-level' sensory learning, and higher level 'conceptual learning.' Here, we report two studies that investigate the extent to which learning in medical image inspection involves low- level learning. Early in the visual processing pathway cells are selective for direction of luminance contrast. We exploit this in the present studies by using transfer across direction of contrast as a 'marker' to indicate the level of processing at which learning occurs. In both studies twelve observers trained for four days at detecting features in x- ray images (experiment one equals discs in the Nijmegen phantom, experiment two equals micro-calcification clusters in digitized mammograms). Half the observers examined negative luminance contrast versions of the images and the remainder examined positive contrast versions. On the fifth day, observers swapped to inspect their respective opposite contrast images. In both experiments leaning occurred across sessions. In experiment one, learning did not transfer across direction of luminance contrast, while in experiment two there was only partial transfer. These findings are consistent with the contention that some of the leaning was localized early in the visual processing pathway. The implications of these results for current medical image inspection training schedules are discussed.

  3. Neural correlates of audiovisual integration in music reading.

    PubMed

    Nichols, Emily S; Grahn, Jessica A

    2016-10-01

    Integration of auditory and visual information is important to both language and music. In the linguistic domain, audiovisual integration alters event-related potentials (ERPs) at early stages of processing (the mismatch negativity (MMN)) as well as later stages (P300(Andres et al., 2011)). However, the role of experience in audiovisual integration is unclear, as reading experience is generally confounded with developmental stage. Here we tested whether audiovisual integration of music appears similar to reading, and how musical experience altered integration. We compared brain responses in musicians and non-musicians on an auditory pitch-interval oddball task that evoked the MMN and P300, while manipulating whether visual pitch-interval information was congruent or incongruent with the auditory information. We predicted that the MMN and P300 would be largest when both auditory and visual stimuli deviated, because audiovisual integration would increase the neural response when the deviants were congruent. The results indicated that scalp topography differed between musicians and non-musicians for both the MMN and P300 response to deviants. Interestingly, musicians' musical training modulated integration of congruent deviants at both early and late stages of processing. We propose that early in the processing stream, visual information may guide interpretation of auditory information, leading to a larger MMN when auditory and visual information mismatch. At later attentional stages, integration of the auditory and visual stimuli leads to a larger P300 amplitude. Thus, experience with musical visual notation shapes the way the brain integrates abstract sound-symbol pairings, suggesting that musicians can indeed inform us about the role of experience in audiovisual integration. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Adult Visual Experience Promotes Recovery of Primary Visual Cortex from Long-Term Monocular Deprivation

    ERIC Educational Resources Information Center

    Fischer, Quentin S.; Aleem, Salman; Zhou, Hongyi; Pham, Tony A.

    2007-01-01

    Prolonged visual deprivation from early childhood to maturity is believed to cause permanent visual impairment. However, there have been case reports of substantial improvement of binocular vision in human adults following lifelong visual impairment or deprivation. These observations, together with recent findings of adult ocular dominance…

  5. Experience-dependent plasticity from eye opening enables lasting, visual cortex-dependent enhancement of motion vision.

    PubMed

    Prusky, Glen T; Silver, Byron D; Tschetter, Wayne W; Alam, Nazia M; Douglas, Robert M

    2008-09-24

    Developmentally regulated plasticity of vision has generally been associated with "sensitive" or "critical" periods in juvenile life, wherein visual deprivation leads to loss of visual function. Here we report an enabling form of visual plasticity that commences in infant rats from eye opening, in which daily threshold testing of optokinetic tracking, amid otherwise normal visual experience, stimulates enduring, visual cortex-dependent enhancement (>60%) of the spatial frequency threshold for tracking. The perceptual ability to use spatial frequency in discriminating between moving visual stimuli is also improved by the testing experience. The capacity for inducing enhancement is transitory and effectively limited to infancy; however, enhanced responses are not consolidated and maintained unless in-kind testing experience continues uninterrupted into juvenile life. The data show that selective visual experience from infancy can alone enable visual function. They also indicate that plasticity associated with visual deprivation may not be the only cause of developmental visual dysfunction, because we found that experientially inducing enhancement in late infancy, without subsequent reinforcement of the experience in early juvenile life, can lead to enduring loss of function.

  6. Early Decomposition in Visual Word Recognition: Dissociating Morphology, Form, and Meaning

    ERIC Educational Resources Information Center

    Marslen-Wilson, William D.; Bozic, Mirjana; Randall, Billi

    2008-01-01

    The role of morphological, semantic, and form-based factors in the early stages of visual word recognition was investigated across different SOAs in a masked priming paradigm, focusing on English derivational morphology. In a first set of experiments, stimulus pairs co-varying in morphological decomposability and in semantic and orthographic…

  7. Asymmetrical Interhemispheric Connections Develop in Cat Visual Cortex after Early Unilateral Convergent Strabismus: Anatomy, Physiology, and Mechanisms

    PubMed Central

    Bui Quoc, Emmanuel; Ribot, Jérôme; Quenech’Du, Nicole; Doutremer, Suzette; Lebas, Nicolas; Grantyn, Alexej; Aushana, Yonane; Milleret, Chantal

    2011-01-01

    In the mammalian primary visual cortex, the corpus callosum contributes to the unification of the visual hemifields that project to the two hemispheres. Its development depends on visual experience. When this is abnormal, callosal connections must undergo dramatic anatomical and physiological changes. However, data concerning these changes are sparse and incomplete. Thus, little is known about the impact of abnormal postnatal visual experience on the development of callosal connections and their role in unifying representation of the two hemifields. Here, the effects of early unilateral convergent strabismus (a model of abnormal visual experience) were fully characterized with respect to the development of the callosal connections in cat visual cortex, an experimental model for humans. Electrophysiological responses and 3D reconstruction of single callosal axons show that abnormally asymmetrical callosal connections develop after unilateral convergent strabismus, resulting from an extension of axonal branches of specific orders in the hemisphere ipsilateral to the deviated eye and a decreased number of nodes and terminals in the other (ipsilateral to the non-deviated eye). Furthermore this asymmetrical organization prevents the establishment of a unifying representation of the two visual hemifields. As a general rule, we suggest that crossed and uncrossed retino-geniculo-cortical pathways contribute successively to the development of the callosal maps in visual cortex. PMID:22275883

  8. Visual Arts for Emotionally Handicapped Early Adolescents Theory and Resultant Guidelines.

    ERIC Educational Resources Information Center

    Shields, Roscoe, Jr.

    The paper discusses the theory and implementation guidelines of a visual arts curriculum for emotionally handicapped adolescents. The author stresses the importance of expressive arts and of identification with the art experience, and suggests that a curriculum should start with themes, experiences, and ideas worth communicating. Expressive…

  9. Changes in Visual Object Recognition Precede the Shape Bias in Early Noun Learning

    PubMed Central

    Yee, Meagan; Jones, Susan S.; Smith, Linda B.

    2012-01-01

    Two of the most formidable skills that characterize human beings are language and our prowess in visual object recognition. They may also be developmentally intertwined. Two experiments, a large sample cross-sectional study and a smaller sample 6-month longitudinal study of 18- to 24-month-olds, tested a hypothesized developmental link between changes in visual object representation and noun learning. Previous findings in visual object recognition indicate that children’s ability to recognize common basic level categories from sparse structural shape representations of object shape emerges between the ages of 18 and 24 months, is related to noun vocabulary size, and is lacking in children with language delay. Other research shows in artificial noun learning tasks that during this same developmental period, young children systematically generalize object names by shape, that this shape bias predicts future noun learning, and is lacking in children with language delay. The two experiments examine the developmental relation between visual object recognition and the shape bias for the first time. The results show that developmental changes in visual object recognition systematically precede the emergence of the shape bias. The results suggest a developmental pathway in which early changes in visual object recognition that are themselves linked to category learning enable the discovery of higher-order regularities in category structure and thus the shape bias in novel noun learning tasks. The proposed developmental pathway has implications for understanding the role of specific experience in the development of both visual object recognition and the shape bias in early noun learning. PMID:23227015

  10. Reduced adaptability, but no fundamental disruption, of norm-based face coding following early visual deprivation from congenital cataracts.

    PubMed

    Rhodes, Gillian; Nishimura, Mayu; de Heering, Adelaide; Jeffery, Linda; Maurer, Daphne

    2017-05-01

    Faces are adaptively coded relative to visual norms that are updated by experience, and this adaptive coding is linked to face recognition ability. Here we investigated whether adaptive coding of faces is disrupted in individuals (adolescents and adults) who experience face recognition difficulties following visual deprivation from congenital cataracts in infancy. We measured adaptive coding using face identity aftereffects, where smaller aftereffects indicate less adaptive updating of face-coding mechanisms by experience. We also examined whether the aftereffects increase with adaptor identity strength, consistent with norm-based coding of identity, as in typical populations, or whether they show a different pattern indicating some more fundamental disruption of face-coding mechanisms. Cataract-reversal patients showed significantly smaller face identity aftereffects than did controls (Experiments 1 and 2). However, their aftereffects increased significantly with adaptor strength, consistent with norm-based coding (Experiment 2). Thus we found reduced adaptability but no fundamental disruption of norm-based face-coding mechanisms in cataract-reversal patients. Our results suggest that early visual experience is important for the normal development of adaptive face-coding mechanisms. © 2016 John Wiley & Sons Ltd.

  11. Estimation of the Horizon in Photographed Outdoor Scenes by Human and Machine

    PubMed Central

    Herdtweck, Christian; Wallraven, Christian

    2013-01-01

    We present three experiments on horizon estimation. In Experiment 1 we verify the human ability to estimate the horizon in static images from only visual input. Estimates are given without time constraints with emphasis on precision. The resulting estimates are used as baseline to evaluate horizon estimates from early visual processes. Stimuli are presented for only ms and then masked to purge visual short-term memory and enforcing estimates to rely on early processes, only. The high agreement between estimates and the lack of a training effect shows that enough information about viewpoint is extracted in the first few hundred milliseconds to make accurate horizon estimation possible. In Experiment 3 we investigate several strategies to estimate the horizon in the computer and compare human with machine “behavior” for different image manipulations and image scene types. PMID:24349073

  12. The role of visual deprivation and experience on the performance of sensory substitution devices.

    PubMed

    Stronks, H Christiaan; Nau, Amy C; Ibbotson, Michael R; Barnes, Nick

    2015-10-22

    It is commonly accepted that the blind can partially compensate for their loss of vision by developing enhanced abilities with their remaining senses. This visual compensation may be related to the fact that blind people rely on their other senses in everyday life. Many studies have indeed shown that experience plays an important role in visual compensation. Numerous neuroimaging studies have shown that the visual cortices of the blind are recruited by other functional brain areas and can become responsive to tactile or auditory input instead. These cross-modal plastic changes are more pronounced in the early blind compared to late blind individuals. The functional consequences of cross-modal plasticity on visual compensation in the blind are debated, as are the influences of various etiologies of vision loss (i.e., blindness acquired early or late in life). Distinguishing between the influences of experience and visual deprivation on compensation is especially relevant for rehabilitation of the blind with sensory substitution devices. The BrainPort artificial vision device and The vOICe are assistive devices for the blind that redirect visual information to another intact sensory system. Establishing how experience and different etiologies of vision loss affect the performance of these devices may help to improve existing rehabilitation strategies, formulate effective selection criteria and develop prognostic measures. In this review we will discuss studies that investigated the influence of training and visual deprivation on the performance of various sensory substitution approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Absence of visual experience modifies the neural basis of numerical thinking.

    PubMed

    Kanjlia, Shipra; Lane, Connor; Feigenson, Lisa; Bedny, Marina

    2016-10-04

    In humans, the ability to reason about mathematical quantities depends on a frontoparietal network that includes the intraparietal sulcus (IPS). How do nature and nurture give rise to the neurobiology of numerical cognition? We asked how visual experience shapes the neural basis of numerical thinking by studying numerical cognition in congenitally blind individuals. Blind (n = 17) and blindfolded sighted (n = 19) participants solved math equations that varied in difficulty (e.g., 27 - 12 = x vs. 7 - 2 = x), and performed a control sentence comprehension task while undergoing fMRI. Whole-cortex analyses revealed that in both blind and sighted participants, the IPS and dorsolateral prefrontal cortices were more active during the math task than the language task, and activity in the IPS increased parametrically with equation difficulty. Thus, the classic frontoparietal number network is preserved in the total absence of visual experience. However, surprisingly, blind but not sighted individuals additionally recruited a subset of early visual areas during symbolic math calculation. The functional profile of these "visual" regions was identical to that of the IPS in blind but not sighted individuals. Furthermore, in blindness, number-responsive visual cortices exhibited increased functional connectivity with prefrontal and IPS regions that process numbers. We conclude that the frontoparietal number network develops independently of visual experience. In blindness, this number network colonizes parts of deafferented visual cortex. These results suggest that human cortex is highly functionally flexible early in life, and point to frontoparietal input as a mechanism of cross-modal plasticity in blindness.

  14. Sparing of Sensitivity to Biological Motion but Not of Global Motion after Early Visual Deprivation

    ERIC Educational Resources Information Center

    Hadad, Bat-Sheva; Maurer, Daphne; Lewis, Terri L.

    2012-01-01

    Patients deprived of visual experience during infancy by dense bilateral congenital cataracts later show marked deficits in the perception of global motion (dorsal visual stream) and global form (ventral visual stream). We expected that they would also show marked deficits in sensitivity to biological motion, which is normally processed in the…

  15. Visual Search in Typically Developing Toddlers and Toddlers with Fragile X or Williams Syndrome

    ERIC Educational Resources Information Center

    Scerif, Gaia; Cornish, Kim; Wilding, John; Driver, Jon; Karmiloff-Smith, Annette

    2004-01-01

    Visual selective attention is the ability to attend to relevant visual information and ignore irrelevant stimuli. Little is known about its typical and atypical development in early childhood. Experiment 1 investigates typically developing toddlers' visual search for multiple targets on a touch-screen. Time to hit a target, distance between…

  16. Saliency affects feedforward more than feedback processing in early visual cortex.

    PubMed

    Emmanouil, Tatiana Aloi; Avigan, Philip; Persuh, Marjan; Ro, Tony

    2013-07-01

    Early visual cortex activity is influenced by both bottom-up and top-down factors. To investigate the influences of bottom-up (saliency) and top-down (task) factors on different stages of visual processing, we used transcranial magnetic stimulation (TMS) of areas V1/V2 to induce visual suppression at varying temporal intervals. Subjects were asked to detect and discriminate the color or the orientation of briefly-presented small lines that varied on color saliency based on color contrast with the surround. Regardless of task, color saliency modulated the magnitude of TMS-induced visual suppression, especially at earlier temporal processing intervals that reflect the feedforward stage of visual processing in V1/V2. In a second experiment we found that our color saliency effects were also influenced by an inherent advantage of the color red relative to other hues and that color discrimination difficulty did not affect visual suppression. These results support the notion that early visual processing is stimulus driven and that feedforward and feedback processing encode different types of information about visual scenes. They further suggest that certain hues can be prioritized over others within our visual systems by being more robustly represented during early temporal processing intervals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Visual Processing Deficits in Children with Slow RAN Performance

    ERIC Educational Resources Information Center

    Stainthorp, Rhona; Stuart, Morag; Powell, Daisy; Quinlan, Philip; Garwood, Holly

    2010-01-01

    Two groups of 8- to 10-year-olds differing in rapid automatized naming speed but matched for age, verbal and nonverbal ability, phonological awareness, phonological memory, and visual acuity participated in four experiments investigating early visual processing. As low RAN children had significantly slower simple reaction times (SRT) this was…

  18. Electrophysiological evidence for biased competition in V1 for fear expressions.

    PubMed

    West, Greg L; Anderson, Adam A K; Ferber, Susanne; Pratt, Jay

    2011-11-01

    When multiple stimuli are concurrently displayed in the visual field, they must compete for neural representation at the processing expense of their contemporaries. This biased competition is thought to begin as early as primary visual cortex, and can be driven by salient low-level stimulus features. Stimuli important for an organism's survival, such as facial expressions signaling environmental threat, might be similarly prioritized at this early stage of visual processing. In the present study, we used ERP recordings from striate cortex to examine whether fear expressions can bias the competition for neural representation at the earliest stage of retinotopic visuo-cortical processing when in direct competition with concurrently presented visual information of neutral valence. We found that within 50 msec after stimulus onset, information processing in primary visual cortex is biased in favor of perceptual representations of fear at the expense of competing visual information (Experiment 1). Additional experiments confirmed that the facial display's emotional content rather than low-level features is responsible for this prioritization in V1 (Experiment 2), and that this competition is reliant on a face's upright canonical orientation (Experiment 3). These results suggest that complex stimuli important for an organism's survival can indeed be prioritized at the earliest stage of cortical processing at the expense of competing information, with competition possibly beginning before encoding in V1.

  19. Varieties of cognitive penetration in visual perception.

    PubMed

    Vetter, Petra; Newen, Albert

    2014-07-01

    Is our perceptual experience a veridical representation of the world or is it a product of our beliefs and past experiences? Cognitive penetration describes the influence of higher level cognitive factors on perceptual experience and has been a debated topic in philosophy of mind and cognitive science. Here, we focus on visual perception, particularly early vision, and how it is affected by contextual expectations and memorized cognitive contents. We argue for cognitive penetration based on recent empirical evidence demonstrating contextual and top-down influences on early visual processes. On the basis of a perceptual model, we propose different types of cognitive penetration depending on the processing level on which the penetration happens and depending on where the penetrating influence comes from. Our proposal has two consequences: (1) the traditional controversy on whether cognitive penetration occurs or not is ill posed, and (2) a clear-cut perception-cognition boundary cannot be maintained. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Evidence for unlimited capacity processing of simple features in visual cortex

    PubMed Central

    White, Alex L.; Runeson, Erik; Palmer, John; Ernst, Zachary R.; Boynton, Geoffrey M.

    2017-01-01

    Performance in many visual tasks is impaired when observers attempt to divide spatial attention across multiple visual field locations. Correspondingly, neuronal response magnitudes in visual cortex are often reduced during divided compared with focused spatial attention. This suggests that early visual cortex is the site of capacity limits, where finite processing resources must be divided among attended stimuli. However, behavioral research demonstrates that not all visual tasks suffer such capacity limits: The costs of divided attention are minimal when the task and stimulus are simple, such as when searching for a target defined by orientation or contrast. To date, however, every neuroimaging study of divided attention has used more complex tasks and found large reductions in response magnitude. We bridged that gap by using functional magnetic resonance imaging to measure responses in the human visual cortex during simple feature detection. The first experiment used a visual search task: Observers detected a low-contrast Gabor patch within one or four potentially relevant locations. The second experiment used a dual-task design, in which observers made independent judgments of Gabor presence in patches of dynamic noise at two locations. In both experiments, blood-oxygen level–dependent (BOLD) signals in the retinotopic cortex were significantly lower for ignored than attended stimuli. However, when observers divided attention between multiple stimuli, BOLD signals were not reliably reduced and behavioral performance was unimpaired. These results suggest that processing of simple features in early visual cortex has unlimited capacity. PMID:28654964

  1. Theta Oscillations in Visual Cortex Emerge with Experience to Convey Expected Reward Time and Experienced Reward Rate

    PubMed Central

    Zold, Camila L.

    2015-01-01

    The primary visual cortex (V1) is widely regarded as faithfully conveying the physical properties of visual stimuli. Thus, experience-induced changes in V1 are often interpreted as improving visual perception (i.e., perceptual learning). Here we describe how, with experience, cue-evoked oscillations emerge in V1 to convey expected reward time as well as to relate experienced reward rate. We show, in chronic multisite local field potential recordings from rat V1, that repeated presentation of visual cues induces the emergence of visually evoked oscillatory activity. Early in training, the visually evoked oscillations relate to the physical parameters of the stimuli. However, with training, the oscillations evolve to relate the time in which those stimuli foretell expected reward. Moreover, the oscillation prevalence reflects the reward rate recently experienced by the animal. Thus, training induces experience-dependent changes in V1 activity that relate to what those stimuli have come to signify behaviorally: when to expect future reward and at what rate. PMID:26134643

  2. Using the Workforce Investment Act of 1998 to Benefit Youth with Blindness and Visual Impairment

    ERIC Educational Resources Information Center

    Mitchell, Patrick J.; Zampitella-Freese, Christina

    2003-01-01

    Overbrook School for the Blind (OSB), a specialized school serving students with blindness and visual impairment, has provided, since the early 1990s, paid summer work experiences as part of the school's Work Experience Program. In this article, the authors discuss how OSB has strengthened its original program as a result of the Workforce…

  3. Experience-Dependent Hemispheric Specialization of Letters and Numbers is Revealed in Early Visual Processing

    PubMed Central

    Park, Joonkoo; Chiang, Crystal; Brannon, Elizabeth M.; Woldorff, Marty G.

    2014-01-01

    Recent functional magnetic resonance imaging research has demonstrated that letters and numbers are preferentially processed in distinct regions and hemispheres in the visual cortex. In particular, the left visual cortex preferentially processes letters compared to numbers, while the right visual cortex preferentially processes numbers compared to letters. Because letters and numbers are cultural inventions and are otherwise physically arbitrary, such a double dissociation is strong evidence for experiential effects on neural architecture. Here, we use the high temporal resolution of event-related potentials (ERPs) to investigate the temporal dynamics of the neural dissociation between letters and numbers. We show that the divergence between ERP traces to letters and numbers emerges very early in processing. Letters evoked greater N1 waves (latencies 140–170 ms) than did numbers over left occipital channels, while numbers evoked greater N1s than letters over the right, suggesting letters and numbers are preferentially processed in opposite hemispheres early in visual encoding. Moreover, strings of letters, but not single letters, elicited greater P2 ERP waves, (starting around 250 ms) than numbers did over the left hemisphere, suggesting that the visual cortex is tuned to selectively process combinations of letters, but not numbers, further along in the visual processing stream. Additionally, the processing of both of these culturally defined stimulus types differentiated from similar but unfamiliar visual stimulus forms (false fonts) even earlier in the processing stream (the P1 at 100 ms). These findings imply major cortical specialization processes within the visual system driven by experience with reading and mathematics. PMID:24669789

  4. Experience-dependent hemispheric specialization of letters and numbers is revealed in early visual processing.

    PubMed

    Park, Joonkoo; Chiang, Crystal; Brannon, Elizabeth M; Woldorff, Marty G

    2014-10-01

    Recent fMRI research has demonstrated that letters and numbers are preferentially processed in distinct regions and hemispheres in the visual cortex. In particular, the left visual cortex preferentially processes letters compared with numbers, whereas the right visual cortex preferentially processes numbers compared with letters. Because letters and numbers are cultural inventions and are otherwise physically arbitrary, such a double dissociation is strong evidence for experiential effects on neural architecture. Here, we use the high temporal resolution of ERPs to investigate the temporal dynamics of the neural dissociation between letters and numbers. We show that the divergence between ERP traces to letters and numbers emerges very early in processing. Letters evoked greater N1 waves (latencies 140-170 msec) than did numbers over left occipital channels, whereas numbers evoked greater N1s than letters over the right, suggesting letters and numbers are preferentially processed in opposite hemispheres early in visual encoding. Moreover, strings of letters, but not single letters, elicited greater P2 ERP waves (starting around 250 msec) than numbers did over the left hemisphere, suggesting that the visual cortex is tuned to selectively process combinations of letters, but not numbers, further along in the visual processing stream. Additionally, the processing of both of these culturally defined stimulus types differentiated from similar but unfamiliar visual stimulus forms (false fonts) even earlier in the processing stream (the P1 at 100 msec). These findings imply major cortical specialization processes within the visual system driven by experience with reading and mathematics.

  5. Early Sign Language Experience Goes Along with an Increased Cross-modal Gain for Affective Prosodic Recognition in Congenitally Deaf CI Users.

    PubMed

    Fengler, Ineke; Delfau, Pia-Céline; Röder, Brigitte

    2018-04-01

    It is yet unclear whether congenitally deaf cochlear implant (CD CI) users' visual and multisensory emotion perception is influenced by their history in sign language acquisition. We hypothesized that early-signing CD CI users, relative to late-signing CD CI users and hearing, non-signing controls, show better facial expression recognition and rely more on the facial cues of audio-visual emotional stimuli. Two groups of young adult CD CI users-early signers (ES CI users; n = 11) and late signers (LS CI users; n = 10)-and a group of hearing, non-signing, age-matched controls (n = 12) performed an emotion recognition task with auditory, visual, and cross-modal emotionally congruent and incongruent speech stimuli. On different trials, participants categorized either the facial or the vocal expressions. The ES CI users more accurately recognized affective prosody than the LS CI users in the presence of congruent facial information. Furthermore, the ES CI users, but not the LS CI users, gained more than the controls from congruent visual stimuli when recognizing affective prosody. Both CI groups performed overall worse than the controls in recognizing affective prosody. These results suggest that early sign language experience affects multisensory emotion perception in CD CI users.

  6. The Effect of Visual Experience on Perceived Haptic Verticality When Tilted in the Roll Plane

    PubMed Central

    Cuturi, Luigi F.; Gori, Monica

    2017-01-01

    The orientation of the body in space can influence perception of verticality leading sometimes to biases consistent with priors peaked at the most common head and body orientation, that is upright. In this study, we investigate haptic perception of verticality in sighted individuals and early and late blind adults when tilted counterclockwise in the roll plane. Participants were asked to perform a stimulus orientation discrimination task with their body tilted to their left ear side 90° relative to gravity. Stimuli were presented by using a motorized haptic bar. In order to test whether different reference frames relative to the head influenced perception of verticality, we varied the position of the stimulus on the body longitudinal axis. Depending on the stimulus position sighted participants tended to have biases away or toward their body tilt. Visually impaired individuals instead show a different pattern of verticality estimations. A bias toward head and body tilt (i.e., Aubert effect) was observed in late blind individuals. Interestingly, no strong biases were observed in early blind individuals. Overall, these results posit visual sensory information to be fundamental in influencing the haptic readout of proprioceptive and vestibular information about body orientation relative to gravity. The acquisition of an idiotropic vector signaling the upright might take place through vision during development. Regarding early blind individuals, independent spatial navigation experience likely enhanced by echolocation behavior might have a role in such acquisition. In the case of participants with late onset blindness, early experience of vision might lead them to anchor their visually acquired priors to the haptic modality with no disambiguation between head and body references as observed in sighted individuals (Fraser et al., 2015). With our study, we aim to investigate haptic perception of gravity direction in unusual body tilts when vision is absent due to visual impairment. Insofar, our findings throw light on the influence of proprioceptive/vestibular sensory information on haptic perceived verticality in blind individuals showing how this phenomenon is affected by visual experience. PMID:29270109

  7. Absence of visual experience modifies the neural basis of numerical thinking

    PubMed Central

    Kanjlia, Shipra; Lane, Connor; Feigenson, Lisa; Bedny, Marina

    2016-01-01

    In humans, the ability to reason about mathematical quantities depends on a frontoparietal network that includes the intraparietal sulcus (IPS). How do nature and nurture give rise to the neurobiology of numerical cognition? We asked how visual experience shapes the neural basis of numerical thinking by studying numerical cognition in congenitally blind individuals. Blind (n = 17) and blindfolded sighted (n = 19) participants solved math equations that varied in difficulty (e.g., 27 − 12 = x vs. 7 − 2 = x), and performed a control sentence comprehension task while undergoing fMRI. Whole-cortex analyses revealed that in both blind and sighted participants, the IPS and dorsolateral prefrontal cortices were more active during the math task than the language task, and activity in the IPS increased parametrically with equation difficulty. Thus, the classic frontoparietal number network is preserved in the total absence of visual experience. However, surprisingly, blind but not sighted individuals additionally recruited a subset of early visual areas during symbolic math calculation. The functional profile of these “visual” regions was identical to that of the IPS in blind but not sighted individuals. Furthermore, in blindness, number-responsive visual cortices exhibited increased functional connectivity with prefrontal and IPS regions that process numbers. We conclude that the frontoparietal number network develops independently of visual experience. In blindness, this number network colonizes parts of deafferented visual cortex. These results suggest that human cortex is highly functionally flexible early in life, and point to frontoparietal input as a mechanism of cross-modal plasticity in blindness. PMID:27638209

  8. Children's Play in the Visual Arts and Literature

    ERIC Educational Resources Information Center

    Saracho, Olivia N.

    2010-01-01

    Throughout history, society has expressed little interest in early childhood play. Still early literature authors and classical paintings portray childhood play experiences. The way play has been conceived in the past in child development, psychology and other disciplines relates to contemporary early childhood programmes. This article provides an…

  9. Early Visual Deprivation Alters Multisensory Processing in Peripersonal Space

    ERIC Educational Resources Information Center

    Collignon, Olivier; Charbonneau, Genevieve; Lassonde, Maryse; Lepore, Franco

    2009-01-01

    Multisensory peripersonal space develops in a maturational process that is thought to be influenced by early sensory experience. We investigated the role of vision in the effective development of audiotactile interactions in peripersonal space. Early blind (EB), late blind (LB) and sighted control (SC) participants were asked to lateralize…

  10. Selective attention modulates visual and haptic repetition priming: effects in aging and Alzheimer's disease.

    PubMed

    Ballesteros, Soledad; Reales, José M; Mayas, Julia; Heller, Morton A

    2008-08-01

    In two experiments, we examined the effect of selective attention at encoding on repetition priming in normal aging and Alzheimer's disease (AD) patients for objects presented visually (experiment 1) or haptically (experiment 2). We used a repetition priming paradigm combined with a selective attention procedure at encoding. Reliable priming was found for both young adults and healthy older participants for visually presented pictures (experiment 1) as well as for haptically presented objects (experiment 2). However, this was only found for attended and not for unattended stimuli. The results suggest that independently of the perceptual modality, repetition priming requires attention at encoding and that perceptual facilitation is maintained in normal aging. However, AD patients did not show priming for attended stimuli, or for unattended visual or haptic objects. These findings suggest an early deficit of selective attention in AD. Results are discussed from a cognitive neuroscience approach.

  11. Retinotopically specific reorganization of visual cortex for tactile pattern recognition

    PubMed Central

    Cheung, Sing-Hang; Fang, Fang; He, Sheng; Legge, Gordon E.

    2009-01-01

    Although previous studies have shown that Braille reading and other tactile-discrimination tasks activate the visual cortex of blind and sighted people [1–5], it is not known whether this kind of cross-modal reorganization is influenced by retinotopic organization. We have addressed this question by studying S, a visually impaired adult with the rare ability to read print visually and Braille by touch. S had normal visual development until age six years, and thereafter severe acuity reduction due to corneal opacification, but no evidence of visual-field loss. Functional magnetic resonance imaging (fMRI) revealed that, in S’s early visual areas, tactile information processing activated what would be the foveal representation for normally-sighted individuals, and visual information processing activated what would be the peripheral representation. Control experiments showed that this activation pattern was not due to visual imagery. S’s high-level visual areas which correspond to shape- and object-selective areas in normally-sighted individuals were activated by both visual and tactile stimuli. The retinotopically specific reorganization in early visual areas suggests an efficient redistribution of neural resources in the visual cortex. PMID:19361999

  12. When memory is not enough: Electrophysiological evidence for goal-dependent use of working memory representations in guiding visual attention

    PubMed Central

    Carlisle, Nancy B.; Woodman, Geoffrey F.

    2014-01-01

    Biased competition theory proposes that representations in working memory drive visual attention to select similar inputs. However, behavioral tests of this hypothesis have led to mixed results. These inconsistent findings could be due to the inability of behavioral measures to reliably detect the early, automatic effects on attentional deployment that the memory representations exert. Alternatively, executive mechanisms may govern how working memory representations influence attention based on higher-level goals. In the present study, we tested these hypotheses using the N2pc component of participants’ event-related potentials (ERPs) to directly measure the early deployments of covert attention. Participants searched for a target in an array that sometimes contained a memory-matching distractor. In Experiments 1–3, we manipulated the difficulty of the target discrimination and the proximity of distractors, but consistently observed that covert attention was deployed to the search targets and not the memory-matching distractors. In Experiment 4, we showed that when participants’ goal involved attending to memory-matching items that these items elicited a large and early N2pc. Our findings demonstrate that working memory representations alone are not sufficient to guide early deployments of visual attention to matching inputs and that goal-dependent executive control mediates the interactions between working memory representations and visual attention. PMID:21254796

  13. Spatial updating depends on gaze direction even after loss of vision.

    PubMed

    Reuschel, Johanna; Rösler, Frank; Henriques, Denise Y P; Fiehler, Katja

    2012-02-15

    Direction of gaze (eye angle + head angle) has been shown to be important for representing space for action, implying a crucial role of vision for spatial updating. However, blind people have no access to vision yet are able to perform goal-directed actions successfully. Here, we investigated the role of visual experience for localizing and updating targets as a function of intervening gaze shifts in humans. People who differed in visual experience (late blind, congenitally blind, or sighted) were briefly presented with a proprioceptive reach target while facing it. Before they reached to the target's remembered location, they turned their head toward an eccentric direction that also induced corresponding eye movements in sighted and late blind individuals. We found that reaching errors varied systematically as a function of shift in gaze direction only in participants with early visual experience (sighted and late blind). In the late blind, this effect was solely present in people with moveable eyes but not in people with at least one glass eye. Our results suggest that the effect of gaze shifts on spatial updating develops on the basis of visual experience early in life and remains even after loss of vision as long as feedback from the eyes and head is available.

  14. Emotional tears facilitate the recognition of sadness and the perceived need for social support.

    PubMed

    Balsters, Martijn J H; Krahmer, Emiel J; Swerts, Marc G J; Vingerhoets, Ad J J M

    2013-02-12

    The tearing effect refers to the relevance of tears as an important visual cue adding meaning to human facial expression. However, little is known about how people process these visual cues and their mediating role in terms of emotion perception and person judgment. We therefore conducted two experiments in which we measured the influence of tears on the identification of sadness and the perceived need for social support at an early perceptional level. In two experiments (1 and 2), participants were exposed to sad and neutral faces. In both experiments, the face stimuli were presented for 50 milliseconds. In experiment 1, tears were digitally added to sad faces in one condition. Participants demonstrated a significant faster recognition of sad faces with tears compared to those without tears. In experiment 2, tears were added to neutral faces as well. Participants had to indicate to what extent the displayed individuals were in need of social support. Study participants reported a greater perceived need for social support to both sad and neutral faces with tears than to those without tears. This study thus demonstrated that emotional tears serve as important visual cues at an early (pre-attentive) level.

  15. Visual experience sculpts whole-cortex spontaneous infraslow activity patterns through an Arc-dependent mechanism

    PubMed Central

    Kraft, Andrew W.; Mitra, Anish; Bauer, Adam Q.; Raichle, Marcus E.; Culver, Joseph P.; Lee, Jin-Moo

    2017-01-01

    Decades of work in experimental animals has established the importance of visual experience during critical periods for the development of normal sensory-evoked responses in the visual cortex. However, much less is known concerning the impact of early visual experience on the systems-level organization of spontaneous activity. Human resting-state fMRI has revealed that infraslow fluctuations in spontaneous activity are organized into stereotyped spatiotemporal patterns across the entire brain. Furthermore, the organization of spontaneous infraslow activity (ISA) is plastic in that it can be modulated by learning and experience, suggesting heightened sensitivity to change during critical periods. Here we used wide-field optical intrinsic signal imaging in mice to examine whole-cortex spontaneous ISA patterns. Using monocular or binocular visual deprivation, we examined the effects of critical period visual experience on the development of ISA correlation and latency patterns within and across cortical resting-state networks. Visual modification with monocular lid suturing reduced correlation between left and right cortices (homotopic correlation) within the visual network, but had little effect on internetwork correlation. In contrast, visual deprivation with binocular lid suturing resulted in increased visual homotopic correlation and increased anti-correlation between the visual network and several extravisual networks, suggesting cross-modal plasticity. These network-level changes were markedly attenuated in mice with genetic deletion of Arc, a gene known to be critical for activity-dependent synaptic plasticity. Taken together, our results suggest that critical period visual experience induces global changes in spontaneous ISA relationships, both within the visual network and across networks, through an Arc-dependent mechanism. PMID:29087327

  16. Binocular visual training to promote recovery from monocular deprivation.

    PubMed

    Murphy, Kathryn M; Roumeliotis, Grayson; Williams, Kate; Beston, Brett R; Jones, David G

    2015-01-08

    Abnormal early visual experience often leads to poor vision, a condition called amblyopia. Two recent approaches to treating amblyopia include binocular therapies and intensive visual training. These reflect the emerging view that amblyopia is a binocular deficit caused by increased neural noise and poor signal-in-noise integration. Most perceptual learning studies have used monocular training; however, a recent study has shown that binocular training is effective for improving acuity in adult human amblyopes. We used an animal model of amblyopia, based on monocular deprivation, to compare the effect of binocular training either during or after the critical period for ocular dominance plasticity (early binocular training vs. late binocular training). We used a high-contrast, orientation-in-noise stimulus to drive the visual cortex because neurophysiological findings suggest that binocular training may allow the nondeprived eye to teach the deprived eye's circuits to function. We found that both early and late binocular training promoted good visual recovery. Surprisingly, we found that monocular deprivation caused a permanent deficit in the vision of both eyes, which became evident only as a sleeper effect following many weeks of visual training. © 2015 ARVO.

  17. Topographic contribution of early visual cortex to short-term memory consolidation: a transcranial magnetic stimulation study.

    PubMed

    van de Ven, Vincent; Jacobs, Christianne; Sack, Alexander T

    2012-01-04

    The neural correlates for retention of visual information in visual short-term memory are considered separate from those of sensory encoding. However, recent findings suggest that sensory areas may play a role also in short-term memory. We investigated the functional relevance, spatial specificity, and temporal characteristics of human early visual cortex in the consolidation of capacity-limited topographic visual memory using transcranial magnetic stimulation (TMS). Topographically specific TMS pulses were delivered over lateralized occipital cortex at 100, 200, or 400 ms into the retention phase of a modified change detection task with low or high memory loads. For the high but not the low memory load, we found decreased memory performance for memory trials in the visual field contralateral, but not ipsilateral to the side of TMS, when pulses were delivered at 200 ms into the retention interval. A behavioral version of the TMS experiment, in which a distractor stimulus (memory mask) replaced the TMS pulses, further corroborated these findings. Our findings suggest that retinotopic visual cortex contributes to the short-term consolidation of topographic visual memory during early stages of the retention of visual information. Further, TMS-induced interference decreased the strength (amplitude) of the memory representation, which most strongly affected the high memory load trials.

  18. Audiovisual plasticity following early abnormal visual experience: Reduced McGurk effect in people with one eye.

    PubMed

    Moro, Stefania S; Steeves, Jennifer K E

    2018-04-13

    Previously, we have shown that people who have had one eye surgically removed early in life during visual development have enhanced sound localization [1] and lack visual dominance, commonly observed in binocular and monocular (eye-patched) viewing controls [2]. Despite these changes, people with one eye integrate auditory and visual components of multisensory events optimally [3]. The current study investigates how people with one eye perceive the McGurk effect, an audiovisual illusion where a new syllable is perceived when visual lip movements do not match the corresponding sound [4]. We compared individuals with one eye to binocular and monocular viewing controls and found that they have a significantly smaller McGurk effect compared to binocular controls. Additionally, monocular controls tended to perceive the McGurk effect less often than binocular controls suggesting a small transient modulation of the McGurk effect. These results suggest altered weighting of the auditory and visual modalities with both short and long-term monocular viewing. These results indicate the presence of permanent adaptive perceptual accommodations in people who have lost one eye early in life that may serve to mitigate the loss of binocularity during early brain development. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  19. Sensory Contributions to Impaired Emotion Processing in Schizophrenia

    PubMed Central

    Butler, Pamela D.; Abeles, Ilana Y.; Weiskopf, Nicole G.; Tambini, Arielle; Jalbrzikowski, Maria; Legatt, Michael E.; Zemon, Vance; Loughead, James; Gur, Ruben C.; Javitt, Daniel C.

    2009-01-01

    Both emotion and visual processing deficits are documented in schizophrenia, and preferential magnocellular visual pathway dysfunction has been reported in several studies. This study examined the contribution to emotion-processing deficits of magnocellular and parvocellular visual pathway function, based on stimulus properties and shape of contrast response functions. Experiment 1 examined the relationship between contrast sensitivity to magnocellular- and parvocellular-biased stimuli and emotion recognition using the Penn Emotion Recognition (ER-40) and Emotion Differentiation (EMODIFF) tests. Experiment 2 altered the contrast levels of the faces themselves to determine whether emotion detection curves would show a pattern characteristic of magnocellular neurons and whether patients would show a deficit in performance related to early sensory processing stages. Results for experiment 1 showed that patients had impaired emotion processing and a preferential magnocellular deficit on the contrast sensitivity task. Greater deficits in ER-40 and EMODIFF performance correlated with impaired contrast sensitivity to the magnocellular-biased condition, which remained significant for the EMODIFF task even when nonspecific correlations due to group were considered in a step-wise regression. Experiment 2 showed contrast response functions indicative of magnocellular processing for both groups, with patients showing impaired performance. Impaired emotion identification on this task was also correlated with magnocellular-biased visual sensory processing dysfunction. These results provide evidence for a contribution of impaired early-stage visual processing in emotion recognition deficits in schizophrenia and suggest that a bottom-up approach to remediation may be effective. PMID:19793797

  20. Sensory contributions to impaired emotion processing in schizophrenia.

    PubMed

    Butler, Pamela D; Abeles, Ilana Y; Weiskopf, Nicole G; Tambini, Arielle; Jalbrzikowski, Maria; Legatt, Michael E; Zemon, Vance; Loughead, James; Gur, Ruben C; Javitt, Daniel C

    2009-11-01

    Both emotion and visual processing deficits are documented in schizophrenia, and preferential magnocellular visual pathway dysfunction has been reported in several studies. This study examined the contribution to emotion-processing deficits of magnocellular and parvocellular visual pathway function, based on stimulus properties and shape of contrast response functions. Experiment 1 examined the relationship between contrast sensitivity to magnocellular- and parvocellular-biased stimuli and emotion recognition using the Penn Emotion Recognition (ER-40) and Emotion Differentiation (EMODIFF) tests. Experiment 2 altered the contrast levels of the faces themselves to determine whether emotion detection curves would show a pattern characteristic of magnocellular neurons and whether patients would show a deficit in performance related to early sensory processing stages. Results for experiment 1 showed that patients had impaired emotion processing and a preferential magnocellular deficit on the contrast sensitivity task. Greater deficits in ER-40 and EMODIFF performance correlated with impaired contrast sensitivity to the magnocellular-biased condition, which remained significant for the EMODIFF task even when nonspecific correlations due to group were considered in a step-wise regression. Experiment 2 showed contrast response functions indicative of magnocellular processing for both groups, with patients showing impaired performance. Impaired emotion identification on this task was also correlated with magnocellular-biased visual sensory processing dysfunction. These results provide evidence for a contribution of impaired early-stage visual processing in emotion recognition deficits in schizophrenia and suggest that a bottom-up approach to remediation may be effective.

  1. Reflections on Developing an Employment Mentoring Program for College Students Who Are Blind

    ERIC Educational Resources Information Center

    O'Mally, Jamie; Steverson, Anne

    2017-01-01

    In a competitive employment climate, college graduates with visual impairments (that is, those who are blind or have low vision) face challenges securing work. Employment barriers among visually impaired individuals include: limited early work experience, negative employer attitudes, transportation issues, lack of exposure to successful role…

  2. How Visual Is the Visual Cortex? Comparing Connectional and Functional Fingerprints between Congenitally Blind and Sighted Individuals.

    PubMed

    Wang, Xiaoying; Peelen, Marius V; Han, Zaizhu; He, Chenxi; Caramazza, Alfonso; Bi, Yanchao

    2015-09-09

    Classical animal visual deprivation studies and human neuroimaging studies have shown that visual experience plays a critical role in shaping the functionality and connectivity of the visual cortex. Interestingly, recent studies have additionally reported circumscribed regions in the visual cortex in which functional selectivity was remarkably similar in individuals with and without visual experience. Here, by directly comparing resting-state and task-based fMRI data in congenitally blind and sighted human subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. We found a close agreement between connectional and functional maps, pointing to a strong interdependence of connectivity and function. Visual experience (or the absence thereof) had a pronounced effect on the resting-state connectivity and functional response profile of occipital cortex and the posterior lateral fusiform gyrus. By contrast, connectional and functional fingerprints in the anterior medial and posterior lateral parts of the ventral visual cortex were statistically indistinguishable between blind and sighted individuals. These results provide a large-scale mapping of the influence of visual experience on the development of both functional and connectivity properties of visual cortex, which serves as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions. Significance statement: How is the functionality and connectivity of the visual cortex shaped by visual experience? By directly comparing resting-state and task-based fMRI data in congenitally blind and sighted subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. In addition to revealing regions that are strongly dependent on visual experience (early visual cortex and posterior fusiform gyrus), our results showed regions in which connectional and functional patterns are highly similar in blind and sighted individuals (anterior medial and posterior lateral ventral occipital temporal cortex). These results serve as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions of the visual cortex. Copyright © 2015 the authors 0270-6474/15/3512545-15$15.00/0.

  3. Early and Late Inhibitions Elicited by a Peripheral Visual Cue on Manual Response to a Visual Target: Are They Based on Cartesian Coordinates?

    ERIC Educational Resources Information Center

    Gawryszewski, Luiz G.; Carreiro, Luiz Renato R.; Magalhaes, Fabio V.

    2005-01-01

    A non-informative cue (C) elicits an inhibition of manual reaction time (MRT) to a visual target (T). We report an experiment to examine if the spatial distribution of this inhibitory effect follows Polar or Cartesian coordinate systems. C appeared at one out of 8 isoeccentric (7[degrees]) positions, the C-T angular distances (in polar…

  4. iOS--Worthy of the Hype as Assistive Technology for Visual Impairments? A Phenomenological Study of iOS Device Use by Individuals with Visual Impairments

    ERIC Educational Resources Information Center

    Scott, Shari

    2013-01-01

    This qualitative study sought to explore the shared essence of the lived experiences of early adopters of iOS devices as assistive technology by persons with visual impairments. The capstone question addressed the idea of whether any one device could fully meet the assistive technology needs of this population. Purposeful sampling methods were…

  5. Visualizing the Effects of a Positive Early Experience, Tactile Stimulation, on Dendritic Morphology and Synaptic Connectivity with Golgi-Cox Staining

    PubMed Central

    Mychasiuk, Richelle; Gibb, Robbin; Kolb, Bryan

    2013-01-01

    To generate longer-term changes in behavior, experiences must be producing stable changes in neuronal morphology and synaptic connectivity. Tactile stimulation is a positive early experience that mimics maternal licking and grooming in the rat. Exposing rat pups to this positive experience can be completed easily and cost-effectively by using highly accessible materials such as a household duster. Using a cross-litter design, pups are either stroked or left undisturbed, for 15 min, three times per day throughout the perinatal period. To measure the neuroplastic changes related to this positive early experience, Golgi-Cox staining of brain tissue is utilized. Owing to the fact that Golgi-Cox impregnation stains a discrete number of neurons rather than all of the cells, staining of the rodent brain with Golgi-Cox solution permits the visualization of entire neuronal elements, including the cell body, dendrites, axons, and dendritic spines. The staining procedure is carried out over several days and requires that the researcher pay close attention to detail. However, once staining is completed, the entire brain has been impregnated and can be preserved indefinitely for ongoing analysis. Therefore, Golgi-Cox staining is a valuable resource for studying experience-dependent plasticity. PMID:24121525

  6. Reading in the dark: neural correlates and cross-modal plasticity for learning to read entire words without visual experience.

    PubMed

    Sigalov, Nadine; Maidenbaum, Shachar; Amedi, Amir

    2016-03-01

    Cognitive neuroscience has long attempted to determine the ways in which cortical selectivity develops, and the impact of nature vs. nurture on it. Congenital blindness (CB) offers a unique opportunity to test this question as the brains of blind individuals develop without visual experience. Here we approach this question through the reading network. Several areas in the visual cortex have been implicated as part of the reading network, and one of the main ones among them is the VWFA, which is selective to the form of letters and words. But what happens in the CB brain? On the one hand, it has been shown that cross-modal plasticity leads to the recruitment of occipital areas, including the VWFA, for linguistic tasks. On the other hand, we have recently demonstrated VWFA activity for letters in contrast to other visual categories when the information is provided via other senses such as touch or audition. Which of these tasks is more dominant? By which mechanism does the CB brain process reading? Using fMRI and visual-to-auditory sensory substitution which transfers the topographical features of the letters we compare reading with semantic and scrambled conditions in a group of CB. We found activation in early auditory and visual cortices during the early processing phase (letter), while the later phase (word) showed VWFA and bilateral dorsal-intraparietal activations for words. This further supports the notion that many visual regions in general, even early visual areas, also maintain a predilection for task processing even when the modality is variable and in spite of putative lifelong linguistic cross-modal plasticity. Furthermore, we find that the VWFA is recruited preferentially for letter and word form, while it was not recruited, and even exhibited deactivation, for an immediately subsequent semantic task suggesting that despite only short sensory substitution experience orthographic task processing can dominate semantic processing in the VWFA. On a wider scope, this implies that at least in some cases cross-modal plasticity which enables the recruitment of areas for new tasks may be dominated by sensory independent task specific activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Early Development of Object Unity: Evidence for Perceptual Completion in Newborns

    ERIC Educational Resources Information Center

    Valenza, Eloisa; Bulf, Hermann

    2011-01-01

    The present study aimed to investigate whether perceptual completion is available at birth, in the absence of any visual experience. An extremely underspecified kinetic visual display composed of four spatially separated fragments arranged to give rise to an illusory rectangle that occluded a vertical rod (illusory condition) or rotated so as not…

  8. Enhancing Student Learning in Food Engineering Using Computational Fluid Dynamics Simulations

    ERIC Educational Resources Information Center

    Wong, Shin Y.; Connelly, Robin K.; Hartel, Richard W.

    2010-01-01

    The current generation of students coming into food science and engineering programs is very visually oriented from their early experiences. To increase their interest in learning, new and visually appealing teaching materials need to be developed. Two diverse groups of students may be identified based on their math skills. Food science students…

  9. Visual-Motor Symbol Production Facilitates Letter Recognition in Young Children

    ERIC Educational Resources Information Center

    Zemlock, Deborah; Vinci-Booher, Sophia; James, Karin H.

    2018-01-01

    Previous research has suggested that handwriting letters may be an important exerciser to facilitate early letter understanding. Experimental studies to date, however, have not investigated whether this effect is general to any visual-motor experience or specific to handwriting letters. In the present work, we addressed this issue by testing…

  10. Predictors of Employment for Youths with Visual Impairments: Findings from the Second National Longitudinal Transition Study

    ERIC Educational Resources Information Center

    McDonnall, Michele Capella

    2011-01-01

    The study reported here identified factors that predict employment for transition-age youths with visual impairments. Logistic regression was used to predict employment at two levels. Significant variables were early and recent work experiences, completion of a postsecondary program, difficulty with transportation, independent travel skills, and…

  11. Pointing to Shaun Tan's The Arrival and Re-Imagining Visual Poetics in Research

    ERIC Educational Resources Information Center

    Bjartveit, Carolyn J.; Panayotidis, E. Lisa

    2014-01-01

    In this article, the authors discuss how Shaun Tan's graphic novel "The Arrival" (2006) opened a polyphonic dialogue with culturally diverse early childhood educators. Using visual, graphic and symbolic languages provided alternative ways for the research participants to express their experiences and understandings of being recent…

  12. The Development and Activity-Dependent Expression of Aggrecan in the Cat Visual Cortex

    PubMed Central

    Sengpiel, F.; Beaver, C. J.; Crocker-Buque, A.; Kelly, G. M.; Matthews, R. T.; Mitchell, D. E.

    2013-01-01

    The Cat-301 monoclonal antibody identifies aggrecan, a chondroitin sulfate proteoglycan in the cat visual cortex and dorsal lateral geniculate nucleus (dLGN). During development, aggrecan expression increases in the dLGN with a time course that matches the decline in plasticity. Moreover, examination of tissue from selectively visually deprived cats shows that expression is activity dependent, suggesting a role for aggrecan in the termination of the sensitive period. Here, we demonstrate for the first time that the onset of aggrecan expression in area 17 also correlates with the decline in experience-dependent plasticity in visual cortex and that this expression is experience dependent. Dark rearing until 15 weeks of age dramatically reduced the density of aggrecan-positive neurons in the extragranular layers, but not in layer IV. This effect was reversible as dark-reared animals that were subsequently exposed to light showed normal numbers of Cat-301-positive cells. The reduction in aggrecan following certain early deprivation regimens is the first biochemical correlate of the functional changes to the γ-aminobutyric acidergic system that have been reported following early deprivation in cats. PMID:22368089

  13. A Computational Model of Afterimage Rotation in the Peripheral Drift Illusion Based on Retinal ON/OFF Responses

    PubMed Central

    Hayashi, Yuichiro; Ishii, Shin; Urakubo, Hidetoshi

    2014-01-01

    Human observers perceive illusory rotations after the disappearance of circularly repeating patches containing dark-to-light luminance. This afterimage rotation is a very powerful phenomenon, but little is known about the mechanisms underlying it. Here, we use a computational model to show that the afterimage rotation can be explained by a combination of fast light adaptation and the physiological architecture of the early visual system, consisting of ON- and OFF-type visual pathways. In this retinal ON/OFF model, the afterimage rotation appeared as a rotation of focus lines of retinal ON/OFF responses. Focus lines rotated clockwise on a light background, but counterclockwise on a dark background. These findings were consistent with the results of psychophysical experiments, which were also performed by us. Additionally, the velocity of the afterimage rotation was comparable with that observed in our psychophysical experiments. These results suggest that the early visual system (including the retina) is responsible for the generation of the afterimage rotation, and that this illusory rotation may be systematically misinterpreted by our high-level visual system. PMID:25517906

  14. Object-based spatial attention when objects have sufficient depth cues.

    PubMed

    Takeya, Ryuji; Kasai, Tetsuko

    2015-01-01

    Attention directed to a part of an object tends to obligatorily spread over all of the spatial regions that belong to the object, which may be critical for rapid object-recognition in cluttered visual scenes. Previous studies have generally used simple rectangles as objects and have shown that attention spreading is reflected by amplitude modulation in the posterior N1 component (150-200 ms poststimulus) of event-related potentials, while other interpretations (i.e., rectangular holes) may arise implicitly in early visual processing stages. By using modified Kanizsa-type stimuli that provided less ambiguity of depth ordering, the present study examined early event-related potential spatial-attention effects for connected and separated objects, both of which were perceived in front of (Experiment 1) and in back of (Experiment 2) the surroundings. Typical P1 (100-140 ms) and N1 (150-220 ms) attention effects of ERP in response to unilateral probes were observed in both experiments. Importantly, the P1 attention effect was decreased for connected objects compared to separated objects only in Experiment 1, and the typical object-based modulations of N1 were not observed in either experiment. These results suggest that spatial attention spreads over a figural object at earlier stages of processing than previously indicated, in three-dimensional visual scenes with multiple depth cues.

  15. Feature-selective attention enhances color signals in early visual areas of the human brain.

    PubMed

    Müller, M M; Andersen, S; Trujillo, N J; Valdés-Sosa, P; Malinowski, P; Hillyard, S A

    2006-09-19

    We used an electrophysiological measure of selective stimulus processing (the steady-state visual evoked potential, SSVEP) to investigate feature-specific attention to color cues. Subjects viewed a display consisting of spatially intermingled red and blue dots that continually shifted their positions at random. The red and blue dots flickered at different frequencies and thereby elicited distinguishable SSVEP signals in the visual cortex. Paying attention selectively to either the red or blue dot population produced an enhanced amplitude of its frequency-tagged SSVEP, which was localized by source modeling to early levels of the visual cortex. A control experiment showed that this selection was based on color rather than flicker frequency cues. This signal amplification of attended color items provides an empirical basis for the rapid identification of feature conjunctions during visual search, as proposed by "guided search" models.

  16. Artful Dodgers: An Arts Education Research Project in Early Education Settings

    ERIC Educational Resources Information Center

    Hayes, Nóirín; Maguire, Jackie; Corcoran, Lucie; O'Sullivan, Carmel

    2017-01-01

    Artful Dodgers is an arts education project developed by two artists and delivered in two early years settings located in two areas of urban disadvantage. It is a music and visual arts programme designed and implemented with early years teachers of children aged 3-5 years. It explored whether the provision of high-quality arts experiences could…

  17. Early, Equivalent ERP Masked Priming Effects for Regular and Irregular Morphology

    ERIC Educational Resources Information Center

    Morris, Joanna; Stockall, Linnaea

    2012-01-01

    Converging evidence from behavioral masked priming (Rastle & Davis, 2008), EEG masked priming (Morris, Frank, Grainger, & Holcomb, 2007) and single word MEG (Zweig & Pylkkanen, 2008) experiments has provided robust support for a model of lexical processing which includes an early, automatic, visual word form based stage of morphological parsing…

  18. Assessing the Effect of Early Visual Cortex Transcranial Magnetic Stimulation on Working Memory Consolidation.

    PubMed

    van Lamsweerde, Amanda E; Johnson, Jeffrey S

    2017-07-01

    Maintaining visual working memory (VWM) representations recruits a network of brain regions, including the frontal, posterior parietal, and occipital cortices; however, it is unclear to what extent the occipital cortex is engaged in VWM after sensory encoding is completed. Noninvasive brain stimulation data show that stimulation of this region can affect working memory (WM) during the early consolidation time period, but it remains unclear whether it does so by influencing the number of items that are stored or their precision. In this study, we investigated whether single-pulse transcranial magnetic stimulation (spTMS) to the occipital cortex during VWM consolidation affects the quantity or quality of VWM representations. In three experiments, we disrupted VWM consolidation with either a visual mask or spTMS to retinotopic early visual cortex. We found robust masking effects on the quantity of VWM representations up to 200 msec poststimulus offset and smaller, more variable effects on WM quality. Similarly, spTMS decreased the quantity of VWM representations, but only when it was applied immediately following stimulus offset. Like visual masks, spTMS also produced small and variable effects on WM precision. The disruptive effects of both masks and TMS were greatly reduced or entirely absent within 200 msec of stimulus offset. However, there was a reduction in swap rate across all time intervals, which may indicate a sustained role of the early visual cortex in maintaining spatial information.

  19. Rapid Simultaneous Enhancement of Visual Sensitivity and Perceived Contrast during Saccade Preparation

    PubMed Central

    Rolfs, Martin; Carrasco, Marisa

    2012-01-01

    Humans and other animals with foveate vision make saccadic eye movements to prioritize the visual analysis of behaviorally relevant information. Even before movement onset, visual processing is selectively enhanced at the target of a saccade, presumably gated by brain areas controlling eye movements. Here we assess concurrent changes in visual performance and perceived contrast before saccades, and show that saccade preparation enhances perception rapidly, altering early visual processing in a manner akin to increasing the physical contrast of the visual input. Observers compared orientation and contrast of a test stimulus, appearing briefly before a saccade, to a standard stimulus, presented previously during a fixation period. We found simultaneous progressive enhancement in both orientation discrimination performance and perceived contrast as time approached saccade onset. These effects were robust as early as 60 ms after the eye movement was cued, much faster than the voluntary deployment of covert attention (without eye movements), which takes ~300 ms. Our results link the dynamics of saccade preparation, visual performance, and subjective experience and show that upcoming eye movements alter visual processing by increasing the signal strength. PMID:23035086

  20. Gestalten of today: early processing of visual contours and surfaces.

    PubMed

    Kovács, I

    1996-12-01

    While much is known about the specialized, parallel processing streams of low-level vision that extract primary visual cues, there is only limited knowledge about the dynamic interactions between them. How are the fragments, caught by local analyzers, assembled together to provide us with a unified percept? How are local discontinuities in texture, motion or depth evaluated with respect to object boundaries and surface properties? These questions are presented within the framework of orientation-specific spatial interactions of early vision. Key observations of psychophysics, anatomy and neurophysiology on interactions of various spatial and temporal ranges are reviewed. Aspects of the functional architecture and possible neural substrates of local orientation-specific interactions are discussed, underlining their role in the integration of information across the visual field, and particularly in contour integration. Examples are provided demonstrating that global context, such as contour closure and figure-ground assignment, affects these local interactions. It is illustrated that figure-ground assignment is realized early in visual processing, and that the pattern of early interactions also brings about an effective and sparse coding of visual shape. Finally, it is concluded that the underlying functional architecture is not only dynamic and context dependent, but the pattern of connectivity depends as much on past experience as on actual stimulation.

  1. Early Experiences Porting the NAMD and VMD Molecular Simulation and Analysis Software to GPU-Accelerated OpenPOWER Platforms

    PubMed Central

    Stone, John E.; Hynninen, Antti-Pekka; Phillips, James C.; Schulten, Klaus

    2017-01-01

    All-atom molecular dynamics simulations of biomolecules provide a powerful tool for exploring the structure and dynamics of large protein complexes within realistic cellular environments. Unfortunately, such simulations are extremely demanding in terms of their computational requirements, and they present many challenges in terms of preparation, simulation methodology, and analysis and visualization of results. We describe our early experiences porting the popular molecular dynamics simulation program NAMD and the simulation preparation, analysis, and visualization tool VMD to GPU-accelerated OpenPOWER hardware platforms. We report our experiences with compiler-provided autovectorization and compare with hand-coded vector intrinsics for the POWER8 CPU. We explore the performance benefits obtained from unique POWER8 architectural features such as 8-way SMT and its value for particular molecular modeling tasks. Finally, we evaluate the performance of several GPU-accelerated molecular modeling kernels and relate them to other hardware platforms. PMID:29202130

  2. Perceptual learning as improved probabilistic inference in early sensory areas.

    PubMed

    Bejjanki, Vikranth R; Beck, Jeffrey M; Lu, Zhong-Lin; Pouget, Alexandre

    2011-05-01

    Extensive training on simple tasks such as fine orientation discrimination results in large improvements in performance, a form of learning known as perceptual learning. Previous models have argued that perceptual learning is due to either sharpening and amplification of tuning curves in early visual areas or to improved probabilistic inference in later visual areas (at the decision stage). However, early theories are inconsistent with the conclusions of psychophysical experiments manipulating external noise, whereas late theories cannot explain the changes in neural responses that have been reported in cortical areas V1 and V4. Here we show that we can capture both the neurophysiological and behavioral aspects of perceptual learning by altering only the feedforward connectivity in a recurrent network of spiking neurons so as to improve probabilistic inference in early visual areas. The resulting network shows modest changes in tuning curves, in line with neurophysiological reports, along with a marked reduction in the amplitude of pairwise noise correlations.

  3. Early Visual Deprivation Severely Compromises the Auditory Sense of Space in Congenitally Blind Children

    ERIC Educational Resources Information Center

    Vercillo, Tiziana; Burr, David; Gori, Monica

    2016-01-01

    A recent study has shown that congenitally blind adults, who have never had visual experience, are impaired on an auditory spatial bisection task (Gori, Sandini, Martinoli, & Burr, 2014). In this study we investigated how thresholds for auditory spatial bisection and auditory discrimination develop with age in sighted and congenitally blind…

  4. Early IGF-1 primes visual cortex maturation and accelerates developmental switch between NKCC1 and KCC2 chloride transporters in enriched animals.

    PubMed

    Baroncelli, Laura; Cenni, Maria Cristina; Melani, Riccardo; Deidda, Gabriele; Landi, Silvia; Narducci, Roberta; Cancedda, Laura; Maffei, Lamberto; Berardi, Nicoletta

    2017-02-01

    Environmental enrichment (EE) has a remarkable impact on brain development. Continuous exposure to EE from birth determines a significant acceleration of visual system maturation both at retinal and cortical levels. A pre-weaning enriched experience is sufficient to trigger the accelerated maturation of the visual system, suggesting that factors affected by EE during the first days of life might prime visual circuits towards a faster development. The search for such factors is crucial not only to gain a better understanding of the molecular hierarchy of brain development but also to identify molecular pathways amenable to be targeted to correct atypical brain developmental trajectories. Here, we showed that IGF-1 levels are increased in the visual cortex of EE rats as early as P6 and this is a crucial event for setting in motion the developmental program induced by EE. Early intracerebroventricular (i.c.v.) infusion of IGF-1 in standard rats was sufficient to mimic the action of EE on visual acuity development, whereas blocking IGF-1 signaling by i.c.v. injections of the IGF-1 receptor antagonist JB1 prevented the deployment of EE effects. Early IGF-1 decreased the ratio between the expression of NKCC1 and KCC2 cation/chloride transporters, and the reversal potential for GABA A R-driven Cl - currents (E Cl ) was shifted toward more negative potentials, indicating that IGF-1 is a crucial factor in accelerating the maturation of GABAergic neurotransmission and promoting the developmental switch of GABA polarity from excitation to inhibition. In addition, early IGF-1 promoted a later occurring increase in its own expression, suggesting a priming effect of early IGF-1 in driving post-weaning cortical maturation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. How (and why) the visual control of action differs from visual perception

    PubMed Central

    Goodale, Melvyn A.

    2014-01-01

    Vision not only provides us with detailed knowledge of the world beyond our bodies, but it also guides our actions with respect to objects and events in that world. The computations required for vision-for-perception are quite different from those required for vision-for-action. The former uses relational metrics and scene-based frames of reference while the latter uses absolute metrics and effector-based frames of reference. These competing demands on vision have shaped the organization of the visual pathways in the primate brain, particularly within the visual areas of the cerebral cortex. The ventral ‘perceptual’ stream, projecting from early visual areas to inferior temporal cortex, helps to construct the rich and detailed visual representations of the world that allow us to identify objects and events, attach meaning and significance to them and establish their causal relations. By contrast, the dorsal ‘action’ stream, projecting from early visual areas to the posterior parietal cortex, plays a critical role in the real-time control of action, transforming information about the location and disposition of goal objects into the coordinate frames of the effectors being used to perform the action. The idea of two visual systems in a single brain might seem initially counterintuitive. Our visual experience of the world is so compelling that it is hard to believe that some other quite independent visual signal—one that we are unaware of—is guiding our movements. But evidence from a broad range of studies from neuropsychology to neuroimaging has shown that the visual signals that give us our experience of objects and events in the world are not the same ones that control our actions. PMID:24789899

  6. Visual Aversive Learning Compromises Sensory Discrimination.

    PubMed

    Shalev, Lee; Paz, Rony; Avidan, Galia

    2018-03-14

    Aversive learning is thought to modulate perceptual thresholds, which can lead to overgeneralization. However, it remains undetermined whether this modulation is domain specific or a general effect. Moreover, despite the unique role of the visual modality in human perception, it is unclear whether this aspect of aversive learning exists in this modality. The current study was designed to examine the effect of visual aversive outcomes on the perception of basic visual and auditory features. We tested the ability of healthy participants, both males and females, to discriminate between neutral stimuli, before and after visual learning. In each experiment, neutral stimuli were associated with aversive images in an experimental group and with neutral images in a control group. Participants demonstrated a deterioration in discrimination (higher discrimination thresholds) only after aversive learning. This deterioration was measured for both auditory (tone frequency) and visual (orientation and contrast) features. The effect was replicated in five different experiments and lasted for at least 24 h. fMRI neural responses and pupil size were also measured during learning. We showed an increase in neural activations in the anterior cingulate cortex, insula, and amygdala during aversive compared with neutral learning. Interestingly, the early visual cortex showed increased brain activity during aversive compared with neutral context trials, with identical visual information. Our findings imply the existence of a central multimodal mechanism, which modulates early perceptual properties, following exposure to negative situations. Such a mechanism could contribute to abnormal responses that underlie anxiety states, even in new and safe environments. SIGNIFICANCE STATEMENT Using a visual aversive-learning paradigm, we found deteriorated discrimination abilities for visual and auditory stimuli that were associated with visual aversive stimuli. We showed increased neural activations in the anterior cingulate cortex, insula, and amygdala during aversive learning, compared with neutral learning. Importantly, similar findings were also evident in the early visual cortex during trials with aversive/neutral context, but with identical visual information. The demonstration of this phenomenon in the visual modality is important, as it provides support to the notion that aversive learning can influence perception via a central mechanism, independent of input modality. Given the dominance of the visual system in human perception, our findings hold relevance to daily life, as well as imply a potential etiology for anxiety disorders. Copyright © 2018 the authors 0270-6474/18/382766-14$15.00/0.

  7. The sensory timecourses associated with conscious visual item memory and source memory.

    PubMed

    Thakral, Preston P; Slotnick, Scott D

    2015-09-01

    Previous event-related potential (ERP) findings have suggested that during visual item and source memory, nonconscious and conscious sensory (occipital-temporal) activity onsets may be restricted to early (0-800 ms) and late (800-1600 ms) temporal epochs, respectively. In an ERP experiment, we tested this hypothesis by separately assessing whether the onset of conscious sensory activity was restricted to the late epoch during source (location) memory and item (shape) memory. We found that conscious sensory activity had a late (>800 ms) onset during source memory and an early (<200 ms) onset during item memory. In a follow-up fMRI experiment, conscious sensory activity was localized to BA17, BA18, and BA19. Of primary importance, the distinct source memory and item memory ERP onsets contradict the hypothesis that there is a fixed temporal boundary separating nonconscious and conscious processing during all forms of visual conscious retrieval. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Multisensory emotion perception in congenitally, early, and late deaf CI users

    PubMed Central

    Nava, Elena; Villwock, Agnes K.; Büchner, Andreas; Lenarz, Thomas; Röder, Brigitte

    2017-01-01

    Emotions are commonly recognized by combining auditory and visual signals (i.e., vocal and facial expressions). Yet it is unknown whether the ability to link emotional signals across modalities depends on early experience with audio-visual stimuli. In the present study, we investigated the role of auditory experience at different stages of development for auditory, visual, and multisensory emotion recognition abilities in three groups of adolescent and adult cochlear implant (CI) users. CI users had a different deafness onset and were compared to three groups of age- and gender-matched hearing control participants. We hypothesized that congenitally deaf (CD) but not early deaf (ED) and late deaf (LD) CI users would show reduced multisensory interactions and a higher visual dominance in emotion perception than their hearing controls. The CD (n = 7), ED (deafness onset: <3 years of age; n = 7), and LD (deafness onset: >3 years; n = 13) CI users and the control participants performed an emotion recognition task with auditory, visual, and audio-visual emotionally congruent and incongruent nonsense speech stimuli. In different blocks, participants judged either the vocal (Voice task) or the facial expressions (Face task). In the Voice task, all three CI groups performed overall less efficiently than their respective controls and experienced higher interference from incongruent facial information. Furthermore, the ED CI users benefitted more than their controls from congruent faces and the CD CI users showed an analogous trend. In the Face task, recognition efficiency of the CI users and controls did not differ. Our results suggest that CI users acquire multisensory interactions to some degree, even after congenital deafness. When judging affective prosody they appear impaired and more strongly biased by concurrent facial information than typically hearing individuals. We speculate that limitations inherent to the CI contribute to these group differences. PMID:29023525

  9. Multisensory emotion perception in congenitally, early, and late deaf CI users.

    PubMed

    Fengler, Ineke; Nava, Elena; Villwock, Agnes K; Büchner, Andreas; Lenarz, Thomas; Röder, Brigitte

    2017-01-01

    Emotions are commonly recognized by combining auditory and visual signals (i.e., vocal and facial expressions). Yet it is unknown whether the ability to link emotional signals across modalities depends on early experience with audio-visual stimuli. In the present study, we investigated the role of auditory experience at different stages of development for auditory, visual, and multisensory emotion recognition abilities in three groups of adolescent and adult cochlear implant (CI) users. CI users had a different deafness onset and were compared to three groups of age- and gender-matched hearing control participants. We hypothesized that congenitally deaf (CD) but not early deaf (ED) and late deaf (LD) CI users would show reduced multisensory interactions and a higher visual dominance in emotion perception than their hearing controls. The CD (n = 7), ED (deafness onset: <3 years of age; n = 7), and LD (deafness onset: >3 years; n = 13) CI users and the control participants performed an emotion recognition task with auditory, visual, and audio-visual emotionally congruent and incongruent nonsense speech stimuli. In different blocks, participants judged either the vocal (Voice task) or the facial expressions (Face task). In the Voice task, all three CI groups performed overall less efficiently than their respective controls and experienced higher interference from incongruent facial information. Furthermore, the ED CI users benefitted more than their controls from congruent faces and the CD CI users showed an analogous trend. In the Face task, recognition efficiency of the CI users and controls did not differ. Our results suggest that CI users acquire multisensory interactions to some degree, even after congenital deafness. When judging affective prosody they appear impaired and more strongly biased by concurrent facial information than typically hearing individuals. We speculate that limitations inherent to the CI contribute to these group differences.

  10. Early Blindness Results in Developmental Plasticity for Auditory Motion Processing within Auditory and Occipital Cortex

    PubMed Central

    Jiang, Fang; Stecker, G. Christopher; Boynton, Geoffrey M.; Fine, Ione

    2016-01-01

    Early blind subjects exhibit superior abilities for processing auditory motion, which are accompanied by enhanced BOLD responses to auditory motion within hMT+ and reduced responses within right planum temporale (rPT). Here, by comparing BOLD responses to auditory motion in hMT+ and rPT within sighted controls, early blind, late blind, and sight-recovery individuals, we were able to separately examine the effects of developmental and adult visual deprivation on cortical plasticity within these two areas. We find that both the enhanced auditory motion responses in hMT+ and the reduced functionality in rPT are driven by the absence of visual experience early in life; neither loss nor recovery of vision later in life had a discernable influence on plasticity within these areas. Cortical plasticity as a result of blindness has generally be presumed to be mediated by competition across modalities within a given cortical region. The reduced functionality within rPT as a result of early visual loss implicates an additional mechanism for cross modal plasticity as a result of early blindness—competition across different cortical areas for functional role. PMID:27458357

  11. Expanding the Frontiers of Orientation and Mobility for Infants and Toddlers in New Mexico and Utah

    ERIC Educational Resources Information Center

    Dewald, Hong Phangia; Faris, Cindy; Borg, Karen S.; Maner, Julie; Martinez-Cargo, Loreta; Carter, Mark

    2015-01-01

    Early intervention services provide very young children, typically aged birth to 3 years, and their families "early and appropriate learning experiences to facilitate the child's learning and development" in their natural environment. Teachers of students with visual impairments and certified orientation and mobility (O&M)…

  12. Audiovisual associations alter the perception of low-level visual motion

    PubMed Central

    Kafaligonul, Hulusi; Oluk, Can

    2015-01-01

    Motion perception is a pervasive nature of vision and is affected by both immediate pattern of sensory inputs and prior experiences acquired through associations. Recently, several studies reported that an association can be established quickly between directions of visual motion and static sounds of distinct frequencies. After the association is formed, sounds are able to change the perceived direction of visual motion. To determine whether such rapidly acquired audiovisual associations and their subsequent influences on visual motion perception are dependent on the involvement of higher-order attentive tracking mechanisms, we designed psychophysical experiments using regular and reverse-phi random dot motions isolating low-level pre-attentive motion processing. Our results show that an association between the directions of low-level visual motion and static sounds can be formed and this audiovisual association alters the subsequent perception of low-level visual motion. These findings support the view that audiovisual associations are not restricted to high-level attention based motion system and early-level visual motion processing has some potential role. PMID:25873869

  13. Are visual peripheries forever young?

    PubMed

    Burnat, Kalina

    2015-01-01

    The paper presents a concept of lifelong plasticity of peripheral vision. Central vision processing is accepted as critical and irreplaceable for normal perception in humans. While peripheral processing chiefly carries information about motion stimuli features and redirects foveal attention to new objects, it can also take over functions typical for central vision. Here I review the data showing the plasticity of peripheral vision found in functional, developmental, and comparative studies. Even though it is well established that afferent projections from central and peripheral retinal regions are not established simultaneously during early postnatal life, central vision is commonly used as a general model of development of the visual system. Based on clinical studies and visually deprived animal models, I describe how central and peripheral visual field representations separately rely on early visual experience. Peripheral visual processing (motion) is more affected by binocular visual deprivation than central visual processing (spatial resolution). In addition, our own experimental findings show the possible recruitment of coarse peripheral vision for fine spatial analysis. Accordingly, I hypothesize that the balance between central and peripheral visual processing, established in the course of development, is susceptible to plastic adaptations during the entire life span, with peripheral vision capable of taking over central processing.

  14. Visual attention and the apprehension of spatial relations: the case of depth.

    PubMed

    Moore, C M; Elsinger, C L; Lleras, A

    2001-05-01

    Several studies have shown that targets defined on the basis of the spatial relations between objects yield highly inefficient visual search performance (e.g., Logan, 1994; Palmer, 1994), suggesting that the apprehension of spatial relations may require the selective allocation of attention within the scene. In the present study, we tested the hypothesis that depth relations might be different in this regard and might support efficient visual search. This hypothesis was based, in part, on the fact that many perceptual organization processes that are believed to occur early and in parallel, such as figure-ground segregation and perceptual completion, seem to depend on the assignment of depth relations. Despite this, however, using increasingly salient cues to depth (Experiments 2-4) and including a separate test of the sufficiency of the most salient depth cue used (Experiment 5), no evidence was found to indicate that search for a target defined by depth relations is any different than search for a target defined by other types of spatial relations, with regard to efficiency of search. These findings are discussed within the context of the larger literature on early processing of three-dimensional characteristics of visual scenes.

  15. Supranormal orientation selectivity of visual neurons in orientation-restricted animals.

    PubMed

    Sasaki, Kota S; Kimura, Rui; Ninomiya, Taihei; Tabuchi, Yuka; Tanaka, Hiroki; Fukui, Masayuki; Asada, Yusuke C; Arai, Toshiya; Inagaki, Mikio; Nakazono, Takayuki; Baba, Mika; Kato, Daisuke; Nishimoto, Shinji; Sanada, Takahisa M; Tani, Toshiki; Imamura, Kazuyuki; Tanaka, Shigeru; Ohzawa, Izumi

    2015-11-16

    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure.

  16. Supranormal orientation selectivity of visual neurons in orientation-restricted animals

    PubMed Central

    Sasaki, Kota S.; Kimura, Rui; Ninomiya, Taihei; Tabuchi, Yuka; Tanaka, Hiroki; Fukui, Masayuki; Asada, Yusuke C.; Arai, Toshiya; Inagaki, Mikio; Nakazono, Takayuki; Baba, Mika; Kato, Daisuke; Nishimoto, Shinji; Sanada, Takahisa M.; Tani, Toshiki; Imamura, Kazuyuki; Tanaka, Shigeru; Ohzawa, Izumi

    2015-01-01

    Altered sensory experience in early life often leads to remarkable adaptations so that humans and animals can make the best use of the available information in a particular environment. By restricting visual input to a limited range of orientations in young animals, this investigation shows that stimulus selectivity, e.g., the sharpness of tuning of single neurons in the primary visual cortex, is modified to match a particular environment. Specifically, neurons tuned to an experienced orientation in orientation-restricted animals show sharper orientation tuning than neurons in normal animals, whereas the opposite was true for neurons tuned to non-experienced orientations. This sharpened tuning appears to be due to elongated receptive fields. Our results demonstrate that restricted sensory experiences can sculpt the supranormal functions of single neurons tailored for a particular environment. The above findings, in addition to the minimal population response to orientations close to the experienced one, agree with the predictions of a sparse coding hypothesis in which information is represented efficiently by a small number of activated neurons. This suggests that early brain areas adopt an efficient strategy for coding information even when animals are raised in a severely limited visual environment where sensory inputs have an unnatural statistical structure. PMID:26567927

  17. TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers.

    PubMed

    Ptito, M; Fumal, A; de Noordhout, A Martens; Schoenen, J; Gjedde, A; Kupers, R

    2008-01-01

    Various non-visual inputs produce cross-modal responses in the visual cortex of early blind subjects. In order to determine the qualitative experience associated with these occipital activations, we systematically stimulated the entire occipital cortex using single pulse transcranial magnetic stimulation (TMS) in early blind subjects and in blindfolded seeing controls. Whereas blindfolded seeing controls reported only phosphenes following occipital cortex stimulation, some of the blind subjects reported tactile sensations in the fingers that were somatotopically organized onto the visual cortex. The number of cortical sites inducing tactile sensations appeared to be related to the number of hours of Braille reading per day, Braille reading speed and dexterity. These data, taken in conjunction with previous anatomical, behavioural and functional imaging results, suggest the presence of a polysynaptic cortical pathway between the somatosensory cortex and the visual cortex in early blind subjects. These results also add new evidence that the activity of the occipital lobe in the blind takes its qualitative expression from the character of its new input source, therefore supporting the cortical deference hypothesis.

  18. [Mental images: towards a media history of the psyche around 1900].

    PubMed

    Rall, Veronika

    2014-12-01

    Presupposing that visual practices are inherent to the social constitution of knowledge, this article suggests juxtaposing photographs and films produced in a psychiatric environment to popular films run in theaters around 1900, thus identifying cinema's particular "Denkstil" (Fleck). Rejecting science's dominating paradigm of visual objectivity (Daston/Galison), the visual apparatus [dispositif] of early cinema facilitates subjective experience of unreason and irrationality and thus initiates a different epistemological approach to knowledge as self-knowledge of a modern, self-reflexive subject. This is particularly evident in early cinema's depiction of the psyche, which does not solely focus on the physical manifestation of the 'mad', 'insane' body, but also visualizes the subject's inner life: technical means like montage, multiple exposure or stop motion can be employed to illustrate subjective visions, fantasies or dreams. Thus, the invisible mind becomes visible as the "unthinkable within thinking" (Deleuze), while the subject is invited to participate in cinema's "gay science" (Nietzsche).

  19. Determinants of motion response anisotropies in human early visual cortex: the role of configuration and eccentricity.

    PubMed

    Maloney, Ryan T; Watson, Tamara L; Clifford, Colin W G

    2014-10-15

    Anisotropies in the cortical representation of various stimulus parameters can reveal the fundamental mechanisms by which sensory properties are analysed and coded by the brain. One example is the preference for motion radial to the point of fixation (i.e. centripetal or centrifugal) exhibited in mammalian visual cortex. In two experiments, this study used functional magnetic resonance imaging (fMRI) to explore the determinants of these radial biases for motion in functionally-defined areas of human early visual cortex, and in particular their dependence upon eccentricity which has been indicated in recent reports. In one experiment, the cortical response to wide-field random dot kinematograms forming 16 different complex motion patterns (including centrifugal, centripetal, rotational and spiral motion) was measured. The response was analysed according to preferred eccentricity within four different eccentricity ranges. Response anisotropies were characterised by enhanced activity for centripetal or centrifugal patterns that changed systematically with eccentricity in visual areas V1-V3 and hV4 (but not V3A/B or V5/MT+). Responses evolved from a preference for centrifugal over centripetal patterns close to the fovea, to a preference for centripetal over centrifugal at the most peripheral region stimulated, in agreement with previous work. These effects were strongest in V2 and V3. In a second experiment, the stimuli were restricted to within narrow annuli either close to the fovea (0.75-1.88°) or further in the periphery (4.82-6.28°), in a way that preserved the local motion information available in the first experiment. In this configuration a preference for radial motion (centripetal or centrifugal) persisted but the dependence upon eccentricity disappeared. Again this was clearest in V2 and V3. A novel interpretation of the dependence upon eccentricity of motion anisotropies in early visual cortex is offered that takes into account the spatiotemporal "predictability" of the moving pattern. Such stimulus predictability, and its relationship to models of predictive coding, has found considerable support in recent years in accounting for a number of other perceptual and neural phenomena. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Loss of Neurofilament Labeling in the Primary Visual Cortex of Monocularly Deprived Monkeys

    PubMed Central

    Duffy, Kevin R.; Livingstone, Margaret S.

    2009-01-01

    Visual experience during early life is important for the development of neural organizations that support visual function. Closing one eye (monocular deprivation) during this sensitive period can cause a reorganization of neural connections within the visual system that leaves the deprived eye functionally disconnected. We have assessed the pattern of neurofilament labeling in monocularly deprived macaque monkeys to examine the possibility that a cytoskeleton change contributes to deprivation-induced reorganization of neural connections within the primary visual cortex (V-1). Monocular deprivation for three months starting around the time of birth caused a significant loss of neurofilament labeling within deprived-eye ocular dominance columns. Three months of monocular deprivation initiated in adulthood did not produce a loss of neurofilament labeling. The evidence that neurofilament loss was found only when deprivation occurred during the sensitive period supports the notion that the loss permits restructuring of deprived-eye neural connections within the visual system. These results provide evidence that, in addition to reorganization of LGN inputs, the intrinsic circuitry of V-1 neurons is altered when monocular deprivation occurs early in development. PMID:15563721

  1. Visual inspection reliability for precision manufactured parts

    DOE PAGES

    See, Judi E.

    2015-09-04

    Sandia National Laboratories conducted an experiment for the National Nuclear Security Administration to determine the reliability of visual inspection of precision manufactured parts used in nuclear weapons. In addition visual inspection has been extensively researched since the early 20th century; however, the reliability of visual inspection for nuclear weapons parts has not been addressed. In addition, the efficacy of using inspector confidence ratings to guide multiple inspections in an effort to improve overall performance accuracy is unknown. Further, the workload associated with inspection has not been documented, and newer measures of stress have not been applied.

  2. Exogenous attention facilitates location transfer of perceptual learning.

    PubMed

    Donovan, Ian; Szpiro, Sarit; Carrasco, Marisa

    2015-01-01

    Perceptual skills can be improved through practice on a perceptual task, even in adulthood. Visual perceptual learning is known to be mostly specific to the trained retinal location, which is considered as evidence of neural plasticity in retinotopic early visual cortex. Recent findings demonstrate that transfer of learning to untrained locations can occur under some specific training procedures. Here, we evaluated whether exogenous attention facilitates transfer of perceptual learning to untrained locations, both adjacent to the trained locations (Experiment 1) and distant from them (Experiment 2). The results reveal that attention facilitates transfer of perceptual learning to untrained locations in both experiments, and that this transfer occurs both within and across visual hemifields. These findings show that training with exogenous attention is a powerful regime that is able to overcome the major limitation of location specificity.

  3. Exogenous attention facilitates location transfer of perceptual learning

    PubMed Central

    Donovan, Ian; Szpiro, Sarit; Carrasco, Marisa

    2015-01-01

    Perceptual skills can be improved through practice on a perceptual task, even in adulthood. Visual perceptual learning is known to be mostly specific to the trained retinal location, which is considered as evidence of neural plasticity in retinotopic early visual cortex. Recent findings demonstrate that transfer of learning to untrained locations can occur under some specific training procedures. Here, we evaluated whether exogenous attention facilitates transfer of perceptual learning to untrained locations, both adjacent to the trained locations (Experiment 1) and distant from them (Experiment 2). The results reveal that attention facilitates transfer of perceptual learning to untrained locations in both experiments, and that this transfer occurs both within and across visual hemifields. These findings show that training with exogenous attention is a powerful regime that is able to overcome the major limitation of location specificity. PMID:26426818

  4. Neural correlates of visualizations of concrete and abstract words in preschool children: a developmental embodied approach

    PubMed Central

    D’Angiulli, Amedeo; Griffiths, Gordon; Marmolejo-Ramos, Fernando

    2015-01-01

    The neural correlates of visualization underlying word comprehension were examined in preschool children. On each trial, a concrete or abstract word was delivered binaurally (part 1: post-auditory visualization), followed by a four-picture array (a target plus three distractors; part 2: matching visualization). Children were to select the picture matching the word they heard in part 1. Event-related potentials (ERPs) locked to each stimulus presentation and task interval were averaged over sets of trials of increasing word abstractness. ERP time-course during both parts of the task showed that early activity (i.e., <300 ms) was predominant in response to concrete words, while activity in response to abstract words became evident only at intermediate (i.e., 300–699 ms) and late (i.e., 700–1000 ms) ERP intervals. Specifically, ERP topography showed that while early activity during post-auditory visualization was linked to left temporo-parietal areas for concrete words, early activity during matching visualization occurred mostly in occipito-parietal areas for concrete words, but more anteriorly in centro-parietal areas for abstract words. In intermediate ERPs, post-auditory visualization coincided with parieto-occipital and parieto-frontal activity in response to both concrete and abstract words, while in matching visualization a parieto-central activity was common to both types of words. In the late ERPs for both types of words, the post-auditory visualization involved right-hemispheric activity following a “post-anterior” pathway sequence: occipital, parietal, and temporal areas; conversely, matching visualization involved left-hemispheric activity following an “ant-posterior” pathway sequence: frontal, temporal, parietal, and occipital areas. These results suggest that, similarly, for concrete and abstract words, meaning in young children depends on variably complex visualization processes integrating visuo-auditory experiences and supramodal embodying representations. PMID:26175697

  5. How does interhemispheric communication in visual word recognition work? Deciding between early and late integration accounts of the split fovea theory.

    PubMed

    Van der Haegen, Lise; Brysbaert, Marc; Davis, Colin J

    2009-02-01

    It has recently been shown that interhemispheric communication is needed for the processing of foveally presented words. In this study, we examine whether the integration of information happens at an early stage, before word recognition proper starts, or whether the integration is part of the recognition process itself. Two lexical decision experiments are reported in which words were presented at different fixation positions. In Experiment 1, a masked form priming task was used with primes that had two adjacent letters transposed. The results showed that although the fixation position had a substantial influence on the transposed letter priming effect, the priming was not smaller when the transposed letters were sent to different hemispheres than when they were projected to the same hemisphere. In Experiment 2, stimuli were presented that either had high frequency hemifield competitors or could be identified unambiguously on the basis of the information in one hemifield. Again, the lexical decision times did not vary as a function of hemifield competitors. These results are consistent with the early integration account, as presented in the SERIOL model of visual word recognition.

  6. Supporting Young Artists: The Development of the Visual Arts in Young Children.

    ERIC Educational Resources Information Center

    Epstein, Ann S.; Trimis, Eli

    Based on the view that art should be a vital component of young childrens experiences, this book examines the High/Scope approach to the visual arts for young children in early care and education settings and highlights an in-depth studio approach to developing art. The book is organized in two parts. Chapters in Part 1 present the High/Scope…

  7. Contribution of Innate Cortical Mechanisms to the Maturation of Orientation Selectivity in Parvalbumin Interneurons

    PubMed Central

    Figueroa Velez, Dario X.; Ellefsen, Kyle L.; Hathaway, Ethan R.; Carathedathu, Mathew C.

    2017-01-01

    The maturation of cortical parvalbumin-positive (PV) interneurons depends on the interaction of innate and experience-dependent factors. Dark-rearing experiments suggest that visual experience determines when broad orientation selectivity emerges in visual cortical PV interneurons. Here, using neural transplantation and in vivo calcium imaging of mouse visual cortex, we investigated whether innate mechanisms contribute to the maturation of orientation selectivity in PV interneurons. First, we confirmed earlier findings showing that broad orientation selectivity emerges in PV interneurons by 2 weeks after vision onset, ∼35 d after these cells are born. Next, we assessed the functional development of transplanted PV (tPV) interneurons. Surprisingly, 25 d after transplantation (DAT) and >2 weeks after vision onset, we found that tPV interneurons have not developed broad orientation selectivity. By 35 DAT, however, broad orientation selectivity emerges in tPV interneurons. Transplantation does not alter orientation selectivity in host interneurons, suggesting that the maturation of tPV interneurons occurs independently from their endogenous counterparts. Together, these results challenge the notion that the onset of vision solely determines when PV interneurons become broadly tuned. Our results reveal that an innate cortical mechanism contributes to the emergence of broad orientation selectivity in PV interneurons. SIGNIFICANCE STATEMENT Early visual experience and innate developmental programs interact to shape cortical circuits. Visual-deprivation experiments have suggested that the onset of visual experience determines when interneurons mature in the visual cortex. Here we used neuronal transplantation and cellular imaging of visual responses to investigate the maturation of parvalbumin-positive (PV) interneurons. Our results suggest that the emergence of broad orientation selectivity in PV interneurons is innately timed. PMID:28123018

  8. Molecular Mechanisms at the Basis of Plasticity in the Developing Visual Cortex: Epigenetic Processes and Gene Programs

    PubMed Central

    Maya-Vetencourt, José Fernando; Pizzorusso, Tommaso

    2013-01-01

    Neuronal circuitries in the mammalian visual system change as a function of experience. Sensory experience modifies neuronal networks connectivity via the activation of different physiological processes such as excitatory/inhibitory synaptic transmission, neurotrophins, and signaling of extracellular matrix molecules. Long-lasting phenomena of plasticity occur when intracellular signal transduction pathways promote epigenetic alterations of chromatin structure that regulate the induction of transcription factors that in turn drive the expression of downstream targets, the products of which then work via the activation of structural and functional mechanisms that modify synaptic connectivity. Here, we review recent findings in the field of visual cortical plasticity while focusing on how physiological mechanisms associated with experience promote structural changes that determine functional modifications of neural circuitries in V1. We revise the role of microRNAs as molecular transducers of environmental stimuli and the role of immediate early genes that control gene expression programs underlying plasticity in the developing visual cortex. PMID:25157210

  9. Rapid recovery from the effects of early monocular deprivation is enabled by temporary inactivation of the retinas.

    PubMed

    Fong, Ming-Fai; Mitchell, Donald E; Duffy, Kevin R; Bear, Mark F

    2016-12-06

    A half-century of research on the consequences of monocular deprivation (MD) in animals has revealed a great deal about the pathophysiology of amblyopia. MD initiates synaptic changes in the visual cortex that reduce acuity and binocular vision by causing neurons to lose responsiveness to the deprived eye. However, much less is known about how deprivation-induced synaptic modifications can be reversed to restore normal visual function. One theoretically motivated hypothesis is that a period of inactivity can reduce the threshold for synaptic potentiation such that subsequent visual experience promotes synaptic strengthening and increased responsiveness in the visual cortex. Here we have reduced this idea to practice in two species. In young mice, we show that the otherwise stable loss of cortical responsiveness caused by MD is reversed when binocular visual experience follows temporary anesthetic inactivation of the retinas. In 3-mo-old kittens, we show that a severe impairment of visual acuity is also fully reversed by binocular experience following treatment and, further, that prolonged retinal inactivation alone can erase anatomical consequences of MD. We conclude that temporary retinal inactivation represents a highly efficacious means to promote recovery of function.

  10. Black–white asymmetry in visual perception

    PubMed Central

    Lu, Zhong-Lin; Sperling, George

    2012-01-01

    With eleven different types of stimuli that exercise a wide gamut of spatial and temporal visual processes, negative perturbations from mean luminance are found to be typically 25% more effective visually than positive perturbations of the same magnitude (range 8–67%). In Experiment 12, the magnitude of the black–white asymmetry is shown to be a saturating function of stimulus contrast. Experiment 13 shows black–white asymmetry primarily involves a nonlinearity in the visual representation of decrements. Black–white asymmetry in early visual processing produces even-harmonic distortion frequencies in all ordinary stimuli and in illusions such as the perceived asymmetry of optically perfect sine wave gratings. In stimuli intended to stimulate exclusively second-order processing in which motion or shape are defined not by luminance differences but by differences in texture contrast, the black–white asymmetry typically generates artifactual luminance (first-order) motion and shape components. Because black–white asymmetry pervades psychophysical and neurophysiological procedures that utilize spatial or temporal variations of luminance, it frequently needs to be considered in the design and evaluation of experiments that involve visual stimuli. Simple procedures to compensate for black–white asymmetry are proposed. PMID:22984221

  11. Language experience shapes early electrophysiological responses to visual stimuli: the effects of writing system, stimulus length, and presentation duration.

    PubMed

    Xue, Gui; Jiang, Ting; Chen, Chuansheng; Dong, Qi

    2008-02-15

    How language experience affects visual word recognition has been a topic of intense interest. Using event-related potentials (ERPs), the present study compared the early electrophysiological responses (i.e., N1) to familiar and unfamiliar writings under different conditions. Thirteen native Chinese speakers (with English as their second language) were recruited to passively view four types of scripts: Chinese (familiar logographic writings), English (familiar alphabetic writings), Korean Hangul (unfamiliar logographic writings), and Tibetan (unfamiliar alphabetic writings). Stimuli also differed in lexicality (words vs. non-words, for familiar writings only), length (characters/letters vs. words), and presentation duration (100 ms vs. 750 ms). We found no significant differences between words and non-words, and the effect of language experience (familiar vs. unfamiliar) was significantly modulated by stimulus length and writing system, and to a less degree, by presentation duration. That is, the language experience effect (i.e., a stronger N1 response to familiar writings than to unfamiliar writings) was significant only for alphabetic letters, but not for alphabetic and logographic words. The difference between Chinese characters and unfamiliar logographic characters was significant under the condition of short presentation duration, but not under the condition of long presentation duration. Long stimuli elicited a stronger N1 response than did short stimuli, but this effect was significantly attenuated for familiar writings. These results suggest that N1 response might not reliably differentiate familiar and unfamiliar writings. More importantly, our results suggest that N1 is modulated by visual, linguistic, and task factors, which has important implications for the visual expertise hypothesis.

  12. [Treatment of amblyopia].

    PubMed

    von Noorden, G K

    1990-01-01

    Animal experiments have explored the structural and functional alterations of the afferent visual pathways in amblyopia and have emphasized the extraordinary sensitivity of the immature visual system to abnormal visual stimulation. The practical consequences of these experiments are obvious: early diagnosis of amblyopia and energetic occlusion therapy as early in life as possible. At the same time, measures must be taken to prevent visual deprivation amblyopia in the occluded eye. After successful treatment, alternating penalization with two pairs of spectacles is recommended. Pleoptics involves an enormous commitment in terms of time, personnel and costs. In view of the fact that the superiority of this treatment over occlusion therapy has yet to be proven, the current value of pleoptics appears dubious. Moreover, overtreated patients may end up with intractable diplopia. Diverging opinions exist with regard to the use of penalization as a primary treatment of amblyopia. We employ it only in special cases as an alternative to occlusion therapy. Visual deprivation in infancy caused by opacities of the ocular media, especially when they occur unilaterally, must be eliminated, and deprivation amblyopia must be treated without delay to regain useful vision. Brief periods of bilateral occlusion are recommended to avoid the highly amblyopiogenic imbalance between binocular afferent visual input. Future developments will hopefully include new objective methods to diagnose amblyopia in preverbal children and infants. The application of positron emission tomography is perhaps the first step in the direction of searching for new approaches to this problem.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Magnetoencephalographic responses to illusory figures: early evoked gamma is affected by processing of stimulus features.

    PubMed

    Herrmann, C S; Mecklinger, A

    2000-12-01

    We examined evoked and induced responses in event-related fields and gamma activity in the magnetoencephalogram (MEG) during a visual classification task. The objective was to investigate the effects of target classification and the different levels of discrimination between certain stimulus features. We performed two experiments, which differed only in the subjects' task while the stimuli were identical. In Experiment 1, subjects responded by a button-press to rare Kanizsa squares (targets) among Kanizsa triangles and non-Kanizsa figures (standards). This task requires the processing of both stimulus features (colinearity and number of inducer disks). In Experiment 2, the four stimuli of Experiment 1 were used as standards and the occurrence of an additional stimulus without any feature overlap with the Kanizsa stimuli (a rare and highly salient red fixation cross) had to be detected. Discrimination of colinearity and number of inducer disks was not necessarily required for task performance. We applied a wavelet-based time-frequency analysis to the data and calculated topographical maps of the 40 Hz activity. The early evoked gamma activity (100-200 ms) in Experiment 1 was higher for targets as compared to standards. In Experiment 2, no significant differences were found in the gamma responses to the Kanizsa figures and non-Kanizsa figures. This pattern of results suggests that early evoked gamma activity in response to visual stimuli is affected by the targetness of a stimulus and the need to discriminate between the features of a stimulus.

  14. Vision after 53 years of blindness.

    PubMed

    Sikl, Radovan; Simecček, Michal; Porubanová-Norquist, Michaela; Bezdíček, Ondřej; Kremláček, Jan; Stodůlka, Pavel; Fine, Ione; Ostrovsky, Yuri

    2013-01-01

    Several studies have shown that visual recovery after blindness that occurs early in life is never complete. The current study investigated whether an extremely long period of blindness might also cause a permanent impairment of visual performance, even in a case of adult-onset blindness. We examined KP, a 71-year-old man who underwent a successful sight-restoring operation after 53 years of blindness. A set of psychophysical tests designed to assess KP's face perception, object recognition, and visual space perception abilities were conducted six months and eight months after the surgery. The results demonstrate that regardless of a lengthy period of normal vision and rich pre-accident perceptual experience, KP did not fully integrate this experience, and his visual performance remained greatly compromised. This was particularly evident when the tasks targeted finer levels of perceptual processing. In addition to the decreased robustness of his memory representations, which was hypothesized as the main factor determining visual impairment, other factors that may have affected KP's performance were considered, including compromised visual functions, problems with perceptual organization, deficits in the simultaneous processing of visual information, and reduced cognitive abilities.

  15. Effects of chronic iTBS-rTMS and enriched environment on visual cortex early critical period and visual pattern discrimination in dark-reared rats.

    PubMed

    Castillo-Padilla, Diana V; Funke, Klaus

    2016-01-01

    Early cortical critical period resembles a state of enhanced neuronal plasticity enabling the establishment of specific neuronal connections during first sensory experience. Visual performance with regard to pattern discrimination is impaired if the cortex is deprived from visual input during the critical period. We wondered how unspecific activation of the visual cortex before closure of the critical period using repetitive transcranial magnetic stimulation (rTMS) could affect the critical period and the visual performance of the experimental animals. Would it cause premature closure of the plastic state and thus worsen experience-dependent visual performance, or would it be able to preserve plasticity? Effects of intermittent theta-burst stimulation (iTBS) were compared with those of an enriched environment (EE) during dark-rearing (DR) from birth. Rats dark-reared in a standard cage showed poor improvement in a visual pattern discrimination task, while rats housed in EE or treated with iTBS showed a performance indistinguishable from rats reared in normal light/dark cycle. The behavioral effects were accompanied by correlated changes in the expression of brain-derived neurotrophic factor (BDNF) and atypical PKC (PKCζ/PKMζ), two factors controlling stabilization of synaptic potentiation. It appears that not only nonvisual sensory activity and exercise but also cortical activation induced by rTMS has the potential to alleviate the effects of DR on cortical development, most likely due to stimulation of BDNF synthesis and release. As we showed previously, iTBS reduced the expression of parvalbumin in inhibitory cortical interneurons, indicating that modulation of the activity of fast-spiking interneurons contributes to the observed effects of iTBS. © 2015 Wiley Periodicals, Inc.

  16. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence.

    PubMed Central

    Hillyard, S A; Vogel, E K; Luck, S J

    1998-01-01

    Both physiological and behavioral studies have suggested that stimulus-driven neural activity in the sensory pathways can be modulated in amplitude during selective attention. Recordings of event-related brain potentials indicate that such sensory gain control or amplification processes play an important role in visual-spatial attention. Combined event-related brain potential and neuroimaging experiments provide strong evidence that attentional gain control operates at an early stage of visual processing in extrastriate cortical areas. These data support early selection theories of attention and provide a basis for distinguishing between separate mechanisms of attentional suppression (of unattended inputs) and attentional facilitation (of attended inputs). PMID:9770220

  17. Stroke survivors' views and experiences on impact of visual impairment.

    PubMed

    Rowe, Fiona J

    2017-09-01

    We sought to determine stroke survivors' views on impact of stroke-related visual impairment to quality of life. Stroke survivors with visual impairment, more than 1 year post stroke onset, were recruited. Semistructured biographical narrative interviews were audio-recorded and transcribed verbatim. A thematic approach to analysis of the qualitative data was adopted. Transcripts were systematically coded using NVivo10 software. Thirty-five stroke survivors were interviewed across the UK: 16 females, 19 males; aged 20-75 years at stroke onset. Five qualitative themes emerged: "Formal care," "Symptoms and self," "Adaptations," "Daily life," and "Information." Where visual problems existed, they were often not immediately recognized as part of the stroke syndrome and attributed to other causes such as migraine. Many participants did not receive early vision assessment or treatment for their visual problems. Visual problems included visual field loss, double vision, and perceptual problems. Impact of visual problems included loss in confidence, being a burden to others, increased collisions/accidents, and fear of falling. They made many self-identified adaptations to compensate for visual problems: magnifiers, large print, increased lighting, use of white sticks. There was a consistent lack of support and provision of information about visual problems. Poststroke visual impairment causes considerable impact to daily life which could be substantially improved by simple measures including early formal visual assessment, management and advice on adaptive strategies and self-management options. Improved education about poststroke visual impairment for the public and clinicians could aid earlier diagnosis of visual impairments.

  18. Emotion Separation Is Completed Early and It Depends on Visual Field Presentation

    PubMed Central

    Liu, Lichan; Ioannides, Andreas A.

    2010-01-01

    It is now apparent that the visual system reacts to stimuli very fast, with many brain areas activated within 100 ms. It is, however, unclear how much detail is extracted about stimulus properties in the early stages of visual processing. Here, using magnetoencephalography we show that the visual system separates different facial expressions of emotion well within 100 ms after image onset, and that this separation is processed differently depending on where in the visual field the stimulus is presented. Seven right-handed males participated in a face affect recognition experiment in which they viewed happy, fearful and neutral faces. Blocks of images were shown either at the center or in one of the four quadrants of the visual field. For centrally presented faces, the emotions were separated fast, first in the right superior temporal sulcus (STS; 35–48 ms), followed by the right amygdala (57–64 ms) and medial pre-frontal cortex (83–96 ms). For faces presented in the periphery, the emotions were separated first in the ipsilateral amygdala and contralateral STS. We conclude that amygdala and STS likely play a different role in early visual processing, recruiting distinct neural networks for action: the amygdala alerts sub-cortical centers for appropriate autonomic system response for fight or flight decisions, while the STS facilitates more cognitive appraisal of situations and links appropriate cortical sites together. It is then likely that different problems may arise when either network fails to initiate or function properly. PMID:20339549

  19. [Parental self-efficacy in family-centered early intervention].

    PubMed

    Sarimski, Klaus; Hintermair, Manfred; Lang, Markus

    2012-01-01

    Parental self-efficacy is seen as an important concern in family-centered early intervention. This article reports the data from 125 parents of young children with intellectual disabilities, hearing impairment or visual impairment. The relationship between parental self-efficacy, parental stress and several parent and child variables is analyzed. The results support the relevance of parental self-efficacy for parental coping. Some recommendations for promoting their experience of participation and partnership in early intervention services are discussed.

  20. Interocular suppression in strabismic amblyopia results in an attenuated and delayed hemodynamic response function in early visual cortex.

    PubMed

    Farivar, Reza; Thompson, Benjamin; Mansouri, Behzad; Hess, Robert F

    2011-12-20

    Factors such as strabismus or anisometropia during infancy can disrupt normal visual development and result in amblyopia, characterized by reduced visual function in an otherwise healthy eye and often associated with persistent suppression of inputs from the amblyopic eye by those from the dominant eye. It has become evident from fMRI studies that the cortical response to stimulation of the amblyopic eye is also affected. We were interested to compare the hemodynamic response function (HRF) of early visual cortex to amblyopic vs. dominant eye stimulation. In the first experiment, we found that stimulation of the amblyopic eye resulted in a signal that was both attenuated and delayed in its time to peak. We postulated that this delay may be due to suppressive effects of the dominant eye and, in our second experiment, measured the cortical response of amblyopic eye stimulation under two conditions--where the dominant eye was open and seeing a static pattern (high suppression) or where the dominant eye was patched and closed (low suppression). We found that the HRF in response to amblyopic eye stimulation depended on whether the dominant eye was open. This effect was manifested as both a delayed HRF under the suppressed condition and an amplitude reduction.

  1. From genes to brain oscillations: is the visual pathway the epigenetic clue to schizophrenia?

    PubMed

    González-Hernández, J A; Pita-Alcorta, C; Cedeño, I R

    2006-01-01

    Molecular data and gene expression data and recently mitochondrial genes and possible epigenetic regulation by non-coding genes is revolutionizing our views on schizophrenia. Genes and epigenetic mechanisms are triggered by cell-cell interaction and by external stimuli. A number of recent clinical and molecular observations indicate that epigenetic factors may be operational in the origin of the illness. Based on the molecular insights, gene expression profiles and epigenetic regulation of gene, we went back to the neurophysiology (brain oscillations) and found a putative role of the visual experiences (i.e. visual stimuli) as epigenetic factor. The functional evidences provided here, establish a direct link between the striate and extrastriate unimodal visual cortex and the neurobiology of the schizophrenia. This result support the hypothesis that 'visual experience' has a potential role as epigenetic factor and contribute to trigger and/or to maintain the progression of the schizophrenia. In this case, candidate genes sensible for the visual 'insult' may be located within the visual cortex including associative areas, while the integrity of the visual pathway before reaching the primary visual cortex is preserved. The same effect can be perceived if target genes are localised within the visual pathway, which actually, is more sensitive for 'insult' during the early life than the cortex per se. If this process affects gene expression at these sites a stably sensory specific 'insult', i.e. distorted visual information, is entering the visual system and expanded to fronto-temporo-parietal multimodal areas even from early maturation periods. The difference in the timing of postnatal neuroanatomical events between such areas and the primary visual cortex in humans (with the formers reaching the same development landmarks later in life than the latter) is 'optimal' to establish an abnormal 'cell- communication' mediated by the visual system that may further interfere with the local physiology. In this context the strategy to search target genes need to be rearrangement and redirected to visual-related genes. Otherwise, psychophysics studies combining functional neuroimage, and electrophysiology are strongly recommended, for the search of epigenetic clues that will allow to carrier gene association studies in schizophrenia.

  2. Decoding the future from past experience: learning shapes predictions in early visual cortex.

    PubMed

    Luft, Caroline D B; Meeson, Alan; Welchman, Andrew E; Kourtzi, Zoe

    2015-05-01

    Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex. Copyright © 2015 the American Physiological Society.

  3. Aesthetic Experience in the World of Visual Culture

    ERIC Educational Resources Information Center

    Moore, Ronald

    2004-01-01

    This article draws attention to three important aesthetic ideas--ideas which have become, in the early twenty-first century, so widely endorsed in Western culture that they have become the stock platform of much theorizing and teaching about our experience of art and its relation to the rest of life. All of these ideas sprang from Beat thought in…

  4. Floating Experiences: Empowering Early Childhood Educators to Encourage Critical Thinking in Young Children through the Visual Arts

    ERIC Educational Resources Information Center

    Danko-McGhee, Kathy; Slutsky, Ruslan

    2007-01-01

    Engagement in the arts nurtures the development of cognitive, social, and personal competencies. When well taught, the arts provide young children with authentic learning experiences that engage their minds. To get children to think critically, teachers ought to become comfortable with the problem-solving process themselves. This article…

  5. Amblyopia treatment strategies and new drug therapies.

    PubMed

    Pescosolido, Nicola; Stefanucci, Alessio; Buomprisco, Giuseppe; Fazio, Stefano

    2014-01-01

    Amblyopia is a unilateral or bilateral reduction of visual acuity secondary to abnormal visual experience during early childhood. It is one of the most common causes of vision loss and monocular blindness and is commonly associated with strabismus, anisometropia, and visual deprivation (in particular congenital cataract and ptosis). It is clinically defined as a two-line difference of best-corrected visual acuity between the eyes. The purpose of this study was to understand the neural mechanisms of amblyopia and summarize the current therapeutic strategies. In particular, the authors focused on the concept of brain plasticity and its implication for new treatment strategies for children and adults with amblyopia. Copyright 2014, SLACK Incorporated.

  6. Experience-dependent emergence of beta and gamma band oscillations in the primary visual cortex during the critical period

    PubMed Central

    Chen, Guang; Rasch, Malte J.; Wang, Ran; Zhang, Xiao-hui

    2015-01-01

    Neural oscillatory activities have been shown to play important roles in neural information processing and the shaping of circuit connections during development. However, it remains unknown whether and how specific neural oscillations emerge during a postnatal critical period (CP), in which neuronal connections are most substantially modified by neural activity and experience. By recording local field potentials (LFPs) and single unit activity in developing primary visual cortex (V1) of head-fixed awake mice, we here demonstrate an emergence of characteristic oscillatory activities during the CP. From the pre-CP to CP, the peak frequency of spontaneous fast oscillatory activities shifts from the beta band (15–35 Hz) to the gamma band (40–70 Hz), accompanied by a decrease of cross-frequency coupling (CFC) and broadband spike-field coherence (SFC). Moreover, visual stimulation induced a large increase of beta-band activity but a reduction of gamma-band activity specifically from the CP onwards. Dark rearing of animals from the birth delayed this emergence of oscillatory activities during the CP, suggesting its dependence on early visual experience. These findings suggest that the characteristic neuronal oscillatory activities emerged specifically during the CP may represent as neural activity trait markers for the experience-dependent maturation of developing visual cortical circuits. PMID:26648548

  7. Visual quality evaluation of urban commercial streetscape for the development of landscape visual planning system in provincial street corridors in Malang, Indonesia

    NASA Astrophysics Data System (ADS)

    Santosa, H.; Ernawati, J.; Wulandari, L. D.

    2018-03-01

    The visual aesthetic experience in urban spaces is important in establishing a comfortable and satisfying experience for the community. The embodiment of a good visual image of urban space will encourage the emergence of positive perceptions and meanings stimulating the community to produce a good reaction to its urban space. Moreover, to establish a Good Governance in urban planning and design, it is necessary to boost and promote a community participation in the process of controlling the visual quality of urban space through the visual quality evaluation on urban street corridors. This study is an early stage as part of the development of ‘Landscape Visual Planning System’ on the commercial street corridor in Malang. Accordingly, the research aims to evaluate the physical characteristics and the public preferences of the spatial and visual aspects in five provincial road corridors in Malang. This study employs a field survey methods, and an environmental aesthetics approach through semantic differential method. The result of the identification of physical characteristics and the assessment of public preferences on the spatial and visual aspects of the five provincial streets serve as the basis for constructing the 3d interactive simulation scenarios in the Landscape Visual Planning System.

  8. Early Sign Language Experience Goes along with an Increased Cross-Modal Gain for Affective Prosodic Recognition in Congenitally Deaf CI Users

    ERIC Educational Resources Information Center

    Fengler, Ineke; Delfau, Pia-Céline; Röder, Brigitte

    2018-01-01

    It is yet unclear whether congenitally deaf cochlear implant (CD CI) users' visual and multisensory emotion perception is influenced by their history in sign language acquisition. We hypothesized that early-signing CD CI users, relative to late-signing CD CI users and hearing, non-signing controls, show better facial expression recognition and…

  9. Infants Understand Deceptive Intentions to Implant False Beliefs about Identity: New Evidence for Early Mentalistic Reasoning

    PubMed Central

    Scott, Rose M.; Richman, Josh C.; Baillargeon, Renée

    2015-01-01

    Are infants capable of representing false beliefs, as the mentalistic account of early psychological reasoning suggests, or are they incapable of doing so, as the minimalist account suggests? The present research sought to shed light on this debate by testing the minimalist claim that a signature limit of early psychological reasoning is a specific inability to understand false beliefs about identity: because of their limited representational capabilities, infants should be unable to make sense of situations where an agent mistakes one object for another, visually identical object. To evaluate this claim, three experiments examined whether 17-month-olds could reason about the actions of a deceptive agent who sought to implant in another agent a false belief about the identity of an object. In each experiment, a thief attempted to secretly steal a desirable rattling toy during its owner’s absence by substituting a less desirable silent toy. Infants realized that this substitution could be effective only if the silent toy was visually identical to the rattling toy (Experiment 1) and the owner did not routinely shake her toy when she returned (Experiment 2). When these conditions were met, infants expected the owner to be deceived and to mistake the silent toy for the rattling toy she had left behind (Experiment 3). Together, these results cast doubt on the minimalist claim that infants cannot represent false beliefs about identity. More generally, these results indicate that infants in the 2nd year of life can reason not only about the actions of agents who hold false beliefs, but also about the actions of agents who seek to implant false beliefs, thus providing new support for the mentalistic claim that an abstract capacity to reason about false beliefs emerges early in human development. PMID:26374383

  10. Inferring the direction of implied motion depends on visual awareness

    PubMed Central

    Faivre, Nathan; Koch, Christof

    2014-01-01

    Visual awareness of an event, object, or scene is, by essence, an integrated experience, whereby different visual features composing an object (e.g., orientation, color, shape) appear as an unified percept and are processed as a whole. Here, we tested in human observers whether perceptual integration of static motion cues depends on awareness by measuring the capacity to infer the direction of motion implied by a static visible or invisible image under continuous flash suppression. Using measures of directional adaptation, we found that visible but not invisible implied motion adaptors biased the perception of real motion probes. In a control experiment, we found that invisible adaptors implying motion primed the perception of subsequent probes when they were identical (i.e., repetition priming), but not when they only shared the same direction (i.e., direction priming). Furthermore, using a model of visual processing, we argue that repetition priming effects are likely to arise as early as in the primary visual cortex. We conclude that although invisible images implying motion undergo some form of nonconscious processing, visual awareness is necessary to make inferences about motion direction. PMID:24706951

  11. Decoding visual object categories in early somatosensory cortex.

    PubMed

    Smith, Fraser W; Goodale, Melvyn A

    2015-04-01

    Neurons, even in the earliest sensory areas of cortex, are subject to a great deal of contextual influence from both within and across modality connections. In the present work, we investigated whether the earliest regions of somatosensory cortex (S1 and S2) would contain content-specific information about visual object categories. We reasoned that this might be possible due to the associations formed through experience that link different sensory aspects of a given object. Participants were presented with visual images of different object categories in 2 fMRI experiments. Multivariate pattern analysis revealed reliable decoding of familiar visual object category in bilateral S1 (i.e., postcentral gyri) and right S2. We further show that this decoding is observed for familiar but not unfamiliar visual objects in S1. In addition, whole-brain searchlight decoding analyses revealed several areas in the parietal lobe that could mediate the observed context effects between vision and somatosensation. These results demonstrate that even the first cortical stages of somatosensory processing carry information about the category of visually presented familiar objects. © The Author 2013. Published by Oxford University Press.

  12. Decoding Visual Object Categories in Early Somatosensory Cortex

    PubMed Central

    Smith, Fraser W.; Goodale, Melvyn A.

    2015-01-01

    Neurons, even in the earliest sensory areas of cortex, are subject to a great deal of contextual influence from both within and across modality connections. In the present work, we investigated whether the earliest regions of somatosensory cortex (S1 and S2) would contain content-specific information about visual object categories. We reasoned that this might be possible due to the associations formed through experience that link different sensory aspects of a given object. Participants were presented with visual images of different object categories in 2 fMRI experiments. Multivariate pattern analysis revealed reliable decoding of familiar visual object category in bilateral S1 (i.e., postcentral gyri) and right S2. We further show that this decoding is observed for familiar but not unfamiliar visual objects in S1. In addition, whole-brain searchlight decoding analyses revealed several areas in the parietal lobe that could mediate the observed context effects between vision and somatosensation. These results demonstrate that even the first cortical stages of somatosensory processing carry information about the category of visually presented familiar objects. PMID:24122136

  13. Inferring the direction of implied motion depends on visual awareness.

    PubMed

    Faivre, Nathan; Koch, Christof

    2014-04-04

    Visual awareness of an event, object, or scene is, by essence, an integrated experience, whereby different visual features composing an object (e.g., orientation, color, shape) appear as an unified percept and are processed as a whole. Here, we tested in human observers whether perceptual integration of static motion cues depends on awareness by measuring the capacity to infer the direction of motion implied by a static visible or invisible image under continuous flash suppression. Using measures of directional adaptation, we found that visible but not invisible implied motion adaptors biased the perception of real motion probes. In a control experiment, we found that invisible adaptors implying motion primed the perception of subsequent probes when they were identical (i.e., repetition priming), but not when they only shared the same direction (i.e., direction priming). Furthermore, using a model of visual processing, we argue that repetition priming effects are likely to arise as early as in the primary visual cortex. We conclude that although invisible images implying motion undergo some form of nonconscious processing, visual awareness is necessary to make inferences about motion direction.

  14. Differential effects of visual attention and working memory on binocular rivalry.

    PubMed

    Scocchia, Lisa; Valsecchi, Matteo; Gegenfurtner, Karl R; Triesch, Jochen

    2014-05-30

    The investigation of cognitive influence on binocular rivalry has a long history. However, the effects of visual WM on rivalry have never been studied so far. We examined top-down modulation of rivalry perception in four experiments to compare the effects of visual WM and sustained selective attention: In the first three experiments we failed to observe any sustained effect of the WM content; only the color of the memory probe was found to prime the initially dominant percept. In Experiment 4 we found a clear effect of sustained attention on rivalry both in terms of the first dominant percept and of the overall dominance when participants were involved in a tracking task. Our results provide an example of dissociation between visual WM and selective attention, two phenomena which otherwise functionally overlap to a large extent. Furthermore, our study highlights the importance of the task employed to engage cognitive resources: The observed perceptual epiphenomena of binocular rivalry are indicative of visual competition at an early stage, which is not affected by WM but is still susceptible to attention influence as long as the observer’s attention is constrained to one of the two rival images via a specific concomitant task. © 2014 ARVO.

  15. Confident false memories for spatial location are mediated by V1.

    PubMed

    Karanian, Jessica M; Slotnick, Scott D

    2018-06-27

    Prior functional magnetic resonance imaging (fMRI) results suggest that true memories, but not false memories, activate early sensory cortex. It is thought that false memories, which reflect conscious processing, do not activate early sensory cortex because these regions are associated with nonconscious processing. We posited that false memories may activate the earliest visual cortical processing region (i.e., V1) when task conditions are manipulated to evoke conscious processing in this region. In an fMRI experiment, abstract shapes were presented to the left or right of fixation during encoding. During retrieval, old shapes were presented at fixation and participants characterized each shape as previously on the "left" or "right" followed by an "unsure"-"sure"-"very sure" confidence rating. False memories for spatial location (i.e., "right"/left or "left"/right trials with "sure" or "very sure" confidence ratings) were associated with activity in bilateral early visual regions, including V1. In a follow-up fMRI-guided transcranial magnetic stimulation (TMS) experiment that employed the same paradigm, we assessed whether V1 activity was necessary for false memory construction. Between the encoding phase and the retrieval phase of each run, TMS (1 Hz, 8 min) was used to target the location of false memory activity (identified in the fMRI experiment) in left V1, right V1, or the vertex (control site). Confident false memories for spatial location were significantly reduced following TMS to V1, as compared to vertex. The results of the present experiments provide convergent evidence that early sensory cortex can contribute to false memory construction under particular task conditions.

  16. Rapid Extraction of Lexical Tone Phonology in Chinese Characters: A Visual Mismatch Negativity Study

    PubMed Central

    Wang, Xiao-Dong; Liu, A-Ping; Wu, Yin-Yuan; Wang, Peng

    2013-01-01

    Background In alphabetic languages, emerging evidence from behavioral and neuroimaging studies shows the rapid and automatic activation of phonological information in visual word recognition. In the mapping from orthography to phonology, unlike most alphabetic languages in which there is a natural correspondence between the visual and phonological forms, in logographic Chinese, the mapping between visual and phonological forms is rather arbitrary and depends on learning and experience. The issue of whether the phonological information is rapidly and automatically extracted in Chinese characters by the brain has not yet been thoroughly addressed. Methodology/Principal Findings We continuously presented Chinese characters differing in orthography and meaning to adult native Mandarin Chinese speakers to construct a constant varying visual stream. In the stream, most stimuli were homophones of Chinese characters: The phonological features embedded in these visual characters were the same, including consonants, vowels and the lexical tone. Occasionally, the rule of phonology was randomly violated by characters whose phonological features differed in the lexical tone. Conclusions/Significance We showed that the violation of the lexical tone phonology evoked an early, robust visual response, as revealed by whole-head electrical recordings of the visual mismatch negativity (vMMN), indicating the rapid extraction of phonological information embedded in Chinese characters. Source analysis revealed that the vMMN was involved in neural activations of the visual cortex, suggesting that the visual sensory memory is sensitive to phonological information embedded in visual words at an early processing stage. PMID:23437235

  17. Task modulates functional connectivity networks in free viewing behavior.

    PubMed

    Seidkhani, Hossein; Nikolaev, Andrey R; Meghanathan, Radha Nila; Pezeshk, Hamid; Masoudi-Nejad, Ali; van Leeuwen, Cees

    2017-10-01

    In free visual exploration, eye-movement is immediately followed by dynamic reconfiguration of brain functional connectivity. We studied the task-dependency of this process in a combined visual search-change detection experiment. Participants viewed two (nearly) same displays in succession. First time they had to find and remember multiple targets among distractors, so the ongoing task involved memory encoding. Second time they had to determine if a target had changed in orientation, so the ongoing task involved memory retrieval. From multichannel EEG recorded during 200 ms intervals time-locked to fixation onsets, we estimated the functional connectivity using a weighted phase lag index at the frequencies of theta, alpha, and beta bands, and derived global and local measures of the functional connectivity graphs. We found differences between both memory task conditions for several network measures, such as mean path length, radius, diameter, closeness and eccentricity, mainly in the alpha band. Both the local and the global measures indicated that encoding involved a more segregated mode of operation than retrieval. These differences arose immediately after fixation onset and persisted for the entire duration of the lambda complex, an evoked potential commonly associated with early visual perception. We concluded that encoding and retrieval differentially shape network configurations involved in early visual perception, affecting the way the visual input is processed at each fixation. These findings demonstrate that task requirements dynamically control the functional connectivity networks involved in early visual perception. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Seeing sounds and hearing colors: an event-related potential study of auditory-visual synesthesia.

    PubMed

    Goller, Aviva I; Otten, Leun J; Ward, Jamie

    2009-10-01

    In auditory-visual synesthesia, sounds automatically elicit conscious and reliable visual experiences. It is presently unknown whether this reflects early or late processes in the brain. It is also unknown whether adult audiovisual synesthesia resembles auditory-induced visual illusions that can sometimes occur in the general population or whether it resembles the electrophysiological deflection over occipital sites that has been noted in infancy and has been likened to synesthesia. Electrical brain activity was recorded from adult synesthetes and control participants who were played brief tones and required to monitor for an infrequent auditory target. The synesthetes were instructed to attend either to the auditory or to the visual (i.e., synesthetic) dimension of the tone, whereas the controls attended to the auditory dimension alone. There were clear differences between synesthetes and controls that emerged early (100 msec after tone onset). These differences tended to lie in deflections of the auditory-evoked potential (e.g., the auditory N1, P2, and N2) rather than the presence of an additional posterior deflection. The differences occurred irrespective of what the synesthetes attended to (although attention had a late effect). The results suggest that differences between synesthetes and others occur early in time, and that synesthesia is qualitatively different from similar effects found in infants and certain auditory-induced visual illusions in adults. In addition, we report two novel cases of synesthesia in which colors elicit sounds, and vice versa.

  19. How does Learning Impact Development in Infancy? The Case of Perceptual Organization

    PubMed Central

    Bhatt, Ramesh S.; Quinn, Paul C.

    2011-01-01

    Pattern perception and organization are critical functions of the visual cognition system. Many organizational processes are available early in life, such that infants as young 3 months of age are able to readily utilize a variety of cues to organize visual patterns. However, other processes are not readily evident in young infants, and their development involves perceptual learning. We describe a theoretical framework that addresses perceptual learning in infancy and the manner in which it affects visual organization and development. It identifies five kinds of experiences that induce learning, and suggests that they work via attentional and unitization mechanisms to modify visual organization. In addition, the framework proposes that this kind of learning is abstract, domain general, functional at different ages in a qualitatively similar manner, and has a long-term impact on development through a memory reactivation process. Although most models of development assume that experience is fundamental to development, very little is actually known about the process by which experience affects development. The proposed framework is an attempt to account for this process in the domain of perception. PMID:21572570

  20. Theoretical approaches to lightness and perception.

    PubMed

    Gilchrist, Alan

    2015-01-01

    Theories of lightness, like theories of perception in general, can be categorized as high-level, low-level, and mid-level. However, I will argue that in practice there are only two categories: one-stage mid-level theories, and two-stage low-high theories. Low-level theories usually include a high-level component and high-level theories include a low-level component, the distinction being mainly one of emphasis. Two-stage theories are the modern incarnation of the persistent sensation/perception dichotomy according to which an early experience of raw sensations, faithful to the proximal stimulus, is followed by a process of cognitive interpretation, typically based on past experience. Like phlogiston or the ether, raw sensations seem like they must exist, but there is no clear evidence for them. Proximal stimulus matches are postperceptual, not read off an early sensory stage. Visual angle matches are achieved by a cognitive process of flattening the visual world. Likewise, brightness (luminance) matches depend on a cognitive process of flattening the illumination. Brightness is not the input to lightness; brightness is slower than lightness. Evidence for an early (< 200 ms) mosaic stage is shaky. As for cognitive influences on perception, the many claims tend to fall apart upon close inspection of the evidence. Much of the evidence for the current revival of the 'new look' is probably better explained by (1) a natural desire of (some) subjects to please the experimenter, and (2) the ease of intuiting an experimental hypothesis. High-level theories of lightness are overkill. The visual system does not need to know the amount of illumination, merely which surfaces share the same illumination. This leaves mid-level theories derived from the gestalt school. Here the debate seems to revolve around layer models and framework models. Layer models fit our visual experience of a pattern of illumination projected onto a pattern of reflectance, while framework models provide a better account of illusions and failures of constancy. Evidence for and against these approaches is reviewed.

  1. The Faces in Infant-Perspective Scenes Change over the First Year of Life

    PubMed Central

    Jayaraman, Swapnaa; Fausey, Caitlin M.; Smith, Linda B.

    2015-01-01

    Mature face perception has its origins in the face experiences of infants. However, little is known about the basic statistics of faces in early visual environments. We used head cameras to capture and analyze over 72,000 infant-perspective scenes from 22 infants aged 1-11 months as they engaged in daily activities. The frequency of faces in these scenes declined markedly with age: for the youngest infants, faces were present 15 minutes in every waking hour but only 5 minutes for the oldest infants. In general, the available faces were well characterized by three properties: (1) they belonged to relatively few individuals; (2) they were close and visually large; and (3) they presented views showing both eyes. These three properties most strongly characterized the face corpora of our youngest infants and constitute environmental constraints on the early development of the visual system. PMID:26016988

  2. EEG reveals an early influence of social conformity on visual processing in group pressure situations.

    PubMed

    Trautmann-Lengsfeld, Sina Alexa; Herrmann, Christoph Siegfried

    2013-01-01

    Humans are social beings and often have to perceive and perform within groups. In conflict situations, this puts them under pressure to either adhere to the group opinion or to risk controversy with the group. Psychological experiments have demonstrated that study participants adapt to erroneous group opinions in visual perception tasks, which they can easily solve correctly when performing on their own. Until this point, however, it is unclear whether this phenomenon of social conformity influences early stages of perception that might not even reach awareness or later stages of conscious decision-making. Using electroencephalography, this study has revealed that social conformity to the wrong group opinion resulted in a decrease of the posterior-lateral P1 in line with a decrease of the later centro-parietal P3. These results suggest that group pressure situations impact early unconscious visual perceptual processing, which results in a later diminished stimulus discrimination and an adaptation even to the wrong group opinion. These findings might have important implications for understanding social behavior in group settings and are discussed within the framework of social influence on eyewitness testimony.

  3. How does experience modulate auditory spatial processing in individuals with blindness?

    PubMed

    Tao, Qian; Chan, Chetwyn C H; Luo, Yue-jia; Li, Jian-jun; Ting, Kin-hung; Wang, Jun; Lee, Tatia M C

    2015-05-01

    Comparing early- and late-onset blindness in individuals offers a unique model for studying the influence of visual experience on neural processing. This study investigated how prior visual experience would modulate auditory spatial processing among blind individuals. BOLD responses of early- and late-onset blind participants were captured while performing a sound localization task. The task required participants to listen to novel "Bat-ears" sounds, analyze the spatial information embedded in the sounds, and specify out of 15 locations where the sound would have been emitted. In addition to sound localization, participants were assessed on visuospatial working memory and general intellectual abilities. The results revealed common increases in BOLD responses in the middle occipital gyrus, superior frontal gyrus, precuneus, and precentral gyrus during sound localization for both groups. Between-group dissociations, however, were found in the right middle occipital gyrus and left superior frontal gyrus. The BOLD responses in the left superior frontal gyrus were significantly correlated with accuracy on sound localization and visuospatial working memory abilities among the late-onset blind participants. In contrast, the accuracy on sound localization only correlated with BOLD responses in the right middle occipital gyrus among the early-onset counterpart. The findings support the notion that early-onset blind individuals rely more on the occipital areas as a result of cross-modal plasticity for auditory spatial processing, while late-onset blind individuals rely more on the prefrontal areas which subserve visuospatial working memory.

  4. The severity of the visual impairment and practice matter for drawing ability in children.

    PubMed

    Vinter, Annie; Bonin, Patrick; Morgan, Pascal

    2018-07-01

    Astonishing drawing capacities have been reported in children with early visual impairments. However, most of the evidence relies on single case studies. Hitherto, no study has systematically jointly investigated, in these children, the role of (1) the severity of the visual handicap, (2) age and (3) practice in drawing. The study aimed at revealing the specificities of the drawing in children deprived from vision, as compared to children with less severe visual handicap and to sighted children performing under haptic or usual visual control. 148 children aged 6-14 years had to produce 12 drawings of familiar objects. 38 had a severe visual impairment, 41 suffered from low vision, and 69 were sighted children performing either under visual condition or blindfolded under haptic control. Recognizability and other characteristics of the drawings were highly dependent on the child's degree of vision and level of drawing practice, and progressed with chronological age more clearly in the sighted children or those with low vision than in those deprived of vision. The study confirmed that all groups showed significant drawing ability, even the group totally deprived of visual experience. Furthermore, the specificities of the drawings produced by visually-impaired children appeared clearly related to their practice and the severity of their visual impairment. This should incite parents and professionals to encourage these children to practice drawing as early as possible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Neural Responses in Parietal and Occipital Areas in Response to Visual Events Are Modulated by Prior Multisensory Stimuli

    PubMed Central

    Innes-Brown, Hamish; Barutchu, Ayla; Crewther, David P.

    2013-01-01

    The effect of multi-modal vs uni-modal prior stimuli on the subsequent processing of a simple flash stimulus was studied in the context of the audio-visual ‘flash-beep’ illusion, in which the number of flashes a person sees is influenced by accompanying beep stimuli. EEG recordings were made while combinations of simple visual and audio-visual stimuli were presented. The experiments found that the electric field strength related to a flash stimulus was stronger when it was preceded by a multi-modal flash/beep stimulus, compared to when it was preceded by another uni-modal flash stimulus. This difference was found to be significant in two distinct timeframes – an early timeframe, from 130–160 ms, and a late timeframe, from 300–320 ms. Source localisation analysis found that the increased activity in the early interval was localised to an area centred on the inferior and superior parietal lobes, whereas the later increase was associated with stronger activity in an area centred on primary and secondary visual cortex, in the occipital lobe. The results suggest that processing of a visual stimulus can be affected by the presence of an immediately prior multisensory event. Relatively long-lasting interactions generated by the initial auditory and visual stimuli altered the processing of a subsequent visual stimulus. PMID:24391939

  6. Stress Potentiates Early and Attenuates Late Stages of Visual Processing

    DTIC Science & Technology

    2011-01-19

    threat (M 6.5, SD 20.0) than during safety (M 19.3, SD 11.6), t(31) 6.7, p 0.001. They also expressed more intense negative emotion on their...threats increase risk assessment (Kava- liers and Choleris, 2001), and fearful facial expressions enhance sensory intake (Susskind et al., 2008). These...visual analog scales to rate the intensity of their emotional experience (anxious, happy, safe, or stressed) during safety and threat blocks. To minimize

  7. The effect of vertical and horizontal symmetry on memory for tactile patterns in late blind individuals.

    PubMed

    Cattaneo, Zaira; Vecchi, Tomaso; Fantino, Micaela; Herbert, Andrew M; Merabet, Lotfi B

    2013-02-01

    Visual stimuli that exhibit vertical symmetry are easier to remember than stimuli symmetric along other axes, an advantage that extends to the haptic modality as well. Critically, the vertical symmetry memory advantage has not been found in early blind individuals, despite their overall superior memory, as compared with sighted individuals, and the presence of an overall advantage for identifying symmetric over asymmetric patterns. The absence of the vertical axis memory advantage in the early blind may depend on their total lack of visual experience or on the effect of prolonged visual deprivation. To disentangle this issue, in this study, we measured the ability of late blind individuals to remember tactile spatial patterns that were either vertically or horizontally symmetric or asymmetric. Late blind participants showed better memory performance for symmetric patterns. An additional advantage for the vertical axis of symmetry over the horizontal one was reported, but only for patterns presented in the frontal plane. In the horizontal plane, no difference was observed between vertical and horizontal symmetric patterns, due to the latter being recalled particularly well. These results are discussed in terms of the influence of the spatial reference frame adopted during exploration. Overall, our data suggest that prior visual experience is sufficient to drive the vertical symmetry memory advantage, at least when an external reference frame based on geocentric cues (i.e., gravity) is adopted.

  8. Early vitrectomy effective for Norrie disease.

    PubMed

    Walsh, Mark K; Drenser, Kimberly A; Capone, Antonio; Trese, Michael T

    2010-04-01

    To review our experience with Norrie disease to determine if early vitrectomy abrogates the natural history of this rare disease; namely, bilateral no light perception visual acuity and phthisis bulbi. We retrospectively reviewed the medical records of all patients seen in our tertiary care pediatric retinal clinical practice from 1988 through 2008 with a potential diagnosis of Norrie disease. Inclusion required not only clinical findings consistent with Norrie disease but also genetics and/or a family history consistent with Norrie disease. Medical record review revealed 14 boys with clinically diagnosed Norrie disease and either Norrie disease gene (NDP) mutations noted on genetic testing (13 patients) and/or a clear family history consistent with Norrie disease (4 patients). All 14 boys with definite Norrie disease had vitrectomy with or without lensectomy in at least 1 eye prior to 12 months of age. Of the 14 boys with definite Norrie disease, 7 maintained at least light perception visual acuity in 1 eye and 3 had no light perception visual acuity bilaterally; visual acuity data were not available for 4 patients. Only 2 of 24 (8%) eyes became phthisical. Historically, no treatment has been offered to mitigate the dismal natural history of Norrie disease. We recommend consideration of early vitrectomy in Norrie disease.

  9. Differential effect of visual motion adaption upon visual cortical excitability.

    PubMed

    Lubeck, Astrid J A; Van Ombergen, Angelique; Ahmad, Hena; Bos, Jelte E; Wuyts, Floris L; Bronstein, Adolfo M; Arshad, Qadeer

    2017-03-01

    The objectives of this study were 1 ) to probe the effects of visual motion adaptation on early visual and V5/MT cortical excitability and 2 ) to investigate whether changes in cortical excitability following visual motion adaptation are related to the degree of visual dependency, i.e., an overreliance on visual cues compared with vestibular or proprioceptive cues. Participants were exposed to a roll motion visual stimulus before, during, and after visual motion adaptation. At these stages, 20 transcranial magnetic stimulation (TMS) pulses at phosphene threshold values were applied over early visual and V5/MT cortical areas from which the probability of eliciting a phosphene was calculated. Before and after adaptation, participants aligned the subjective visual vertical in front of the roll motion stimulus as a marker of visual dependency. During adaptation, early visual cortex excitability decreased whereas V5/MT excitability increased. After adaptation, both early visual and V5/MT excitability were increased. The roll motion-induced tilt of the subjective visual vertical (visual dependence) was not influenced by visual motion adaptation and did not correlate with phosphene threshold or visual cortex excitability. We conclude that early visual and V5/MT cortical excitability is differentially affected by visual motion adaptation. Furthermore, excitability in the early or late visual cortex is not associated with an increase in visual reliance during spatial orientation. Our findings complement earlier studies that have probed visual cortical excitability following motion adaptation and highlight the differential role of the early visual cortex and V5/MT in visual motion processing. NEW & NOTEWORTHY We examined the influence of visual motion adaptation on visual cortex excitability and found a differential effect in V1/V2 compared with V5/MT. Changes in visual excitability following motion adaptation were not related to the degree of an individual's visual dependency. Copyright © 2017 the American Physiological Society.

  10. Episodic Memory Retrieval Functionally Relies on Very Rapid Reactivation of Sensory Information.

    PubMed

    Waldhauser, Gerd T; Braun, Verena; Hanslmayr, Simon

    2016-01-06

    Episodic memory retrieval is assumed to rely on the rapid reactivation of sensory information that was present during encoding, a process termed "ecphory." We investigated the functional relevance of this scarcely understood process in two experiments in human participants. We presented stimuli to the left or right of fixation at encoding, followed by an episodic memory test with centrally presented retrieval cues. This allowed us to track the reactivation of lateralized sensory memory traces during retrieval. Successful episodic retrieval led to a very early (∼100-200 ms) reactivation of lateralized alpha/beta (10-25 Hz) electroencephalographic (EEG) power decreases in the visual cortex contralateral to the visual field at encoding. Applying rhythmic transcranial magnetic stimulation to interfere with early retrieval processing in the visual cortex led to decreased episodic memory performance specifically for items encoded in the visual field contralateral to the site of stimulation. These results demonstrate, for the first time, that episodic memory functionally relies on very rapid reactivation of sensory information. Remembering personal experiences requires a "mental time travel" to revisit sensory information perceived in the past. This process is typically described as a controlled, relatively slow process. However, by using electroencephalography to measure neural activity with a high time resolution, we show that such episodic retrieval entails a very rapid reactivation of sensory brain areas. Using transcranial magnetic stimulation to alter brain function during retrieval revealed that this early sensory reactivation is causally relevant for conscious remembering. These results give first neural evidence for a functional, preconscious component of episodic remembering. This provides new insight into the nature of human memory and may help in the understanding of psychiatric conditions that involve the automatic intrusion of unwanted memories. Copyright © 2016 the authors 0270-6474/16/360251-10$15.00/0.

  11. Visual Exemplification and Skin Cancer: The Utility of Exemplars in Promoting Skin Self-Exams and Atypical Nevi Identification.

    PubMed

    King, Andy J

    2016-07-01

    The present article reports an experiment investigating untested propositions of exemplification theory in the context of messages promoting early melanoma detection. The study tested visual exemplar presentation types, incorporating visual persuasion principles into the study of exemplification theory and strategic message design. Compared to a control condition, representative visual exemplification was more effective at increasing message effectiveness by eliciting a surprise response, which is consistent with predictions of exemplification theory. Furthermore, participant perception of congruency between the images and text interacted with the type of visual exemplification to explain variation in message effectiveness. Different messaging strategies influenced decision making as well, with the presentation of visual exemplars resulting in people judging the atypicality of moles more conservatively. Overall, results suggest that certain visual messaging strategies may result in unintended effects of presenting people information about skin cancer. Implications for practice are discussed.

  12. Inattentional Deafness: Visual Load Leads to Time-Specific Suppression of Auditory Evoked Responses

    PubMed Central

    Molloy, Katharine; Griffiths, Timothy D.; Lavie, Nilli

    2015-01-01

    Due to capacity limits on perception, conditions of high perceptual load lead to reduced processing of unattended stimuli (Lavie et al., 2014). Accumulating work demonstrates the effects of visual perceptual load on visual cortex responses, but the effects on auditory processing remain poorly understood. Here we establish the neural mechanisms underlying “inattentional deafness”—the failure to perceive auditory stimuli under high visual perceptual load. Participants performed a visual search task of low (target dissimilar to nontarget items) or high (target similar to nontarget items) load. On a random subset (50%) of trials, irrelevant tones were presented concurrently with the visual stimuli. Brain activity was recorded with magnetoencephalography, and time-locked responses to the visual search array and to the incidental presence of unattended tones were assessed. High, compared to low, perceptual load led to increased early visual evoked responses (within 100 ms from onset). This was accompanied by reduced early (∼100 ms from tone onset) auditory evoked activity in superior temporal sulcus and posterior middle temporal gyrus. A later suppression of the P3 “awareness” response to the tones was also observed under high load. A behavioral experiment revealed reduced tone detection sensitivity under high visual load, indicating that the reduction in neural responses was indeed associated with reduced awareness of the sounds. These findings support a neural account of shared audiovisual resources, which, when depleted under load, leads to failures of sensory perception and awareness. SIGNIFICANCE STATEMENT The present work clarifies the neural underpinning of inattentional deafness under high visual load. The findings of near-simultaneous load effects on both visual and auditory evoked responses suggest shared audiovisual processing capacity. Temporary depletion of shared capacity in perceptually demanding visual tasks leads to a momentary reduction in sensory processing of auditory stimuli, resulting in inattentional deafness. The dynamic “push–pull” pattern of load effects on visual and auditory processing furthers our understanding of both the neural mechanisms of attention and of cross-modal effects across visual and auditory processing. These results also offer an explanation for many previous failures to find cross-modal effects in experiments where the visual load effects may not have coincided directly with auditory sensory processing. PMID:26658858

  13. Evidence for two attentional components in visual working memory.

    PubMed

    Allen, Richard J; Baddeley, Alan D; Hitch, Graham J

    2014-11-01

    How does executive attentional control contribute to memory for sequences of visual objects, and what does this reveal about storage and processing in working memory? Three experiments examined the impact of a concurrent executive load (backward counting) on memory for sequences of individually presented visual objects. Experiments 1 and 2 found disruptive concurrent load effects of equivalent magnitude on memory for shapes, colors, and colored shape conjunctions (as measured by single-probe recognition). These effects were present only for Items 1 and 2 in a 3-item sequence; the final item was always impervious to this disruption. This pattern of findings was precisely replicated in Experiment 3 when using a cued verbal recall measure of shape-color binding, with error analysis providing additional insights concerning attention-related loss of early-sequence items. These findings indicate an important role for executive processes in maintaining representations of earlier encountered stimuli in an active form alongside privileged storage of the most recent stimulus. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  14. Neural Correlates of Intersensory Processing in Five-Month-Old Infants

    PubMed Central

    Reynolds, Greg D.; Bahrick, Lorraine E.; Lickliter, Robert; Guy, Maggie W.

    2014-01-01

    Two experiments assessing event-related potentials in 5-month-old infants were conducted to examine neural correlates of attentional salience and efficiency of processing of a visual event (woman speaking) paired with redundant (synchronous) speech, nonredundant (asynchronous) speech, or no speech. In Experiment 1, the Nc component associated with attentional salience was greater in amplitude following synchronous audiovisual as compared with asynchronous audiovisual and unimodal visual presentations. A block design was utilized in Experiment 2 to examine efficiency of processing of a visual event. Only infants exposed to synchronous audiovisual speech demonstrated a significant reduction in amplitude of the late slow wave associated with successful stimulus processing and recognition memory from early to late blocks of trials. These findings indicate that events that provide intersensory redundancy are associated with enhanced neural responsiveness indicative of greater attentional salience and more efficient stimulus processing as compared with the same events when they provide no intersensory redundancy in 5-month-old infants. PMID:23423948

  15. Nogo Receptor 1 Confines a Disinhibitory Microcircuit to the Critical Period in Visual Cortex.

    PubMed

    Stephany, Céleste-Élise; Ikrar, Taruna; Nguyen, Collins; Xu, Xiangmin; McGee, Aaron W

    2016-10-26

    A characteristic of the developing mammalian visual system is a brief interval of plasticity, termed the "critical period," when the circuitry of primary visual cortex is most sensitive to perturbation of visual experience. Depriving one eye of vision (monocular deprivation [MD]) during the critical period alters ocular dominance (OD) by shifting the responsiveness of neurons in visual cortex to favor the nondeprived eye. A disinhibitory microcircuit involving parvalbumin-expressing (PV) interneurons initiates this OD plasticity. The gene encoding the neuronal nogo-66-receptor 1 (ngr1/rtn4r) is required to close the critical period. Here we combined mouse genetics, electrophysiology, and circuit mapping with laser-scanning photostimulation to investigate whether disinhibition is confined to the critical period by ngr1 We demonstrate that ngr1 mutant mice retain plasticity characteristic of the critical period as adults, and that ngr1 operates within PV interneurons to restrict the loss of intracortical excitatory synaptic input following MD in adult mice, and this disinhibition induces a "lower PV network configuration" in both critical-period wild-type mice and adult ngr1 -/- mice. We propose that ngr1 limits disinhibition to close the critical period for OD plasticity and that a decrease in PV expression levels reports the diminished recent cumulative activity of these interneurons. Life experience refines brain circuits throughout development during specified critical periods. Abnormal experience during these critical periods can yield enduring maladaptive changes in neural circuits that impair brain function. In the developing visual system, visual deprivation early in life can result in amblyopia (lazy-eye), a prevalent childhood disorder comprising permanent deficits in spatial vision. Here we identify that the nogo-66 receptor 1 gene restricts an early and essential step in OD plasticity to the critical period. These findings link the emerging circuit-level description of OD plasticity to the genetic regulation of the critical period. Understanding how plasticity is confined to critical periods may provide clues how to better treat amblyopia. Copyright © 2016 the authors 0270-6474/16/3611006-07$15.00/0.

  16. The role of learning in social development: Illustrations from neglected children.

    PubMed

    Wismer Fries, Alison B; Pollak, Seth D

    2017-03-01

    Children who experience early caregiving neglect are very likely to have problems developing and maintaining relationships and regulating their social behavior. One of the earliest manifestations of this problem is reflected in indiscriminate behavior, a phenomenon where young children do not show normative wariness of strangers or use familiar adults as sources of security. To better understand the developmental mechanisms underlying the emergence of these problems, this study examined whether institutionally reared children, who experienced early social neglect, had difficulty associating motivational significance to visual stimuli. Pairing stimuli with motivational significance is presumably one of the associative learning processes involved in establishing discriminate or selective relationships with others. We found that early experiences of neglectful caregiving were associated with difficulties in acquiring such associations, and that delays in this developmental skill were related to children's social difficulties. These data suggest a way in which early social learning experiences may impact the development of processes underlying emotional development. © 2016 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  17. Differences between early-blind, late-blind, and blindfolded-sighted people in haptic spatial-configuration learning and resulting memory traces.

    PubMed

    Postma, Albert; Zuidhoek, Sander; Noordzij, Matthijs L; Kappers, Astrid M L

    2007-01-01

    The roles of visual and haptic experience in different aspects of haptic processing of objects in peripersonal space are examined. In three trials, early-blind, late-blind, and blindfolded-sighted individuals had to match ten shapes haptically to the cut-outs in a board as fast as possible. Both blind groups were much faster than the sighted in all three trials. All three groups improved considerably from trial to trial. In particular, the sighted group showed a strong improvement from the first to the second trial. While superiority of the blind remained for speeded matching after rotation of the stimulus frame, coordinate positional-memory scores in a non-speeded free-recall trial showed no significant differences between the groups. Moreover, when assessed with a verbal response, categorical spatial-memory appeared strongest in the late-blind group. The role of haptic and visual experience thus appears to depend on the task aspect tested.

  18. The Limits of Shape Recognition following Late Emergence from Blindness.

    PubMed

    McKyton, Ayelet; Ben-Zion, Itay; Doron, Ravid; Zohary, Ehud

    2015-09-21

    Visual object recognition develops during the first years of life. But what if one is deprived of vision during early post-natal development? Shape information is extracted using both low-level cues (e.g., intensity- or color-based contours) and more complex algorithms that are largely based on inference assumptions (e.g., illumination is from above, objects are often partially occluded). Previous studies, testing visual acuity using a 2D shape-identification task (Lea symbols), indicate that contour-based shape recognition can improve with visual experience, even after years of visual deprivation from birth. We hypothesized that this may generalize to other low-level cues (shape, size, and color), but not to mid-level functions (e.g., 3D shape from shading) that might require prior visual knowledge. To that end, we studied a unique group of subjects in Ethiopia that suffered from an early manifestation of dense bilateral cataracts and were surgically treated only years later. Our results suggest that the newly sighted rapidly acquire the ability to recognize an odd element within an array, on the basis of color, size, or shape differences. However, they are generally unable to find the odd shape on the basis of illusory contours, shading, or occlusion relationships. Little recovery of these mid-level functions is seen within 1 year post-operation. We find that visual performance using low-level cues is relatively robust to prolonged deprivation from birth. However, the use of pictorial depth cues to infer 3D structure from the 2D retinal image is highly susceptible to early and prolonged visual deprivation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Neural Correlates of Subjective Awareness for Natural Scene Categorization of Color Photographs and Line-Drawings.

    PubMed

    Fu, Qiufang; Liu, Yong-Jin; Dienes, Zoltan; Wu, Jianhui; Chen, Wenfeng; Fu, Xiaolan

    2017-01-01

    It remains controversial whether visual awareness is correlated with early activation indicated by VAN (visual awareness negativity), as the recurrent process hypothesis theory proposes, or with later activation indicated by P3 or LP (late positive), as suggested by global workspace theories. To address this issue, a backward masking task was adopted, in which participants were first asked to categorize natural scenes of color photographs and line-drawings and then to rate the clarity of their visual experience on a Perceptual Awareness Scale (PAS). The interstimulus interval between the scene and the mask was manipulated. The behavioral results showed that categorization accuracy increased with PAS ratings for both color photographs and line-drawings, with no difference in accuracy between the two types of images for each rating, indicating that the experience rating reflected visibility. Importantly, the event-related potential (ERP) results revealed that for correct trials, the early posterior N1 and anterior P2 components changed with the PAS ratings for color photographs, but did not vary with the PAS ratings for line-drawings, indicating that the N1 and P2 do not always correlate with subjective visual awareness. Moreover, for both types of images, the anterior N2 and posterior VAN changed with the PAS ratings in a linear way, while the LP changed with the PAS ratings in a non-linear way, suggesting that these components relate to different types of subjective awareness. The results reconcile the apparently contradictory predictions of different theories and help to resolve the current debate on neural correlates of visual awareness.

  20. Neural Correlates of Subjective Awareness for Natural Scene Categorization of Color Photographs and Line-Drawings

    PubMed Central

    Fu, Qiufang; Liu, Yong-Jin; Dienes, Zoltan; Wu, Jianhui; Chen, Wenfeng; Fu, Xiaolan

    2017-01-01

    It remains controversial whether visual awareness is correlated with early activation indicated by VAN (visual awareness negativity), as the recurrent process hypothesis theory proposes, or with later activation indicated by P3 or LP (late positive), as suggested by global workspace theories. To address this issue, a backward masking task was adopted, in which participants were first asked to categorize natural scenes of color photographs and line-drawings and then to rate the clarity of their visual experience on a Perceptual Awareness Scale (PAS). The interstimulus interval between the scene and the mask was manipulated. The behavioral results showed that categorization accuracy increased with PAS ratings for both color photographs and line-drawings, with no difference in accuracy between the two types of images for each rating, indicating that the experience rating reflected visibility. Importantly, the event-related potential (ERP) results revealed that for correct trials, the early posterior N1 and anterior P2 components changed with the PAS ratings for color photographs, but did not vary with the PAS ratings for line-drawings, indicating that the N1 and P2 do not always correlate with subjective visual awareness. Moreover, for both types of images, the anterior N2 and posterior VAN changed with the PAS ratings in a linear way, while the LP changed with the PAS ratings in a non-linear way, suggesting that these components relate to different types of subjective awareness. The results reconcile the apparently contradictory predictions of different theories and help to resolve the current debate on neural correlates of visual awareness. PMID:28261141

  1. Cross-Modal Multivariate Pattern Analysis

    PubMed Central

    Meyer, Kaspar; Kaplan, Jonas T.

    2011-01-01

    Multivariate pattern analysis (MVPA) is an increasingly popular method of analyzing functional magnetic resonance imaging (fMRI) data1-4. Typically, the method is used to identify a subject's perceptual experience from neural activity in certain regions of the brain. For instance, it has been employed to predict the orientation of visual gratings a subject perceives from activity in early visual cortices5 or, analogously, the content of speech from activity in early auditory cortices6. Here, we present an extension of the classical MVPA paradigm, according to which perceptual stimuli are not predicted within, but across sensory systems. Specifically, the method we describe addresses the question of whether stimuli that evoke memory associations in modalities other than the one through which they are presented induce content-specific activity patterns in the sensory cortices of those other modalities. For instance, seeing a muted video clip of a glass vase shattering on the ground automatically triggers in most observers an auditory image of the associated sound; is the experience of this image in the "mind's ear" correlated with a specific neural activity pattern in early auditory cortices? Furthermore, is this activity pattern distinct from the pattern that could be observed if the subject were, instead, watching a video clip of a howling dog? In two previous studies7,8, we were able to predict sound- and touch-implying video clips based on neural activity in early auditory and somatosensory cortices, respectively. Our results are in line with a neuroarchitectural framework proposed by Damasio9,10, according to which the experience of mental images that are based on memories - such as hearing the shattering sound of a vase in the "mind's ear" upon seeing the corresponding video clip - is supported by the re-construction of content-specific neural activity patterns in early sensory cortices. PMID:22105246

  2. Regulating Critical Period Plasticity: Insight from the Visual System to Fear Circuitry for Therapeutic Interventions

    PubMed Central

    Nabel, Elisa M.; Morishita, Hirofumi

    2013-01-01

    Early temporary windows of heightened brain plasticity called critical periods developmentally sculpt neural circuits and contribute to adult behavior. Regulatory mechanisms of visual cortex development – the preeminent model of experience-dependent critical period plasticity-actively limit adult plasticity and have proved fruitful therapeutic targets to reopen plasticity and rewire faulty visual system connections later in life. Interestingly, these molecular mechanisms have been implicated in the regulation of plasticity in other functions beyond vision. Applying mechanistic understandings of critical period plasticity in the visual cortex to fear circuitry may provide a conceptual framework for developing novel therapeutic tools to mitigate aberrant fear responses in post traumatic stress disorder. In this review, we turn to the model of experience-dependent visual plasticity to provide novel insights for the mechanisms regulating plasticity in the fear system. Fear circuitry, particularly fear memory erasure, also undergoes age-related changes in experience-dependent plasticity. We consider the contributions of molecular brakes that halt visual critical period plasticity to circuitry underlying fear memory erasure. A major molecular brake in the visual cortex, perineuronal net formation, recently has been identified in the development of fear systems that are resilient to fear memory erasure. The roles of other molecular brakes, myelin-related Nogo receptor signaling and Lynx family proteins – endogenous inhibitors for nicotinic acetylcholine receptor, are explored in the context of fear memory plasticity. Such fear plasticity regulators, including epigenetic effects, provide promising targets for therapeutic interventions. PMID:24273519

  3. Shape Perception and Navigation in Blind Adults

    PubMed Central

    Gori, Monica; Cappagli, Giulia; Baud-Bovy, Gabriel; Finocchietti, Sara

    2017-01-01

    Different sensory systems interact to generate a representation of space and to navigate. Vision plays a critical role in the representation of space development. During navigation, vision is integrated with auditory and mobility cues. In blind individuals, visual experience is not available and navigation therefore lacks this important sensory signal. In blind individuals, compensatory mechanisms can be adopted to improve spatial and navigation skills. On the other hand, the limitations of these compensatory mechanisms are not completely clear. Both enhanced and impaired reliance on auditory cues in blind individuals have been reported. Here, we develop a new paradigm to test both auditory perception and navigation skills in blind and sighted individuals and to investigate the effect that visual experience has on the ability to reproduce simple and complex paths. During the navigation task, early blind, late blind and sighted individuals were required first to listen to an audio shape and then to recognize and reproduce it by walking. After each audio shape was presented, a static sound was played and the participants were asked to reach it. Movements were recorded with a motion tracking system. Our results show three main impairments specific to early blind individuals. The first is the tendency to compress the shapes reproduced during navigation. The second is the difficulty to recognize complex audio stimuli, and finally, the third is the difficulty in reproducing the desired shape: early blind participants occasionally reported perceiving a square but they actually reproduced a circle during the navigation task. We discuss these results in terms of compromised spatial reference frames due to lack of visual input during the early period of development. PMID:28144226

  4. Masking disrupts reentrant processing in human visual cortex.

    PubMed

    Fahrenfort, J J; Scholte, H S; Lamme, V A F

    2007-09-01

    In masking, a stimulus is rendered invisible through the presentation of a second stimulus shortly after the first. Over the years, authors have typically explained masking by postulating some early disruption process. In these feedforward-type explanations, the mask somehow "catches up" with the target stimulus, disrupting its processing either through lateral or interchannel inhibition. However, studies from recent years indicate that visual perception--and most notably visual awareness itself--may depend strongly on cortico-cortical feedback connections from higher to lower visual areas. This has led some researchers to propose that masking derives its effectiveness from selectively interrupting these reentrant processes. In this experiment, we used electroencephalogram measurements to determine what happens in the human visual cortex during detection of a texture-defined square under nonmasked (seen) and masked (unseen) conditions. Electro-encephalogram derivatives that are typically associated with reentrant processing turn out to be absent in the masked condition. Moreover, extrastriate visual areas are still activated early on by both seen and unseen stimuli, as shown by scalp surface Laplacian current source-density maps. This conclusively shows that feedforward processing is preserved, even when subject performance is at chance as determined by objective measures. From these results, we conclude that masking derives its effectiveness, at least partly, from disrupting reentrant processing, thereby interfering with the neural mechanisms of figure-ground segmentation and visual awareness itself.

  5. Two randomized trials provide no consistent evidence for nonmusical cognitive benefits of brief preschool music enrichment.

    PubMed

    Mehr, Samuel A; Schachner, Adena; Katz, Rachel C; Spelke, Elizabeth S

    2013-01-01

    Young children regularly engage in musical activities, but the effects of early music education on children's cognitive development are unknown. While some studies have found associations between musical training in childhood and later nonmusical cognitive outcomes, few randomized controlled trials (RCTs) have been employed to assess causal effects of music lessons on child cognition and no clear pattern of results has emerged. We conducted two RCTs with preschool children investigating the cognitive effects of a brief series of music classes, as compared to a similar but non-musical form of arts instruction (visual arts classes, Experiment 1) or to a no-treatment control (Experiment 2). Consistent with typical preschool arts enrichment programs, parents attended classes with their children, participating in a variety of developmentally appropriate arts activities. After six weeks of class, we assessed children's skills in four distinct cognitive areas in which older arts-trained students have been reported to excel: spatial-navigational reasoning, visual form analysis, numerical discrimination, and receptive vocabulary. We initially found that children from the music class showed greater spatial-navigational ability than did children from the visual arts class, while children from the visual arts class showed greater visual form analysis ability than children from the music class (Experiment 1). However, a partial replication attempt comparing music training to a no-treatment control failed to confirm these findings (Experiment 2), and the combined results of the two experiments were negative: overall, children provided with music classes performed no better than those with visual arts or no classes on any assessment. Our findings underscore the need for replication in RCTs, and suggest caution in interpreting the positive findings from past studies of cognitive effects of music instruction.

  6. Two Randomized Trials Provide No Consistent Evidence for Nonmusical Cognitive Benefits of Brief Preschool Music Enrichment

    PubMed Central

    Mehr, Samuel A.; Schachner, Adena; Katz, Rachel C.; Spelke, Elizabeth S.

    2013-01-01

    Young children regularly engage in musical activities, but the effects of early music education on children's cognitive development are unknown. While some studies have found associations between musical training in childhood and later nonmusical cognitive outcomes, few randomized controlled trials (RCTs) have been employed to assess causal effects of music lessons on child cognition and no clear pattern of results has emerged. We conducted two RCTs with preschool children investigating the cognitive effects of a brief series of music classes, as compared to a similar but non-musical form of arts instruction (visual arts classes, Experiment 1) or to a no-treatment control (Experiment 2). Consistent with typical preschool arts enrichment programs, parents attended classes with their children, participating in a variety of developmentally appropriate arts activities. After six weeks of class, we assessed children's skills in four distinct cognitive areas in which older arts-trained students have been reported to excel: spatial-navigational reasoning, visual form analysis, numerical discrimination, and receptive vocabulary. We initially found that children from the music class showed greater spatial-navigational ability than did children from the visual arts class, while children from the visual arts class showed greater visual form analysis ability than children from the music class (Experiment 1). However, a partial replication attempt comparing music training to a no-treatment control failed to confirm these findings (Experiment 2), and the combined results of the two experiments were negative: overall, children provided with music classes performed no better than those with visual arts or no classes on any assessment. Our findings underscore the need for replication in RCTs, and suggest caution in interpreting the positive findings from past studies of cognitive effects of music instruction. PMID:24349171

  7. Autonomous visual exploration creates developmental change in familiarity and novelty seeking behaviors

    PubMed Central

    Perone, Sammy; Spencer, John P.

    2013-01-01

    What motivates children to radically transform themselves during early development? We addressed this question in the domain of infant visual exploration. Over the first year, infants' exploration shifts from familiarity to novelty seeking. This shift is delayed in preterm relative to term infants and is stable within individuals over the course of the first year. Laboratory tasks have shed light on the nature of this familiarity-to-novelty shift, but it is not clear what motivates the infant to change her exploratory style. We probed this by letting a Dynamic Neural Field (DNF) model of visual exploration develop itself via accumulating experience in a virtual world. We then situated it in a canonical laboratory task. Much like infants, the model exhibited a familiarity-to-novelty shift. When we manipulated the initial conditions of the model, the model's performance was developmentally delayed much like preterm infants. This delay was overcome by enhancing the model's experience during development. We also found that the model's performance was stable at the level of the individual. Our simulations indicate that novelty seeking emerges with no explicit motivational source via the accumulation of visual experience within a complex, dynamical exploratory system. PMID:24065948

  8. Can I order a burger at rnacdonalds.com? Visual similarity effects of multi-letter combinations at the early stages of word recognition.

    PubMed

    Marcet, Ana; Perea, Manuel

    2018-05-01

    Previous research has shown that early in the word recognition process, there is some degree of uncertainty concerning letter identity and letter position. Here, we examined whether this uncertainty also extends to the mapping of letter features onto letters, as predicted by the Bayesian Reader (Norris & Kinoshita, 2012). Indeed, anecdotal evidence suggests that nonwords containing multi-letter homoglyphs (e.g., rn→m), such as docurnent, can be confusable with their base word. We conducted 2 masked priming lexical decision experiments in which the words/nonwords contained a middle letter that was visually similar to a multi-letter homoglyph (e.g., docurnent [rn-m], presiclent [cl-d]). Three types of primes were employed: identity, multi-letter homoglyph, and orthographic control. We used 2 commonly used fonts: Tahoma in Experiment 1 and Calibri in Experiment 2. Results in both experiments showed faster word identification times in the homoglyph condition than in the control condition (e.g., docurnento-DOCUMENTO faster than docusnento-DOCUMENTO). Furthermore, the homoglyph condition produced nearly the same latencies as the identity condition. These findings have important implications not only at a theoretical level (models of printed word recognition) but also at an applied level (Internet administrators/users). (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. Perceptual learning increases the strength of the earliest signals in visual cortex.

    PubMed

    Bao, Min; Yang, Lin; Rios, Cristina; He, Bin; Engel, Stephen A

    2010-11-10

    Training improves performance on most visual tasks. Such perceptual learning can modify how information is read out from, and represented in, later visual areas, but effects on early visual cortex are controversial. In particular, it remains unknown whether learning can reshape neural response properties in early visual areas independent from feedback arising in later cortical areas. Here, we tested whether learning can modify feedforward signals in early visual cortex as measured by the human electroencephalogram. Fourteen subjects were trained for >24 d to detect a diagonal grating pattern in one quadrant of the visual field. Training improved performance, reducing the contrast needed for reliable detection, and also reliably increased the amplitude of the earliest component of the visual evoked potential, the C1. Control orientations and locations showed smaller effects of training. Because the C1 arises rapidly and has a source in early visual cortex, our results suggest that learning can increase early visual area response through local receptive field changes without feedback from later areas.

  10. The Influence of Averageness on Adults' Perceptions of Attractiveness: The Effect of Early Visual Deprivation.

    PubMed

    Vingilis-Jaremko, Larissa; Maurer, Daphne; Rhodes, Gillian; Jeffery, Linda

    2016-08-03

    Adults who missed early visual input because of congenital cataracts later have deficits in many aspects of face processing. Here we investigated whether they make normal judgments of facial attractiveness. In particular, we studied whether their perceptions are affected normally by a face's proximity to the population mean, as is true of typically developing adults, who find average faces to be more attractive than most other faces. We compared the judgments of facial attractiveness of 12 cataract-reversal patients to norms established from 36 adults with normal vision. Participants viewed pairs of adult male and adult female faces that had been transformed 50% toward and 50% away from their respective group averages, and selected which face was more attractive. Averageness influenced patients' judgments of attractiveness, but to a lesser extent than controls. The results suggest that cataract-reversal patients are able to develop a system for representing faces with a privileged position for an average face, consistent with evidence from identity aftereffects. However, early visual experience is necessary to set up the neural architecture necessary for averageness to influence perceptions of attractiveness with its normal potency. © The Author(s) 2016.

  11. The Pivotal Role of the Right Parietal Lobe in Temporal Attention.

    PubMed

    Agosta, Sara; Magnago, Denise; Tyler, Sarah; Grossman, Emily; Galante, Emanuela; Ferraro, Francesco; Mazzini, Nunzia; Miceli, Gabriele; Battelli, Lorella

    2017-05-01

    The visual system is extremely efficient at detecting events across time even at very fast presentation rates; however, discriminating the identity of those events is much slower and requires attention over time, a mechanism with a much coarser resolution [Cavanagh, P., Battelli, L., & Holcombe, A. O. Dynamic attention. In A. C. Nobre & S. Kastner (Eds.), The Oxford handbook of attention (pp. 652-675). Oxford: Oxford University Press, 2013]. Patients affected by right parietal lesion, including the TPJ, are severely impaired in discriminating events across time in both visual fields [Battelli, L., Cavanagh, P., & Thornton, I. M. Perception of biological motion in parietal patients. Neuropsychologia, 41, 1808-1816, 2003]. One way to test this ability is to use a simultaneity judgment task, whereby participants are asked to indicate whether two events occurred simultaneously or not. We psychophysically varied the frequency rate of four flickering disks, and on most of the trials, one disk (either in the left or right visual field) was flickering out-of-phase relative to the others. We asked participants to report whether two left-or-right-presented disks were simultaneous or not. We tested a total of 23 right and left parietal lesion patients in Experiment 1, and only right parietal patients showed impairment in both visual fields while their low-level visual functions were normal. Importantly, to causally link the right TPJ to the relative timing processing, we ran a TMS experiment on healthy participants. Participants underwent three stimulation sessions and performed the same simultaneity judgment task before and after 20 min of low-frequency inhibitory TMS over right TPJ, left TPJ, or early visual area as a control. rTMS over the right TPJ caused a bilateral impairment in the simultaneity judgment task, whereas rTMS over left TPJ or over early visual area did not affect performance. Altogether, our results directly link the right TPJ to the processing of relative time.

  12. The effects of stereo disparity on the behavioural and electrophysiological correlates of perception of audio-visual motion in depth.

    PubMed

    Harrison, Neil R; Witheridge, Sian; Makin, Alexis; Wuerger, Sophie M; Pegna, Alan J; Meyer, Georg F

    2015-11-01

    Motion is represented by low-level signals, such as size-expansion in vision or loudness changes in the auditory modality. The visual and auditory signals from the same object or event may be integrated and facilitate detection. We explored behavioural and electrophysiological correlates of congruent and incongruent audio-visual depth motion in conditions where auditory level changes, visual expansion, and visual disparity cues were manipulated. In Experiment 1 participants discriminated auditory motion direction whilst viewing looming or receding, 2D or 3D, visual stimuli. Responses were faster and more accurate for congruent than for incongruent audio-visual cues, and the congruency effect (i.e., difference between incongruent and congruent conditions) was larger for visual 3D cues compared to 2D cues. In Experiment 2, event-related potentials (ERPs) were collected during presentation of the 2D and 3D, looming and receding, audio-visual stimuli, while participants detected an infrequent deviant sound. Our main finding was that audio-visual congruity was affected by retinal disparity at an early processing stage (135-160ms) over occipito-parietal scalp. Topographic analyses suggested that similar brain networks were activated for the 2D and 3D congruity effects, but that cortical responses were stronger in the 3D condition. Differences between congruent and incongruent conditions were observed between 140-200ms, 220-280ms, and 350-500ms after stimulus onset. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Does visual short-term memory have a high-capacity stage?

    PubMed

    Matsukura, Michi; Hollingworth, Andrew

    2011-12-01

    Visual short-term memory (VSTM) has long been considered a durable, limited-capacity system for the brief retention of visual information. However, a recent work by Sligte et al. (Plos One 3:e1699, 2008) reported that, relatively early after the removal of a memory array, a cue allowed participants to access a fragile, high-capacity stage of VSTM that is distinct from iconic memory. In the present study, we examined whether this stage division is warranted by attempting to corroborate the existence of an early, high-capacity form of VSTM. The results of four experiments did not support Sligte et al.'s claim, since we did not obtain evidence for VSTM retention that exceeded traditional estimates of capacity. However, performance approaching that observed in Sligte et al. can be achieved through extensive practice, providing a clear explanation for their findings. Our evidence favors the standard view of VSTM as a limited-capacity system that maintains a few object representations in a relatively durable form.

  14. Rapid modulation of spoken word recognition by visual primes.

    PubMed

    Okano, Kana; Grainger, Jonathan; Holcomb, Phillip J

    2016-02-01

    In a masked cross-modal priming experiment with ERP recordings, spoken Japanese words were primed with words written in one of the two syllabary scripts of Japanese. An early priming effect, peaking at around 200ms after onset of the spoken word target, was seen in left lateral electrode sites for Katakana primes, and later effects were seen for both Hiragana and Katakana primes on the N400 ERP component. The early effect is thought to reflect the efficiency with which words in Katakana script make contact with sublexical phonological representations involved in spoken language comprehension, due to the particular way this script is used by Japanese readers. This demonstrates fast-acting influences of visual primes on the processing of auditory target words, and suggests that briefly presented visual primes can influence sublexical processing of auditory target words. The later N400 priming effects, on the other hand, most likely reflect cross-modal influences on activity at the level of whole-word phonology and semantics.

  15. Rapid modulation of spoken word recognition by visual primes

    PubMed Central

    Okano, Kana; Grainger, Jonathan; Holcomb, Phillip J.

    2015-01-01

    In a masked cross-modal priming experiment with ERP recordings, spoken Japanese words were primed with words written in one of the two syllabary scripts of Japanese. An early priming effect, peaking at around 200ms after onset of the spoken word target, was seen in left lateral electrode sites for Katakana primes, and later effects were seen for both Hiragana and Katakana primes on the N400 ERP component. The early effect is thought to reflect the efficiency with which words in Katakana script make contact with sublexical phonological representations involved in spoken language comprehension, due to the particular way this script is used by Japanese readers. This demonstrates fast-acting influences of visual primes on the processing of auditory target words, and suggests that briefly presented visual primes can influence sublexical processing of auditory target words. The later N400 priming effects, on the other hand, most likely reflect cross-modal influences on activity at the level of whole-word phonology and semantics. PMID:26516296

  16. The flanker compatibility effect as a function of visual angle, attentional focus, visual transients, and perceptual load: a search for boundary conditions.

    PubMed

    Miller, J

    1991-03-01

    When subjects must respond to a relevant center letter and ignore irrelevant flanking letters, the identities of the flankers produce a response compatibility effect, indicating that they are processed semantically at least to some extent. Because this effect decreases as the separation between target and flankers increases, the effect appears to result from imperfect early selection (attenuation). In the present experiments, several features of the focused attention paradigm were examined, in order to determine whether they might produce the flanker compatibility effect by interfering with the operation of an early selective mechanism. Specifically, the effect might be produced because the paradigm requires subjects to (1) attend exclusively to stimuli within a very small visual angle, (2) maintain a long-term attentional focus on a constant display location, (3) focus attention on an empty display location, (4) exclude onset-transient flankers from semantic processing, or (5) ignore some of the few stimuli in an impoverished visual field. The results indicate that none of these task features is required for semantic processing of unattended stimuli to occur. In fact, visual angle is the only one of the task features that clearly has a strong influence on the size of the flanker compatibility effect. The invariance of the flanker compatibility effect across these conditions suggests that the mechanism for early selection rarely, if ever, completely excludes unattended stimuli from semantic analysis. In addition, it shows that selective mechanisms are relatively insensitive to several factors that might be expected to influence them, thereby supporting the view that spatial separation has a special status for visual selective attention.

  17. Effect of oculomotor vision rehabilitation on the visual-evoked potential and visual attention in mild traumatic brain injury.

    PubMed

    Yadav, Naveen K; Thiagarajan, Preethi; Ciuffreda, Kenneth J

    2014-01-01

    The purpose of the experiment was to investigate the effect of oculomotor vision rehabilitation (OVR) on the visual-evoked potential (VEP) and visual attention in the mTBI population. Subjects (n = 7) were adults with a history of mild traumatic brain injury (mTBI). Each received 9 hours of OVR over a 6-week period. The effects of OVR on VEP amplitude and latency, the attention-related alpha band (8-13 Hz) power (µV(2)) and the clinical Visual Search and Attention Test (VSAT) were assessed before and after the OVR. After the OVR, the VEP amplitude increased and its variability decreased. There was no change in VEP latency, which was normal. Alpha band power increased, as did the VSAT score, following the OVR. The significant changes in most test parameters suggest that OVR affects the visual system at early visuo-cortical levels, as well as other pathways which are involved in visual attention.

  18. The Effect of Early Visual Deprivation on the Neural Bases of Auditory Processing.

    PubMed

    Guerreiro, Maria J S; Putzar, Lisa; Röder, Brigitte

    2016-02-03

    Transient congenital visual deprivation affects visual and multisensory processing. In contrast, the extent to which it affects auditory processing has not been investigated systematically. Research in permanently blind individuals has revealed brain reorganization during auditory processing, involving both intramodal and crossmodal plasticity. The present study investigated the effect of transient congenital visual deprivation on the neural bases of auditory processing in humans. Cataract-reversal individuals and normally sighted controls performed a speech-in-noise task while undergoing functional magnetic resonance imaging. Although there were no behavioral group differences, groups differed in auditory cortical responses: in the normally sighted group, auditory cortex activation increased with increasing noise level, whereas in the cataract-reversal group, no activation difference was observed across noise levels. An auditory activation of visual cortex was not observed at the group level in cataract-reversal individuals. The present data suggest prevailing auditory processing advantages after transient congenital visual deprivation, even many years after sight restoration. The present study demonstrates that people whose sight was restored after a transient period of congenital blindness show more efficient cortical processing of auditory stimuli (here speech), similarly to what has been observed in congenitally permanently blind individuals. These results underscore the importance of early sensory experience in permanently shaping brain function. Copyright © 2016 the authors 0270-6474/16/361620-11$15.00/0.

  19. An investigation of the spatial selectivity of the duration after-effect.

    PubMed

    Maarseveen, Jim; Hogendoorn, Hinze; Verstraten, Frans A J; Paffen, Chris L E

    2017-01-01

    Adaptation to the duration of a visual stimulus causes the perceived duration of a subsequently presented stimulus with a slightly different duration to be skewed away from the adapted duration. This pattern of repulsion following adaptation is similar to that observed for other visual properties, such as orientation, and is considered evidence for the involvement of duration-selective mechanisms in duration encoding. Here, we investigated whether the encoding of duration - by duration-selective mechanisms - occurs early on in the visual processing hierarchy. To this end, we investigated the spatial specificity of the duration after-effect in two experiments. We measured the duration after-effect at adapter-test distances ranging between 0 and 15° of visual angle and for within- and between-hemifield presentations. We replicated the duration after-effect: the test stimulus was perceived to have a longer duration following adaptation to a shorter duration, and a shorter duration following adaptation to a longer duration. Importantly, this duration after-effect occurred at all measured distances, with no evidence for a decrease in the magnitude of the after-effect at larger distances or across hemifields. This shows that adaptation to duration does not result from adaptation occurring early on in the visual processing hierarchy. Instead, it seems likely that duration information is a high-level stimulus property that is encoded later on in the visual processing hierarchy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Factors associated with early detection of choroidal neovascularization in age-related macular degeneration in the clinic setting.

    PubMed

    Lichtinger, Alejandro; Caraza, Mauricio; Galbinur, Tural; Chowers, Itay

    2012-06-01

    Delayed diagnosis of choroidal neovas cularization (CNV) in age-related macular degeneration (AMD) adversely affects visual outcome. To identify factors associated with early detection of CNV in the clinic setting. Demographic and clinical data and lesion characteristics were retrospectively collected from 76 consecutive AMD patients who had a history of CNV in one eye and presented with CNV in the second eye. These data were evaluated for association with visual acuity (VA) at the time of presentation. Better VA was associated with a history of CNV in the fellow eye (P < 0.0001), adherence to follow-up every 4 months (P = 0.015), younger age (P = 0.03), smaller lesion (P < 0.0001), and non-subfoveal location (P = 0.048). VA of the fellow eye did not correlate with VA at presentation with CNV. These data suggest that patients' experience of CNV, regardless of VA, facilitates early diagnosis in the fellow eye. Adherence to follow-up in the routine clinic setting also facilitates early detection of CNV.

  1. Critical period revisited: impact on vision.

    PubMed

    Morishita, Hirofumi; Hensch, Takao K

    2008-02-01

    Neural circuits are shaped by experience in early postnatal life. The permanent loss of visual acuity (amblyopia) and anatomical remodeling within primary visual cortex following monocular deprivation is a classic example of critical period development from mouse to man. Recent work in rodents reveals a residual subthreshold potentiation of open eye response throughout life. Resetting excitatory-inhibitory balance or removing molecular 'brakes' on structural plasticity may unmask the potential for recovery of function in adulthood. Novel pharmacological or environmental interventions now hold great therapeutic promise based on a deeper understanding of critical period mechanisms.

  2. Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals.

    PubMed

    Bonino, D; Ricciardi, E; Sani, L; Gentili, C; Vanello, N; Guazzelli, M; Vecchi, T; Pietrini, P

    2008-09-01

    In sighted individuals, both the visual and tactile version of the same spatial working memory task elicited neural responses in the dorsal "where" cortical pathway (Ricciardi et al., 2006). Whether the neural response during the tactile working memory task is due to visually-based spatial imagery or rather reflects a more abstract, supramodal organization of the dorsal cortical pathway remains to be determined. To understand the role of visual experience on the functional organization of the dorsal cortical stream, using functional magnetic resonance imaging (fMRI) here we examined brain response in four individuals with congenital or early blindness and no visual recollection, while they performed the same tactile spatial working memory task, a one-back recognition of 2D and 3D matrices. The blind subjects showed a significant activation in bilateral posterior parietal cortex, dorsolateral and inferior prefrontal areas, precuneus, lateral occipital cortex, and cerebellum. Thus, dorsal occipito-parietal areas are involved in mental imagery dealing with spatial components in subjects without prior visual experience and in response to a non-visual task. These data indicate that recruitment of the dorsal cortical pathway in response to the tactile spatial working memory task is not mediated by visually-based imagery and that visual experience is not a prerequisite for the development of a more abstract functional organization of the dorsal stream. These findings, along with previous data indicating a similar supramodal functional organization within the ventral cortical pathway and the motion processing brain regions, may contribute to explain how individuals who are born deprived of sight are able to interact effectively with the surrounding world.

  3. Earlier Visual N1 Latencies in Expert Video-Game Players: A Temporal Basis of Enhanced Visuospatial Performance?

    PubMed Central

    Latham, Andrew J.; Patston, Lucy L. M.; Westermann, Christine; Kirk, Ian J.; Tippett, Lynette J.

    2013-01-01

    Increasing behavioural evidence suggests that expert video game players (VGPs) show enhanced visual attention and visuospatial abilities, but what underlies these enhancements remains unclear. We administered the Poffenberger paradigm with concurrent electroencephalogram (EEG) recording to assess occipital N1 latencies and interhemispheric transfer time (IHTT) in expert VGPs. Participants comprised 15 right-handed male expert VGPs and 16 non-VGP controls matched for age, handedness, IQ and years of education. Expert VGPs began playing before age 10, had a minimum 8 years experience, and maintained playtime of at least 20 hours per week over the last 6 months. Non-VGPs had little-to-no game play experience (maximum 1.5 years). Participants responded to checkerboard stimuli presented to the left and right visual fields while 128-channel EEG was recorded. Expert VGPs responded significantly more quickly than non-VGPs. Expert VGPs also had significantly earlier occipital N1s in direct visual pathways (the hemisphere contralateral to the visual field in which the stimulus was presented). IHTT was calculated by comparing the latencies of occipital N1 components between hemispheres. No significant between-group differences in electrophysiological estimates of IHTT were found. Shorter N1 latencies may enable expert VGPs to discriminate attended visual stimuli significantly earlier than non-VGPs and contribute to faster responding in visual tasks. As successful video-game play requires precise, time pressured, bimanual motor movements in response to complex visual stimuli, which in this sample began during early childhood, these differences may reflect the experience and training involved during the development of video-game expertise, but training studies are needed to test this prediction. PMID:24058667

  4. Earlier visual N1 latencies in expert video-game players: a temporal basis of enhanced visuospatial performance?

    PubMed

    Latham, Andrew J; Patston, Lucy L M; Westermann, Christine; Kirk, Ian J; Tippett, Lynette J

    2013-01-01

    Increasing behavioural evidence suggests that expert video game players (VGPs) show enhanced visual attention and visuospatial abilities, but what underlies these enhancements remains unclear. We administered the Poffenberger paradigm with concurrent electroencephalogram (EEG) recording to assess occipital N1 latencies and interhemispheric transfer time (IHTT) in expert VGPs. Participants comprised 15 right-handed male expert VGPs and 16 non-VGP controls matched for age, handedness, IQ and years of education. Expert VGPs began playing before age 10, had a minimum 8 years experience, and maintained playtime of at least 20 hours per week over the last 6 months. Non-VGPs had little-to-no game play experience (maximum 1.5 years). Participants responded to checkerboard stimuli presented to the left and right visual fields while 128-channel EEG was recorded. Expert VGPs responded significantly more quickly than non-VGPs. Expert VGPs also had significantly earlier occipital N1s in direct visual pathways (the hemisphere contralateral to the visual field in which the stimulus was presented). IHTT was calculated by comparing the latencies of occipital N1 components between hemispheres. No significant between-group differences in electrophysiological estimates of IHTT were found. Shorter N1 latencies may enable expert VGPs to discriminate attended visual stimuli significantly earlier than non-VGPs and contribute to faster responding in visual tasks. As successful video-game play requires precise, time pressured, bimanual motor movements in response to complex visual stimuli, which in this sample began during early childhood, these differences may reflect the experience and training involved during the development of video-game expertise, but training studies are needed to test this prediction.

  5. The case from animal studies for balanced binocular treatment strategies for human amblyopia.

    PubMed

    Mitchell, Donald E; Duffy, Kevin R

    2014-03-01

    Although amblyopia typically manifests itself as a monocular condition, its origin has long been linked to unbalanced neural signals from the two eyes during early postnatal development, a view confirmed by studies conducted on animal models in the last 50 years. Despite recognition of its binocular origin, treatment of amblyopia continues to be dominated by a period of patching of the non-amblyopic eye that necessarily hinders binocular co-operation. This review summarizes evidence from three lines of investigation conducted on an animal model of deprivation amblyopia to support the thesis that treatment of amblyopia should instead focus upon procedures that promote and enhance binocular co-operation. First, experiments with mixed daily visual experience in which episodes of abnormal visual input were pitted against normal binocular exposure revealed that short exposures of the latter offset much longer periods of abnormal input to allow normal development of visual acuity in both eyes. Second, experiments on the use of part-time patching revealed that purposeful introduction of episodes of binocular vision each day could be very beneficial. Periods of binocular exposure that represented 30-50% of the daily visual exposure included with daily occlusion of the non-amblyopic could allow recovery of normal vision in the amblyopic eye. Third, very recent experiments demonstrate that a short 10 day period of total darkness can promote very fast and complete recovery of visual acuity in the amblyopic eye of kittens and may represent an example of a class of artificial environments that have similar beneficial effects. Finally, an approach is described to allow timing of events in kitten and human visual system development to be scaled to optimize the ages for therapeutic interventions. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  6. Developmental Origins of the Other-Race Effect

    PubMed Central

    Anzures, Gizelle; Quinn, Paul C.; Pascalis, Olivier; Slater, Alan M.; Tanaka, James W.; Lee, Kang

    2013-01-01

    The other-race effect (ORE) in face recognition refers to better recognition memory for faces of one’s own race than faces of another race—a common phenomenon among individuals living in primarily mono-racial societies. In this article, we review findings suggesting that early visual and sociocultural experiences shape one’s processing of familiar and unfamiliar race classes and give rise to the ORE within the 1st year of life. However, despite its early development, the ORE can be prevented, attenuated, and even reversed given experience with a novel race class. Social implications of the ORE are discussed in relation to development of race-based preferences for social partners and racial prejudices. PMID:24049246

  7. Visual orienting and attention deficits in 5- and 10-month-old preterm infants.

    PubMed

    Ross-Sheehy, Shannon; Perone, Sammy; Macek, Kelsi L; Eschman, Bret

    2017-02-01

    Cognitive outcomes for children born prematurely are well characterized, including increased risk for deficits in memory, attention, processing speed, and executive function. However, little is known about deficits that appear within the first 12 months, and how these early deficits contribute to later outcomes. To probe for functional deficits in visual attention, preterm and full-term infants were tested at 5 and 10 months with the Infant Orienting With Attention task (IOWA; Ross-Sheehy, Schneegans and Spencer, 2015). 5-month-old preterm infants showed significant deficits in orienting speed and task related error. However, 10-month-old preterm infants showed only selective deficits in spatial attention, particularly reflexive orienting responses, and responses that required some inhibition. These emergent deficits in spatial attention suggest preterm differences may be related to altered postnatal developmental trajectories. Moreover, we found no evidence of a dose-response relation between increased gestational risk and spatial attention. These results highlight the critical role of postnatal visual experience, and suggest that visual orienting may be a sensitive measure of attentional delay. Results reported here both inform current theoretical models of early perceptual/cognitive development, and future intervention efforts. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Core formation in the early solar system through percolation: 4-D in-situ visualization of melt migration

    NASA Astrophysics Data System (ADS)

    Bromiley, G.; Berg, M.; Le Godec, Y.; Mezouar, N.; Atwood, R. C.; Phillipe, J.

    2015-12-01

    Although core formation was a key stage in the evolution of terrestrial planets, the physical processes which resulted in segregation of iron and silicate remain poorly understood. Formation of a silicate magma oceans provides an obvious mechanism for segregation of core-forming liquids, although recent work has strengthened arguments for a complex, multi-stage model of core formation. Extreme pressure1 and the effects of deformation2 have both been shown to promote percolation of Fe-rich melts in a solid silicate matrix, providing mechanisms for early, low temperature core-formation. However, the efficiency of these processes remains untested and we lack meaningful experimental data on resulting melt segregation velocities. Arguments regarding the efficiency of core formation through percolation of Fe-rich melts in solid silicate are based on simple, empirical models. Here, we review textural evidence from recent experiments which supports early core formation driven by deformation-aided percolation of Fe-rich melts. We then present results of novel in-situ synchrotron studies designed to provide time-resolved 3-D microimaging of percolating melt in model systems under extreme conditions. Under low strain rates characteristic of deformation-aided core formation, segregation of metallic (core-forming) melts by percolation is driven by stress gradients. This is expected to ultimately result in channelization and efficient segregation of melts noted in high-strain, low pressure experiments3. In-situ visualization also demonstrates that percolation of viscous metallic melts is surprisingly rapid. A combination of melt channelization and hydraulic fracture results in rapid, episodic melt migration, even over the limited time scale of experiments. The efficiency of this process depends strongly on the geometry of the melt network and is scaled to grain size in the matrix. We use both in-situ visualization and high-resolution ex-situ analysis to provide accurate constraints on melt migration velocities via this combined mechanism and will propose a model by which results can be scaled to core formation in the early solar system. References[1] Shi et al. Nature GeoSc. 6, 971 (2013).[2] Bruhn et al. Nature 403, 883 (2000).[3] Kohlstedt & Holtzman Ann. Rev. Earth. Planet. Sci. 37, 561 (2009).

  9. Gross Motor Engrams: An Important Spatial Learning Modality for Preschool Visually Handicapped Children. Vol. 1, No. 9.

    ERIC Educational Resources Information Center

    Whitcraft, Carol

    Investigations and theories concerning interrelationships of motoric experiences, perceptual-motor skills, and learning are reviewed, with emphasis on early engramming of form and space concepts. Covered are studies on haptic perception of form, the matching of perceptual data and motor information, Kephart's perceptual-motor theory, and…

  10. Drawing in Preschools: A Didactic Experience

    ERIC Educational Resources Information Center

    Frisch, Nina Scott

    2006-01-01

    To be understood, visually, often depends on how skilled one is in catching form and translating it into a two-dimensional surface. This is a challenge we are confronted with early in life. Children's learning strategies in drawing are not always understood or encouraged. This article presents a socio-cultural analysis from Norway of a pedagogical…

  11. From Research and Relaxation to Combination and Creativity: American Versions of Suggestopedia.

    ERIC Educational Resources Information Center

    Bancroft, W. Jane

    In the early 1970s, American educators commenced experiments on Suggestopedia. Educational psychologists enlarged upon the relaxation and visualizations contained in the Bulgarian method and provided a solid, statistical basis to Suggestopedic research. Part I of this paper discusses the contribution of Donald Schuster, and his development of…

  12. Do Transposed-Letter Similarity Effects Occur at a Morpheme Level? Evidence for Morpho-Orthographic Decomposition

    ERIC Educational Resources Information Center

    Dunabeitia, Jon Andoni; Peream, Manuel; Carreiras, Manuel

    2007-01-01

    When does morphological decomposition occur in visual word recognition? An increasing body of evidence suggests the presence of early morphological processing. The present work investigates this issue via an orthographic similarity manipulation. Three masked priming lexical decision experiments were conducted to examine the transposed-letter…

  13. Selective attention to signs of success: social dominance and early stage interpersonal perception.

    PubMed

    Maner, Jon K; DeWall, C Nathan; Gailliot, Matthew T

    2008-04-01

    Results from two experiments suggest that observers selectively attend to male, but not female, targets displaying signs of social dominance. Participants overestimated the frequency of dominant men in rapidly presented stimulus arrays (Study 1) and visually fixated on dominant men in an eyetracking experiment (Study 2). When viewing female targets, participants attended to signs of physical attractiveness rather than social dominance. Findings fit with evolutionary models of mating, which imply that dominance and physical attractiveness sometimes tend to be prioritized preferentially in judgments of men versus women, respectively. Findings suggest that sex differences in human mating are observed not only at the level of overt mating preferences and choices but also at early stages of interpersonal perception. This research demonstrates the utility of examining early-in-the-stream social cognition through the functionalist lens of adaptive thinking.

  14. Early blindness alters the spatial organization of verbal working memory.

    PubMed

    Bottini, Roberto; Mattioni, Stefania; Collignon, Olivier

    2016-10-01

    Several studies suggest that serial order in working memory (WM) is grounded on space. For a list of ordered items held in WM, items at the beginning of the list are associated with the left side of space and items at the end of the list with the right side. This suggests that maintaining items in verbal WM is performed in strong analogy to writing these items down on a physical whiteboard for later consultation (The Mental Whiteboard Hypothesis). What drives this spatial mapping of ordered series in WM remains poorly understood. In the present study we tested whether visual experience is instrumental in establishing the link between serial order in WM and spatial processing. We tested early blind (EB), late blind (LB) and sighted individuals in an auditory WM task. Replicating previous studies, left-key responses were faster for early items in the list whereas later items facilitated right-key responses in the sighted group. The same effect was observed in LB individuals. In contrast, EB participants did not show any association between space and serial position in WM. These results suggest that early visual experience plays a critical role in linking ordered items in WM and spatial representations. The analogical spatial structure of WM may depend in part on the actual experience of using spatially organized devices (e.g., notes, whiteboards) to offload WM. These practices are largely precluded to EB individuals, who instead rely to mnemonic devices that are less spatially organized (e.g., recordings, vocal notes). The way we habitually organize information in the external world may bias the way we organize information in our WM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Modernized Approach for Generating Reproducible Heterogeneity Using Transmitted-Light for Flow Visualization Experiments

    NASA Astrophysics Data System (ADS)

    Jones, A. A.; Holt, R. M.

    2017-12-01

    Image capturing in flow experiments has been used for fluid mechanics research since the early 1970s. Interactions of fluid flow between the vadose zone and permanent water table are of great interest because this zone is responsible for all recharge waters, pollutant transport and irrigation efficiency for agriculture. Griffith, et al. (2011) developed an approach where constructed reproducible "geologically realistic" sand configurations are deposited in sandfilled experimental chambers for light-transmitted flow visualization experiments. This method creates reproducible, reverse graded, layered (stratified) thin-slab sand chambers for point source experiments visualizing multiphase flow through porous media. Reverse-graded stratification of sand chambers mimic many naturally occurring sedimentary deposits. Sandfilled chambers use light as nonintrusive tools for measuring water saturation in two-dimensions (2-D). Homogeneous and heterogeneous sand configurations can be produced to visualize the complex physics of the unsaturated zone. The experimental procedure developed by Griffith, et al. (2011) was designed using now outdated and obsolete equipment. We have modernized this approach with new Parker Deadel linear actuator and programed projects/code for multiple configurations. We have also updated the Roper CCD software and image processing software with the latest in industry standards. Modernization of transmitted-light source, robotic equipment, redesigned experimental chambers, and newly developed analytical procedures have greatly reduced time and cost per experiment. We have verified the ability of the new equipment to generate reproducible heterogeneous sand-filled chambers and demonstrated the functionality of the new equipment and procedures by reproducing several gravity-driven fingering experiments conducted by Griffith (2008).

  16. The role of early visual cortex in visual short-term memory and visual attention.

    PubMed

    Offen, Shani; Schluppeck, Denis; Heeger, David J

    2009-06-01

    We measured cortical activity with functional magnetic resonance imaging to probe the involvement of early visual cortex in visual short-term memory and visual attention. In four experimental tasks, human subjects viewed two visual stimuli separated by a variable delay period. The tasks placed differential demands on short-term memory and attention, but the stimuli were visually identical until after the delay period. Early visual cortex exhibited sustained responses throughout the delay when subjects performed attention-demanding tasks, but delay-period activity was not distinguishable from zero when subjects performed a task that required short-term memory. This dissociation reveals different computational mechanisms underlying the two processes.

  17. Early but not late-blindness leads to enhanced auditory perception.

    PubMed

    Wan, Catherine Y; Wood, Amanda G; Reutens, David C; Wilson, Sarah J

    2010-01-01

    The notion that blindness leads to superior non-visual abilities has been postulated for centuries. Compared to sighted individuals, blind individuals show different patterns of brain activation when performing auditory tasks. To date, no study has controlled for musical experience, which is known to influence auditory skills. The present study tested 33 blind (11 congenital, 11 early-blind, 11 late-blind) participants and 33 matched sighted controls. We showed that the performance of blind participants was better than that of sighted participants on a range of auditory perception tasks, even when musical experience was controlled for. This advantage was observed only for individuals who became blind early in life, and was even more pronounced for individuals who were blind from birth. Years of blindness did not predict task performance. Here, we provide compelling evidence that superior auditory abilities in blind individuals are not explained by musical experience alone. These results have implications for the development of sensory substitution devices, particularly for late-blind individuals.

  18. Recruitment of Foveal Retinotopic Cortex During Haptic Exploration of Shapes and Actions in the Dark.

    PubMed

    Monaco, Simona; Gallivan, Jason P; Figley, Teresa D; Singhal, Anthony; Culham, Jody C

    2017-11-29

    The role of the early visual cortex and higher-order occipitotemporal cortex has been studied extensively for visual recognition and to a lesser degree for haptic recognition and visually guided actions. Using a slow event-related fMRI experiment, we investigated whether tactile and visual exploration of objects recruit the same "visual" areas (and in the case of visual cortex, the same retinotopic zones) and if these areas show reactivation during delayed actions in the dark toward haptically explored objects (and if so, whether this reactivation might be due to imagery). We examined activation during visual or haptic exploration of objects and action execution (grasping or reaching) separated by an 18 s delay. Twenty-nine human volunteers (13 females) participated in this study. Participants had their eyes open and fixated on a point in the dark. The objects were placed below the fixation point and accordingly visual exploration activated the cuneus, which processes retinotopic locations in the lower visual field. Strikingly, the occipital pole (OP), representing foveal locations, showed higher activation for tactile than visual exploration, although the stimulus was unseen and location in the visual field was peripheral. Moreover, the lateral occipital tactile-visual area (LOtv) showed comparable activation for tactile and visual exploration. Psychophysiological interaction analysis indicated that the OP showed stronger functional connectivity with anterior intraparietal sulcus and LOtv during the haptic than visual exploration of shapes in the dark. After the delay, the cuneus, OP, and LOtv showed reactivation that was independent of the sensory modality used to explore the object. These results show that haptic actions not only activate "visual" areas during object touch, but also that this information appears to be used in guiding grasping actions toward targets after a delay. SIGNIFICANCE STATEMENT Visual presentation of an object activates shape-processing areas and retinotopic locations in early visual areas. Moreover, if the object is grasped in the dark after a delay, these areas show "reactivation." Here, we show that these areas are also activated and reactivated for haptic object exploration and haptically guided grasping. Touch-related activity occurs not only in the retinotopic location of the visual stimulus, but also at the occipital pole (OP), corresponding to the foveal representation, even though the stimulus was unseen and located peripherally. That is, the same "visual" regions are implicated in both visual and haptic exploration; however, touch also recruits high-acuity central representation within early visual areas during both haptic exploration of objects and subsequent actions toward them. Functional connectivity analysis shows that the OP is more strongly connected with ventral and dorsal stream areas when participants explore an object in the dark than when they view it. Copyright © 2017 the authors 0270-6474/17/3711572-20$15.00/0.

  19. Effect of visual experience on structural organization of the human brain: a voxel based morphometric study using DARTEL.

    PubMed

    Modi, Shilpi; Bhattacharya, Manisha; Singh, Namita; Tripathi, Rajendra Prasad; Khushu, Subash

    2012-10-01

    To investigate structural reorganization in the brain with differential visual experience using Voxel-Based Morphometry with Diffeomorphic Anatomic Registration Through Exponentiated Lie algebra algorithm (DARTEL) approach. High resolution structural MR images were taken in fifteen normal sighted healthy controls, thirteen totally blind subjects and six partial blind subjects. The analysis was carried out using SPM8 software on MATLAB 7.6.0 platform. VBM study revealed gray matter volume atrophy in the cerebellum and left inferior parietal cortex in total blind subjects and in left inferior parietal cortex, right caudate nucleus, and left primary visual cortex in partial blind subjects as compared to controls. White matter volume loss was found in calcarine gyrus in total blind subjects and Thlamus-somatosensory region in partially blind subjects as compared to controls. Besides, an increase in Gray Matter volume was also found in left middle occipital and middle frontal gyrus and right entorhinal cortex, and an increase in White Matter volume was found in superior frontal gyrus, left middle temporal gyrus and right Heschl's gyrus in totally blind subjects as compared to controls. Comparison between total and partial blind subjects revealed a greater Gray Matter volume in left cerebellum of partial blinds and left Brodmann area 18 of total blind subjects. Results suggest that, loss of vision at an early age can induce significant structural reorganization on account of the loss of visual input. These plastic changes are different in early onset of total blindness as compared to partial blindness. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. The influence of the immediate visual context on incremental thematic role-assignment: evidence from eye-movements in depicted events.

    PubMed

    Knoeferle, Pia; Crocker, Matthew W; Scheepers, Christoph; Pickering, Martin J

    2005-02-01

    Studies monitoring eye-movements in scenes containing entities have provided robust evidence for incremental reference resolution processes. This paper addresses the less studied question of whether depicted event scenes can affect processes of incremental thematic role-assignment. In Experiments 1 and 2, participants inspected agent-action-patient events while listening to German verb-second sentences with initial structural and role ambiguity. The experiments investigated the time course with which listeners could resolve this ambiguity by relating the verb to the depicted events. Such verb-mediated visual event information allowed early disambiguation on-line, as evidenced by anticipatory eye-movements to the appropriate agent/patient role filler. We replicated this finding while investigating the effects of intonation. Experiment 3 demonstrated that when the verb was sentence-final and thus did not establish early reference to the depicted events, linguistic cues alone enabled disambiguation before people encountered the verb. Our results reveal the on-line influence of depicted events on incremental thematic role-assignment and disambiguation of local structural and role ambiguity. In consequence, our findings require a notion of reference that includes actions and events in addition to entities (e.g. Semantics and Cognition, 1983), and argue for a theory of on-line sentence comprehension that exploits a rich inventory of semantic categories.

  1. Neuron recycling for learning the alphabetic principles.

    PubMed

    Scliar-Cabral, Leonor

    2014-01-01

    The main purpose of this paper is to discuss an approach to the phonic method of learning-teaching early literacy development, namely that the visual neurons must be recycled to recognize the small differences among pertinent letter features. In addition to the challenge of segmenting the speech chain and the syllable for learning the alphabetic principles, neuroscience has demonstrated another major challenge: neurons in mammals are programmed to process visual signals symmetrically. In order to develop early literacy, visual neurons must be recycled to overcome this initial programming together with phonological awareness, expanding it with the ability to delimit words, including clitics, as well as assigning stress to words. To achieve this goal, Scliar's Early Literacy Development System was proposed and tested. Sixteen subjects (10 girls and 6 boys) comprised the experimental group (mean age 6.02 years), and 16 subjects (7 girls and 9 boys) formed the control group (mean age 6.10 years). The research instruments were a psychosociolinguistic questionnaire to reveal the subjects' profile and a post-test battery of tests. At the beginning of the experiment, the experimental group was submitted to an intervention program based on Scliar's Early Literacy Development System. One of the tests is discussed in this paper, the grapheme-phoneme test: subjects had to read aloud a pseudoword with 4 graphemes, signaled by the experimenter and designed to assess the subject's ability to convert a grapheme into its correspondent phoneme. The average value for the test group was 25.0 correct answers (SD = 11.4); the control group had an average of 14.3 correct answers (SD = 10.6): The difference was significant. The experimental results validate Scliar's Early Literacy Development System and indicate the need to redesign early literacy development methods. © 2014 S. Karger AG, Basel.

  2. Early visual language exposure and emergent literacy in preschool deaf children: findings from a national longitudinal study.

    PubMed

    Allen, Thomas E; Letteri, Amy; Choi, Song Hoa; Dang, Daqian

    2014-01-01

    Brief review is provided of recent research on the impact of early visual language exposure on a variety of developmental outcomes, including literacy, cognition, and social adjustment. This body of work points to the great importance of giving young deaf children early exposure to a visual language as a critical precursor to the acquisition of literacy. Four analyses of data from the Visual Language and Visual Learning (VL2) Early Education Longitudinal Study are summarized. Each confirms findings from previously published laboratory findings and points to the positive effects of early sign language on, respectively, letter knowledge, social adaptability, sustained visual attention, and cognitive-behavioral milestones necessary for academic success. The article concludes with a consideration of the qualitative similarity hypothesis and a finding that the hypothesis is valid, but only if it can be presented as being modality independent.

  3. Common Modality Effects in Immediate Free Recall and Immediate Serial Recall

    ERIC Educational Resources Information Center

    Grenfell-Essam, Rachel; Ward, Geoff; Tan, Lydia

    2017-01-01

    In 2 experiments, participants were presented with lists of between 2 and 12 words for either immediate free recall (IFR) or immediate serial recall (ISR). Auditory recall advantages at the end of the list (modality effects) and visual recall advantages early in the list (inverse modality effects) were observed in both tasks and the extent and…

  4. Living Skills: The Dual Role of the Parent and the Professional.

    ERIC Educational Resources Information Center

    Brent, Diana

    Written from the perspective of a blind rehabilitation teacher, the paper focuses on teaching daily living skills to visually impaired persons. Of primary importance is early instruction in daily living skills integrated into the child's total life experience. The parent's role as a direct and consistent influence on the way children perceive the…

  5. Early Childhood Special Education for Children with Visual Impairments: Problems and Solutions

    ERIC Educational Resources Information Center

    Kesiktas, A. Dolunay

    2009-01-01

    Studies showing developmental delays in infants and children with visual impairments have triggered early childhood special education studies for this population. Early childhood special education guidelines for visually impaired infants and children range from individualized services to personnel preparation issues while all display certain…

  6. Retinotopic maps and foveal suppression in the visual cortex of amblyopic adults.

    PubMed

    Conner, Ian P; Odom, J Vernon; Schwartz, Terry L; Mendola, Janine D

    2007-08-15

    Amblyopia is a developmental visual disorder associated with loss of monocular acuity and sensitivity as well as profound alterations in binocular integration. Abnormal connections in visual cortex are known to underlie this loss, but the extent to which these abnormalities are regionally or retinotopically specific has not been fully determined. This functional magnetic resonance imaging (fMRI) study compared the retinotopic maps in visual cortex produced by each individual eye in 19 adults (7 esotropic strabismics, 6 anisometropes and 6 controls). In our standard viewing condition, the non-tested eye viewed a dichoptic homogeneous mid-level grey stimulus, thereby permitting some degree of binocular interaction. Regions-of-interest analysis was performed for extrafoveal V1, extrafoveal V2 and the foveal representation at the occipital pole. In general, the blood oxygenation level-dependent (BOLD) signal was reduced for the amblyopic eye. At the occipital pole, population receptive fields were shifted to represent more parafoveal locations for the amblyopic eye, compared with the fellow eye, in some subjects. Interestingly, occluding the fellow eye caused an expanded foveal representation for the amblyopic eye in one early-onset strabismic subject with binocular suppression, indicating real-time cortical remapping. In addition, a few subjects actually showed increased activity in parietal and temporal cortex when viewing with the amblyopic eye. We conclude that, even in a heterogeneous population, abnormal early visual experience commonly leads to regionally specific cortical adaptations.

  7. Population Response Profiles in Early Visual Cortex Are Biased in Favor of More Valuable Stimuli

    PubMed Central

    Saproo, Sameer

    2010-01-01

    Voluntary and stimulus-driven shifts of attention can modulate the representation of behaviorally relevant stimuli in early areas of visual cortex. In turn, attended items are processed faster and more accurately, facilitating the selection of appropriate behavioral responses. Information processing is also strongly influenced by past experience and recent studies indicate that the learned value of a stimulus can influence relatively late stages of decision making such as the process of selecting a motor response. However, the learned value of a stimulus can also influence the magnitude of cortical responses in early sensory areas such as V1 and S1. These early effects of stimulus value are presumed to improve the quality of sensory representations; however, the nature of these modulations is not clear. They could reflect nonspecific changes in response amplitude associated with changes in general arousal or they could reflect a bias in population responses so that high-value features are represented more robustly. To examine this issue, subjects performed a two-alternative forced choice paradigm with a variable-interval payoff schedule to dynamically manipulate the relative value of two stimuli defined by their orientation (one was rotated clockwise from vertical, the other counterclockwise). Activation levels in visual cortex were monitored using functional MRI and feature-selective voxel tuning functions while subjects performed the behavioral task. The results suggest that value not only modulates the relative amplitude of responses in early areas of human visual cortex, but also sharpens the response profile across the populations of feature-selective neurons that encode the critical stimulus feature (orientation). Moreover, changes in space- or feature-based attention cannot easily explain the results because representations of both the selected and the unselected stimuli underwent a similar feature-selective modulation. This sharpening in the population response profile could theoretically improve the probability of correctly discriminating high-value stimuli from low-value alternatives. PMID:20410360

  8. Memory and visual search in naturalistic 2D and 3D environments

    PubMed Central

    Li, Chia-Ling; Aivar, M. Pilar; Kit, Dmitry M.; Tong, Matthew H.; Hayhoe, Mary M.

    2016-01-01

    The role of memory in guiding attention allocation in daily behaviors is not well understood. In experiments with two-dimensional (2D) images, there is mixed evidence about the importance of memory. Because the stimulus context in laboratory experiments and daily behaviors differs extensively, we investigated the role of memory in visual search, in both two-dimensional (2D) and three-dimensional (3D) environments. A 3D immersive virtual apartment composed of two rooms was created, and a parallel 2D visual search experiment composed of snapshots from the 3D environment was developed. Eye movements were tracked in both experiments. Repeated searches for geometric objects were performed to assess the role of spatial memory. Subsequently, subjects searched for realistic context objects to test for incidental learning. Our results show that subjects learned the room-target associations in 3D but less so in 2D. Gaze was increasingly restricted to relevant regions of the room with experience in both settings. Search for local contextual objects, however, was not facilitated by early experience. Incidental fixations to context objects do not necessarily benefit search performance. Together, these results demonstrate that memory for global aspects of the environment guides search by restricting allocation of attention to likely regions, whereas task relevance determines what is learned from the active search experience. Behaviors in 2D and 3D environments are comparable, although there is greater use of memory in 3D. PMID:27299769

  9. Stimulus homogeneity enhances implicit learning: evidence from contextual cueing.

    PubMed

    Feldmann-Wüstefeld, Tobias; Schubö, Anna

    2014-04-01

    Visual search for a target object is faster if the target is embedded in a repeatedly presented invariant configuration of distractors ('contextual cueing'). It has also been shown that the homogeneity of a context affects the efficiency of visual search: targets receive prioritized processing when presented in a homogeneous context compared to a heterogeneous context, presumably due to grouping processes at early stages of visual processing. The present study investigated in three Experiments whether context homogeneity also affects contextual cueing. In Experiment 1, context homogeneity varied on three levels of the task-relevant dimension (orientation) and contextual cueing was most pronounced for context configurations with high orientation homogeneity. When context homogeneity varied on three levels of the task-irrelevant dimension (color) and orientation homogeneity was fixed, no modulation of contextual cueing was observed: high orientation homogeneity led to large contextual cueing effects (Experiment 2) and low orientation homogeneity led to low contextual cueing effects (Experiment 3), irrespective of color homogeneity. Enhanced contextual cueing for homogeneous context configurations suggest that grouping processes do not only affect visual search but also implicit learning. We conclude that memory representation of context configurations are more easily acquired when context configurations can be processed as larger, grouped perceptual units. However, this form of implicit perceptual learning is only improved by stimulus homogeneity when stimulus homogeneity facilitates grouping processes on a dimension that is currently relevant in the task. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Temporal and identity prediction in visual-auditory events: Electrophysiological evidence from stimulus omissions.

    PubMed

    van Laarhoven, Thijs; Stekelenburg, Jeroen J; Vroomen, Jean

    2017-04-15

    A rare omission of a sound that is predictable by anticipatory visual information induces an early negative omission response (oN1) in the EEG during the period of silence where the sound was expected. It was previously suggested that the oN1 was primarily driven by the identity of the anticipated sound. Here, we examined the role of temporal prediction in conjunction with identity prediction of the anticipated sound in the evocation of the auditory oN1. With incongruent audiovisual stimuli (a video of a handclap that is consistently combined with the sound of a car horn) we demonstrate in Experiment 1 that a natural match in identity between the visual and auditory stimulus is not required for inducing the oN1, and that the perceptual system can adapt predictions to unnatural stimulus events. In Experiment 2 we varied either the auditory onset (relative to the visual onset) or the identity of the sound across trials in order to hamper temporal and identity predictions. Relative to the natural stimulus with correct auditory timing and matching audiovisual identity, the oN1 was abolished when either the timing or the identity of the sound could not be predicted reliably from the video. Our study demonstrates the flexibility of the perceptual system in predictive processing (Experiment 1) and also shows that precise predictions of timing and content are both essential elements for inducing an oN1 (Experiment 2). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Development of adaptive sensorimotor control in infant sitting posture.

    PubMed

    Chen, Li-Chiou; Jeka, John; Clark, Jane E

    2016-03-01

    A reliable and adaptive relationship between action and perception is necessary for postural control. Our understanding of how this adaptive sensorimotor control develops during infancy is very limited. This study examines the dynamic visual-postural relationship during early development. Twenty healthy infants were divided into 4 developmental groups (each n=5): sitting onset, standing alone, walking onset, and 1-year post-walking. During the experiment, the infant sat independently in a virtual moving-room in which anterior-posterior oscillations of visual motion were presented using a sum-of-sines technique with five input frequencies (from 0.12 to 1.24 Hz). Infants were tested in five conditions that varied in the amplitude of visual motion (from 0 to 8.64 cm). Gain and phase responses of infants' postural sway were analyzed. Our results showed that infants, from a few months post-sitting to 1 year post-walking, were able to control their sitting posture in response to various frequency and amplitude properties of the visual motion. Infants showed an adult-like inverted-U pattern for the frequency response to visual inputs with the highest gain at 0.52 and 0.76 Hz. As the visual motion amplitude increased, the gain response decreased. For the phase response, an adult-like frequency-dependent pattern was observed in all amplitude conditions for the experienced walkers. Newly sitting infants, however, showed variable postural behavior and did not systemically respond to the visual stimulus. Our results suggest that visual-postural entrainment and sensory re-weighting are fundamental processes that are present after a few months post sitting. Sensorimotor refinement during early postural development may result from the interactions of improved self-motion control and enhanced perceptual abilities. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Mechanisms of recovery of visual function in adult amblyopia through a tailored action video game.

    PubMed

    Vedamurthy, Indu; Nahum, Mor; Bavelier, Daphne; Levi, Dennis M

    2015-02-26

    Amblyopia is a deficit in vision that arises from abnormal visual experience early in life. It was long thought to develop into a permanent deficit, unless properly treated before the end of the sensitive period for visual recovery. However, a number of studies now suggest that adults with long-standing amblyopia may at least partially recover visual acuity and stereopsis following perceptual training. Eliminating or reducing interocular suppression has been hypothesized to be at the root of these changes. Here we show that playing a novel dichoptic video game indeed results in reduced suppression, improved visual acuity and, in some cases, improved stereopsis. Our relatively large cohort of adults with amblyopia, allowed us, for the first time, to assess the link between visual function recovery and reduction in suppression. Surprisingly, no significant correlation was found between decreased suppression and improved visual function. This finding challenges the prevailing view and suggests that while dichoptic training improves visual acuity and stereopsis in adult amblyopia, reduced suppression is unlikely to be at the root of visual recovery. These results are discussed in the context of their implication on recovery of amblyopia in adults.

  13. Mechanisms of recovery of visual function in adult amblyopia through a tailored action video game

    PubMed Central

    Vedamurthy, Indu; Nahum, Mor; Bavelier, Daphne; Levi, Dennis M.

    2015-01-01

    Amblyopia is a deficit in vision that arises from abnormal visual experience early in life. It was long thought to develop into a permanent deficit, unless properly treated before the end of the sensitive period for visual recovery. However, a number of studies now suggest that adults with long-standing amblyopia may at least partially recover visual acuity and stereopsis following perceptual training. Eliminating or reducing interocular suppression has been hypothesized to be at the root of these changes. Here we show that playing a novel dichoptic video game indeed results in reduced suppression, improved visual acuity and, in some cases, improved stereopsis. Our relatively large cohort of adults with amblyopia, allowed us, for the first time, to assess the link between visual function recovery and reduction in suppression. Surprisingly, no significant correlation was found between decreased suppression and improved visual function. This finding challenges the prevailing view and suggests that while dichoptic training improves visual acuity and stereopsis in adult amblyopia, reduced suppression is unlikely to be at the root of visual recovery. These results are discussed in the context of their implication on recovery of amblyopia in adults. PMID:25719537

  14. Decoding Reveals Plasticity in V3A as a Result of Motion Perceptual Learning

    PubMed Central

    Shibata, Kazuhisa; Chang, Li-Hung; Kim, Dongho; Náñez, José E.; Kamitani, Yukiyasu; Watanabe, Takeo; Sasaki, Yuka

    2012-01-01

    Visual perceptual learning (VPL) is defined as visual performance improvement after visual experiences. VPL is often highly specific for a visual feature presented during training. Such specificity is observed in behavioral tuning function changes with the highest improvement centered on the trained feature and was originally thought to be evidence for changes in the early visual system associated with VPL. However, results of neurophysiological studies have been highly controversial concerning whether the plasticity underlying VPL occurs within the visual cortex. The controversy may be partially due to the lack of observation of neural tuning function changes in multiple visual areas in association with VPL. Here using human subjects we systematically compared behavioral tuning function changes after global motion detection training with decoded tuning function changes for 8 visual areas using pattern classification analysis on functional magnetic resonance imaging (fMRI) signals. We found that the behavioral tuning function changes were extremely highly correlated to decoded tuning function changes only in V3A, which is known to be highly responsive to global motion with human subjects. We conclude that VPL of a global motion detection task involves plasticity in a specific visual cortical area. PMID:22952849

  15. Visual recognition and visually guided action after early bilateral lesion of occipital cortex: a behavioral study of a 4.6-year-old girl.

    PubMed

    Amicuzi, Ileana; Stortini, Massimo; Petrarca, Maurizio; Di Giulio, Paola; Di Rosa, Giuseppe; Fariello, Giuseppe; Longo, Daniela; Cannatà, Vittorio; Genovese, Elisabetta; Castelli, Enrico

    2006-10-01

    We report the case of a 4.6-year-old girl born pre-term with early bilateral occipital damage. It was revealed that the child had non-severely impaired basic visual abilities and ocular motility, a selective perceptual deficit of figure-ground segregation, impaired visual recognition and abnormal navigating through space. Even if the child's visual functioning was not optimal, this was the expression of adaptive anatomic and functional brain modifications that occurred following the early lesion. Anatomic brain structure was studied with anatomic MRI and Diffusor Tensor Imaging (DTI)-MRI. This behavioral study may provide an important contribution to understanding the impact of an early lesion of the visual system on the development of visual functions and on the immature brain's potential for reorganisation related to when the damage occurred.

  16. Reduction in the retinotopic early visual cortex with normal aging and magnitude of perceptual learning.

    PubMed

    Chang, Li-Hung; Yotsumoto, Yuko; Salat, David H; Andersen, George J; Watanabe, Takeo; Sasaki, Yuka

    2015-01-01

    Although normal aging is known to reduce cortical structures globally, the effects of aging on local structures and functions of early visual cortex are less understood. Here, using standard retinotopic mapping and magnetic resonance imaging morphologic analyses, we investigated whether aging affects areal size of the early visual cortex, which were retinotopically localized, and whether those morphologic measures were associated with individual performance on visual perceptual learning. First, significant age-associated reduction was found in the areal size of V1, V2, and V3. Second, individual ability of visual perceptual learning was significantly correlated with areal size of V3 in older adults. These results demonstrate that aging changes local structures of the early visual cortex, and the degree of change may be associated with individual visual plasticity. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Tau pathology does not affect experience-driven single-neuron and network-wide Arc/Arg3.1 responses.

    PubMed

    Rudinskiy, Nikita; Hawkes, Jonathan M; Wegmann, Susanne; Kuchibhotla, Kishore V; Muzikansky, Alona; Betensky, Rebecca A; Spires-Jones, Tara L; Hyman, Bradley T

    2014-06-10

    Intraneuronal neurofibrillary tangles (NFTs) - a characteristic pathological feature of Alzheimer's and several other neurodegenerative diseases - are considered a major target for drug development. Tangle load correlates well with the severity of cognitive symptoms and mouse models of tauopathy are behaviorally impaired. However, there is little evidence that NFTs directly impact physiological properties of host neurons. Here we used a transgenic mouse model of tauopathy to study how advanced tau pathology in different brain regions affects activity-driven expression of immediate-early gene Arc required for experience-dependent consolidation of long-term memories. We demonstrate in vivo that visual cortex neurons with tangles are as likely to express comparable amounts of Arc in response to structured visual stimulation as their neighbors without tangles. Probability of experience-dependent Arc response was not affected by tau tangles in both visual cortex and hippocampal pyramidal neurons as determined postmortem. Moreover, whole brain analysis showed that network-wide activity-driven Arc expression was not affected by tau pathology in any of the brain regions, including brain areas with the highest tangle load. Our findings suggest that intraneuronal NFTs do not affect signaling cascades leading to experience-dependent gene expression required for long-term synaptic plasticity.

  18. "Visual" Cortex Responds to Spoken Language in Blind Children.

    PubMed

    Bedny, Marina; Richardson, Hilary; Saxe, Rebecca

    2015-08-19

    Plasticity in the visual cortex of blind individuals provides a rare window into the mechanisms of cortical specialization. In the absence of visual input, occipital ("visual") brain regions respond to sound and spoken language. Here, we examined the time course and developmental mechanism of this plasticity in blind children. Nineteen blind and 40 sighted children and adolescents (4-17 years old) listened to stories and two auditory control conditions (unfamiliar foreign speech, and music). We find that "visual" cortices of young blind (but not sighted) children respond to sound. Responses to nonlanguage sounds increased between the ages of 4 and 17. By contrast, occipital responses to spoken language were maximal by age 4 and were not related to Braille learning. These findings suggest that occipital plasticity for spoken language is independent of plasticity for Braille and for sound. We conclude that in the absence of visual input, spoken language colonizes the visual system during brain development. Our findings suggest that early in life, human cortex has a remarkably broad computational capacity. The same cortical tissue can take on visual perception and language functions. Studies of plasticity provide key insights into how experience shapes the human brain. The "visual" cortex of adults who are blind from birth responds to touch, sound, and spoken language. To date, all existing studies have been conducted with adults, so little is known about the developmental trajectory of plasticity. We used fMRI to study the emergence of "visual" cortex responses to sound and spoken language in blind children and adolescents. We find that "visual" cortex responses to sound increase between 4 and 17 years of age. By contrast, responses to spoken language are present by 4 years of age and are not related to Braille-learning. These findings suggest that, early in development, human cortex can take on a strikingly wide range of functions. Copyright © 2015 the authors 0270-6474/15/3511674-08$15.00/0.

  19. Experience-dependent central vision deficits: Neurobiology and visual acuity.

    PubMed

    Williams, Kate; Balsor, Justin L; Beshara, Simon; Beston, Brett R; Jones, David G; Murphy, Kathryn M

    2015-09-01

    Abnormal visual experience during childhood often leads to amblyopia, with strong links to binocular dysfunction that can include poor acuity in both eyes, especially in central vision. In animal models of amblyopia, the non-deprived eye is often considered normal and what limits binocular acuity. This leaves open the question whether monocular deprivation (MD) induces binocular dysfunction similar to what is found in amblyopia. In previous studies of MD cats, we found a loss of excitatory receptors restricted to the central visual field representation in visual cortex (V1), including both eyes' columns. This led us to ask two questions about the effects of MD: how quickly are receptors lost in V1? and is there an impact on binocular acuity? We found that just a few hours of MD caused a rapid loss of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor proteins across all of V1. But after a few days of MD, there was recovery in the visual periphery, leaving a loss of AMPA receptors only in the central region of V1. We reared animals with early MD followed by a long period of binocular vision and found binocular acuity deficits that were greatest in the central visual field. Our results suggest that the greater binocular acuity deficits in the central visual field are driven in part by the long-term loss of AMPA receptors in the central region of V1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Tactile stimulation partially prevents neurodevelopmental changes in visual tract caused by early iron deficiency.

    PubMed

    Horiquini-Barbosa, Everton; Gibb, Robbin; Kolb, Bryan; Bray, Douglas; Lachat, Joao-Jose

    2017-02-15

    Iron deficiency has a critical impact on maturational mechanisms of the brain and the damage related to neuroanatomical parameters is not satisfactorily reversed after iron replacement. However, emerging evidence suggest that enriched early experience may offer great therapeutic efficacy in cases of nutritional disorders postnatally, since the brain is remarkably responsive to its interaction with the environment. Given the fact that tactile stimulation (TS) treatment has been previously shown to be an effective therapeutic approach and with potential application to humans, here we ask whether exposure to TS treatment, from postnatal day (P) 1 to P32 for 3min/day, could also be employed to prevent neuroanatomical changes in the optic nerve of rats maintained on an iron-deficient diet during brain development. We found that iron deficiency changed astrocyte, oligodendrocyte, damaged fiber, and myelinated fiber density, however, TS reversed the iron-deficiency-induced alteration in oligodendrocyte, damaged fiber and myelinated fiber density, but failed to reverse astrocyte density. Our results suggest that early iron deficiency may act by disrupting the timing of key steps in visual system development thereby modifying the normal progression of optic nerve maturation. However, optic nerve development is sensitive to enriching experiences, and in the current study we show that this sensitivity can be used to prevent damage from postnatal iron deficiency during the critical period. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Altered Evoked Gamma-Band Responses Reveal Impaired Early Visual Processing in ADHD Children

    ERIC Educational Resources Information Center

    Lenz, Daniel; Krauel, Kerstin; Flechtner, Hans-Henning; Schadow, Jeanette; Hinrichs, Hermann; Herrmann, Christoph S.

    2010-01-01

    Neurophysiological studies yield contrary results whether attentional problems of patients with attention-deficit/hyperactivity disorder (ADHD) are related to early visual processing deficits or not. Evoked gamma-band responses (GBRs), being among the first cortical responses occurring as early as 90 ms after visual stimulation in human EEG, have…

  2. Cross-cultural differences in processing of architectural ranking: evidence from an event-related potential study.

    PubMed

    Mecklinger, Axel; Kriukova, Olga; Mühlmann, Heiner; Grunwald, Thomas

    2014-01-01

    Visual object identification is modulated by perceptual experience. In a cross-cultural ERP study we investigated whether cultural expertise determines how buildings that vary in their ranking between high and low according to the Western architectural decorum are perceived. Two groups of German and Chinese participants performed an object classification task in which high- and low-ranking Western buildings had to be discriminated from everyday life objects. ERP results indicate that an early stage of visual object identification (i.e., object model selection) is facilitated for high-ranking buildings for the German participants, only. At a later stage of object identification, in which object knowledge is complemented by information from semantic and episodic long-term memory, no ERP evidence for cultural differences was obtained. These results suggest that the identification of architectural ranking is modulated by culturally specific expertise with Western-style architecture already at an early processing stage.

  3. Seeing faces is necessary for face-domain formation.

    PubMed

    Arcaro, Michael J; Schade, Peter F; Vincent, Justin L; Ponce, Carlos R; Livingstone, Margaret S

    2017-10-01

    Here we report that monkeys raised without exposure to faces did not develop face domains, but did develop domains for other categories and did show normal retinotopic organization, indicating that early face deprivation leads to a highly selective cortical processing deficit. Therefore, experience must be necessary for the formation (or maintenance) of face domains. Gaze tracking revealed that control monkeys looked preferentially at faces, even at ages prior to the emergence of face domains, but face-deprived monkeys did not, indicating that face looking is not innate. A retinotopic organization is present throughout the visual system at birth, so selective early viewing behavior could bias category-specific visual responses toward particular retinotopic representations, thereby leading to domain formation in stereotyped locations in inferotemporal cortex, without requiring category-specific templates or biases. Thus, we propose that environmental importance influences viewing behavior, viewing behavior drives neuronal activity, and neuronal activity sculpts domain formation.

  4. Attractive Serial Dependence in the Absence of an Explicit Task.

    PubMed

    Fornaciai, Michele; Park, Joonkoo

    2018-03-01

    Attractive serial dependence refers to an adaptive change in the representation of sensory information, whereby a current stimulus appears to be similar to a previous one. The nature of this phenomenon is controversial, however, as serial dependence could arise from biased perceptual representations or from biased traces of working memory representation at a decisional stage. Here, we demonstrated a neural signature of serial dependence in numerosity perception emerging early in the visual processing stream even in the absence of an explicit task. Furthermore, a psychophysical experiment revealed that numerosity perception is biased by a previously presented stimulus in an attractive way, not by repulsive adaptation. These results suggest that serial dependence is a perceptual phenomenon starting from early levels of visual processing and occurring independently from a decision process, which is consistent with the view that these biases smooth out noise from neural signals to establish perceptual continuity.

  5. Seeing faces is necessary for face-patch formation

    PubMed Central

    Arcaro, Michael J.; Schade, Peter F.; Vincent, Justin L.; Ponce, Carlos R.; Livingstone, Margaret S.

    2017-01-01

    Here we report that monkeys raised without exposure to faces did not develop face patches, but did develop domains for other categories, and did show normal retinotopic organization, indicating that early face deprivation leads to a highly selective cortical processing deficit. Therefore experience must be necessary for the formation, or maintenance, of face domains. Gaze tracking revealed that control monkeys looked preferentially at faces, even at ages prior to the emergence of face patches, but face-deprived monkeys did not, indicating that face looking is not innate. A retinotopic organization is present throughout the visual system at birth, so selective early viewing behavior could bias category-specific visual responses towards particular retinotopic representations, thereby leading to domain formation in stereotyped locations in IT, without requiring category-specific templates or biases. Thus we propose that environmental importance influences viewing behavior, viewing behavior drives neuronal activity, and neuronal activity sculpts domain formation. PMID:28869581

  6. Adaptation disrupts motion integration in the primate dorsal stream

    PubMed Central

    Patterson, Carlyn A.; Wissig, Stephanie C.; Kohn, Adam

    2014-01-01

    Summary Sensory systems adjust continuously to the environment. The effects of recent sensory experience—or adaptation—are typically assayed by recording in a relevant subcortical or cortical network. However, adaptation effects cannot be localized to a single, local network. Adjustments in one circuit or area will alter the input provided to others, with unclear consequences for computations implemented in the downstream circuit. Here we show that prolonged adaptation with drifting gratings, which alters responses in the early visual system, impedes the ability of area MT neurons to integrate motion signals in plaid stimuli. Perceptual experiments reveal a corresponding loss of plaid coherence. A simple computational model shows how the altered representation of motion signals in early cortex can derail integration in MT. Our results suggest that the effects of adaptation cascade through the visual system, derailing the downstream representation of distinct stimulus attributes. PMID:24507198

  7. Neurophysiological evidence for the influence of past experience on figure-ground perception.

    PubMed

    Trujillo, Logan T; Allen, John J B; Schnyer, David M; Peterson, Mary A

    2010-02-10

    A fundamental aspect of perceptual organization entails segregating visual input into shaped figures presented against shapeless backgrounds; an outcome termed "figure-ground perception" or "shape assignment." The present study examined how early in processing past experience exerts an influence on shape assignment. Event-related potential (ERP) measures of brain activity were recorded while observers viewed silhouettes of novel objects that differed in whether or not a familiar shape was suggested on the outside-the groundside-of their bounding edges (experimental versus control silhouettes, respectively). Observers perceived both types of silhouettes as novel shapes and were unaware of the familiar shape suggested on the groundside of experimental silhouettes. Nevertheless, we expected that the familiar shape would be implicitly identified early in processing and would compete for figural status with the novel shape on the inside. Early (106-156 ms) ERPs were larger for experimental silhouettes than for control silhouettes lacking familiarity cues. The early ERP difference occurred during a time interval within which edge-segmentation-dependent response differences have been observed in previous neurophysiological investigations of figure-ground perception. These results provide the first neurophysiological evidence for an influence of past experience during the earliest stages of shape assignment.

  8. Spontaneous generalization of abstract multimodal patterns in young domestic chicks.

    PubMed

    Versace, Elisabetta; Spierings, Michelle J; Caffini, Matteo; Ten Cate, Carel; Vallortigara, Giorgio

    2017-05-01

    From the early stages of life, learning the regularities associated with specific objects is crucial for making sense of experiences. Through filial imprinting, young precocial birds quickly learn the features of their social partners by mere exposure. It is not clear though to what extent chicks can extract abstract patterns of the visual and acoustic stimuli present in the imprinting object, and how they combine them. To investigate this issue, we exposed chicks (Gallus gallus) to three days of visual and acoustic imprinting, using either patterns with two identical items or patterns with two different items, presented visually, acoustically or in both modalities. Next, chicks were given a choice between the familiar and the unfamiliar pattern, present in either the multimodal, visual or acoustic modality. The responses to the novel stimuli were affected by their imprinting experience, and the effect was stronger for chicks imprinted with multimodal patterns than for the other groups. Interestingly, males and females adopted a different strategy, with males more attracted by unfamiliar patterns and females more attracted by familiar patterns. Our data show that chicks can generalize abstract patterns by mere exposure through filial imprinting and that multimodal stimulation is more effective than unimodal stimulation for pattern learning.

  9. IGF-1 Restores Visual Cortex Plasticity in Adult Life by Reducing Local GABA Levels

    PubMed Central

    Maya-Vetencourt, José Fernando; Baroncelli, Laura; Viegi, Alessandro; Tiraboschi, Ettore; Castren, Eero; Cattaneo, Antonino; Maffei, Lamberto

    2012-01-01

    The central nervous system architecture is markedly modified by sensory experience during early life, but a decline of plasticity occurs with age. Recent studies have challenged this dogma providing evidence that both pharmacological treatments and paradigms based on the manipulation of environmental stimulation levels can be successfully employed as strategies for enhancing plasticity in the adult nervous system. Insulin-like growth factor 1 (IGF-1) is a peptide implicated in prenatal and postnatal phases of brain development such as neurogenesis, neuronal differentiation, synaptogenesis, and experience-dependent plasticity. Here, using the visual system as a paradigmatic model, we report that IGF-1 reactivates neural plasticity in the adult brain. Exogenous administration of IGF-1 in the adult visual cortex, indeed, restores the susceptibility of cortical neurons to monocular deprivation and promotes the recovery of normal visual functions in adult amblyopic animals. These effects were accompanied by a marked reduction of intracortical GABA levels. Moreover, we show that a transitory increase of IGF-1 expression is associated to the plasticity reinstatement induced by environmental enrichment (EE) and that blocking IGF-1 action by means of the IGF-1 receptor antagonist JB1 prevents EE effects on plasticity processes. PMID:22720172

  10. Visual and motion cueing in helicopter simulation

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1985-01-01

    Early experience in fixed-cockpit simulators, with limited field of view, demonstrated the basic difficulties of simulating helicopter flight at the level of subjective fidelity required for confident evaluation of vehicle characteristics. More recent programs, utilizing large-amplitude cockpit motion and a multiwindow visual-simulation system have received a much higher degree of pilot acceptance. However, none of these simulations has presented critical visual-flight tasks that have been accepted by the pilots as the full equivalent of flight. In this paper, the visual cues presented in the simulator are compared with those of flight in an attempt to identify deficiencies that contribute significantly to these assessments. For the low-amplitude maneuvering tasks normally associated with the hover mode, the unique motion capabilities of the Vertical Motion Simulator (VMS) at Ames Research Center permit nearly a full representation of vehicle motion. Especially appreciated in these tasks are the vertical-acceleration responses to collective control. For larger-amplitude maneuvering, motion fidelity must suffer diminution through direct attenuation through high-pass filtering washout of the computer cockpit accelerations or both. Experiments were conducted in an attempt to determine the effects of these distortions on pilot performance of height-control tasks.

  11. Bumblebees distinguish floral scent patterns, and can transfer these to corresponding visual patterns.

    PubMed

    Lawson, David A; Chittka, Lars; Whitney, Heather M; Rands, Sean A

    2018-06-13

    Flowers act as multisensory billboards to pollinators by using a range of sensory modalities such as visual patterns and scents. Different floral organs release differing compositions and quantities of the volatiles contributing to floral scent, suggesting that scent may be patterned within flowers. Early experiments suggested that pollinators can distinguish between the scents of differing floral regions, but little is known about how these potential scent patterns might influence pollinators. We show that bumblebees can learn different spatial patterns of the same scent, and that they are better at learning to distinguish between flowers when the scent pattern corresponds to a matching visual pattern. Surprisingly, once bees have learnt the spatial arrangement of a scent pattern, they subsequently prefer to visit novel unscented flowers that have an identical arrangement of visual marks, suggesting that multimodal floral signals may exploit the mechanisms by which learnt information is stored by the bee. © 2018 The Authors.

  12. Playing a first-person shooter video game induces neuroplastic change.

    PubMed

    Wu, Sijing; Cheng, Cho Kin; Feng, Jing; D'Angelo, Lisa; Alain, Claude; Spence, Ian

    2012-06-01

    Playing a first-person shooter (FPS) video game alters the neural processes that support spatial selective attention. Our experiment establishes a causal relationship between playing an FPS game and neuroplastic change. Twenty-five participants completed an attentional visual field task while we measured ERPs before and after playing an FPS video game for a cumulative total of 10 hr. Early visual ERPs sensitive to bottom-up attentional processes were little affected by video game playing for only 10 hr. However, participants who played the FPS video game and also showed the greatest improvement on the attentional visual field task displayed increased amplitudes in the later visual ERPs. These potentials are thought to index top-down enhancement of spatial selective attention via increased inhibition of distractors. Individual variations in learning were observed, and these differences show that not all video game players benefit equally, either behaviorally or in terms of neural change.

  13. Priming with real motion biases visual cortical response to bistable apparent motion

    PubMed Central

    Zhang, Qing-fang; Wen, Yunqing; Zhang, Deng; She, Liang; Wu, Jian-young; Dan, Yang; Poo, Mu-ming

    2012-01-01

    Apparent motion quartet is an ambiguous stimulus that elicits bistable perception, with the perceived motion alternating between two orthogonal paths. In human psychophysical experiments, the probability of perceiving motion in each path is greatly enhanced by a brief exposure to real motion along that path. To examine the neural mechanism underlying this priming effect, we used voltage-sensitive dye (VSD) imaging to measure the spatiotemporal activity in the primary visual cortex (V1) of awake mice. We found that a brief real motion stimulus transiently biased the cortical response to subsequent apparent motion toward the spatiotemporal pattern representing the real motion. Furthermore, intracellular recording from V1 neurons in anesthetized mice showed a similar increase in subthreshold depolarization in the neurons representing the path of real motion. Such short-term plasticity in early visual circuits may contribute to the priming effect in bistable visual perception. PMID:23188797

  14. ICT integration in mathematics initial teacher training and its impact on visualization: the case of GeoGebra

    NASA Astrophysics Data System (ADS)

    Dockendorff, Monika; Solar, Horacio

    2018-01-01

    This case study investigates the impact of the integration of information and communications technology (ICT) in mathematics visualization skills and initial teacher education programmes. It reports on the influence GeoGebra dynamic software use has on promoting mathematical learning at secondary school and on its impact on teachers' conceptions about teaching and learning mathematics. This paper describes how GeoGebra-based dynamic applets - designed and used in an exploratory manner - promote mathematical processes such as conjectures. It also refers to the changes prospective teachers experience regarding the relevance visual dynamic representations acquire in teaching mathematics. This study observes a shift in school routines when incorporating technology into the mathematics classroom. Visualization appears as a basic competence associated to key mathematical processes. Implications of an early integration of ICT in mathematics initial teacher training and its impact on developing technological pedagogical content knowledge (TPCK) are drawn.

  15. Learning to associate orientation with color in early visual areas by associative decoded fMRI neurofeedback

    PubMed Central

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-01-01

    Summary Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded functional magnetic resonance imaging (fMRI) neurofeedback, termed “DecNef” [9], we tested whether associative learning of color and orientation can be created in early visual areas. During three days' training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive “red” significantly more frequently than “green” in an achromatic vertical grating. This effect was also observed 3 to 5 months after the training. These results suggest that long-term associative learning of the two different visual features such as color and orientation was created most likely in early visual areas. This newly extended technique that induces associative learning is called “A(ssociative)-DecNef” and may be used as an important tool for understanding and modifying brain functions, since associations are fundamental and ubiquitous functions in the brain. PMID:27374335

  16. Learning to Associate Orientation with Color in Early Visual Areas by Associative Decoded fMRI Neurofeedback.

    PubMed

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2016-07-25

    Associative learning is an essential brain process where the contingency of different items increases after training. Associative learning has been found to occur in many brain regions [1-4]. However, there is no clear evidence that associative learning of visual features occurs in early visual areas, although a number of studies have indicated that learning of a single visual feature (perceptual learning) involves early visual areas [5-8]. Here, via decoded fMRI neurofeedback termed "DecNef" [9], we tested whether associative learning of orientation and color can be created in early visual areas. During 3 days of training, DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was physically presented to participants. As a result, participants came to perceive "red" significantly more frequently than "green" in an achromatic vertical grating. This effect was also observed 3-5 months after the training. These results suggest that long-term associative learning of two different visual features such as orientation and color was created, most likely in early visual areas. This newly extended technique that induces associative learning is called "A-DecNef," and it may be used as an important tool for understanding and modifying brain functions because associations are fundamental and ubiquitous functions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. GABAergic Inhibition in Visual Cortical Plasticity

    PubMed Central

    Sale, Alessandro; Berardi, Nicoletta; Spolidoro, Maria; Baroncelli, Laura; Maffei, Lamberto

    2010-01-01

    Experience is required for the shaping and refinement of developing neural circuits during well defined periods of early postnatal development called critical periods. Many studies in the visual cortex have shown that intracortical GABAergic circuitry plays a crucial role in defining the time course of the critical period for ocular dominance plasticity. With the end of the critical period, neural plasticity wanes and recovery from the effects of visual defects on visual acuity (amblyopia) or binocularity is much reduced or absent. Recent results pointed out that intracortical inhibition is a fundamental limiting factor for adult cortical plasticity and that its reduction by means of different pharmacological and environmental strategies makes it possible to greatly enhance plasticity in the adult visual cortex, promoting ocular dominance plasticity and recovery from amblyopia. Here we focus on the role of intracortical GABAergic circuitry in controlling both developmental and adult cortical plasticity. We shall also discuss the potential clinical application of these findings to neurological disorders in which synaptic plasticity is compromised because of excessive intracortical inhibition. PMID:20407586

  18. Level-2 Milestone 4797: Early Users on Max, Sequoia Visualization Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cupps, Kim C.

    This report documents the fact that an early user has run successfully on Max, the Sequoia visualization cluster, ASC L2 milestone 4797: Early Users on Sequoia Visualization System (Max), due December 31, 2013. The Max visualization and data analysis cluster will provide Sequoia users with compute cycles and an interactive option for data exploration and analysis. The system will be integrated in the first quarter of FY14 and the system is expected to be moved to the classified network by the second quarter of FY14. The goal of this milestone is to have early users running their visualization and datamore » analysis work on the Max cluster on the classified network.« less

  19. ERP Evidence of Visualization at Early Stages of Visual Processing

    ERIC Educational Resources Information Center

    Page, Jonathan W.; Duhamel, Paul; Crognale, Michael A.

    2011-01-01

    Recent neuroimaging research suggests that early visual processing circuits are activated similarly during visualization and perception but have not demonstrated that the cortical activity is similar in character. We found functional equivalency in cortical activity by recording evoked potentials while color and luminance patterns were viewed and…

  20. Six-and-a-Half-Month-Old Children Positively Attribute Goals to Human Action and to Humanoid-Robot Motion

    ERIC Educational Resources Information Center

    Kamewari, K.; Kato, M.; Kanda, T.; Ishiguro, H.; Hiraki, K.

    2005-01-01

    Recent infant studies indicate that goal attribution (understanding of goal-directed action) is present very early in infancy. We examined whether 6.5-month-olds attribute goals to agents and whether infants change the interpretation of goal-directed action according to the kind of agent. We conducted three experiments using the visual habituation…

  1. Establishing the fundamentals for an elephant early warning and monitoring system.

    PubMed

    Zeppelzauer, Matthias; Stoeger, Angela S

    2015-09-04

    The decline of habitat for elephants due to expanding human activity is a serious conservation problem. This has continuously escalated the human-elephant conflict in Africa and Asia. Elephants make extensive use of powerful infrasonic calls (rumbles) that travel distances of up to several kilometers. This makes elephants well-suited for acoustic monitoring because it enables detecting elephants even if they are out of sight. In sight, their distinct visual appearance makes them a good candidate for visual monitoring. We provide an integrated overview of our interdisciplinary project that established the scientific fundamentals for a future early warning and monitoring system for humans who regularly experience serious conflict with elephants. We first draw the big picture of an early warning and monitoring system, then review the developed solutions for automatic acoustic and visual detection, discuss specific challenges and present open future work necessary to build a robust and reliable early warning and monitoring system that is able to operate in situ. We present a method for the automated detection of elephant rumbles that is robust to the diverse noise sources present in situ. We evaluated the method on an extensive set of audio data recorded under natural field conditions. Results show that the proposed method outperforms existing approaches and accurately detects elephant rumbles. Our visual detection method shows that tracking elephants in wildlife videos (of different sizes and postures) is feasible and particularly robust at near distances. From our project results we draw a number of conclusions that are discussed and summarized. We clearly identified the most critical challenges and necessary improvements of the proposed detection methods and conclude that our findings have the potential to form the basis for a future automated early warning system for elephants. We discuss challenges that need to be solved and summarize open topics in the context of a future early warning and monitoring system. We conclude that a long-term evaluation of the presented methods in situ using real-time prototypes is the most important next step to transfer the developed methods into practical implementation.

  2. Colour cues proved to be more informative for dogs than brightness.

    PubMed

    Kasparson, Anna A; Badridze, Jason; Maximov, Vadim V

    2013-09-07

    The results of early studies on colour vision in dogs led to the conclusion that chromatic cues are unimportant for dogs during their normal activities. Nevertheless, the canine retina possesses two cone types which provide at least the potential for colour vision. Recently, experiments controlling for the brightness information in visual stimuli demonstrated that dogs have the ability to perform chromatic discrimination. Here, we show that for eight previously untrained dogs colour proved to be more informative than brightness when choosing between visual stimuli differing both in brightness and chromaticity. Although brightness could have been used by the dogs in our experiments (unlike previous studies), it was not. Our results demonstrate that under natural photopic lighting conditions colour information may be predominant even for animals that possess only two spectral types of cone photoreceptors.

  3. Stimulation of functional vision in children with perinatal brain damage.

    PubMed

    Alimović, Sonja; Mejaski-Bosnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual stimulation on development of functional vision at early age of life. We initially assessed 30 children with perinatal brain damage up to 3 years of age, who were reffered to our pediatric low vision cabinet in "Little house" from child neurologists, ophthalmologists Type and degree of visual impairment was determined according to functional vision assessment of each child. On the bases of those assessments different kind of visual stimulations were carried out with children who have been identified to have a certain visual impairment. Through visual stimulation program some of the children were stimulated with light stimulus, some with different materials under the ultraviolet (UV) light, and some with bright color and high contrast materials. Children were also involved in program of early stimulation of overall sensory motor development. Goals and methods of therapy were determined individually, based on observation of child's possibilities and need. After one year of program, reassessment was done. Results for visual functions and functional vision were compared to evaluate the improvement of the vision development. These results have shown that there was significant improvement in functional vision, especially in visual attention and visual communication.

  4. Effects of complete monocular deprivation in visuo-spatial memory.

    PubMed

    Cattaneo, Zaira; Merabet, Lotfi B; Bhatt, Ela; Vecchi, Tomaso

    2008-09-30

    Monocular deprivation has been associated with both specific deficits and enhancements in visual perception and processing. In this study, performance on a visuo-spatial memory task was compared in congenitally monocular individuals and sighted control individuals viewing monocularly (i.e., patched) and binocularly. The task required the individuals to view and memorize a series of target locations on two-dimensional matrices. Overall, congenitally monocular individuals performed worse than sighted individuals (with a specific deficit in simultaneously maintaining distinct spatial representations in memory), indicating that the lack of binocular visual experience affects the way visual information is represented in visuo-spatial memory. No difference was observed between the monocular and binocular viewing control groups, suggesting that early monocular deprivation affects the development of cortical mechanisms mediating visuo-spatial cognition.

  5. Top-down expectancy versus bottom-up guidance in search for known color-form conjunctions.

    PubMed

    Anderson, Giles M; Humphreys, Glyn W

    2015-11-01

    We assessed the effects of pairing a target object with its familiar color on eye movements in visual search, under conditions where the familiar color could or could not be predicted. In Experiment 1 participants searched for a yellow- or purple-colored corn target amongst aubergine distractors, half of which were yellow and half purple. Search was more efficient when the color of the target was familiar and early eye movements more likely to be directed to targets carrying a familiar color than an unfamiliar color. Experiment 2 introduced cues which predicted the target color at 80 % validity. Cue validity did not affect whether early fixations were to the target. Invalid cues, however, disrupted search efficiency for targets in an unfamiliar color whilst there was little cost to search efficiency for targets in their familiar color. These results generalized across items with different colors (Experiment 3). The data are consistent with early processes in selection being automatically modulated in a bottom-up manner to targets in their familiar color, even when expectancies are set for other colors.

  6. Evolution of attention mechanisms for early visual processing

    NASA Astrophysics Data System (ADS)

    Müller, Thomas; Knoll, Alois

    2011-03-01

    Early visual processing as a method to speed up computations on visual input data has long been discussed in the computer vision community. The general target of a such approaches is to filter nonrelevant information from the costly higher-level visual processing algorithms. By insertion of this additional filter layer the overall approach can be speeded up without actually changing the visual processing methodology. Being inspired by the layered architecture of the human visual processing apparatus, several approaches for early visual processing have been recently proposed. Most promising in this field is the extraction of a saliency map to determine regions of current attention in the visual field. Such saliency can be computed in a bottom-up manner, i.e. the theory claims that static regions of attention emerge from a certain color footprint, and dynamic regions of attention emerge from connected blobs of textures moving in a uniform way in the visual field. Top-down saliency effects are either unconscious through inherent mechanisms like inhibition-of-return, i.e. within a period of time the attention level paid to a certain region automatically decreases if the properties of that region do not change, or volitional through cognitive feedback, e.g. if an object moves consistently in the visual field. These bottom-up and top-down saliency effects have been implemented and evaluated in a previous computer vision system for the project JAST. In this paper an extension applying evolutionary processes is proposed. The prior vision system utilized multiple threads to analyze the regions of attention delivered from the early processing mechanism. Here, in addition, multiple saliency units are used to produce these regions of attention. All of these saliency units have different parameter-sets. The idea is to let the population of saliency units create regions of attention, then evaluate the results with cognitive feedback and finally apply the genetic mechanism: mutation and cloning of the best performers and extinction of the worst performers considering computation of regions of attention. A fitness function can be derived by evaluating, whether relevant objects are found in the regions created. It can be seen from various experiments, that the approach significantly speeds up visual processing, especially regarding robust ealtime object recognition, compared to an approach not using saliency based preprocessing. Furthermore, the evolutionary algorithm improves the overall performance of the preprocessing system in terms of quality, as the system automatically and autonomously tunes the saliency parameters. The computational overhead produced by periodical clone/delete/mutation operations can be handled well within the realtime constraints of the experimental computer vision system. Nevertheless, limitations apply whenever the visual field does not contain any significant saliency information for some time, but the population still tries to tune the parameters - overfitting avoids generalization in this case and the evolutionary process may be reset by manual intervention.

  7. Electrophysiological evidence of altered visual processing in adults who experienced visual deprivation during infancy.

    PubMed

    Segalowitz, Sidney J; Sternin, Avital; Lewis, Terri L; Dywan, Jane; Maurer, Daphne

    2017-04-01

    We examined the role of early visual input in visual system development by testing adults who had been born with dense bilateral cataracts that blocked all patterned visual input during infancy until the cataractous lenses were removed surgically and the eyes fitted with compensatory contact lenses. Patients viewed checkerboards and textures to explore early processing regions (V1, V2), Glass patterns to examine global form processing (V4), and moving stimuli to explore global motion processing (V5). Patients' ERPs differed from those of controls in that (1) the V1 component was much smaller for all but the simplest stimuli and (2) extrastriate components did not differentiate amongst texture stimuli, Glass patterns, or motion stimuli. The results indicate that early visual deprivation contributes to permanent abnormalities at early and mid levels of visual processing, consistent with enduring behavioral deficits in the ability to process complex textures, global form, and global motion. © 2017 Wiley Periodicals, Inc.

  8. Independent Deficits of Visual Word and Motion Processing in Aging and Early Alzheimer's Disease

    PubMed Central

    Velarde, Carla; Perelstein, Elizabeth; Ressmann, Wendy; Duffy, Charles J.

    2013-01-01

    We tested whether visual processing impairments in aging and Alzheimer's disease (AD) reflect uniform posterior cortical decline, or independent disorders of visual processing for reading and navigation. Young and older normal controls were compared to early AD patients using psychophysical measures of visual word and motion processing. We find elevated perceptual thresholds for letters and word discrimination from young normal controls, to older normal controls, to early AD patients. Across subject groups, visual motion processing showed a similar pattern of increasing thresholds, with the greatest impact on radial pattern motion perception. Combined analyses show that letter, word, and motion processing impairments are independent of each other. Aging and AD may be accompanied by independent impairments of visual processing for reading and navigation. This suggests separate underlying disorders and highlights the need for comprehensive evaluations to detect early deficits. PMID:22647256

  9. Temporal and spatial localization of prediction-error signals in the visual brain.

    PubMed

    Johnston, Patrick; Robinson, Jonathan; Kokkinakis, Athanasios; Ridgeway, Samuel; Simpson, Michael; Johnson, Sam; Kaufman, Jordy; Young, Andrew W

    2017-04-01

    It has been suggested that the brain pre-empts changes in the environment through generating predictions, although real-time electrophysiological evidence of prediction violations in the domain of visual perception remain elusive. In a series of experiments we showed participants sequences of images that followed a predictable implied sequence or whose final image violated the implied sequence. Through careful design we were able to use the same final image transitions across predictable and unpredictable conditions, ensuring that any differences in neural responses were due only to preceding context and not to the images themselves. EEG and MEG recordings showed that early (N170) and mid-latency (N300) visual evoked potentials were robustly modulated by images that violated the implied sequence across a range of types of image change (expression deformations, rigid-rotations and visual field location). This modulation occurred irrespective of stimulus object category. Although the stimuli were static images, MEG source reconstruction of the early latency signal (N/M170) localized expectancy violation signals to brain areas associated with motion perception. Our findings suggest that the N/M170 can index mismatches between predicted and actual visual inputs in a system that predicts trajectories based on ongoing context. More generally we suggest that the N/M170 may reflect a "family" of brain signals generated across widespread regions of the visual brain indexing the resolution of top-down influences and incoming sensory data. This has important implications for understanding the N/M170 and investigating how the brain represents context to generate perceptual predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. How can audiovisual pathways enhance the temporal resolution of time-compressed speech in blind subjects?

    PubMed

    Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann

    2013-01-01

    In blind people, the visual channel cannot assist face-to-face communication via lipreading or visual prosody. Nevertheless, the visual system may enhance the evaluation of auditory information due to its cross-links to (1) the auditory system, (2) supramodal representations, and (3) frontal action-related areas. Apart from feedback or top-down support of, for example, the processing of spatial or phonological representations, experimental data have shown that the visual system can impact auditory perception at more basic computational stages such as temporal signal resolution. For example, blind as compared to sighted subjects are more resistant against backward masking, and this ability appears to be associated with activity in visual cortex. Regarding the comprehension of continuous speech, blind subjects can learn to use accelerated text-to-speech systems for "reading" texts at ultra-fast speaking rates (>16 syllables/s), exceeding by far the normal range of 6 syllables/s. A functional magnetic resonance imaging study has shown that this ability, among other brain regions, significantly covaries with BOLD responses in bilateral pulvinar, right visual cortex, and left supplementary motor area. Furthermore, magnetoencephalographic measurements revealed a particular component in right occipital cortex phase-locked to the syllable onsets of accelerated speech. In sighted people, the "bottleneck" for understanding time-compressed speech seems related to higher demands for buffering phonological material and is, presumably, linked to frontal brain structures. On the other hand, the neurophysiological correlates of functions overcoming this bottleneck, seem to depend upon early visual cortex activity. The present Hypothesis and Theory paper outlines a model that aims at binding these data together, based on early cross-modal pathways that are already known from various audiovisual experiments on cross-modal adjustments during space, time, and object recognition.

  11. How can audiovisual pathways enhance the temporal resolution of time-compressed speech in blind subjects?

    PubMed Central

    Hertrich, Ingo; Dietrich, Susanne; Ackermann, Hermann

    2013-01-01

    In blind people, the visual channel cannot assist face-to-face communication via lipreading or visual prosody. Nevertheless, the visual system may enhance the evaluation of auditory information due to its cross-links to (1) the auditory system, (2) supramodal representations, and (3) frontal action-related areas. Apart from feedback or top-down support of, for example, the processing of spatial or phonological representations, experimental data have shown that the visual system can impact auditory perception at more basic computational stages such as temporal signal resolution. For example, blind as compared to sighted subjects are more resistant against backward masking, and this ability appears to be associated with activity in visual cortex. Regarding the comprehension of continuous speech, blind subjects can learn to use accelerated text-to-speech systems for “reading” texts at ultra-fast speaking rates (>16 syllables/s), exceeding by far the normal range of 6 syllables/s. A functional magnetic resonance imaging study has shown that this ability, among other brain regions, significantly covaries with BOLD responses in bilateral pulvinar, right visual cortex, and left supplementary motor area. Furthermore, magnetoencephalographic measurements revealed a particular component in right occipital cortex phase-locked to the syllable onsets of accelerated speech. In sighted people, the “bottleneck” for understanding time-compressed speech seems related to higher demands for buffering phonological material and is, presumably, linked to frontal brain structures. On the other hand, the neurophysiological correlates of functions overcoming this bottleneck, seem to depend upon early visual cortex activity. The present Hypothesis and Theory paper outlines a model that aims at binding these data together, based on early cross-modal pathways that are already known from various audiovisual experiments on cross-modal adjustments during space, time, and object recognition. PMID:23966968

  12. Flexible Coding of Visual Working Memory Representations during Distraction.

    PubMed

    Lorenc, Elizabeth S; Sreenivasan, Kartik K; Nee, Derek E; Vandenbroucke, Annelinde R E; D'Esposito, Mark

    2018-06-06

    Visual working memory (VWM) recruits a broad network of brain regions, including prefrontal, parietal, and visual cortices. Recent evidence supports a "sensory recruitment" model of VWM, whereby precise visual details are maintained in the same stimulus-selective regions responsible for perception. A key question in evaluating the sensory recruitment model is how VWM representations persist through distracting visual input, given that the early visual areas that putatively represent VWM content are susceptible to interference from visual stimulation.To address this question, we used a functional magnetic resonance imaging inverted encoding model approach to quantitatively assess the effect of distractors on VWM representations in early visual cortex and the intraparietal sulcus (IPS), another region previously implicated in the storage of VWM information. This approach allowed us to reconstruct VWM representations for orientation, both before and after visual interference, and to examine whether oriented distractors systematically biased these representations. In our human participants (both male and female), we found that orientation information was maintained simultaneously in early visual areas and IPS in anticipation of possible distraction, and these representations persisted in the absence of distraction. Importantly, early visual representations were susceptible to interference; VWM orientations reconstructed from visual cortex were significantly biased toward distractors, corresponding to a small attractive bias in behavior. In contrast, IPS representations did not show such a bias. These results provide quantitative insight into the effect of interference on VWM representations, and they suggest a dynamic tradeoff between visual and parietal regions that allows flexible adaptation to task demands in service of VWM. SIGNIFICANCE STATEMENT Despite considerable evidence that stimulus-selective visual regions maintain precise visual information in working memory, it remains unclear how these representations persist through subsequent input. Here, we used quantitative model-based fMRI analyses to reconstruct the contents of working memory and examine the effects of distracting input. Although representations in the early visual areas were systematically biased by distractors, those in the intraparietal sulcus appeared distractor-resistant. In contrast, early visual representations were most reliable in the absence of distraction. These results demonstrate the dynamic, adaptive nature of visual working memory processes, and provide quantitative insight into the ways in which representations can be affected by interference. Further, they suggest that current models of working memory should be revised to incorporate this flexibility. Copyright © 2018 the authors 0270-6474/18/385267-10$15.00/0.

  13. [Associative Learning between Orientation and Color in Early Visual Areas].

    PubMed

    Amano, Kaoru; Shibata, Kazuhisa; Kawato, Mitsuo; Sasaki, Yuka; Watanabe, Takeo

    2017-08-01

    Associative learning is an essential neural phenomenon where the contingency of different items increases after training. Although associative learning has been found to occur in many brain regions, there is no clear evidence that associative learning of visual features occurs in early visual areas. Here, we developed an associative decoded functional magnetic resonance imaging (fMRI) neurofeedback (A-DecNef) to determine whether associative learning of color and orientation can be induced in early visual areas. During the three days' training, A-DecNef induced fMRI signal patterns that corresponded to a specific target color (red) mostly in early visual areas while a vertical achromatic grating was simultaneously, physically presented to participants. Consequently, participants' perception of "red" was significantly more frequently than that of "green" in an achromatic vertical grating. This effect was also observed 3 to 5 months after training. These results suggest that long-term associative learning of two different visual features such as color and orientation, was induced most likely in early visual areas. This newly extended technique that induces associative learning may be used as an important tool for understanding and modifying brain function, since associations are fundamental and ubiquitous with respect to brain function.

  14. Early complications with the holmium laser

    NASA Astrophysics Data System (ADS)

    Beaghler, Marc A.; Stewart, Steven C.; Ruckle, Herbert C.; Poon, Michael W.

    1997-05-01

    The purpose of this study is to report early complications in our initial experience with the holmium laser in 133 patients. A retrospective study of patients undergoing endourological procedures with the holmium laser was performed. Complications included urinary tract infection (3), post-operative bradycardia (1), inverted T-waves (1), intractable flank pain (1), urinary retention (1), inability to access a lower pole calyx with a 365 micron fiber (9), stone migration (5), termination of procedure due to poor visualization (2). No ureteral perforations or strictures occurred. The holmium laser was capable of fragmenting all urinary calculi in this study. In our initial experience, the holmium laser is safe and effective in the treatment of genitourinary pathology. Use of laser fibers larger than 200 microns occasionally limit deflection into a lower pole or dependent calyx.

  15. ASSOCIATION BETWEEN VISUAL FUNCTION AND SUBRETINAL DRUSENOID DEPOSITS IN NORMAL AND EARLY AGE-RELATED MACULAR DEGENERATION EYES.

    PubMed

    Neely, David; Zarubina, Anna V; Clark, Mark E; Huisingh, Carrie E; Jackson, Gregory R; Zhang, Yuhua; McGwin, Gerald; Curcio, Christine A; Owsley, Cynthia

    2017-07-01

    To examine the association between subretinal drusenoid deposits (SDDs) identified by multimodal retinal imaging and visual function in older eyes with normal macular health or in the earliest phases of age-related macular degeneration (AMD). Age-related macular degeneration status for each eye was defined according to the Age-Related Eye Disease Study (AREDS) 9-step classification system (normal = Step 1, early AMD = Steps 2-4) based on color fundus photographs. Visual functions measured were best-corrected photopic visual acuity, contrast and light sensitivity, mesopic visual acuity, low-luminance deficit, and rod-mediated dark adaptation. Subretinal drusenoid deposits were identified through multimodal imaging (color fundus photographs, infrared reflectance and fundus autofluorescence images, and spectral domain optical coherence tomography). The sample included 1,202 eyes (958 eyes with normal health and 244 eyes with early AMD). In normal eyes, SDDs were not associated with any visual function evaluated. In eyes with early AMD, dark adaptation was markedly delayed in eyes with SDDs versus no SDD (a 4-minute delay on average), P = 0.0213. However, this association diminished after age adjustment, P = 0.2645. Other visual functions in early AMD eyes were not associated with SDDs. In a study specifically focused on eyes in normal macular health and in the earliest phases of AMD, early AMD eyes with SDDs have slower dark adaptation, largely attributable to the older ages of eyes with SDD; they did not exhibit deficits in other visual functions. Subretinal drusenoid deposits in older eyes in normal macular health are not associated with any visual functions evaluated.

  16. Time-Resolved Influences of Functional DAT1 and COMT Variants on Visual Perception and Post-Processing

    PubMed Central

    Bender, Stephan; Rellum, Thomas; Freitag, Christine; Resch, Franz; Rietschel, Marcella; Treutlein, Jens; Jennen-Steinmetz, Christine; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred

    2012-01-01

    Background Dopamine plays an important role in orienting and the regulation of selective attention to relevant stimulus characteristics. Thus, we examined the influences of functional variants related to dopamine inactivation in the dopamine transporter (DAT1) and catechol-O-methyltransferase genes (COMT) on the time-course of visual processing in a contingent negative variation (CNV) task. Methods 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version). Early and late CNV as well as preceding visual evoked potential components were assessed. Results Significant additive main effects of DAT1 and COMT on the occipito-temporal early CNV were observed. In addition, there was a trend towards an interaction between the two polymorphisms. Source analysis showed early CNV generators in the ventral visual stream and in frontal regions. There was a strong negative correlation between occipito-temporal visual post-processing and the frontal early CNV component. The early CNV time interval 500–1000 ms after the visual cue was specifically affected while the preceding visual perception stages were not influenced. Conclusions Late visual potentials allow the genomic imaging of dopamine inactivation effects on visual post-processing. The same specific time-interval has been found to be affected by DAT1 and COMT during motor post-processing but not motor preparation. We propose the hypothesis that similar dopaminergic mechanisms modulate working memory encoding in both the visual and motor and perhaps other systems. PMID:22844499

  17. Time-resolved influences of functional DAT1 and COMT variants on visual perception and post-processing.

    PubMed

    Bender, Stephan; Rellum, Thomas; Freitag, Christine; Resch, Franz; Rietschel, Marcella; Treutlein, Jens; Jennen-Steinmetz, Christine; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred

    2012-01-01

    Dopamine plays an important role in orienting and the regulation of selective attention to relevant stimulus characteristics. Thus, we examined the influences of functional variants related to dopamine inactivation in the dopamine transporter (DAT1) and catechol-O-methyltransferase genes (COMT) on the time-course of visual processing in a contingent negative variation (CNV) task. 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version). Early and late CNV as well as preceding visual evoked potential components were assessed. Significant additive main effects of DAT1 and COMT on the occipito-temporal early CNV were observed. In addition, there was a trend towards an interaction between the two polymorphisms. Source analysis showed early CNV generators in the ventral visual stream and in frontal regions. There was a strong negative correlation between occipito-temporal visual post-processing and the frontal early CNV component. The early CNV time interval 500-1000 ms after the visual cue was specifically affected while the preceding visual perception stages were not influenced. Late visual potentials allow the genomic imaging of dopamine inactivation effects on visual post-processing. The same specific time-interval has been found to be affected by DAT1 and COMT during motor post-processing but not motor preparation. We propose the hypothesis that similar dopaminergic mechanisms modulate working memory encoding in both the visual and motor and perhaps other systems.

  18. Evaluating models of object-decision priming: evidence from event-related potential repetition effects.

    PubMed

    Soldan, Anja; Mangels, Jennifer A; Cooper, Lynn A

    2006-03-01

    This study was designed to differentiate between structural description and bias accounts of performance in the possible/impossible object-decision test. Two event-related potential (ERP) studies examined how the visual system processes structurally possible and impossible objects. Specifically, the authors investigated the effects of object repetition on a series of early posterior components during structural (Experiment 1) and functional (Experiment 2) encoding and the relationship of these effects to behavioral measures of priming. In both experiments, the authors found repetition enhancement of the posterior N1 and N2 for possible objects only. In addition, the magnitude of the N1 repetition effect for possible objects was correlated with priming for possible objects. Although the behavioral results were more ambiguous, these ERP results fail to support bias models that hold that both possible and impossible objects are processed similarly in the visual system. Instead, they support the view that priming is supported by a structural description system that encodes the global 3-dimensional structure of an object.

  19. A task-irrelevant stimulus attribute affects perception and short-term memory

    PubMed Central

    Huang, Jie; Kahana, Michael J.; Sekuler, Robert

    2010-01-01

    Selective attention protects cognition against intrusions of task-irrelevant stimulus attributes. This protective function was tested in coordinated psychophysical and memory experiments. Stimuli were superimposed, horizontally and vertically oriented gratings of varying spatial frequency; only one orientation was task relevant. Experiment 1 demonstrated that a task-irrelevant spatial frequency interfered with visual discrimination of the task-relevant spatial frequency. Experiment 2 adopted a two-item Sternberg task, using stimuli that had been scaled to neutralize interference at the level of vision. Despite being visually neutralized, the task-irrelevant attribute strongly influenced recognition accuracy and associated reaction times (RTs). This effect was sharply tuned, with the task-irrelevant spatial frequency having an impact only when the task-relevant spatial frequencies of the probe and study items were highly similar to one another. Model-based analyses of judgment accuracy and RT distributional properties converged on the point that the irrelevant orientation operates at an early stage in memory processing, not at a later one that supports decision making. PMID:19933454

  20. Timing the impact of literacy on visual processing

    PubMed Central

    Pegado, Felipe; Comerlato, Enio; Ventura, Fabricio; Jobert, Antoinette; Nakamura, Kimihiro; Buiatti, Marco; Ventura, Paulo; Dehaene-Lambertz, Ghislaine; Kolinsky, Régine; Morais, José; Braga, Lucia W.; Cohen, Laurent; Dehaene, Stanislas

    2014-01-01

    Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼100–150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing. PMID:25422460

  1. Timing the impact of literacy on visual processing.

    PubMed

    Pegado, Felipe; Comerlato, Enio; Ventura, Fabricio; Jobert, Antoinette; Nakamura, Kimihiro; Buiatti, Marco; Ventura, Paulo; Dehaene-Lambertz, Ghislaine; Kolinsky, Régine; Morais, José; Braga, Lucia W; Cohen, Laurent; Dehaene, Stanislas

    2014-12-09

    Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼ 100-150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing.

  2. Early visual processing is enhanced in the midluteal phase of the menstrual cycle.

    PubMed

    Lusk, Bethany R; Carr, Andrea R; Ranson, Valerie A; Bryant, Richard A; Felmingham, Kim L

    2015-12-01

    Event-related potential (ERP) studies have revealed an early attentional bias in processing unpleasant emotional images in women. Recent neuroimaging data suggests there are significant differences in cortical emotional processing according to menstrual phase. This study examined the impact of menstrual phase on visual emotional processing in women compared to men. ERPs were recorded from 28 early follicular women, 29 midluteal women, and 27 men while they completed a passive viewing task of neutral and low- and high- arousing pleasant and unpleasant images. There was a significant effect of menstrual phase in early visual processing, as midluteal women displayed significantly greater P1 amplitude at occipital regions to all visual images compared to men. Both midluteal and early follicular women displayed larger N1 amplitudes than men (although this only reached significance for the midluteal group) to the visual images. No sex or menstrual phase differences were apparent in later N2, P3, or LPP. A condition effect demonstrated greater P3 and LPP amplitude to highly-arousing unpleasant images relative to all other stimuli conditions. These results indicate that women have greater early automatic visual processing compared to men, and suggests that this effect is particularly strong in women in the midluteal phase at the earliest stage of visual attention processing. Our findings highlight the importance of considering menstrual phase when examining sex differences in the cortical processing of visual stimuli. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Recognition Alters the Spatial Pattern of fMRI Activation in Early Retinotopic Cortex

    PubMed Central

    Vul, E.; Kanwisher, N.

    2010-01-01

    Early retinotopic cortex has traditionally been viewed as containing a veridical representation of the low-level properties of the image, not imbued by high-level interpretation and meaning. Yet several recent results indicate that neural representations in early retinotopic cortex reflect not just the sensory properties of the image, but also the perceived size and brightness of image regions. Here we used functional magnetic resonance imaging pattern analyses to ask whether the representation of an object in early retinotopic cortex changes when the object is recognized compared with when the same stimulus is presented but not recognized. Our data confirmed this hypothesis: the pattern of response in early retinotopic visual cortex to a two-tone “Mooney” image of an object was more similar to the response to the full grayscale photo version of the same image when observers knew what the two-tone image represented than when they did not. Further, in a second experiment, high-level interpretations actually overrode bottom-up stimulus information, such that the pattern of response in early retinotopic cortex to an identified two-tone image was more similar to the response to the photographic version of that stimulus than it was to the response to the identical two-tone image when it was not identified. Our findings are consistent with prior results indicating that perceived size and brightness affect representations in early retinotopic visual cortex and, further, show that even higher-level information—knowledge of object identity—also affects the representation of an object in early retinotopic cortex. PMID:20071627

  4. Global motion perception deficits in autism are reflected as early as primary visual cortex

    PubMed Central

    Thomas, Cibu; Kravitz, Dwight J.; Wallace, Gregory L.; Baron-Cohen, Simon; Martin, Alex; Baker, Chris I.

    2014-01-01

    Individuals with autism are often characterized as ‘seeing the trees, but not the forest’—attuned to individual details in the visual world at the expense of the global percept they compose. Here, we tested the extent to which global processing deficits in autism reflect impairments in (i) primary visual processing; or (ii) decision-formation, using an archetypal example of global perception, coherent motion perception. In an event-related functional MRI experiment, 43 intelligence quotient and age-matched male participants (21 with autism, age range 15–27 years) performed a series of coherent motion perception judgements in which the amount of local motion signals available to be integrated into a global percept was varied by controlling stimulus viewing duration (0.2 or 0.6 s) and the proportion of dots moving in the correct direction (coherence: 4%, 15%, 30%, 50%, or 75%). Both typical participants and those with autism evidenced the same basic pattern of accuracy in judging the direction of motion, with performance decreasing with reduced coherence and shorter viewing durations. Critically, these effects were exaggerated in autism: despite equal performance at the long duration, performance was more strongly reduced by shortening viewing duration in autism (P < 0.015) and decreasing stimulus coherence (P < 0.008). To assess the neural correlates of these effects we focused on the responses of primary visual cortex and the middle temporal area, critical in the early visual processing of motion signals, as well as a region in the intraparietal sulcus thought to be involved in perceptual decision-making. The behavioural results were mirrored in both primary visual cortex and the middle temporal area, with a greater reduction in response at short, compared with long, viewing durations in autism compared with controls (both P < 0.018). In contrast, there was no difference between the groups in the intraparietal sulcus (P > 0.574). These findings suggest that reduced global motion perception in autism is driven by an atypical response early in visual processing and may reflect a fundamental perturbation in neural circuitry. PMID:25060095

  5. Effects of reward on the accuracy and dynamics of smooth pursuit eye movements.

    PubMed

    Brielmann, Aenne A; Spering, Miriam

    2015-08-01

    Reward modulates behavioral choices and biases goal-oriented behavior, such as eye or hand movements, toward locations or stimuli associated with higher rewards. We investigated reward effects on the accuracy and timing of smooth pursuit eye movements in 4 experiments. Eye movements were recorded in participants tracking a moving visual target on a computer monitor. Before target motion onset, a monetary reward cue indicated whether participants could earn money by tracking accurately, or whether the trial was unrewarded (Experiments 1 and 2, n = 11 each). Reward significantly improved eye-movement accuracy across different levels of task difficulty. Improvements were seen even in the earliest phase of the eye movement, within 70 ms of tracking onset, indicating that reward impacts visual-motor processing at an early level. We obtained similar findings when reward was not precued but explicitly associated with the pursuit target (Experiment 3, n = 16); critically, these results were not driven by stimulus prevalence or other factors such as preparation or motivation. Numerical cues (Experiment 4, n = 9) were not effective. (c) 2015 APA, all rights reserved).

  6. A comparative analysis of global and local processing of hierarchical visual stimuli in young children (Homo sapiens) and monkeys (Cebus apella).

    PubMed

    De Lillo, Carlo; Spinozzi, Giovanna; Truppa, Valentina; Naylor, Donna M

    2005-05-01

    Results obtained with preschool children (Homo sapiens) were compared with results previously obtained from capuchin monkeys (Cebus apella) in matching-to-sample tasks featuring hierarchical visual stimuli. In Experiment 1, monkeys, in contrast with children, showed an advantage in matching the stimuli on the basis of their local features. These results were replicated in a 2nd experiment in which control trials enabled the authors to rule out that children used spurious cues to solve the matching task. In a 3rd experiment featuring conditions in which the density of the stimuli was manipulated, monkeys' accuracy in the processing of the global shape of the stimuli was negatively affected by the separation of the local elements, whereas children's performance was robust across testing conditions. Children's response latencies revealed a global precedence in the 2nd and 3rd experiments. These results show differences in the processing of hierarchical stimuli by humans and monkeys that emerge early during childhood. 2005 APA, all rights reserved

  7. Early Visual Language Exposure and Emergent Literacy in Preschool Deaf Children: Findings from a National Longitudinal Study

    ERIC Educational Resources Information Center

    Allen, Thomas E.; Letteri, Amy; Choi, Song Hoa; Dang, Daqian

    2014-01-01

    A brief review is provided of recent research on the impact of early visual language exposure on a variety of developmental outcomes, including literacy, cognition, and social adjustment. This body of work points to the great importance of giving young deaf children early exposure to a visual language as a critical precursor to the acquisition of…

  8. Irrelevant reward and selection histories have different influences on task-relevant attentional selection.

    PubMed

    MacLean, Mary H; Giesbrecht, Barry

    2015-07-01

    Task-relevant and physically salient features influence visual selective attention. In the present study, we investigated the influence of task-irrelevant and physically nonsalient reward-associated features on visual selective attention. Two hypotheses were tested: One predicts that the effects of target-defining task-relevant and task-irrelevant features interact to modulate visual selection; the other predicts that visual selection is determined by the independent combination of relevant and irrelevant feature effects. These alternatives were tested using a visual search task that contained multiple targets, placing a high demand on the need for selectivity, and that was data-limited and required unspeeded responses, emphasizing early perceptual selection processes. One week prior to the visual search task, participants completed a training task in which they learned to associate particular colors with a specific reward value. In the search task, the reward-associated colors were presented surrounding targets and distractors, but were neither physically salient nor task-relevant. In two experiments, the irrelevant reward-associated features influenced performance, but only when they were presented in a task-relevant location. The costs induced by the irrelevant reward-associated features were greater when they oriented attention to a target than to a distractor. In a third experiment, we examined the effects of selection history in the absence of reward history and found that the interaction between task relevance and selection history differed, relative to when the features had previously been associated with reward. The results indicate that under conditions that demand highly efficient perceptual selection, physically nonsalient task-irrelevant and task-relevant factors interact to influence visual selective attention.

  9. Transcranial direct current stimulation enhances recovery of stereopsis in adults with amblyopia.

    PubMed

    Spiegel, Daniel P; Li, Jinrong; Hess, Robert F; Byblow, Winston D; Deng, Daming; Yu, Minbin; Thompson, Benjamin

    2013-10-01

    Amblyopia is a neurodevelopmental disorder of vision caused by abnormal visual experience during early childhood that is often considered to be untreatable in adulthood. Recently, it has been shown that a novel dichoptic videogame-based treatment for amblyopia can improve visual function in adult patients, at least in part, by reducing inhibition of inputs from the amblyopic eye to the visual cortex. Non-invasive anodal transcranial direct current stimulation has been shown to reduce the activity of inhibitory cortical interneurons when applied to the primary motor or visual cortex. In this double-blind, sham-controlled cross-over study we tested the hypothesis that anodal transcranial direct current stimulation of the visual cortex would enhance the therapeutic effects of dichoptic videogame-based treatment. A homogeneous group of 16 young adults (mean age 22.1 ± 1.1 years) with amblyopia were studied to compare the effect of dichoptic treatment alone and dichoptic treatment combined with visual cortex direct current stimulation on measures of binocular (stereopsis) and monocular (visual acuity) visual function. The combined treatment led to greater improvements in stereoacuity than dichoptic treatment alone, indicating that direct current stimulation of the visual cortex boosts the efficacy of dichoptic videogame-based treatment. This intervention warrants further evaluation as a novel therapeutic approach for adults with amblyopia.

  10. The ego-moving metaphor of time relies on visual experience: No representation of time along the sagittal space in the blind.

    PubMed

    Rinaldi, Luca; Vecchi, Tomaso; Fantino, Micaela; Merabet, Lotfi B; Cattaneo, Zaira

    2018-03-01

    In many cultures, humans conceptualize the past as behind the body and the future as in front. Whether this spatial mapping of time depends on visual experience is still not known. Here, we addressed this issue by testing early-blind participants in a space-time motor congruity task requiring them to classify a series of words as referring to the past or the future by moving their hand backward or forward. Sighted participants showed a preferential mapping between forward movements and future-words and backward movements and past-words. Critically, blind participants did not show any such preferential time-space mapping. Furthermore, in a questionnaire requiring participants to think about past and future events, blind participants did not appear to perceive the future as psychologically closer than the past, as it is the case of sighted individuals. These findings suggest that normal visual development is crucial for representing time along the sagittal space. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. Exploring the Early Literacy Practices of Teachers of Infants, Toddlers, and Preschoolers with Visual Impairments

    ERIC Educational Resources Information Center

    Murphy, Jeanne Lovo; Hatton, Deborah; Erickson, Karen A.

    2008-01-01

    Practices endorsed by 192 teachers of young children with visual impairments who completed an online early literacy survey included facilitating early attachment (70%), providing early literacy support to families (74%), and providing adaptations to increase accessibility (55%). Few teachers reported using assistive technology, providing…

  12. Discplacing Identity--Placing Aesthetics: Early Childhood Literacy in a Globalized World

    ERIC Educational Resources Information Center

    Olsson, Liselott Mariett; Dahlberg, Gunilla; Theorell, Ebba

    2016-01-01

    "How to give brain and body to the multiple pack that we already are or are becoming: how, in other words, are we to make sensible (auditory, visually and affectively) the time before 'I think' and 'We think' that we cannot plan, control or know, but simply experiment with, which is the 'time of the city' and nothing else?" (Rajchman,…

  13. Neuroplasticity and amblyopia: vision at the balance point.

    PubMed

    Tailor, Vijay K; Schwarzkopf, D Samuel; Dahlmann-Noor, Annegret H

    2017-02-01

    New insights into triggers and brakes of plasticity in the visual system are being translated into new treatment approaches which may improve outcomes not only in children, but also in adults. Visual experience-driven plasticity is greatest in early childhood, triggered by maturation of inhibitory interneurons which facilitate strengthening of synchronous synaptic connections, and inactivation of others. Normal binocular development leads to progressive refinement of monocular visual acuity, stereoacuity and fusion of images from both eyes. At the end of the 'critical period', structural and functional brakes such as dampening of acetylcholine receptor signalling and formation of perineuronal nets limit further synaptic remodelling. Imbalanced visual input from the two eyes can lead to imbalanced neural processing and permanent visual deficits, the commonest of which is amblyopia. The efficacy of new behavioural, physical and pharmacological interventions aiming to balance visual input and visual processing have been described in humans, and some are currently under evaluation in randomised controlled trials. Outcomes may change amblyopia treatment for children and adults, but the safety of new approaches will need careful monitoring, as permanent adverse events may occur when plasticity is re-induced after the end of the critical period.Video abstracthttp://links.lww.com/CONR/A42.

  14. Modeling and measuring the visual detection of ecologically relevant motion by an Anolis lizard.

    PubMed

    Pallus, Adam C; Fleishman, Leo J; Castonguay, Philip M

    2010-01-01

    Motion in the visual periphery of lizards, and other animals, often causes a shift of visual attention toward the moving object. This behavioral response must be more responsive to relevant motion (predators, prey, conspecifics) than to irrelevant motion (windblown vegetation). Early stages of visual motion detection rely on simple local circuits known as elementary motion detectors (EMDs). We presented a computer model consisting of a grid of correlation-type EMDs, with videos of natural motion patterns, including prey, predators and windblown vegetation. We systematically varied the model parameters and quantified the relative response to the different classes of motion. We carried out behavioral experiments with the lizard Anolis sagrei and determined that their visual response could be modeled with a grid of correlation-type EMDs with a spacing parameter of 0.3 degrees visual angle, and a time constant of 0.1 s. The model with these parameters gave substantially stronger responses to relevant motion patterns than to windblown vegetation under equivalent conditions. However, the model is sensitive to local contrast and viewer-object distance. Therefore, additional neural processing is probably required for the visual system to reliably distinguish relevant from irrelevant motion under a full range of natural conditions.

  15. Retinotopic mapping with Spin Echo BOLD at 7 Tesla

    PubMed Central

    Olman, Cheryl A.; Van de Moortele, Pierre-Francois; Schumacher, Jennifer F.; Guy, Joe; Uğurbil, Kâmil; Yacoub, Essa

    2010-01-01

    For blood oxygenation level-dependent (BOLD) functional MRI experiments, contrast-to-noise ratio (CNR) increases with increasing field strength for both gradient echo (GE) and spin echo (SE) BOLD techniques. However, susceptibility artifacts and non-uniform coil sensitivity profiles complicate large field-of-view fMRI experiments (e.g., experiments covering multiple visual areas instead of focusing on a single cortical region). Here, we use SE BOLD to acquire retinotopic mapping data in early visual areas, testing the feasibility of SE BOLD experiments spanning multiple cortical areas at 7 Tesla. We also use a recently developed method for normalizing signal intensity in T1-weighted anatomical images to enable automated segmentation of the cortical gray matter for scans acquired at 7T with either surface or volume coils. We find that the CNR of the 7T GE data (average single-voxel, single-scan stimulus coherence: 0.41) is almost twice that of the 3T GE BOLD data (average coherence: 0.25), with the CNR of the SE BOLD data (average coherence: 0.23) comparable to that of the 3T GE data. Repeated measurements in individual subjects find that maps acquired with 1.8 mm resolution at 3T and 7T with GE BOLD and at 7T with SE BOLD show no systematic differences in either the area or the boundary locations for V1, V2 and V3, demonstrating the feasibility of high-resolution SE BOLD experiments with good sensitivity throughout multiple visual areas. PMID:20656431

  16. Early event related fields during visually evoked pain anticipation.

    PubMed

    Gopalakrishnan, Raghavan; Burgess, Richard C; Plow, Ela B; Floden, Darlene P; Machado, Andre G

    2016-03-01

    Pain experience is not only a function of somatosensory inputs. Rather, it is strongly influenced by cognitive and affective pathways. Pain anticipatory phenomena, an important limitation to rehabilitative efforts in the chronic state, are processed by associative and limbic networks, along with primary sensory cortices. Characterization of neurophysiological correlates of pain anticipation, particularly during very early stages of neural processing is critical for development of therapeutic interventions. Here, we utilized magnetoencephalography to study early event-related fields (ERFs) in healthy subjects exposed to a 3 s visual countdown task that preceded a painful stimulus, a non-painful stimulus or no stimulus. We found that the first countdown cue, but not the last cue, evoked critical ERFs signaling anticipation, attention and alertness to the noxious stimuli. Further, we found that P2 and N2 components were significantly different in response to first-cues that signaled incoming painful stimuli when compared to non-painful or no stimuli. The findings indicate that early ERFs are relevant neural substrates of pain anticipatory phenomena and could be potentially serve as biomarkers. These measures could assist in the development of neurostimulation approaches aimed at curbing the negative effects of pain anticipation during rehabilitation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. In Vivo Dark-Field Radiography for Early Diagnosis and Staging of Pulmonary Emphysema.

    PubMed

    Hellbach, Katharina; Yaroshenko, Andre; Meinel, Felix G; Yildirim, Ali Ö; Conlon, Thomas M; Bech, Martin; Mueller, Mark; Velroyen, Astrid; Notohamiprodjo, Mike; Bamberg, Fabian; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz

    2015-07-01

    The aim of this study was to evaluate the suitability of in vivo x-ray dark-field radiography for early-stage diagnosis of pulmonary emphysema in mice. Furthermore, we aimed to analyze how the dark-field signal correlates with morphological changes of lung architecture at distinct stages of emphysema. Female 8- to 10-week-old C57Bl/6N mice were used throughout all experiments. Pulmonary emphysema was induced by orotracheal injection of porcine pancreatic elastase (80-U/kg body weight) (n = 30). Control mice (n = 11) received orotracheal injection of phosphate-buffered saline. To monitor the temporal patterns of emphysema development over time, the mice were imaged 7, 14, or 21 days after the application of elastase or phosphate-buffered saline. X-ray transmission and dark-field images were acquired with a prototype grating-based small-animal scanner. In vivo pulmonary function tests were performed before killing the animals. In addition, lungs were obtained for detailed histopathological analysis, including mean cord length (MCL) quantification as a parameter for the assessment of emphysema. Three blinded readers, all of them experienced radiologists and familiar with dark-field imaging, were asked to grade the severity of emphysema for both dark-field and transmission images. Histopathology and MCL quantification confirmed the introduction of different stages of emphysema, which could be clearly visualized and differentiated on the dark-field radiograms, whereas early stages were not detected on transmission images. The correlation between MCL and dark-field signal intensities (r = 0.85) was significantly higher than the correlation between MCL and transmission signal intensities (r = 0.37). The readers' visual ratings for dark-field images correlated significantly better with MCL (r = 0.85) than visual ratings for transmission images (r = 0.36). Interreader agreement and the diagnostic accuracy of both quantitative and visual assessment were significantly higher for dark-field imaging than those for conventional transmission images. X-ray dark-field radiography can reliably visualize different stages of emphysema in vivo and demonstrates significantly higher diagnostic accuracy for early stages of emphysema than conventional attenuation-based radiography.

  18. Taking Attention Away from the Auditory Modality: Context-dependent Effects on Early Sensory Encoding of Speech.

    PubMed

    Xie, Zilong; Reetzke, Rachel; Chandrasekaran, Bharath

    2018-05-24

    Increasing visual perceptual load can reduce pre-attentive auditory cortical activity to sounds, a reflection of the limited and shared attentional resources for sensory processing across modalities. Here, we demonstrate that modulating visual perceptual load can impact the early sensory encoding of speech sounds, and that the impact of visual load is highly dependent on the predictability of the incoming speech stream. Participants (n = 20, 9 females) performed a visual search task of high (target similar to distractors) and low (target dissimilar to distractors) perceptual load, while early auditory electrophysiological responses were recorded to native speech sounds. Speech sounds were presented either in a 'repetitive context', or a less predictable 'variable context'. Independent of auditory stimulus context, pre-attentive auditory cortical activity was reduced during high visual load, relative to low visual load. We applied a data-driven machine learning approach to decode speech sounds from the early auditory electrophysiological responses. Decoding performance was found to be poorer under conditions of high (relative to low) visual load, when the incoming acoustic stream was predictable. When the auditory stimulus context was less predictable, decoding performance was substantially greater for the high (relative to low) visual load conditions. Our results provide support for shared attentional resources between visual and auditory modalities that substantially influence the early sensory encoding of speech signals in a context-dependent manner. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields

    PubMed Central

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-01-01

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas. DOI: http://dx.doi.org/10.7554/eLife.15252.001 PMID:27596931

  20. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields.

    PubMed

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-09-06

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.

  1. The utilization and barriers of Pap smear among women with visual impairment.

    PubMed

    Fang, Wen-Hui; Yen, Chia-Feng; Hu, Jung; Lin, Jin-Ding; Loh, Ching-Hui

    2016-04-12

    Many evidences illustrate that the Pap smear screening successfully reduces if the cervical cancer could be detected and treated sufficiently early. People with disability were higher comorbidity prevalence, and less likely to use preventive health care and health promotion activities. There were also to demonstrate that people with visual impairment has less access to appropriate healthcare services and is less likely to receive screening examinations. In Taiwan, there was no study to explore utilization of Pap smear, associated factors and use barriers about Pap smear screening test among women with visual impairment. The purpose is to explore the utilization and barriers of using Pap smear for women with visual impairment in Taiwan. To identify the barriers of women with visual from process of receiving Pap smear screening test. The cross-sectional study was conducted and the totally 316 participators were selected by stratified proportional and random sampling from 15 to 64 year old women with visual impairment who lived in Taipei County during December 2009 to January 2010. The data was been collected by phone interview and the interviewers were well trained before interview. The mean age was 47.1 years old and the highest percentage of disabled severity was mile (40.2 %). Totally, 66.5 % of participators were ever using Pap smear and 38.9 % used it during pass 1 year. Their first time to accept Pap smear was 38.8 year old. There was near 50 % of them not to be explained by professionals before accepting the Pap smear. For non-using cases, the top two percentage of barriers were "feel still younger" (22.3 %), the second was "there's no sexual experience" (21.4 %). We found the gynecology experiences was key factor for women with visual impairment to use Pap smear, especially the experiences was during 1 year (OR = 4). Associated factors and barriers to receive Pap smear screening test for women with visual impairment can be addressed through interventions aimed at improving on cognitions and attitudes for cervical cancer risk factors. Our study would be as a reference resource for erasing the barriers and inequality among the visually disabled women.

  2. Sustained multifocal attentional enhancement of stimulus processing in early visual areas predicts tracking performance.

    PubMed

    Störmer, Viola S; Winther, Gesche N; Li, Shu-Chen; Andersen, Søren K

    2013-03-20

    Keeping track of multiple moving objects is an essential ability of visual perception. However, the mechanisms underlying this ability are not well understood. We instructed human observers to track five or seven independent randomly moving target objects amid identical nontargets and recorded steady-state visual evoked potentials (SSVEPs) elicited by these stimuli. Visual processing of moving targets, as assessed by SSVEP amplitudes, was continuously facilitated relative to the processing of identical but irrelevant nontargets. The cortical sources of this enhancement were located to areas including early visual cortex V1-V3 and motion-sensitive area MT, suggesting that the sustained multifocal attentional enhancement during multiple object tracking already operates at hierarchically early stages of visual processing. Consistent with this interpretation, the magnitude of attentional facilitation during tracking in a single trial predicted the speed of target identification at the end of the trial. Together, these findings demonstrate that attention can flexibly and dynamically facilitate the processing of multiple independent object locations in early visual areas and thereby allow for tracking of these objects.

  3. NMDA Receptor Regulation Prevents Regression of Visual Cortical Function in the Absence of Mecp2

    PubMed Central

    Durand, Severine; Patrizi, Annarita; Quast, Kathleen B.; Hachigian, Lea; Pavlyuk, Roman; Saxena, Alka; Carninci, Piero; Hensch, Takao K.; Fagiolini, Michela

    2012-01-01

    SUMMARY Brain function is shaped by postnatal experience and vulnerable to disruption of Methyl-CpG-binding protein, Mecp2, in multiple neurodevelopmental disorders. How Mecp2 contributes to the experience-dependent refinement of specific cortical circuits and their impairment remains unknown. We analyzed vision in gene-targeted mice and observed an initial normal development in the absence of Mecp2. Visual acuity then rapidly regressed after postnatal day P35–40 and cortical circuits largely fell silent by P55-60. Enhanced inhibitory gating and an excess of parvalbumin-positive, perisomatic input preceded the loss of vision. Both cortical function and inhibitory hyperconnectivity were strikingly rescued independent of Mecp2 by early sensory deprivation or genetic deletion of the excitatory NMDA receptor subunit, NR2A. Thus, vision is a sensitive biomarker of progressive cortical dysfunction and may guide novel, circuit-based therapies for Mecp2 deficiency. PMID:23259945

  4. Are some gestalt principles deployed more readily than others during early development? The case of lightness versus form similarity.

    PubMed

    Quinn, Paul C; Bhatt, Ramesh S

    2006-10-01

    Four experiments investigated how readily infants achieve perceptual organization by lightness and form similarity. Infants were (a) familiarized with elements that could be organized into rows or columns on the basis of lightness or form similarity and tested with vertical versus horizontal bars depicting the familiar versus novel organization or (b) familiarized with bars and tested with elements. For lightness similarity, generalization occurred in both tasks; however, for form similarity, generalization occurred only in the elements --> bars task. The findings indicate that lightness similarity is more readily deployed than form similarity and are discussed in the context of (a) whether the difference reflects speed of application or experience-based learning, (b) evidence from visual agnosic patients and the time course of application of the principles in healthy adults, and (c) development of dorsal and ventral visual processing streams. Copyright 2006 APA.

  5. Listeners' expectation of room acoustical parameters based on visual cues

    NASA Astrophysics Data System (ADS)

    Valente, Daniel L.

    Despite many studies investigating auditory spatial impressions in rooms, few have addressed the impact of simultaneous visual cues on localization and the perception of spaciousness. The current research presents an immersive audio-visual study, in which participants are instructed to make spatial congruency and quantity judgments in dynamic cross-modal environments. The results of these psychophysical tests suggest the importance of consilient audio-visual presentation to the legibility of an auditory scene. Several studies have looked into audio-visual interaction in room perception in recent years, but these studies rely on static images, speech signals, or photographs alone to represent the visual scene. Building on these studies, the aim is to propose a testing method that uses monochromatic compositing (blue-screen technique) to position a studio recording of a musical performance in a number of virtual acoustical environments and ask subjects to assess these environments. In the first experiment of the study, video footage was taken from five rooms varying in physical size from a small studio to a small performance hall. Participants were asked to perceptually align two distinct acoustical parameters---early-to-late reverberant energy ratio and reverberation time---of two solo musical performances in five contrasting visual environments according to their expectations of how the room should sound given its visual appearance. In the second experiment in the study, video footage shot from four different listening positions within a general-purpose space was coupled with sounds derived from measured binaural impulse responses (IRs). The relationship between the presented image, sound, and virtual receiver position was examined. It was found that many visual cues caused different perceived events of the acoustic environment. This included the visual attributes of the space in which the performance was located as well as the visual attributes of the performer. The addressed visual makeup of the performer included: (1) an actual video of the performance, (2) a surrogate image of the performance, for example a loudspeaker's image reproducing the performance, (3) no visual image of the performance (empty room), or (4) a multi-source visual stimulus (actual video of the performance coupled with two images of loudspeakers positioned to the left and right of the performer). For this experiment, perceived auditory events of sound were measured in terms of two subjective spatial metrics: Listener Envelopment (LEV) and Apparent Source Width (ASW) These metrics were hypothesized to be dependent on the visual imagery of the presented performance. Data was also collected by participants matching direct and reverberant sound levels for the presented audio-visual scenes. In the final experiment, participants judged spatial expectations of an ensemble of musicians presented in the five physical spaces from Experiment 1. Supporting data was accumulated in two stages. First, participants were given an audio-visual matching test, in which they were instructed to align the auditory width of a performing ensemble to a varying set of audio and visual cues. In the second stage, a conjoint analysis design paradigm was explored to extrapolate the relative magnitude of explored audio-visual factors in affecting three assessed response criteria: Congruency (the perceived match-up of the auditory and visual cues in the assessed performance), ASW and LEV. Results show that both auditory and visual factors affect the collected responses, and that the two sensory modalities coincide in distinct interactions. This study reveals participant resiliency in the presence of forced auditory-visual mismatch: Participants are able to adjust the acoustic component of the cross-modal environment in a statistically similar way despite randomized starting values for the monitored parameters. Subjective results of the experiments are presented along with objective measurements for verification.

  6. Survey Results for Training and Resource Needs Cited by Early Intervention Professionals in the Field of Visual Impairment

    ERIC Educational Resources Information Center

    Ely, Mindy S.; Ostrosky, Michaelene M.

    2017-01-01

    Introduction: Professionals working with infants and toddlers with visual impairments (that is, those who are blind or have low vision) were surveyed regarding their preservice training and their awareness and use of 29 resources related to young children who are visually impaired. Methods: Early intervention visual impairment professionals (n =…

  7. Parallel processing of general and specific threat during early stages of perception

    PubMed Central

    2016-01-01

    Differential processing of threat can consummate as early as 100 ms post-stimulus. Moreover, early perception not only differentiates threat from non-threat stimuli but also distinguishes among discrete threat subtypes (e.g. fear, disgust and anger). Combining spatial-frequency-filtered images of fear, disgust and neutral scenes with high-density event-related potentials and intracranial source estimation, we investigated the neural underpinnings of general and specific threat processing in early stages of perception. Conveyed in low spatial frequencies, fear and disgust images evoked convergent visual responses with similarly enhanced N1 potentials and dorsal visual (middle temporal gyrus) cortical activity (relative to neutral cues; peaking at 156 ms). Nevertheless, conveyed in high spatial frequencies, fear and disgust elicited divergent visual responses, with fear enhancing and disgust suppressing P1 potentials and ventral visual (occipital fusiform) cortical activity (peaking at 121 ms). Therefore, general and specific threat processing operates in parallel in early perception, with the ventral visual pathway engaged in specific processing of discrete threats and the dorsal visual pathway in general threat processing. Furthermore, selectively tuned to distinctive spatial-frequency channels and visual pathways, these parallel processes underpin dimensional and categorical threat characterization, promoting efficient threat response. These findings thus lend support to hybrid models of emotion. PMID:26412811

  8. The capacity limitations of orientation summary statistics

    PubMed Central

    Attarha, Mouna; Moore, Cathleen M.

    2015-01-01

    The simultaneous–sequential method was used to test the processing capacity of establishing mean orientation summaries. Four clusters of oriented Gabor patches were presented in the peripheral visual field. One of the clusters had a mean orientation that was tilted either left or right while the mean orientations of the other three clusters were roughly vertical. All four clusters were presented at the same time in the simultaneous condition whereas the clusters appeared in temporal subsets of two in the sequential condition. Performance was lower when the means of all four clusters had to be processed concurrently than when only two had to be processed in the same amount of time. The advantage for establishing fewer summaries at a given time indicates that the processing of mean orientation engages limited-capacity processes (Experiment 1). This limitation cannot be attributed to crowding, low target-distractor discriminability, or a limited-capacity comparison process (Experiments 2 and 3). In contrast to the limitations of establishing multiple summary representations, establishing a single summary representation unfolds without interference (Experiment 4). When interpreted in the context of recent work on the capacity of summary statistics, these findings encourage reevaluation of the view that early visual perception consists of summary statistic representations that unfold independently across multiple areas of the visual field. PMID:25810160

  9. Cognitive processes facilitated by contextual cueing: evidence from event-related brain potentials.

    PubMed

    Schankin, Andrea; Schubö, Anna

    2009-05-01

    Finding a target in repeated search displays is faster than finding the same target in novel ones (contextual cueing). It is assumed that the visual context (the arrangement of the distracting objects) is used to guide attention efficiently to the target location. Alternatively, other factors, e.g., facilitation in early visual processing or in response selection, may play a role as well. In a contextual cueing experiment, participant's electrophysiological brain activity was recorded. Participants identified the target faster and more accurately in repeatedly presented displays. In this condition, the N2pc, a component reflecting the allocation of visual-spatial attention, was enhanced, indicating that attention was allocated more efficiently to those targets. However, also response-related processes, reflected by the LRP, were facilitated, indicating that guidance of attention cannot account for the entire contextual cueing benefit.

  10. Real-time processing of ASL signs: Delayed first language acquisition affects organization of the mental lexicon

    PubMed Central

    Lieberman, Amy M.; Borovsky, Arielle; Hatrak, Marla; Mayberry, Rachel I.

    2014-01-01

    Sign language comprehension requires visual attention to the linguistic signal and visual attention to referents in the surrounding world, whereas these processes are divided between the auditory and visual modalities for spoken language comprehension. Additionally, the age-onset of first language acquisition and the quality and quantity of linguistic input and for deaf individuals is highly heterogeneous, which is rarely the case for hearing learners of spoken languages. Little is known about how these modality and developmental factors affect real-time lexical processing. In this study, we ask how these factors impact real-time recognition of American Sign Language (ASL) signs using a novel adaptation of the visual world paradigm in deaf adults who learned sign from birth (Experiment 1), and in deaf individuals who were late-learners of ASL (Experiment 2). Results revealed that although both groups of signers demonstrated rapid, incremental processing of ASL signs, only native-signers demonstrated early and robust activation of sub-lexical features of signs during real-time recognition. Our findings suggest that the organization of the mental lexicon into units of both form and meaning is a product of infant language learning and not the sensory and motor modality through which the linguistic signal is sent and received. PMID:25528091

  11. Multisensory Motion Perception in 3–4 Month-Old Infants

    PubMed Central

    Nava, Elena; Grassi, Massimo; Brenna, Viola; Croci, Emanuela; Turati, Chiara

    2017-01-01

    Human infants begin very early in life to take advantage of multisensory information by extracting the invariant amodal information that is conveyed redundantly by multiple senses. Here we addressed the question as to whether infants can bind multisensory moving stimuli, and whether this occurs even if the motion produced by the stimuli is only illusory. Three- to 4-month-old infants were presented with two bimodal pairings: visuo-tactile and audio-visual. Visuo-tactile pairings consisted of apparently vertically moving bars (the Barber Pole illusion) moving in either the same or opposite direction with a concurrent tactile stimulus consisting of strokes given on the infant’s back. Audio-visual pairings consisted of the Barber Pole illusion in its visual and auditory version, the latter giving the impression of a continuous rising or ascending pitch. We found that infants were able to discriminate congruently (same direction) vs. incongruently moving (opposite direction) pairs irrespective of modality (Experiment 1). Importantly, we also found that congruently moving visuo-tactile and audio-visual stimuli were preferred over incongruently moving bimodal stimuli (Experiment 2). Our findings suggest that very young infants are able to extract motion as amodal component and use it to match stimuli that only apparently move in the same direction. PMID:29187829

  12. Rules infants look by: Testing the assumption of transitivity in visual salience.

    PubMed

    Kibbe, Melissa M; Kaldy, Zsuzsa; Blaser, Erik

    2018-01-01

    What drives infants' attention in complex visual scenes? Early models of infant attention suggested that the degree to which different visual features were detectable determines their attentional priority. Here, we tested this by asking whether two targets - defined by different features, but each equally salient when evaluated independently - would drive attention equally when pitted head-to-head. In Experiment 1, we presented 6-month-old infants with an array of gabor patches in which a target region varied either in color or spatial frequency from the background. Using a forced-choice preferential-looking method, we measured how readily infants fixated the target as its featural difference from the background was parametrically increased. Then, in Experiment 2, we used these psychometric preference functions to choose values for color and spatial frequency targets that were equally salient (preferred), and pitted them against each other within the same display. We reasoned that, if salience is transitive, then the stimuli should be iso-salient and infants should therefore show no systematic preference for either stimulus. On the contrary, we found that infants consistently preferred the color-defined stimulus. This suggests that computing visual salience in more complex scenes needs to include factors above and beyond local salience values.

  13. Structural reorganization of the early visual cortex following Braille training in sighted adults.

    PubMed

    Bola, Łukasz; Siuda-Krzywicka, Katarzyna; Paplińska, Małgorzata; Sumera, Ewa; Zimmermann, Maria; Jednoróg, Katarzyna; Marchewka, Artur; Szwed, Marcin

    2017-12-12

    Training can induce cross-modal plasticity in the human cortex. A well-known example of this phenomenon is the recruitment of visual areas for tactile and auditory processing. It remains unclear to what extent such plasticity is associated with changes in anatomy. Here we enrolled 29 sighted adults into a nine-month tactile Braille-reading training, and used voxel-based morphometry and diffusion tensor imaging to describe the resulting anatomical changes. In addition, we collected resting-state fMRI data to relate these changes to functional connectivity between visual and somatosensory-motor cortices. Following Braille-training, we observed substantial grey and white matter reorganization in the anterior part of early visual cortex (peripheral visual field). Moreover, relative to its posterior, foveal part, the peripheral representation of early visual cortex had stronger functional connections to somatosensory and motor cortices even before the onset of training. Previous studies show that the early visual cortex can be functionally recruited for tactile discrimination, including recognition of Braille characters. Our results demonstrate that reorganization in this region induced by tactile training can also be anatomical. This change most likely reflects a strengthening of existing connectivity between the peripheral visual cortex and somatosensory cortices, which suggests a putative mechanism for cross-modal recruitment of visual areas.

  14. Sleep-waking cycle in the cerveau isolé cat.

    PubMed

    Slósarska, M; Zernicki, B

    1973-06-01

    The experiments were performed on ten chronic low cerveau isolé cats: in eight cats the brain stem transection was prepontine and in two cats, intercollicular. The preparations survived from 24 to 3 days. During 24-36 hr sessions the ECoG activity was continuously recorded, and the ocular and ECoG components of the orienting reflexes to visual and olfactory stimuli were studied. 2. Three periods can be recognized in the recovery process of the low cerveau isolé cat. They are called acute, early chronic and late chronic stages. The acute stage lasts 1 day and the early chronic stage seems to last 3 weeks at least. During the acute stage the ability to desynchronize the EEG, either spontaneously or in response to sensory stimulations, is dramatically impaired and the pupils are fissurated. Thus the cat is comatous. 4. During the early chronic stage, although the ECoG synchronization-desynchronization cycle and the associated fissurated myosis-myosis cycle already exist, the episodes of ECoG desynchronization occupy only a small percentage of time and usually develop slowly. Visual and olfactory stimuli are often ineffective. Thus the cat is semicomatous. In the late chronic stage the sleep-waking cycle is present. The animal can be easily awakened by visual and olfactory stimuli. The intensity of the ECoG arousal to visual stimuli and the distribution of time between alert wakefulness, drowsiness, light synchronized sleep and deep synchronized sleep are similar to those in the chronic pretrigeminal cat. The recovery of the cerveau isolé seems to reach a steady level when the sleep-waking cycle becomes similar to that present in the chronic pretrigeminal cat. During the whole survival period the vertical following reflex is abortive.

  15. Finding faults: analogical comparison supports spatial concept learning in geoscience.

    PubMed

    Jee, Benjamin D; Uttal, David H; Gentner, Dedre; Manduca, Cathy; Shipley, Thomas F; Sageman, Bradley

    2013-05-01

    A central issue in education is how to support the spatial thinking involved in learning science, technology, engineering, and mathematics (STEM). We investigated whether and how the cognitive process of analogical comparison supports learning of a basic spatial concept in geoscience, fault. Because of the high variability in the appearance of faults, it may be difficult for students to learn the category-relevant spatial structure. There is abundant evidence that comparing analogous examples can help students gain insight into important category-defining features (Gentner in Cogn Sci 34(5):752-775, 2010). Further, comparing high-similarity pairs can be especially effective at revealing key differences (Sagi et al. 2012). Across three experiments, we tested whether comparison of visually similar contrasting examples would help students learn the fault concept. Our main findings were that participants performed better at identifying faults when they (1) compared contrasting (fault/no fault) cases versus viewing each case separately (Experiment 1), (2) compared similar as opposed to dissimilar contrasting cases early in learning (Experiment 2), and (3) viewed a contrasting pair of schematic block diagrams as opposed to a single block diagram of a fault as part of an instructional text (Experiment 3). These results suggest that comparison of visually similar contrasting cases helped distinguish category-relevant from category-irrelevant features for participants. When such comparisons occurred early in learning, participants were more likely to form an accurate conceptual representation. Thus, analogical comparison of images may provide one powerful way to enhance spatial learning in geoscience and other STEM disciplines.

  16. Reward associations impact both iconic and visual working memory.

    PubMed

    Infanti, Elisa; Hickey, Clayton; Turatto, Massimo

    2015-02-01

    Reward plays a fundamental role in human behavior. A growing number of studies have shown that stimuli associated with reward become salient and attract attention. The aim of the present study was to extend these results into the investigation of iconic memory and visual working memory. In two experiments we asked participants to perform a visual-search task where different colors of the target stimuli were paired with high or low reward. We then tested whether the pre-established feature-reward association affected performance on a subsequent visual memory task, in which no reward was provided. In this test phase participants viewed arrays of 8 objects, one of which had unique color that could match the color associated with reward during the previous visual-search task. A probe appeared at varying intervals after stimulus offset to identify the to-be-reported item. Our results suggest that reward biases the encoding of visual information such that items characterized by a reward-associated feature interfere with mnemonic representations of other items in the test display. These results extend current knowledge regarding the influence of reward on early cognitive processes, suggesting that feature-reward associations automatically interact with the encoding and storage of visual information, both in iconic memory and visual working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The sensory components of high-capacity iconic memory and visual working memory.

    PubMed

    Bradley, Claire; Pearson, Joel

    2012-01-01

    EARLY VISUAL MEMORY CAN BE SPLIT INTO TWO PRIMARY COMPONENTS: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more "high-level" alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of three different visual features (color, orientation and motion) across a range of durations from 0 to 6 s. We found that the amount of information stored in iconic memory is smaller for motion than for color or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ∼2 s. Further experiments showed that performance for the 10 items at 1 s was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory, and an effortful "lower-capacity" visual working memory.

  18. Vividness of Visual Imagery Depends on the Neural Overlap with Perception in Visual Areas.

    PubMed

    Dijkstra, Nadine; Bosch, Sander E; van Gerven, Marcel A J

    2017-02-01

    Research into the neural correlates of individual differences in imagery vividness point to an important role of the early visual cortex. However, there is also great fluctuation of vividness within individuals, such that only looking at differences between people necessarily obscures the picture. In this study, we show that variation in moment-to-moment experienced vividness of visual imagery, within human subjects, depends on the activity of a large network of brain areas, including frontal, parietal, and visual areas. Furthermore, using a novel multivariate analysis technique, we show that the neural overlap between imagery and perception in the entire visual system correlates with experienced imagery vividness. This shows that the neural basis of imagery vividness is much more complicated than studies of individual differences seemed to suggest. Visual imagery is the ability to visualize objects that are not in our direct line of sight: something that is important for memory, spatial reasoning, and many other tasks. It is known that the better people are at visual imagery, the better they can perform these tasks. However, the neural correlates of moment-to-moment variation in visual imagery remain unclear. In this study, we show that the more the neural response during imagery is similar to the neural response during perception, the more vivid or perception-like the imagery experience is. Copyright © 2017 the authors 0270-6474/17/371367-07$15.00/0.

  19. Figure-ground organization and the emergence of proto-objects in the visual cortex.

    PubMed

    von der Heydt, Rüdiger

    2015-01-01

    A long history of studies of perception has shown that the visual system organizes the incoming information early on, interpreting the 2D image in terms of a 3D world and producing a structure that provides perceptual continuity and enables object-based attention. Recordings from monkey visual cortex show that many neurons, especially in area V2, are selective for border ownership. These neurons are edge selective and have ordinary classical receptive fields (CRF), but in addition their responses are modulated (enhanced or suppressed) depending on the location of a 'figure' relative to the edge in their receptive field. Each neuron has a fixed preference for location on one side or the other. This selectivity is derived from the image context far beyond the CRF. This paper reviews evidence indicating that border ownership selectivity reflects the formation of early object representations ('proto-objects'). The evidence includes experiments showing (1) reversal of border ownership signals with change of perceived object structure, (2) border ownership specific enhancement of responses in object-based selective attention, (3) persistence of border ownership signals in accordance with continuity of object perception, and (4) remapping of border ownership signals across saccades and object movements. Findings 1 and 2 can be explained by hypothetical grouping circuits that sum contour feature signals in search of objectness, and, via recurrent projections, enhance the corresponding low-level feature signals. Findings 3 and 4 might be explained by assuming that the activity of grouping circuits persists and can be remapped. Grouping, persistence, and remapping are fundamental operations of vision. Finding these operations manifest in low-level visual areas challenges traditional views of visual processing. New computational models need to be developed for a comprehensive understanding of the function of the visual cortex.

  20. Figure–ground organization and the emergence of proto-objects in the visual cortex

    PubMed Central

    von der Heydt, Rüdiger

    2015-01-01

    A long history of studies of perception has shown that the visual system organizes the incoming information early on, interpreting the 2D image in terms of a 3D world and producing a structure that provides perceptual continuity and enables object-based attention. Recordings from monkey visual cortex show that many neurons, especially in area V2, are selective for border ownership. These neurons are edge selective and have ordinary classical receptive fields (CRF), but in addition their responses are modulated (enhanced or suppressed) depending on the location of a ‘figure’ relative to the edge in their receptive field. Each neuron has a fixed preference for location on one side or the other. This selectivity is derived from the image context far beyond the CRF. This paper reviews evidence indicating that border ownership selectivity reflects the formation of early object representations (‘proto-objects’). The evidence includes experiments showing (1) reversal of border ownership signals with change of perceived object structure, (2) border ownership specific enhancement of responses in object-based selective attention, (3) persistence of border ownership signals in accordance with continuity of object perception, and (4) remapping of border ownership signals across saccades and object movements. Findings 1 and 2 can be explained by hypothetical grouping circuits that sum contour feature signals in search of objectness, and, via recurrent projections, enhance the corresponding low-level feature signals. Findings 3 and 4 might be explained by assuming that the activity of grouping circuits persists and can be remapped. Grouping, persistence, and remapping are fundamental operations of vision. Finding these operations manifest in low-level visual areas challenges traditional views of visual processing. New computational models need to be developed for a comprehensive understanding of the function of the visual cortex. PMID:26579062

  1. Unravelling the development of the visual cortex: implications for plasticity and repair

    PubMed Central

    Bourne, James A

    2010-01-01

    The visual cortex comprises over 50 areas in the human, each with a specified role and distinct physiology, connectivity and cellular morphology. How these individual areas emerge during development still remains something of a mystery and, although much attention has been paid to the initial stages of the development of the visual cortex, especially its lamination, very little is known about the mechanisms responsible for the arealization and functional organization of this region of the brain. In recent years we have started to discover that it is the interplay of intrinsic (molecular) and extrinsic (afferent connections) cues that are responsible for the maturation of individual areas, and that there is a spatiotemporal sequence in the maturation of the primary visual cortex (striate cortex, V1) and the multiple extrastriate/association areas. Studies in both humans and non-human primates have started to highlight the specific neural underpinnings responsible for the maturation of the visual cortex, and how experience-dependent plasticity and perturbations to the visual system can impact upon its normal development. Furthermore, damage to specific nuclei of the visual cortex, such as the primary visual cortex (V1), is a common occurrence as a result of a stroke, neurotrauma, disease or hypoxia in both neonates and adults alike. However, the consequences of a focal injury differ between the immature and adult brain, with the immature brain demonstrating a higher level of functional resilience. With better techniques for examining specific molecular and connectional changes, we are now starting to uncover the mechanisms responsible for the increased neural plasticity that leads to significant recovery following injury during this early phase of life. Further advances in our understanding of postnatal development/maturation and plasticity observed during early life could offer new strategies to improve outcomes by recapitulating aspects of the developmental program in the adult brain. PMID:20722872

  2. Suppressive and enhancing effects in early visual cortex during illusory shape perception: A comment on.

    PubMed

    Moors, Pieter

    2015-01-01

    In a recent functional magnetic resonance imaging study, Kok and de Lange (2014) observed that BOLD activity for a Kanizsa illusory shape stimulus, in which pacmen-like inducers elicit an illusory shape percept, was either enhanced or suppressed relative to a nonillusory control configuration depending on whether the spatial profile of BOLD activity in early visual cortex was related to the illusory shape or the inducers, respectively. The authors argued that these findings fit well with the predictive coding framework, because top-down predictions related to the illusory shape are not met with bottom-up sensory input and hence the feedforward error signal is enhanced. Conversely, for the inducing elements, there is a match between top-down predictions and input, leading to a decrease in error. Rather than invoking predictive coding as the explanatory framework, the suppressive effect related to the inducers might be caused by neural adaptation to perceptually stable input due to the trial sequence used in the experiment.

  3. Prentice Award Lecture 2011: Removing the Brakes on Plasticity in the Amblyopic Brain

    PubMed Central

    Levi, Dennis M.

    2012-01-01

    Experience-dependent plasticity is closely linked with the development of sensory function. Beyond this sensitive period, developmental plasticity is actively limited; however, new studies provide growing evidence for plasticity in the adult visual system. The amblyopic visual system is an excellent model for examining the “brakes” that limit recovery of function beyond the critical period. While amblyopia can often be reversed when treated early, conventional treatment is generally not undertaken in older children and adults. However new clinical and experimental studies in both animals and humans provide evidence for neural plasticity beyond the critical period. The results suggest that perceptual learning and video game play may be effective in improving a range of visual performance measures and importantly the improvements may transfer to better visual acuity and stereopsis. These findings, along with the results of new clinical trials, suggest that it might be time to re-consider our notions about neural plasticity in amblyopia. PMID:22581119

  4. Estimation of cortical magnification from positional error in normally sighted and amblyopic subjects

    PubMed Central

    Hussain, Zahra; Svensson, Carl-Magnus; Besle, Julien; Webb, Ben S.; Barrett, Brendan T.; McGraw, Paul V.

    2015-01-01

    We describe a method for deriving the linear cortical magnification factor from positional error across the visual field. We compared magnification obtained from this method between normally sighted individuals and amblyopic individuals, who receive atypical visual input during development. The cortical magnification factor was derived for each subject from positional error at 32 locations in the visual field, using an established model of conformal mapping between retinal and cortical coordinates. Magnification of the normally sighted group matched estimates from previous physiological and neuroimaging studies in humans, confirming the validity of the approach. The estimate of magnification for the amblyopic group was significantly lower than the normal group: by 4.4 mm deg−1 at 1° eccentricity, assuming a constant scaling factor for both groups. These estimates, if correct, suggest a role for early visual experience in establishing retinotopic mapping in cortex. We discuss the implications of altered cortical magnification for cortical size, and consider other neural changes that may account for the amblyopic results. PMID:25761341

  5. Electrical stimulation of the brain and the development of cortical visual prostheses: An historical perspective.

    PubMed

    Lewis, Philip M; Rosenfeld, Jeffrey V

    2016-01-01

    Rapid advances are occurring in neural engineering, bionics and the brain-computer interface. These milestones have been underpinned by staggering advances in micro-electronics, computing, and wireless technology in the last three decades. Several cortically-based visual prosthetic devices are currently being developed, but pioneering advances with early implants were achieved by Brindley followed by Dobelle in the 1960s and 1970s. We have reviewed these discoveries within the historical context of the medical uses of electricity including attempts to cure blindness, the discovery of the visual cortex, and opportunities for cortex stimulation experiments during neurosurgery. Further advances were made possible with improvements in electrode design, greater understanding of cortical electrophysiology and miniaturisation of electronic components. Human trials of a new generation of prototype cortical visual prostheses for the blind are imminent. This article is part of a Special Issue entitled Hold Item. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  6. [Visual input affects the expression of the early genes c-Fos and ZENK in auditory telencephalic centers of pied flycatcher nestlings during the acoustically-guided freezing].

    PubMed

    Korneeva, E V; Tiunova, A A; Aleksandrov, L I; Golubeva, T B; Anokhin, K V

    2014-01-01

    The present study analyzed expression of transcriptional factors c-Fos and ZENK in 9-day-old pied flycatcher nestlings' (Ficedula hypoleuca) telencephalic auditory centers (field L, caudomedial nidopallium and caudomedial mesopallium) involved in the acoustically-guided defense behavior. Species-typical alarm call was presented to the young in three groups: 1--intact group (sighted control), 2--nestlings visually deprived just before the experiment for a short time (unsighted control) 3--nestlings visually deprived right after hatching (experimental deprivation). Induction of c-Fos as well as ZENK in nestlings from the experimental deprivation group was decreased in both hemispheres as compared with intact group. In the group of unsighted control, only the decrease of c-Fos induction was observed exclusively in the right hemisphere. These findings suggest that limitation of visual input changes the population of neurons involved into the acoustically-guided behavior, the effect being dependant from the duration of deprivation.

  7. The Processing of Biologically Plausible and Implausible forms in American Sign Language: Evidence for Perceptual Tuning.

    PubMed

    Almeida, Diogo; Poeppel, David; Corina, David

    The human auditory system distinguishes speech-like information from general auditory signals in a remarkably fast and efficient way. Combining psychophysics and neurophysiology (MEG), we demonstrate a similar result for the processing of visual information used for language communication in users of sign languages. We demonstrate that the earliest visual cortical responses in deaf signers viewing American Sign Language (ASL) signs show specific modulations to violations of anatomic constraints that would make the sign either possible or impossible to articulate. These neural data are accompanied with a significantly increased perceptual sensitivity to the anatomical incongruity. The differential effects in the early visual evoked potentials arguably reflect an expectation-driven assessment of somatic representational integrity, suggesting that language experience and/or auditory deprivation may shape the neuronal mechanisms underlying the analysis of complex human form. The data demonstrate that the perceptual tuning that underlies the discrimination of language and non-language information is not limited to spoken languages but extends to languages expressed in the visual modality.

  8. New Perspectives in Amblyopia Therapy on Adults: A Critical Role for the Excitatory/Inhibitory Balance

    PubMed Central

    Baroncelli, Laura; Maffei, Lamberto; Sale, Alessandro

    2011-01-01

    Amblyopia is the most common form of impairment of visual function affecting one eye, with a prevalence of about 1–5% of the total world population. This pathology is caused by early abnormal visual experience with a functional imbalance between the two eyes owing to anisometropia, strabismus, or congenital cataract, resulting in a dramatic loss of visual acuity in an apparently healthy eye and various other perceptual abnormalities, including deficits in contrast sensitivity and in stereopsis. It is currently accepted that, due to a lack of sufficient plasticity within the brain, amblyopia is untreatable in adulthood. However, recent results obtained both in clinical trials and in animal models have challenged this traditional view, unmasking a previously unsuspected potential for promoting recovery after the end of the critical period for visual cortex plasticity. These studies point toward the intracortical inhibitory transmission as a crucial brake for therapeutic rehabilitation and recovery from amblyopia in the adult brain. PMID:22144947

  9. Giant cell arteritis: a review.

    PubMed

    Patil, Pravin; Karia, Niral; Jain, Shaifali; Dasgupta, Bhaskar

    2013-01-01

    Giant cell arteritis is the most common vasculitis in Caucasians. Acute visual loss in one or both eyes is by far the most feared and irreversible complication of giant cell arteritis. This article reviews recent guidelines on early recognition of systemic, cranial, and ophthalmic manifestations, and current management and diagnostic strategies and advances in imaging. We share our experience of the fast track pathway and imaging in associated disorders, such as large-vessel vasculitis.

  10. [Chronic postoperative endophthalmitis caused by Propionibacterium acnes].

    PubMed

    Kocur, I; Baráková, D; Kuchynka, P; Fiser, I

    1998-07-01

    There is a report of three cases of chronic postoperative endophthalmitis following cataract operations. In two patients there was proven Propionibacterium acnes. There is presented a technique to obtain specimens for microbiological examination and an overview of clinical experience in treatment of the mentioned less common types of endophthalmitis. Early surgical treatment as well as intraocular injection of vancomycin can help to restore a good visual acuity despite of longlasting inflammation.

  11. Spatial Working Memory Effects in Early Visual Cortex

    ERIC Educational Resources Information Center

    Munneke, Jaap; Heslenfeld, Dirk J.; Theeuwes, Jan

    2010-01-01

    The present study investigated how spatial working memory recruits early visual cortex. Participants were required to maintain a location in working memory while changes in blood oxygen level dependent (BOLD) signals were measured during the retention interval in which no visual stimulation was present. We show working memory effects during the…

  12. Congenital blindness is associated with large-scale reorganization of anatomical networks.

    PubMed

    Hasson, Uri; Andric, Michael; Atilgan, Hicret; Collignon, Olivier

    2016-03-01

    Blindness is a unique model for understanding the role of experience in the development of the brain's functional and anatomical architecture. Documenting changes in the structure of anatomical networks for this population would substantiate the notion that the brain's core network-level organization may undergo neuroplasticity as a result of life-long experience. To examine this issue, we compared whole-brain networks of regional cortical-thickness covariance in early blind and matched sighted individuals. This covariance is thought to reflect signatures of integration between systems involved in similar perceptual/cognitive functions. Using graph-theoretic metrics, we identified a unique mode of anatomical reorganization in the blind that differed from that found for sighted. This was seen in that network partition structures derived from subgroups of blind were more similar to each other than they were to partitions derived from sighted. Notably, after deriving network partitions, we found that language and visual regions tended to reside within separate modules in sighted but showed a pattern of merging into shared modules in the blind. Our study demonstrates that early visual deprivation triggers a systematic large-scale reorganization of whole-brain cortical-thickness networks, suggesting changes in how occipital regions interface with other functional networks in the congenitally blind. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Multiple adaptable mechanisms early in the primate visual pathway

    PubMed Central

    Dhruv, Neel T.; Tailby, Chris; Sokol, Sach H.; Lennie, Peter

    2011-01-01

    We describe experiments that isolate and characterize multiple adaptable mechanisms that influence responses of orientation-selective neurons in primary visual cortex (V1) of anesthetized macaque (Macaca fascicularis). The results suggest that three adaptable stages of machinery shape neural responses in V1: a broadly-tuned early stage and a spatio-temporally tuned later stage, both of which provide excitatory input, and a normalization pool that is also broadly tuned. The early stage and the normalization pool are revealed by adapting gratings that themselves fail to evoke a response from the neuron: either low temporal frequency gratings at the null orientation or gratings of any orientation drifting at high temporal frequencies. When effective, adapting stimuli that altered the sensitivity of these two mechanisms caused reductions of contrast gain and often brought about a paradoxical increase in response gain due to a relatively greater desensitization of the normalization pool. The tuned mechanism is desensitized only by stimuli well-matched to a neuron’s receptive field. We could thus infer desensitization of the tuned mechanism by comparing effects obtained with adapting gratings of preferred and null orientation modulated at low temporal frequencies. PMID:22016535

  14. Neocortical Rebound Depolarization Enhances Visual Perception

    PubMed Central

    Funayama, Kenta; Ban, Hiroshi; Chan, Allen W.; Matsuki, Norio; Murphy, Timothy H.; Ikegaya, Yuji

    2015-01-01

    Animals are constantly exposed to the time-varying visual world. Because visual perception is modulated by immediately prior visual experience, visual cortical neurons may register recent visual history into a specific form of offline activity and link it to later visual input. To examine how preceding visual inputs interact with upcoming information at the single neuron level, we designed a simple stimulation protocol in which a brief, orientated flashing stimulus was subsequently coupled to visual stimuli with identical or different features. Using in vivo whole-cell patch-clamp recording and functional two-photon calcium imaging from the primary visual cortex (V1) of awake mice, we discovered that a flash of sinusoidal grating per se induces an early, transient activation as well as a long-delayed reactivation in V1 neurons. This late response, which started hundreds of milliseconds after the flash and persisted for approximately 2 s, was also observed in human V1 electroencephalogram. When another drifting grating stimulus arrived during the late response, the V1 neurons exhibited a sublinear, but apparently increased response, especially to the same grating orientation. In behavioral tests of mice and humans, the flashing stimulation enhanced the detection power of the identically orientated visual stimulation only when the second stimulation was presented during the time window of the late response. Therefore, V1 late responses likely provide a neural basis for admixing temporally separated stimuli and extracting identical features in time-varying visual environments. PMID:26274866

  15. Within-Hemifield Competition in Early Visual Areas Limits the Ability to Track Multiple Objects with Attention

    PubMed Central

    Alvarez, George A.; Cavanagh, Patrick

    2014-01-01

    It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. PMID:25164651

  16. Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input.

    PubMed

    Hunt, Jonathan J; Dayan, Peter; Goodhill, Geoffrey J

    2013-01-01

    Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields.

  17. Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input

    PubMed Central

    Hunt, Jonathan J.; Dayan, Peter; Goodhill, Geoffrey J.

    2013-01-01

    Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields. PMID:23675290

  18. Diagnostic Features of Emotional Expressions Are Processed Preferentially

    PubMed Central

    Scheller, Elisa; Büchel, Christian; Gamer, Matthias

    2012-01-01

    Diagnostic features of emotional expressions are differentially distributed across the face. The current study examined whether these diagnostic features are preferentially attended to even when they are irrelevant for the task at hand or when faces appear at different locations in the visual field. To this aim, fearful, happy and neutral faces were presented to healthy individuals in two experiments while measuring eye movements. In Experiment 1, participants had to accomplish an emotion classification, a gender discrimination or a passive viewing task. To differentiate fast, potentially reflexive, eye movements from a more elaborate scanning of faces, stimuli were either presented for 150 or 2000 ms. In Experiment 2, similar faces were presented at different spatial positions to rule out the possibility that eye movements only reflect a general bias for certain visual field locations. In both experiments, participants fixated the eye region much longer than any other region in the face. Furthermore, the eye region was attended to more pronouncedly when fearful or neutral faces were shown whereas more attention was directed toward the mouth of happy facial expressions. Since these results were similar across the other experimental manipulations, they indicate that diagnostic features of emotional expressions are preferentially processed irrespective of task demands and spatial locations. Saliency analyses revealed that a computational model of bottom-up visual attention could not explain these results. Furthermore, as these gaze preferences were evident very early after stimulus onset and occurred even when saccades did not allow for extracting further information from these stimuli, they may reflect a preattentive mechanism that automatically detects relevant facial features in the visual field and facilitates the orientation of attention towards them. This mechanism might crucially depend on amygdala functioning and it is potentially impaired in a number of clinical conditions such as autism or social anxiety disorders. PMID:22848607

  19. Diagnostic features of emotional expressions are processed preferentially.

    PubMed

    Scheller, Elisa; Büchel, Christian; Gamer, Matthias

    2012-01-01

    Diagnostic features of emotional expressions are differentially distributed across the face. The current study examined whether these diagnostic features are preferentially attended to even when they are irrelevant for the task at hand or when faces appear at different locations in the visual field. To this aim, fearful, happy and neutral faces were presented to healthy individuals in two experiments while measuring eye movements. In Experiment 1, participants had to accomplish an emotion classification, a gender discrimination or a passive viewing task. To differentiate fast, potentially reflexive, eye movements from a more elaborate scanning of faces, stimuli were either presented for 150 or 2000 ms. In Experiment 2, similar faces were presented at different spatial positions to rule out the possibility that eye movements only reflect a general bias for certain visual field locations. In both experiments, participants fixated the eye region much longer than any other region in the face. Furthermore, the eye region was attended to more pronouncedly when fearful or neutral faces were shown whereas more attention was directed toward the mouth of happy facial expressions. Since these results were similar across the other experimental manipulations, they indicate that diagnostic features of emotional expressions are preferentially processed irrespective of task demands and spatial locations. Saliency analyses revealed that a computational model of bottom-up visual attention could not explain these results. Furthermore, as these gaze preferences were evident very early after stimulus onset and occurred even when saccades did not allow for extracting further information from these stimuli, they may reflect a preattentive mechanism that automatically detects relevant facial features in the visual field and facilitates the orientation of attention towards them. This mechanism might crucially depend on amygdala functioning and it is potentially impaired in a number of clinical conditions such as autism or social anxiety disorders.

  20. Binocular pattern deprivation interferes with the expression of proteins involved in primary visual cortex maturation in the cat.

    PubMed

    Laskowska-Macios, Karolina; Nys, Julie; Hu, Tjing-Tjing; Zapasnik, Monika; Van der Perren, Anke; Kossut, Malgorzata; Burnat, Kalina; Arckens, Lutgarde

    2015-08-14

    Binocular pattern deprivation from eye opening (early BD) delays the maturation of the primary visual cortex. This delay is more pronounced for the peripheral than the central visual field representation within area 17, particularly between the age of 2 and 4 months [Laskowska-Macios, Cereb Cortex, 2014]. In this study, we probed for related dynamic changes in the cortical proteome. We introduced age, cortical region and BD as principal variables in a 2-D DIGE screen of area 17. In this way we explored the potential of BD-related protein expression changes between central and peripheral area 17 of 2- and 4-month-old BD (2BD, 4BD) kittens as a valid parameter towards the identification of brain maturation-related molecular processes. Consistent with the maturation delay, distinct developmental protein expression changes observed for normal kittens were postponed by BD, especially in the peripheral region. These BD-induced proteomic changes suggest a negative regulation of neurite outgrowth, synaptic transmission and clathrin-mediated endocytosis, thereby implicating these processes in normal experience-induced visual cortex maturation. Verification of the expression of proteins from each of the biological processes via Western analysis disclosed that some of the transient proteomic changes correlate to the distinct behavioral outcome in adult life, depending on timing and duration of the BD period [Neuroscience 2013;255:99-109]. Taken together, the plasticity potential to recover from BD, in relation to ensuing restoration of normal visual input, appears to rely on specific protein expression changes and cellular processes induced by the loss of pattern vision in early life.

  1. It's what's on the outside that matters: an advantage for external features in children's word recognition.

    PubMed

    Webb, Tessa M; Beech, John R; Mayall, Kate M; Andrews, Antony S

    2006-06-01

    The relative importance of internal and external letter features of words in children's developing reading was investigated to clarify further the nature of early featural analysis. In Experiment 1, 72 6-, 8-, and 10-year-olds read aloud words displayed as wholes, external features only (central features missing, thereby preserving word shape information), or internal features only (central features preserved). There was an improvement in the processing of external features compared with internal features as reading experience increased. Experiment 2 examined the processing of the internal and external features of words employing a forward priming paradigm with 60 8-, 10-, and 12-year-olds. Reaction times to internal feature primes were equivalent to a nonprime blank condition, whereas responses to external feature primes were faster than those to the other two prime types. This advantage for the external features of words is discussed in terms of an early and enduring role for processing the external visual features in words during reading development.

  2. Defining Quality in Visual Art Education for Young Children: Building on the Position Statement of the Early Childhood Art Educators

    ERIC Educational Resources Information Center

    McClure, Marissa; Tarr, Patricia; Thompson, Christine Marmé; Eckhoff, Angela

    2017-01-01

    This article reflects the collective voices of four early childhood visual arts educators, each of whom is a member of the Early Childhood Art Educators (ECAE) Issues Group of the National Arts Educators Association. The authors frame the article around the ECAE position statement, "Art: Essential for Early Learning" (2016), which…

  3. Reading Acquisition Enhances an Early Visual Process of Contour Integration

    ERIC Educational Resources Information Center

    Szwed, Marcin; Ventura, Paulo; Querido, Luis; Cohen, Laurent; Dehaene, Stanislas

    2012-01-01

    The acquisition of reading has an extensive impact on the developing brain and leads to enhanced abilities in phonological processing and visual letter perception. Could this expertise also extend to early visual abilities outside the reading domain? Here we studied the performance of illiterate, ex-illiterate and literate adults closely matched…

  4. Improving Empathy and Communication Skills of Visually Impaired Early Adolescents through a Psycho-Education Program

    ERIC Educational Resources Information Center

    Yildiz, Mehmet Ali; Duy, Baki

    2013-01-01

    The purpose of this study was to investigate the effectiveness of an interpersonal communication skills psycho-education program to improve empathy and communication skills of visually impaired adolescents. Participants of the study were sixteen early adolescents schooling in an elementary school for visually impaired youth in Diyarbakir. The…

  5. Emotional words facilitate lexical but not early visual processing.

    PubMed

    Trauer, Sophie M; Kotz, Sonja A; Müller, Matthias M

    2015-12-12

    Emotional scenes and faces have shown to capture and bind visual resources at early sensory processing stages, i.e. in early visual cortex. However, emotional words have led to mixed results. In the current study ERPs were assessed simultaneously with steady-state visual evoked potentials (SSVEPs) to measure attention effects on early visual activity in emotional word processing. Neutral and negative words were flickered at 12.14 Hz whilst participants performed a Lexical Decision Task. Emotional word content did not modulate the 12.14 Hz SSVEP amplitude, neither did word lexicality. However, emotional words affected the ERP. Negative compared to neutral words as well as words compared to pseudowords lead to enhanced deflections in the P2 time range indicative of lexico-semantic access. The N400 was reduced for negative compared to neutral words and enhanced for pseudowords compared to words indicating facilitated semantic processing of emotional words. LPC amplitudes reflected word lexicality and thus the task-relevant response. In line with previous ERP and imaging evidence, the present results indicate that written emotional words are facilitated in processing only subsequent to visual analysis.

  6. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate.

    PubMed

    Rademaker, Rosanne L; van de Ven, Vincent G; Tong, Frank; Sack, Alexander T

    2017-01-01

    Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise.

  7. The impact of early visual cortex transcranial magnetic stimulation on visual working memory precision and guess rate

    PubMed Central

    van de Ven, Vincent G.; Tong, Frank; Sack, Alexander T.

    2017-01-01

    Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise. PMID:28384347

  8. Social Identity, Autism and Visual Impairment (VI) in the Early Years

    ERIC Educational Resources Information Center

    Dale, Naomi; Salt, Alison

    2008-01-01

    This article explores how visual impairment might impact on early social and emotional development including self-awareness and communication with others. Some children show a "developmental setback" and other worrying developmental trajectories in the early years, including autistic related behaviours and autistic spectrum disorders.…

  9. Effects of attention and laterality on motion and orientation discrimination in deaf signers.

    PubMed

    Bosworth, Rain G; Petrich, Jennifer A F; Dobkins, Karen R

    2013-06-01

    Previous studies have asked whether visual sensitivity and attentional processing in deaf signers are enhanced or altered as a result of their different sensory experiences during development, i.e., auditory deprivation and exposure to a visual language. In particular, deaf and hearing signers have been shown to exhibit a right visual field/left hemisphere advantage for motion processing, while hearing nonsigners do not. To examine whether this finding extends to other aspects of visual processing, we compared deaf signers and hearing nonsigners on motion, form, and brightness discrimination tasks. Secondly, to examine whether hemispheric lateralities are affected by attention, we employed a dual-task paradigm to measure form and motion thresholds under "full" vs. "poor" attention conditions. Deaf signers, but not hearing nonsigners, exhibited a right visual field advantage for motion processing. This effect was also seen for form processing and not for the brightness task. Moreover, no group differences were observed in attentional effects, and the motion and form visual field asymmetries were not modulated by attention, suggesting they occur at early levels of sensory processing. In sum, the results show that processing of motion and form, believed to be mediated by dorsal and ventral visual pathways, respectively, are left-hemisphere dominant in deaf signers. Published by Elsevier Inc.

  10. Temporal Influence on Awareness

    DTIC Science & Technology

    1995-12-01

    43 38. Test Setup Timing: Measured vs Expected Modal Delays (in ms) ............. 46 39. Experiment I: visual and auditory stimuli...presented simultaneously; visual- auditory delay=Oms, visual-visual delay=0ms ....... .......................... 47 40. Experiment II: visual and auditory ...stimuli presented in order; visual- auditory de- lay=Oms, visual-visual delay=variable ................................ 48 41. Experiment II: visual and

  11. Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors

    PubMed Central

    Burbridge, Timothy J.; Xu, Hong-Ping; Ackman, James B.; Ge, Xinxin; Zhang, Yueyi; Ye, Mei-Jun; Zhou, Z. Jimmy; Xu, Jian; Contractor, Anis; Crair, Michael C.

    2014-01-01

    SUMMARY The elaboration of nascent synaptic connections into highly ordered neural circuits is an integral feature of the developing vertebrate nervous system. In sensory systems, patterned spontaneous activity before the onset of sensation is thought to influence this process, but this conclusion remains controversial largely due to the inherent difficulty recording neural activity in early development. Here, we describe novel genetic and pharmacological manipulations of spontaneous retinal activity, assayed in vivo, that demonstrate a causal link between retinal waves and visual circuit refinement. We also report a de-coupling of downstream activity in retinorecipient regions of the developing brain after retinal wave disruption. Significantly, we show that the spatiotemporal characteristics of retinal waves affect the development of specific visual circuits. These results conclusively establish retinal waves as necessary and instructive for circuit refinement in the developing nervous system and reveal how neural circuits adjust to altered patterns of activity prior to experience. PMID:25466916

  12. Perceptual learning effect on decision and confidence thresholds.

    PubMed

    Solovey, Guillermo; Shalom, Diego; Pérez-Schuster, Verónica; Sigman, Mariano

    2016-10-01

    Practice can enhance of perceptual sensitivity, a well-known phenomenon called perceptual learning. However, the effect of practice on subjective perception has received little attention. We approach this problem from a visual psychophysics and computational modeling perspective. In a sequence of visual search experiments, subjects significantly increased the ability to detect a "trained target". Before and after training, subjects performed two psychophysical protocols that parametrically vary the visibility of the "trained target": an attentional blink and a visual masking task. We found that confidence increased after learning only in the attentional blink task. Despite large differences in some observables and task settings, we identify common mechanisms for decision-making and confidence. Specifically, our behavioral results and computational model suggest that perceptual ability is independent of processing time, indicating that changes in early cortical representations are effective, and learning changes decision criteria to convey choice and confidence. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The contribution of visual areas to speech comprehension: a PET study in cochlear implants patients and normal-hearing subjects.

    PubMed

    Giraud, Anne Lise; Truy, Eric

    2002-01-01

    Early visual cortex can be recruited by meaningful sounds in the absence of visual information. This occurs in particular in cochlear implant (CI) patients whose dependency on visual cues in speech comprehension is increased. Such cross-modal interaction mirrors the response of early auditory cortex to mouth movements (speech reading) and may reflect the natural expectancy of the visual counterpart of sounds, lip movements. Here we pursue the hypothesis that visual activations occur specifically in response to meaningful sounds. We performed PET in both CI patients and controls, while subjects listened either to their native language or to a completely unknown language. A recruitment of early visual cortex, the left posterior inferior temporal gyrus (ITG) and the left superior parietal cortex was observed in both groups. While no further activation occurred in the group of normal-hearing subjects, CI patients additionally recruited the right perirhinal/fusiform and mid-fusiform, the right temporo-occipito-parietal (TOP) junction and the left inferior prefrontal cortex (LIPF, Broca's area). This study confirms a participation of visual cortical areas in semantic processing of speech sounds. Observation of early visual activation in normal-hearing subjects shows that auditory-to-visual cross-modal effects can also be recruited under natural hearing conditions. In cochlear implant patients, speech activates the mid-fusiform gyrus in the vicinity of the so-called face area. This suggests that specific cross-modal interaction involving advanced stages in the visual processing hierarchy develops after cochlear implantation and may be the correlate of increased usage of lip-reading.

  14. Modification of a prey catching response and the development of behavioral persistence in the fire-bellied toad (Bombina orientalis).

    PubMed

    Ramsay, Zachary J; Ikura, Juntaro; Laberge, Frédéric

    2013-11-01

    The present report investigated how fire-bellied toads (Bombina orientalis) modified their response in a prey catching task in which the attribution of food reward was contingent on snapping toward a visual stimulus of moving prey displayed on a computer screen. Two experiments investigated modification of the snapping response, with different intervals between the opportunity to snap at the visual stimulus and reward administration. The snapping response of unpaired controls was decreased compared with the conditioned toads when hour or day intervals were used, but intervals of 5 min produced only minimal change in snapping. The determinants of extinction of the response toward the visual stimulus were then investigated in 3 experiments. The results of the first experiment suggested that increased resistance to extinction depended mostly on the number of training trials, not on partial reinforcement or the magnitude of reinforcement during training. This was confirmed in a second experiment showing that overtraining resulted in resistance to extinction, and that the pairing of the reward with a response toward the stimulus was necessary for that effect, as opposed to pairing reward solely with the experimental context. The last experiment showed that the time elapsed between training trials also influenced extinction, but only in toads that received few training trials. Overall, the results suggest that toads learning about a prey stimulus progress from an early flexible phase, when an action can be modified by its consequences, to an acquired habit characterized by an increasingly inflexible and automatic response.

  15. Trial-by-trial adjustments in control triggered by incidentally encoded semantic cues.

    PubMed

    Blais, Chris; Harris, Michael B; Sinanian, Michael H; Bunge, Silvia A

    2015-01-01

    Cognitive control mechanisms provide the flexibility to rapidly adapt to contextual demands. These contexts can be defined by top-down goals-but also by bottom-up perceptual factors, such as the location at which a visual stimulus appears. There are now several experiments reporting contextual control effects. Such experiments establish that contexts defined by low-level perceptual cues such as the location of a visual stimulus can lead to context-specific control, suggesting a relatively early focus for cognitive control. The current set of experiments involved a word-word interference task designed to assess whether a high-level cue, the semantic category to which a word belongs, can also facilitate contextual control. Indeed, participants exhibit a larger Flanker effect to items pertaining to a semantic category in which 75% of stimuli are incongruent than in response to items pertaining to a category in which 25% of stimuli are incongruent. Thus, both low-level and high-level stimulus features can affect the bottom-up engagement of cognitive control. The implications for current models of cognitive control are discussed.

  16. Within-hemifield competition in early visual areas limits the ability to track multiple objects with attention.

    PubMed

    Störmer, Viola S; Alvarez, George A; Cavanagh, Patrick

    2014-08-27

    It is much easier to divide attention across the left and right visual hemifields than within the same visual hemifield. Here we investigate whether this benefit of dividing attention across separate visual fields is evident at early cortical processing stages. We measured the steady-state visual evoked potential, an oscillatory response of the visual cortex elicited by flickering stimuli, of moving targets and distractors while human observers performed a tracking task. The amplitude of responses at the target frequencies was larger than that of the distractor frequencies when participants tracked two targets in separate hemifields, indicating that attention can modulate early visual processing when it is divided across hemifields. However, these attentional modulations disappeared when both targets were tracked within the same hemifield. These effects were not due to differences in task performance, because accuracy was matched across the tracking conditions by adjusting target speed (with control conditions ruling out effects due to speed alone). To investigate later processing stages, we examined the P3 component over central-parietal scalp sites that was elicited by the test probe at the end of the trial. The P3 amplitude was larger for probes on targets than on distractors, regardless of whether attention was divided across or within a hemifield, indicating that these higher-level processes were not constrained by visual hemifield. These results suggest that modulating early processing stages enables more efficient target tracking, and that within-hemifield competition limits the ability to modulate multiple target representations within the hemifield maps of the early visual cortex. Copyright © 2014 the authors 0270-6474/14/3311526-08$15.00/0.

  17. Behavioral biases when viewing multiplexed scenes: scene structure and frames of reference for inspection

    PubMed Central

    Stainer, Matthew J.; Scott-Brown, Kenneth C.; Tatler, Benjamin W.

    2013-01-01

    Where people look when viewing a scene has been a much explored avenue of vision research (e.g., see Tatler, 2009). Current understanding of eye guidance suggests that a combination of high and low-level factors influence fixation selection (e.g., Torralba et al., 2006), but that there are also strong biases toward the center of an image (Tatler, 2007). However, situations where we view multiplexed scenes are becoming increasingly common, and it is unclear how visual inspection might be arranged when content lacks normal semantic or spatial structure. Here we use the central bias to examine how gaze behavior is organized in scenes that are presented in their normal format, or disrupted by scrambling the quadrants and separating them by space. In Experiment 1, scrambling scenes had the strongest influence on gaze allocation. Observers were highly biased by the quadrant center, although physical space did not enhance this bias. However, the center of the display still contributed to fixation selection above chance, and was most influential early in scene viewing. When the top left quadrant was held constant across all conditions in Experiment 2, fixation behavior was significantly influenced by the overall arrangement of the display, with fixations being biased toward the quadrant center when the other three quadrants were scrambled (despite the visual information in this quadrant being identical in all conditions). When scenes are scrambled into four quadrants and semantic contiguity is disrupted, observers no longer appear to view the content as a single scene (despite it consisting of the same visual information overall), but rather anchor visual inspection around the four separate “sub-scenes.” Moreover, the frame of reference that observers use when viewing the multiplex seems to change across viewing time: from an early bias toward the display center to a later bias toward quadrant centers. PMID:24069008

  18. A rare ocular complication after a heart transplant: toxoplasma retinitis.

    PubMed

    Kervan, Umit; Ozdamar, Yasemin; Yurdakok, Okan; Kucuker, Seref Alp; Pac, Mustafa

    2014-02-01

    Ocular infections after a heart transplant are rare; but when present, they generally appear during the first year after surgery. Ocular infections may cause significant loss of vision and morbidity if not diagnosed early. For that reason, heart transplant patients should undergo a routine visual examination during follow-up. We report our experience regarding the followup and treatment of a case of toxoplasma retinitis diagnosed in one of our heart transplant recipients.

  19. Giant cell arteritis: a review

    PubMed Central

    Patil, Pravin; Karia, Niral; Jain, Shaifali; Dasgupta, Bhaskar

    2013-01-01

    Giant cell arteritis is the most common vasculitis in Caucasians. Acute visual loss in one or both eyes is by far the most feared and irreversible complication of giant cell arteritis. This article reviews recent guidelines on early recognition of systemic, cranial, and ophthalmic manifestations, and current management and diagnostic strategies and advances in imaging. We share our experience of the fast track pathway and imaging in associated disorders, such as large-vessel vasculitis. PMID:28539785

  20. Spatial attention increases high-frequency gamma synchronisation in human medial visual cortex.

    PubMed

    Koelewijn, Loes; Rich, Anina N; Muthukumaraswamy, Suresh D; Singh, Krish D

    2013-10-01

    Visual information processing involves the integration of stimulus and goal-driven information, requiring neuronal communication. Gamma synchronisation is linked to neuronal communication, and is known to be modulated in visual cortex both by stimulus properties and voluntarily-directed attention. Stimulus-driven modulations of gamma activity are particularly associated with early visual areas such as V1, whereas attentional effects are generally localised to higher visual areas such as V4. The absence of a gamma increase in early visual cortex is at odds with robust attentional enhancements found with other measures of neuronal activity in this area. Here we used magnetoencephalography (MEG) to explore the effect of spatial attention on gamma activity in human early visual cortex using a highly effective gamma-inducing stimulus and strong attentional manipulation. In separate blocks, subjects tracked either a parafoveal grating patch that induced gamma activity in contralateral medial visual cortex, or a small line at fixation, effectively attending away from the gamma-inducing grating. Both items were always present, but rotated unpredictably and independently of each other. The rotating grating induced gamma synchronisation in medial visual cortex at 30-70 Hz, and in lateral visual cortex at 60-90 Hz, regardless of whether it was attended. Directing spatial attention to the grating increased gamma synchronisation in medial visual cortex, but only at 60-90 Hz. These results suggest that the generally found increase in gamma activity by spatial attention can be localised to early visual cortex in humans, and that stimulus and goal-driven modulations may be mediated at different frequencies within the gamma range. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Global motion perception deficits in autism are reflected as early as primary visual cortex.

    PubMed

    Robertson, Caroline E; Thomas, Cibu; Kravitz, Dwight J; Wallace, Gregory L; Baron-Cohen, Simon; Martin, Alex; Baker, Chris I

    2014-09-01

    Individuals with autism are often characterized as 'seeing the trees, but not the forest'-attuned to individual details in the visual world at the expense of the global percept they compose. Here, we tested the extent to which global processing deficits in autism reflect impairments in (i) primary visual processing; or (ii) decision-formation, using an archetypal example of global perception, coherent motion perception. In an event-related functional MRI experiment, 43 intelligence quotient and age-matched male participants (21 with autism, age range 15-27 years) performed a series of coherent motion perception judgements in which the amount of local motion signals available to be integrated into a global percept was varied by controlling stimulus viewing duration (0.2 or 0.6 s) and the proportion of dots moving in the correct direction (coherence: 4%, 15%, 30%, 50%, or 75%). Both typical participants and those with autism evidenced the same basic pattern of accuracy in judging the direction of motion, with performance decreasing with reduced coherence and shorter viewing durations. Critically, these effects were exaggerated in autism: despite equal performance at the long duration, performance was more strongly reduced by shortening viewing duration in autism (P < 0.015) and decreasing stimulus coherence (P < 0.008). To assess the neural correlates of these effects we focused on the responses of primary visual cortex and the middle temporal area, critical in the early visual processing of motion signals, as well as a region in the intraparietal sulcus thought to be involved in perceptual decision-making. The behavioural results were mirrored in both primary visual cortex and the middle temporal area, with a greater reduction in response at short, compared with long, viewing durations in autism compared with controls (both P < 0.018). In contrast, there was no difference between the groups in the intraparietal sulcus (P > 0.574). These findings suggest that reduced global motion perception in autism is driven by an atypical response early in visual processing and may reflect a fundamental perturbation in neural circuitry. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Face recognition increases during saccade preparation.

    PubMed

    Lin, Hai; Rizak, Joshua D; Ma, Yuan-ye; Yang, Shang-chuan; Chen, Lin; Hu, Xin-tian

    2014-01-01

    Face perception is integral to human perception system as it underlies social interactions. Saccadic eye movements are frequently made to bring interesting visual information, such as faces, onto the fovea for detailed processing. Just before eye movement onset, the processing of some basic features, such as the orientation, of an object improves at the saccade landing point. Interestingly, there is also evidence that indicates faces are processed in early visual processing stages similar to basic features. However, it is not known whether this early enhancement of processing includes face recognition. In this study, three experiments were performed to map the timing of face presentation to the beginning of the eye movement in order to evaluate pre-saccadic face recognition. Faces were found to be similarly processed as simple objects immediately prior to saccadic movements. Starting ∼ 120 ms before a saccade to a target face, independent of whether or not the face was surrounded by other faces, the face recognition gradually improved and the critical spacing of the crowding decreased as saccade onset was approaching. These results suggest that an upcoming saccade prepares the visual system for new information about faces at the saccade landing site and may reduce the background in a crowd to target the intended face. This indicates an important role of pre-saccadic eye movement signals in human face recognition.

  3. The Concept of Happiness as Conveyed in Visual Representations: Analysis of the Work of Early Childhood Educators

    ERIC Educational Resources Information Center

    Russo-Zimet, Gila; Segel, Sarit

    2014-01-01

    This research was designed to examine how early-childhood educators pursuing their graduate degrees perceive the concept of happiness, as conveyed in visual representations. The research methodology combines qualitative and quantitative paradigms using the metaphoric collage, a tool used to analyze visual and verbal aspects. The research…

  4. An Examination of Characteristics Related to the Social Skills of Youths with Visual Impairments

    ERIC Educational Resources Information Center

    Zebehazy, Kim T.; Smith, Thomas J.

    2011-01-01

    From an early age, children with visual impairments can be at a disadvantage for developing social skills. Since vision plays a role in the early development of social behaviors and of social cognition, the lack of visual cues could lead to difficulties in initiating and maintaining social interactions. The study presented here investigated…

  5. The cradle of causal reasoning: newborns' preference for physical causality.

    PubMed

    Mascalzoni, Elena; Regolin, Lucia; Vallortigara, Giorgio; Simion, Francesca

    2013-05-01

    Perception of mechanical (i.e. physical) causality, in terms of a cause-effect relationship between two motion events, appears to be a powerful mechanism in our daily experience. In spite of a growing interest in the earliest causal representations, the role of experience in the origin of this sensitivity is still a matter of dispute. Here, we asked the question about the innate origin of causal perception, never tested before at birth. Three experiments were carried out to investigate sensitivity at birth to some visual spatiotemporal cues present in a launching event. Newborn babies, only a few hours old, showed that they significantly preferred a physical causality event (i.e. Michotte's Launching effect) when matched to a delay event (i.e. a delayed launching; Experiment 1) or to a non-causal event completely identical to the causal one except for the order of the displacements of the two objects involved which was swapped temporally (Experiment 3). This preference for the launching event, moreover, also depended on the continuity of the trajectory between the objects involved in the event (Experiment 2). These results support the hypothesis that the human system possesses an early available, possibly innate basic mechanism to compute causality, such a mechanism being sensitive to the additive effect of certain well-defined spatiotemporal cues present in the causal event independently of any prior visual experience. © 2013 Blackwell Publishing Ltd.

  6. Novel hybrid technology for early diagnostics of sepsis

    NASA Astrophysics Data System (ADS)

    Saknite, Inga; Grabovskis, Andris; Kazune, Sigita; Rubins, Uldis; Marcinkevics, Zbignevs; Volceka, Karina; Kviesis-Kipge, Edgars; Spigulis, Janis

    2017-02-01

    Sepsis is a potentially fatal disease with mortality rate as high as 50% in patients with septic shock; mortality rate can increase by 7.6% per hour if appropriate treatment is not started. Internationally accepted guidelines for diagnosis of sepsis rely on vital sign monitoring and laboratory tests in order to recognize organ failure. This pilot study aims to explore the potential of hyperspectral and thermal imaging techniques to identify and quantify early alterations in skin oxygenation and perfusion induced by sepsis. The study comprises both physiological model experiments on healthy volunteers in a laboratory environment, as well as screening case series of patients with septic shock in the intensive care department. Hyperspectral imaging is used to determine one of the main characteristic visual signs of skin oxygenation abnormalities - skin mottling, whereas changes in peripheral perfusion have been visualized by thermal imaging as heterogeneous skin temperature areas. In order to mimic septic skin mottling in a reproducible way in laboratory environment, arterial occlusion provocation test was utilized on healthy volunteers. Visualization of oxygen saturation by hyperspectral imaging allows diagnosing microcirculatory alterations induced by sepsis earlier than visual assessment of mottling. Thermal images of sepsis patients in the clinic clearly reveal hotspots produced by perforating arteries, as well as cold regions of low blood supply. The results of this pilot study show that thermal imaging in combination with hyperspectral imaging allows the determination of oxygen supply and utilization in critically ill septic patients.

  7. Intermittent regime of brain activity at the early, bias-guided stage of perceptual learning.

    PubMed

    Nikolaev, Andrey R; Gepshtein, Sergei; van Leeuwen, Cees

    2016-11-01

    Perceptual learning improves visual performance. Among the plausible mechanisms of learning, reduction of perceptual bias has been studied the least. Perceptual bias may compensate for lack of stimulus information, but excessive reliance on bias diminishes visual discriminability. We investigated the time course of bias in a perceptual grouping task and studied the associated cortical dynamics in spontaneous and evoked EEG. Participants reported the perceived orientation of dot groupings in ambiguous dot lattices. Performance improved over a 1-hr period as indicated by the proportion of trials in which participants preferred dot groupings favored by dot proximity. The proximity-based responses were compromised by perceptual bias: Vertical groupings were sometimes preferred to horizontal ones, independent of dot proximity. In the evoked EEG activity, greater amplitude of the N1 component for horizontal than vertical responses indicated that the bias was most prominent in conditions of reduced visual discriminability. The prominence of bias decreased in the course of the experiment. Although the bias was still prominent, prestimulus activity was characterized by an intermittent regime of alternating modes of low and high alpha power. Responses were more biased in the former mode, indicating that perceptual bias was deployed actively to compensate for stimulus uncertainty. Thus, early stages of perceptual learning were characterized by episodes of greater reliance on prior visual preferences, alternating with episodes of receptivity to stimulus information. In the course of learning, the former episodes disappeared, and biases reappeared only infrequently.

  8. Eye movement-invariant representations in the human visual system.

    PubMed

    Nishimoto, Shinji; Huth, Alexander G; Bilenko, Natalia Y; Gallant, Jack L

    2017-01-01

    During natural vision, humans make frequent eye movements but perceive a stable visual world. It is therefore likely that the human visual system contains representations of the visual world that are invariant to eye movements. Here we present an experiment designed to identify visual areas that might contain eye-movement-invariant representations. We used functional MRI to record brain activity from four human subjects who watched natural movies. In one condition subjects were required to fixate steadily, and in the other they were allowed to freely make voluntary eye movements. The movies used in each condition were identical. We reasoned that the brain activity recorded in a visual area that is invariant to eye movement should be similar under fixation and free viewing conditions. In contrast, activity in a visual area that is sensitive to eye movement should differ between fixation and free viewing. We therefore measured the similarity of brain activity across repeated presentations of the same movie within the fixation condition, and separately between the fixation and free viewing conditions. The ratio of these measures was used to determine which brain areas are most likely to contain eye movement-invariant representations. We found that voxels located in early visual areas are strongly affected by eye movements, while voxels in ventral temporal areas are only weakly affected by eye movements. These results suggest that the ventral temporal visual areas contain a stable representation of the visual world that is invariant to eye movements made during natural vision.

  9. Numerosity processing in early visual cortex.

    PubMed

    Fornaciai, Michele; Brannon, Elizabeth M; Woldorff, Marty G; Park, Joonkoo

    2017-08-15

    While parietal cortex is thought to be critical for representing numerical magnitudes, we recently reported an event-related potential (ERP) study demonstrating selective neural sensitivity to numerosity over midline occipital sites very early in the time course, suggesting the involvement of early visual cortex in numerosity processing. However, which specific brain area underlies such early activation is not known. Here, we tested whether numerosity-sensitive neural signatures arise specifically from the initial stages of visual cortex, aiming to localize the generator of these signals by taking advantage of the distinctive folding pattern of early occipital cortices around the calcarine sulcus, which predicts an inversion of polarity of ERPs arising from these areas when stimuli are presented in the upper versus lower visual field. Dot arrays, including 8-32dots constructed systematically across various numerical and non-numerical visual attributes, were presented randomly in either the upper or lower visual hemifields. Our results show that neural responses at about 90ms post-stimulus were robustly sensitive to numerosity. Moreover, the peculiar pattern of polarity inversion of numerosity-sensitive activity at this stage suggested its generation primarily in V2 and V3. In contrast, numerosity-sensitive ERP activity at occipito-parietal channels later in the time course (210-230ms) did not show polarity inversion, indicating a subsequent processing stage in the dorsal stream. Overall, these results demonstrate that numerosity processing begins in one of the earliest stages of the cortical visual stream. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Shape and color naming are inherently asymmetrical: Evidence from practice-based interference.

    PubMed

    Protopapas, Athanassios; Markatou, Artemis; Samaras, Evangelos; Piokos, Andreas

    2017-01-01

    Stroop interference is characterized by strong asymmetry between word and color naming such that the former is faster and interferes with the latter but not vice versa. This asymmetry is attributed to differential experience with naming in the two dimensions, i.e., words and colors. Here we show that training on visual-verbal paired associate tasks equivalent to color and shape naming, not involving word reading, leads to strongly asymmetric interference patterns. In two experiments adults practiced naming colors and shapes, one dimension more extensively (10days) than the other (2days), depending on group assignment. One experiment used novel shapes (ideograms) and the other familiar geometric shapes, associated with nonsense syllables. In a third experiment participants practiced naming either colors or shapes using cross-category shape and color names, respectively, for 12days. Across experiments, despite equal training of the two groups in naming the two different dimensions, color naming was strongly affected by shape even after extensive practice, whereas shape naming was resistant to interference. To reconcile these findings with theoretical accounts of interference, reading may be conceptualized as involving visual-verbal associations akin to shape naming. An inherent or early-developing advantage for naming shapes may provide an evolutionary substrate for the invention and development of reading. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Relationship between macular pigment and visual function in subjects with early age-related macular degeneration.

    PubMed

    Akuffo, Kwadwo Owusu; Nolan, John M; Peto, Tunde; Stack, Jim; Leung, Irene; Corcoran, Laura; Beatty, Stephen

    2017-02-01

    To investigate the relationship between macular pigment (MP) and visual function in subjects with early age-related macular degeneration (AMD). 121 subjects with early AMD enrolled as part of the Central Retinal Enrichment Supplementation Trial (CREST; ISRCTN13894787) were assessed using a range of psychophysical measures of visual function, including best corrected visual acuity (BCVA), letter contrast sensitivity (CS), mesopic and photopic CS, mesopic and photopic glare disability (GD), photostress recovery time (PRT), reading performance and subjective visual function, using the National Eye Institute Visual Function Questionnaire-25 (NEI VFQ-25). MP was measured using customised heterochromatic flicker photometry. Letter CS, mesopic and photopic CS, photopic GD and mean reading speed were each significantly (p<0.05) associated with MP across a range of retinal eccentricities, and these statistically significant relationships persisted after controlling for age, sex and cataract grade. BCVA, NEI VFQ-25 score, PRT and mesopic GD were unrelated to MP after controlling for age, sex and cataract grade (p>0.05, for all). MP relates positively to many measures of visual function in unsupplemented subjects with early AMD. The CREST trial will investigate whether enrichment of MP influences visual function among those afflicted with this condition. ISRCTN13894787. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Sandwich masking eliminates both visual awareness of faces and face-specific brain activity through a feedforward mechanism.

    PubMed

    Harris, Joseph A; Wu, Chien-Te; Woldorff, Marty G

    2011-06-07

    It is generally agreed that considerable amounts of low-level sensory processing of visual stimuli can occur without conscious awareness. On the other hand, the degree of higher level visual processing that occurs in the absence of awareness is as yet unclear. Here, event-related potential (ERP) measures of brain activity were recorded during a sandwich-masking paradigm, a commonly used approach for attenuating conscious awareness of visual stimulus content. In particular, the present study used a combination of ERP activation contrasts to track both early sensory-processing ERP components and face-specific N170 ERP activations, in trials with versus without awareness. The electrophysiological measures revealed that the sandwich masking abolished the early face-specific N170 neural response (peaking at ~170 ms post-stimulus), an effect that paralleled the abolition of awareness of face versus non-face image content. Furthermore, however, the masking appeared to render a strong attenuation of earlier feedforward visual sensory-processing signals. This early attenuation presumably resulted in insufficient information being fed into the higher level visual system pathways specific to object category processing, thus leading to unawareness of the visual object content. These results support a coupling of visual awareness and neural indices of face processing, while also demonstrating an early low-level mechanism of interference in sandwich masking.

  13. Prior Knowledge about Objects Determines Neural Color Representation in Human Visual Cortex.

    PubMed

    Vandenbroucke, A R E; Fahrenfort, J J; Meuwese, J D I; Scholte, H S; Lamme, V A F

    2016-04-01

    To create subjective experience, our brain must translate physical stimulus input by incorporating prior knowledge and expectations. For example, we perceive color and not wavelength information, and this in part depends on our past experience with colored objects ( Hansen et al. 2006; Mitterer and de Ruiter 2008). Here, we investigated the influence of object knowledge on the neural substrates underlying subjective color vision. In a functional magnetic resonance imaging experiment, human subjects viewed a color that lay midway between red and green (ambiguous with respect to its distance from red and green) presented on either typical red (e.g., tomato), typical green (e.g., clover), or semantically meaningless (nonsense) objects. Using decoding techniques, we could predict whether subjects viewed the ambiguous color on typical red or typical green objects based on the neural response of veridical red and green. This shift of neural response for the ambiguous color did not occur for nonsense objects. The modulation of neural responses was observed in visual areas (V3, V4, VO1, lateral occipital complex) involved in color and object processing, as well as frontal areas. This demonstrates that object memory influences wavelength information relatively early in the human visual system to produce subjective color vision. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Odours reduce the magnitude of object substitution masking for matching visual targets in females.

    PubMed

    Robinson, Amanda K; Laning, Julia; Reinhard, Judith; Mattingley, Jason B

    2016-08-01

    Recent evidence suggests that olfactory stimuli can influence early stages of visual processing, but there has been little focus on whether such olfactory-visual interactions convey an advantage in visual object identification. Moreover, despite evidence that some aspects of olfactory perception are superior in females than males, no study to date has examined whether olfactory influences on vision are gender-dependent. We asked whether inhalation of familiar odorants can modulate participants' ability to identify briefly flashed images of matching visual objects under conditions of object substitution masking (OSM). Across two experiments, we had male and female participants (N = 36 in each group) identify masked visual images of odour-related objects (e.g., orange, rose, mint) amongst nonodour-related distracters (e.g., box, watch). In each trial, participants inhaled a single odour that either matched or mismatched the masked, odour-related target. Target detection performance was analysed using a signal detection (d') approach. In females, but not males, matching odours significantly reduced OSM relative to mismatching odours, suggesting that familiar odours can enhance the salience of briefly presented visual objects. We conclude that olfactory cues exert a subtle influence on visual processes by transiently enhancing the salience of matching object representations. The results add to a growing body of literature that points towards consistent gender differences in olfactory perception.

  15. The Sensory Components of High-Capacity Iconic Memory and Visual Working Memory

    PubMed Central

    Bradley, Claire; Pearson, Joel

    2012-01-01

    Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more “high-level” alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of three different visual features (color, orientation and motion) across a range of durations from 0 to 6 s. We found that the amount of information stored in iconic memory is smaller for motion than for color or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ∼2 s. Further experiments showed that performance for the 10 items at 1 s was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory, and an effortful “lower-capacity” visual working memory. PMID:23055993

  16. The Perspective Structure of Visual Space

    PubMed Central

    2015-01-01

    Luneburg’s model has been the reference for experimental studies of visual space for almost seventy years. His claim for a curved visual space has been a source of inspiration for visual scientists as well as philosophers. The conclusion of many experimental studies has been that Luneburg’s model does not describe visual space in various tasks and conditions. Remarkably, no alternative model has been suggested. The current study explores perspective transformations of Euclidean space as a model for visual space. Computations show that the geometry of perspective spaces is considerably different from that of Euclidean space. Collinearity but not parallelism is preserved in perspective space and angles are not invariant under translation and rotation. Similar relationships have shown to be properties of visual space. Alley experiments performed early in the nineteenth century have been instrumental in hypothesizing curved visual spaces. Alleys were computed in perspective space and compared with reconstructed alleys of Blumenfeld. Parallel alleys were accurately described by perspective geometry. Accurate distance alleys were derived from parallel alleys by adjusting the interstimulus distances according to the size-distance invariance hypothesis. Agreement between computed and experimental alleys and accommodation of experimental results that rejected Luneburg’s model show that perspective space is an appropriate model for how we perceive orientations and angles. The model is also appropriate for perceived distance ratios between stimuli but fails to predict perceived distances. PMID:27648222

  17. Visual influences on auditory spatial learning

    PubMed Central

    King, Andrew J.

    2008-01-01

    The visual and auditory systems frequently work together to facilitate the identification and localization of objects and events in the external world. Experience plays a critical role in establishing and maintaining congruent visual–auditory associations, so that the different sensory cues associated with targets that can be both seen and heard are synthesized appropriately. For stimulus location, visual information is normally more accurate and reliable and provides a reference for calibrating the perception of auditory space. During development, vision plays a key role in aligning neural representations of space in the brain, as revealed by the dramatic changes produced in auditory responses when visual inputs are altered, and is used throughout life to resolve short-term spatial conflicts between these modalities. However, accurate, and even supra-normal, auditory localization abilities can be achieved in the absence of vision, and the capacity of the mature brain to relearn to localize sound in the presence of substantially altered auditory spatial cues does not require visuomotor feedback. Thus, while vision is normally used to coordinate information across the senses, the neural circuits responsible for spatial hearing can be recalibrated in a vision-independent fashion. Nevertheless, early multisensory experience appears to be crucial for the emergence of an ability to match signals from different sensory modalities and therefore for the outcome of audiovisual-based rehabilitation of deaf patients in whom hearing has been restored by cochlear implantation. PMID:18986967

  18. Is race erased? Decoding race from patterns of neural activity when skin color is not diagnostic of group boundaries.

    PubMed

    Ratner, Kyle G; Kaul, Christian; Van Bavel, Jay J

    2013-10-01

    Several theories suggest that people do not represent race when it does not signify group boundaries. However, race is often associated with visually salient differences in skin tone and facial features. In this study, we investigated whether race could be decoded from distributed patterns of neural activity in the fusiform gyri and early visual cortex when visual features that often covary with race were orthogonal to group membership. To this end, we used multivariate pattern analysis to examine an fMRI dataset that was collected while participants assigned to mixed-race groups categorized own-race and other-race faces as belonging to their newly assigned group. Whereas conventional univariate analyses provided no evidence of race-based responses in the fusiform gyri or early visual cortex, multivariate pattern analysis suggested that race was represented within these regions. Moreover, race was represented in the fusiform gyri to a greater extent than early visual cortex, suggesting that the fusiform gyri results do not merely reflect low-level perceptual information (e.g. color, contrast) from early visual cortex. These findings indicate that patterns of activation within specific regions of the visual cortex may represent race even when overall activation in these regions is not driven by racial information.

  19. Brain-Stimulation Induced Blindsight: Unconscious Vision or Response Bias?

    PubMed Central

    Lloyd, David A.; Abrahamyan, Arman; Harris, Justin A.

    2013-01-01

    A dissociation between visual awareness and visual discrimination is referred to as “blindsight”. Blindsight results from loss of function of the primary visual cortex (V1) which can occur due to cerebrovascular accidents (i.e. stroke-related lesions). There are also numerous reports of similar, though reversible, effects on vision induced by transcranial Magnetic Stimulation (TMS) to early visual cortex. These effects point to V1 as the “gate” of visual awareness and have strong implications for understanding the neurological underpinnings of consciousness. It has been argued that evidence for the dissociation between awareness of, and responses to, visual stimuli can be a measurement artifact of the use of a high response criterion under yes-no measures of visual awareness when compared with the criterion free forced-choice responses. This difference between yes-no and forced-choice measures suggests that evidence for a dissociation may actually be normal near-threshold conscious vision. Here we describe three experiments that tested visual performance in normal subjects when their visual awareness was suppressed by applying TMS to the occipital pole. The nature of subjects’ performance whilst undergoing occipital TMS was then verified by use of a psychophysical measure (d') that is independent of response criteria. This showed that there was no genuine dissociation in visual sensitivity measured by yes-no and forced-choice responses. These results highlight that evidence for visual sensitivity in the absence of awareness must be analysed using a bias-free psychophysical measure, such as d', In order to confirm whether or not visual performance is truly unconscious. PMID:24324837

  20. Brain-stimulation induced blindsight: unconscious vision or response bias?

    PubMed

    Lloyd, David A; Abrahamyan, Arman; Harris, Justin A

    2013-01-01

    A dissociation between visual awareness and visual discrimination is referred to as "blindsight". Blindsight results from loss of function of the primary visual cortex (V1) which can occur due to cerebrovascular accidents (i.e. stroke-related lesions). There are also numerous reports of similar, though reversible, effects on vision induced by transcranial Magnetic Stimulation (TMS) to early visual cortex. These effects point to V1 as the "gate" of visual awareness and have strong implications for understanding the neurological underpinnings of consciousness. It has been argued that evidence for the dissociation between awareness of, and responses to, visual stimuli can be a measurement artifact of the use of a high response criterion under yes-no measures of visual awareness when compared with the criterion free forced-choice responses. This difference between yes-no and forced-choice measures suggests that evidence for a dissociation may actually be normal near-threshold conscious vision. Here we describe three experiments that tested visual performance in normal subjects when their visual awareness was suppressed by applying TMS to the occipital pole. The nature of subjects' performance whilst undergoing occipital TMS was then verified by use of a psychophysical measure (d') that is independent of response criteria. This showed that there was no genuine dissociation in visual sensitivity measured by yes-no and forced-choice responses. These results highlight that evidence for visual sensitivity in the absence of awareness must be analysed using a bias-free psychophysical measure, such as d', In order to confirm whether or not visual performance is truly unconscious.

  1. Characterizing the effects of feature salience and top-down attention in the early visual system.

    PubMed

    Poltoratski, Sonia; Ling, Sam; McCormack, Devin; Tong, Frank

    2017-07-01

    The visual system employs a sophisticated balance of attentional mechanisms: salient stimuli are prioritized for visual processing, yet observers can also ignore such stimuli when their goals require directing attention elsewhere. A powerful determinant of visual salience is local feature contrast: if a local region differs from its immediate surround along one or more feature dimensions, it will appear more salient. We used high-resolution functional MRI (fMRI) at 7T to characterize the modulatory effects of bottom-up salience and top-down voluntary attention within multiple sites along the early visual pathway, including visual areas V1-V4 and the lateral geniculate nucleus (LGN). Observers viewed arrays of spatially distributed gratings, where one of the gratings immediately to the left or right of fixation differed from all other items in orientation or motion direction, making it salient. To investigate the effects of directed attention, observers were cued to attend to the grating to the left or right of fixation, which was either salient or nonsalient. Results revealed reliable additive effects of top-down attention and stimulus-driven salience throughout visual areas V1-hV4. In comparison, the LGN exhibited significant attentional enhancement but was not reliably modulated by orientation- or motion-defined salience. Our findings indicate that top-down effects of spatial attention can influence visual processing at the earliest possible site along the visual pathway, including the LGN, whereas the processing of orientation- and motion-driven salience primarily involves feature-selective interactions that take place in early cortical visual areas. NEW & NOTEWORTHY While spatial attention allows for specific, goal-driven enhancement of stimuli, salient items outside of the current focus of attention must also be prioritized. We used 7T fMRI to compare salience and spatial attentional enhancement along the early visual hierarchy. We report additive effects of attention and bottom-up salience in early visual areas, suggesting that salience enhancement is not contingent on the observer's attentional state. Copyright © 2017 the American Physiological Society.

  2. The Anatomy of Non-conscious Recognition Memory.

    PubMed

    Rosenthal, Clive R; Soto, David

    2016-11-01

    Cortical regions as early as primary visual cortex have been implicated in recognition memory. Here, we outline the challenges that this presents for neurobiological accounts of recognition memory. We conclude that understanding the role of early visual cortex (EVC) in this process will require the use of protocols that mask stimuli from visual awareness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. An occlusion paradigm to assess the importance of the timing of the quiet eye fixation.

    PubMed

    Vine, Samuel J; Lee, Don Hyung; Walters-Symons, Rosanna; Wilson, Mark R

    2017-02-01

    The aim of the study was to explore the significance of the 'timing' of the quiet eye (QE), and the relative importance of late (online control) or early (pre-programming) visual information for accuracy. Twenty-seven skilled golfers completed a putting task using an occlusion paradigm with three conditions: early (prior to backswing), late (during putter stroke), and no (control) occlusion of vision. Performance, QE, and kinematic variables relating to the swing were measured. Results revealed that providing only early visual information (occluding late visual information) had a significant detrimental effect on performance and kinematic measures, compared to the control condition (no occlusion), despite QE durations being maintained. Conversely, providing only late visual information (occluding early visual information) was not significantly detrimental to performance or kinematics, with results similar to those in the control condition. These findings imply that the visual information extracted during movement execution - the late proportion of the QE - is critical when golf putting. The results challenge the predominant view that the QE serves only a pre-programming function. We propose that the different proportions of the QE (before and during movement) may serve different functions in supporting accuracy in golf putting.

  4. How the baby learns to see: Donald O. Hebb Award Lecture, Canadian Society for Brain, Behaviour, and Cognitive Science, Ottawa, June 2015.

    PubMed

    Maurer, Daphne

    2016-09-01

    Hebb's (1949) book The Organisation of Behaviour presented a novel hypothesis about how the baby learns to see. This article summarizes the results of my research program that evaluated Hebb's hypothesis: first, by studying infants' eye movements and initial perceptual abilities and second, by studying the effect of visual deprivation (e.g., congenital cataracts) on later perceptual development. Collectively, the results support Hebb's hypothesis that the baby does indeed learn to see. Early visual experience not only drives the baby's initial scanning of objects, but also sets up the neural architecture that will come to underlie adults' perception. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. High-frequency spectral ultrasound imaging (SUSI) visualizes early post-traumatic heterotopic ossification (HO) in a mouse model.

    PubMed

    Ranganathan, Kavitha; Hong, Xiaowei; Cholok, David; Habbouche, Joe; Priest, Caitlin; Breuler, Christopher; Chung, Michael; Li, John; Kaura, Arminder; Hsieh, Hsiao Hsin Sung; Butts, Jonathan; Ucer, Serra; Schwartz, Ean; Buchman, Steven R; Stegemann, Jan P; Deng, Cheri X; Levi, Benjamin

    2018-04-01

    Early treatment of heterotopic ossification (HO) is currently limited by delayed diagnosis due to limited visualization at early time points. In this study, we validate the use of spectral ultrasound imaging (SUSI) in an animal model to detect HO as early as one week after burn tenotomy. Concurrent SUSI, micro CT, and histology at 1, 2, 4, and 9weeks post-injury were used to follow the progression of HO after an Achilles tenotomy and 30% total body surface area burn (n=3-5 limbs per time point). To compare the use of SUSI in different types of injury models, mice (n=5 per group) underwent either burn/tenotomy or skin incision injury and were imaged using a 55MHz probe on VisualSonics VEVO 770 system at one week post injury to evaluate the ability of SUSI to distinguish between edema and HO. Average acoustic concentration (AAC) and average scatterer diameter (ASD) were calculated for each ultrasound image frame. Micro CT was used to calculate the total volume of HO. Histology was used to confirm bone formation. Using SUSI, HO was visualized as early as 1week after injury. HO was visualized earliest by 4weeks after injury by micro CT. The average acoustic concentration of HO was 33% more than that of the control limb (n=5). Spectroscopic foci of HO present at 1week that persisted throughout all time points correlated with the HO present at 9weeks on micro CT imaging. SUSI visualizes HO as early as one week after injury in an animal model. SUSI represents a new imaging modality with promise for early diagnosis of HO. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. More than blindsight: Case report of a child with extraordinary visual capacity following perinatal bilateral occipital lobe injury.

    PubMed

    Mundinano, Inaki-Carril; Chen, Juan; de Souza, Mitchell; Sarossy, Marc G; Joanisse, Marc F; Goodale, Melvyn A; Bourne, James A

    2017-11-13

    Injury to the primary visual cortex (V1, striate cortex) and the geniculostriate pathway in adults results in cortical blindness, abolishing conscious visual perception. Early studies by Larry Weiskrantz and colleagues demonstrated that some patients with an occipital-lobe injury exhibited a degree of unconscious vision and visually-guided behaviour within the blind field. A more recent focus has been the observed phenomenon whereby early-life injury to V1 often results in the preservation of visual perception in both monkeys and humans. These findings initiated a concerted effort on multiple fronts, including nonhuman primate studies, to uncover the neural substrate/s of the spared conscious vision. In both adult and early-life cases of V1 injury, evidence suggests the involvement of the Middle Temporal area (MT) of the extrastriate visual cortex, which is an integral component area of the dorsal stream and is also associated with visually-guided behaviors. Because of the limited number of early-life V1 injury cases for humans, the outstanding question in the field is what secondary visual pathways are responsible for this extraordinary capacity? Here we report for the first time a case of a child (B.I.) who suffered a bilateral occipital-lobe injury in the first two weeks postnatally due to medium-chain acyl-Co-A dehydrogenase deficiency. At 6 years of age, B.I. underwent a battery of neurophysiological tests, as well as structural and diffusion MRI and ophthalmic examination at 7 years. Despite the extensive bilateral occipital cortical damage, B.I. has extensive conscious visual abilities, is not blind, and can use vision to navigate his environment. Furthermore, unlike blindsight patients, he can readily and consciously identify happy and neutral faces and colors, tasks associated with ventral stream processing. These findings suggest significant re-routing of visual information. To identify the putative visual pathway/s responsible for this ability, MRI tractography of secondary visual pathways connecting MT with the lateral geniculate nucleus (LGN) and the inferior pulvinar (PI) were analysed. Results revealed an increased PI-MT pathway in the left hemisphere, suggesting that this pulvinar relay could be the neural pathway affording the preserved visual capacity following an early-life lesion of V1. These findings corroborate anatomical evidence from monkeys showing an enhanced PI-MT pathway following an early-life lesion of V1, compared to adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mid-level perceptual features contain early cues to animacy.

    PubMed

    Long, Bria; Störmer, Viola S; Alvarez, George A

    2017-06-01

    While substantial work has focused on how the visual system achieves basic-level recognition, less work has asked about how it supports large-scale distinctions between objects, such as animacy and real-world size. Previous work has shown that these dimensions are reflected in our neural object representations (Konkle & Caramazza, 2013), and that objects of different real-world sizes have different mid-level perceptual features (Long, Konkle, Cohen, & Alvarez, 2016). Here, we test the hypothesis that animates and manmade objects also differ in mid-level perceptual features. To do so, we generated synthetic images of animals and objects that preserve some texture and form information ("texforms"), but are not identifiable at the basic level. We used visual search efficiency as an index of perceptual similarity, as search is slower when targets are perceptually similar to distractors. Across three experiments, we find that observers can find animals faster among objects than among other animals, and vice versa, and that these results hold when stimuli are reduced to unrecognizable texforms. Electrophysiological evidence revealed that this mixed-animacy search advantage emerges during early stages of target individuation, and not during later stages associated with semantic processing. Lastly, we find that perceived curvature explains part of the mixed-animacy search advantage and that observers use perceived curvature to classify texforms as animate/inanimate. Taken together, these findings suggest that mid-level perceptual features, including curvature, contain cues to whether an object may be animate versus manmade. We propose that the visual system capitalizes on these early cues to facilitate object detection, recognition, and classification.

  8. Family-Centered Early Intervention Visual Impairment Services through Matrix Session Planning

    ERIC Educational Resources Information Center

    Ely, Mindy S.; Gullifor, Kateri; Hollinshead, Tara

    2017-01-01

    Early intervention visual impairment services are built on a model that values family. Matrix session planning pulls together parent priorities, family routines, and identified strategies in a way that helps families and early intervention professionals outline a plan that can both highlight long-term goals and focus on what can be done today.…

  9. Bioplausible multiscale filtering in retino-cortical processing as a mechanism in perceptual grouping.

    PubMed

    Nematzadeh, Nasim; Powers, David M W; Lewis, Trent W

    2017-12-01

    Why does our visual system fail to reconstruct reality, when we look at certain patterns? Where do Geometrical illusions start to emerge in the visual pathway? How far should we take computational models of vision with the same visual ability to detect illusions as we do? This study addresses these questions, by focusing on a specific underlying neural mechanism involved in our visual experiences that affects our final perception. Among many types of visual illusion, 'Geometrical' and, in particular, 'Tilt Illusions' are rather important, being characterized by misperception of geometric patterns involving lines and tiles in combination with contrasting orientation, size or position. Over the last decade, many new neurophysiological experiments have led to new insights as to how, when and where retinal processing takes place, and the encoding nature of the retinal representation that is sent to the cortex for further processing. Based on these neurobiological discoveries, we provide computer simulation evidence from modelling retinal ganglion cells responses to some complex Tilt Illusions, suggesting that the emergence of tilt in these illusions is partially related to the interaction of multiscale visual processing performed in the retina. The output of our low-level filtering model is presented for several types of Tilt Illusion, predicting that the final tilt percept arises from multiple-scale processing of the Differences of Gaussians and the perceptual interaction of foreground and background elements. The model is a variation of classical receptive field implementation for simple cells in early stages of vision with the scales tuned to the object/texture sizes in the pattern. Our results suggest that this model has a high potential in revealing the underlying mechanism connecting low-level filtering approaches to mid- and high-level explanations such as 'Anchoring theory' and 'Perceptual grouping'.

  10. Numerical cognition is resilient to dramatic changes in early sensory experience.

    PubMed

    Kanjlia, Shipra; Feigenson, Lisa; Bedny, Marina

    2018-06-20

    Humans and non-human animals can approximate large visual quantities without counting. The approximate number representations underlying this ability are noisy, with the amount of noise proportional to the quantity being represented. Numerate humans also have access to a separate system for representing exact quantities using number symbols and words; it is this second, exact system that supports most of formal mathematics. Although numerical approximation abilities and symbolic number abilities are distinct in representational format and in their phylogenetic and ontogenetic histories, they appear to be linked throughout development--individuals who can more precisely discriminate quantities without counting are better at math. The origins of this relationship are debated. On the one hand, symbolic number abilities may be directly linked to, perhaps even rooted in, numerical approximation abilities. On the other hand, the relationship between the two systems may simply reflect their independent relationships with visual abilities. To test this possibility, we asked whether approximate number and symbolic math abilities are linked in congenitally blind individuals who have never experienced visual sets or used visual strategies to learn math. Congenitally blind and blind-folded sighted participants completed an auditory numerical approximation task, as well as a symbolic arithmetic task and non-math control tasks. We found that the precision of approximate number representations was identical across congenitally blind and sighted groups, suggesting that the development of the Approximate Number System (ANS) does not depend on visual experience. Crucially, the relationship between numerical approximation and symbolic math abilities is preserved in congenitally blind individuals. These data support the idea that the Approximate Number System and symbolic number abilities are intrinsically linked, rather than indirectly linked through visual abilities. Copyright © 2018. Published by Elsevier B.V.

  11. Perceptual Learning as a potential treatment for amblyopia: a mini-review

    PubMed Central

    Levi, Dennis M.; Li, Roger W.

    2009-01-01

    Amblyopia is a developmental abnormality that results from physiological alterations in the visual cortex and impairs form vision. It is a consequence of abnormal binocular visual experience during the “sensitive period” early in life. While amblyopia can often be reversed when treated early, conventional treatment is generally not undertaken in older children and adults. A number of studies over the last twelve years or so suggest that Perceptual Learning (PL) may provide an important new method for treating amblyopia. The aim of this mini-review is to provide a critical review and “meta-analysis” of perceptual learning in adults and children with amblyopia, with a view to extracting principles that might make PL more effective and efficient. Specifically we evaluate: What factors influence the outcome of perceptual learning?Specificity and generalization – two sides of the coin.Do the improvements last?How does PL improve visual function?Should PL be part of the treatment armamentarium? A review of the extant studies makes it clear that practicing a visual task results in a long-lasting improvement in performance in an amblyopic eye. The improvement is generally strongest for the trained eye, task, stimulus and orientation, but appears to have a broader spatial frequency bandwidth than in normal vision. Importantly, practicing on a variety of different tasks and stimuli seems to transfer to improved visual acuity. Perceptual learning operates via a reduction of internal neural noise and/or through more efficient use of the stimulus information by retuning the weighting of the information. The success of PL raises the question of whether it should become a standard part of the armamentarium for the clinical treatment of amblyopia, and suggests several important principles for effective perceptual learning in amblyopia. PMID:19250947

  12. Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder.

    PubMed

    Vlamings, Petra Hendrika Johanna Maria; Jonkman, Lisa Marthe; van Daalen, Emma; van der Gaag, Rutger Jan; Kemner, Chantal

    2010-12-15

    A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD and the relation with abnormal SF processing. We investigated whether young ASD children show abnormalities in low spatial frequency (LSF, global) and high spatial frequency (HSF, detailed) processing and explored whether these are crucially involved in the early development of face processing. Three- to 4-year-old children with ASD (n = 22) were compared with developmentally delayed children without ASD (n = 17). Spatial frequency processing was studied by recording visual evoked potentials from visual brain areas while children passively viewed gratings (HSF/LSF). In addition, children watched face stimuli with different expressions, filtered to include only HSF or LSF. Enhanced activity in visual brain areas was found in response to HSF versus LSF information in children with ASD, in contrast to control subjects. Furthermore, facial-expression processing was also primarily driven by detail in ASD. Enhanced visual processing of detailed (HSF) information is present early in ASD and occurs for neutral (gratings), as well as for socially relevant stimuli (facial expressions). These data indicate that there is a general abnormality in visual SF processing in early ASD and are in agreement with suggestions that a fast LSF subcortical face processing route might be affected in ASD. This could suggest that abnormal visual processing is causative in the development of social problems in ASD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Final visual acuity results in the early treatment for retinopathy of prematurity study.

    PubMed

    Good, William V; Hardy, Robert J; Dobson, Velma; Palmer, Earl A; Phelps, Dale L; Tung, Betty; Redford, Maryann

    2010-06-01

    To compare visual acuity at 6 years of age in eyes that received early treatment for high-risk prethreshold retinopathy of prematurity (ROP) with conventionally managed eyes. Infants with symmetrical, high-risk prethreshold ROP (n = 317) had one eye randomized to earlier treatment at high-risk prethreshold disease and the other eye managed conventionally, treated if ROP progressed to threshold severity. For asymmetric cases (n = 84), the high-risk prethreshold eye was randomized to either early treatment or conventional management. The main outcome measure was ETDRS visual acuity measured at 6 years of age by masked testers. Retinal structure was assessed as a secondary outcome. Analysis of all subjects with high-risk prethreshold ROP showed no statistically significant benefit for early treatment (24.3% vs 28.6% [corrected] unfavorable outcome; P = .15). Analysis of 6-year visual acuity results according to the Type 1 and 2 clinical algorithm showed a benefit for Type 1 eyes (25.1% vs 32.8%; P = .02) treated early but not Type 2 eyes (23.6% vs 19.4%; P = .37). Early-treated eyes showed a significantly better structural outcome compared with conventionally managed eyes (8.9% vs 15.2% unfavorable outcome; P < .001), with no greater risk of ocular complications. Early treatment for Type 1 high-risk prethreshold eyes improved visual acuity outcomes at 6 years of age. Early treatment for Type 2 high-risk prethreshold eyes did not. Application to Clinical Practice Type 1 eyes, not Type 2 eyes, should be treated early. These results are particularly important considering that 52% of Type 2 high-risk prethreshold eyes underwent regression of ROP without requiring treatment. Trial Registration clinicaltrials.gov Identifier: NCT00027222.

  14. Attention, automaticity, and awareness in synesthesia.

    PubMed

    Mattingley, Jason B

    2009-03-01

    The phenomenon of synesthesia has occupied the thoughts of philosophers and artists for decades. With the advent modern behavioral and brain imaging techniques, scientific research on synesthesia has also moved into the mainstream of thought. Here I provide a cognitive neuroscience perspective on the condition, with a particular emphasis on grapheme-color synesthesia, the most common variant, in which individuals report vivid and consistent experiences of color in association with numerals, letters, and words. Behavioral studies have revealed several fundamental properties of induced synesthetic colors. First, although they seem to arise automatically, without the need for voluntary control, they are strongly modulated by selective attention. Second, they attain salience relatively early in visual processing, and so can influence perceptual judgments and guide focal attention in cluttered, achromatic displays. Third, brain activity during synesthetic color experiences arises from within the ventral temporal lobe, including color-selective area V4. It has been speculated that grapheme-color synesthesia arises from disinhibited feedback or abnormal cross-wiring between brain regions involved in extracting visual form and color.

  15. Perception of biological motion from size-invariant body representations.

    PubMed

    Lappe, Markus; Wittinghofer, Karin; de Lussanet, Marc H E

    2015-01-01

    The visual recognition of action is one of the socially most important and computationally demanding capacities of the human visual system. It combines visual shape recognition with complex non-rigid motion perception. Action presented as a point-light animation is a striking visual experience for anyone who sees it for the first time. Information about the shape and posture of the human body is sparse in point-light animations, but it is essential for action recognition. In the posturo-temporal filter model of biological motion perception posture information is picked up by visual neurons tuned to the form of the human body before body motion is calculated. We tested whether point-light stimuli are processed through posture recognition of the human body form by using a typical feature of form recognition, namely size invariance. We constructed a point-light stimulus that can only be perceived through a size-invariant mechanism. This stimulus changes rapidly in size from one image to the next. It thus disrupts continuity of early visuo-spatial properties but maintains continuity of the body posture representation. Despite this massive manipulation at the visuo-spatial level, size-changing point-light figures are spontaneously recognized by naive observers, and support discrimination of human body motion.

  16. Spatiotemporal dynamics of brain activity during the transition from visually guided to memory-guided force control

    PubMed Central

    Poon, Cynthia; Chin-Cottongim, Lisa G.; Coombes, Stephen A.; Corcos, Daniel M.

    2012-01-01

    It is well established that the prefrontal cortex is involved during memory-guided tasks whereas visually guided tasks are controlled in part by a frontal-parietal network. However, the nature of the transition from visually guided to memory-guided force control is not as well established. As such, this study examines the spatiotemporal pattern of brain activity that occurs during the transition from visually guided to memory-guided force control. We measured 128-channel scalp electroencephalography (EEG) in healthy individuals while they performed a grip force task. After visual feedback was removed, the first significant change in event-related activity occurred in the left central region by 300 ms, followed by changes in prefrontal cortex by 400 ms. Low-resolution electromagnetic tomography (LORETA) was used to localize the strongest activity to the left ventral premotor cortex and ventral prefrontal cortex. A second experiment altered visual feedback gain but did not require memory. In contrast to memory-guided force control, altering visual feedback gain did not lead to early changes in the left central and midline prefrontal regions. Decreasing the spatial amplitude of visual feedback did lead to changes in the midline central region by 300 ms, followed by changes in occipital activity by 400 ms. The findings show that subjects rely on sensorimotor memory processes involving left ventral premotor cortex and ventral prefrontal cortex after the immediate transition from visually guided to memory-guided force control. PMID:22696535

  17. TMS over the right precuneus reduces the bilateral field advantage in visual short term memory capacity.

    PubMed

    Kraft, Antje; Dyrholm, Mads; Kehrer, Stefanie; Kaufmann, Christian; Bruening, Jovita; Kathmann, Norbert; Bundesen, Claus; Irlbacher, Kerstin; Brandt, Stephan A

    2015-01-01

    Several studies have demonstrated a bilateral field advantage (BFA) in early visual attentional processing, that is, enhanced visual processing when stimuli are spread across both visual hemifields. The results are reminiscent of a hemispheric resource model of parallel visual attentional processing, suggesting more attentional resources on an early level of visual processing for bilateral displays [e.g. Sereno AB, Kosslyn SM. Discrimination within and between hemifields: a new constraint on theories of attention. Neuropsychologia 1991;29(7):659-75.]. Several studies have shown that the BFA extends beyond early stages of visual attentional processing, demonstrating that visual short term memory (VSTM) capacity is higher when stimuli are distributed bilaterally rather than unilaterally. Here we examine whether hemisphere-specific resources are also evident on later stages of visual attentional processing. Based on the Theory of Visual Attention (TVA) [Bundesen C. A theory of visual attention. Psychol Rev 1990;97(4):523-47.] we used a whole report paradigm that allows investigating visual attention capacity variability in unilateral and bilateral displays during navigated repetitive transcranial magnetic stimulation (rTMS) of the precuneus region. A robust BFA in VSTM storage capacity was apparent after rTMS over the left precuneus and in the control condition without rTMS. In contrast, the BFA diminished with rTMS over the right precuneus. This finding indicates that the right precuneus plays a causal role in VSTM capacity, particularly in bilateral visual displays. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Mathematical neuroscience: from neurons to circuits to systems.

    PubMed

    Gutkin, Boris; Pinto, David; Ermentrout, Bard

    2003-01-01

    Applications of mathematics and computational techniques to our understanding of neuronal systems are provided. Reduction of membrane models to simplified canonical models demonstrates how neuronal spike-time statistics follow from simple properties of neurons. Averaging over space allows one to derive a simple model for the whisker barrel circuit and use this to explain and suggest several experiments. Spatio-temporal pattern formation methods are applied to explain the patterns seen in the early stages of drug-induced visual hallucinations.

  19. Visual cortex responses reflect temporal structure of continuous quasi-rhythmic sensory stimulation.

    PubMed

    Keitel, Christian; Thut, Gregor; Gross, Joachim

    2017-02-01

    Neural processing of dynamic continuous visual input, and cognitive influences thereon, are frequently studied in paradigms employing strictly rhythmic stimulation. However, the temporal structure of natural stimuli is hardly ever fully rhythmic but possesses certain spectral bandwidths (e.g. lip movements in speech, gestures). Examining periodic brain responses elicited by strictly rhythmic stimulation might thus represent ideal, yet isolated cases. Here, we tested how the visual system reflects quasi-rhythmic stimulation with frequencies continuously varying within ranges of classical theta (4-7Hz), alpha (8-13Hz) and beta bands (14-20Hz) using EEG. Our findings substantiate a systematic and sustained neural phase-locking to stimulation in all three frequency ranges. Further, we found that allocation of spatial attention enhances EEG-stimulus locking to theta- and alpha-band stimulation. Our results bridge recent findings regarding phase locking ("entrainment") to quasi-rhythmic visual input and "frequency-tagging" experiments employing strictly rhythmic stimulation. We propose that sustained EEG-stimulus locking can be considered as a continuous neural signature of processing dynamic sensory input in early visual cortices. Accordingly, EEG-stimulus locking serves to trace the temporal evolution of rhythmic as well as quasi-rhythmic visual input and is subject to attentional bias. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Experience and information loss in auditory and visual memory.

    PubMed

    Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K

    2017-07-01

    Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.

  1. Altered white matter in early visual pathways of humans with amblyopia.

    PubMed

    Allen, Brian; Spiegel, Daniel P; Thompson, Benjamin; Pestilli, Franco; Rokers, Bas

    2015-09-01

    Amblyopia is a visual disorder caused by poorly coordinated binocular input during development. Little is known about the impact of amblyopia on the white matter within the visual system. We studied the properties of six major visual white-matter pathways in a group of adults with amblyopia (n=10) and matched controls (n=10) using diffusion weighted imaging (DWI) and fiber tractography. While we did not find significant differences in diffusion properties in cortico-cortical pathways, patients with amblyopia exhibited increased mean diffusivity in thalamo-cortical visual pathways. These findings suggest that amblyopia may systematically alter the white matter properties of early visual pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Visual Spatial Cognition in Neurodegenerative Disease

    PubMed Central

    Possin, Katherine L.

    2011-01-01

    Visual spatial impairment is often an early symptom of neurodegenerative disease; however, this multi-faceted domain of cognition is not well-assessed by most typical dementia evaluations. Neurodegenerative diseases cause circumscribed atrophy in distinct neural networks, and accordingly, they impact visual spatial cognition in different and characteristic ways. Anatomically-focused visual spatial assessment can assist the clinician in making an early and accurate diagnosis. This article will review the literature on visual spatial cognition in neurodegenerative disease clinical syndromes, and where research is available, by neuropathologic diagnoses. Visual spatial cognition will be organized primarily according to the following schemes: bottom-up / top-down processing, dorsal / ventral stream processing, and egocentric / allocentric frames of reference. PMID:20526954

  3. Multisensory connections of monkey auditory cerebral cortex

    PubMed Central

    Smiley, John F.; Falchier, Arnaud

    2009-01-01

    Functional studies have demonstrated multisensory responses in auditory cortex, even in the primary and early auditory association areas. The features of somatosensory and visual responses in auditory cortex suggest that they are involved in multiple processes including spatial, temporal and object-related perception. Tract tracing studies in monkeys have demonstrated several potential sources of somatosensory and visual inputs to auditory cortex. These include potential somatosensory inputs from the retroinsular (RI) and granular insula (Ig) cortical areas, and from the thalamic posterior (PO) nucleus. Potential sources of visual responses include peripheral field representations of areas V2 and prostriata, as well as the superior temporal polysensory area (STP) in the superior temporal sulcus, and the magnocellular medial geniculate thalamic nucleus (MGm). Besides these sources, there are several other thalamic, limbic and cortical association structures that have multisensory responses and may contribute cross-modal inputs to auditory cortex. These connections demonstrated by tract tracing provide a list of potential inputs, but in most cases their significance has not been confirmed by functional experiments. It is possible that the somatosensory and visual modulation of auditory cortex are each mediated by multiple extrinsic sources. PMID:19619628

  4. Acuity-independent effects of visual deprivation on human visual cortex

    PubMed Central

    Hou, Chuan; Pettet, Mark W.; Norcia, Anthony M.

    2014-01-01

    Visual development depends on sensory input during an early developmental critical period. Deviation of the pointing direction of the two eyes (strabismus) or chronic optical blur (anisometropia) separately and together can disrupt the formation of normal binocular interactions and the development of spatial processing, leading to a loss of stereopsis and visual acuity known as amblyopia. To shed new light on how these two different forms of visual deprivation affect the development of visual cortex, we used event-related potentials (ERPs) to study the temporal evolution of visual responses in patients who had experienced either strabismus or anisometropia early in life. To make a specific statement about the locus of deprivation effects, we took advantage of a stimulation paradigm in which we could measure deprivation effects that arise either before or after a configuration-specific response to illusory contours (ICs). Extraction of ICs is known to first occur in extrastriate visual areas. Our ERP measurements indicate that deprivation via strabismus affects both the early part of the evoked response that occurs before ICs are formed as well as the later IC-selective response. Importantly, these effects are found in the normal-acuity nonamblyopic eyes of strabismic amblyopes and in both eyes of strabismic patients without amblyopia. The nonamblyopic eyes of anisometropic amblyopes, by contrast, are normal. Our results indicate that beyond the well-known effects of strabismus on the development of normal binocularity, it also affects the early stages of monocular feature processing in an acuity-independent fashion. PMID:25024230

  5. Decoding information about dynamically occluded objects in visual cortex

    PubMed Central

    Erlikhman, Gennady; Caplovitz, Gideon P.

    2016-01-01

    During dynamic occlusion, an object passes behind an occluding surface and then later reappears. Even when completely occluded from view, such objects are experienced as continuing to exist or persist behind the occluder, even though they are no longer visible. The contents and neural basis of this persistent representation remain poorly understood. Questions remain as to whether there is information maintained about the object itself (i.e. its shape or identity) or, non-object-specific information such as its position or velocity as it is tracked behind an occluder as well as which areas of visual cortex represent such information. Recent studies have found that early visual cortex is activated by “invisible” objects during visual imagery and by unstimulated regions along the path of apparent motion, suggesting that some properties of dynamically occluded objects may also be neurally represented in early visual cortex. We applied functional magnetic resonance imaging in human subjects to examine the representation of information within visual cortex during dynamic occlusion. For gradually occluded, but not for instantly disappearing objects, there was an increase in activity in early visual cortex (V1, V2, and V3). This activity was spatially-specific, corresponding to the occluded location in the visual field. However, the activity did not encode enough information about object identity to discriminate between different kinds of occluded objects (circles vs. stars) using MVPA. In contrast, object identity could be decoded in spatially-specific subregions of higher-order, topographically organized areas such as ventral, lateral, and temporal occipital areas (VO, LO, and TO) as well as the functionally defined LOC and hMT+. These results suggest that early visual cortex may represent the dynamically occluded object’s position or motion path, while later visual areas represent object-specific information. PMID:27663987

  6. When Early Experiences Build a Wall to Others’ Emotions: An Electrophysiological and Autonomic Study

    PubMed Central

    Ardizzi, Martina; Martini, Francesca; Umiltà, Maria Alessandra; Sestito, Mariateresa; Ravera, Roberto; Gallese, Vittorio

    2013-01-01

    Facial expression of emotions is a powerful vehicle for communicating information about others’ emotional states and it normally induces facial mimicry in the observers. The aim of this study was to investigate if early aversive experiences could interfere with emotion recognition, facial mimicry, and with the autonomic regulation of social behaviors. We conducted a facial emotion recognition task in a group of “street-boys” and in an age-matched control group. We recorded facial electromyography (EMG), a marker of facial mimicry, and respiratory sinus arrhythmia (RSA), an index of the recruitment of autonomic system promoting social behaviors and predisposition, in response to the observation of facial expressions of emotions. Results showed an over-attribution of anger, and reduced EMG responses during the observation of both positive and negative expressions only among street-boys. Street-boys also showed lower RSA after observation of facial expressions and ineffective RSA suppression during presentation of non-threatening expressions. Our findings suggest that early aversive experiences alter not only emotion recognition but also facial mimicry of emotions. These deficits affect the autonomic regulation of social behaviors inducing lower social predisposition after the visualization of facial expressions and an ineffective recruitment of defensive behavior in response to non-threatening expressions. PMID:23593374

  7. Mismatch Negativity with Visual-only and Audiovisual Speech

    PubMed Central

    Ponton, Curtis W.; Bernstein, Lynne E.; Auer, Edward T.

    2009-01-01

    The functional organization of cortical speech processing is thought to be hierarchical, increasing in complexity and proceeding from primary sensory areas centrifugally. The current study used the mismatch negativity (MMN) obtained with electrophysiology (EEG) to investigate the early latency period of visual speech processing under both visual-only (VO) and audiovisual (AV) conditions. Current density reconstruction (CDR) methods were used to model the cortical MMN generator locations. MMNs were obtained with VO and AV speech stimuli at early latencies (approximately 82-87 ms peak in time waveforms relative to the acoustic onset) and in regions of the right lateral temporal and parietal cortices. Latencies were consistent with bottom-up processing of the visible stimuli. We suggest that a visual pathway extracts phonetic cues from visible speech, and that previously reported effects of AV speech in classical early auditory areas, given later reported latencies, could be attributable to modulatory feedback from visual phonetic processing. PMID:19404730

  8. Perceived visual speed constrained by image segmentation

    NASA Technical Reports Server (NTRS)

    Verghese, P.; Stone, L. S.

    1996-01-01

    Little is known about how or where the visual system parses the visual scene into objects or surfaces. However, it is generally assumed that the segmentation and grouping of pieces of the image into discrete entities is due to 'later' processing stages, after the 'early' processing of the visual image by local mechanisms selective for attributes such as colour, orientation, depth, and motion. Speed perception is also thought to be mediated by early mechanisms tuned for speed. Here we show that manipulating the way in which an image is parsed changes the way in which local speed information is processed. Manipulations that cause multiple stimuli to appear as parts of a single patch degrade speed discrimination, whereas manipulations that perceptually divide a single large stimulus into parts improve discrimination. These results indicate that processes as early as speed perception may be constrained by the parsing of the visual image into discrete entities.

  9. Exploring Transformations in Caribbean Indigenous Social Networks through Visibility Studies: the Case of Late Pre-Colonial Landscapes in East-Guadeloupe (French West Indies).

    PubMed

    Brughmans, Tom; de Waal, Maaike S; Hofman, Corinne L; Brandes, Ulrik

    2018-01-01

    This paper presents a study of the visual properties of natural and Amerindian cultural landscapes in late pre-colonial East-Guadeloupe and of how these visual properties affected social interactions. Through a review of descriptive and formal visibility studies in Caribbean archaeology, it reveals that the ability of visual properties to affect past human behaviour is frequently evoked but the more complex of these hypotheses are rarely studied formally. To explore such complex hypotheses, the current study applies a range of techniques: total viewsheds, cumulative viewsheds, visual neighbourhood configurations and visibility networks. Experiments were performed to explore the control of seascapes, the functioning of hypothetical smoke signalling networks, the correlation of these visual properties with stylistic similarities of material culture found at sites and the change of visual properties over time. The results of these experiments suggest that only few sites in Eastern Guadeloupe are located in areas that are particularly suitable to visually control possible sea routes for short- and long-distance exchange; that visual control over sea areas was not a factor of importance for the existence of micro-style areas; that during the early phase of the Late Ceramic Age networks per landmass are connected and dense and that they incorporate all sites, a structure that would allow hypothetical smoke signalling networks; and that the visual properties of locations of the late sites Morne Souffleur and Morne Cybèle-1 were not ideal for defensive purposes. These results led us to propose a multi-scalar hypothesis for how lines of sight between settlements in the Lesser Antilles could have structured past human behaviour: short-distance visibility networks represent the structuring of navigation and communication within landmasses, whereas the landmasses themselves served as focal points for regional navigation and interaction. We conclude by emphasising that since our archaeological theories about visual properties usually take a multi-scalar landscape perspective, there is a need for this perspective to be reflected in our formal visibility methods as is made possible by the methods used in this paper.

  10. Implicit Race Bias Decreases the Similarity of Neural Representations of Black and White Faces

    PubMed Central

    Brosch, Tobias; Bar-David, Eyal; Phelps, Elizabeth A.

    2013-01-01

    Implicit race bias has been shown to affect decisions and behaviors. It may also change perceptual experience by increasing perceived differences between social groups. We investigated how this phenomenon may be expressed at the neural level by testing whether the distributed blood-oxygenation-level-dependent (BOLD) patterns representing Black and White faces are more dissimilar in participants with higher implicit race bias. We used multivoxel pattern analysis to predict the race of faces participants were viewing. We successfully predicted the race of the faces on the basis of BOLD activation patterns in early occipital visual cortex, occipital face area, and fusiform face area (FFA). Whereas BOLD activation patterns in early visual regions, likely reflecting different perceptual features, allowed successful prediction for all participants, successful prediction on the basis of BOLD activation patterns in FFA, a high-level face-processing region, was restricted to participants with high pro-White bias. These findings suggest that stronger implicit pro-White bias decreases the similarity of neural representations of Black and White faces. PMID:23300228

  11. Beyond Phonology: Visual Processes Predict Alphanumeric and Nonalphanumeric Rapid Naming in Poor Early Readers

    ERIC Educational Resources Information Center

    Kruk, Richard S.; Luther Ruban, Cassia

    2018-01-01

    Visual processes in Grade 1 were examined for their predictive influences in nonalphanumeric and alphanumeric rapid naming (RAN) in 51 poor early and 69 typical readers. In a lagged design, children were followed longitudinally from Grade 1 to Grade 3 over 5 testing occasions. RAN outcomes in early Grade 2 were predicted by speeded and nonspeeded…

  12. Adaptation in human visual cortex as a mechanism for rapid discrimination of aversive stimuli.

    PubMed

    Keil, Andreas; Stolarova, Margarita; Moratti, Stephan; Ray, William J

    2007-06-01

    The ability to react rapidly and efficiently to adverse stimuli is crucial for survival. Neuroscience and behavioral studies have converged to show that visual information associated with aversive content is processed quickly and accurately and is associated with rapid amplification of the neural responses. In particular, unpleasant visual information has repeatedly been shown to evoke increased cortical activity during early visual processing between 60 and 120 ms following the onset of a stimulus. However, the nature of these early responses is not well understood. Using neutral versus unpleasant colored pictures, the current report examines the time course of short-term changes in the human visual cortex when a subject is repeatedly exposed to simple grating stimuli in a classical conditioning paradigm. We analyzed changes in amplitude and synchrony of large-scale oscillatory activity across 2 days of testing, which included baseline measurements, 2 conditioning sessions, and a final extinction session. We found a gradual increase in amplitude and synchrony of very early cortical oscillations in the 20-35 Hz range across conditioning sessions, specifically for conditioned stimuli predicting aversive visual events. This increase for conditioned stimuli affected stimulus-locked cortical oscillations at a latency of around 60-90 ms and disappeared during extinction. Our findings suggest that reorganization of neural connectivity on the level of the visual cortex acts to optimize early perception of specific features indicative of emotional relevance.

  13. Dual processing of visual rotation for bipedal stance control.

    PubMed

    Day, Brian L; Muller, Timothy; Offord, Joanna; Di Giulio, Irene

    2016-10-01

    When standing, the gain of the body-movement response to a sinusoidally moving visual scene has been shown to get smaller with faster stimuli, possibly through changes in the apportioning of visual flow to self-motion or environment motion. We investigated whether visual-flow speed similarly influences the postural response to a discrete, unidirectional rotation of the visual scene in the frontal plane. Contrary to expectation, the evoked postural response consisted of two sequential components with opposite relationships to visual motion speed. With faster visual rotation the early component became smaller, not through a change in gain but by changes in its temporal structure, while the later component grew larger. We propose that the early component arises from the balance control system minimising apparent self-motion, while the later component stems from the postural system realigning the body with gravity. The source of visual motion is inherently ambiguous such that movement of objects in the environment can evoke self-motion illusions and postural adjustments. Theoretically, the brain can mitigate this problem by combining visual signals with other types of information. A Bayesian model that achieves this was previously proposed and predicts a decreasing gain of postural response with increasing visual motion speed. Here we test this prediction for discrete, unidirectional, full-field visual rotations in the frontal plane of standing subjects. The speed (0.75-48 deg s(-1) ) and direction of visual rotation was pseudo-randomly varied and mediolateral responses were measured from displacements of the trunk and horizontal ground reaction forces. The behaviour evoked by this visual rotation was more complex than has hitherto been reported, consisting broadly of two consecutive components with respective latencies of ∼190 ms and >0.7 s. Both components were sensitive to visual rotation speed, but with diametrically opposite relationships. Thus, the early component decreased with faster visual rotation, while the later component increased. Furthermore, the decrease in size of the early component was not achieved by a simple attenuation of gain, but by a change in its temporal structure. We conclude that the two components represent expressions of different motor functions, both pertinent to the control of bipedal stance. We propose that the early response stems from the balance control system attempting to minimise unintended body motion, while the later response arises from the postural control system attempting to align the body with gravity. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  14. The development of real-time stability supports visual working memory performance: Young children's feature binding can be improved through perceptual structure.

    PubMed

    Simmering, Vanessa R; Wood, Chelsey M

    2017-08-01

    Working memory is a basic cognitive process that predicts higher-level skills. A central question in theories of working memory development is the generality of the mechanisms proposed to explain improvements in performance. Prior theories have been closely tied to particular tasks and/or age groups, limiting their generalizability. The cognitive dynamics theory of visual working memory development has been proposed to overcome this limitation. From this perspective, developmental improvements arise through the coordination of cognitive processes to meet demands of different behavioral tasks. This notion is described as real-time stability, and can be probed through experiments that assess how changing task demands impact children's performance. The current studies test this account by probing visual working memory for colors and shapes in a change detection task that compares detection of changes to new features versus swaps in color-shape binding. In Experiment 1, 3- to 4-year-old children showed impairments specific to binding swaps, as predicted by decreased real-time stability early in development; 5- to 6-year-old children showed a slight advantage on binding swaps, but 7- to 8-year-old children and adults showed no difference across trial types. Experiment 2 tested the proposed explanation of young children's binding impairment through added perceptual structure, which supported the stability and precision of feature localization in memory-a process key to detecting binding swaps. This additional structure improved young children's binding swap detection, but not new-feature detection or adults' performance. These results provide further evidence for the cognitive dynamics and real-time stability explanation of visual working memory development. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Early Language Development in Infants and Toddlers with Fragile X Syndrome: Change over Time and the Role of Attention

    PubMed Central

    Kover, Sara T.; McCary, Lindsay M.; Ingram, Alexandra M.; Hatton, Deborah D.; Roberts, Jane E.

    2017-01-01

    Fragile X syndrome (FXS) is associated with significant language and communication delays, as well as problems with attention. This study investigated early language abilities in infants and toddlers with FXS (n = 13) and considered visual attention as a predictor of those skills. We found that language abilities increased over the study period of 9 to 24 months with moderate correlations among language assessments. In comparison to typically developing infants (n = 11), language skills were delayed beyond chronological age- and developmental level-expectations. Aspects of early visual attention predicted later language ability. Atypical visual attention is an important aspect of the FXS phenotype with implications for early language development, particularly in the domain of vocabulary. PMID:25715182

  16. Manipulating Bodily Presence Affects Cross-Modal Spatial Attention: A Virtual-Reality-Based ERP Study.

    PubMed

    Harjunen, Ville J; Ahmed, Imtiaj; Jacucci, Giulio; Ravaja, Niklas; Spapé, Michiel M

    2017-01-01

    Earlier studies have revealed cross-modal visuo-tactile interactions in endogenous spatial attention. The current research used event-related potentials (ERPs) and virtual reality (VR) to identify how the visual cues of the perceiver's body affect visuo-tactile interaction in endogenous spatial attention and at what point in time the effect takes place. A bimodal oddball task with lateralized tactile and visual stimuli was presented in two VR conditions, one with and one without visible hands, and one VR-free control with hands in view. Participants were required to silently count one type of stimulus and ignore all other stimuli presented in irrelevant modality or location. The presence of hands was found to modulate early and late components of somatosensory and visual evoked potentials. For sensory-perceptual stages, the presence of virtual or real hands was found to amplify attention-related negativity on the somatosensory N140 and cross-modal interaction in somatosensory and visual P200. For postperceptual stages, an amplified N200 component was obtained in somatosensory and visual evoked potentials, indicating increased response inhibition in response to non-target stimuli. The effect of somatosensory, but not visual, N200 enhanced when the virtual hands were present. The findings suggest that bodily presence affects sustained cross-modal spatial attention between vision and touch and that this effect is specifically present in ERPs related to early- and late-sensory processing, as well as response inhibition, but do not affect later attention and memory-related P3 activity. Finally, the experiments provide commeasurable scenarios for the estimation of the signal and noise ratio to quantify effects related to the use of a head mounted display (HMD). However, despite valid a-priori reasons for fearing signal interference due to a HMD, we observed no significant drop in the robustness of our ERP measurements.

  17. Manipulating Bodily Presence Affects Cross-Modal Spatial Attention: A Virtual-Reality-Based ERP Study

    PubMed Central

    Harjunen, Ville J.; Ahmed, Imtiaj; Jacucci, Giulio; Ravaja, Niklas; Spapé, Michiel M.

    2017-01-01

    Earlier studies have revealed cross-modal visuo-tactile interactions in endogenous spatial attention. The current research used event-related potentials (ERPs) and virtual reality (VR) to identify how the visual cues of the perceiver’s body affect visuo-tactile interaction in endogenous spatial attention and at what point in time the effect takes place. A bimodal oddball task with lateralized tactile and visual stimuli was presented in two VR conditions, one with and one without visible hands, and one VR-free control with hands in view. Participants were required to silently count one type of stimulus and ignore all other stimuli presented in irrelevant modality or location. The presence of hands was found to modulate early and late components of somatosensory and visual evoked potentials. For sensory-perceptual stages, the presence of virtual or real hands was found to amplify attention-related negativity on the somatosensory N140 and cross-modal interaction in somatosensory and visual P200. For postperceptual stages, an amplified N200 component was obtained in somatosensory and visual evoked potentials, indicating increased response inhibition in response to non-target stimuli. The effect of somatosensory, but not visual, N200 enhanced when the virtual hands were present. The findings suggest that bodily presence affects sustained cross-modal spatial attention between vision and touch and that this effect is specifically present in ERPs related to early- and late-sensory processing, as well as response inhibition, but do not affect later attention and memory-related P3 activity. Finally, the experiments provide commeasurable scenarios for the estimation of the signal and noise ratio to quantify effects related to the use of a head mounted display (HMD). However, despite valid a-priori reasons for fearing signal interference due to a HMD, we observed no significant drop in the robustness of our ERP measurements. PMID:28275346

  18. Blind Babies Play Program: A Model for Affordable, Sustainable Early Childhood Literacy Intervention through Play and Socialization

    ERIC Educational Resources Information Center

    Jacko, Virginia A.; Mayros, Roxann; Brady-Simmons, Carol; Chica, Isabel; Moore, J. Elton

    2013-01-01

    The Miami Lighthouse, in its 81 years of service to persons who are visually impaired (that is, those who are blind or have low vision), has adapted to meet the ever-changing needs of clients of all ages. To meet the significant needs of visually impaired children--more than 80% of early learning is visual (Blind Babies Foundation, 2012)--the…

  19. The Impact of Visual Communication on the Intersubjective Development of Early Parent?Child Interaction with 18- to 24-Month-Old Deaf Toddlers

    ERIC Educational Resources Information Center

    Loots, Gerrit; Devise, Isabel; Jacquet, Wolfgang

    2005-01-01

    This article presents a study that examined the impact of visual communication on the quality of the early interaction between deaf and hearing mothers and fathers and their deaf children aged between 18 and 24 months. Three communication mode groups of parent?deaf child dyads that differed by the use of signing and visual?tactile communication…

  20. Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome.

    PubMed

    Kogan, C S; Bertone, A; Cornish, K; Boutet, I; Der Kaloustian, V M; Andermann, E; Faubert, J; Chaudhuri, A

    2004-11-09

    Fragile X syndrome (FXS) is associated with neurologic deficits recently attributed to the magnocellular pathway of the lateral geniculate nucleus. To test the hypotheses that FXS individuals 1) have a pervasive visual motion perception impairment affecting neocortical circuits in the parietal lobe and 2) have deficits in integrative neocortical mechanisms necessary for perception of complex stimuli. Psychophysical tests of visual motion and form perception defined by either first-order (luminance) or second-order (texture) attributes were used to probe early and later occipito-temporal and occipito-parietal functioning. When compared to developmental- and age-matched controls, FXS individuals displayed severe impairments in first- and second-order motion perception. This deficit was accompanied by near normal perception for first-order form stimuli but not second-order form stimuli. Impaired visual motion processing for first- and second-order stimuli suggests that both early- and later-level neurologic function of the parietal lobe are affected in Fragile X syndrome (FXS). Furthermore, this deficit likely stems from abnormal input from the magnocellular compartment of the lateral geniculate nucleus. Impaired visual form and motion processing for complex visual stimuli with normal processing for simple (i.e., first-order) form stimuli suggests that FXS individuals have normal early form processing accompanied by a generalized impairment in neurologic mechanisms necessary for integrating all early visual input.

  1. Correlation between Macular Thickness and Visual Field in Early Open Angle Glaucoma: A Cross-Sectional Study.

    PubMed

    Fallahi Motlagh, Behzad; Sadeghi, Ali

    2017-01-01

    The aim of this study was to correlate macular thickness and visual field parameters in early glaucoma. A total of 104 eyes affected with early glaucoma were examined in a cross-sectional, prospective study. Visual field testing using both standard automated perimetry (SAP) and shortwave automated perimetry (SWAP) was performed. Global visual field parameters, including mean deviation (MD) and pattern standard deviation (PSD), were recorded and correlated with spectral domain optical coherence tomography (SD-OCT)-measured macular thickness and asymmetry. Average macular thickness correlated significantly with all measures of visual field including MD-SWAP (r = 0.42), MD-SAP (r = 0.41), PSD-SWAP (r = -0.23), and PSD-SAP (r = -0.21), with P-values <0.001 for all correlations. The mean MD scores (using both SWAP and SAP) were significantly higher in the eyes with thin than in those with intermediate average macular thickness. Intraeye (superior macula thickness - inferior macula thickness) asymmetries correlated significantly with both PSD-SWAP (r = 0.63, P < 0.001) and PSD-SAP (r = 0.26, P = 0.01) scores. This study revealed a significant correlation between macular thickness and visual field parameters in early glaucoma. The results of this study should make macular thickness measurements even more meaningful to glaucoma specialists.

  2. Developing Verbal and Visual Literacy through Experiences in the Visual Arts: 25 Tips for Teachers

    ERIC Educational Resources Information Center

    Johnson, Margaret H.

    2008-01-01

    Including talk about art--conversing with children about artwork, their own and others'--as a component of visual art activities extends children's experiences in and understanding of visual messages. Johnson discusses practices that help children develop visual and verbal expression through active experiences with the visual arts. She offers 25…

  3. Visual and Haptic Shape Processing in the Human Brain: Unisensory Processing, Multisensory Convergence, and Top-Down Influences.

    PubMed

    Lee Masson, Haemy; Bulthé, Jessica; Op de Beeck, Hans P; Wallraven, Christian

    2016-08-01

    Humans are highly adept at multisensory processing of object shape in both vision and touch. Previous studies have mostly focused on where visually perceived object-shape information can be decoded, with haptic shape processing receiving less attention. Here, we investigate visuo-haptic shape processing in the human brain using multivoxel correlation analyses. Importantly, we use tangible, parametrically defined novel objects as stimuli. Two groups of participants first performed either a visual or haptic similarity-judgment task. The resulting perceptual object-shape spaces were highly similar and matched the physical parameter space. In a subsequent fMRI experiment, objects were first compared within the learned modality and then in the other modality in a one-back task. When correlating neural similarity spaces with perceptual spaces, visually perceived shape was decoded well in the occipital lobe along with the ventral pathway, whereas haptically perceived shape information was mainly found in the parietal lobe, including frontal cortex. Interestingly, ventrolateral occipito-temporal cortex decoded shape in both modalities, highlighting this as an area capable of detailed visuo-haptic shape processing. Finally, we found haptic shape representations in early visual cortex (in the absence of visual input), when participants switched from visual to haptic exploration, suggesting top-down involvement of visual imagery on haptic shape processing. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Experience improves feature extraction in Drosophila.

    PubMed

    Peng, Yueqing; Xi, Wang; Zhang, Wei; Zhang, Ke; Guo, Aike

    2007-05-09

    Previous exposure to a pattern in the visual scene can enhance subsequent recognition of that pattern in many species from honeybees to humans. However, whether previous experience with a visual feature of an object, such as color or shape, can also facilitate later recognition of that particular feature from multiple visual features is largely unknown. Visual feature extraction is the ability to select the key component from multiple visual features. Using a visual flight simulator, we designed a novel protocol for visual feature extraction to investigate the effects of previous experience on visual reinforcement learning in Drosophila. We found that, after conditioning with a visual feature of objects among combinatorial shape-color features, wild-type flies exhibited poor ability to extract the correct visual feature. However, the ability for visual feature extraction was greatly enhanced in flies trained previously with that visual feature alone. Moreover, we demonstrated that flies might possess the ability to extract the abstract category of "shape" but not a particular shape. Finally, this experience-dependent feature extraction is absent in flies with defective MBs, one of the central brain structures in Drosophila. Our results indicate that previous experience can enhance visual feature extraction in Drosophila and that MBs are required for this experience-dependent visual cognition.

  5. Asymmetric Dichoptic Masking in Visual Cortex of Amblyopic Macaque Monkeys

    PubMed Central

    Shooner, Christopher; Hallum, Luke E.; García-Marín, Virginia; Kiorpes, Lynne

    2017-01-01

    In amblyopia, abnormal visual experience leads to an extreme form of eye dominance, in which vision through the nondominant eye is degraded. A key aspect of this disorder is perceptual suppression: the image seen by the stronger eye often dominates during binocular viewing, blocking the image of the weaker eye from reaching awareness. Interocular suppression is the focus of ongoing work aimed at understanding and treating amblyopia, yet its physiological basis remains unknown. We measured binocular interactions in visual cortex of anesthetized amblyopic monkeys (female Macaca nemestrina), using 96-channel “Utah” arrays to record from populations of neurons in V1 and V2. In an experiment reported recently (Hallum et al., 2017), we found that reduced excitatory input from the amblyopic eye (AE) revealed a form of balanced binocular suppression that is unaltered in amblyopia. Here, we report on the modulation of the gain of excitatory signals from the AE by signals from its dominant fellow eye (FE). Using a dichoptic masking technique, we found that AE responses to grating stimuli were attenuated by the presentation of a noise mask to the FE, as in a normal control animal. Responses to FE stimuli, by contrast, could not be masked from the AE. We conclude that a weakened ability of the amblyopic eye to modulate cortical response gain creates an imbalance of suppression that favors the dominant eye. SIGNIFICANCE STATEMENT In amblyopia, vision in one eye is impaired as a result of abnormal early visual experience. Behavioral observations in humans with amblyopia suggest that much of their visual loss is due to active suppression of their amblyopic eye. Here we describe experiments in which we studied binocular interactions in macaques with experimentally induced amblyopia. In normal monkeys, the gain of neuronal response to stimulation of one eye is modulated by contrast in the other eye, but in monkeys with amblyopia the balance of gain modulation is altered so that the weaker, amblyopic eye has little effect while the stronger fellow eye has a strong effect. This asymmetric suppression may be a key component of the perceptual losses in amblyopia. PMID:28760867

  6. Asymmetric Dichoptic Masking in Visual Cortex of Amblyopic Macaque Monkeys.

    PubMed

    Shooner, Christopher; Hallum, Luke E; Kumbhani, Romesh D; García-Marín, Virginia; Kelly, Jenna G; Majaj, Najib J; Movshon, J Anthony; Kiorpes, Lynne

    2017-09-06

    In amblyopia, abnormal visual experience leads to an extreme form of eye dominance, in which vision through the nondominant eye is degraded. A key aspect of this disorder is perceptual suppression: the image seen by the stronger eye often dominates during binocular viewing, blocking the image of the weaker eye from reaching awareness. Interocular suppression is the focus of ongoing work aimed at understanding and treating amblyopia, yet its physiological basis remains unknown. We measured binocular interactions in visual cortex of anesthetized amblyopic monkeys (female Macaca nemestrina ), using 96-channel "Utah" arrays to record from populations of neurons in V1 and V2. In an experiment reported recently (Hallum et al., 2017), we found that reduced excitatory input from the amblyopic eye (AE) revealed a form of balanced binocular suppression that is unaltered in amblyopia. Here, we report on the modulation of the gain of excitatory signals from the AE by signals from its dominant fellow eye (FE). Using a dichoptic masking technique, we found that AE responses to grating stimuli were attenuated by the presentation of a noise mask to the FE, as in a normal control animal. Responses to FE stimuli, by contrast, could not be masked from the AE. We conclude that a weakened ability of the amblyopic eye to modulate cortical response gain creates an imbalance of suppression that favors the dominant eye. SIGNIFICANCE STATEMENT In amblyopia, vision in one eye is impaired as a result of abnormal early visual experience. Behavioral observations in humans with amblyopia suggest that much of their visual loss is due to active suppression of their amblyopic eye. Here we describe experiments in which we studied binocular interactions in macaques with experimentally induced amblyopia. In normal monkeys, the gain of neuronal response to stimulation of one eye is modulated by contrast in the other eye, but in monkeys with amblyopia the balance of gain modulation is altered so that the weaker, amblyopic eye has little effect while the stronger fellow eye has a strong effect. This asymmetric suppression may be a key component of the perceptual losses in amblyopia. Copyright © 2017 the authors 0270-6474/17/378734-08$15.00/0.

  7. Demonstration of Tuning to Stimulus Orientation in the Human Visual Cortex: A High-Resolution fMRI Study with a Novel Continuous and Periodic Stimulation Paradigm

    PubMed Central

    Sun, Pei; Gardner, Justin L.; Costagli, Mauro; Ueno, Kenichi; Waggoner, R. Allen; Tanaka, Keiji; Cheng, Kang

    2013-01-01

    Cells in the animal early visual cortex are sensitive to contour orientations and form repeated structures known as orientation columns. At the behavioral level, there exist 2 well-known global biases in orientation perception (oblique effect and radial bias) in both animals and humans. However, their neural bases are still under debate. To unveil how these behavioral biases are achieved in the early visual cortex, we conducted high-resolution functional magnetic resonance imaging experiments with a novel continuous and periodic stimulation paradigm. By inserting resting recovery periods between successive stimulation periods and introducing a pair of orthogonal stimulation conditions that differed by 90° continuously, we focused on analyzing a blood oxygenation level-dependent response modulated by the change in stimulus orientation and reliably extracted orientation preferences of single voxels. We found that there are more voxels preferring horizontal and vertical orientations, a physiological substrate underlying the oblique effect, and that these over-representations of horizontal and vertical orientations are prevalent in the cortical regions near the horizontal- and vertical-meridian representations, a phenomenon related to the radial bias. Behaviorally, we also confirmed that there exists perceptual superiority for horizontal and vertical orientations around horizontal and vertical meridians, respectively. Our results, thus, refined the neural mechanisms of these 2 global biases in orientation perception. PMID:22661413

  8. Pupil size directly modulates the feedforward response in human primary visual cortex independently of attention.

    PubMed

    Bombeke, Klaas; Duthoo, Wout; Mueller, Sven C; Hopf, Jens-Max; Boehler, C Nico

    2016-02-15

    Controversy revolves around the question of whether psychological factors like attention and emotion can influence the initial feedforward response in primary visual cortex (V1). Although traditionally, the electrophysiological correlate of this response in humans (the C1 component) has been found to be unaltered by psychological influences, a number of recent studies have described attentional and emotional modulations. Yet, research into psychological effects on the feedforward V1 response has neglected possible direct contributions of concomitant pupil-size modulations, which are known to also occur under various conditions of attentional load and emotional state. Here we tested the hypothesis that such pupil-size differences themselves directly affect the feedforward V1 response. We report data from two complementary experiments, in which we used procedures that modulate pupil size without differences in attentional load or emotion while simultaneously recording pupil-size and EEG data. Our results confirm that pupil size indeed directly influences the feedforward V1 response, showing an inverse relationship between pupil size and early V1 activity. While it is unclear in how far this effect represents a functionally-relevant adaptation, it identifies pupil-size differences as an important modulating factor of the feedforward response of V1 and could hence represent a confounding variable in research investigating the neural influence of psychological factors on early visual processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. How well do you see what you hear? The acuity of visual-to-auditory sensory substitution

    PubMed Central

    Haigh, Alastair; Brown, David J.; Meijer, Peter; Proulx, Michael J.

    2013-01-01

    Sensory substitution devices (SSDs) aim to compensate for the loss of a sensory modality, typically vision, by converting information from the lost modality into stimuli in a remaining modality. “The vOICe” is a visual-to-auditory SSD which encodes images taken by a camera worn by the user into “soundscapes” such that experienced users can extract information about their surroundings. Here we investigated how much detail was resolvable during the early induction stages by testing the acuity of blindfolded sighted, naïve vOICe users. Initial performance was well above chance. Participants who took the test twice as a form of minimal training showed a marked improvement on the second test. Acuity was slightly but not significantly impaired when participants wore a camera and judged letter orientations “live”. A positive correlation was found between participants' musical training and their acuity. The relationship between auditory expertise via musical training and the lack of a relationship with visual imagery, suggests that early use of a SSD draws primarily on the mechanisms of the sensory modality being used rather than the one being substituted. If vision is lost, audition represents the sensory channel of highest bandwidth of those remaining. The level of acuity found here, and the fact it was achieved with very little experience in sensory substitution by naïve users is promising. PMID:23785345

  10. Predictive Coding or Evidence Accumulation? False Inference and Neuronal Fluctuations

    PubMed Central

    Friston, Karl J.; Kleinschmidt, Andreas

    2010-01-01

    Perceptual decisions can be made when sensory input affords an inference about what generated that input. Here, we report findings from two independent perceptual experiments conducted during functional magnetic resonance imaging (fMRI) with a sparse event-related design. The first experiment, in the visual modality, involved forced-choice discrimination of coherence in random dot kinematograms that contained either subliminal or periliminal motion coherence. The second experiment, in the auditory domain, involved free response detection of (non-semantic) near-threshold acoustic stimuli. We analysed fluctuations in ongoing neural activity, as indexed by fMRI, and found that neuronal activity in sensory areas (extrastriate visual and early auditory cortex) biases perceptual decisions towards correct inference and not towards a specific percept. Hits (detection of near-threshold stimuli) were preceded by significantly higher activity than both misses of identical stimuli or false alarms, in which percepts arise in the absence of appropriate sensory input. In accord with predictive coding models and the free-energy principle, this observation suggests that cortical activity in sensory brain areas reflects the precision of prediction errors and not just the sensory evidence or prediction errors per se. PMID:20369004

  11. Neurodevelopmental perspectives on dance learning: Insights from early adolescence and young adulthood.

    PubMed

    Sumanapala, Dilini K; Walbrin, Jon; Kirsch, Louise P; Cross, Emily S

    2018-01-01

    Studies investigating human motor learning and movement perception have shown that similar sensorimotor brain regions are engaged when we observe or perform action sequences. However, the way these networks enable translation of complex observed actions into motor commands-such as in the context of dance-remains poorly understood. Emerging evidence suggests that the ability to encode specific visuospatial and kinematic movement properties encountered via different routes of sensorimotor experience may be an integral component of action learning throughout development. Using a video game-based dance training paradigm, we demonstrate that patterns of voxel activity in visual and sensorimotor brain regions when perceiving movements following training are related to the sensory modalities through which these movements were encountered during whole-body dance training. Compared to adolescents, young adults in this study demonstrated more distinctive patterns of voxel activity in visual cortices in relation to different types of sensorimotor experience. This finding suggests that cortical maturity might influence the extent to which prior sensorimotor experiences shape brain activity when watching others in action, and potentially impact how we acquire new motor skills. © 2018 Elsevier B.V. All rights reserved.

  12. Visual Cortex Plasticity: A Complex Interplay of Genetic and Environmental Influences

    PubMed Central

    Maya-Vetencourt, José Fernando; Origlia, Nicola

    2012-01-01

    The central nervous system architecture is highly dynamic and continuously modified by sensory experience through processes of neuronal plasticity. Plasticity is achieved by a complex interplay of environmental influences and physiological mechanisms that ultimately activate intracellular signal transduction pathways regulating gene expression. In addition to the remarkable variety of transcription factors and their combinatorial interaction at specific gene promoters, epigenetic mechanisms that regulate transcription have emerged as conserved processes by which the nervous system accomplishes the induction of plasticity. Experience-dependent changes of DNA methylation patterns and histone posttranslational modifications are, in fact, recruited as targets of plasticity-associated signal transduction mechanisms. Here, we shall concentrate on structural and functional consequences of early sensory deprivation in the visual system and discuss how intracellular signal transduction pathways associated with experience regulate changes of chromatin structure and gene expression patterns that underlie these plastic phenomena. Recent experimental evidence for mechanisms of cross-modal plasticity following congenital or acquired sensory deprivation both in human and animal models will be considered as well. We shall also review different experimental strategies that can be used to achieve the recovery of sensory functions after long-term deprivation in humans. PMID:22852098

  13. Changes in Near Visual Acuity of Over Time in the Astronaut Corps

    NASA Technical Reports Server (NTRS)

    Taiym, Wafa; Wear, Mary L.; Locke, James; Mason, Sara; VanBaalen, Mary

    2014-01-01

    We hypothesized that visual impairment due to intracranial pressure (VIIP) would increase the rate of which presbyopia would occur in the astronaut population, with long durations flyers at an especially high risk. Presbyopia is characterized as the gradual loss of near visual acuity overtime due to a loss in ability to accommodate. It generally develops in the mid-40s and progresses until about age 65. This analysis considered annual vision exams conducted on active NASA astronauts with spaceflight experience currently between the ages of 40 to 60 years of age. Onset of presbyopia was characterized as a shift of at least 20 units on the standard Snellen test from one annual exam to the next. There were 236 short duration and 48 long duration flyers, the majority of whom did experience onset of presbyopia between age 40 and 60. This shift however, did not necessarily come after spaceflight. In comparing the short and long duration flyers the mean age of onset was 47 years old (SD+/-3.7). The mean of onset within the general population is 45 to 47 years old [1, 2]. The mean age of the onset of presbyopia as compared to the general population indicates that space flight does not induce early development of presbyopia.

  14. A preconscious neural mechanism of hypnotically altered colors: a double case study.

    PubMed

    Koivisto, Mika; Kirjanen, Svetlana; Revonsuo, Antti; Kallio, Sakari

    2013-01-01

    Hypnotic suggestions may change the perceived color of objects. Given that chromatic stimulus information is processed rapidly and automatically by the visual system, how can hypnotic suggestions affect perceived colors in a seemingly immediate fashion? We studied the mechanisms of such color alterations by measuring electroencephalography in two highly suggestible participants as they perceived briefly presented visual shapes under posthypnotic color alternation suggestions such as "all the squares are blue". One participant consistently reported seeing the suggested colors. Her reports correlated with enhanced evoked upper beta-band activity (22 Hz) 70-120 ms after stimulus in response to the shapes mentioned in the suggestion. This effect was not observed in a control condition where the participants merely tried to simulate the effects of the suggestion on behavior. The second participant neither reported color alterations nor showed the evoked beta activity, although her subjective experience and event-related potentials were changed by the suggestions. The results indicate a preconscious mechanism that first compares early visual input with a memory representation of the suggestion and consequently triggers the color alteration process in response to the objects specified by the suggestion. Conscious color experience is not purely the result of bottom-up processing but it can be modulated, at least in some individuals, by top-down factors such as hypnotic suggestions.

  15. [Aging affects early stage direction selectivity of MT cells in rhesus monkeys].

    PubMed

    Liang, Zhen; Chen, Yue-Ming; Meng, Xue; Wang, Yi; Zhou, Bao-Zhuo; Xie, Ying-Ying; He, Wen-Sheng

    2012-10-01

    The middle temporal area (MT/V5) plays an important role in motion processing. Neurons in this area have a strongly selective response to the moving direction of objects and as such, the selectivity of MT neurons was proposed to be a neural mechanism for the perception of motion. Our previous studies have found degradation in direction selectivity of MT neurons in old monkeys, but this direction selectivity was calculated during the whole response time and the results were not able to uncover the mechanism of motion perception over a time course. Furthermore, experiments have found that direction selectivity was enhanced by attention at a later stage. Therefore, the response should be excluded in experiments with anesthesia. To further characterize the neural mechanism over a time course, we investigated the age-related changes of direction selectivity in the early stage by comparing the proportions of direction selective MT cells in old and young macaque monkeys using in vivo single-cell recording techniques. Our results show that the proportion of early-stage-direction-selective cells is lower in old monkeys than in young monkeys, and that the early stage direction bias (esDB) of old MT cells decreased relative to young MT cells. Furthermore, the proportion of MT cells having strong early stage direction selectivity in old monkeys was decreased. Accordingly, the functional degradation in the early stage of MT cells may mediate perceptual declines of old primates in visual motion tasks.

  16. Experience-dependent changes in the development of face preferences in infant rhesus monkeys.

    PubMed

    Parr, Lisa A; Murphy, Lauren; Feczko, Eric; Brooks, Jenna; Collantes, Marie; Heitz, Thomas R

    2016-12-01

    It is well known that early experience shapes the development of visual perception for faces in humans. However, the effect of experience on the development of social attention in non-human primates is unknown. In two studies, we examined the effect of cumulative social experience on developmental changes in attention to the faces of unfamiliar conspecifics or heterospecifics, and mom versus an unfamiliar female. From birth, infant rhesus monkeys preferred to look at conspecific compared to heterospecific faces, but this pattern reversed over time. In contrast, no consistent differences were found for attention to mom's face compared to an unfamiliar female. These results suggest differential roles of social experience in shaping the development of face preferences in infant monkeys. Results have important implications for establishing normative trajectories for the development of face preferences in an animal model of human social behavior. © 2016 Wiley Periodicals, Inc.

  17. Development of a vocabulary of object shapes in a child with a very-early-acquired visual agnosia: a unique case.

    PubMed

    Funnell, Elaine; Wilding, John

    2011-02-01

    We report a longitudinal study of an exceptional child (S.R.) whose early-acquired visual agnosia, following encephalitis at 8 weeks of age, did not prevent her from learning to construct an increasing vocabulary of visual object forms (drawn from different categories), albeit slowly. S.R. had problems perceiving subtle differences in shape; she was unable to segment local letters within global displays; and she would bring complex scenes close to her eyes: a symptom suggestive of an attempt to reduce visual crowding. Investigations revealed a robust ability to use the gestalt grouping factors of proximity and collinearity to detect fragmented forms in noisy backgrounds, compared with a very weak ability to segment fragmented forms on the basis of contrasts of shape. When contrasts in spatial grouping and shape were pitted against each other, shape made little contribution, consistent with problems in perceiving complex scenes, but when shape contrast was varied, and spatial grouping was held constant, S.R. showed the same hierarchy of difficulty as the controls, although her responses were slowed. This is the first report of a child's visual-perceptual development following very early neurological impairments to the visual cortex. Her ability to learn to perceive visual shape following damage at a rudimentary stage of perceptual development contrasts starkly with the loss of such ability in childhood cases of acquired visual agnosia that follow damage to the established perceptual system. Clearly, there is a critical period during which neurological damage to the highly active, early developing visual-perceptual system does not prevent but only impairs further learning.

  18. Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli

    PubMed Central

    Störmer, Viola S.; McDonald, John J.; Hillyard, Steven A.

    2009-01-01

    The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex. PMID:20007778

  19. Cross-modal cueing of attention alters appearance and early cortical processing of visual stimuli.

    PubMed

    Störmer, Viola S; McDonald, John J; Hillyard, Steven A

    2009-12-29

    The question of whether attention makes sensory impressions appear more intense has been a matter of debate for over a century. Recent psychophysical studies have reported that attention increases apparent contrast of visual stimuli, but the issue continues to be debated. We obtained converging neurophysiological evidence from human observers as they judged the relative contrast of visual stimuli presented to the left and right visual fields following a lateralized auditory cue. Cross-modal cueing of attention boosted the apparent contrast of the visual target in association with an enlarged neural response in the contralateral visual cortex that began within 100 ms after target onset. The magnitude of the enhanced neural response was positively correlated with perceptual reports of the cued target being higher in contrast. The results suggest that attention increases the perceived contrast of visual stimuli by boosting early sensory processing in the visual cortex.

  20. Using EEG and stimulus context to probe the modelling of auditory-visual speech.

    PubMed

    Paris, Tim; Kim, Jeesun; Davis, Chris

    2016-02-01

    We investigated whether internal models of the relationship between lip movements and corresponding speech sounds [Auditory-Visual (AV) speech] could be updated via experience. AV associations were indexed by early and late event related potentials (ERPs) and by oscillatory power and phase locking. Different AV experience was produced via a context manipulation. Participants were presented with valid (the conventional pairing) and invalid AV speech items in either a 'reliable' context (80% AVvalid items) or an 'unreliable' context (80% AVinvalid items). The results showed that for the reliable context, there was N1 facilitation for AV compared to auditory only speech. This N1 facilitation was not affected by AV validity. Later ERPs showed a difference in amplitude between valid and invalid AV speech and there was significant enhancement of power for valid versus invalid AV speech. These response patterns did not change over the context manipulation, suggesting that the internal models of AV speech were not updated by experience. The results also showed that the facilitation of N1 responses did not vary as a function of the salience of visual speech (as previously reported); in post-hoc analyses, it appeared instead that N1 facilitation varied according to the relative time of the acoustic onset, suggesting for AV events N1 may be more sensitive to the relationship of AV timing than form. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  1. Unconscious Familiarity-based Color-Form Binding: Evidence from Visual Extinction.

    PubMed

    Rappaport, Sarah J; Riddoch, M Jane; Chechlacz, Magda; Humphreys, Glyn W

    2016-03-01

    There is good evidence that early visual processing involves the coding of different features in independent brain regions. A major question, then, is how we see the world in an integrated manner, in which the different features are "bound" together. A standard account of this has been that feature binding depends on attention to the stimulus, which enables only the relevant features to be linked together [Treisman, A., & Gelade, G. A feature-integration theory of attention. Cognitive Psychology, 12, 97-136, 1980]. Here we test this influential idea by examining whether, in patients showing visual extinction, the processing of otherwise unconscious (extinguished) stimuli is modulated by presenting objects in their correct (familiar) color. Correctly colored objects showed reduced extinction when they had a learned color, and this color matched across the ipsi- and contralesional items (red strawberry + red tomato). In contrast, there was no reduction in extinction under the same conditions when the stimuli were colored incorrectly (blue strawberry + blue tomato; Experiment 1). The result was not due to the speeded identification of a correctly colored ipsilesional item, as there was no benefit from having correctly colored objects in different colors (red strawberry + yellow lemon; Experiment 2). There was also no benefit to extinction from presenting the correct colors in the background of each item (Experiment 3). The data suggest that learned color-form binding can reduce extinction even when color is irrelevant for the task. The result is consistent with preattentive binding of color and shape for familiar stimuli.

  2. Failures of Perception in the Low-Prevalence Effect: Evidence From Active and Passive Visual Search

    PubMed Central

    Hout, Michael C.; Walenchok, Stephen C.; Goldinger, Stephen D.; Wolfe, Jeremy M.

    2017-01-01

    In visual search, rare targets are missed disproportionately often. This low-prevalence effect (LPE) is a robust problem with demonstrable societal consequences. What is the source of the LPE? Is it a perceptual bias against rare targets or a later process, such as premature search termination or motor response errors? In 4 experiments, we examined the LPE using standard visual search (with eye tracking) and 2 variants of rapid serial visual presentation (RSVP) in which observers made present/absent decisions after sequences ended. In all experiments, observers looked for 2 target categories (teddy bear and butterfly) simultaneously. To minimize simple motor errors, caused by repetitive absent responses, we held overall target prevalence at 50%, with 1 low-prevalence and 1 high-prevalence target type. Across conditions, observers either searched for targets among other real-world objects or searched for specific bears or butterflies among within-category distractors. We report 4 main results: (a) In standard search, high-prevalence targets were found more quickly and accurately than low-prevalence targets. (b) The LPE persisted in RSVP search, even though observers never terminated search on their own. (c) Eye-tracking analyses showed that high-prevalence targets elicited better attentional guidance and faster perceptual decisions. And (d) even when observers looked directly at low-prevalence targets, they often (12%–34% of trials) failed to detect them. These results strongly argue that low-prevalence misses represent failures of perception when early search termination or motor errors are controlled. PMID:25915073

  3. Eye movements reveal the time-course of anticipating behaviour based on complex, conflicting desires.

    PubMed

    Ferguson, Heather J; Breheny, Richard

    2011-05-01

    The time-course of representing others' perspectives is inconclusive across the currently available models of ToM processing. We report two visual-world studies investigating how knowledge about a character's basic preferences (e.g. Tom's favourite colour is pink) and higher-order desires (his wish to keep this preference secret) compete to influence online expectations about subsequent behaviour. Participants' eye movements around a visual scene were tracked while they listened to auditory narratives. While clear differences in anticipatory visual biases emerged between conditions in Experiment 1, post-hoc analyses testing the strength of the relevant biases suggested a discrepancy in the time-course of predicting appropriate referents within the different contexts. Specifically, predictions to the target emerged very early when there was no conflict between the character's basic preferences and higher-order desires, but appeared to be relatively delayed when comprehenders were provided with conflicting information about that character's desire to keep a secret. However, a second experiment demonstrated that this apparent 'cognitive cost' in inferring behaviour based on higher-order desires was in fact driven by low-level features between the context sentence and visual scene. Taken together, these results suggest that healthy adults are able to make complex higher-order ToM inferences without the need to call on costly cognitive processes. Results are discussed relative to previous accounts of ToM and language processing. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Anorexia nervosa and body dysmorphic disorder are associated with abnormalities in processing visual information.

    PubMed

    Li, W; Lai, T M; Bohon, C; Loo, S K; McCurdy, D; Strober, M; Bookheimer, S; Feusner, J

    2015-07-01

    Anorexia nervosa (AN) and body dysmorphic disorder (BDD) are characterized by distorted body image and are frequently co-morbid with each other, although their relationship remains little studied. While there is evidence of abnormalities in visual and visuospatial processing in both disorders, no study has directly compared the two. We used two complementary modalities--event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI)--to test for abnormal activity associated with early visual signaling. We acquired fMRI and ERP data in separate sessions from 15 unmedicated individuals in each of three groups (weight-restored AN, BDD, and healthy controls) while they viewed images of faces and houses of different spatial frequencies. We used joint independent component analyses to compare activity in visual systems. AN and BDD groups demonstrated similar hypoactivity in early secondary visual processing regions and the dorsal visual stream when viewing low spatial frequency faces, linked to the N170 component, as well as in early secondary visual processing regions when viewing low spatial frequency houses, linked to the P100 component. Additionally, the BDD group exhibited hyperactivity in fusiform cortex when viewing high spatial frequency houses, linked to the N170 component. Greater activity in this component was associated with lower attractiveness ratings of faces. Results provide preliminary evidence of similar abnormal spatiotemporal activation in AN and BDD for configural/holistic information for appearance- and non-appearance-related stimuli. This suggests a common phenotype of abnormal early visual system functioning, which may contribute to perceptual distortions.

  5. Abnormal early brain responses during visual search are evident in schizophrenia but not bipolar affective disorder.

    PubMed

    VanMeerten, Nicolaas J; Dubke, Rachel E; Stanwyck, John J; Kang, Seung Suk; Sponheim, Scott R

    2016-01-01

    People with schizophrenia show deficits in processing visual stimuli but neural abnormalities underlying the deficits are unclear and it is unknown whether such functional brain abnormalities are present in other severe mental disorders or in individuals who carry genetic liability for schizophrenia. To better characterize brain responses underlying visual search deficits and test their specificity to schizophrenia we gathered behavioral and electrophysiological responses during visual search (i.e., Span of Apprehension [SOA] task) from 38 people with schizophrenia, 31 people with bipolar disorder, 58 biological relatives of people with schizophrenia, 37 biological relatives of people with bipolar disorder, and 65 non-psychiatric control participants. Through subtracting neural responses associated with purely sensory aspects of the stimuli we found that people with schizophrenia exhibited reduced early posterior task-related neural responses (i.e., Span Endogenous Negativity [SEN]) while other groups showed normative responses. People with schizophrenia exhibited longer reaction times than controls during visual search but nearly identical accuracy. Those individuals with schizophrenia who had larger SENs performed more efficiently (i.e., shorter reaction times) on the SOA task suggesting that modulation of early visual cortical responses facilitated their visual search. People with schizophrenia also exhibited a diminished P300 response compared to other groups. Unaffected first-degree relatives of people with bipolar disorder and schizophrenia showed an amplified N1 response over posterior brain regions in comparison to other groups. Diminished early posterior brain responses are associated with impaired visual search in schizophrenia and appear to be specifically associated with the neuropathology of schizophrenia. Published by Elsevier B.V.

  6. Direction of Magnetoencephalography Sources Associated with Feedback and Feedforward Contributions in a Visual Object Recognition Task

    PubMed Central

    Ahlfors, Seppo P.; Jones, Stephanie R.; Ahveninen, Jyrki; Hämäläinen, Matti S.; Belliveau, John W.; Bar, Moshe

    2014-01-01

    Identifying inter-area communication in terms of the hierarchical organization of functional brain areas is of considerable interest in human neuroimaging. Previous studies have suggested that the direction of magneto- and electroencephalography (MEG, EEG) source currents depends on the layer-specific input patterns into a cortical area. We examined the direction in MEG source currents in a visual object recognition experiment in which there were specific expectations of activation in the fusiform region being driven by either feedforward or feedback inputs. The source for the early non-specific visual evoked response, presumably corresponding to feedforward driven activity, pointed outward, i.e., away from the white matter. In contrast, the source for the later, object-recognition related signals, expected to be driven by feedback inputs, pointed inward, toward the white matter. Associating specific features of the MEG/EEG source waveforms to feedforward and feedback inputs could provide unique information about the activation patterns within hierarchically organized cortical areas. PMID:25445356

  7. Parallel, exhaustive processing underlies logarithmic search functions: Visual search with cortical magnification.

    PubMed

    Wang, Zhiyuan; Lleras, Alejandro; Buetti, Simona

    2018-04-17

    Our lab recently found evidence that efficient visual search (with a fixed target) is characterized by logarithmic Reaction Time (RT) × Set Size functions whose steepness is modulated by the similarity between target and distractors. To determine whether this pattern of results was based on low-level visual factors uncontrolled by previous experiments, we minimized the possibility of crowding effects in the display, compensated for the cortical magnification factor by magnifying search items based on their eccentricity, and compared search performance on such displays to performance on displays without magnification compensation. In both cases, the RT × Set Size functions were found to be logarithmic, and the modulation of the log slopes by target-distractor similarity was replicated. Consistent with previous results in the literature, cortical magnification compensation eliminated most target eccentricity effects. We conclude that the log functions and their modulation by target-distractor similarity relations reflect a parallel exhaustive processing architecture for early vision.

  8. ERP evidence for hemispheric asymmetries in abstract but not exemplar-specific repetition priming.

    PubMed

    Küper, Kristina; Liesefeld, Anna M; Zimmer, Hubert D

    2015-12-01

    Implicit memory retrieval is thought to be exemplar-specific in the right hemisphere (RH) but abstract in the left hemisphere (LH). Yet, conflicting behavioral priming results illustrate that the level at which asymmetries take effect is difficult to pinpoint. In the present divided visual field experiment, we tried to address this issue by analyzing ERPs in addition to behavioral measures. Participants made a natural/artificial decision on lateralized visual objects that were either new, identical repetitions, or different exemplars of studied items. Hemispheric asymmetries did not emerge in either behavioral or late positive complex (LPC) priming effects, but did affect the process of implicit memory retrieval proper as indexed by an early frontal negativity (N350/(F)N400). Whereas exemplar-specific N350/(F)N400 priming effects emerged irrespective of presentation side, abstract implicit memory retrieval of different exemplars was contingent on right visual field presentation and the ensuing initial stimulus processing by the LH. © 2015 Society for Psychophysiological Research.

  9. Rhesus Monkeys Behave As If They Perceive the Duncker Illusion

    PubMed Central

    Zivotofsky, A. Z.; Goldberg, M. E.; Powell, K. D.

    2008-01-01

    The visual system uses the pattern of motion on the retina to analyze the motion of objects in the world, and the motion of the observer him/herself. Distinguishing between retinal motion evoked by movement of the retina in space and retinal motion evoked by movement of objects in the environment is computationally difficult, and the human visual system frequently misinterprets the meaning of retinal motion. In this study, we demonstrate that the visual system of the Rhesus monkey also misinterprets retinal motion. We show that monkeys erroneously report the trajectories of pursuit targets or their own pursuit eye movements during an epoch of smooth pursuit across an orthogonally moving background. Furthermore, when they make saccades to the spatial location of stimuli that flashed early in an epoch of smooth pursuit or fixation, they make large errors that appear to take into account the erroneous smooth eye movement that they report in the first experiment, and not the eye movement that they actually make. PMID:16102233

  10. Holistic neural coding of Chinese character forms in bilateral ventral visual system.

    PubMed

    Mo, Ce; Yu, Mengxia; Seger, Carol; Mo, Lei

    2015-02-01

    How are Chinese characters recognized and represented in the brain of skilled readers? Functional MRI fast adaptation technique was used to address this question. We found that neural adaptation effects were limited to identical characters in bilateral ventral visual system while no activation reduction was observed for partially overlapping characters regardless of the spatial location of the shared sub-character components, suggesting highly selective neuronal tuning to whole characters. The consistent neural profile across the entire ventral visual cortex indicates that Chinese characters are represented as mutually distinctive wholes rather than combinations of sub-character components, which presents a salient contrast to the left-lateralized, simple-to-complex neural representations of alphabetic words. Our findings thus revealed the cultural modulation effect on both local neuronal activity patterns and functional anatomical regions associated with written symbol recognition. Moreover, the cross-language discrepancy in written symbol recognition mechanism might stem from the language-specific early-stage learning experience. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Coupled auralization and virtual video for immersive multimedia displays

    NASA Astrophysics Data System (ADS)

    Henderson, Paul D.; Torres, Rendell R.; Shimizu, Yasushi; Radke, Richard; Lonsway, Brian

    2003-04-01

    The implementation of maximally-immersive interactive multimedia in exhibit spaces requires not only the presentation of realistic visual imagery but also the creation of a perceptually accurate aural experience. While conventional implementations treat audio and video problems as essentially independent, this research seeks to couple the visual sensory information with dynamic auralization in order to enhance perceptual accuracy. An implemented system has been developed for integrating accurate auralizations with virtual video techniques for both interactive presentation and multi-way communication. The current system utilizes a multi-channel loudspeaker array and real-time signal processing techniques for synthesizing the direct sound, early reflections, and reverberant field excited by a moving sound source whose path may be interactively defined in real-time or derived from coupled video tracking data. In this implementation, any virtual acoustic environment may be synthesized and presented in a perceptually-accurate fashion to many participants over a large listening and viewing area. Subject tests support the hypothesis that the cross-modal coupling of aural and visual displays significantly affects perceptual localization accuracy.

  12. Intraocular and extraocular cameras for retinal prostheses: Effects of foveation by means of visual prosthesis simulation

    NASA Astrophysics Data System (ADS)

    McIntosh, Benjamin Patrick

    Blindness due to Age-Related Macular Degeneration and Retinitis Pigmentosa is unfortunately both widespread and largely incurable. Advances in visual prostheses that can restore functional vision in those afflicted by these diseases have evolved rapidly from new areas of research in ophthalmology and biomedical engineering. This thesis is focused on further advancing the state-of-the-art of both visual prostheses and implantable biomedical devices. A novel real-time system with a high performance head-mounted display is described that enables enhanced realistic simulation of intraocular retinal prostheses. A set of visual psychophysics experiments is presented using the visual prosthesis simulator that quantify, in several ways, the benefit of foveation afforded by an eye-pointed camera (such as an eye-tracked extraocular camera or an implantable intraocular camera) as compared with a head-pointed camera. A visual search experiment demonstrates a significant improvement in the time to locate a target on a screen when using an eye-pointed camera. A reach and grasp experiment demonstrates a 20% to 70% improvement in time to grasp an object when using an eye-pointed camera, with the improvement maximized when the percept is blurred. A navigation and mobility experiment shows a 10% faster walking speed and a 50% better ability to avoid obstacles when using an eye-pointed camera. Improvements to implantable biomedical devices are also described, including the design and testing of VLSI-integrable positive mobile ion contamination sensors and humidity sensors that can validate the hermeticity of biomedical device packages encapsulated by hermetic coatings, and can provide early warning of leaks or contamination that may jeopardize the implant. The positive mobile ion contamination sensors are shown to be sensitive to externally applied contamination. A model is proposed to describe sensitivity as a function of device geometry, and verified experimentally. Guidelines are provided on the use of spare CMOS oxide and metal layers to maximize the hermeticity of an implantable microchip. In addition, results are presented on the design and testing of small form factor, very low power, integrated CMOS clock generation circuits that are stable enough to drive commercial image sensor arrays, and therefore can be incorporated in an intraocular camera for retinal prostheses.

  13. A Method to Quantify Visual Information Processing in Children Using Eye Tracking

    PubMed Central

    Kooiker, Marlou J.G.; Pel, Johan J.M.; van der Steen-Kant, Sanny P.; van der Steen, Johannes

    2016-01-01

    Visual problems that occur early in life can have major impact on a child's development. Without verbal communication and only based on observational methods, it is difficult to make a quantitative assessment of a child's visual problems. This limits accurate diagnostics in children under the age of 4 years and in children with intellectual disabilities. Here we describe a quantitative method that overcomes these problems. The method uses a remote eye tracker and a four choice preferential looking paradigm to measure eye movement responses to different visual stimuli. The child sits without head support in front of a monitor with integrated infrared cameras. In one of four monitor quadrants a visual stimulus is presented. Each stimulus has a specific visual modality with respect to the background, e.g., form, motion, contrast or color. From the reflexive eye movement responses to these specific visual modalities, output parameters such as reaction times, fixation accuracy and fixation duration are calculated to quantify a child's viewing behavior. With this approach, the quality of visual information processing can be assessed without the use of communication. By comparing results with reference values obtained in typically developing children from 0-12 years, the method provides a characterization of visual information processing in visually impaired children. The quantitative information provided by this method can be advantageous for the field of clinical visual assessment and rehabilitation in multiple ways. The parameter values provide a good basis to: (i) characterize early visual capacities and consequently to enable early interventions; (ii) compare risk groups and follow visual development over time; and (iii), construct an individual visual profile for each child. PMID:27500922

  14. A Method to Quantify Visual Information Processing in Children Using Eye Tracking.

    PubMed

    Kooiker, Marlou J G; Pel, Johan J M; van der Steen-Kant, Sanny P; van der Steen, Johannes

    2016-07-09

    Visual problems that occur early in life can have major impact on a child's development. Without verbal communication and only based on observational methods, it is difficult to make a quantitative assessment of a child's visual problems. This limits accurate diagnostics in children under the age of 4 years and in children with intellectual disabilities. Here we describe a quantitative method that overcomes these problems. The method uses a remote eye tracker and a four choice preferential looking paradigm to measure eye movement responses to different visual stimuli. The child sits without head support in front of a monitor with integrated infrared cameras. In one of four monitor quadrants a visual stimulus is presented. Each stimulus has a specific visual modality with respect to the background, e.g., form, motion, contrast or color. From the reflexive eye movement responses to these specific visual modalities, output parameters such as reaction times, fixation accuracy and fixation duration are calculated to quantify a child's viewing behavior. With this approach, the quality of visual information processing can be assessed without the use of communication. By comparing results with reference values obtained in typically developing children from 0-12 years, the method provides a characterization of visual information processing in visually impaired children. The quantitative information provided by this method can be advantageous for the field of clinical visual assessment and rehabilitation in multiple ways. The parameter values provide a good basis to: (i) characterize early visual capacities and consequently to enable early interventions; (ii) compare risk groups and follow visual development over time; and (iii), construct an individual visual profile for each child.

  15. Contextual effects on perceived contrast: figure-ground assignment and orientation contrast.

    PubMed

    Self, Matthew W; Mookhoek, Aart; Tjalma, Nienke; Roelfsema, Pieter R

    2015-02-02

    Figure-ground segregation is an important step in the path leading to object recognition. The visual system segregates objects ('figures') in the visual scene from their backgrounds ('ground'). Electrophysiological studies in awake-behaving monkeys have demonstrated that neurons in early visual areas increase their firing rate when responding to a figure compared to responding to the background. We hypothesized that similar changes in neural firing would take place in early visual areas of the human visual system, leading to changes in the perception of low-level visual features. In this study, we investigated whether contrast perception is affected by figure-ground assignment using stimuli similar to those in the electrophysiological studies in monkeys. We measured contrast discrimination thresholds and perceived contrast for Gabor probes placed on figures or the background and found that the perceived contrast of the probe was increased when it was placed on a figure. Furthermore, we tested how this effect compared with the well-known effect of orientation contrast on perceived contrast. We found that figure-ground assignment and orientation contrast produced changes in perceived contrast of a similar magnitude, and that they interacted. Our results demonstrate that figure-ground assignment influences perceived contrast, consistent with an effect of figure-ground assignment on activity in early visual areas of the human visual system. © 2015 ARVO.

  16. Chinese and Korean Characters Engage the Same Visual Word Form Area in Proficient Early Chinese-Korean Bilinguals

    PubMed Central

    Bai, Jian'e; Shi, Jinfu; Jiang, Yi; He, Sheng; Weng, Xuchu

    2011-01-01

    A number of recent studies consistently show an area, known as the visual word form area (VWFA), in the left fusiform gyrus that is selectively responsive for visual words in alphabetic scripts as well as in logographic scripts, such as Chinese characters. However, given the large difference between Chinese characters and alphabetic scripts in terms of their orthographic rules, it is not clear at a fine spatial scale, whether Chinese characters engage the same VWFA in the occipito-temporal cortex as alphabetic scripts. We specifically compared Chinese with Korean script, with Korean script serving as a good example of alphabetic writing system, but matched to Chinese in the overall square shape. Sixteen proficient early Chinese-Korean bilinguals took part in the fMRI experiment. Four types of stimuli (Chinese characters, Korean characters, line drawings and unfamiliar Chinese faces) were presented in a block-design paradigm. By contrasting characters (Chinese or Korean) to faces, presumed VWFAs could be identified for both Chinese and Korean characters in the left occipito-temporal sulcus in each subject. The location of peak response point in these two VWFAs were essentially the same. Further analysis revealed a substantial overlap between the VWFA identified for Chinese and that for Korean. At the group level, there was no significant difference in amplitude of response to Chinese and Korean characters. Spatial patterns of response to Chinese and Korean are similar. In addition to confirming that there is an area in the left occipito-temporal cortex that selectively responds to scripts in both Korean and Chinese in early Chinese-Korean bilinguals, our results show that these two scripts engage essentially the same VWFA, even at the level of fine spatial patterns of activation across voxels. These results suggest that similar populations of neurons are engaged in processing the different scripts within the same VWFA in early bilinguals. PMID:21818386

  17. Late maturation of visual spatial integration in humans

    PubMed Central

    Kovács, Ilona; Kozma, Petra; Fehér, Ákos; Benedek, György

    1999-01-01

    Visual development is thought to be completed at an early age. We suggest that the maturation of the visual brain is not homogeneous: functions with greater need for early availability, such as visuomotor control, mature earlier, and the development of other visual functions may extend well into childhood. We found significant improvement in children between 5 and 14 years in visual spatial integration by using a contour-detection task. The data show that long-range spatial interactions—subserving the integration of orientational information across the visual field—span a shorter spatial range in children than in adults. Performance in the task improves in a cue-specific manner with practice, which indicates the participation of fairly low-level perceptual mechanisms. We interpret our findings in terms of a protracted development of ventral visual-stream function in humans. PMID:10518600

  18. A Cortical Network for the Encoding of Object Change

    PubMed Central

    Hindy, Nicholas C.; Solomon, Sarah H.; Altmann, Gerry T.M.; Thompson-Schill, Sharon L.

    2015-01-01

    Understanding events often requires recognizing unique stimuli as alternative, mutually exclusive states of the same persisting object. Using fMRI, we examined the neural mechanisms underlying the representation of object states and object-state changes. We found that subjective ratings of visual dissimilarity between a depicted object and an unseen alternative state of that object predicted the corresponding multivoxel pattern dissimilarity in early visual cortex during an imagery task, while late visual cortex patterns tracked dissimilarity among distinct objects. Early visual cortex pattern dissimilarity for object states in turn predicted the level of activation in an area of left posterior ventrolateral prefrontal cortex (pVLPFC) most responsive to conflict in a separate Stroop color-word interference task, and an area of left ventral posterior parietal cortex (vPPC) implicated in the relational binding of semantic features. We suggest that when visualizing object states, representational content instantiated across early and late visual cortex is modulated by processes in left pVLPFC and left vPPC that support selection and binding, and ultimately event comprehension. PMID:24127425

  19. A topology visualization early warning distribution algorithm for large-scale network security incidents.

    PubMed

    He, Hui; Fan, Guotao; Ye, Jianwei; Zhang, Weizhe

    2013-01-01

    It is of great significance to research the early warning system for large-scale network security incidents. It can improve the network system's emergency response capabilities, alleviate the cyber attacks' damage, and strengthen the system's counterattack ability. A comprehensive early warning system is presented in this paper, which combines active measurement and anomaly detection. The key visualization algorithm and technology of the system are mainly discussed. The large-scale network system's plane visualization is realized based on the divide and conquer thought. First, the topology of the large-scale network is divided into some small-scale networks by the MLkP/CR algorithm. Second, the sub graph plane visualization algorithm is applied to each small-scale network. Finally, the small-scale networks' topologies are combined into a topology based on the automatic distribution algorithm of force analysis. As the algorithm transforms the large-scale network topology plane visualization problem into a series of small-scale network topology plane visualization and distribution problems, it has higher parallelism and is able to handle the display of ultra-large-scale network topology.

  20. Rhythmic Oscillations of Visual Contrast Sensitivity Synchronized with Action

    PubMed Central

    Tomassini, Alice; Spinelli, Donatella; Jacono, Marco; Sandini, Giulio; Morrone, Maria Concetta

    2016-01-01

    It is well known that the motor and the sensory systems structure sensory data collection and cooperate to achieve an efficient integration and exchange of information. Increasing evidence suggests that both motor and sensory functions are regulated by rhythmic processes reflecting alternating states of neuronal excitability, and these may be involved in mediating sensory-motor interactions. Here we show an oscillatory fluctuation in early visual processing time locked with the execution of voluntary action, and, crucially, even for visual stimuli irrelevant to the motor task. Human participants were asked to perform a reaching movement toward a display and judge the orientation of a Gabor patch, near contrast threshold, briefly presented at random times before and during the reaching movement. When the data are temporally aligned to the onset of movement, visual contrast sensitivity oscillates with periodicity within the theta band. Importantly, the oscillations emerge during the motor planning stage, ~500 ms before movement onset. We suggest that brain oscillatory dynamics may mediate an automatic coupling between early motor planning and early visual processing, possibly instrumental in linking and closing up the visual-motor control loop. PMID:25948254

  1. [Quality of life in visual impaired children treated for Early Visual Stimulation].

    PubMed

    Messa, Alcione Aparecida; Nakanami, Célia Regina; Lopes, Marcia Caires Bestilleiro

    2012-01-01

    To evaluate the quality of life in visually impaired children followed in the Early Visual Stimulation Ambulatory of Unifesp in two moments, before and after rehabilitational intervention of multiprofessional team. A CVFQ quality of life questionnaire was used. This instrument has a version for less than three years old children and another one for children older than three years (three to seven years) divided in six subscales: General health, General vision health, Competence, Personality, Family impact and Treatment. The correlation between the subscales on two moments was significant. There was a statistically significant difference in general vision health (p=0,029) and other important differences obtained in general health, family impact and quality of life general score. The questionnaire showed to be effective in order to measure the quality of life related to vision on families followed on this ambulatory. The multidisciplinary interventions provided visual function and familiar quality of life improvement. The quality of life related to vision in children followed in Early Visual Stimulation Ambulatory of Unifesp showed a significant improvement on general vision health.

  2. The Characteristics and Limits of Rapid Visual Categorization

    PubMed Central

    Fabre-Thorpe, Michèle

    2011-01-01

    Visual categorization appears both effortless and virtually instantaneous. The study by Thorpe et al. (1996) was the first to estimate the processing time necessary to perform fast visual categorization of animals in briefly flashed (20 ms) natural photographs. They observed a large differential EEG activity between target and distracter correct trials that developed from 150 ms after stimulus onset, a value that was later shown to be even shorter in monkeys! With such strong processing time constraints, it was difficult to escape the conclusion that rapid visual categorization was relying on massively parallel, essentially feed-forward processing of visual information. Since 1996, we have conducted a large number of studies to determine the characteristics and limits of fast visual categorization. The present chapter will review some of the main results obtained. I will argue that rapid object categorizations in natural scenes can be done without focused attention and are most likely based on coarse and unconscious visual representations activated with the first available (magnocellular) visual information. Fast visual processing proved efficient for the categorization of large superordinate object or scene categories, but shows its limits when more detailed basic representations are required. The representations for basic objects (dogs, cars) or scenes (mountain or sea landscapes) need additional processing time to be activated. This finding is at odds with the widely accepted idea that such basic representations are at the entry level of the system. Interestingly, focused attention is still not required to perform these time consuming basic categorizations. Finally we will show that object and context processing can interact very early in an ascending wave of visual information processing. We will discuss how such data could result from our experience with a highly structured and predictable surrounding world that shaped neuronal visual selectivity. PMID:22007180

  3. Visual short-term memory load reduces retinotopic cortex response to contrast.

    PubMed

    Konstantinou, Nikos; Bahrami, Bahador; Rees, Geraint; Lavie, Nilli

    2012-11-01

    Load Theory of attention suggests that high perceptual load in a task leads to reduced sensory visual cortex response to task-unrelated stimuli resulting in "load-induced blindness" [e.g., Lavie, N. Attention, distraction and cognitive control under load. Current Directions in Psychological Science, 19, 143-148, 2010; Lavie, N. Distracted and confused?: Selective attention under load. Trends in Cognitive Sciences, 9, 75-82, 2005]. Consideration of the findings that visual STM (VSTM) involves sensory recruitment [e.g., Pasternak, T., & Greenlee, M. Working memory in primate sensory systems. Nature Reviews Neuroscience, 6, 97-107, 2005] within Load Theory led us to a new hypothesis regarding the effects of VSTM load on visual processing. If VSTM load draws on sensory visual capacity, then similar to perceptual load, high VSTM load should also reduce visual cortex response to incoming stimuli leading to a failure to detect them. We tested this hypothesis with fMRI and behavioral measures of visual detection sensitivity. Participants detected the presence of a contrast increment during the maintenance delay in a VSTM task requiring maintenance of color and position. Increased VSTM load (manipulated by increased set size) led to reduced retinotopic visual cortex (V1-V3) responses to contrast as well as reduced detection sensitivity, as we predicted. Additional visual detection experiments established a clear tradeoff between the amount of information maintained in VSTM and detection sensitivity, while ruling out alternative accounts for the effects of VSTM load in terms of differential spatial allocation strategies or task difficulty. These findings extend Load Theory to demonstrate a new form of competitive interactions between early visual cortex processing and visual representations held in memory under load and provide a novel line of support for the sensory recruitment hypothesis of VSTM.

  4. Affective facilitation of early visual cortex during rapid picture presentation at 6 and 15 Hz

    PubMed Central

    Bekhtereva, Valeria

    2015-01-01

    The steady-state visual evoked potential (SSVEP), a neurophysiological marker of attentional resource allocation with its generators in early visual cortex, exhibits enhanced amplitude for emotional compared to neutral complex pictures. Emotional cue extraction for complex images is linked to the N1-EPN complex with a peak latency of ∼140–160 ms. We tested whether neural facilitation in early visual cortex with affective pictures requires emotional cue extraction of individual images, even when a stream of images of the same valence category is presented. Images were shown at either 6 Hz (167 ms, allowing for extraction) or 15 Hz (67 ms per image, causing disruption of processing by the following image). Results showed SSVEP amplitude enhancement for emotional compared to neutral images at a presentation rate of 6 Hz but no differences at 15 Hz. This was not due to featural differences between the two valence categories. Results strongly suggest that individual images need to be displayed for sufficient time allowing for emotional cue extraction to drive affective neural modulation in early visual cortex. PMID:25971598

  5. Snake pictures draw more early attention than spider pictures in non-phobic women: evidence from event-related brain potentials.

    PubMed

    Van Strien, J W; Eijlers, R; Franken, I H A; Huijding, J

    2014-02-01

    Snakes were probably the first predators of mammals and may have been important agents of evolutionary changes in the primate visual system allowing rapid visual detection of fearful stimuli (Isbell, 2006). By means of early and late attention-related brain potentials, we examined the hypothesis that more early visual attention is automatically allocated to snakes than to spiders. To measure the early posterior negativity (EPN), 24 healthy, non-phobic women watched the random rapid serial presentation of 600 snake pictures, 600 spider pictures, and 600 bird pictures (three pictures per second). To measure the late positive potential (LPP), they also watched similar pictures (30 pictures per stimulus category) in a non-speeded presentation. The EPN amplitude was largest for snake pictures, intermediate for spider pictures and smallest for bird pictures. The LPP was significantly larger for both snake and spider pictures when compared to bird pictures. Interestingly, spider fear (as measured by a questionnaire) was associated with EPN amplitude for spider pictures, whereas snake fear was not associated with EPN amplitude for snake pictures. The results suggest that ancestral priorities modulate the early capture of visual attention and that early attention to snakes is more innate and independent of reported fear. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Blindness enhances tactile acuity and haptic 3-D shape discrimination.

    PubMed

    Norman, J Farley; Bartholomew, Ashley N

    2011-10-01

    This study compared the sensory and perceptual abilities of the blind and sighted. The 32 participants were required to perform two tasks: tactile grating orientation discrimination (to determine tactile acuity) and haptic three-dimensional (3-D) shape discrimination. The results indicated that the blind outperformed their sighted counterparts (individually matched for both age and sex) on both tactile tasks. The improvements in tactile acuity that accompanied blindness occurred for all blind groups (congenital, early, and late). However, the improvements in haptic 3-D shape discrimination only occurred for the early-onset and late-onset blindness groups; the performance of the congenitally blind was no better than that of the sighted controls. The results of the present study demonstrate that blindness does lead to an enhancement of tactile abilities, but they also suggest that early visual experience may play a role in facilitating haptic 3-D shape discrimination.

  7. Synergic effects of 10°/s constant rotation and rotating background on visual cognitive processing

    NASA Astrophysics Data System (ADS)

    He, Siyang; Cao, Yi; Zhao, Qi; Tan, Cheng; Niu, Dongbin

    In previous studies we have found that constant low-speed rotation facilitated the auditory cognitive process and constant velocity rotation background sped up the perception, recognition and assessment process of visual stimuli. In the condition of constant low-speed rotation body is exposed into a new physical state. In this study the variations of human brain's cognitive process under the complex condition of constant low-speed rotation and visual rotation backgrounds with different speed were explored. 14 university students participated in the ex-periment. EEG signals were recorded when they were performing three different cognitive tasks with increasing mental load, that is no response task, selective switch responses task and selec-tive mental arithmetic task. Rotary chair was used to create constant low-speed10/srotation. Four kinds of background were used in this experiment, they were normal black background and constant 30o /s, 45o /s or 60o /s rotating simulated star background. The P1 and N1 compo-nents of brain event-related potentials (ERP) were analyzed to detect the early visual cognitive processing changes. It was found that compared with task performed under other backgrounds, the posterior P1 and N1 latencies were shortened under 45o /s rotating background in all kinds of cognitive tasks. In the no response task, compared with task performed under black back-ground, the posterior N1 latencies were delayed under 30o /s rotating background. In the selec-tive switch responses task and selective mental arithmetic task, compared with task performed under other background, the P1 latencies were lengthened under 60o /s rotating background, but the average amplitudes of the posterior P1 and N1 were increased. It was suggested that under constant 10/s rotation, the facilitated effect of rotating visual background were changed to an inhibited one in 30o /s rotating background. Under vestibular new environment, not all of the rotating backgrounds accelerated the early process of visual cognition. There is a synergic effect between the effects of constant low-speed rotation and rotating speed of the background. Under certain conditions, they both served to facilitate the visual cognitive processing, and it had been started at the stage when extrastriate cortex perceiving the visual signal. Under the condition of constant low-speed rotation in higher cognitive load tasks, the rapid rotation of the background enhanced the magnitude of the signal transmission in the visual path, making signal to noise ratio increased and a higher signal to noise ratio is clearly in favor of target perception and recognition. This gave rise to the hypothesis that higher cognitive load tasks with higher top-down control had more power in counteracting the inhibition effect of higher velocity rotation background. Acknowledgements: This project was supported by National Natural Science Foundation of China (No. 30670715) and National High Technology Research and Development Program of China (No.2007AA04Z254).

  8. Visual pathway impairment by pituitary adenomas: quantitative diagnostics by diffusion tensor imaging.

    PubMed

    Lilja, Ylva; Gustafsson, Oscar; Ljungberg, Maria; Starck, Göran; Lindblom, Bertil; Skoglund, Thomas; Bergquist, Henrik; Jakobsson, Karl-Erik; Nilsson, Daniel

    2017-09-01

    OBJECTIVE Despite ample experience in surgical treatment of pituitary adenomas, little is known about objective indices that may reveal risk of visual impairment caused by tumor growth that leads to compression of the anterior visual pathways. This study aimed to explore diffusion tensor imaging (DTI) as a means for objective assessment of injury to the anterior visual pathways caused by pituitary adenomas. METHODS Twenty-three patients with pituitary adenomas, scheduled for transsphenoidal tumor resection, and 20 healthy control subjects were included in the study. A minimum suprasellar tumor extension of Grade 2-4, according to the SIPAP (suprasellar, infrasellar, parasellar, anterior, and posterior) scale, was required for inclusion. Neuroophthalmological examinations, conventional MRI, and DTI were completed in all subjects and were repeated 6 months after surgery. Quantitative assessment of chiasmal lift, visual field defect (VFD), and DTI parameters from the optic tracts was performed. Linear correlations, group comparisons, and prediction models were done in controls and patients. RESULTS Both the degree of VFD and chiasmal lift were significantly correlated with the radial diffusivity (r = 0.55, p < 0.05 and r = 0.48, p < 0.05, respectively) and the fractional anisotropy (r = -0.58, p < 0.05 and r = -0.47, p < 0.05, respectively) but not with the axial diffusivity. The axial diffusivity differed significantly between controls and patients with VFD, both before and after surgery (p < 0.05); however, no difference was found between patients with and without VFD. Based on the axial diffusivity and fractional anisotropy, a prediction model classified all patients with VFD correctly (sensitivity 1.0), 9 of 12 patients without VFD correctly (sensitivity 0.75), and 17 of 20 controls as controls (specificity 0.85). CONCLUSIONS DTI could detect pathology and degree of injury in the anterior visual pathways that were compressed by pituitary adenomas. The correlation between radial diffusivity and visual impairment may reflect a gradual demyelination in the visual pathways caused by an increased tumor effect. The low level of axial diffusivity found in the patient group may represent early atrophy in the visual pathways, detectable on DTI but not by conventional methods. DTI may provide objective data, detect early signs of injury, and be an additional diagnostic tool for determining indication for surgery in cases of pituitary adenomas.

  9. Before the N400: effects of lexical-semantic violations in visual cortex.

    PubMed

    Dikker, Suzanne; Pylkkanen, Liina

    2011-07-01

    There exists an increasing body of research demonstrating that language processing is aided by context-based predictions. Recent findings suggest that the brain generates estimates about the likely physical appearance of upcoming words based on syntactic predictions: words that do not physically look like the expected syntactic category show increased amplitudes in the visual M100 component, the first salient MEG response to visual stimulation. This research asks whether violations of predictions based on lexical-semantic information might similarly generate early visual effects. In a picture-noun matching task, we found early visual effects for words that did not accurately describe the preceding pictures. These results demonstrate that, just like syntactic predictions, lexical-semantic predictions can affect early visual processing around ∼100ms, suggesting that the M100 response is not exclusively tuned to recognizing visual features relevant to syntactic category analysis. Rather, the brain might generate predictions about upcoming visual input whenever it can. However, visual effects of lexical-semantic violations only occurred when a single lexical item could be predicted. We argue that this may be due to the fact that in natural language processing, there is typically no straightforward mapping between lexical-semantic fields (e.g., flowers) and visual or auditory forms (e.g., tulip, rose, magnolia). For syntactic categories, in contrast, certain form features do reliably correlate with category membership. This difference may, in part, explain why certain syntactic effects typically occur much earlier than lexical-semantic effects. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Normal aging delays and compromises early multifocal visual attention during object tracking.

    PubMed

    Störmer, Viola S; Li, Shu-Chen; Heekeren, Hauke R; Lindenberger, Ulman

    2013-02-01

    Declines in selective attention are one of the sources contributing to age-related impairments in a broad range of cognitive functions. Most previous research on mechanisms underlying older adults' selection deficits has studied the deployment of visual attention to static objects and features. Here we investigate neural correlates of age-related differences in spatial attention to multiple objects as they move. We used a multiple object tracking task, in which younger and older adults were asked to keep track of moving target objects that moved randomly in the visual field among irrelevant distractor objects. By recording the brain's electrophysiological responses during the tracking period, we were able to delineate neural processing for targets and distractors at early stages of visual processing (~100-300 msec). Older adults showed less selective attentional modulation in the early phase of the visual P1 component (100-125 msec) than younger adults, indicating that early selection is compromised in old age. However, with a 25-msec delay relative to younger adults, older adults showed distinct processing of targets (125-150 msec), that is, a delayed yet intact attentional modulation. The magnitude of this delayed attentional modulation was related to tracking performance in older adults. The amplitude of the N1 component (175-210 msec) was smaller in older adults than in younger adults, and the target amplification effect of this component was also smaller in older relative to younger adults. Overall, these results indicate that normal aging affects the efficiency and timing of early visual processing during multiple object tracking.

  11. Early Binocular Input Is Critical for Development of Audiovisual but Not Visuotactile Simultaneity Perception.

    PubMed

    Chen, Yi-Chuan; Lewis, Terri L; Shore, David I; Maurer, Daphne

    2017-02-20

    Temporal simultaneity provides an essential cue for integrating multisensory signals into a unified perception. Early visual deprivation, in both animals and humans, leads to abnormal neural responses to audiovisual signals in subcortical and cortical areas [1-5]. Behavioral deficits in integrating complex audiovisual stimuli in humans are also observed [6, 7]. It remains unclear whether early visual deprivation affects visuotactile perception similarly to audiovisual perception and whether the consequences for either pairing differ after monocular versus binocular deprivation [8-11]. Here, we evaluated the impact of early visual deprivation on the perception of simultaneity for audiovisual and visuotactile stimuli in humans. We tested patients born with dense cataracts in one or both eyes that blocked all patterned visual input until the cataractous lenses were removed and the affected eyes fitted with compensatory contact lenses (mean duration of deprivation = 4.4 months; range = 0.3-28.8 months). Both monocularly and binocularly deprived patients demonstrated lower precision in judging audiovisual simultaneity. However, qualitatively different outcomes were observed for the two patient groups: the performance of monocularly deprived patients matched that of young children at immature stages, whereas that of binocularly deprived patients did not match any stage in typical development. Surprisingly, patients performed normally in judging visuotactile simultaneity after either monocular or binocular deprivation. Therefore, early binocular input is necessary to develop normal neural substrates for simultaneity perception of visual and auditory events but not visual and tactile events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Real-time tracking using stereo and motion: Visual perception for space robotics

    NASA Technical Reports Server (NTRS)

    Nishihara, H. Keith; Thomas, Hans; Huber, Eric; Reid, C. Ann

    1994-01-01

    The state-of-the-art in computing technology is rapidly attaining the performance necessary to implement many early vision algorithms at real-time rates. This new capability is helping to accelerate progress in vision research by improving our ability to evaluate the performance of algorithms in dynamic environments. In particular, we are becoming much more aware of the relative stability of various visual measurements in the presence of camera motion and system noise. This new processing speed is also allowing us to raise our sights toward accomplishing much higher-level processing tasks, such as figure-ground separation and active object tracking, in real-time. This paper describes a methodology for using early visual measurements to accomplish higher-level tasks; it then presents an overview of the high-speed accelerators developed at Teleos to support early visual measurements. The final section describes the successful deployment of a real-time vision system to provide visual perception for the Extravehicular Activity Helper/Retriever robotic system in tests aboard NASA's KC135 reduced gravity aircraft.

  13. The effects of adults' affective expression and direction of visual gaze on 12-month-olds' visual preferences for an object following a 5-minute, 1-day, or 1-month delay.

    PubMed

    Flom, Ross; Johnson, Sarah

    2011-03-01

    Between 12- and 14 months of age infants begin to use another's direction of gaze and affective expression in learning about various objects and events. What is not well understood is how long infants' behaviour towards a previously unfamiliar object continues to be influenced following their participation in circumstances of social referencing. In this experiment, we examined infants' sensitivity to an adult's direction of gaze and their visual preference for one of two objects following a 5-min, 1-day, or 1-month delay. Ninety-six 12-month-olds participated. For half of the infants during habituation (i.e., familiarization), the adults' direction of gaze was directed towards an unfamiliar object (look condition). For the remaining half of the infants during habituation, the adults' direction of gaze was directed away from the unfamiliar object (look-away condition). All infants were habituated to two events. One event consisted of an adult looking towards (look condition) or away from (look-away condition) an object while facially and vocally conveying a positive affective expression. The second event consisted of the same adult looking towards or away from a different object while conveying a disgusted affective expression. Following the habituation phase and a 5-min, 1-day, or 1-month delay, infants' visual preference was assessed. During the visual preference phase, infants saw the two objects side by side where the adult conveying the affective expression was not visible. Results of the visual preference phase indicate that infants in the look condition showed a significant preference for object previously paired with the positive affect following a 5-min and 1-day delay. No significant visual preference was found in the look condition following a 1-month delay. No significant preferences were found at any retention interval in the look-away condition. Results are discussed in terms of early learning, social referencing, and early memory. ©2010 The British Psychological Society.

  14. Environmental Enrichment Rescues Binocular Matching of Orientation Preference in Mice that Have a Precocious Critical Period

    PubMed Central

    Wang, Bor-Shuen; Feng, Liang; Liu, Mingna; Liu, Xiaorong; Cang, Jianhua

    2013-01-01

    SUMMARY Experience shapes neural circuits during critical periods in early life. The timing of critical periods is regulated by both genetics and the environment. Here we study the functional significance of such temporal regulations in the mouse primary visual cortex, where critical period plasticity drives binocular matching of orientation preference. We find that the binocular matching is permanently disrupted in mice that have a precocious critical period due to genetically enhanced inhibition. The disruption is specific to one type of neurons, the complex cells, which, as we reveal, normally match after the simple cells. Early environmental enrichment completely rescues the deficit by inducing histone acetylation and consequently advancing the matching process to coincide with the precocious plasticity. Our experiments thus demonstrate that the proper timing of the critical period is essential for establishing normal binocularity and the detrimental impact of its genetic misregulation can be ameliorated by environmental manipulations via epigenetic mechanisms. PMID:24012279

  15. Effects of Prior Experience on Shelter-Seeking Behavior of Juvenile American Lobsters.

    PubMed

    Bayer, Skylar R; Bianchi, Katherine M; Atema, Jelle; Jacobs, Molly W

    2017-04-01

    Shelter-seeking behaviors are vital for survival for a range of juvenile benthic organisms. These behaviors may be innate or they may be affected by prior experience. After hatching, American lobsters Homarus americanus likely first come into contact with shelter during the late postlarval (decapodid) stage, known as stage IV. After the subsequent molt to the first juvenile stage (stage V), they are entirely benthic and are thought to be highly cryptic. We hypothesized that postlarval (stage IV) experience with shelter would carry over into the first juvenile stage (stage V) and reduce the time needed for juveniles to locate and enter shelters (sheltering). We found some evidence of a carryover effect, but not the one we predicted: stage V juveniles with postlarval shelter experience took significantly longer to initiate sheltering. We also hypothesized that stage V juveniles would demonstrate learning by relocating shelters more quickly with immediate prior experience. Our findings were mixed. In a maze, juveniles with immediate prior experience were faster to regain visual contact with shelter, suggesting that they had learned the location of the shelter. In contrast, there was no significant effect of immediate prior experience on time to initiate sheltering in an open arena, or in the maze after juveniles had regained visual contact. We conclude that very young (stage V) juvenile lobsters modify their shelter-seeking behavior based on prior experiences across several timescales. Ecologically relevant variation in habitat exposure among postlarval and early juvenile lobsters may influence successful recruitment in this culturally and commercially important fishery species.

  16. Improved contour detection model with spatial summation properties based on nonclassical receptive field

    NASA Astrophysics Data System (ADS)

    Lin, Chuan; Xu, Guili; Cao, Yijun; Liang, Chenghua; Li, Ya

    2016-07-01

    The responses of cortical neurons to a stimulus in a classical receptive field (CRF) can be modulated by stimulating the non-CRF (nCRF) of neurons in the primary visual cortex (V1). In the very early stages (at around 40 ms), a neuron in V1 exhibits strong responses to a small set of stimuli. Later, however (after 100 ms), the neurons in V1 become sensitive to the scene's global organization. As per these visual cortical mechanisms, a contour detection model based on the spatial summation properties is proposed. Unlike in previous studies, the responses of the nCRF to the higher visual cortex that results in the inhibition of the neuronal responses in the primary visual cortex by the feedback pathway are considered. In this model, the individual neurons in V1 receive global information from the higher visual cortex to participate in the inhibition process. Computationally, global Gabor energy features are involved, leading to the more coherent physiological characteristics of the nCRF. We conducted an experiment where we compared our model with those proposed by other researchers. Our model explains the role of the mutual inhibition of neurons in V1, together with an approach for object recognition in machine vision.

  17. Concept of Operations Visualization in Support of Ares I Production

    NASA Technical Reports Server (NTRS)

    Chilton, James H.; Smith, Daid Alan

    2008-01-01

    Boeing was selected in 2007 to manufacture Ares I Upper Stage and Instrument Unit according to NASA's design which would require the use of the latest manufacturing and integration processes to meet NASA budget and schedule targets. Past production experience has established that the majority of the life cycle cost is established during the initial design process. Concept of Operations (CONOPs) visualizations/simulations help to reduce life cycle cost during the early design stage. Production and operation visualizations can reduce tooling, factory capacity, safety, and build process risks while spreading program support across government, academic, media and public constituencies. The NASA/Boeing production visualization (DELMIA; Digital Enterprise Lean Manufacturing Interactive Application) promotes timely, concurrent and collaborative producibility analysis (Boeing)while supporting Upper Stage Design Cycles (NASA). The DELMIA CONOPs visualization reduced overall Upper Stage production flow time at the manufacturing facility by over 100 man-days to 312.5 man-days and helped to identify technical access issues. The NASA/Boeing Interactive Concept of Operations (ICON) provides interactive access to Ares using real mission parameters, allows users to configure the mission which encourages ownership and identifies areas for improvement, allows mission operations or spacecraft detail to be added as needed, and provides an effective, low coast advocacy, outreach and education tool.

  18. The role of temporo-parietal junction (TPJ) in global Gestalt perception.

    PubMed

    Huberle, Elisabeth; Karnath, Hans-Otto

    2012-07-01

    Grouping processes enable the coherent perception of our environment. A number of brain areas has been suggested to be involved in the integration of elements into objects including early and higher visual areas along the ventral visual pathway as well as motion-processing areas of the dorsal visual pathway. However, integration not only is required for the cortical representation of individual objects, but is also essential for the perception of more complex visual scenes consisting of several different objects and/or shapes. The present fMRI experiments aimed to address such integration processes. We investigated the neural correlates underlying the global Gestalt perception of hierarchically organized stimuli that allowed parametrical degrading of the object at the global level. The comparison of intact versus disturbed perception of the global Gestalt revealed a network of cortical areas including the temporo-parietal junction (TPJ), anterior cingulate cortex and the precuneus. The TPJ location corresponds well with the areas known to be typically lesioned in stroke patients with simultanagnosia following bilateral brain damage. These patients typically show a deficit in identifying the global Gestalt of a visual scene. Further, we found the closest relation between behavioral performance and fMRI activation for the TPJ. Our data thus argue for a significant role of the TPJ in human global Gestalt perception.

  19. Think spatial: the representation in mental rotation is nonvisual.

    PubMed

    Liesefeld, Heinrich R; Zimmer, Hubert D

    2013-01-01

    For mental rotation, introspection, theories, and interpretations of experimental results imply a certain type of mental representation, namely, visual mental images. Characteristics of the rotated representation can be examined by measuring the influence of stimulus characteristics on rotational speed. If the amount of a given type of information influences rotational speed, one can infer that it was contained in the rotated representation. In Experiment 1, rotational speed of university students (10 men, 11 women) was found to be influenced exclusively by the amount of represented orientation-dependent spatial-relational information but not by orientation-independent spatial-relational information, visual complexity, or the number of stimulus parts. As information in mental-rotation tasks is initially presented visually, this finding implies that at some point during each trial, orientation-dependent information is extracted from visual information. Searching for more direct evidence for this extraction, we recorded the EEG of another sample of university students (12 men, 12 women) during mental rotation of the same stimuli. In an early time window, the observed working memory load-dependent slow potentials were sensitive to the stimuli's visual complexity. Later, in contrast, slow potentials were sensitive to the amount of orientation-dependent information only. We conclude that only orientation-dependent information is contained in the rotated representation. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  20. Early visual responses predict conscious face perception within and between subjects during binocular rivalry

    PubMed Central

    Sandberg, Kristian; Bahrami, Bahador; Kanai, Ryota; Barnes, Gareth Robert; Overgaard, Morten; Rees, Geraint

    2014-01-01

    Previous studies indicate that conscious face perception may be related to neural activity in a large time window around 170-800ms after stimulus presentation, yet in the majority of these studies changes in conscious experience are confounded with changes in physical stimulation. Using multivariate classification on MEG data recorded when participants reported changes in conscious perception evoked by binocular rivalry between a face and a grating, we showed that only MEG signals in the 120-320ms time range, peaking at the M170 around 180ms and the P2m at around 260ms, reliably predicted conscious experience. Conscious perception could not only be decoded significantly better than chance from the sensors that showed the largest average difference, as previous studies suggest, but also from patterns of activity across groups of occipital sensors that individually were unable to predict perception better than chance. Additionally, source space analyses showed that sources in the early and late visual system predicted conscious perception more accurately than frontal and parietal sites, although conscious perception could also be decoded there. Finally, the patterns of neural activity associated with conscious face perception generalized from one participant to another around the times of maximum prediction accuracy. Our work thus demonstrates that the neural correlates of particular conscious contents (here, faces) are highly consistent in time and space within individuals and that these correlates are shared to some extent between individuals. PMID:23281780

  1. Visual Function Metrics in Early and Intermediate Dry Age-related Macular Degeneration for Use as Clinical Trial Endpoints.

    PubMed

    Cocce, Kimberly J; Stinnett, Sandra S; Luhmann, Ulrich F O; Vajzovic, Lejla; Horne, Anupama; Schuman, Stefanie G; Toth, Cynthia A; Cousins, Scott W; Lad, Eleonora M

    2018-05-01

    To evaluate and quantify visual function metrics to be used as endpoints of age-related macular degeneration (AMD) stages and visual acuity (VA) loss in patients with early and intermediate AMD. Cross-sectional analysis of baseline data from a prospective study. One hundred and one patients were enrolled at Duke Eye Center: 80 patients with early AMD (Age-Related Eye Disease Study [AREDS] stage 2 [n = 33] and intermediate stage 3 [n = 47]) and 21 age-matched, normal controls. A dilated retinal examination, macular pigment optical density measurements, and several functional assessments (best-corrected visual acuity, macular integrity assessment mesopic microperimety, dark adaptometry, low-luminance visual acuity [LLVA] [standard using a log 2.0 neutral density filter and computerized method], and cone contrast test [CCT]) were performed. Low-luminance deficit (LLD) was defined as the difference in numbers of letters read at standard vs low luminance. Group comparisons were performed to evaluate differences between the control and the early and intermediate AMD groups using 2-sided significance tests. Functional measures that significantly distinguished between normal and intermediate AMD were standard and computerized (0.5 cd/m 2 ) LLVA, percent reduced threshold and average threshold on microperimetry, CCTs, and rod intercept on dark adaptation (P < .05). The intermediate group demonstrated deficits in microperimetry reduced threshhold, computerized LLD2, and dark adaptation (P < .05) relative to early AMD. Our study suggests that LLVA, microperimetry, CCT, and dark adaptation may serve as functional measures differentiating early-to-intermediate stages of dry AMD. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Profile of cognitive deficits and associations with depressive symptoms and intelligence in chronic early-onset schizophrenia patients.

    PubMed

    Jepsen, Jens Richardt Møllegaard; Fagerlund, Birgitte; Pagsberg, Anne Katrine; Christensen, Anne Marie Raaberg; Nordentoft, Merete; Mortensen, Erik Lykke

    2013-10-01

    Cognitive deficits in several domains have been demonstrated in early-onset schizophrenia patients but their profile and relation to depressive symptoms and intelligence need further characterization. The purpose was to characterize the profile of cognitive deficits in chronic, early-onset schizophrenia patients, assess the potential associations with depressive symptom severity, and examine whether cognitive deficits within several domains reflect intelligence impairments. This study compared attention, visual-construction, aspects of visual and verbal memory, and executive functions in chronic, early-onset schizophrenia patients (mean age = 20.7 years) (N = 18) and healthy controls (N = 38). Schizophrenia diagnoses were established at the time of the patients' first clinical presentation during childhood or adolescence and were confirmed five years later. In the chronic phase of early-onset schizophrenia, significant deficits were observed in all specific cognitive functions. The profile of cognitive deficits was jagged, and visual-construction, attention, and one aspect of verbal memory (verbal stories recall) were differentially impaired. Deficits of visual recall, visual recognition, and executive functions were accounted for by deficits in intelligence, while this was not the case for deficits of verbal recall of stories or attention. No significant associations were observed between the severity of cognitive deficits and that of depressive symptoms. Chronic, early-onset schizophrenia is characterized by a broad and jagged profile of cognitive deficits. Deficits of attention and verbal recall of stories appear not to be accounted for by deficits in intelligence, and the severity of cognitive deficits seems independent from that of depressive symptoms. © 2013 The Scandinavian Psychological Associations.

  3. From crypsis to mimicry: changes in colour and the configuration of the visual system during ontogenetic habitat transitions in a coral reef fish.

    PubMed

    Cortesi, Fabio; Musilová, Zuzana; Stieb, Sara M; Hart, Nathan S; Siebeck, Ulrike E; Cheney, Karen L; Salzburger, Walter; Marshall, N Justin

    2016-08-15

    Animals often change their habitat throughout ontogeny; yet, the triggers for habitat transitions and how these correlate with developmental changes - e.g. physiological, morphological and behavioural - remain largely unknown. Here, we investigated how ontogenetic changes in body coloration and of the visual system relate to habitat transitions in a coral reef fish. Adult dusky dottybacks, Pseudochromis fuscus, are aggressive mimics that change colour to imitate various fishes in their surroundings; however, little is known about the early life stages of this fish. Using a developmental time series in combination with the examination of wild-caught specimens, we revealed that dottybacks change colour twice during development: (i) nearly translucent cryptic pelagic larvae change to a grey camouflage coloration when settling on coral reefs; and (ii) juveniles change to mimic yellow- or brown-coloured fishes when reaching a size capable of consuming juvenile fish prey. Moreover, microspectrophotometric (MSP) and quantitative real-time PCR (qRT-PCR) experiments show developmental changes of the dottyback visual system, including the use of a novel adult-specific visual gene (RH2 opsin). This gene is likely to be co-expressed with other visual pigments to form broad spectral sensitivities that cover the medium-wavelength part of the visible spectrum. Surprisingly, the visual modifications precede changes in habitat and colour, possibly because dottybacks need to first acquire the appropriate visual performance before transitioning into novel life stages. © 2016. Published by The Company of Biologists Ltd.

  4. Visual Inspection Reliability for Precision Manufactured Parts.

    PubMed

    See, Judi E

    2015-12-01

    Sandia National Laboratories conducted an experiment for the National Nuclear Security Administration to determine the reliability of visual inspection of precision manufactured parts used in nuclear weapons. Visual inspection has been extensively researched since the early 20th century; however, the reliability of visual inspection for nuclear weapons parts has not been addressed. In addition, the efficacy of using inspector confidence ratings to guide multiple inspections in an effort to improve overall performance accuracy is unknown. Further, the workload associated with inspection has not been documented, and newer measures of stress have not been applied. Eighty-two inspectors in the U.S. Nuclear Security Enterprise inspected 140 parts for eight different defects. Inspectors correctly rejected 85% of defective items and incorrectly rejected 35% of acceptable parts. Use of a phased inspection approach based on inspector confidence ratings was not an effective or efficient technique to improve the overall accuracy of the process. Results did verify that inspection is a workload-intensive task, dominated by mental demand and effort. Hits for Nuclear Security Enterprise inspection were not vastly superior to the industry average of 80%, and they were achieved at the expense of a high scrap rate not typically observed during visual inspection tasks. This study provides the first empirical data to address the reliability of visual inspection for precision manufactured parts used in nuclear weapons. Results enhance current understanding of the process of visual inspection and can be applied to improve reliability for precision manufactured parts. © 2015, Human Factors and Ergonomics Society.

  5. The two-visual-systems hypothesis and the perspectival features of visual experience.

    PubMed

    Foley, Robert T; Whitwell, Robert L; Goodale, Melvyn A

    2015-09-01

    Some critics of the two-visual-systems hypothesis (TVSH) argue that it is incompatible with the fundamentally egocentric nature of visual experience (what we call the 'perspectival account'). The TVSH proposes that the ventral stream, which delivers up our visual experience of the world, works in an allocentric frame of reference, whereas the dorsal stream, which mediates the visual control of action, uses egocentric frames of reference. Given that the TVSH is also committed to the claim that dorsal-stream processing does not contribute to the contents of visual experience, it has been argued that the TVSH cannot account for the egocentric features of our visual experience. This argument, however, rests on a misunderstanding about how the operations mediating action and the operations mediating perception are specified in the TVSH. In this article, we emphasize the importance of the 'outputs' of the two-systems to the specification of their respective operations. We argue that once this point is appreciated, it becomes evident that the TVSH is entirely compatible with a perspectival account of visual experience. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?

    PubMed Central

    Billah, Syed Masum; Ashok, Vikas; Porter, Donald E.; Ramakrishnan, IV

    2017-01-01

    Ubiquitous access is an increasingly common vision of computing, wherein users can interact with any computing device or service from anywhere, at any time. In the era of personal computing, users with visual impairments required special-purpose, assistive technologies, such as screen readers, to interact with computers. This paper investigates whether technologies like screen readers have kept pace with, or have created a barrier to, the trend toward ubiquitous access, with a specific focus on desktop computing as this is still the primary way computers are used in education and employment. Towards that, the paper presents a user study with 21 visually-impaired participants, specifically involving the switching of screen readers within and across different computing platforms, and the use of screen readers in remote access scenarios. Among the findings, the study shows that, even for remote desktop access—an early forerunner of true ubiquitous access—screen readers are too limited, if not unusable. The study also identifies several accessibility needs, such as uniformity of navigational experience across devices, and recommends potential solutions. In summary, assistive technologies have not made the jump into the era of ubiquitous access, and multiple, inconsistent screen readers create new practical problems for users with visual impairments. PMID:28782061

  7. Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?

    PubMed

    Billah, Syed Masum; Ashok, Vikas; Porter, Donald E; Ramakrishnan, I V

    2017-05-01

    Ubiquitous access is an increasingly common vision of computing, wherein users can interact with any computing device or service from anywhere, at any time. In the era of personal computing, users with visual impairments required special-purpose, assistive technologies, such as screen readers, to interact with computers. This paper investigates whether technologies like screen readers have kept pace with, or have created a barrier to, the trend toward ubiquitous access, with a specific focus on desktop computing as this is still the primary way computers are used in education and employment. Towards that, the paper presents a user study with 21 visually-impaired participants, specifically involving the switching of screen readers within and across different computing platforms, and the use of screen readers in remote access scenarios. Among the findings, the study shows that, even for remote desktop access-an early forerunner of true ubiquitous access-screen readers are too limited, if not unusable. The study also identifies several accessibility needs, such as uniformity of navigational experience across devices, and recommends potential solutions. In summary, assistive technologies have not made the jump into the era of ubiquitous access, and multiple, inconsistent screen readers create new practical problems for users with visual impairments.

  8. Exploring the theoretical foundations of visual art programmes for people living with dementia.

    PubMed

    Windle, Gill; Gregory, Samantha; Howson-Griffiths, Teri; Newman, Andrew; O'Brien, Dave; Goulding, Anna

    2017-01-01

    Despite the growing international innovations for visual arts interventions in dementia care, limited attention has been paid to their theoretical basis. In response, this paper explores how and why visual art interventions in dementia care influence changes in outcomes. The theory building process consists of a realist review of primary research on visual art programmes. This aims to uncover what works, for whom, how, why and in what circumstances. We undertook a qualitative exploration of stakeholder perspectives of art programmes, and then synthesised these two pieces of work alongside broader theory to produce a conceptual framework for intervention development, further research and practice. This suggests effective programmes are realised through essential attributes of two key conditions (provocative and stimulating aesthetic experience; dynamic and responsive artistic practice). These conditions are important for cognitive, social and individual responses, leading to benefits for people with early to more advanced dementia. This work represents a starting point at identifying theories of change for arts interventions, and for further research to critically examine, refine and strengthen the evidence base for the arts in dementia care. Understanding the theoretical basis of interventions is important for service development, evaluation and implementation.

  9. Primary Pterygium in a 7-Year-Old Boy: A Report of a Rare Case and Dilemma of its Management

    PubMed Central

    Noor, Raja Azmi Mohd

    2003-01-01

    Primary pterygium in children is uncommon but is associated with severe visual problems. Astigmatism is the main visual problem caused by pterygium. Significant amounts of astigmatism occur long before a pterygium encroaches the visual axis. Early surgical intervention is safe and effective. It is associated with significant visual improvement in outcome. This is a case report on seven-year-old Malay boy who presented with a growth over nasal aspect of the right eye of 1 year duration. His right eye visual acuity is affected up to 6/12. The dilemma pased to early surgical interview is the high rate of recurrancean the young age group. This problem is highlighted in this case report. PMID:23386804

  10. Primary pterygium in a 7-year-old boy: a report of a rare case and dilemma of its management.

    PubMed

    Noor, Raja Azmi Mohd

    2003-07-01

    Primary pterygium in children is uncommon but is associated with severe visual problems. Astigmatism is the main visual problem caused by pterygium. Significant amounts of astigmatism occur long before a pterygium encroaches the visual axis. Early surgical intervention is safe and effective. It is associated with significant visual improvement in outcome. This is a case report on seven-year-old Malay boy who presented with a growth over nasal aspect of the right eye of 1 year duration. His right eye visual acuity is affected up to 6/12. The dilemma pased to early surgical interview is the high rate of recurrancean the young age group. This problem is highlighted in this case report.

  11. Construction and validation of logMAR visual acuity charts in seven Indian languages.

    PubMed

    Negiloni, Kalpa; Mazumdar, Deepmala; Neog, Aditya; Das, Biman; Medhi, Jnanankar; Choudhury, Mitalee; George, Ronnie Jacob; Ramani, Krishna Kumar

    2018-05-01

    The evaluation of visual impairment requires the measurement of visual acuity with a validated and standard logMAR visual acuity chart. We aimed to construct and validate new logMAR visual acuity chart in Indian languages (Hindi, Bengali, Telugu, Urdu, Kannada, Malayalam, and Assamese). The commonly used font in each language was chosen as the reference and designed to fit the 5 × 5 grid (Adobe Photoshop). Ten letters (easiest to difficult) around median legibility score calculated for each language based on the results of legibility experiment and differing by 10% were selected. The chart was constructed based on the standard recommendations. The repeatability of charts was tested and also compared with a standard English Early Treatment Diabetic Retinopathy Study (ETDRS) logMAR chart for validation. A total of 14 rows (1.0 to -0.3 logMAR) with five letters in each line were designed with the range of row legibility between 4.7 and 5.3 for all the language charts. Each chart showed good repeatability, and a maximum difference of four letters was noted. The median difference in visual acuity was 0.16 logMAR for Urdu and Assamese chart compared to ETDRS English chart. Hindi and Malayalam chart had a median difference of 0.12 logMAR. When compared to the English chart a median difference of 0.14 logMAR was noted in Telugu, Kannada, and Bengali chart. The newly developed Indian language visual acuity charts are designed based on the standard recommendations and will help to assess visual impairment in people of these languages across the country.

  12. A Brief Period of Postnatal Visual Deprivation Alters the Balance between Auditory and Visual Attention.

    PubMed

    de Heering, Adélaïde; Dormal, Giulia; Pelland, Maxime; Lewis, Terri; Maurer, Daphne; Collignon, Olivier

    2016-11-21

    Is a short and transient period of visual deprivation early in life sufficient to induce lifelong changes in how we attend to, and integrate, simple visual and auditory information [1, 2]? This question is of crucial importance given the recent demonstration in both animals and humans that a period of blindness early in life permanently affects the brain networks dedicated to visual, auditory, and multisensory processing [1-16]. To address this issue, we compared a group of adults who had been treated for congenital bilateral cataracts during early infancy with a group of normally sighted controls on a task requiring simple detection of lateralized visual and auditory targets, presented alone or in combination. Redundancy gains obtained from the audiovisual conditions were similar between groups and surpassed the reaction time distribution predicted by Miller's race model. However, in comparison to controls, cataract-reversal patients were faster at processing simple auditory targets and showed differences in how they shifted attention across modalities. Specifically, they were faster at switching attention from visual to auditory inputs than in the reverse situation, while an opposite pattern was observed for controls. Overall, these results reveal that the absence of visual input during the first months of life does not prevent the development of audiovisual integration but enhances the salience of simple auditory inputs, leading to a different crossmodal distribution of attentional resources between auditory and visual stimuli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. VEP contrast sensitivity responses reveal reduced functional segregation of mid and high filters of visual channels in autism.

    PubMed

    Jemel, Boutheina; Mimeault, Daniel; Saint-Amour, Dave; Hosein, Anthony; Mottron, Laurent

    2010-06-01

    Despite the vast amount of behavioral data showing a pronounced tendency in individuals with autism spectrum disorder (ASD) to process fine visual details, much less is known about the neurophysiological characteristics of spatial vision in ASD. Here, we address this issue by assessing the contrast sensitivity response properties of the early visual-evoked potentials (VEPs) to sine-wave gratings of low, medium and high spatial frequencies in adults with ASD and in an age- and IQ-matched control group. Our results show that while VEP contrast responses to low and high spatial frequency gratings did not differ between ASD and controls, early VEPs to mid spatial frequency gratings exhibited similar response characteristics as those to high spatial frequency gratings in ASD. Our findings show evidence for an altered functional segregation of early visual channels, especially those responsible for processing mid- and high-frequency spatial scales.

  14. Multifocal visual evoked potentials for early glaucoma detection.

    PubMed

    Weizer, Jennifer S; Musch, David C; Niziol, Leslie M; Khan, Naheed W

    2012-07-01

    To compare multifocal visual evoked potentials (mfVEP) with other detection methods in early open-angle glaucoma. Ten patients with suspected glaucoma and 5 with early open-angle glaucoma underwent mfVEP, standard automated perimetry (SAP), short-wave automated perimetry, frequency-doubling technology perimetry, and nerve fiber layer optical coherence tomography. Nineteen healthy control subjects underwent mfVEP and SAP for comparison. Comparisons between groups involving continuous variables were made using independent t tests; for categorical variables, Fisher's exact test was used. Monocular mfVEP cluster defects were associated with an increased SAP pattern standard deviation (P = .0195). Visual fields that showed interocular mfVEP cluster defects were more likely to also show superior quadrant nerve fiber layer thinning by OCT (P = .0152). Multifocal visual evoked potential cluster defects are associated with a functional and an anatomic measure that both relate to glaucomatous optic neuropathy. Copyright 2012, SLACK Incorporated.

  15. Does silent reading speed in normal adult readers depend on early visual processes? evidence from event-related brain potentials.

    PubMed

    Korinth, Sebastian Peter; Sommer, Werner; Breznitz, Zvia

    2012-01-01

    Little is known about the relationship of reading speed and early visual processes in normal readers. Here we examined the association of the early P1, N170 and late N1 component in visual event-related potentials (ERPs) with silent reading speed and a number of additional cognitive skills in a sample of 52 adult German readers utilizing a Lexical Decision Task (LDT) and a Face Decision Task (FDT). Amplitudes of the N170 component in the LDT but, interestingly, also in the FDT correlated with behavioral tests measuring silent reading speed. We suggest that reading speed performance can be at least partially accounted for by the extraction of essential structural information from visual stimuli, consisting of a domain-general and a domain-specific expertise-based portion. © 2011 Elsevier Inc. All rights reserved.

  16. Sensory Temporal Processing in Adults with Early Hearing Loss

    ERIC Educational Resources Information Center

    Heming, Joanne E.; Brown, Lenora N.

    2005-01-01

    This study examined tactile and visual temporal processing in adults with early loss of hearing. The tactile task consisted of punctate stimulations that were delivered to one or both hands by a mechanical tactile stimulator. Pairs of light emitting diodes were presented on a display for visual stimulation. Responses consisted of YES or NO…

  17. Teaching Early Braille Literacy Skills within a Stimulus Equivalence Paradigm to Children with Degenerative Visual Impairments

    ERIC Educational Resources Information Center

    Toussaint, Karen A.; Tiger, Jeffrey H.

    2010-01-01

    Despite the need for braille literacy, there has been little attempt to systematically evaluate braille-instruction programs. The current study evaluated an instructive procedure for teaching early braille-reading skills with 4 school-aged children with degenerative visual impairments. Following a series of pretests, braille instruction involved…

  18. Early Language Development in Blind and Severely Visually Impaired Children. Interim Report on Pilot Study.

    ERIC Educational Resources Information Center

    Moore, Vanessa; McConachie, Helen

    This study investigated variables that might be associated with outcome differences in language development of 10 children (ages 10-20 months) with blindness or severe visual impairments, attending a developmental vision clinic in southern England. Subjects' early patterns of expressive language development were examined and related to observed…

  19. Evidence for Early Morphological Decomposition in Visual Word Recognition

    ERIC Educational Resources Information Center

    Solomyak, Olla; Marantz, Alec

    2010-01-01

    We employ a single-trial correlational MEG analysis technique to investigate early processing in the visual recognition of morphologically complex words. Three classes of affixed words were presented in a lexical decision task: free stems (e.g., taxable), bound roots (e.g., tolerable), and unique root words (e.g., vulnerable, the root of which…

  20. Intercepting a sound without vision

    PubMed Central

    Vercillo, Tiziana; Tonelli, Alessia; Gori, Monica

    2017-01-01

    Visual information is extremely important to generate internal spatial representations. In the auditory modality, the absence of visual cues during early infancy does not preclude the development of some spatial strategies. However, specific spatial abilities might result impaired. In the current study, we investigated the effect of early visual deprivation on the ability to localize static and moving auditory stimuli by comparing sighted and early blind individuals’ performance in different spatial tasks. We also examined perceptual stability in the two groups of participants by matching localization accuracy in a static and a dynamic head condition that involved rotational head movements. Sighted participants accurately localized static and moving sounds. Their localization ability remained unchanged after rotational movements of the head. Conversely, blind participants showed a leftward bias during the localization of static sounds and a little bias for moving sounds. Moreover, head movements induced a significant bias in the direction of head motion during the localization of moving sounds. These results suggest that internal spatial representations might be body-centered in blind individuals and that in sighted people the availability of visual cues during early infancy may affect sensory-motor interactions. PMID:28481939

  1. Early access to abstract representations in developing readers: evidence from masked priming.

    PubMed

    Perea, Manuel; Mallouh, Reem Abu; Carreiras, Manuel

    2013-07-01

    A commonly shared assumption in the field of visual-word recognition is that retinotopic representations are rapidly converted into abstract representations. Here we examine the role of visual form vs. abstract representations during the early stages of word processing - as measured by masked priming - in young children (3rd and 6th Graders) and adult readers. To maximize the chances of detecting an effect of visual form, we employed a language with a very intricate orthography, Arabic. If visual form plays a role in the early stages of processing, greater benefit would be expected from related primes that have the same visual form (in terms of the ligation pattern between a word's letters) as the target word (e.g.- [ktz b-ktA b] - note that the three initial letters are connected in prime and target) than for those that do not (- [ktxb-ktA b]). Results showed that the magnitude of priming effect relative to an unrelated condition (e.g. -) was remarkably similar for both types of prime. Thus, despite the visual complexity of Arabic orthography, there is fast access to the abstract letter representations not only in adult readers by also in developing readers. © 2013 Blackwell Publishing Ltd.

  2. Early access to abstract representations in developing readers: Evidence from masked priming

    PubMed Central

    Perea, Manuel; Abu Mallouh, Reem; Carreiras, Manuel

    2013-01-01

    A commonly shared assumption in the field of visual-word recognition is that retinotopic representations are rapidly converted into abstract representations. Here we examine the role of visual form vs. abstract representations during the early stages of word processing –as measured by masked priming– in young children (3rd and 6th graders) and adult readers. To maximize the chances of detecting an effect of visual form, we employed a language with a very intricate orthography, Arabic. If visual form plays a role in the early moments of processing, greater benefit would be expected from related primes that have the same visual form (in terms of the ligation pattern between a word’s letters) as the target word (e.g., - [ktzb-ktAb] –note that the three initial letters are connected in prime and target) than for those that do not ( [ktxb-ktAb]). Results showed that the magnitude of priming effect relative to an unrelated condition (e.g., ) was remarkably similar for both types of primes. Thus, despite the visual complexity of Arabic orthography, there is fast access to the abstract letter representations not only in adult readers by also in developing readers. PMID:23786474

  3. Role of early visual cortex in trans-saccadic memory of object features.

    PubMed

    Malik, Pankhuri; Dessing, Joost C; Crawford, J Douglas

    2015-08-01

    Early visual cortex (EVC) participates in visual feature memory and the updating of remembered locations across saccades, but its role in the trans-saccadic integration of object features is unknown. We hypothesized that if EVC is involved in updating object features relative to gaze, feature memory should be disrupted when saccades remap an object representation into a simultaneously perturbed EVC site. To test this, we applied transcranial magnetic stimulation (TMS) over functional magnetic resonance imaging-localized EVC clusters corresponding to the bottom left/right visual quadrants (VQs). During experiments, these VQs were probed psychophysically by briefly presenting a central object (Gabor patch) while subjects fixated gaze to the right or left (and above). After a short memory interval, participants were required to detect the relative change in orientation of a re-presented test object at the same spatial location. Participants either sustained fixation during the memory interval (fixation task) or made a horizontal saccade that either maintained or reversed the VQ of the object (saccade task). Three TMS pulses (coinciding with the pre-, peri-, and postsaccade intervals) were applied to the left or right EVC. This had no effect when (a) fixation was maintained, (b) saccades kept the object in the same VQ, or (c) the EVC quadrant corresponding to the first object was stimulated. However, as predicted, TMS reduced performance when saccades (especially larger saccades) crossed the remembered object location and brought it into the VQ corresponding to the TMS site. This suppression effect was statistically significant for leftward saccades and followed a weaker trend for rightward saccades. These causal results are consistent with the idea that EVC is involved in the gaze-centered updating of object features for trans-saccadic memory and perception.

  4. Safe start at home: what parents of newborns need after early discharge from hospital - a focus group study.

    PubMed

    Kurth, Elisabeth; Krähenbühl, Katrin; Eicher, Manuela; Rodmann, Susanne; Fölmli, Luzia; Conzelmann, Cornelia; Zemp, Elisabeth

    2016-03-08

    The length of postpartum hospital stay is decreasing internationally. Earlier hospital discharge of mothers and newborns decreases postnatal care or transfers it to the outpatient setting. This study aimed to investigate the experiences of new parents and examine their views on care following early hospital discharge. Six focus group discussions with new parents (n = 24) were conducted. A stratified sampling scheme of German and Turkish-speaking groups was employed. A 'playful design' method was used to facilitate participants communication wherein they used blocks and figurines to visualize their perspectives on care models The visualized constructions of care models were photographed and discussions were audio-recorded and transcribed verbatim. Text and visual data was thematically analyzed by a multi-professional group and findings were validated by the focus group participants. Following discharge, mothers reported feeling physically strained during recuperating from birth and initiating breastfeeding. The combined requirements of infant and self-care needs resulted in a significant need for practical and medical support. Families reported challenges in accessing postnatal care services and lacking inter-professional coordination. The visualized models of ideal care comprised access to a package of postnatal care including monitoring, treating and caring for the health of the mother and newborn. This included home visits from qualified midwives, access to a 24-h helpline, and domestic support for household tasks. Participants suggested that improving inter-professional networks, implementing supervisors or a centralized coordinating center could help to remedy the current fragmented care. After hospital discharge, new parents need practical support, monitoring and care. Such support is important for the health and wellbeing of the mother and child. Integrated care services including professional home visits and a 24-hour help line may help meet the needs of new families.

  5. Impact of Early and Late Visual Deprivation on the Structure of the Corpus Callosum: A Study Combining Thickness Profile with Surface Tensor-Based Morphometry.

    PubMed

    Shi, Jie; Collignon, Olivier; Xu, Liang; Wang, Gang; Kang, Yue; Leporé, Franco; Lao, Yi; Joshi, Anand A; Leporé, Natasha; Wang, Yalin

    2015-07-01

    Blindness represents a unique model to study how visual experience may shape the development of brain organization. Exploring how the structure of the corpus callosum (CC) reorganizes ensuing visual deprivation is of particular interest due to its important functional implication in vision (e.g., via the splenium of the CC). Moreover, comparing early versus late visually deprived individuals has the potential to unravel the existence of a sensitive period for reshaping the CC structure. Here, we develop a novel framework to capture a complete set of shape differences in the CC between congenitally blind (CB), late blind (LB) and sighted control (SC) groups. The CCs were manually segmented from T1-weighted brain MRI and modeled by 3D tetrahedral meshes. We statistically compared the combination of local area and thickness at each point between subject groups. Differences in area are found using surface tensor-based morphometry; thickness is estimated by tracing the streamlines in the volumetric harmonic field. Group differences were assessed on this combined measure using Hotelling's T(2) test. Interestingly, we observed that the total callosal volume did not differ between the groups. However, our fine-grained analysis reveals significant differences mostly localized around the splenium areas between both blind groups and the sighted group (general effects of blindness) and, importantly, specific dissimilarities between the LB and CB groups, illustrating the existence of a sensitive period for reorganization. The new multivariate statistics also gave better effect sizes for detecting morphometric differences, relative to other statistics. They may boost statistical power for CC morphometric analyses.

  6. Statistical Regularities Attract Attention when Task-Relevant.

    PubMed

    Alamia, Andrea; Zénon, Alexandre

    2016-01-01

    Visual attention seems essential for learning the statistical regularities in our environment, a process known as statistical learning. However, how attention is allocated when exploring a novel visual scene whose statistical structure is unknown remains unclear. In order to address this question, we investigated visual attention allocation during a task in which we manipulated the conditional probability of occurrence of colored stimuli, unbeknown to the subjects. Participants were instructed to detect a target colored dot among two dots moving along separate circular paths. We evaluated implicit statistical learning, i.e., the effect of color predictability on reaction times (RTs), and recorded eye position concurrently. Attention allocation was indexed by comparing the Mahalanobis distance between the position, velocity and acceleration of the eyes and the two colored dots. We found that learning the conditional probabilities occurred very early during the course of the experiment as shown by the fact that, starting already from the first block, predictable stimuli were detected with shorter RT than unpredictable ones. In terms of attentional allocation, we found that the predictive stimulus attracted gaze only when it was informative about the occurrence of the target but not when it predicted the occurrence of a task-irrelevant stimulus. This suggests that attention allocation was influenced by regularities only when they were instrumental in performing the task. Moreover, we found that the attentional bias towards task-relevant predictive stimuli occurred at a very early stage of learning, concomitantly with the first effects of learning on RT. In conclusion, these results show that statistical regularities capture visual attention only after a few occurrences, provided these regularities are instrumental to perform the task.

  7. IMPACT OF EARLY AND LATE VISUAL DEPRIVATION ON THE STRUCTURE OF THE CORPUS CALLOSUM: A STUDY COMBINING THICKNESS PROFILE WITH SURFACE TENSOR-BASED MORPHOMETRY

    PubMed Central

    Shi, Jie; Collignon, Olivier; Xu, Liang; Wang, Gang; Kang, Yue; Leporé, Franco; Lao, Yi; Joshi, Anand A.

    2015-01-01

    Blindness represents a unique model to study how visual experience may shape the development of brain organization. Exploring how the structure of the corpus callosum (CC) reorganizes ensuing visual deprivation is of particular interest due to its important functional implication in vision (e.g. via the splenium of the CC). Moreover, comparing early versus late visually deprived individuals has the potential to unravel the existence of a sensitive period for reshaping the CC structure. Here, we develop a novel framework to capture a complete set of shape differences in the CC between congenitally blind (CB), late blind (LB) and sighted control (SC) groups. The CCs were manually segmented from T1-weighted brain MRI and modeled by 3D tetrahedral meshes. We statistically compared the combination of local area and thickness at each point between subject groups. Differences in area are found using surface tensor-based morphometry; thickness is estimated by tracing the streamlines in the volumetric harmonic field. Group differences were assessed on this combined measure using Hotelling’s T2 test. Interestingly, we observed that the total callosal volume did not differ between the groups. However, our fine-grained analysis reveals significant differences mostly localized around the splenium areas between both blind groups and the sighted group (general effects of blindness) and, importantly, specific dissimilarities between the LB and CB groups, illustrating the existence of a sensitive period for reorganization. The new multivariate statistics also gave better effect sizes for detecting morphometric differences, relative to other statistics. They may boost statistical power for CC morphometric analyses. PMID:25649876

  8. Classic and Golli Myelin Basic Protein have distinct developmental trajectories in human visual cortex.

    PubMed

    Siu, Caitlin R; Balsor, Justin L; Jones, David G; Murphy, Kathryn M

    2015-01-01

    Traditionally, myelin is viewed as insulation around axons, however, more recent studies have shown it also plays an important role in plasticity, axonal metabolism, and neuroimmune signaling. Myelin is a complex multi-protein structure composed of hundreds of proteins, with Myelin Basic Protein (MBP) being the most studied. MBP has two families: Classic-MBP that is necessary for activity driven compaction of myelin around axons, and Golli-MBP that is found in neurons, oligodendrocytes, and T-cells. Furthermore, Golli-MBP has been called a "molecular link" between the nervous and immune systems. In visual cortex specifically, myelin proteins interact with immune processes to affect experience-dependent plasticity. We studied myelin in human visual cortex using Western blotting to quantify Classic- and Golli-MBP expression in post-mortem tissue samples ranging in age from 20 days to 80 years. We found that Classic- and Golli-MBP have different patterns of change across the lifespan. Classic-MBP gradually increases to 42 years and then declines into aging. Golli-MBP has early developmental changes that are coincident with milestones in visual system sensitive period, and gradually increases into aging. There are three stages in the balance between Classic- and Golli-MBP expression, with Golli-MBP dominating early, then shifting to Classic-MBP, and back to Golli-MBP in aging. Also Golli-MBP has a wave of high inter-individual variability during childhood. These results about cortical MBP expression are timely because they compliment recent advances in MRI techniques that produce high resolution maps of cortical myelin in normal and diseased brain. In addition, the unique pattern of Golli-MBP expression across the lifespan suggests that it supports high levels of neuroimmune interaction in cortical development and in aging.

  9. Contextual modulation of primary visual cortex by auditory signals.

    PubMed

    Petro, L S; Paton, A T; Muckli, L

    2017-02-19

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195-201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256-1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame.This article is part of the themed issue 'Auditory and visual scene analysis'. © 2017 The Authors.

  10. Contextual modulation of primary visual cortex by auditory signals

    PubMed Central

    Paton, A. T.

    2017-01-01

    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195–201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256–1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame. This article is part of the themed issue ‘Auditory and visual scene analysis’. PMID:28044015

  11. Limited diagnostic value of Dual-Time-Point (18)F-FDG PET/CT imaging for classifying solitary pulmonary nodules in granuloma-endemic regions both at visual and quantitative analyses.

    PubMed

    Chen, Song; Li, Xuena; Chen, Meijie; Yin, Yafu; Li, Na; Li, Yaming

    2016-10-01

    This study is aimed to compare the diagnostic power of using quantitative analysis or visual analysis with single time point imaging (STPI) PET/CT and dual time point imaging (DTPI) PET/CT for the classification of solitary pulmonary nodules (SPN) lesions in granuloma-endemic regions. SPN patients who received early and delayed (18)F-FDG PET/CT at 60min and 180min post-injection were retrospectively reviewed. Diagnoses are confirmed by pathological results or follow-ups. Three quantitative metrics, early SUVmax, delayed SUVmax and retention index(the percentage changes between the early SUVmax and delayed SUVmax), were measured for each lesion. Three 5-point scale score was given by blinded interpretations performed by physicians based on STPI PET/CT images, DTPI PET/CT images and CT images, respectively. ROC analysis was performed on three quantitative metrics and three visual interpretation scores. One-hundred-forty-nine patients were retrospectively included. The areas under curve (AUC) of the ROC curves of early SUVmax, delayed SUVmax, RI, STPI PET/CT score, DTPI PET/CT score and CT score are 0.73, 0.74, 0.61, 0.77 0.75 and 0.76, respectively. There were no significant differences between the AUCs in visual interpretation of STPI PET/CT images and DTPI PET/CT images, nor in early SUVmax and delayed SUVmax. The differences of sensitivity, specificity and accuracy between STPI PET/CT and DTPI PET/CT were not significantly different in either quantitative analysis or visual interpretation. In granuloma-endemic regions, DTPI PET/CT did not offer significant improvement over STPI PET/CT in differentiating malignant SPNs in both quantitative analysis and visual interpretation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Two critical periods in early visual cortex during figure-ground segregation.

    PubMed

    Wokke, Martijn E; Sligte, Ilja G; Steven Scholte, H; Lamme, Victor A F

    2012-11-01

    The ability to distinguish a figure from its background is crucial for visual perception. To date, it remains unresolved where and how in the visual system different stages of figure-ground segregation emerge. Neural correlates of figure border detection have consistently been found in early visual cortex (V1/V2). However, areas V1/V2 have also been frequently associated with later stages of figure-ground segregation (such as border ownership or surface segregation). To causally link activity in early visual cortex to different stages of figure-ground segregation, we briefly disrupted activity in areas V1/V2 at various moments in time using transcranial magnetic stimulation (TMS). Prior to stimulation we presented stimuli that made it possible to differentiate between figure border detection and surface segregation. We concurrently recorded electroencephalographic (EEG) signals to examine how neural correlates of figure-ground segregation were affected by TMS. Results show that disruption of V1/V2 in an early time window (96-119 msec) affected detection of figure stimuli and affected neural correlates of figure border detection, border ownership, and surface segregation. TMS applied in a relatively late time window (236-259 msec) selectively deteriorated performance associated with surface segregation. We conclude that areas V1/V2 are not only essential in an early stage of figure-ground segregation when figure borders are detected, but subsequently causally contribute to more sophisticated stages of figure-ground segregation such as surface segregation.

  13. Two critical periods in early visual cortex during figure–ground segregation

    PubMed Central

    Wokke, Martijn E; Sligte, Ilja G; Steven Scholte, H; Lamme, Victor A F

    2012-01-01

    The ability to distinguish a figure from its background is crucial for visual perception. To date, it remains unresolved where and how in the visual system different stages of figure–ground segregation emerge. Neural correlates of figure border detection have consistently been found in early visual cortex (V1/V2). However, areas V1/V2 have also been frequently associated with later stages of figure–ground segregation (such as border ownership or surface segregation). To causally link activity in early visual cortex to different stages of figure–ground segregation, we briefly disrupted activity in areas V1/V2 at various moments in time using transcranial magnetic stimulation (TMS). Prior to stimulation we presented stimuli that made it possible to differentiate between figure border detection and surface segregation. We concurrently recorded electroencephalographic (EEG) signals to examine how neural correlates of figure–ground segregation were affected by TMS. Results show that disruption of V1/V2 in an early time window (96–119 msec) affected detection of figure stimuli and affected neural correlates of figure border detection, border ownership, and surface segregation. TMS applied in a relatively late time window (236–259 msec) selectively deteriorated performance associated with surface segregation. We conclude that areas V1/V2 are not only essential in an early stage of figure–ground segregation when figure borders are detected, but subsequently causally contribute to more sophisticated stages of figure–ground segregation such as surface segregation. PMID:23170239

  14. Attention that covers letters is necessary for the left-lateralization of an early print-tuned ERP in Japanese hiragana.

    PubMed

    Okumura, Yasuko; Kasai, Tetsuko; Murohashi, Harumitsu

    2015-03-01

    Extensive experience with reading develops expertise in acquiring information from print, and this is reflected in specific enhancement of the left-lateralized N170 component in event-related potentials. The N170 is generally considered to reflect visual/orthographic processing; while modulations of its left-lateralization related to phonological processes have also been indicated. However, in our previous study, N170-like response to Hiragana strings lacked left-lateralization when the stimuli were completely task-irrelevant in rapid-presentation sequences [Okumura et al. (2014). Early print-tuned ERP response with minimal involvement of linguistic processing in Japanese Hiragana strings. Neuroreport 25, 410-414]. This suggests that, despite the highly transparent character-to-syllable correspondence, the phonological mapping of Hiragana strings requires some kind of attention toward print. To verify this notion, the present study examined ERPs under the same experimental condition as in the previous study, except that the task required attention to a stimulus attribute (i.e., color). As a result, Hiragana words and nonwords elicited left-lateralized negative deflection in the occipito-temporal region during 130-170ms post-stimulus in comparison to symbol strings, but only when the print had a narrow intercharacter spacing. Moreover, we observed the enhancement of very early occipital ERP in response to words during 70-100ms. The present results suggest that visual attention plays a role in early print processing, which may contribute to our understanding of the mechanisms that underlie expert as well as impaired reading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Deficits in Top-Down Sensory Prediction in Infants At Risk due to Premature Birth.

    PubMed

    Emberson, Lauren L; Boldin, Alex M; Riccio, Julie E; Guillet, Ronnie; Aslin, Richard N

    2017-02-06

    A prominent theoretical view is that the brain is inherently predictive [1, 2] and that prediction helps drive the engine of development [3, 4]. Although infants exhibit neural signatures of top-down sensory prediction [5, 6], in order to establish that prediction supports development, it must be established that deficits in early prediction abilities alter trajectories. We investigated prediction in infants born prematurely, a leading cause of neuro-cognitive impairment worldwide [7]. Prematurity, independent of medical complications, leads to developmental disturbances [8-12] and a broad range of developmental delays [13-17]. Is an alteration in early prediction abilities the common cause? Using functional near-infrared spectroscopy (fNIRS), we measured top-down sensory prediction in preterm infants (born <33 weeks gestation) before infants exhibited clinically identifiable developmental delays (6 months corrected age). Whereas preterm infants had typical neural responses to presented visual stimuli, they exhibited altered neural responses to predicted visual stimuli. Importantly, a separate behavioral control confirmed that preterm infants detect pattern violations at the same rate as full-terms, establishing selectivity of this response to top-down predictions (e.g., not in learning an audiovisual association). These findings suggest that top-down sensory prediction plays a crucial role in development and that deficits in this ability may be the reason why preterm infants experience altered developmental trajectories and are at risk for poor developmental outcomes. Moreover, this work presents an opportunity for establishing a neuro-biomarker for early identification of infants at risk and could guide early intervention regimens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Binocular rivalry from invisible patterns

    PubMed Central

    Zou, Jinyou; He, Sheng; Zhang, Peng

    2016-01-01

    Binocular rivalry arises when incompatible images are presented to the two eyes. If the two eyes’ conflicting features are invisible, leading to identical perceptual interpretations, does rivalry competition still occur? Here we investigated whether binocular rivalry can be induced from conflicting but invisible spatial patterns. A chromatic grating counterphase flickering at 30 Hz appeared uniform, but produced significant tilt aftereffect and orientation-selective adaptation. The invisible pattern also generated significant BOLD activities in the early visual cortex, with minimal response in the parietal and frontal cortical areas. Compared with perceptually matched uniform stimuli, a monocularly presented invisible chromatic grating enhanced the rivalry competition with a low-contrast visible grating presented to the other eye. Furthermore, switching from a uniform field to a perceptually matched invisible chromatic grating produced interocular suppression at approximately 200 ms after onset of the invisible grating. Experiments using briefly presented monocular probes revealed evidence for sustained rivalry competition between two invisible gratings during continuous dichoptic presentations. These findings indicate that even without visible interocular conflict, and with minimal engagement of frontoparietal cortex and consciousness related top-down feedback, perceptually identical patterns with invisible conflict features produce rivalry competition in the early visual cortex. PMID:27354535

  17. Challenges in the management of glaucoma in developing countries.

    PubMed

    Butt, Nadeem Hafeez; Ayub, Muhammad Hammad; Ali, Muhammad Hassaan

    2016-01-01

    Glaucoma is the most common optic neuropathy characterized by normal to raised intraocular pressure (IOP), visual field defects, loss of retinal nerve fiber layer, thinning of the neuroretinal rim, and cupping of the optic disc. IOP reduction by medical, laser, or surgical therapies remains the only clinically proven treatment of glaucoma. The challenges in glaucoma management are diverse. They include early detection and diagnosis, setting of appropriate target IOP, choice of treatment, monitoring of quality of life and sight, and compliance with the treatment. Early diagnosis can be made by assessing optic nerve structure using imaging devices and optic nerve function through perimetry. Reducing IOP and controlling its fluctuations are considered to be the most important factors in limiting progression of glaucoma. Selection of the best suitable therapy out of medical, surgical, or laser treatment options is yet another management challenge. Patients suffering from glaucoma experience poor quality of life owing to the diagnosis itself, functional visual loss, inconvenience and cost of treatment, and side effects of treatment. All these factors lead to poor compliance, adherence, and persistence to treatment, and further progression of the disease. It is, therefore, important that ophthalmologists keep all the aforementioned factors in mind when managing patients with glaucoma.

  18. Investigating the visual span in comparative search: the effects of task difficulty and divided attention.

    PubMed

    Pomplun, M; Reingold, E M; Shen, J

    2001-09-01

    In three experiments, participants' visual span was measured in a comparative visual search task in which they had to detect a local match or mismatch between two displays presented side by side. Experiment 1 manipulated the difficulty of the comparative visual search task by contrasting a mismatch detection task with a substantially more difficult match detection task. In Experiment 2, participants were tested in a single-task condition involving only the visual task and a dual-task condition in which they concurrently performed an auditory task. Finally, in Experiment 3, participants performed two dual-task conditions, which differed in the difficulty of the concurrent auditory task. Both the comparative search task difficulty (Experiment 1) and the divided attention manipulation (Experiments 2 and 3) produced strong effects on visual span size.

  19. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits

    PubMed Central

    Xu, Hong-Ping; Burbridge, Timothy J.; Ye, Meijun; Chen, Minggang; Ge, Xinxin; Zhou, Z. Jimmy

    2016-01-01

    Retinal waves are correlated bursts of spontaneous activity whose spatiotemporal patterns are critical for early activity-dependent circuit elaboration and refinement in the mammalian visual system. Three separate developmental wave epochs or stages have been described, but the mechanism(s) of pattern generation of each and their distinct roles in visual circuit development remain incompletely understood. We used neuroanatomical, in vitro and in vivo electrophysiological, and optical imaging techniques in genetically manipulated mice to examine the mechanisms of wave initiation and propagation and the role of wave patterns in visual circuit development. Through deletion of β2 subunits of nicotinic acetylcholine receptors (β2-nAChRs) selectively from starburst amacrine cells (SACs), we show that mutual excitation among SACs is critical for Stage II (cholinergic) retinal wave propagation, supporting models of wave initiation and pattern generation from within a single retinal cell type. We also demonstrate that β2-nAChRs in SACs, and normal wave patterns, are necessary for eye-specific segregation. Finally, we show that Stage III (glutamatergic) retinal waves are not themselves necessary for normal eye-specific segregation, but elimination of both Stage II and Stage III retinal waves dramatically disrupts eye-specific segregation. This suggests that persistent Stage II retinal waves can adequately compensate for Stage III retinal wave loss during the development and refinement of eye-specific segregation. These experiments confirm key features of the “recurrent network” model for retinal wave propagation and clarify the roles of Stage II and Stage III retinal wave patterns in visual circuit development. SIGNIFICANCE STATEMENT Spontaneous activity drives early mammalian circuit development, but the initiation and patterning of activity vary across development and among modalities. Cholinergic “retinal waves” are initiated in starburst amacrine cells and propagate to retinal ganglion cells and higher-order visual areas, but the mechanism responsible for creating their unique and critical activity pattern is incompletely understood. We demonstrate that cholinergic wave patterns are dictated by recurrent connectivity within starburst amacrine cells, and retinal ganglion cells act as “readouts” of patterned activity. We also show that eye-specific segregation occurs normally without glutamatergic waves, but elimination of both cholinergic and glutamatergic waves completely disrupts visual circuit development. These results suggest that each retinal wave pattern during development is optimized for concurrently refining multiple visual circuits. PMID:27030771

  20. Early-Stage Visual Processing and Cortical Amplification Deficits in Schizophrenia

    PubMed Central

    Butler, Pamela D.; Zemon, Vance; Schechter, Isaac; Saperstein, Alice M.; Hoptman, Matthew J.; Lim, Kelvin O.; Revheim, Nadine; Silipo, Gail; Javitt, Daniel C.

    2005-01-01

    Background Patients with schizophrenia show deficits in early-stage visual processing, potentially reflecting dysfunction of the magnocellular visual pathway. The magnocellular system operates normally in a nonlinear amplification mode mediated by glutamatergic (N-methyl-d-aspartate) receptors. Investigating magnocellular dysfunction in schizophrenia therefore permits evaluation of underlying etiologic hypotheses. Objectives To evaluate magnocellular dysfunction in schizophrenia, relative to known neurochemical and neuroanatomical substrates, and to examine relationships between electrophysiological and behavioral measures of visual pathway dysfunction and relationships with higher cognitive deficits. Design, Setting, and Participants Between-group study at an inpatient state psychiatric hospital and out-patient county psychiatric facilities. Thirty-three patients met DSM-IV criteria for schizophrenia or schizoaffective disorder, and 21 nonpsychiatric volunteers of similar ages composed the control group. Main Outcome Measures (1) Magnocellular and parvocellular evoked potentials, analyzed using nonlinear (Michaelis-Menten) and linear contrast gain approaches; (2) behavioral contrast sensitivity measures; (3) white matter integrity; (4) visual and nonvisual neuropsychological measures, and (5) clinical symptom and community functioning measures. Results Patients generated evoked potentials that were significantly reduced in response to magnocellular-biased, but not parvocellular-biased, stimuli (P=.001). Michaelis-Menten analyses demonstrated reduced contrast gain of the magnocellular system (P=.001). Patients showed decreased contrast sensitivity to magnocellular-biased stimuli (P<.001). Evoked potential deficits were significantly related to decreased white matter integrity in the optic radiations (P<.03). Evoked potential deficits predicted impaired contrast sensitivity (P=.002), which was in turn related to deficits in complex visual processing (P≤.04). Both evoked potential (P≤.04) and contrast sensitivity (P=.01) measures significantly predicted community functioning. Conclusions These findings confirm the existence of early-stage visual processing dysfunction in schizophrenia and provide the first evidence that such deficits are due to decreased nonlinear signal amplification, consistent with glutamatergic theories. Neuroimaging studies support the hypothesis of dysfunction within low-level visual pathways involving thalamocortical radiations. Deficits in early-stage visual processing significantly predict higher cognitive deficits. PMID:15867102

Top