Zhu, Xiaojun; Li, Tao; Liu, Mengxuan
2015-06-01
To evaluate the monitoring and early warning functions of the occupational disease reporting system right now in China, and to analyze their influencing factors. An improved audit tool (ODIT) was used to score the monitoring and early warning functions with a total score of 10. The nine indices were completeness of information on the reporting form, coverage of the reporting system, accessibility of criteria or guidelines for diagnosis, education and training for physicians, completeness of the reporting system, statistical methods, investigation of special cases, release of monitoring information, and release of early warning information. According to the evaluation, the occupational disease reporting system in China had a score of 5.5 in monitoring existing occupational diseases with a low score for release of monitoring information; the reporting system had a score of 6.5 in early warning of newly occurring occupational diseases with low scores for education and training for physicians as well as completeness of the reporting system. The occupational disease reporting system in China still does not have full function in monitoring and early warning. It is the education and participation of physicians from general hospitals in the diagnosis and treatment of occupational diseases and suspected occupational diseases that need to be enhanced. In addition, the problem of monitoring the incidence of occupational diseases needs to be solved as soon as possible.
Organizing Schools to Address Early Warning Indicators (EWIs): Common Practices and Challenges
ERIC Educational Resources Information Center
Davis, Marcia; Herzog, Liza; Legters, Nettie
2013-01-01
An early warning system is an intentional process whereby school personnel collectively analyze student data to monitor students at risk of falling off track for graduation and to provide the interventions and resources to intervene. We studied the process of monitoring the early warning indicators and implementing interventions to ascertain…
NASA Astrophysics Data System (ADS)
Stahl, K.; Hannaford, J.; Bachmair, S.; Tijdeman, E.; Collins, K.; Svoboda, M.; Knutson, C. L.; Wall, N.; Smith, K. H.; Bernadt, T.; Crossman, N. D.; Overton, I. C.; Barker, L. J.; Acreman, M. C.
2016-12-01
With climate projections suggesting that droughts will intensify in many regions in future, improved drought risk management may reduce potential threats to freshwater security across the globe. One aspect that has been called for in this respect is an improvement of the linkage of drought monitoring and early warning, which currently focuses largely on indicators from meteorology and hydrology, to drought impacts on environment and society. However, a survey of existing monitoring and early warning systems globally, that we report on in this contribution, demonstrates that although impacts are being monitored, there is limited work, and certainly little consensus, on how to best achieve this linkage. The Belmont Forum project DrIVER (Drought impacts: Vulnerability thresholds in monitoring and early-warning research) carried out a number of stakeholder workshops in North America, Europe and Australia to elaborate on options for such improvements. A first round of workshops explored current drought management practices among a very diverse range of stakeholders, and their expectations from monitoring and early warning systems (particularly regarding impact characterization). The workshops revealed some disconnects between the indices used in the public early warning systems and those used by local decision-makers, e.g. to trigger drought measures. Follow-up workshops then explored how the links between information at these different scales can be bridged and applied. Impact information plays a key role in this task. This contribution draws on the lessons learned from the transdisciplinary interactions in DrIVER, to enhance the usability of drought monitoring and early-warning systems and other risk management strategies.
NASA Astrophysics Data System (ADS)
Intrieri, Emanuele; Bardi, Federica; Fanti, Riccardo; Gigli, Giovanni; Fidolini, Francesco; Casagli, Nicola; Costanzo, Sandra; Raffo, Antonio; Di Massa, Giuseppe; Capparelli, Giovanna; Versace, Pasquale
2017-10-01
A big challenge in terms or landslide risk mitigation is represented by increasing the resiliency of society exposed to the risk. Among the possible strategies with which to reach this goal, there is the implementation of early warning systems. This paper describes a procedure to improve early warning activities in areas affected by high landslide risk, such as those classified as critical infrastructures for their central role in society. This research is part of the project LEWIS (Landslides Early Warning Integrated System): An Integrated System for Landslide Monitoring, Early Warning and Risk Mitigation along Lifelines
. LEWIS is composed of a susceptibility assessment methodology providing information for single points and areal monitoring systems, a data transmission network and a data collecting and processing center (DCPC), where readings from all monitoring systems and mathematical models converge and which sets the basis for warning and intervention activities. The aim of this paper is to show how logistic issues linked to advanced monitoring techniques, such as big data transfer and storing, can be dealt with compatibly with an early warning system. Therefore, we focus on the interaction between an areal monitoring tool (a ground-based interferometric radar) and the DCPC. By converting complex data into ASCII strings and through appropriate data cropping and average, and by implementing an algorithm for line-of-sight correction, we managed to reduce the data daily output without compromising the capability for performing.
Downey, C L; Brown, J M; Jayne, D G; Randell, R
2018-06-01
Vital signs monitoring is used to identify deteriorating patients in hospital. The most common tool for vital signs monitoring is an early warning score, although emerging technologies allow for remote, continuous patient monitoring. A number of reviews have examined the impact of continuous monitoring on patient outcomes, but little is known about the patient experience. This study aims to discover what patients think of monitoring in hospital, with a particular emphasis on intermittent early warning scores versus remote continuous monitoring, in order to inform future implementations of continuous monitoring technology. Semi-structured interviews were undertaken with 12 surgical inpatients as part of a study testing a remote continuous monitoring device. All patients were monitored with both an early warning score and the new device. Interviews were audio-recorded, transcribed verbatim and analysed using thematic analysis. Patients can see the value in remote, continuous monitoring, particularly overnight. However, patients appreciate the face-to-face aspect of early warning score monitoring as it allows for reassurance, social interaction, and gives them further opportunity to ask questions about their medical care. Early warning score systems are widely used to facilitate detection of the deteriorating patient. Continuous monitoring technologies may provide added reassurance. However, patients value personal contact with their healthcare professionals and remote monitoring should not replace this. We suggest that remote monitoring is best introduced in a phased manner, and initially as an adjunct to usual care, with careful consideration of the patient experience throughout. Copyright © 2018 Elsevier B.V. All rights reserved.
A Cardiac Early Warning System with Multi Channel SCG and ECG Monitoring for Mobile Health
Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lee, Ming-Yih
2017-01-01
Use of information and communication technology such as smart phone, smart watch, smart glass and portable health monitoring devices for healthcare services has made Mobile Health (mHealth) an emerging research area. Coronary Heart Disease (CHD) is considered as a leading cause of death world wide and an increasing number of people die prematurely due to CHD. Under such circumstances, there is a growing demand for a reliable cardiac monitoring system to catch the intermittent abnormalities and detect critical cardiac behaviors which lead to sudden death. Use of mobile devices to collect Electrocardiography (ECG), Seismocardiography (SCG) data and efficient analysis of those data can monitor a patient’s cardiac activities for early warning. This paper presents a novel cardiac data acquisition method and combined analysis of Electrocardiography (ECG) and multi channel Seismocardiography (SCG) data. An early warning system is implemented to monitor the cardiac activities of a person and accuracy assessment of the early warning system is conducted for the ECG data only. The assessment shows 88% accuracy and effectiveness of our proposed analysis, which implies the viability and applicability of the proposed early warning system. PMID:28353681
A Cardiac Early Warning System with Multi Channel SCG and ECG Monitoring for Mobile Health.
Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lee, Ming-Yih
2017-03-29
Use of information and communication technology such as smart phone, smart watch, smart glass and portable health monitoring devices for healthcare services has made Mobile Health (mHealth) an emerging research area. Coronary Heart Disease (CHD) is considered as a leading cause of death world wide and an increasing number of people die prematurely due to CHD. Under such circumstances, there is a growing demand for a reliable cardiac monitoring system to catch the intermittent abnormalities and detect critical cardiac behaviors which lead to sudden death. Use of mobile devices to collect Electrocardiography (ECG), Seismocardiography (SCG) data and efficient analysis of those data can monitor a patient's cardiac activities for early warning. This paper presents a novel cardiac data acquisition method and combined analysis of Electrocardiography (ECG) and multi channel Seismocardiography (SCG) data. An early warning system is implemented to monitor the cardiac activities of a person and accuracy assessment of the early warning system is conducted for the ECG data only. The assessment shows 88% accuracy and effectiveness of our proposed analysis, which implies the viability and applicability of the proposed early warning system.
The design of composite monitoring scheme for multilevel information in crop early diseases
NASA Astrophysics Data System (ADS)
Zhang, Yan; Meng, Qinglong; Shang, Jing
2018-02-01
It is difficult to monitor and predict the crops early diseases in that the crop disease monitoring is usually monitored by visible light images and the availabilities in early warning are poor at present. The features of common nondestructive testing technology applied to the crop diseases were analyzed in this paper. Based on the changeable characteristics of the virus from the incubation period to the onset period of crop activities, the multilevel composite information monitoring scheme were designed by applying infrared thermal imaging, visible near infrared hyperspectral imaging, micro-imaging technology to the monitoring of multilevel information of crop disease infection comprehensively. The early warning process and key monitoring parameters of compound monitoring scheme are given by taking the temperature, color, structure and texture of crops as the key monitoring characteristics of disease. With overcoming the deficiency that the conventional monitoring scheme is only suitable for the observation of diseases with naked eyes, the monitoring and early warning of the incubation and early onset of the infection crops can be realized by the composite monitoring program as mentioned in this paper.
On the importance of risk knowledge for an end-to-end tsunami early warning system
NASA Astrophysics Data System (ADS)
Post, Joachim; Strunz, Günter; Riedlinger, Torsten; Mück, Matthias; Wegscheider, Stephanie; Zosseder, Kai; Steinmetz, Tilmann; Gebert, Niklas; Anwar, Herryal
2010-05-01
Warning systems commonly use information provided by networks of sensors able to monitor and detect impending disasters, aggregate and condense these information to provide reliable information to a decision maker whether to warn or not, disseminates the warning message and provide this information to people at risk. Ultimate aim is to enable those in danger to make decisions (e.g. initiate protective actions for buildings) and to take action to safe their lives. This involves very complex issues when considering all four elements of early warning systems (UNISDR-PPEW), namely (1) risk knowledge, (2) monitoring and warning service, (3) dissemination and communication, (4) response capability with the ultimate aim to gain as much time as possible to empower individuals and communities to act in an appropriate manner to reduce injury, loss of life, damage to property and the environment and loss of livelihoods. Commonly most warning systems feature strengths and main attention on the technical/structural dimension (monitoring & warning service, dissemination tools) with weaknesses and less attention on social/cultural dimension (e.g. human response capabilities, defined warning chain to and knowing what to do by the people). Also, the use of risk knowledge in early warning most often is treated in a theoretical manner (knowing that it is somehow important), yet less in an operational, practical sense. Risk assessments and risk maps help to motivate people, prioritise early warning system needs and guide preparations for response and disaster prevention activities. Beyond this risk knowledge can be seen as a tie between national level early warning and community level reaction schemes. This presentation focuses on results, key findings and lessons-learnt related to tsunami risk assessment in the context of early warning within the GITEWS (German-Indonesian Tsunami Early Warning) project. Here a novel methodology reflecting risk information needs in the early warning context has been worked out. The generated results contribute significantly in the fields of (1) warning decision and warning levels, (2) warning dissemination and warning message content, (3) early warning chain planning, (4) increasing response capabilities and protective systems, (5) emergency relief and (6) enhancing communities' awareness and preparedness towards tsunami threats. Additionally examples will be given on the potentials of an operational use of risk information in early warning systems as first experiences exist for the tsunami early warning center in Jakarta, Indonesia. Beside this the importance of linking national level early warning information with tsunami risk information available at the local level (e.g. linking warning message information on expected intensity with respective tsunami hazard zone maps at community level for effective evacuation) will be demonstrated through experiences gained in three pilot areas in Indonesia. The presentation seeks to provide new insights on benefits using risk information in early warning and will provide further evidence that practical use of risk information is an important and indispensable component of end-to-end early warning.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-15
... Early Warning and Intervention Monitoring System AGENCY: Institute of Education Sciences/National Center... Intervention Monitoring System. OMB Control Number: 1850-NEW. Type of Review: New collection. Respondents... planning a two-part evaluation of the Early Warning and Intervention Monitoring System (EWIMS), consisting...
Research on early-warning index of the spatial temperature field in concrete dams.
Yang, Guang; Gu, Chongshi; Bao, Tengfei; Cui, Zhenming; Kan, Kan
2016-01-01
Warning indicators of the dam body's temperature are required for the real-time monitoring of the service conditions of concrete dams to ensure safety and normal operations. Warnings theories are traditionally targeted at a single point which have limitations, and the scientific warning theories on global behavior of the temperature field are non-existent. In this paper, first, in 3D space, the behavior of temperature field has regional dissimilarity. Through the Ward spatial clustering method, the temperature field was divided into regions. Second, the degree of order and degree of disorder of the temperature monitoring points were defined by the probability method. Third, the weight values of monitoring points of each regions were explored via projection pursuit. Forth, a temperature entropy expression that can describe degree of order of the spatial temperature field in concrete dams was established. Fifth, the early-warning index of temperature entropy was set up according to the calculated sequential value of temperature entropy. Finally, project cases verified the feasibility of the proposed theories. The early-warning index of temperature entropy is conducive to the improvement of early-warning ability and safety management levels during the operation of high concrete dams.
ON-LINE TOXICITY MONITORS AND WATERSHED EARLY WARNING SYSTEMS
A Water Quality Early Warning System using On-line Toxicity Monitors (OTMs) has been deployed in the East Fork of the Little Miami River, Clermont County, OH. Living organisms have long been used to determine the toxicity of environmental samples. With advancements in electronic ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... DEPARTMENT OF EDUCATION [Docket No.: ED-2013-ICCD-0106] Agency Information Collection Activities; Comment Request; Evaluation of the Early Warning and Intervention Monitoring System AGENCY: Institute of... Intervention Monitoring System. OMB Control Number: 1850-NEW. Type of Review: A new information collection...
Real-time earthquake data feasible
NASA Astrophysics Data System (ADS)
Bush, Susan
Scientists agree that early warning devices and monitoring of both Hurricane Hugo and the Mt. Pinatubo volcanic eruption saved thousands of lives. What would it take to develop this sort of early warning and monitoring system for earthquake activity?Not all that much, claims a panel assigned to study the feasibility, costs, and technology needed to establish a real-time earthquake monitoring (RTEM) system. The panel, drafted by the National Academy of Science's Committee on Seismology, has presented its findings in Real-Time Earthquake Monitoring. The recently released report states that “present technology is entirely capable of recording and processing data so as to provide real-time information, enabling people to mitigate somewhat the earthquake disaster.” RTEM systems would consist of two parts—an early warning system that would give a few seconds warning before severe shaking, and immediate postquake information within minutes of the quake that would give actual measurements of the magnitude. At this time, however, this type of warning system has not been addressed at the national level for the United States and is not included in the National Earthquake Hazard Reduction Program, according to the report.
Early warning system for Douglas-fir tussock moth outbreaks in the Western United States.
Gary E. Daterman; John M. Wenz; Katharine A. Sheehan
2004-01-01
The Early Warning System is a pheromone-based trapping system used to detect outbreaks of Douglas-fir tussock moth (DFTM, Orgyia pseudotsugata) in the western United States. Millions of acres are susceptible to DFTM defoliation, but Early Warning System monitoring focuses attention only on the relatively limited areas where outbreaks may be...
Early detection of ecosystem regime shifts: a multiple method evaluation for management application.
Lindegren, Martin; Dakos, Vasilis; Gröger, Joachim P; Gårdmark, Anna; Kornilovs, Georgs; Otto, Saskia A; Möllmann, Christian
2012-01-01
Critical transitions between alternative stable states have been shown to occur across an array of complex systems. While our ability to identify abrupt regime shifts in natural ecosystems has improved, detection of potential early-warning signals previous to such shifts is still very limited. Using real monitoring data of a key ecosystem component, we here apply multiple early-warning indicators in order to assess their ability to forewarn a major ecosystem regime shift in the Central Baltic Sea. We show that some indicators and methods can result in clear early-warning signals, while other methods may have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful in informing timely management actions in the face of ecosystem change.
Early Detection of Ecosystem Regime Shifts: A Multiple Method Evaluation for Management Application
Lindegren, Martin; Dakos, Vasilis; Gröger, Joachim P.; Gårdmark, Anna; Kornilovs, Georgs; Otto, Saskia A.; Möllmann, Christian
2012-01-01
Critical transitions between alternative stable states have been shown to occur across an array of complex systems. While our ability to identify abrupt regime shifts in natural ecosystems has improved, detection of potential early-warning signals previous to such shifts is still very limited. Using real monitoring data of a key ecosystem component, we here apply multiple early-warning indicators in order to assess their ability to forewarn a major ecosystem regime shift in the Central Baltic Sea. We show that some indicators and methods can result in clear early-warning signals, while other methods may have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful in informing timely management actions in the face of ecosystem change. PMID:22808007
NASA Technical Reports Server (NTRS)
Pozzi, Will; Sheffield, Justin; Stefanski, Robert; Cripe, Douglas; Pulwarty, Roger; Vogt, Jurgen V.; Heim, Richard R., Jr.; Brewer, Michael J.; Svoboda, Mark; Westerhoff, Rogier;
2013-01-01
Drought has had a significant impact on civilization throughout history in terms of reductions in agricultural productivity, potable water supply, and economic activity, and in extreme cases this has led to famine. Every continent has semiarid areas, which are especially vulnerable to drought. The Intergovernmental Panel on Climate Change has noted that average annual river runoff and water availability are projected to decrease by 10 percent-13 percent over some dry and semiarid regions in mid and low latitudes, increasing the frequency, intensity, and duration of drought, along with its associated impacts. The sheer magnitude of the problem demands efforts to reduce vulnerability to drought by moving away from the reactive, crisis management approach of the past toward a more proactive, risk management approach that is centered on reducing vulnerability to drought as much as possible while providing early warning of evolving drought conditions and possible impacts. Many countries, unfortunately, do not have adequate resources to provide early warning, but require outside support to provide the necessary early warning information for risk management. Furthermore, in an interconnected world, the need for information on a global scale is crucial for understanding the prospect of declines in agricultural productivity and associated impacts on food prices, food security, and potential for civil conflict. This paper highlights the recent progress made toward a Global Drought Early Warning Monitoring Framework (GDEWF), an underlying partnership and framework, along with its Global Drought Early Warning System (GDEWS), which is its interoperable information system, and the organizations that have begun working together to make it a reality. The GDEWF aims to improve existing regional and national drought monitoring and forecasting capabilities by adding a global component, facilitating continental monitoring and forecasting (where lacking), and improving these tools at various scales, thereby increasing the capacity of national and regional institutions that lack drought early warning systems or complementing existing ones. A further goal is to improve coordination of information delivery for drought-related activities and relief efforts across the world. This is especially relevant for regions and nations with low capacity for drought early warning. To do this requires a global partnership that leverages the resources necessary and develops capabilities at the global level, such as global drought forecasting combined with early warning tools, global real-time monitoring, and harmonized methods to identify critical areas vulnerable to drought. Although the path to a fully functional GDEWS is challenging, multiple partners and organizations within the drought, forecasting, agricultural, and water-cycle communities are committed to working toward its success.
A vantage from space can detect earlier drought onset: an approach using relative humidity.
Farahmand, Alireza; AghaKouchak, Amir; Teixeira, Joao
2015-02-25
Each year, droughts cause significant economic and agricultural losses across the world. The early warning and onset detection of drought is of particular importance for effective agriculture and water resource management. Previous studies show that the Standard Precipitation Index (SPI), a measure of precipitation deficit, detects drought onset earlier than other indicators. Here we show that satellite-based near surface air relative humidity data can further improve drought onset detection and early warning. This paper introduces the Standardized Relative Humidity Index (SRHI) based on the NASA Atmospheric Infrared Sounder (AIRS) observations. The results indicate that the SRHI typically detects the drought onset earlier than the SPI. While the AIRS mission was not originally designed for drought monitoring, we show that its relative humidity data offers a new and unique avenue for drought monitoring and early warning. We conclude that the early warning aspects of SRHI may have merit for integration into current drought monitoring systems.
A Vantage from Space Can Detect Earlier Drought Onset: An Approach Using Relative Humidity
Farahmand, Alireza; AghaKouchak, Amir; Teixeira, Joao
2015-01-01
Each year, droughts cause significant economic and agricultural losses across the world. The early warning and onset detection of drought is of particular importance for effective agriculture and water resource management. Previous studies show that the Standard Precipitation Index (SPI), a measure of precipitation deficit, detects drought onset earlier than other indicators. Here we show that satellite-based near surface air relative humidity data can further improve drought onset detection and early warning. This paper introduces the Standardized Relative Humidity Index (SRHI) based on the NASA Atmospheric Infrared Sounder (AIRS) observations. The results indicate that the SRHI typically detects the drought onset earlier than the SPI. While the AIRS mission was not originally designed for drought monitoring, we show that its relative humidity data offers a new and unique avenue for drought monitoring and early warning. We conclude that the early warning aspects of SRHI may have merit for integration into current drought monitoring systems. PMID:25711500
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Hargrove, William W.; Gasser, Gerald; Norman, Steve
2013-01-01
U.S. forests occupy approx.1/3 of total land area (approx. 304 million ha). Since 2000, a growing number of regionally evident forest disturbances have occurred due to abiotic and biotic agents. Regional forest disturbances can threaten human life and property, bio-diversity and water supplies. Timely regional forest disturbance monitoring products are needed to aid forest health management work. Near Real Time (NRT) twice daily MODIS NDVI data provide a means to monitor U.S. regional forest disturbances every 8 days. Since 2010, these NRT forest change products have been produced and posted on the US Forest Service ForWarn Early Warning System for Forest Threats.
NASA Astrophysics Data System (ADS)
Bazin, S.
2012-04-01
Landslide monitoring means the comparison of landslide characteristics like areal extent, speed of movement, surface topography and soil humidity from different periods in order to assess landslide activity. An ultimate "universal" methodology for this purpose does not exist; every technology has its own advantages and disadvantages. End-users should carefully consider each one to select the methodologies that represent the best compromise between pros and cons, and are best suited for their needs. Besides monitoring technology, there are many factors governing the choice of an Early Warning System (EWS). A people-centred EWS necessarily comprises five key elements: (1) knowledge of the risks; (2) identification, monitoring, analysis and forecasting of the hazards; (3) operational centre; (4) communication or dissemination of alerts and warnings; and (5) local capabilities to respond to the warnings received. The expression "end-to-end warning system" is also used to emphasize that EWSs need to span all steps from hazard detection through to community response. The aim of the present work is to provide guidelines for establishing the different components for landslide EWSs. One of the main deliverables of the EC-FP7 SafeLand project addresses the technical and practical issues related to monitoring and early warning for landslides, and identifies the best technologies available in the context of both hazard assessment and design of EWSs. This deliverable targets the end-users and aims to facilitate the decision process by providing guidelines. For the purpose of sharing the globally accumulated expertise, a screening study was done on 14 EWSs from 8 different countries. On these bases, the report presents a synoptic view of existing monitoring methodologies and early-warning strategies and their applicability for different landslide types, scales and risk management steps. Several comprehensive checklists and toolboxes are also included to support informed decisions. The deliverable was compiled with contributions from experts on landslides, monitoring technologies, remote sensing, and social researchers from 16 European institutions. The deliverable addresses one of the main objectives of the SafeLand project, namely to merge experience and expert judgment and create synergies on European level towards guidelines for early warning and to make these results available to end-users and local stakeholders.
Design of flood early warning system with wifi network based on smartphone
NASA Astrophysics Data System (ADS)
Supani, Ahyar; Andriani, Yuli; Taqwa, Ahmad
2017-11-01
Today, the development using internet of things enables activities surrounding us to be monitored, controlled, predicted and calculated remotely through connections to the internet network such as monitoring activities of long-distance flood warning with information technology. Applying an information technology in the field of flood early warning has been developed in the world, either connected to internet network or not. The internet network that has been done in this paper is the design of WiFi network to access data of rainfall, water level and flood status at any time with a smartphone coming from flood early warning system. The results obtained when test of data accessing with smartphone are in form of rainfall and water level graphs against time and flood status indicators consisting of 3 flood states: Standby 2, Standby 1 and Flood. It is concluded that data are from flood early warning system has been able to accessed and displayed on smartphone via WiFi network in any time and real time.
Chen, Yulong; Irfan, Muhammad; Uchimura, Taro; Zhang, Ke
2018-03-27
Rainfall-induced landslides are one of the most widespread slope instability phenomena posing a serious risk to public safety worldwide so that their temporal prediction is of great interest to establish effective warning systems. The objective of this study is to determine the effectiveness of elastic wave velocities in the surface layer of the slope in monitoring, prediction and early warning of landslide. The small-scale fixed and varied, and large-scale slope model tests were conducted. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation and there was a distinct surge in the decrease rate of wave velocity when failure was initiated. Based on the preliminary results of this analysis, the method using the change in elastic wave velocity proves superior for landslide early warning and suggests that a warning be issued at switch of wave velocity decrease rate.
Study of Water Pollution Early Warning Framework Based on Internet of Things
NASA Astrophysics Data System (ADS)
Chengfang, H.; Xiao, X.; Dingtao, S.; Bo, C.; Xiongfei, W.
2016-06-01
In recent years, with the increasing world environmental pollution happening, sudden water pollution incident has become more and more frequently in China. It has posed a serious threat to water safety of the people living in the water source area. Conventional water pollution monitoring method is manual periodic testing, it maybe miss the best time to find that pollution incident. This paper proposes a water pollution warning framework to change this state. On the basis of the Internet of things, we uses automatic water quality monitoring technology to realize monitoring. We calculate the monitoring data with water pollution model to judge whether the water pollution incident is happen or not. Water pollution warning framework is divided into three layers: terminal as the sensing layer, it with the deployment of the automatic water quality pollution monitoring sensor. The middle layer is the transfer network layer, data information implementation is based on GPRS wireless network transmission. The upper one is the application layer. With these application systems, early warning information of water pollution will realize the high-speed transmission between grassroots units and superior units. The paper finally gives an example that applying this pollution warning framework to water quality monitoring of Beijing, China, it greatly improves the speed of the pollution warning responding of Beijing.
Establishing the fundamentals for an elephant early warning and monitoring system.
Zeppelzauer, Matthias; Stoeger, Angela S
2015-09-04
The decline of habitat for elephants due to expanding human activity is a serious conservation problem. This has continuously escalated the human-elephant conflict in Africa and Asia. Elephants make extensive use of powerful infrasonic calls (rumbles) that travel distances of up to several kilometers. This makes elephants well-suited for acoustic monitoring because it enables detecting elephants even if they are out of sight. In sight, their distinct visual appearance makes them a good candidate for visual monitoring. We provide an integrated overview of our interdisciplinary project that established the scientific fundamentals for a future early warning and monitoring system for humans who regularly experience serious conflict with elephants. We first draw the big picture of an early warning and monitoring system, then review the developed solutions for automatic acoustic and visual detection, discuss specific challenges and present open future work necessary to build a robust and reliable early warning and monitoring system that is able to operate in situ. We present a method for the automated detection of elephant rumbles that is robust to the diverse noise sources present in situ. We evaluated the method on an extensive set of audio data recorded under natural field conditions. Results show that the proposed method outperforms existing approaches and accurately detects elephant rumbles. Our visual detection method shows that tracking elephants in wildlife videos (of different sizes and postures) is feasible and particularly robust at near distances. From our project results we draw a number of conclusions that are discussed and summarized. We clearly identified the most critical challenges and necessary improvements of the proposed detection methods and conclude that our findings have the potential to form the basis for a future automated early warning system for elephants. We discuss challenges that need to be solved and summarize open topics in the context of a future early warning and monitoring system. We conclude that a long-term evaluation of the presented methods in situ using real-time prototypes is the most important next step to transfer the developed methods into practical implementation.
NASA Astrophysics Data System (ADS)
Li, Baishou; Huang, Yu; Lan, Guangquan; Li, Tingting; Lu, Ting; Yao, Mingxing; Luo, Yuandan; Li, Boxiang; Qian, Yongyou; Gao, Yujiu
2015-12-01
This paper design and implement security monitor system within a scenic spot for tourists, the scenic spot staff can be automatic real time for visitors to perception and monitoring, and visitors can also know about themselves location in the scenic, real-time and obtain the 3D imaging conditions of scenic area. Through early warning can realize "parent-child relation", preventing the old man and child lost and wandering. Research results to the further development of virtual reality to provide effective security early warning platform of the theoretical basis and practical reference.
Landslide early warning system prototype with GIS analysis indicates by soil movement and rainfall
NASA Astrophysics Data System (ADS)
Artha, Y.; Julian, E. S.
2018-01-01
The aim of this paper is developing and testing of landslide early warning system. The early warning system uses accelerometersas ground movement and tilt-sensing device and a water flow sensor. A microcentroller is used to process the input signal and activate the alarm. An LCD is used to display the acceleration in x,y and z axis. When the soil moved or shifted and rainfall reached 100 mm/day, the alarm rang and signal were sentto the monitoring center via a telemetry system.Data logging information and GIS spatial data can be monitored remotely as tables and graphics as well as in the form of geographical map with the help of web-GIS interface. The system were tested at Kampung Gerendong, Desa Putat Nutug, Kecamatan Ciseeng, Kabupaten Bogor. This area has 3.15 cumulative score, which mean vulnerable to landslide. The results show that the early warning system worked as planned.
Exploring the utility of real-time hydrologic data for landslide early warning
NASA Astrophysics Data System (ADS)
Mirus, B. B.; Smith, J. B.; Becker, R.; Baum, R. L.; Koss, E.
2017-12-01
Early warning systems can provide critical information for operations managers, emergency planners, and the public to help reduce fatalities, injuries, and economic losses due to landsliding. For shallow, rainfall-triggered landslides early warning systems typically use empirical rainfall thresholds, whereas the actual triggering mechanism involves the non-linear hydrological processes of infiltration, evapotranspiration, and hillslope drainage that are more difficult to quantify. Because hydrologic monitoring has demonstrated that shallow landslides are often preceded by a rise in soil moisture and pore-water pressures, some researchers have developed early warning criteria that attempt to account for these antecedent wetness conditions through relatively simplistic storage metrics or soil-water balance modeling. Here we explore the potential for directly incorporating antecedent wetness into landslide early warning criteria using recent landslide inventories and in-situ hydrologic monitoring near Seattle, WA, and Portland, OR. We use continuous, near-real-time telemetered soil moisture and pore-water pressure data measured within a few landslide-prone hillslopes in combination with measured and forecasted rainfall totals to inform easy-to-interpret landslide initiation thresholds. Objective evaluation using somewhat limited landslide inventories suggests that our new thresholds based on subsurface hydrologic monitoring and rainfall data compare favorably to the capabilities of existing rainfall-only thresholds for the Seattle area, whereas there are no established rainfall thresholds for the Portland area. This preliminary investigation provides a proof-of-concept for the utility of developing landslide early warning criteria in two different geologic settings using real-time subsurface hydrologic measurements from in-situ instrumentation.
Synergy of Earth Observation and In-Situ Monitoring Data for Flood Hazard Early Warning System
NASA Astrophysics Data System (ADS)
Brodsky, Lukas; Kodesova, Radka; Spazierova, Katerina
2010-12-01
In this study, we demonstrate synergy of EO and in-situ monitoring data for early warning flood hazard system in the Czech Republic developed within ESA PECS project FLOREO. The development of the demonstration system is oriented to support existing monitoring activities, especially snow melt and surface water runoff contributing to flooding events. The system consists of two main parts accordingly, the first is snow cover and snow melt monitoring driven mainly by EO data and the other is surface water runoff modeling and monitoring driven by synergy of in-situ and EO data.
Chen, Yulong; Irfan, Muhammad; Uchimura, Taro; Zhang, Ke
2018-01-01
Rainfall-induced landslides are one of the most widespread slope instability phenomena posing a serious risk to public safety worldwide so that their temporal prediction is of great interest to establish effective warning systems. The objective of this study is to determine the effectiveness of elastic wave velocities in the surface layer of the slope in monitoring, prediction and early warning of landslide. The small-scale fixed and varied, and large-scale slope model tests were conducted. Analysis of the results has established that the elastic wave velocity continuously decreases in response of moisture content and deformation and there was a distinct surge in the decrease rate of wave velocity when failure was initiated. Based on the preliminary results of this analysis, the method using the change in elastic wave velocity proves superior for landslide early warning and suggests that a warning be issued at switch of wave velocity decrease rate. PMID:29584699
Hope, Joanna; Recio-Saucedo, Alejandra; Fogg, Carole; Griffiths, Peter; Smith, Gary B; Westwood, Greta; Schmidt, Paul E
2017-12-21
To explore why adherence to vital sign observations scheduled by an early warning score protocol reduces at night. Regular vital sign observations can reduce avoidable deterioration in hospital. early warning score protocols set the frequency of these observations by the severity of a patient's condition. Vital sign observations are taken less frequently at night, even with an early warning score in place, but no literature has explored why. A qualitative interpretative design informed this study. Seventeen semi-structured interviews with nursing staff working on wards with varying levels of adherence to scheduled vital sign observations. A thematic analysis approach was used. At night, nursing teams found it difficult to balance the competing care goals of supporting sleep with taking vital sign observations. The night-time frequency of these observations was determined by clinical judgement, ward-level expectations of observation timing and the risk of disturbing other patients. Patients with COPD or dementia could be under-monitored, while patients nearing the end of life could be over-monitored. In this study, we found an early warning score algorithm focused on deterioration prevention did not account for long-term management or palliative care trajectories. Nurses were therefore less inclined to wake such patients to take vital sign observations at night. However, the perception of widespread exceptions and lack of evidence regarding optimum frequency risks delegitimising the early warning score approach. This may pose a risk to patient safety, particularly patients with dementia or chronic conditions. Nurses should document exceptions and discuss these with the wider team. Hospitals should monitor why vital sign observations are missed at night, identify which groups are under-monitored and provide guidance on prioritising competing expectations. early warning score protocols should take account of different care trajectories. © 2017 The Authors. Journal of Clinical Nursing Published by John Wiley & Sons Ltd.
Allasia, Paolo; Manconi, Andrea; Giordan, Daniele; Baldo, Marco; Lollino, Giorgio
2013-01-01
We present a new method for near-real-time monitoring of surface displacements due to landslide phenomena, namely ADVanced dIsplaCement monitoring system for Early warning (ADVICE). The procedure includes: (i) data acquisition and transfer protocols; (ii) data collection, filtering, and validation; (iii) data analysis and restitution through a set of dedicated software; (iv) recognition of displacement/velocity threshold, early warning messages via SMS and/or emails; (v) automatic publication of the results on a dedicated webpage. We show how the system evolved and the results obtained by applying ADVICE over three years into a real early warning scenario relevant to a large earthflow located in southern Italy. ADVICE has speed-up and facilitated the understanding of the landslide phenomenon, the communication of the monitoring results to the partners, and consequently the decision-making process in a critical scenario. Our work might have potential applications not only for landslide monitoring but also in other contexts, as monitoring of other geohazards and of complex infrastructures, as open-pit mines, buildings, dams, etc. PMID:23807688
Allasia, Paolo; Manconi, Andrea; Giordan, Daniele; Baldo, Marco; Lollino, Giorgio
2013-06-27
We present a new method for near-real-time monitoring of surface displacements due to landslide phenomena, namely ADVanced dIsplaCement monitoring system for Early warning (ADVICE). The procedure includes: (i) data acquisition and transfer protocols; (ii) data collection, filtering, and validation; (iii) data analysis and restitution through a set of dedicated software; (iv) recognition of displacement/velocity threshold, early warning messages via SMS and/or emails; (v) automatic publication of the results on a dedicated webpage. We show how the system evolved and the results obtained by applying ADVICE over three years into a real early warning scenario relevant to a large earthflow located in southern Italy. ADVICE has speed-up and facilitated the understanding of the landslide phenomenon, the communication of the monitoring results to the partners, and consequently the decision-making process in a critical scenario. Our work might have potential applications not only for landslide monitoring but also in other contexts, as monitoring of other geohazards and of complex infrastructures, as open-pit mines, buildings, dams, etc.
Study on the early warning mechanism for the security of blast furnace hearths
NASA Astrophysics Data System (ADS)
Zhao, Hong-bo; Huo, Shou-feng; Cheng, Shu-sen
2013-04-01
The campaign life of blast furnace (BF) hearths has become the limiting factor for safety and high efficiency production of modern BFs. However, the early warning mechanism of hearth security has not been clear. In this article, based on heat transfer calculations, heat flux and erosion monitoring, the features of heat flux and erosion were analyzed and compared among different types of hearths. The primary detecting elements, mathematical models, evaluating standards, and warning methods were discussed. A novel early warning mechanism with the three-level quantificational standards was proposed for BF hearth security.
Early identification systems for emerging foodborne hazards.
Marvin, H J P; Kleter, G A; Prandini, A; Dekkers, S; Bolton, D J
2009-05-01
This paper provides a non-exhausting overview of early warning systems for emerging foodborne hazards that are operating in the various places in the world. Special attention is given to endpoint-focussed early warning systems (i.e. ECDC, ISIS and GPHIN) and hazard-focussed early warning systems (i.e. FVO, RASFF and OIE) and their merit to successfully identify a food safety problem in an early stage is discussed. Besides these early warning systems which are based on monitoring of either disease symptoms or hazards, also early warning systems and/or activities that intend to predict the occurrence of a food safety hazard in its very beginning of development or before that are described. Examples are trend analysis, horizon scanning, early warning systems for mycotoxins in maize and/or wheat and information exchange networks (e.g. OIE and GIEWS). Furthermore, recent initiatives that aim to develop predictive early warning systems based on the holistic principle are discussed. The assumption of the researchers applying this principle is that developments outside the food production chain that are either directly or indirectly related to the development of a particular food safety hazard may also provide valuable information to predict the development of this hazard.
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Hargrove, William; Norman, Steve; Gasser, Gerald; Smoot, James; Kuper, Philip
2012-01-01
U.S. forests occupy approx 751 million acres (approx 1/3 of total land). Several abiotic and biotic damage agents disturb, damage, kill, and/or threaten these forests. Regionally extensive forest disturbances can also threaten human life and property, bio-diversity and water supplies. timely regional forest disturbance monitoring products are needed to aid forest health management work at finer scales. daily MODIS data provide a means to monitor regional forest disturbances on a weekly basis, leveraging vegetation phenology. In response, the USFS and NASA began collaborating in 2006 to develop a Near Real Time (NRT) forest monitoring capability, based on MODIS NDVI data, as part of a national forest threat Early Warning System (EWS).
ShakeAlert—An earthquake early warning system for the United States west coast
Burkett, Erin R.; Given, Douglas D.; Jones, Lucile M.
2014-08-29
Earthquake early warning systems use earthquake science and the technology of monitoring systems to alert devices and people when shaking waves generated by an earthquake are expected to arrive at their location. The seconds to minutes of advance warning can allow people and systems to take actions to protect life and property from destructive shaking. The U.S. Geological Survey (USGS), in collaboration with several partners, has been working to develop an early warning system for the United States. ShakeAlert, a system currently under development, is designed to cover the West Coast States of California, Oregon, and Washington.
NASA Astrophysics Data System (ADS)
Karnawati, D.; Wilopo, W.; Fathani, T. F.; Fukuoka, H.; Andayani, B.
2012-12-01
A Smart Grid is a cyber-based tool to facilitate a network of sensors for monitoring and communicating the landslide hazard and providing the early warning. The sensor is designed as an electronic sensor installed in the existing monitoring and early warning instruments, and also as the human sensors which comprise selected committed-people at the local community, such as the local surveyor, local observer, member of the local task force for disaster risk reduction, and any person at the local community who has been registered to dedicate their commitments for sending reports related to the landslide symptoms observed at their living environment. This tool is designed to be capable to receive up to thousands of reports/information at the same time through the electronic sensors, text message (mobile phone), the on-line participatory web as well as various social media such as Twitter and Face book. The information that should be recorded/ reported by the sensors is related to the parameters of landslide symptoms, for example the progress of cracks occurrence, ground subsidence or ground deformation. Within 10 minutes, this tool will be able to automatically elaborate and analyse the reported symptoms to predict the landslide hazard and risk levels. The predicted level of hazard/ risk can be sent back to the network of electronic and human sensors as the early warning information. The key parameters indicating the symptoms of landslide hazard were recorded/ monitored by the electrical and the human sensors. Those parameters were identified based on the investigation on geological and geotechnical conditions, supported with the laboratory analysis. The cause and triggering mechanism of landslide in the study area was also analysed in order to define the critical condition to launch the early warning. However, not only the technical but also social system were developed to raise community awareness and commitments to serve the mission as the human sensors, which will be responsible for reporting and informing the early warning. Therefore, a community empowerment and encouragement program through public education was conducted. Strategy and approach for this program was formulated based on the socio-engineering investigation. Finally, the results of technical and social engineering investigations, have been elaborated to further enhance the performance of expert system of the Smart Grid, in order to completely establish this system as an innovative and effective tool for the landslide monitoring and early warning in tropical-developing country.
Novel Algorithms Enabling Rapid, Real-Time Earthquake Monitoring and Tsunami Early Warning Worldwide
NASA Astrophysics Data System (ADS)
Lomax, A.; Michelini, A.
2012-12-01
We have introduced recently new methods to determine rapidly the tsunami potential and magnitude of large earthquakes (e.g., Lomax and Michelini, 2009ab, 2011, 2012). To validate these methods we have implemented them along with other new algorithms within the Early-est earthquake monitor at INGV-Rome (http://early-est.rm.ingv.it, http://early-est.alomax.net). Early-est is a lightweight software package for real-time earthquake monitoring (including phase picking, phase association and event detection, location, magnitude determination, first-motion mechanism determination, ...), and for tsunami early warning based on discriminants for earthquake tsunami potential. In a simulation using archived broadband seismograms for the devastating M9, 2011 Tohoku earthquake and tsunami, Early-est determines: the epicenter within 3 min after the event origin time, discriminants showing very high tsunami potential within 5-7 min, and magnitude Mwpd(RT) 9.0-9.2 and a correct shallow-thrusting mechanism within 8 min. Real-time monitoring with Early-est givess similar results for most large earthquakes using currently available, real-time seismogram data. Here we summarize some of the key algorithms within Early-est that enable rapid, real-time earthquake monitoring and tsunami early warning worldwide: >>> FilterPicker - a general purpose, broad-band, phase detector and picker (http://alomax.net/FilterPicker); >>> Robust, simultaneous association and location using a probabilistic, global-search; >>> Period-duration discriminants TdT0 and TdT50Ex for tsunami potential available within 5 min; >>> Mwpd(RT) magnitude for very large earthquakes available within 10 min; >>> Waveform P polarities determined on broad-band displacement traces, focal mechanisms obtained with the HASH program (Hardebeck and Shearer, 2002); >>> SeisGramWeb - a portable-device ready seismogram viewer using web-services in a browser (http://alomax.net/webtools/sgweb/info.html). References (see also: http://alomax.net/pub_list.html): Lomax, A. and A. Michelini (2012), Tsunami early warning within 5 minutes, Pure and Applied Geophysics, 169, nnn-nnn, doi: 10.1007/s00024-012-0512-6. Lomax, A. and A. Michelini (2011), Tsunami early warning using earthquake rupture duration and P-wave dominant period: the importance of length and depth of faulting, Geophys. J. Int., 185, 283-291, doi: 10.1111/j.1365-246X.2010.04916.x. Lomax, A. and A. Michelini (2009b), Tsunami early warning using earthquake rupture duration, Geophys. Res. Lett., 36, L09306, doi:10.1029/2009GL037223. Lomax, A. and A. Michelini (2009a), Mwpd: A Duration-Amplitude Procedure for Rapid Determination of Earthquake Magnitude and Tsunamigenic Potential from P Waveforms, Geophys. J. Int.,176, 200-214, doi:10.1111/j.1365-246X.2008.03974.x
In Brief: U.S. Volcano Early Warning System; Bill provides clear mandate for NOAA
NASA Astrophysics Data System (ADS)
Showstack, Randy
2005-05-01
The U.S. Geological Survey on 29 April released a comprehensive review of the 169 U.S. volcanoes, and established a framework for a National Volcano Early Warning System that is being formulated by the Consortium of U.S. Volcano Observatories. The framework proposes an around-the-clock Volcano Watch Office and improved instrumentation and monitoring at targeted volcanoes. The report, authored by USGS scientists John Ewert, Marianne Guffanti, and Thomas Murray, notes that although a few U.S. volcanoes are well-monitored, half of the most threatening volcanoes are monitored at a basic level and some hazardous volcanoes have no ground-based monitoring.
Constructing early warning information release system in towns enterprise clean production
NASA Astrophysics Data System (ADS)
Yuwen, Huixin; He, Xueqiu; Qian, Xinming; Yuan, Mengqi
2017-08-01
China’s industry boom has not only brought unprecedented prosperity, but also caused the gradual depletion of various resources and the worsening of the natural environment. Experts admit that China is facing serious environmental problem, but they believe that they can seek a new path to overcome it through joint efforts. Early warning information release and clean production are the important concepts in addressing the imminent crisis. Early warning information release system can monitor and forecast the risk that affects the clean production. The author drawn the experiences and lessons from developed countries, combined with China’s reality, put forward countermeasures and suggestions about constructing early warning information release system in process of Chinese town-scaled enterprises clean production.
2012-04-11
warning of seal leakage or deterioration of air filters, thereby reducing engine damage and improving vehicle operational readiness. To be effective , the...for a comprehensive early warning and health management solution. To address the need for an effective dust detector for the AGT1500 engine and M1...an optical dust sensor for real-time continuous monitoring, and its effectiveness in quantitatively measuring dust penetration in the AGT1500 engine
The Role of Cash Flow in Financial Early Warning of Agricultural Enterprises Based on Logistic Model
NASA Astrophysics Data System (ADS)
Sun, Fengru
2018-01-01
This paper chooses the agricultural listed companies as the research object, compares the financial situation of the enterprise and the theory of financial early warning, combines the financial status of the agricultural listed companies, selects the relevant cash flow indicators, discusses the application of the Logistic financial early warning model in the agricultural listed companies, Agricultural enterprises get better development. Research on financial early warning of agricultural listed companies will help the agricultural listed companies to predict the financial crisis. Financial early warning model is simple to establish, operational and strong, the use of financial early warning model, to help enterprises in the financial crisis before taking rapid and effective measures, which can avoid losses. Help enterprises to discover signs of deterioration of the financial situation in time to maintain the sustainable development of agricultural enterprises. In addition, through the financial early warning model, investors can correctly identify the financial situation of agricultural enterprises, and can evaluate the financial situation of agricultural enterprises and to help investors to invest in scientific and rational, beneficial to investors to analyze the safety of investment. But also help the relevant regulatory agencies to effectively monitor the market and promote the healthy and stable development of the market.
Assessing the performance of regional landslide early warning models: the EDuMaP method
NASA Astrophysics Data System (ADS)
Calvello, M.; Piciullo, L.
2016-01-01
A schematic of the components of regional early warning systems for rainfall-induced landslides is herein proposed, based on a clear distinction between warning models and warning systems. According to this framework an early warning system comprises a warning model as well as a monitoring and warning strategy, a communication strategy and an emergency plan. The paper proposes the evaluation of regional landslide warning models by means of an original approach, called the "event, duration matrix, performance" (EDuMaP) method, comprising three successive steps: identification and analysis of the events, i.e., landslide events and warning events derived from available landslides and warnings databases; definition and computation of a duration matrix, whose elements report the time associated with the occurrence of landslide events in relation to the occurrence of warning events, in their respective classes; evaluation of the early warning model performance by means of performance criteria and indicators applied to the duration matrix. During the first step the analyst identifies and classifies the landslide and warning events, according to their spatial and temporal characteristics, by means of a number of model parameters. In the second step, the analyst computes a time-based duration matrix with a number of rows and columns equal to the number of classes defined for the warning and landslide events, respectively. In the third step, the analyst computes a series of model performance indicators derived from a set of performance criteria, which need to be defined by considering, once again, the features of the warning model. The applicability, potentialities and limitations of the EDuMaP method are tested and discussed using real landslides and warning data from the municipal early warning system operating in Rio de Janeiro (Brazil).
Role of remote sensing in desert locust early warning
NASA Astrophysics Data System (ADS)
Cressman, Keith
2013-01-01
Desert locust (Schistocerca gregaria, Forskål) plagues have historically had devastating consequences on food security in Africa and Asia. The current strategy to reduce the frequency of plagues and manage desert locust infestations is early warning and preventive control. To achieve this, the Food and Agriculture Organization of the United Nations operates one of the oldest, largest, and best-known migratory pest monitoring systems in the world. Within this system, remote sensing plays an important role in detecting rainfall and green vegetation. Despite recent technological advances in data management and analysis, communications, and remote sensing, monitoring desert locusts and preventing plagues in the years ahead will continue to be a challenge from a geopolitical and financial standpoint for affected countries and the international donor community. We present an overview of the use of remote sensing in desert locust early warning.
Hou, Dibo; Song, Xiaoxuan; Zhang, Guangxin; Zhang, Hongjian; Loaiciga, Hugo
2013-07-01
An event-driven, urban, drinking water quality early warning and control system (DEWS) is proposed to cope with China's urgent need for protecting its urban drinking water. The DEWS has a web service structure and provides users with water quality monitoring functions, water quality early warning functions, and water quality accident decision-making functions. The DEWS functionality is guided by the principles of control theory and risk assessment as applied to the feedback control of urban water supply systems. The DEWS has been deployed in several large Chinese cities and found to perform well insofar as water quality early warning and emergency decision-making is concerned. This paper describes a DEWS for urban water quality protection that has been developed in China.
A Risk-Based Multi-Objective Optimization Concept for Early-Warning Monitoring Networks
NASA Astrophysics Data System (ADS)
Bode, F.; Loschko, M.; Nowak, W.
2014-12-01
Groundwater is a resource for drinking water and hence needs to be protected from contaminations. However, many well catchments include an inventory of known and unknown risk sources which cannot be eliminated, especially in urban regions. As matter of risk control, all these risk sources should be monitored. A one-to-one monitoring situation for each risk source would lead to a cost explosion and is even impossible for unknown risk sources. However, smart optimization concepts could help to find promising low-cost monitoring network designs.In this work we develop a concept to plan monitoring networks using multi-objective optimization. Our considered objectives are to maximize the probability of detecting all contaminations and the early warning time and to minimize the installation and operating costs of the monitoring network. A qualitative risk ranking is used to prioritize the known risk sources for monitoring. The unknown risk sources can neither be located nor ranked. Instead, we represent them by a virtual line of risk sources surrounding the production well.We classify risk sources into four different categories: severe, medium and tolerable for known risk sources and an extra category for the unknown ones. With that, early warning time and detection probability become individual objectives for each risk class. Thus, decision makers can identify monitoring networks which are valid for controlling the top risk sources, and evaluate the capabilities (or search for least-cost upgrade) to also cover moderate, tolerable and unknown risk sources. Monitoring networks which are valid for the remaining risk also cover all other risk sources but the early-warning time suffers.The data provided for the optimization algorithm are calculated in a preprocessing step by a flow and transport model. Uncertainties due to hydro(geo)logical phenomena are taken into account by Monte-Carlo simulations. To avoid numerical dispersion during the transport simulations we use the particle-tracking random walk method.
ERIC Educational Resources Information Center
Massachusetts Department of Elementary and Secondary Education, 2016
2016-01-01
A rise in data availability gives educators the opportunity to tailor instructional practices and interventions to student needs and invest resources in areas where students require the most support. Massachusetts developed the Early Warning Indicator System (EWIS), which synthesizes the wealth of student data available in the state, including…
NASA Astrophysics Data System (ADS)
Thiebes, Benni; Glade, Thomas; Schweigl, Joachim; Jäger, Stefan; Canli, Ekrem
2014-05-01
Landslides represent significant hazards in the mountainous areas of Austria. The Regional Geological Surveys are responsible to inform and protect the population, and to mitigate damage to infrastructure. Efforts of the Regional Geological Survey of Lower Austria include detailed site investigations, the planning and installation of protective structures (e.g. rock fall nets) as well as preventive measures such as regional scale landslide susceptibility assessments. For potentially endangered areas, where protection works are not feasible or would simply be too costly, monitoring systems have been installed. However, these systems are dominantly not automatic and require regular field visits to take measurements. Therefore, it is difficult to establish any relation between initiating and controlling factors, thus to fully understand the underlying process mechanism which is essential for any early warning system. Consequently, the implementation of new state-of-the-art monitoring and early warning systems has been started. In this presentation, the design of four landslide monitoring and early warning systems is introduced. The investigated landslide process types include a deep-seated landslide, a rock fall site, a complex earth flow, and a debris flow catchment. The monitoring equipment was chosen depending on the landslide processes and their activity. It aims to allow for a detailed investigation of process mechanisms in relation to its triggers and for reliable prediction of future landslide activities. The deep-seated landslide will be investigated by manual and automatic inclinometers to get detailed insights into subsurface displacements. In addition, TDR sensors and a weather station will be employed to get a better understanding on the influence of rainfall on sub-surface hydrology. For the rockfall site, a wireless sensor network will be installed to get real-time information on acceleration and inclination of potentially unstable blocks. The movement of the earth flow site will be monitored by differential GPS to get high precision information on displacements of marked points. Photogrammtetry based on octocopter surveys will provide spatial information on movement patterns. A similar approach will be followed for the debris flow catchment. Here, the focus lies on a monitoring of the landslide failures in the source area which prepares the material for subsequent debris flow transport. In addition to the methods already mentioned, repeated terrestrial laserscanning campaigns will be used to monitor geomorphological changes at all sites. All important data, which can be single measurements, episodic or continuous monitoring data for a given point (e.g. rainfall, inclination) or of spatial character (e.g. LiDAR measurements), are collected and analysed on an external server. Automatic data analysis methods, such as progressive failure analysis, are carried out automatically based on field measurements. The data and results from all monitoring sites are visualised on a web-based platform which enables registered users to analyse the respective information in near-real-time. Moreover, thresholds can be determined which trigger automated warning messages to the involved scientists if thresholds are exceeded by field measurements. The described system will enable scientists and decision-makers to access the latest data from the monitoring systems. Automatic alarms are raised when thresholds are exceeded to inform them about potentially hazardous changes. Thereby, a more efficient hazard management and early warning can be achieved. Keywords: landslide, rockfall, debris flow, earth flow, monitoring, early warning system.
Development of structural health monitoring and early warning system for reinforced concrete system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iranata, Data, E-mail: iranata-data@yahoo.com, E-mail: data@ce.its.ac.id; Wahyuni, Endah; Murtiadi, Suryawan
Many buildings have been damaged due to earthquakes that occurred recently in Indonesia. The main cause of the damage is the large deformation of the building structural component cannot accommodate properly. Therefore, it is necessary to develop the Structural Health Monitoring System (SHMS) to measure precisely the deformation of the building structural component in the real time conditions. This paper presents the development of SHMS for reinforced concrete structural system. This monitoring system is based on deformation component such as strain of reinforcement bar, concrete strain, and displacement of reinforced concrete component. Since the deformation component has exceeded the limitmore » value, the warning message can be sent to the building occupies. This warning message has also can be performed as early warning system of the reinforced concrete structural system. The warning message can also be sent via Short Message Service (SMS) through the Global System for Mobile Communications (GSM) network. Hence, the SHMS should be integrated with internet modem to connect with GSM network. Additionally, the SHMS program is verified with experimental study of simply supported reinforced concrete beam. Verification results show that the SHMS has good agreement with experimental results.« less
NASA Astrophysics Data System (ADS)
Dou, S.; Wood, T.; Lindsey, N.; Ajo Franklin, J. B.; Freifeld, B. M.; Gelvin, A.; Morales, A.; Saari, S.; Ekblaw, I.; Wagner, A. M.; Daley, T. M.; Robertson, M.; Martin, E. R.; Ulrich, C.; Bjella, K.
2016-12-01
Thawing of permafrost can cause ground deformations that threaten the integrity of civil infrastructure. It is essential to develop early warning systems that can identify critically warmed permafrost and issue warnings for hazard prevention and control. Seismic methods can play a pivotal role in such systems for at least two reasons: First, seismic velocities are indicative of mechanical strength of the subsurface and thus are directly relevant to engineering properties; Second, seismic velocities in permafrost systems are sensitive to pre-thaw warming, which makes it possible to issue early warnings before the occurrence of hazardous subsidence events. However, several questions remain: What are the seismic signatures that can be effectively used for early warning of permafrost thaw? Can seismic methods provide enough warning times for hazard prevention and control? In this study, we investigate the feasibility of using permanently installed seismic networks for early warnings of permafrost thaw. We conducted continuous active-source seismic monitoring of permafrost that was under controlled heating at CRREL's Fairbanks permafrost experiment station. We used a permanently installed surface orbital vibrator (SOV) as source and surface-trenched DAS arrays as receivers. The SOV is characterized by its excellent repeatability, automated operation, high energy level, and the rich frequency content (10-100 Hz) of the generated wavefields. The fiber-optic DAS arrays allow continuous recording of seismic data with dense spatial sampling (1-meter channel spacing), low cost, and low maintenance. This combination of SOV-DAS provides unique seismic datasets for observing time-lapse changes of warming permafrost at the field scale, hence providing an observational basis for design and development of early warning systems for permafrost thaw.
Main components and characteristics of landslide early warning systems operational worldwide
NASA Astrophysics Data System (ADS)
Piciullo, Luca; Cepeda, José
2017-04-01
During the last decades the number of victims and economic losses due to natural hazards are dramatically increased worldwide. The reason can be mainly ascribed to climate changes and urbanization in areas exposed at high level of risk. Among the many mitigation measures available for reducing the risk to life related to natural hazards, early warning systems certainly constitute a significant cost-effective option available to the authorities in charge of risk management and governance. The aim is to help and protect populations exposed to natural hazards, reducing fatalities when major events occur. Landslide is one of the natural hazards addressed by early warning systems. Landslide early warning systems (LEWSs) are mainly composed by the following four components: set-up, correlation laws, decisional algorithm and warning management. Within this framework, the set-up includes all the preliminary actions and choices necessary for designing a LEWS, such as: the area covered by the system, the types of landslides and the monitoring instruments. The monitoring phase provides a series of important information on different variables, considered as triggering factors for landslides, in order to define correlation laws and thresholds. Then, a decisional algorithm is necessary for defining the: number of warning levels to be employed in the system, decision making procedures, and everything else system managers may need for issuing warnings in different warning zones. Finally the warning management is composed by: monitoring and warning strategy; communication strategy; emergency plan and, everything connected to the social sphere. Among LEWSs operational worldwide, two categories can be defined as a function of the scale of analysis: "local" and "territorial" systems. The scale of analysis influences several actions and aspects connected to the design and employment of the system, such as: the actors involved, the monitoring systems, type of landslide phenomena addressed and variables to be considered for correlations. The characteristics of LEWSs at local scale are strongly affected by numerous constraints and factors, from time to time different, related to the characteristics of the problem they address. Monitoring measures, variables and correlation laws considered for the design and employment of local LEWSs, strongly depends on the type of landslide to be addressed. On the other hand, territorial LEWSs mainly deals with rainfall-induced landslides characterized by fast slope movement. These systems have become a risk management approach, employed worldwide over areas of relevant extension. Before 2005 only few experiences of LEWSs at a regional scale were carried out, such as in: Hong Kong, China; Zhejiang Province, China; San Francisco Bay, California, USA; Appalachians, USA; Oregon, USA; Rio de Janeiro, Brazil. Since the beginning of the XXI century, increased knowledge on rainfall-landslide correlations and upgraded technologies in weather forecast have promoted the development and improvement of territorial LEWSs around the world.
Mirus, Benjamin B.; Becker, Rachel E.; Baum, Rex L.; Smith, Joel B.
2018-01-01
Early warning for rainfall-induced shallow landsliding can help reduce fatalities and economic losses. Although these commonly occurring landslides are typically triggered by subsurface hydrological processes, most early warning criteria rely exclusively on empirical rainfall thresholds and other indirect proxies for subsurface wetness. We explore the utility of explicitly accounting for antecedent wetness by integrating real-time subsurface hydrologic measurements into landslide early warning criteria. Our efforts build on previous progress with rainfall thresholds, monitoring, and numerical modeling along the landslide-prone railway corridor between Everett and Seattle, Washington, USA. We propose a modification to a previously established recent versus antecedent (RA) cumulative rainfall thresholds by replacing the antecedent 15-day rainfall component with an average saturation observed over the same timeframe. We calculate this antecedent saturation with real-time telemetered measurements from five volumetric water content probes installed in the shallow subsurface within a steep vegetated hillslope. Our hybrid rainfall versus saturation (RS) threshold still relies on the same recent 3-day rainfall component as the existing RA thresholds, to facilitate ready integration with quantitative precipitation forecasts. During the 2015–2017 monitoring period, this RS hybrid approach has an increase of true positives and a decrease of false positives and false negatives relative to the previous RA rainfall-only thresholds. We also demonstrate that alternative hybrid threshold formats could be even more accurate, which suggests that further development and testing during future landslide seasons is needed. The positive results confirm that accounting for antecedent wetness conditions with direct subsurface hydrologic measurements can improve thresholds for alert systems and early warning of rainfall-induced shallow landsliding.
The Global Drought Information System - A Decision Support Tool with Global Applications
NASA Astrophysics Data System (ADS)
Arndt, D. S.; Brewer, M.; Heim, R. R., Jr.
2014-12-01
Drought is a natural hazard which can cause famine in developing countries and severe economic hardship in developed countries. Given current concerns with the increasing frequency and magnitude of droughts in many regions of the world, especially in the light of expected climate change, drought monitoring and dissemination of early warning information in a timely fashion on a global scale is a critical concern as an important adaptation and mitigation strategy. While a number of nations, and a few continental-scale activities have developed drought information system activities, a global drought early warning system (GDEWS) remains elusive, despite the benefits highlighted by ministers to the Global Earth Observation System of System in 2008. In an effort to begin a process of drought monitoring with international collaboration, the National Integrated Drought Information System's (NIDIS) U.S. Drought Portal, a web-based information system created to address drought services and early warning in the United States, including drought monitoring, forecasting, impacts, mitigation, research, and education, volunteered to develop a prototype Global Drought Monitoring Portal (GDMP). Through integration of data and information at the global level, and with four continental-level partners, the GDMP has proven successful as a tool to monitor drought around the globe. At a past meeting between NIDIS, the World Meteorological Organization, and the Global Earth Observation System of Systems, it was recommended that the GDMP form the basis for a Global Drought Information System (GDIS). Currently, GDIS activities are focused around providing operational global drought monitoring products and assessments, incorporating additional drought monitoring information, especially from those areas without regional or continental-scale input, and incorporating drought-specific climate forecast information from the World Climate Research Programme. Additional GDIS pilot activities are underway with an emphasis on information and decision making, and how to effectively provide drought early warning. This talk will provide an update on the status of GDIS and its role in international drought monitoring.
Flood Monitoring and Early Warning System Using Ultrasonic Sensor
NASA Astrophysics Data System (ADS)
Natividad, J. G.; Mendez, J. M.
2018-03-01
The purpose of this study is to develop a real-time flood monitoring and early warning system in the northern portion of the province of Isabela, particularly the municipalities near Cagayan River. Ultrasonic sensing techniques have become mature and are widely used in the various fields of engineering and basic science. One of advantage of ultrasonic sensing is its outstanding capability to probe inside objective non-destructively because ultrasound can propagate through any kinds of media including solids, liquids and gases. This study focuses only on the water level detection and early warning system (via website and/or SMS) that alerts concern agencies and individuals for a potential flood event. Furthermore, inquiry system is also included in this study to become more interactive wherein individuals in the community could inquire the actual water level and status of the desired area or location affected by flood thru SMS keyword. The study aims in helping citizens to be prepared and knowledgeable whenever there is a flood. The novelty of this work falls under the utilization of the Arduino, ultrasonic sensors, GSM module, web-monitoring and SMS early warning system in helping stakeholders to mitigate casualties related to flood. The paper envisions helping flood-prone areas which are common in the Philippines particularly to the local communities in the province. Indeed, it is relevant and important as per needs for safety and welfare of the community.
NASA Astrophysics Data System (ADS)
Piciullo, Luca; Dahl, Mads-Peter; Devoli, Graziella; Colleuille, Hervé; Calvello, Michele
2017-06-01
The Norwegian national landslide early warning system (LEWS), operational since 2013, is managed by the Norwegian Water Resources and Energy Directorate and was designed for monitoring and forecasting the hydrometeorological conditions potentially triggering slope failures. Decision-making in the LEWS is based upon rainfall thresholds, hydrometeorological and real-time landslide observations as well as on landslide inventory and susceptibility maps. Daily alerts are issued throughout the country considering variable size warning zones. Warnings are issued once per day for the following 3 days and can be updated according to weather forecasts and information gathered by the monitoring network. The performance of the LEWS operational in Norway has been evaluated applying the EDuMaP method, which is based on the computation of a duration matrix relating number of landslides and warning levels issued in a warning zone. In the past, this method has been exclusively employed to analyse the performance of regional early warning models considering fixed warning zones. Herein, an original approach is proposed for the computation of the elements of the duration matrix in the case of early warning models issuing alerts on variable size areas. The approach has been used to evaluate the warnings issued in Western Norway, in the period 2013-2014, considering two datasets of landslides. The results indicate that the landslide datasets do not significantly influence the performance evaluation, although a slightly better performance is registered for the smallest dataset. Different performance results are observed as a function of the values adopted for one of the most important input parameters of EDuMaP, the landslide density criterion (i.e. setting the thresholds to differentiate among classes of landslide events). To investigate this issue, a parametric analysis has been conducted; the results of the analysis show significant differences among computed performances when absolute or relative landslide density criteria are considered.
People-centred landslide early warning systems in the context of risk management
NASA Astrophysics Data System (ADS)
Haß, S.; Asch, K.; Fernandez-Steeger, T.; Arnhardt, C.
2009-04-01
In the current hazard research people-centred warning becomes more and more important, because different types of organizations and groups have to be involved in the warning process. This fact has to be taken into account when developing early warning systems. The effectiveness of early warning depends not only on technical capabilities but also on the preparedness of decision makers and their immediate response on how to act in case of emergency. Hence early warning systems have to be regarded in the context of an integrated and holistic risk management. Disaster Risk Reduction (DRR) measures include people-centred, timely and understandable warning. Further responsible authorities have to be identified in advance and standards for risk communication have to be established. Up to now, hazard and risk assessment for geohazards focuses on the development of inventory, susceptibility, hazard and risk maps. But often, especially in Europe, there are no institutional structures for managing geohazards and in addition there is a lack of an authority that is legally obliged to alarm on landslides at national or regional level. One of the main characteristics within the warning process for natural hazards e.g. in Germany is the split of responsibility between scientific authorities (wissenschaftliche Fachbehörde) and enforcement authorities (Vollzugsbehörde). The scientific authority provides the experts who define the methods and measures for monitoring and evaluate the hazard level. The main focus is the acquisition and evaluation of data and subsequently the distribution of information. The enforcement authority issues official warnings about dangerous natural phenomena. Hence the information chain in the context of early warning ranges over two different institutions, the forecast service and the warning service. But there doesn't exist a framework for warning processes in terms of landslides as yet. The concept for managing natural disasters is often reduced to hazard assessment and emergency response. Great importance is attached to the scientific understanding of hazards and protective structures, while analysis of socio-economic impacts and risk assessment are not considered enough. The reduction of vulnerability has to be taken into greater account. Also the information needs of different stakeholders have to be identified at an early stage and should be integrated in the development of early warning systems. The content of the warning message must be simple, understandable and should cover instructions on how to react. Further the timeliness of the messages has to be guarented. In this context the aim of the landslide monitoring and early warning system SLEWS (Sensor Based Landslide Early Warning System) is to integrate the above mentioned aspects of a holistic disaster and risk management. The technology of spatial data infrastructures and web services provides the use of multiple communication channels within an early warning system. Thus people-centred early warning messages and information about slope stability can be sent in nearly real-time. It has to be underlined that the technological information process is just one element of an effective warning system. Moreover the warning system has also to be considered as a social system and has to make allowance to socio-economic and gender aspects : «[...] Develop early warning systems that are people centered, in particular systems whose warnings are timely and understandable to those at risk, which take into account the demographic, gender, cultural and livelihood characteristics of the target audiences, including guidance on how to act upon warnings, and that support effective operations by disaster managers and other decision makers » (Hyogo Framework, 2005) References : UNITED NATIONS INTERNATIONAL STRATEGY FOR DISASTER REDUCTION SECRETARIAT (UNISDR) (2006): Developing early warning systems: a checklist, Third international conference on early warning (EWC III): from concept to action: 27-29 March 2006, Bonn, Germany. Geneva, Switzerland: International Strategy for Disaster Reduction. WORLD CONFERENCE ON DISASTER REDUCTION (2005) : Report of the World Conference on Disaster Reduction: Kobe, Hyogo, Japan, 18-22 January 2005. Geneva, Switzerland, Secretariat, World Conference on Disaster Reduction. INTER-AGENCY SECRETARIAT OF THE ISDR & GLOBAL PLATFORM FOR DISASTER RISK REDUCTION (2007): Disaster risk reduction: 2007 global review. Geneva, UN, ISDR.
William W. Hargrove; Joseph P. Spruce; Gerald E. Gasser; Forrest M. Hoffman
2009-01-01
Imagine a national system with the ability to quickly identify forested areas under attack from insects or disease. Such an early warning system might minimize surprises such as the explosion of caterpillars referred to in the quotation above. Moderate resolution (ca. 500m) remote sensing repeated at frequent (ca. weekly) intervals could power such a monitoring system...
NASA Astrophysics Data System (ADS)
Zhao, Junsan; Chen, Guoping; Yuan, Lei
2017-04-01
The new technologies, such as 3D laser scanning, InSAR, GNSS, unmanned aerial vehicle and Internet of things, will provide much more data resources for the surveying and monitoring, as well as the development of Early Warning System (EWS). This paper provides the solutions of the design and implementation of a geological disaster monitoring and early warning system (GDMEWS), which includes landslides and debris flows hazard, based on the multi-sources of the date by use of technologies above mentioned. The complex and changeable characteristics of the GDMEWS are described. The architecture of the system, composition of the multi-source database, development mode and service logic, the methods and key technologies of system development are also analyzed. To elaborate the process of the implementation of the GDMEWS, Deqin Tibetan County is selected as a case study area, which has the unique terrain and diverse types of typical landslides and debris flows. Firstly, the system functional requirements, monitoring and forecasting models of the system are discussed. Secondly, the logic relationships of the whole process of disaster including pre-disaster, disaster rescue and post-disaster reconstruction are studied, and the support tool for disaster prevention, disaster reduction and geological disaster management are developed. Thirdly, the methods of the multi - source monitoring data integration and the generation of the mechanism model of Geological hazards and simulation are expressed. Finally, the construction of the GDMEWS is issued, which will be applied to management, monitoring and forecasting of whole disaster process in real-time and dynamically in Deqin Tibetan County. Keywords: multi-source spatial data; geological disaster; monitoring and warning system; Deqin Tibetan County
Landslide risk mitigation by means of early warning systems
NASA Astrophysics Data System (ADS)
Calvello, Michele
2017-04-01
Among the many options available to mitigate landslide risk, early warning systems may be used where, in specific circumstances, the risk to life increases above tolerable levels. A coherent framework to classify and analyse landslide early warning systems (LEWS) is herein presented. Once the objectives of an early warning strategy are defined depending on the scale of analysis and the type of landslides to address, the process of designing and managing a LEWS should synergically employ technical and social skills. A classification scheme for the main components of LEWSs is proposed for weather-induced landslides. The scheme is based on a clear distinction among: i) the landslide model, i.e. a functional relationship between weather characteristics and landslide events considering the geotechnical, geomorphological and hydro-geological characterization of the area as well as an adequate monitoring strategy; ii) the warning model, i.e. the landslide model plus procedures to define the warning events and to issue the warnings; iii) the warning system, i.e. the warning model plus warning dissemination procedures, communication and education tools, strategies for community involvement and emergency plans. Each component of a LEWS is related to a number of actors involved with their deployment, operational activities and management. For instance, communication and education, community involvement and emergency plans are all significantly influenced by people's risk perception and by operational aspects system managers need to address in cooperation with scientists.
Fetal heart and uterine contraction monitor (image)
The fetal heart monitor and uterine contraction monitor provide a continuous record of the baby's heart rate and the mother's contraction rate as labor progresses. This device can provide early warning of fetal distress.
The Global Drought Information System - A Decision Support Tool with Global Applications
NASA Astrophysics Data System (ADS)
Heim, R. R.; Brewer, M.
2012-12-01
Drought is a natural hazard which can cause famine in developing countries and severe economic hardship in developed countries. Given current concerns with the increasing frequency and magnitude of droughts in many regions of the world, especially in the light of expected climate change, drought monitoring and dissemination of early warning information in a timely fashion on a global scale is a critical concern as an important adaptation and mitigation strategy. While a number of nations, and a few continental-scale activities have developed drought information system activities, a global drought early warning system (GDEWS) remains elusive, despite the benefits highlighted by ministers to the Global Earth Observation System of System in 2008. In an effort to begin a process of drought monitoring with international collaboration, the National Integrated Drought Information System's (NIDIS) U.S. Drought Portal, a web-based information system created to address drought services and early warning in the United States, including drought monitoring, forecasting, impacts, mitigation, research, and education, volunteered to develop a prototype Global Drought Monitoring Portal (GDMP). Through integration of data and information at the global level, and with four continental-level partners, the GDMP has proven successful as a tool to monitor drought around the globe. At a recent meeting between NIDIS, the World Meteorological Organization, and the Global Earth Observation System of Systems, it was recommended that the GDMP form the basis for a Global Drought Information System (GDIS). Currently, GDIS activities are focused around incorporating additional drought monitoring information, especially from those areas without regional or continental-scale input, and incorporating drought-specific climate forecast information from the World Climate Research Programme. Additional GDIS pilot activities are underway with an emphasis on information and decision making, and how to effectively provide drought early warning. This talk will provide an update on the status of GDIS and its role in international drought monitoring.
The analysis of behavior in orbit GSS two series of US early-warning system
NASA Astrophysics Data System (ADS)
Sukhov, P. P.; Epishev, V. P.; Sukhov, K. P.; Motrunych, I. I.
2016-09-01
Satellites Early Warning System Series class SBIRS US Air Force must replace on GEO early series DSP Series. During 2014-2016 the authors received more than 30 light curves "DSP-18 and "Sbirs-Geo 2". The analysis of the behavior of these satellites in orbit by a coordinate and photometric data. It is shown that for the monitoring of the Earth's surface is enough to place GEO 4 unit SBIRS across 90 deg.
National High School Center Early Warning System Tool v2.0: Technical Manual
ERIC Educational Resources Information Center
National High School Center, 2011
2011-01-01
The Early Warning System (EWS) Tool v2.0 is a Microsoft Excel-based tool developed by the National High School Center at the American Institutes for Research in collaboration with Matrix Knowledge Group. The tool enables schools, districts, and states to identify students who may be at risk of dropping out of high school and to monitor these…
Early Warning Look Ahead Metrics: The Percent Milestone Backlog Metric
NASA Technical Reports Server (NTRS)
Shinn, Stephen A.; Anderson, Timothy P.
2017-01-01
All complex development projects experience delays and corresponding backlogs of their project control milestones during their acquisition lifecycles. NASA Goddard Space Flight Center (GSFC) Flight Projects Directorate (FPD) teamed with The Aerospace Corporation (Aerospace) to develop a collection of Early Warning Look Ahead metrics that would provide GSFC leadership with some independent indication of the programmatic health of GSFC flight projects. As part of the collection of Early Warning Look Ahead metrics, the Percent Milestone Backlog metric is particularly revealing, and has utility as a stand-alone execution performance monitoring tool. This paper describes the purpose, development methodology, and utility of the Percent Milestone Backlog metric. The other four Early Warning Look Ahead metrics are also briefly discussed. Finally, an example of the use of the Percent Milestone Backlog metric in providing actionable insight is described, along with examples of its potential use in other commodities.
Xu, Yunzhen; Du, Pei; Wang, Jianzhou
2017-04-01
As the atmospheric environment pollution has been becoming more and more serious in China, it is highly desirable to develop a scientific and effective early warning system that plays a great significant role in analyzing and monitoring air quality. However, establishing a robust early warning system for warning the public in advance and ameliorating air quality is not only an extremely challenging task but also a public concerned problem for human health. Most previous studies are focused on improving the prediction accuracy, which usually ignore the significance of uncertainty information and comprehensive evaluation concerning air pollutants. Therefore, in this paper a novel robust early warning system was successfully developed, which consists of three modules: evaluation module, forecasting module and characteristics estimating module. In this system, a new dynamic fuzzy synthetic evaluation is proposed and applied to determine air quality levels and primary pollutants, which can be regarded as the research objectives; Moreover, to further mine and analyze the characteristics of air pollutants, four different distribution functions and interval forecasting method are also employed that can not only provide predictive range, confidence level and the other uncertain information of the pollutants future values, but also assist decision-makers in reducing and controlling the emissions of atmospheric pollutants. Case studies utilizing hourly PM 2.5 , PM 10 and SO 2 data collected from Tianjin and Shanghai in China are applied as illustrative examples to estimate the effectiveness and efficiency of the proposed system. Experimental results obviously indicated that the developed novel early warning system is much suitable for analyzing and monitoring air pollution, which can also add a novel viable option for decision-makers. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Budde, M. E.; Funk, C.; Husak, G. J.; Peterson, P.; Rowland, J.; Senay, G. B.; Verdin, J. P.
2016-12-01
The U.S. Geological Survey (USGS) has a long history of supporting the use of Earth observation data for food security monitoring through its role as an implementing partner of the Famine Early Warning Systems Network (FEWS NET) program. The use of remote sensing and crop modeling to address food security threats in the form of drought, floods, pests, and changing climatic regimes has been a core activity in monitoring FEWS NET countries. In recent years, it has become a requirement that FEWS NET apply monitoring and modeling frameworks at global scales to assess emerging crises in regions that FEWS NET does not traditionally monitor. USGS FEWS NET, in collaboration with the University of California, Santa Barbara, has developed a number of new global applications of satellite observations, derived products, and efficient tools for visualization and analyses to address these requirements. (1) A 35-year quasi-global (+/- 50 degrees latitude) time series of gridded rainfall estimates, the Climate Hazards Infrared Precipitation with Stations (CHIRPS) dataset, based on infrared satellite imagery and station observations. Data are available as 5-day (pentadal) accumulations at 0.05 degree spatial resolution. (2) Global actual evapotranspiration data based on application of the Simplified Surface Energy Balance (SSEB) model using 10-day MODIS Land Surface Temperature composites at 1-km resolution. (3) Production of global expedited MODIS (eMODIS) 10-day NDVI composites updated every 5 days. (4) Development of an updated Early Warning eXplorer (EWX) tool for data visualization, analysis, and sharing. (5) Creation of stand-alone tools for enhancement of gridded rainfall data and trend analyses. (6) Establishment of an agro-climatology analysis tool and knowledge base for more than 90 countries of interest to FEWS NET. In addition to these new products and tools, FEWS NET has partnered with the GEOGLAM community to develop a Crop Monitor for Early Warning (CM4EW) which brings together global expertise in agricultural monitoring to reach consensus on growing season status of "countries at risk". Such engagements will result in enhanced capabilities for extending our monitoring efforts globally.
Rovero, Francesco; Ahumada, Jorge
2017-01-01
While there are well established early warning systems for a number of natural phenomena (e.g. earthquakes, catastrophic fires, tsunamis), we do not have an early warning system for biodiversity. Yet, we are losing species at an unprecedented rate, and this especially occurs in tropical rainforests, the biologically richest but most eroded biome on earth. Unfortunately, there is a chronic gap in standardized and pan-tropical data in tropical forests, affecting our capacity to monitor changes and anticipate future scenarios. The Tropical Ecology, Assessment and Monitoring (TEAM) Network was established to contribute addressing this issue, as it generates real time data to monitor long-term trends in tropical biodiversity and guide conservation practice. We present the Network and focus primarily on the Terrestrial Vertebrates protocol, that uses systematic camera trapping to detect forest mammals and birds, and secondarily on the Zone of Interaction protocol, that measures changes in the anthroposphere around the core monitoring area. With over 3 million images so far recorded, and managed using advanced information technology, TEAM has created the most important data set on tropical forest mammals globally. We provide examples of site-specific and global analyses that, combined with data on anthropogenic disturbance collected in the larger ecosystem where monitoring sites are, allowed us to understand the drivers of changes of target species and communities in space and time. We discuss the potential of this system as a candidate model towards setting up an early warning system that can effectively anticipate changes in coupled human-natural system, trigger management actions, and hence decrease the gap between research and management responses. In turn, TEAM produces robust biodiversity indicators that meet the requirements set by global policies such as the Aichi Biodiversity Targets. Standardization in data collection and public sharing of data in near real time are essential features of such system. Copyright © 2016 Elsevier B.V. All rights reserved.
Seismic instrumentation plan for the Hawaiian Volcano Observatory
Thelen, Weston A.
2014-01-01
The installation of new seismic stations is only the first part of building a volcanic early warning capability for seismicity in the State of Hawaii. Additional personnel will likely be required to study the volcanic processes at work under each volcano, analyze the current seismic activity at a level sufficient for early warning, build new tools for monitoring, maintain seismic computing resources, and maintain the new seismic stations.
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Pech, Ina; Schröter, Kai; Müller, Meike; Thieken, Annegret
2016-04-01
Early warning is essential for protecting people and mitigating damage in case of flood events. However, early warning is only helpful if the flood-endangered parties are reached by the warning and if they know how to react effectively. Finding suitable methods for communicating helpful warnings to the "last mile" remains a challenge, but not much information is available. Surveys were undertaken after the August 2002 and the June 2013 floods in Germany, asking affected private households and companies about warnings they received and emergency measures they undertook. Results show, that in 2002 early warning did not work well: in too many areas warnings came too late or were too imprecise and many people (27%) and companies (45%) did not receive a flood warning. Afterwards, the warning systems were significantly improved, so that in 2013 only a small share of the affected people (7%) and companies (7 %) was not reached by any warning. Additionally, private households and companies were hardly aware of the flood risk in the Elbe catchment before 2002, mainly due to a lack of flood experience. For instance, in 2002 only 14% of private households clearly knew how to protect themselves and their assets when the warning reached them, in 2013 this fraction was 46 %. Although the share of companies which had an emergency plan in place had increased from 10 % in 2002 to 26 % in 2013, and the share of those conducting regular emergency exercises had increased from 4 % to 13 %, there is still plenty of room for improvement. Therefore, integrated early warning systems from monitoring through to the reaction of the affected parties as well as effective risk and emergency communication need continuous further improvement to protect people and mitigate residual risks in case of floods.
Sinkhole monitoring and early warning: An experimental and successful GB-InSAR application
NASA Astrophysics Data System (ADS)
Intrieri, Emanuele; Gigli, Giovanni; Nocentini, Massimiliano; Lombardi, Luca; Mugnai, Francesco; Fidolini, Francesco; Casagli, Nicola
2015-07-01
Sinkholes represent a natural risk that may hit catastrophically without clearly detectible precursors. However, they are often overlooked by people and administrators. Therefore sinkhole monitoring and associated early warnings constitute important research topics but, currently, only a few papers about sinkhole prediction can be found. In this paper an experience of sinkhole monitoring and early warning with GB-InSAR is described. The latter is a highly precise instrument that is able to produce displacement maps with metric spatial resolution. The described activities were carried out on Elba Island (central Italy), where karstified limestone set off the occurrence of nine sinkholes since 2008, all within less than 3000 m2, causing major damage to an important road and many indirect losses. In 1 year of monitoring two deforming areas were detected, and the point where a sinkhole was about to propagate to the street level was predicted, thus permitting the preventive closure of the road. The deformation area was larger than the hole generated by the sinkhole, thus showing a subsidence that continued for a prolonged time even after the cavity was filled up. The occurrence of a 1.5-m-wide sinkhole, undetected by the GB-InSAR, also showed the lower detection limit of the instrument.
Grover-Kopec, Emily; Kawano, Mika; Klaver, Robert W.; Blumenthal, Benno; Ceccato, Pietro; Connor, Stephen J.
2005-01-01
Periodic epidemics of malaria are a major public health problem for many sub-Saharan African countries. Populations in epidemic prone areas have a poorly developed immunity to malaria and the disease remains life threatening to all age groups. The impact of epidemics could be minimized by prediction and improved prevention through timely vector control and deployment of appropriate drugs. Malaria Early Warning Systems are advocated as a means of improving the opportunity for preparedness and timely response.Rainfall is one of the major factors triggering epidemics in warm semi-arid and desert-fringe areas. Explosive epidemics often occur in these regions after excessive rains and, where these follow periods of drought and poor food security, can be especially severe. Consequently, rainfall monitoring forms one of the essential elements for the development of integrated Malaria Early Warning Systems for sub-Saharan Africa, as outlined by the World Health Organization.The Roll Back Malaria Technical Resource Network on Prevention and Control of Epidemics recommended that a simple indicator of changes in epidemic risk in regions of marginal transmission, consisting primarily of rainfall anomaly maps, could provide immediate benefit to early warning efforts. In response to these recommendations, the Famine Early Warning Systems Network produced maps that combine information about dekadal rainfall anomalies, and epidemic malaria risk, available via their Africa Data Dissemination Service. These maps were later made available in a format that is directly compatible with HealthMapper, the mapping and surveillance software developed by the WHO's Communicable Disease Surveillance and Response Department. A new monitoring interface has recently been developed at the International Research Institute for Climate Prediction (IRI) that enables the user to gain a more contextual perspective of the current rainfall estimates by comparing them to previous seasons and climatological averages. These resources are available at no cost to the user and are updated on a routine basis.
Monitoring of unstable slopes by MEMS tilting sensors and its application to early warning
NASA Astrophysics Data System (ADS)
Towhata, I.; Uchimura, T.; Seko, I.; Wang, L.
2015-09-01
The present paper addresses the newly developed early warning technology that can help mitigate the slope failure disasters during heavy rains. Many studies have been carried out in the recent times on early warning that is based on rainfall records. Although those rainfall criteria of slope failure tells the probability of disaster on a regional scale, it is difficult for them to judge the risk of particular slopes. This is because the rainfall intensity is spatially too variable to forecast and the early warning based on rainfall alone cannot take into account the effects of local geology, hydrology and topography that vary spatially as well. In this regard, the authors developed an alternative technology in which the slope displacement/deformation is monitored and early warning is issued when a new criterion is satisfied. The new MEMS-based sensor monitors the tilting angle of an instrument that is embedded at a very shallow depth and the record of the tilting angle corresponds to the lateral displacement at the slope surface. Thus, the rate of tilting angle that exceeds a new criterion value implies an imminent slope failure. This technology has been validated against several events of slope failures as well as against a field rainfall test. Those validations have made it possible to determine the criterion value of the rate of tilting angle to be 0.1 degree/hour. The advantage of the MEMS tilting sensor lies in its low cost. Hence, it is possible to install many low-cost sensors over a suspected slope in which the precise range of what is going to fall down during the next rainfall is unknown. In addition to the past validations, this paper also introduces a recent application to a failed slope in the Izu Oshima Island where a heavy rainfall-induced slope failure occurred in October, 2013.
NASA Astrophysics Data System (ADS)
Massabo, Marco; Molini, Luca; Kostic, Bojan; Campanella, Paolo; Stevanovic, Slavimir
2015-04-01
Disaster risk reduction has long been recognized for its role in mitigating the negative environmental, social and economic impacts of natural hazards. Flood Early Warning System is a disaster risk reduction measure based on the capacities of institutions to observe and predict extreme hydro-meteorological events and to disseminate timely and meaningful warning information; it is furthermore based on the capacities of individuals, communities and organizations to prepare and to act appropriately and in sufficient time to reduce the possibility of harm or loss. An operational definition of an Early Warning System has been suggested by ISDR - UN Office for DRR [15 January 2009]: "EWS is the set of capacities needed to generate and disseminate timely and meaningful warning information to enable individuals, communities and organizations threatened by a hazard to prepare and to act appropriately and in sufficient time to reduce the possibility of harm or loss.". ISDR continues by commenting that a people-centered early warning system necessarily comprises four key elements: 1-knowledge of the risks; 2-monitoring, analysis and forecasting of the hazards; 3-communication or dissemination of alerts and warnings; and 4- local capabilities to respond to the warnings received." The technological platform DEWETRA supports the strengthening of the first three key elements of EWS suggested by ISDR definition, hence to improve the capacities to build real-time risk scenarios and to inform and warn the population in advance The technological platform DEWETRA has been implemented for the Republic of Serbia. DEWETRA is a real time-integrate system that supports decision makers for risk forecasting and monitoring and for distributing warnings to end-user and to the general public. The system is based on the rapid availability of different data that helps to establish up-to-date and reliable risk scenarios. The integration of all relevant data for risk management significantly increases the value of available information and the level of knowledge of forecasters and disaster managers. Different data, forecast and monitoring products, which are generated by different national and international institution and organizations, can be visualized and processed in real-time within the platform. DEWETRA is a web application ensuring the capillary distribution of information among institutions. The system is used as an infrastructure for exchanging and sharing data, procedures, models and expertise among the Sector of Emergency Management (SEM), the Republic Hydro-Meteorological Service of Serbia (RHMSS) and the Serbian Public Water Companies (PWCs): Serbia Waters, Vojvodina Waters and Belgrade Waters.
A Study about the 3S-based Great Ruins Monitoring and Early-warning System
NASA Astrophysics Data System (ADS)
Xuefeng, W.; Zhongyuan, H.; Gongli, L.; Li, Z.
2015-08-01
Large-scale urbanization construction and new countryside construction, frequent natural disasters, and natural corrosion pose severe threat to the great ruins. It is not uncommon that the cultural relics are damaged and great ruins are occupied. Now the ruins monitoring mainly adopt general monitoring data processing system which can not effectively exert management, display, excavation analysis and data sharing of the relics monitoring data. Meanwhile those general software systems require layout of large number of devices or apparatuses, but they are applied to small-scope relics monitoring only. Therefore, this paper proposes a method to make use of the stereoscopic cartographic satellite technology to improve and supplement the great ruins monitoring index system and combine GIS and GPS to establish a highly automatic, real-time and intelligent great ruins monitoring and early-warning system in order to realize collection, processing, updating, spatial visualization, analysis, distribution and sharing of the monitoring data, and provide scientific and effective data for the relics protection, scientific planning, reasonable development and sustainable utilization.
An Envelope Based Feedback Control System for Earthquake Early Warning: Reality Check Algorithm
NASA Astrophysics Data System (ADS)
Heaton, T. H.; Karakus, G.; Beck, J. L.
2016-12-01
Earthquake early warning systems are, in general, designed to be open loop control systems in such a way that the output, i.e., the warning messages, only depend on the input, i.e., recorded ground motions, up to the moment when the message is issued in real-time. We propose an algorithm, which is called Reality Check Algorithm (RCA), which would assess the accuracy of issued warning messages, and then feed the outcome of the assessment back into the system. Then, the system would modify its messages if necessary. That is, we are proposing to convert earthquake early warning systems into feedback control systems by integrating them with RCA. RCA works by continuously monitoring and comparing the observed ground motions' envelopes to the predicted envelopes of Virtual Seismologist (Cua 2005). Accuracy of magnitude and location (both spatial and temporal) estimations of the system are assessed separately by probabilistic classification models, which are trained by a Sparse Bayesian Learning technique called Automatic Relevance Determination prior.
Application of Collocated GPS and Seismic Sensors to Earthquake Monitoring and Early Warning
Li, Xingxing; Zhang, Xiaohong; Guo, Bofeng
2013-01-01
We explore the use of collocated GPS and seismic sensors for earthquake monitoring and early warning. The GPS and seismic data collected during the 2011 Tohoku-Oki (Japan) and the 2010 El Mayor-Cucapah (Mexico) earthquakes are analyzed by using a tightly-coupled integration. The performance of the integrated results is validated by both time and frequency domain analysis. We detect the P-wave arrival and observe small-scale features of the movement from the integrated results and locate the epicenter. Meanwhile, permanent offsets are extracted from the integrated displacements highly accurately and used for reliable fault slip inversion and magnitude estimation. PMID:24284765
ERIC Educational Resources Information Center
Faria, Ann-Marie; Sorensen, Nicholas; Heppen, Jessica; Bowdon, Jill; Taylor, Suzanne; Eisner, Ryan; Foster, Shandu
2017-01-01
Although high school graduation rates are rising--the national rate was 82 percent during the 2013/14 school year (U.S. Department of Education, 2015)--dropping out remains a persistent problem in the Midwest and nationally. Many schools now use early warning systems to identify students who are at risk of not graduating, with the goal of…
NASA Astrophysics Data System (ADS)
Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.
2014-12-01
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.
Boulton, Chris A.; Allison, Lesley C.; Lenton, Timothy M.
2014-01-01
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached. PMID:25482065
Boulton, Chris A; Allison, Lesley C; Lenton, Timothy M
2014-12-08
The Atlantic Meridional Overturning Circulation (AMOC) exhibits two stable states in models of varying complexity. Shifts between alternative AMOC states are thought to have played a role in past abrupt climate changes, but the proximity of the climate system to a threshold for future AMOC collapse is unknown. Generic early warning signals of critical slowing down before AMOC collapse have been found in climate models of low and intermediate complexity. Here we show that early warning signals of AMOC collapse are present in a fully coupled atmosphere-ocean general circulation model, subject to a freshwater hosing experiment. The statistical significance of signals of increasing lag-1 autocorrelation and variance vary with latitude. They give up to 250 years warning before AMOC collapse, after ~550 years of monitoring. Future work is needed to clarify suggested dynamical mechanisms driving critical slowing down as the AMOC collapse is approached.
Li, Lei; He, Qingming; Wei, Yunmei; He, Qin; Peng, Xuya
2014-11-01
To determine reliable state parameters which could be used as early warning indicators of process failure due to the acidification of anaerobic digestion of food waste, three mesophilic anaerobic digesters of food waste with different operation conditions were investigated. Such parameters as gas production, methane content, pH, concentrations of volatile fatty acid (VFA), alkalinity and their combined indicators were evaluated. Results revealed that operation conditions significantly affect the responses of parameters and thus the optimal early warning indicators of each reactor differ from each other. None of the single indicators was universally valid for all the systems. The universally valid indicators should combine several parameters to supply complementary information. A combination of total VFA, the ratio of VFA to total alkalinity (VFA/TA) and the ratio of bicarbonate alkalinity to total alkalinity (BA/TA) can reflect the metabolism of the digesting system and realize rapid and effective early warning. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamana, T. K.; Eltahir, E. A.
2010-12-01
Early warnings of malaria transmission allow health officials to better prepare for future epidemics. Monitoring rainfall is recognized as an important part of malaria early warning systems, as outlined by the Roll Back Malaria Initiative. The Hydrology, Entomology and Malaria Simulator (HYDREMATS) is a mechanistic model that relates rainfall to malaria transmission, and could be used to provide early warnings of malaria epidemics. HYDREMATS is used to make predictions of mosquito populations and vectorial capacity for 2005, 2006, and 2007 in Banizoumbou village in western Niger. HYDREMATS is forced by observed rainfall, followed by a rainfall prediction based on the seasonal mean rainfall for a period two or four weeks into the future. Predictions made using this method provided reasonable estimates of mosquito populations and vectorial capacity, two to four weeks in advance. The predictions were significantly improved compared to those made when HYDREMATS was forced with seasonal mean rainfall alone.
WATER QUALITY EARLY WARNING SYSTEMS FOR SOURCE WATER AND DISTRIBUTION SYSTEM MONITORING
A variety of probes for use in continuous monitoring of water quality exist. They range from single parameter chemical/physical probes to comprehensive screening systems based on whole organism responses. Originally developed for monitoring specific characteristics of water qua...
NASA Astrophysics Data System (ADS)
Qin, Rufu; Lin, Liangzhao
2017-06-01
Coastal seiches have become an increasingly important issue in coastal science and present many challenges, particularly when attempting to provide warning services. This paper presents the methodologies, techniques and integrated services adopted for the design and implementation of a Seiches Monitoring and Forecasting Integration Framework (SMAF-IF). The SMAF-IF is an integrated system with different types of sensors and numerical models and incorporates the Geographic Information System (GIS) and web techniques, which focuses on coastal seiche events detection and early warning in the North Jiangsu shoal, China. The in situ sensors perform automatic and continuous monitoring of the marine environment status and the numerical models provide the meteorological and physical oceanographic parameter estimates. A model outputs processing software was developed in C# language using ArcGIS Engine functions, which provides the capabilities of automatically generating visualization maps and warning information. Leveraging the ArcGIS Flex API and ASP.NET web services, a web based GIS framework was designed to facilitate quasi real-time data access, interactive visualization and analysis, and provision of early warning services for end users. The integrated framework proposed in this study enables decision-makers and the publics to quickly response to emergency coastal seiche events and allows an easy adaptation to other regional and scientific domains related to real-time monitoring and forecasting.
NASA Astrophysics Data System (ADS)
Teza, Giordano; Galgaro, Antonio; Francese, Roberto; Ninfo, Andrea; Mariani, Rocco
2017-04-01
An early warning system has been implemented to monitor the Perarolo di Cadore landslide (North-Eastern Italian Alps), which is a slump whose induced risk is fairly high because a slope collapse could form a temporary dam on the underlying torrent and, therefore, could directly threaten the close village. A robotic total station (RTS) measures, with 6h returning time, the positions of 23 retro-reflectors placed on the landslide upper and middle sectors. The landslide's kinematical behavior derived from these near-real-time (NRT) surface displacements is interpreted on the basis of available geomorphological and geological information, geometrical data provided by some laser scanning and photogrammetric surveys, and a landslide model obtained by means of 3D Electrical Resistivity Tomography (3D ERT) measurements. In this way, an analysis of the time series provided by RTS and a pluviometer, which cover several years, allows the definition of some pre-alert and alert kinematical and rainfall thresholds. These thresholds, as well as the corresponding operational recommendations, are currently used for early warning purposes by Authorities involved in risk management for the Perarolo landslide. It should be noted the fact that, as new RTS and pluviometric data are available, the thresholds can be updated and, therefore, a fine tuning of the early warning system can be carried out in order to improve its performance. Although the proposed approach has been implemented in a particular case, it can be used to develop an early warning system based on NRT data in each site where a landslide threatens infrastructures and/or villages that cannot be relocated.
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Hargrove, William; Gasser, Gerald; Smoot, James; Kuper, Philip
2011-01-01
U.S. forests occupy approx. 751 million acres (approx. 1/3 of total land). These forests are exposed to multiple biotic and abiotic threats that collectively damage extensive acreages each year. Hazardous forest disturbances can threaten human life and property, bio-diversity and water supplies. Timely regional forest monitoring products are needed to aid forest management and decision making by the US Forest Service and its state and private partners. Daily MODIS data products provide a means to monitor regional forest disturbances on a weekly basis. In response, we began work in 2006 to develop a Near Real Time (NRT) forest monitoring capability, based on MODIS NDVI data, as part of a national forest threat early warning system (EWS)
Chen, Shou-Qiang; Xing, Shan-Shan; Gao, Hai-Qing
2014-01-01
Objective: In addition to ambulatory Holter electrocardiographic recording and transtelephonic electrocardiographic monitoring (TTM), a cardiac remote monitoring system can provide an automatic warning function through the general packet radio service (GPRS) network, enabling earlier diagnosis, treatment and improved outcome of cardiac diseases. The purpose of this study was to estimate its clinical significance in preventing acute cardiac episodes. Methods: Using 2 leads (V1 and V5 leads) and the automatic warning mode, 7160 patients were tested with a cardiac remote monitoring system from October 2004 to September 2007. If malignant arrhythmias or obvious ST-T changes appeared in the electrocardiogram records was automatically transferred to the monitoring center, the patient and his family members were informed, and the corresponding precautionary or therapeutic measures were implemented immediately. Results: In our study, 274 cases of malignant arrhythmia, including sinus standstill and ventricular tachycardia, and 43 cases of obvious ST-segment elevation were detected and treated. Because of early detection, there was no death or deformity. Conclusions: A cardiac remote monitoring system providing an automatic warning function can play an important role in preventing acute cardiac episodes. PMID:25674124
Personal Cabin Pressure Monitor and Warning System
NASA Technical Reports Server (NTRS)
Zysko, Jan A. (Inventor)
2002-01-01
A cabin pressure altitude monitor and warning system provides a warning when a detected cabin pressure altitude has reached a predetermined level. The system is preferably embodied in a portable, pager-sized device that can be carried or worn by an individual. A microprocessor calculates the pressure altitude from signals generated by a calibrated pressure transducer and a temperature sensor that compensates for temperature variations in the signals generated by the pressure transducer. The microprocessor is programmed to generate a warning or alarm if a cabin pressure altitude exceeding a predetermined threshold is detected. Preferably, the microprocessor generates two different types of warning or alarm outputs, a first early warning or alert when a first pressure altitude is exceeded. and a second more serious alarm condition when either a second. higher pressure altitude is exceeded, or when the first pressure altitude has been exceeded for a predetermined period of time. Multiple types of alarm condition indicators are preferably provided, including visual, audible and tactile. The system is also preferably designed to detect gas concentrations and other ambient conditions, and thus incorporates other sensors, such as oxygen, relative humidity, carbon dioxide, carbon monoxide and ammonia sensors, to provide a more complete characterization and monitoring of the local environment.
Personal Cabin Pressure Monitor and Warning System
NASA Astrophysics Data System (ADS)
Zysko, Jan A.
2002-09-01
A cabin pressure altitude monitor and warning system provides a warning when a detected cabin pressure altitude has reached a predetermined level. The system is preferably embodied in a portable, pager-sized device that can be carried or worn by an individual. A microprocessor calculates the pressure altitude from signals generated by a calibrated pressure transducer and a temperature sensor that compensates for temperature variations in the signals generated by the pressure transducer. The microprocessor is programmed to generate a warning or alarm if a cabin pressure altitude exceeding a predetermined threshold is detected. Preferably, the microprocessor generates two different types of warning or alarm outputs, a first early warning or alert when a first pressure altitude is exceeded. and a second more serious alarm condition when either a second. higher pressure altitude is exceeded, or when the first pressure altitude has been exceeded for a predetermined period of time. Multiple types of alarm condition indicators are preferably provided, including visual, audible and tactile. The system is also preferably designed to detect gas concentrations and other ambient conditions, and thus incorporates other sensors, such as oxygen, relative humidity, carbon dioxide, carbon monoxide and ammonia sensors, to provide a more complete characterization and monitoring of the local environment.
NASA Astrophysics Data System (ADS)
Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong
2009-04-01
Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords: groundwater pollution, early warning, aquifer vulnerability, pollution load, pollution risk, ComGIS
Study of Disseminating Landslide Early Warning Information in Malaysia
NASA Astrophysics Data System (ADS)
Koay, Swee Peng; Lateh, Habibah; Tien Tay, Lea; Ahamd, Jamilah; Chan, Huah Yong; Sakai, Naoki; Jamaludin, Suhaimi
2015-04-01
In Malaysia, rain induced landslides are occurring more often than before. The Malaysian Government allocates millions of Malaysian Ringgit for slope monitoring and slope failure remedial measures in the budget every year. In rural areas, local authorities also play a major role in monitoring the slope to prevent casualty by giving information to the residents who are staying near to the slopes. However, there are thousands of slopes which are classified as high risk slopes in Malaysia. Implementing site monitoring system in these slopes to monitor the movement of the soil in the slopes, predicting the occurrence of slopes failure and establishing early warning system are too costly and almost impossible. In our study, we propose Accumulated Rainfall vs. Rainfall Intensity prediction method to predict the slope failure by referring to the predicted rainfall data from radar and the rain volume from rain gauges. The critical line which determines if the slope is in danger, is generated by simulator with well-surveyed the soil property in the slope and compared with historical data. By establishing such predicting system, the slope failure warning information can be obtained and disseminated to the surroundings via SMS, internet and siren. However, establishing the early warning dissemination system is not enough in disaster prevention, educating school children and the community by giving knowledge on landslides, such as landslide's definition, how and why does the slope failure happen and when will it fail, to raise the risk awareness on landslides will reduce landslides casualty, especially in rural area. Moreover, showing video on the risk and symptom of landslides in school will also help the school children gaining the knowledge of landslides. Generating hazard map and landslides historical data provides further information on the occurrence of the slope failure. In future, further study on fine tuning of landslides prediction method, applying IT technology to educate school children and disseminate warning information will assist the government authorities to reduce landslide casualty by disseminating prompt slope failure warning and improving the community's awareness of disaster prevention.
NASA Technical Reports Server (NTRS)
Spurce, Joseph P.; Hargrove, William; Ryan, Robert E.; Smooth, James C.; Prados, Don; McKellip, Rodney; Sader, Steven A.; Gasser, Jerry; May, George
2008-01-01
This viewgraph presentation reviews a project, the goal of which is to study the potential of MODIS data for monitoring historic gypsy moth defoliation. A NASA/USDA Forest Service (USFS) partnership was formed to perform the study. NASA is helping USFS to implement satellite data products into its emerging Forest Threat Early Warning System. The latter system is being developed by the USFS Eastern and Western Forest Threat Assessment Centers. The USFS Forest Threat Centers want to use MODIS time series data for regional monitoring of forest damage (e.g., defoliation) preferably in near real time. The study's methodology is described, and the results of the study are shown.
The Self-Organising Seismic Early Warning Information Network: Scenarios
NASA Astrophysics Data System (ADS)
Kühnlenz, F.; Fischer, J.; Eveslage, I.
2009-04-01
SAFER and EDIM working groups, the Department of Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany, and Section 2.1 Earthquake Risk and Early Warning, GFZ German Research Centre for Geosciences, Germany Contact: Frank Kühnlenz, kuehnlenz@informatik.hu-berlin.de The Self-Organising Seismic Early Warning Information Network (SOSEWIN) represents a new approach for Earthquake Early Warning Systems (EEWS), consisting in taking advantage of novel wireless communications technologies without the need of a planned, centralised infrastructure. It also sets out to overcome problems of insufficient node density, which typically affects present existing early warning systems, by having the SOSEWIN seismological sensing units being comprised of low-cost components (generally bought "off-the-shelf"), with each unit initially costing 100's of Euros, in contrast to 1,000's to 10,000's for standard seismological stations. The reduced sensitivity of the new sensing units arising from the use of lower-cost components will be compensated by the network's density, which in the future is expected to number 100's to 1000's over areas served currently by the order of 10's of standard stations. The robustness, independence of infrastructure, spontaneous extensibility due to a self-healing/self-organizing character in the case of removing/failing or adding sensors makes SOSEWIN potentially useful for various use cases, e.g. monitoring of building structures or seismic microzonation. Nevertheless its main purpose is the earthquake early warning, for which reason the ground motion is continuously monitored by conventional accelerometers (3-component). It uses SEEDLink to store and provide access to the sensor data. SOSEWIN considers also the needs of earthquake task forces, which want to set-up a temporary seismic network rapidly and with light-weighted stations to record after-shocks. The wireless and self-organising character of this sensor network should be of great value to do this job in a shorter time and with less manpower compared to using common seismic stations. We present here the graphical front-end of SOSEWIN in its usage for different scenarios. It belongs to a management infrastructure based on GIS and database technologies and therefore coupling with existing infrastructures should be simplified. Connecting the domain expert's laptop running the management software with a SOSEWIN may be fulfilled via any arbitrary node in the network (on-site access) or via a gateway node from a remote location using the internet. The scenarios focus on the needs of certain domain experts (seismologists or maybe engineers) and include the planning of a network installation, support during the installation process and testing of this installation. Another scenario mentions monitoring aspects of an already installed network and finally a scenario deals with the visualization of the alarming protocol detecting an earthquake event and issuing an early warning.
NASA Astrophysics Data System (ADS)
Arnhardt, C.; Fernandez-Steeger, T. M.; Walter, K.; Kallash, A.; Niemeyer, F.; Azzam, R.; Bill, R.
2007-12-01
The joint project Sensor based Landslide Early Warning System (SLEWS) aims at a systematic development of a prototyping alarm- and early warning system for the detection of mass movements by application of an ad hoc wireless sensor network (WSN). Next to the development of suitable sensor setups, sensor fusion and network fusion are applied to enhance data quality and reduce false alarm rates. Of special interest is the data retrieval, processing and visualization in GI-Systems. Therefore a suitable serviced based Spatial Data Infrastructure (SDI) will be developed with respect to existing and upcoming Open Geospatial Consortium (OGC) standards.The application of WSN provides a cheap and easy to set up solution for special monitoring and data gathering in large areas. Measurement data from different low-cost transducers for deformation observation (acceleration, displacement, tilting) is collected by distributed sensor nodes (motes), which interact separately and connect each other in a self-organizing manner. Data are collected and aggregated at the beacon (transmission station) and further operations like data pre-processing and compression can be performed. The WSN concept provides next to energy efficiency, miniaturization, real-time monitoring and remote operation, but also new monitoring strategies like sensor and network fusion. Since not only single sensors can be integrated at single motes either cross-validation or redundant sensor setups are possible to enhance data quality. The planned monitoring and information system will include a mobile infrastructure (information technologies and communication components) as well as methods and models to estimate surface deformation parameters (positioning systems). The measurements result in heterogeneous observation sets that have to be integrated in a common adjustment and filtering approach. Reliable real-time information will be obtained using a range of sensor input and algorithms, from which early warnings and prognosis may be derived. Implementation of sensor algorithms is an important task to form the business logic. This will be represented in self-contained web-based processing services (WPS). In the future different types of sensor networks can communicate via an infrastructure of OGC services using an interoperable way by standardized protocols as the Sensor Markup Language (SensorML) and Observations & Measurements Schema (O&M). Synchronous and asynchronous information services as the Sensor Alert Service (SAS) and the Web Notification Services (WNS) will provide defined users and user groups with time-critical readings from the observation site. Techniques using services for visualizing mapping data (WMS), meta data (CSW), vector (WFS) and raster data (WCS) will range from high detailed expert based output to fuzzy graphical warning elements.The expected results will be an advancement regarding classical alarm and early warning systems as the WSN are free scalable, extensible and easy to install.
Kleyböcker, A; Liebrich, M; Verstraete, W; Kraume, M; Würdemann, H
2012-11-01
Early warning indicators for process failures were investigated to develop a reliable method to increase the production efficiency of biogas plants. Organic overloads by the excessive addition of rapeseed oil were used to provoke the decrease in the gas production rate. Besides typical monitoring parameters, as pH, methane and hydrogen contents, biogas production rate and concentrations of fatty acids; carbon dioxide content, concentrations of calcium and phosphate were monitored. The concentration ratio of volatile fatty acids to calcium acted as an early warning indicator (EWI-VFA/Ca). The EWI-VFA/Ca always clearly and reliably indicated a process imbalance by exhibiting a 2- to 3-fold increase 3-7days before the process failure occurred. At this time, it was still possible to take countermeasures successfully. Furthermore, increases in phosphate concentration and in the concentration ratio of phosphate to calcium also indicated a process failure, in some cases, even earlier than the EWI-VFA/Ca. Copyright © 2012 Elsevier Ltd. All rights reserved.
Research and application of a novel hybrid air quality early-warning system: A case study in China.
Li, Chen; Zhu, Zhijie
2018-06-01
As one of the most serious meteorological disasters in modern society, air pollution has received extensive attention from both citizens and decision-makers. With the complexity of pollution components and the uncertainty of prediction, it is both critical and challenging to construct an effective and practical early-warning system. In this paper, a novel hybrid air quality early-warning system for pollution contaminant monitoring and analysis was proposed. To improve the efficiency of the system, an advanced attribute selection method based on fuzzy evaluation and rough set theory was developed to select the main pollution contaminants for cities. Moreover, a hybrid model composed of the theory of "decomposition and ensemble", an extreme learning machine and an advanced heuristic algorithm was developed for pollution contaminant prediction; it provides deterministic and interval forecasting for tackling the uncertainty of future air quality. Daily pollution contaminants of six major cities in China were selected as a dataset to evaluate the practicality and effectiveness of the developed air quality early-warning system. The superior experimental performance determined by the values of several error indexes illustrated that the proposed early-warning system was of great effectiveness and efficiency. Copyright © 2018 Elsevier B.V. All rights reserved.
Early warning signals detect critical impacts of experimental warming.
Jarvis, Lauren; McCann, Kevin; Tunney, Tyler; Gellner, Gabriel; Fryxell, John M
2016-09-01
Earth's surface temperatures are projected to increase by ~1-4°C over the next century, threatening the future of global biodiversity and ecosystem stability. While this has fueled major progress in the field of physiological trait responses to warming, it is currently unclear whether routine population monitoring data can be used to predict temperature-induced population collapse. Here, we integrate trait performance theory with that of critical tipping points to test whether early warning signals can be reliably used to anticipate thermally induced extinction events. We find that a model parameterized by experimental growth rates exhibits critical slowing down in the vicinity of an experimentally tested critical threshold, suggesting that dynamical early warning signals may be useful in detecting the potentially precipitous onset of population collapse due to global climate change.
NASA Astrophysics Data System (ADS)
Segoni, S.; Battistini, A.; Rossi, G.; Rosi, A.; Lagomarsino, D.; Catani, F.; Moretti, S.; Casagli, N.
2015-04-01
We set up an early warning system for rainfall-induced landslides in Tuscany (23 000 km2). The system is based on a set of state-of-the-art intensity-duration rainfall thresholds (Segoni et al., 2014b) and makes use of LAMI (Limited Area Model Italy) rainfall forecasts and real-time rainfall data provided by an automated network of more than 300 rain gauges. The system was implemented in a WebGIS to ease the operational use in civil protection procedures: it is simple and intuitive to consult, and it provides different outputs. When switching among different views, the system is able to focus both on monitoring of real-time data and on forecasting at different lead times up to 48 h. Moreover, the system can switch between a basic data view where a synoptic scenario of the hazard can be shown all over the region and a more in-depth view were the rainfall path of rain gauges can be displayed and constantly compared with rainfall thresholds. To better account for the variability of the geomorphological and meteorological settings encountered in Tuscany, the region is subdivided into 25 alert zones, each provided with a specific threshold. The warning system reflects this subdivision: using a network of more than 300 rain gauges, it allows for the monitoring of each alert zone separately so that warnings can be issued independently. An important feature of the warning system is that the visualization of the thresholds in the WebGIS interface may vary in time depending on when the starting time of the rainfall event is set. The starting time of the rainfall event is considered as a variable by the early warning system: whenever new rainfall data are available, a recursive algorithm identifies the starting time for which the rainfall path is closest to or overcomes the threshold. This is considered the most hazardous condition, and it is displayed by the WebGIS interface. The early warning system is used to forecast and monitor the landslide hazard in the whole region, providing specific alert levels for 25 distinct alert zones. In addition, the system can be used to gather, analyze, display, explore, interpret and store rainfall data, thus representing a potential support to both decision makers and scientists.
Integrating remotely sensed fires for predicting deforestation for REDD.
Armenteras, Dolors; Gibbes, Cerian; Anaya, Jesús A; Dávalos, Liliana M
2017-06-01
Fire is an important tool in tropical forest management, as it alters forest composition, structure, and the carbon budget. The United Nations program on Reducing Emissions from Deforestation and Forest Degradation (REDD+) aims to sustainably manage forests, as well as to conserve and enhance their carbon stocks. Despite the crucial role of fire management, decision-making on REDD+ interventions fails to systematically include fires. Here, we address this critical knowledge gap in two ways. First, we review REDD+ projects and programs to assess the inclusion of fires in monitoring, reporting, and verification (MRV) systems. Second, we model the relationship between fire and forest for a pilot site in Colombia using near-real-time (NRT) fire monitoring data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). The literature review revealed fire remains to be incorporated as a key component of MRV systems. Spatially explicit modeling of land use change showed the probability of deforestation declined sharply with increasing distance to the nearest fire the preceding year (multi-year model area under the curve [AUC] 0.82). Deforestation predictions based on the model performed better than the official REDD early-warning system. The model AUC for 2013 and 2014 was 0.81, compared to 0.52 for the early-warning system in 2013 and 0.68 in 2014. This demonstrates NRT fire monitoring is a powerful tool to predict sites of forest deforestation. Applying new, publicly available, and open-access NRT fire data should be an essential element of early-warning systems to detect and prevent deforestation. Our results provide tools for improving both the current MRV systems, and the deforestation early-warning system in Colombia. © 2017 by the Ecological Society of America.
Monitoring biological diversity: strategies, tools, limitations, and challenges.
Erik A. Beever
2006-01-01
Monitoring is an assessment of the spatial and temporal variability in one or more ecosystem properties, and is an essential component of adaptive management. Monitoring can help determine whether mandated environmental standards are being met and can provide an early-warning system of ecological change. Development of a strategy for monitoring biological diversity...
NASA Astrophysics Data System (ADS)
Merkushkin, Alexander; Gafurov, Abror; Agaltseva, Natalya; Pak, Alexander; Mannig, Birgit; Paeth, Heiko; Vorogushyn, Sergiy; Unger-Shayesteh, Katy
2014-05-01
Increased frequency of natural hazards under conditions of observed climate change in Uzbekistan has become challenging concern and shows the need to develop more effective climate risk mechanisms towards improving the security of society and sustainable development. In the framework of presented study, the importance of drought monitoring and methodologies for early warning for such purposes in Uzbekistan are demonstrated. For the conditions of Uzbekistan, droughts are most dangerous climate related natural phenomenon. Therefore, the CRM-Uz Project on Climate Risk Management was established with focus on reducing climate risks, strengthening adaptive capacity for stimulating the development of early warning mechanisms, as well as to build up the basis for long-term investments. This serves to increase resilience to climate impacts in the country. In the frame of the CRM-Uz Project, Drought Early Warning System (DEWS), has been developed and implemented in one of the southern provinces of Uzbekistan (Kashkadarya). The main task of DEWS is to provide population with information on the possibility of upcoming drought season in advance. DEWS is used for the assessment, monitoring, prevention, early warning and decision making in this region. Such early warning system provides the required information to undertake appropriate measures against drought and to mitigate its adverse effects to society. It is clear that during years with expected drought the hydrological forecasts become much more important. Complex mathematical model which simulates of run-off formation as a basis of DEWS provides the seasonal hydrological forecasts that are used to inform all concerned sectors, especially the agricultural sector on water availability during the vegetation period. In the frame of cooperation with German Research Centre for Geosciences (GFZ) within the CAWa Project, the DEWS was extended through implementation of MODSNOW - the operational tool for snow cover monitoring at the Drought Monitoring Centre at UzHydromet. The upgrade of the DEWS withMODSNOW strengthens DEWS's capacity in terms of improvement the hydrological forecasting. Moreover, based on climate scenarios provided within the CAWa project by the University of Würzburg, the regional hydrological model AISHF was used to asses medium and long term water availability in the Kashkadarya River which indicates a reduction of water resources in the selected basin in the future.
NASA Astrophysics Data System (ADS)
Wilcock, W. S. D.; Schmidt, D. A.; Vidale, J. E.; Harrington, M.; Bodin, P.; Cram, G.; Delaney, J. R.; Gonzalez, F. I.; Kelley, D. S.; LeVeque, R. J.; Manalang, D.; McGuire, C.; Roland, E. C.; Tilley, J.; Vogl, C. J.; Stoermer, M.
2016-12-01
The Cascadia subduction zone hosts catastrophic earthquakes every few hundred years. On land, there are extensive geophysical networks available to monitor the subduction zone, but since the locked portion of the plate boundary lies mostly offshore, these networks are ideally complemented by seafloor observations. Such considerations helped motivate the development of scientific cabled observatories that cross the subduction zone at two sites off Vancouver Island and one off central Oregon, but these have a limited spatial footprint along the strike of the subduction zone. The Pacific Northwest Seismic Network is leading a collaborative effort to implement an earthquake early warning system in the Washington and Oregon using data streams from land networks as well as the few existing offshore instruments. For subduction zone earthquakes that initiate offshore, this system will provide a warning. However, the availability of real time offshore instrumentation along the entire subduction zone would improve its reliability and accuracy, add up to 15 s to the warning time, and ensure an early warning for coastal communities near the epicenter. Furthermore, real-time networks of seafloor pressure sensors above the subduction zone would enable monitoring and contribute to accurate predictions of the incoming tsunami. There is also strong scientific motivation for offshore monitoring. We lack a complete knowledge of the plate convergence rate and direction. Measurements of steady deformation and observations of transient processes such as fluid pulsing, microseismic cycles, tremor and slow-slip are necessary for assessing the dimensions of the locked zone and its along-strike segmentation. Long-term monitoring will also provide baseline observations that can be used to detect and evaluate changes in the subduction environment. There are significant engineering challenges to be solved to ensure the system is sufficiently reliable and maintainable. It must provide continuous monitoring over its operational life in the harsh ocean environment and at least parts of the system must continue to operate following a megathrust event. These requirements for robustness must be balanced with the desire for a flexible design that can accommodate new scientific instrumentation over the life of the project.
Assessing Potential of VIIRS Data for Contribution to a Forest Threat Early Warning System
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.
2007-01-01
This viewgraph presentation reviews the contributions by the Rapid Prototyping Capability (RPC) towards using Visible Infrared Imager / Radiometer Suite (VIIRS) data in assessing the damage to forests. The Healthy Forest Restoration Act of 2003 mandates development of national Early Warning System (EWS) for forest threat monitoring and mitigation. NASA Stennis is working with the US Forest Service to develop needed components of this EWS. The use of MODIS data for monitoring forest disturbance at broad regional scales is a componet of this program. This RPC experiment was initiated to assess potential of the MODIS follow-on, VIIRS, for monitoring forest disturbance at broad scales and thereby contributing to the EWS. This presentation reviews the potential use of the VIIRS to examine the damage to forests caused by gyspy moths in the West Virginia and Virginia area.
Funk, Chris; Verdin, James P.; Husak, Gregory
2007-01-01
Famine early warning in Africa presents unique challenges and rewards. Hydrologic extremes must be tracked and anticipated over complex and changing climate regimes. The successful anticipation and interpretation of hydrologic shocks can initiate effective government response, saving lives and softening the impacts of droughts and floods. While both monitoring and forecast technologies continue to advance, discontinuities between monitoring and forecast systems inhibit effective decision making. Monitoring systems typically rely on high resolution satellite remote-sensed normalized difference vegetation index (NDVI) and rainfall imagery. Forecast systems provide information on a variety of scales and formats. Non-meteorologists are often unable or unwilling to connect the dots between these disparate sources of information. To mitigate these problem researchers at UCSB's Climate Hazard Group, NASA GIMMS and USGS/EROS are implementing a NASA-funded integrated decision support system that combines the monitoring of precipitation and NDVI with statistical one-to-three month forecasts. We present the monitoring/forecast system, assess its accuracy, and demonstrate its application in food insecure sub-Saharan Africa.
NASA Astrophysics Data System (ADS)
Bode, F.; Reuschen, S.; Nowak, W.
2015-12-01
Drinking-water well catchments include many potential sources of contaminations like gas stations or agriculture. Finding optimal positions of early-warning monitoring wells is challenging because there are various parameters (and their uncertainties) that influence the reliability and optimality of any suggested monitoring location or monitoring network.The overall goal of this project is to develop and establish a concept to assess, design and optimize early-warning systems within well catchments. Such optimal monitoring networks need to optimize three competing objectives: a high detection probability, which can be reached by maximizing the "field of vision" of the monitoring network, a long early-warning time such that there is enough time left to install counter measures after first detection, and the overall operating costs of the monitoring network, which should ideally be reduced to a minimum. The method is based on numerical simulation of flow and transport in heterogeneous porous media coupled with geostatistics and Monte-Carlo, scenario analyses for real data, respectively, wrapped up within the framework of formal multi-objective optimization using a genetic algorithm.In order to speed up the optimization process and to better explore the Pareto-front, we developed a concept that forces the algorithm to search only in regions of the search space where promising solutions can be expected. We are going to show how to define these regions beforehand, using knowledge of the optimization problem, but also how to define them independently of problem attributes. With that, our method can be used with and/or without detailed knowledge of the objective functions.In summary, our study helps to improve optimization results in less optimization time by meaningful restrictions of the search space. These restrictions can be done independently of the optimization problem, but also in a problem-specific manner.
NASA Astrophysics Data System (ADS)
Funk, C. C.; Verdin, J.; Thiaw, W. M.; Hoell, A.; Korecha, D.; McNally, A.; Shukla, S.; Arsenault, K. R.; Magadzire, T.; Novella, N.; Peters-Lidard, C. D.; Robjohn, M.; Pomposi, C.; Galu, G.; Rowland, J.; Budde, M. E.; Landsfeld, M. F.; Harrison, L.; Davenport, F.; Husak, G. J.; Endalkachew, E.
2017-12-01
Drought early warning science, in support of famine prevention, is a rapidly advancing field that is helping to save lives and livelihoods. In 2015-2017, a series of extreme droughts afflicted Ethiopia, Southern Africa, Eastern Africa in OND and Eastern Africa in MAM, pushing more than 50 million people into severe food insecurity. Improved drought forecasts and monitoring tools, however, helped motivate and target large and effective humanitarian responses. Here we describe new science being developed by a long-established early warning system - the USAID Famine Early Warning Systems Network (FEWS NET). FEWS NET is a leading provider of early warning and analysis on food insecurity. FEWS NET research is advancing rapidly on several fronts, providing better climate forecasts and more effective drought monitoring tools that are being used to support enhanced famine early warning. We explore the philosophy and science underlying these successes, suggesting that a modal view of climate change can support enhanced seasonal prediction. Under this modal perspective, warming of the tropical oceans may interact with natural modes of variability, like the El Niño-Southern Oscillation, to enhance Indo-Pacific sea surface temperature gradients during both El Niño and La Niña-like climate states. Using empirical data and climate change simulations, we suggest that a sequence of droughts may commence in northern Ethiopia and Southern Africa with the advent of a moderate-to-strong El Niño, and then continue with La Niña/West Pacific related droughts in equatorial eastern East Africa. Scientifically, we show that a new hybrid statistical-dynamic precipitation forecast system, the FEWS NET Integrated Forecast System (FIFS), based on reformulations of the Global Ensemble Forecast System weather forecasts and National Multi-Model Ensemble (NMME) seasonal climate predictions, can effectively anticipate recent East and Southern African drought events. Using cross-validation, we evaluate FIFS' skill and compare it to the NMME and the International Research Institute forecasts. Our study concludes with an overview of the satellite observations provided by FEWS NET partners at NOAA, NASA, USGS, and UC Santa Barbara, and the assimilation of these products within the FEWS NET Land Data Assimilation System (FLDAS).
WATERSHED EARLY WARNING SYSTEMS
Contaminants are of concern when they are found in concentrations that are toxic to plants and/or animals. On-line Toxicity Monitors (OTM) integrate all dissolved and bound chemicals found in water. This is important because of the limitations of chemical specific monitoring; yo...
An analysis of the early-warning system in emerging markets for reducing the financial crisis
NASA Astrophysics Data System (ADS)
Shen, Xiangguang; Song, Xiaozhong
2009-07-01
The large number of financial crises in emerging markets over the past ten years has left many observers, both from academia and financial institutions, puzzled by an apparent lack of homogenous causal relations between endogenous economic variables and the bursting of large financial shocks. The frequency of financial crises in the last 20 years can be attributed to the lack of a comprehensive theory of financial regulation to guide policy makers. Existing theories fail to define the range of regulatory models, the causes of regulatory failure, and how to measure and prevent it. Faulty design of regulatory models, and the lack of ongoing performance monitoring incorporating early warning systems, is disrupting economic and social development. The main aim of this article is to propose an early warning system (EWS) which purposes issuing warning signal against the possible financial crisis in the emerging market, and makes the emerging market survived the first wave of the crisis be able to continue their operation in the following years.
Early warning of changing drinking water quality by trend analysis.
Tomperi, Jani; Juuso, Esko; Leiviskä, Kauko
2016-06-01
Monitoring and control of water treatment plants play an essential role in ensuring high quality drinking water and avoiding health-related problems or economic losses. The most common quality variables, which can be used also for assessing the efficiency of the water treatment process, are turbidity and residual levels of coagulation and disinfection chemicals. In the present study, the trend indices are developed from scaled measurements to detect warning signs of changes in the quality variables of drinking water and some operating condition variables that strongly affect water quality. The scaling is based on monotonically increasing nonlinear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. Deviation indices are used to assess the severity of situations. The study shows the potential of the described trend analysis as a predictive monitoring tool, as it provides an advantage over the traditional manual inspection of variables by detecting changes in water quality and giving early warnings.
Using Satellite Data to Build Climate Resilience: A Novel East Africa Drought Monitor
NASA Astrophysics Data System (ADS)
Slinski, K.; Hogue, T. S.; McCray, J. E.
2016-12-01
East Africa is affected by recurrent drought. The 2015-2016 El Niño triggered a severe drought across East Africa causing serious impacts to regional water security, health, and livelihoods. Ethiopia was the hardest hit, with the United Nations Office for the Coordination of Humanitarian Affairs calling the recent drought the worst in 50 years. Resources to monitor the severity and progression of droughts are a critical component to disaster risk reduction, but are challenging to implement in regions with sparse data collection networks such as East Africa. Satellite data is used by the United Nations Food and Agriculture Organization Global Information and Early Warning System, the USAID Famine Early Warning System, and the Africa Drought and Flood Monitor. These systems use remotely sensed vegetation, soil moisture, and meteorological data to develop drought indices. However, they do not directly monitor impacts to water resources, which is necessary to appropriately target drought mitigation efforts. The current study combines new radar data from the European Space Agency's Sentinel-1 mission with satellite imagery to perform a retrospective analysis of the impact of the 2015-2016 drought in East Africa on regional surface water. Inland water body extents during the drought are compared to historical trends to identify the most severely impacted areas. The developed tool has the potential to support on-the-ground humanitarian relief efforts and to refine predictions of water scarcity and crop impacts from existing hydrologic models and famine early warning systems.
Real-time earthquake monitoring: Early warning and rapid response
NASA Technical Reports Server (NTRS)
1991-01-01
A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.
Recommendations to harmonize European early warning dosimetry network systems
NASA Astrophysics Data System (ADS)
Dombrowski, H.; Bleher, M.; De Cort, M.; Dabrowski, R.; Neumaier, S.; Stöhlker, U.
2017-12-01
After the Chernobyl nuclear power plant accident in 1986, followed by the Fukushima Nuclear power plant accident 25 years later, it became obvious that real-time information is required to quickly gain radiological information. As a consequence, the European countries established early warning network systems with the aim to provide an immediate warning in case of a major radiological emergency, to supply reliable information on area dose rates, contamination levels, radioactivity concentrations in air and finally to assess public exposure. This is relevant for governmental decisions on intervention measures in an emergency situation. Since different methods are used by national environmental monitoring systems to measure area dose rate values and activity concentrations, there are significant differences in the results provided by different countries. Because European and neighboring countries report area dose rate data to a central data base operated on behalf of the European Commission, the comparability of the data is crucial for its meaningful interpretation, especially in the case of a nuclear accident with transboundary implications. Only by harmonizing measuring methods and data evaluation, is the comparability of the dose rate data ensured. This publication concentrates on technical requirements and methods with the goal to effectively harmonize area dose rate monitoring data provided by automatic early warning network systems. The requirements and procedures laid down in this publication are based on studies within the MetroERM project, taking into account realistic technical approaches and tested procedures.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC. Environmental Studies Board.
The Global Environmental Monitoring System (GEMS) is one of four components of Earthwatch, a part of the United Nations Environment Program (UNEP). The purpose of GEMS is to provide early warning of impending natural or man-induced environmental changes or trends that threaten direct or indirect harm to human health or well-being. In 1975, the…
NASA Astrophysics Data System (ADS)
Lee, Y., II; Kim, H. S.; Chun, G.
2016-12-01
There were severe damages such as restriction on water supply caused by continuous drought from 2014 to 2015 in South Korea. Through this drought event, government of South Korea decided to establish National Drought Information Analysis Center in K-water(Korea Water Resources Corporation) and introduce a national drought monitoring and early warning system to mitigate those damages. Drought index such as SPI(Standard Precipitation Index), PDSI(Palmer Drought Severity Index) and SMI(Soil Moisture Index) etc. have been developed and are widely used to provide drought information in many countries. However, drought indexes are not appropriate for drought monitoring and early warning in civilized countries with high population density such as South Korea because it could not consider complicated water supply network. For the national drought monitoring and forecasting of South Korea, `Drought Information Analysis System' (D.I.A.S) which is based on the real time data(storage, flowrate, waterlevel etc.) was developed. Based on its advanced methodology, `DIAS' is changing the paradigm of drought monitoring and early warning systems. Because `D.I.A.S' contains the information of water supply network from water sources to the people across the nation and provides drought information considering the real-time hydrological conditions of each and every water source. For instance, in case the water level of a specific dam declines to predetermined level of caution, `D.I.A.S' will notify people who uses the dam as a source of residential or industrial water. It is expected to provide credible drought monitoring and forecasting information with a strong relationship between drought information and the feelings of people rely on water users by `D.I.A.S'.
Towards Actionable Waterborne and Vector-borne Disease Forecasts
NASA Astrophysics Data System (ADS)
Zaitchik, B. F.
2015-12-01
Numerous studies have shown that remote sensing (RS) and Earth System Models (ESM) can make important contributions to the analysis, monitoring and prediction of waterborne and vector-borne illnesses. Unsurprisingly, however, the great majority of these studies have been proof-of-concept investigations, and vanishingly few have been translated into operational and utilized disease early warning systems. To some extent this is simply an example of the general challenge of translating research findings into decision-relevant operations. Disease early warning, however, entails specific challenges that distinguish it from many other fields of environmental monitoring and prediction. Some of these challenges stem from predictability and data constraints, while others relate to the difficulty of communicating predictions and the particularly high price of false alarms. This presentation will review progress on the translation of analysis to decision making, identify avenues for enhancing forecast utility, and propose priorities for future RS and ESM investments in disease monitoring and prediction.
Bennett, Diane E; Jordan, Michael R; Bertagnolio, Silvia; Hong, Steven Y; Ravasi, Giovanni; McMahon, James H; Saadani, Ahmed; Kelley, Karen F
2012-05-01
The World Health Organization developed a set of human immunodeficiency virus drug resistance (HIVDR) early warning indicators (EWIs) to assess antiretroviral therapy clinic and program factors associated with HIVDR. EWIs are monitored by abstracting data routinely recorded in clinical records, and the results enable clinics and program managers to identify problems that should be addressed to minimize preventable emergence of HIVDR in clinic populations. As of June 2011, 50 countries monitored EWIs, covering 131 686 patients initiating antiretroviral treatment between 2004 and 2009 at 2107 clinics. HIVDR prevention is associated with patient care (appropriate prescribing and patient monitoring), patient behavior (adherence), and clinic/program management efforts to reduce treatment interruptions (follow up, retention on first-line ART, procurement and supply management of antiretroviral drugs). EWIs measure these factors and the results have been used to optimize patient and population treatment outcomes.
Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds
Farooqui, Muhammad Fahad; Shamim, Atif
2016-01-01
Chronic wounds affect millions of patients around the world and their treatment is challenging as the early signs indicating their development are subtle. In addition, a type of chronic wound, known as pressure ulcer, develops in patients with limited mobility. Infection and frequent bleeding are indicators of chronic wound development. In this article, we present an unprecedented low cost continuous wireless monitoring system, realized through inkjet printing on a standard bandage, which can send early warnings for the parameters like irregular bleeding, variations in pH levels and external pressure at wound site. In addition to the early warnings, this smart bandage concept can provide long term wound progression data to the health care providers. The smart bandage comprises a disposable part which has the inkjet printed sensors and a reusable part constituting the wireless electronics. This work is an important step towards futuristic wearable sensors for remote health care applications. PMID:27353200
Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds
NASA Astrophysics Data System (ADS)
Farooqui, Muhammad Fahad; Shamim, Atif
2016-06-01
Chronic wounds affect millions of patients around the world and their treatment is challenging as the early signs indicating their development are subtle. In addition, a type of chronic wound, known as pressure ulcer, develops in patients with limited mobility. Infection and frequent bleeding are indicators of chronic wound development. In this article, we present an unprecedented low cost continuous wireless monitoring system, realized through inkjet printing on a standard bandage, which can send early warnings for the parameters like irregular bleeding, variations in pH levels and external pressure at wound site. In addition to the early warnings, this smart bandage concept can provide long term wound progression data to the health care providers. The smart bandage comprises a disposable part which has the inkjet printed sensors and a reusable part constituting the wireless electronics. This work is an important step towards futuristic wearable sensors for remote health care applications.
Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds.
Farooqui, Muhammad Fahad; Shamim, Atif
2016-06-29
Chronic wounds affect millions of patients around the world and their treatment is challenging as the early signs indicating their development are subtle. In addition, a type of chronic wound, known as pressure ulcer, develops in patients with limited mobility. Infection and frequent bleeding are indicators of chronic wound development. In this article, we present an unprecedented low cost continuous wireless monitoring system, realized through inkjet printing on a standard bandage, which can send early warnings for the parameters like irregular bleeding, variations in pH levels and external pressure at wound site. In addition to the early warnings, this smart bandage concept can provide long term wound progression data to the health care providers. The smart bandage comprises a disposable part which has the inkjet printed sensors and a reusable part constituting the wireless electronics. This work is an important step towards futuristic wearable sensors for remote health care applications.
Global Drought Services: Collaborations Toward an Information System for Early Warning
NASA Astrophysics Data System (ADS)
Hayes, M. J.; Pulwarty, R. S.; Svoboda, M.
2014-12-01
Drought is a hazard that lends itself well to diligent, sustained monitoring and early warning. However, unlike most hazards, the fact that droughts typically evolve slowly, can last for months or years and cover vast areas spanning multiple political boundaries/jurisdictions and economic sectors can make it a daunting task to monitor, develop plans for, and identify appropriate, proactive mitigation strategies. The National Drought Mitigation Center (NDMC) and National Integrated Drought Information System (NIDIS) have been working together to reduce societal vulnerability to drought by helping decision makers at all levels to: 1) implement drought early warning/forecasting and decision support systems; 2) support and advocate for better collection of, and understanding of drought impacts; and 3) increase long-term resilience to drought through proactive planning. The NDMC and NIDIS risk management approach has been the basis from which many partners around the world are developing a collaboration and coordination nexus with an ultimate goal of building comprehensive global drought early warning information systems (GDEWIS). The core emphasis of this model is on developing and applying useful and usable information that can be integrated and transferred freely to other regions around the globe. The High-Level Ministerial Declaration on Drought, the Integrated Drought Management Programme (IDMP) co-led by the WMO and the Global Water Partnership (GWP), and the Global Framework for Climate Services are drawing extensively from the integrated NDMC-NIDIS risk management framework. This presentation will describe, in detail, the various drought resources, tools, services, and collaborations already being provided and undertaken at the national and regional scales by the NDMC, NIDIS, and their partners. The presentation will be forward-looking, identifying improvements in existing and proposed mechanisms to help strengthen national and international drought early warning information systems to support preparedness and adaptation decisions in a changing climate.
Global integrated drought monitoring and prediction system
Hao, Zengchao; AghaKouchak, Amir; Nakhjiri, Navid; Farahmand, Alireza
2014-01-01
Drought is by far the most costly natural disaster that can lead to widespread impacts, including water and food crises. Here we present data sets available from the Global Integrated Drought Monitoring and Prediction System (GIDMaPS), which provides drought information based on multiple drought indicators. The system provides meteorological and agricultural drought information based on multiple satellite-, and model-based precipitation and soil moisture data sets. GIDMaPS includes a near real-time monitoring component and a seasonal probabilistic prediction module. The data sets include historical drought severity data from the monitoring component, and probabilistic seasonal forecasts from the prediction module. The probabilistic forecasts provide essential information for early warning, taking preventive measures, and planning mitigation strategies. GIDMaPS data sets are a significant extension to current capabilities and data sets for global drought assessment and early warning. The presented data sets would be instrumental in reducing drought impacts especially in developing countries. Our results indicate that GIDMaPS data sets reliably captured several major droughts from across the globe. PMID:25977759
Global integrated drought monitoring and prediction system.
Hao, Zengchao; AghaKouchak, Amir; Nakhjiri, Navid; Farahmand, Alireza
2014-01-01
Drought is by far the most costly natural disaster that can lead to widespread impacts, including water and food crises. Here we present data sets available from the Global Integrated Drought Monitoring and Prediction System (GIDMaPS), which provides drought information based on multiple drought indicators. The system provides meteorological and agricultural drought information based on multiple satellite-, and model-based precipitation and soil moisture data sets. GIDMaPS includes a near real-time monitoring component and a seasonal probabilistic prediction module. The data sets include historical drought severity data from the monitoring component, and probabilistic seasonal forecasts from the prediction module. The probabilistic forecasts provide essential information for early warning, taking preventive measures, and planning mitigation strategies. GIDMaPS data sets are a significant extension to current capabilities and data sets for global drought assessment and early warning. The presented data sets would be instrumental in reducing drought impacts especially in developing countries. Our results indicate that GIDMaPS data sets reliably captured several major droughts from across the globe.
Early warning, warning or alarm systems for natural hazards? A generic classification.
NASA Astrophysics Data System (ADS)
Sättele, Martina; Bründl, Michael; Straub, Daniel
2013-04-01
Early warning, warning and alarm systems have gained popularity in recent years as cost-efficient measures for dangerous natural hazard processes such as floods, storms, rock and snow avalanches, debris flows, rock and ice falls, landslides, flash floods, glacier lake outburst floods, forest fires and even earthquakes. These systems can generate information before an event causes loss of property and life. In this way, they mainly mitigate the overall risk by reducing the presence probability of endangered objects. These systems are typically prototypes tailored to specific project needs. Despite their importance there is no recognised system classification. This contribution classifies warning and alarm systems into three classes: i) threshold systems, ii) expert systems and iii) model-based expert systems. The result is a generic classification, which takes the characteristics of the natural hazard process itself and the related monitoring possibilities into account. The choice of the monitoring parameters directly determines the system's lead time. The classification of 52 active systems moreover revealed typical system characteristics for each system class. i) Threshold systems monitor dynamic process parameters of ongoing events (e.g. water level of a debris flow) and incorporate minor lead times. They have a local geographical coverage and a predefined threshold determines if an alarm is automatically activated to warn endangered objects, authorities and system operators. ii) Expert systems monitor direct changes in the variable disposition (e.g crack opening before a rock avalanche) or trigger events (e.g. heavy rain) at a local scale before the main event starts and thus offer extended lead times. The final alarm decision incorporates human, model and organisational related factors. iii) Model-based expert systems monitor indirect changes in the variable disposition (e.g. snow temperature, height or solar radiation that influence the occurrence probability of snow avalanches) or trigger events (e.g. heavy snow fall) to predict spontaneous hazard events in advance. They encompass regional or national measuring networks and satisfy additional demands such as the standardisation of the measuring stations. The developed classification and the characteristics, which were revealed for each class, yield a valuable input to quantifying the reliability of warning and alarm systems. Importantly, this will facilitate to compare them with well-established standard mitigation measures such as dams, nets and galleries within an integrated risk management approach.
Developing an operational rangeland water requirement satisfaction index
Senay, Gabriel B.; Verdin, James P.; Rowland, James
2011-01-01
Developing an operational water requirement satisfaction index (WRSI) for rangeland monitoring is an important goal of the famine early warning systems network. An operational WRSI has been developed for crop monitoring, but until recently a comparable WRSI for rangeland was not successful because of the extremely poor performance of the index when based on published crop coefficients (K c) for rangelands. To improve the rangeland WRSI, we developed a simple calibration technique that adjusts the K c values for rangeland monitoring using long-term rainfall distribution and reference evapotranspiration data. The premise for adjusting the K c values is based on the assumption that a viable rangeland should exhibit above-average WRSI (values >80%) during a normal year. The normal year was represented by a median dekadal rainfall distribution (satellite rainfall estimate from 1996 to 2006). Similarly, a long-term average for potential evapotranspiration was used as input to the famine early warning systems network WRSI model in combination with soil-water-holding capacity data. A dekadal rangeland WRSI has been operational for east and west Africa since 2005. User feedback has been encouraging, especially with regard to the end-of-season WRSI anomaly products that compare the index's performance to ‘normal’ years. Currently, rangeland WRSI products are generated on a dekadal basis and posted for free distribution on the US Geological Survey early warning website at http://earlywarning.usgs.gov/adds/
A real-time cabled observatory on the Cascadia subduction zone
NASA Astrophysics Data System (ADS)
Vidale, J. E.; Delaney, J. R.; Toomey, D. R.; Bodin, P.; Roland, E. C.; Wilcock, W. S. D.; Houston, H.; Schmidt, D. A.; Allen, R. M.
2015-12-01
Subduction zones are replete with mystery and rife with hazard. Along most of the Pacific Northwest margin, the traditional methods of monitoring offshore geophysical activity use onshore sensors or involve conducting infrequent oceanographic expeditions. This results in a limited capacity for detecting and monitoring subduction processes offshore. We propose that the next step in geophysical observations of Cascadia should include real-time data delivered by a seafloor cable with seismic, geodetic, and pressure-sensing instruments. Along the Cascadia subduction zone, we need to monitor deformation, earthquakes, and fluid fluxes on short time scales. High-quality long-term time series are needed to establish baseline observations and evaluate secular changes in the subduction environment. Currently we lack a basic knowledge of the plate convergence rate, direction and its variations along strike and of how convergence is accommodated across the plate boundary. We also would like to seek cycles of microseismicity, how far locking extends up-dip, and the transient processes (i.e., fluid pulsing, tremor, and slow slip) that occur near the trench. For reducing risk to society, real-time monitoring has great benefit for immediate and accurate assessment through earthquake early warning systems. Specifically, the improvement to early warning would be in assessing the location, geometry, and progression of ongoing faulting and obtaining an accurate tsunami warning, as well as simply speeding up the early warning. It would also be valuable to detect strain transients and map the locked portion of the megathrust, and detect changes in locking over the earthquake cycle. Development of the US portion of a real-time cabled seismic and geodetic observatory should build upon the Ocean Observatories Initiative's cabled array, which was recently completed and is currently delivering continuous seismic and pressure data from the seafloor. Its implementation would require substantial initial and ongoing investments from federal and state governments, private partners and the academic community but would constitute a critical resource in mitigating the hazard both through improved earthquake and tsunami warning and an enhanced scientific understanding of subduction processes in Cascadia.
Satellite Data Aid Monitoring of Nation's Forests
NASA Technical Reports Server (NTRS)
2014-01-01
The USDA Forest Service’s Asheville, North Carolina-based Eastern Forest Environmental Threat Assessment Center and Prineville, Oregon-based Western Wildlands Environmental Threat Assessment Center partnered with Stennis Space Center and other agencies to create an early warning system to identify, characterize, and track disturbances from potential forest threats. The result was ForWarn, which is now being used by federal and state forest and natural resource managers.
Changing skewness: an early warning signal of regime shifts in ecosystems.
Guttal, Vishwesha; Jayaprakash, Ciriyam
2008-05-01
Empirical evidence for large-scale abrupt changes in ecosystems such as lakes and vegetation of semi-arid regions is growing. Such changes, called regime shifts, can lead to degradation of ecological services. We study simple ecological models that show a catastrophic transition as a control parameter is varied and propose a novel early warning signal that exploits two ubiquitous features of ecological systems: nonlinearity and large external fluctuations. Either reduced resilience or increased external fluctuations can tip ecosystems to an alternative stable state. It is shown that changes in asymmetry in the distribution of time series data, quantified by changing skewness, is a model-independent and reliable early warning signal for both routes to regime shifts. Furthermore, using model simulations that mimic field measurements and a simple analysis of real data from abrupt climate change in the Sahara, we study the feasibility of skewness calculations using data available from routine monitoring.
Citizen Science to Support Community-based Flood Early Warning and Resilience Building
NASA Astrophysics Data System (ADS)
Paul, J. D.; Buytaert, W.; Allen, S.; Ballesteros-Cánovas, J. A.; Bhusal, J.; Cieslik, K.; Clark, J.; Dewulf, A.; Dhital, M. R.; Hannah, D. M.; Liu, W.; Nayaval, J. L.; Schiller, A.; Smith, P. J.; Stoffel, M.; Supper, R.
2017-12-01
In Disaster Risk Management, an emerging shift has been noted from broad-scale, top-down assessments towards more participatory, community-based, bottom-up approaches. Combined with technologies for robust and low-cost sensor networks, a citizen science approach has recently emerged as a promising direction in the provision of extensive, real-time information for flood early warning systems. Here we present the framework and initial results of a major new international project, Landslide EVO, aimed at increasing local resilience against hydrologically induced disasters in western Nepal by exploiting participatory approaches to knowledge generation and risk governance. We identify three major technological developments that strongly support our approach to flood early warning and resilience building in Nepal. First, distributed sensor networks, participatory monitoring, and citizen science hold great promise in complementing official monitoring networks and remote sensing by generating site-specific information with local buy-in, especially in data-scarce regions. Secondly, the emergence of open source, cloud-based risk analysis platforms supports the construction of a modular, distributed, and potentially decentralised data processing workflow. Finally, linking data analysis platforms to social computer networks and ICT (e.g. mobile phones, tablets) allows tailored interfaces and people-centred decision- and policy-support systems to be built. Our proposition is that maximum impact is created if end-users are involved not only in data collection, but also over the entire project life-cycle, including the analysis and provision of results. In this context, citizen science complements more traditional knowledge generation practices, and also enhances multi-directional information provision, risk management, early-warning systems and local resilience building.
Drought monitoring: Historical and current perspectives
USDA-ARS?s Scientific Manuscript database
Given the complex dimensions of drought and the challenges they pose for routine drought monitoring, it is essential that we continue to find innovative and robust ways to quantify and more effectively communicate the impacts of this hazard as part of an operational Drought Early Warning System. Th...
The Self-Organising Seismic Early Warning Information Network
NASA Astrophysics Data System (ADS)
Kühnlenz, F.; Eveslage, I.; Fischer, J.; Fleming, K. M.; Lichtblau, B.; Milkereit, C.; Picozzi, M.
2009-12-01
The Self-Organising Seismic Early Warning Information Network (SOSEWIN) represents a new approach for Earthquake Early Warning Systems (EEWS), consisting in taking advantage of novel wireless communications technologies without the need of a planned, centralised infrastructure. It also sets out to overcome problems of insufficient node density, which typically affects present existing early warning systems, by having the SOSEWIN seismological sensing units being comprised of low-cost components (generally bought "off-the-shelf"), with each unit initially costing 100's of Euros, in contrast to 1,000's to 10,000's for standard seismological stations. The reduced sensitivity of the new sensing units arising from the use of lower-cost components will be compensated by the network's density, which in the future is expected to number 100's to 1000's over areas served currently by the order of 10's of standard stations. The robustness, independence of infrastructure, spontaneous extensibility due to a self-healing/self-organizing character in the case of removing/failing or adding sensors makes SOSEWIN potentially useful for various use cases, e.g. monitoring of building structures or seismic microzonation. Nevertheless its main purpose is the earthquake early warning, for which reason the ground motion is continuously monitored by conventional accelerometers (3-component) and processed within a station. Based on this, the network itself decides whether an event is detected through cooperating stations. SEEDLink is used to store and provide access to the sensor data. Experiences and selected experiment results with the SOSEWIN-prototype installation in the Ataköy district of Istanbul (Turkey) are presented. SOSEWIN considers also the needs of earthquake task forces, which want to set-up a temporary seismic network rapidly and with light-weighted stations to record after-shocks. The wireless and self-organising character of this sensor network is of great value to do this job in a shorter time and with less manpower compared to using common seismic stations as we could see during the L'Aquila earthquake, where SOSEWIN was used to monitor damaged buildings. We present here the graphical front-end of SOSEWIN in its usage for different scenarios. It belongs to a management infrastructure based on GIS and database technologies and therefore coupling with existing infrastructures should be simplified. Connecting the domain expert’s laptop running the management software with a SOSEWIN may be fulfilled via any arbitrary node in the network (on-site access) or via a gateway node from a remote location using the internet. The scenarios focus on the needs of certain domain experts (seismologists or maybe engineers) and include the planning of a network installation, support during the installation process and testing of this installation. Another scenario mentions monitoring aspects of an already installed SOSEWIN and finally a scenario deals with the visualization of the alarming protocol detecting an earthquake event and issuing an early warning.
Tsunami Early Warning for the Indian Ocean Region - Status and Outlook
NASA Astrophysics Data System (ADS)
Lauterjung, Joern; Rudloff, Alexander; Muench, Ute; Gitews Project Team
2010-05-01
The German-Indonesian Tsunami Early Warning System (GITEWS) for the Indian Ocean region has gone into operation in Indonesia in November 2008. The system includes a seismological network, together with GPS stations and a network of GPS buoys additionally equipped with ocean bottom pressure sensors and a tide gauge network. The different sensor systems have, for the most part, been installed and now deliver respective data either online or interactively upon request to the Warning Centre in Jakarta. Before 2011, however, the different components requires further optimization and fine tuning, local personnel needs to be trained and eventual problems in the daily operation have to be dealt with. Furthermore a company will be founded in the near future, which will guarantee a sustainable maintenance and operation of the system. This concludes the transfer from a temporarily project into a permanent service. This system established in Indonesia differs from other Tsunami Warning Systems through its application of modern scientific methods and technologies. New procedures for the fast and reliable determination of strong earthquakes, deformation monitoring by GPS, the modeling of tsunamis and the assessment of the situation have been implemented in the Warning System architecture. In particular, the direct incorporation of different sensors provides broad information already at the early stages of Early Warning thus resulting in a stable system and minimizing breakdowns and false alarms. The warning system is designed in an open and modular structure based on the most recent developments and standards of information technology. Therefore, the system can easily integrate additional sensor components to be used for other multi-hazard purposes e.g. meteorological and hydrological events. Up to now the German project group is cooperating in the Indian Ocean region with Sri Lanka, the Maldives, Iran, Yemen, Tanzania and Kenya to set up the equipment primarily for seismological monitoring and data analysis. The automatic seismic data processing software SeisComP3, is not only operational in the warning centre in Jakarta and successfully used for rapid earthquake information, but also in different Indian Ocean rim countries like the once mentioned before as well as in India, Thailand and Pakistan. Close cooperation has been established with Australia, South Africa and India for the real-time exchange mainly of seismological and sea level data.
The strategy and design of the effectiveness monitoring program for the Northwest Forest Plan.
Barry S. Mulder; Barry R. Noon; Thomas A. Spies; Martin G. Raphael; Craig J. Palmer; Anthony R. Olsen; Gordon H. Reeves; Hartwell H. Welsh
1999-01-01
This report describes the logic and design of an effectiveness monitoring program for the Northwest Forest Plan. The program is prospective, providing an early warning of environmental change before irreversible loss has occurred. Monitoring is focused at two resource levels: individual species and specific ecosystem types. Selection of prospective indicators for the...
NASA Astrophysics Data System (ADS)
Meroni, M.; Rembold, F.; Urbano, F.; Lemoine, G.
2016-12-01
Anomaly maps and time profiles of remote sensing derived indicators relevant to monitor crop and vegetation stress can be accessed online thanks to a rapidly growing number of web based portals. However, timely and systematic global analysis and coherent interpretation of such information, as it is needed for example for SDG 2 related monitoring, remains challenging. With the ASAP system (Anomaly hot Spots of Agricultural Production) we propose a two-step analysis to provide monthly warning of production deficits in water-limited agriculture worldwide. The first step is fully automated and aims at classifying each administrative unit (1st sub-national level) into a number of possible warning levels, ranging from "none" to "watch" and up to "extended alarm". The second step involves the verification of the automatic warnings and integration into a short national level analysis by agricultural analysts. In this paper we describe the methodological development of the automatic vegetation anomaly classification system. Warnings are triggered only during the crop growing season, defined by a remote sensing based phenology. The classification takes into consideration the fraction of the agricultural and rangelands area for each administrative unit that is affected by a severe anomaly of two rainfall-based indicators (the Standardized Precipitation Index (SPI), computed at 1 and 3-month scale) and one biophysical indicator (the cumulative NDVI from the start of the growing season). The severity of the warning thus depends on the timing, the nature and the number of indicators for which an anomaly is detected. The prototype system is using global NDVI images of the METOP sensor, while a second version is being developed based on 1km Modis NDVI with temporal smoothing and near real time filtering. Also a specific water balance model is under development to include agriculture water stress information in addition to the SPI. The monthly warning classification and crop condition assessment will be made available on a website and will strengthen the JRC support to information products based on consensus assessment such as the GEOGLAM Crop Monitor for Early Warning.
DEPLOYMENT OF A WATER QUALITY EARLY WARNING SYSTEM USING ON-LINE TOXICITY MONITORS
Contaminants are of concern when they are found in concentrations that are toxic to plants and/or animals. On–line Toxicity Monitors (OTMs) integrate all factors resulting in stress including physical and chemical qualities. This is important because of the limitations of c...
ERT to aid in WSN based early warning system for landslides
NASA Astrophysics Data System (ADS)
T, H.
2017-12-01
Amrita University's landslide monitoring and early warning system using Wireless Sensor Networks (WSN) consists of heterogeneous sensors like rain gauge, moisture sensor, piezometer, geophone, inclinometer, tilt meter etc. The information from the sensors are accurate and limited to that point. In order to monitor a large area, ERT can be used in conjunction with WSN technology. To accomplish the feasibility of ERT in landslide early warning along with WSN technology, we have conducted experiments in Amrita's landslide laboratory setup. The experiment was aimed to simulate landslide, and monitor the changes happening in the soil using moisture sensor and ERT. Simulating moisture values from resistivity measurements to a greater accuracy can help in landslide monitoring for large areas. For accomplishing the same we have adapted two mathematical approaches, 1) Regression analysis between resistivity measurements and actual moisture values from moisture sensor, and 2) Using Waxman Smith model to simulate moisture values from resistivity measurements. The simulated moisture values from Waxman Smith model is compared with the actual moisture values and the Mean Square Error (MSE) is found to be 46.33. Regression curve is drawn for the resistivity vs simulated moisture values from Waxman model, and it is compared with the regression curve of actual model, which is shown in figure-1. From figure-1, it is clear that there the regression curve from actual moisture values and the regression curve from simulated moisture values, follow the similar pattern and there is a small difference between them. Moisture values can be simulated to a greater accuracy using actual regression equation, but the limitation is that, regression curves will differ for different sites and different soils. Regression equation from actual moisture values can be used, if we have conducted experiment in the laboratory for a particular soil sample, otherwise with the knowledge of soil properties, Waxman model can be used to simulate moisture values. The promising results assure that, ERT measurements when used in conjunction with WSN technique, vital paramters triggering landslides like moisture can be simulated for a large area, which will help in providing early warning for large areas.
Early warning of orographically induced floods and landslides in Western Norway
NASA Astrophysics Data System (ADS)
Leine, Ann-Live; Wang, Thea; Boje, Søren
2017-04-01
In Western Norway, landslides and debris flows are commonly initiated by short-term orographic rainfall or intensity peaks during a prolonged rainfall event. In recent years, the flood warning service in Norway has evolved from being solely a flood forecasting service to also integrating landslides into its early warning systems. As both floods and landslides are closely related to the same hydrometeorological processes, particularly in small catchments, there is a natural synergy between monitoring flood and landslide risk. The Norwegian Flood and Landslide Hazard Forecasting and Warning Service issues regional landslide hazard warnings based on hydrological models, threshold values, observations and weather forecasts. Intense rainfall events and/or orographic precipitation that, under certain topographic conditions, significantly increase the risk of debris avalanches and debris floods are lately receiving more research focus from the Norwegian warning service. Orographic precipitation is a common feature in W-Norway, when moist and relatively mild air arrives from the Atlantic. Steep mountain slopes covered by glacial till makes the region prone to landslides, as well as flooding. The operational early warning system in Norway requires constant improvement, especially with the enhanced number of intense rainfall events that occur in a warming climate. Here, we examine different cases of intense rainfall events which have lead to landslides and debris flows, as well as increased runoff in fast responding small catchments. The main objective is to increase the understanding of the hydrometeorological conditions related to these events, in order to make priorities for the future development of the warning service.
Space geodetic tools provide early warnings for earthquakes and volcanic eruptions
NASA Astrophysics Data System (ADS)
Aoki, Yosuke
2017-04-01
Development of space geodetic techniques such as Global Navigation Satellite System and Synthetic Aperture Radar in last few decades allows us to monitor deformation of Earth's surface in unprecedented spatial and temporal resolution. These observations, combined with fast data transmission and quick data processing, enable us to quickly detect and locate earthquakes and volcanic eruptions and assess potential hazards such as strong earthquake shaking, tsunamis, and volcanic eruptions. These techniques thus are key parts of early warning systems, help identify some hazards before a cataclysmic event, and improve the response to the consequent damage.
Pizarro, Gemita; Moroño, Ángeles; Paz, Beatriz; Franco, José M.; Pazos, Yolanda; Reguera, Beatriz
2013-01-01
From June 2006 to January 2007 passive samplers (solid phase adsorbing toxin tracking, SPATT) were tested as a monitoring tool with weekly monitoring of phytoplankton and toxin content (liquid chromatography–mass spectrometry, LC-MS) in picked cells of Dinophysis and plankton concentrates. Successive blooms of Dinophysis acuminata, D. acuta and D. caudata in 2006 caused a long mussel harvesting closure (4.5 months) in the Galician Rías (NW Spain) and a record (up to 9246 ng·g resin-week−1) accumulation of toxins in SPATT discs. Best fit of a toxin accumulation model was between toxin accumulation in SPATT and the product of cell densities by a constant value, for each species of Dinophysis, of toxin content (average) in picked cells. Detection of Dinophysis populations provided earlier warning of oncoming diarrhetic shellfish poisoning (DSP) outbreaks than the SPATT, which at times overestimated the expected toxin levels in shellfish because: (i) SPATT accumulated toxins did not include biotransformation and depuration loss terms and (ii) accumulation of toxins not available to mussels continued for weeks after Dinophysis cells were undetectable and mussels were toxin-free. SPATT may be a valuable environmental monitoring and research tool for toxin dynamics, in particular in areas with no aquaculture, but does not provide a practical gain for early warning of DSP outbreaks. PMID:24152559
The Ancona Early Warning Centre, Instrumentation and Continuous Monitoring of the Landslide
NASA Astrophysics Data System (ADS)
Cardellini, S.
2013-12-01
The 'Grande frana di Ancona' is an deep-seated landslide reactivated in 1982 after a long period of precipitation. The landslide involves clay and silty clay layers (Pliocene-Pleistocene), fractured with different OCR parameter, alternated with thin sand levels. Overlapped sliding zones are active (maximum depth: 100-120 m, maximum depth 1982 event is 75 m bgl). All the investigations aimed at the consolidation preliminary design in 2000, but the plan concluded that a final consolidation was impossible. Ancona Administration decided then to 'live with the landslide' reducing nevertheless the risk for the people living there. In 2002 a regional law was specifically issued for the people living in the landslide, to give Ancona Administration the responsibility of creating an Early Warning System and an Emergency Plan for people. It's active a surface monitoring system based on 7 total stations and 33 geodetic GPS integrated by a subsurface in place geotechnical system based on 3 DMS multiparametric columns installed down to 95 m depth. Surface Monitoring system The combination of the different instruments: GPS, Automatic Robotic Stations and the clinometric sensors allows us to monitor in the 3D (3D, X, Y, Z) a great number of points previously identified, to keep them under supervision with different measuring technical and from different control positions. The adoption of the geodetic GPS at dual frequency assure an high quality of the GPS measures, and a greater versatility at all the system. The measuring cycle is set up on 30 minutes, but in emergency or after a long rainy period, the system can operate on every points of the dual frequency GPS net also in Real Time RTK, and with the 7 Automatic Robotic Stations. Geotechnical monitoring (DMS) The in place Geotechnical Monitoring System DMS (patents and trade mark CSG srl -Italy) was installed in February 2009. It is made by n°3 Modular Dynamic System columns positioned inside borehole 100 m depth. DMS columns have been preassembled and installed in site with DMS REELER, connecting the required number of modules, each containing one or more geotechnical-geophysical sensors and the electronic boards for data collection and transmission. Transmission system The transmitted data coming from different sensors, are collected according to the two following procedures: a) I and II Level Net: data transmission in real time through a WiFi Standard HyperLan to the Town Monitoring Centre. b) III Level Net and, DMS system, wheatear station: data transmission through periodic GSM in CSD mode. Early Warning Management Inside the Monitoring Room of the Ancona Early Warning Centre a staff of 8 people control the monitoring data, verify the data flow, cross-check carefully the SMS warnings from the surface and borehole monitoring systems, verifying and comparing the data also with the rain events and potential triggers. Personal on duty control the data also during the night and weekend 365day/y. The staff was trained specifically for the overall instrumentation allowing in this way to be ready in case of transmission, maintenance to the software and remote control unit in all wheatear conditions.
Assessing the add value of ensemble forecast in a drought early warning
NASA Astrophysics Data System (ADS)
Calmanti, Sandro; Bosi, Lorenzo; Fernandez, Jesus; De Felice, Matteo
2015-04-01
The EU-FP7 project EUPORIAS is developing a prototype climate service to enhance the existing food security drought early warning system in Ethiopia. The Livelihoods, Early Assessment and Protection (LEAP) system is the Government of Ethiopia's national food security early warning system, established with the support of WFP and the World Bank in 2008. LEAP was designed to increase the predictability and timeliness of response to drought-related food crises in Ethiopia. It combines early warning with contingency planning and contingency funding, to allow the government, WFP and other partners to provide early assistance in anticipation of an impending catastrophes. Currently, LEAP uses satellite based rainfall estimates to monitor drought conditions and to compute needs. The main aim of the prototype is to use seasonal hindcast data to assess the added value of using ensemble climate rainfall forecasts to estimate the cost of assistance of population hit by major droughts. We outline the decision making process that is informed by the prototype climate service, and we discuss the analysis of the expected and skill of the available rainfall forecast data over Ethiopia. One critical outcome of this analysis is the strong dependence of the expected skill on the observational estimate assumed as reference. A preliminary evaluation of the full prototype products (drought indices and needs estimated) using hindcasts data will also be presented.
Forests and Phenology: Designing the Early Warning System to Understand Forest Change
NASA Astrophysics Data System (ADS)
Pierce, T.; Phillips, M. B.; Hargrove, W. W.; Dobson, G.; Hicks, J.; Hutchins, M.; Lichtenstein, K.
2010-12-01
Vegetative phenology is the study of plant development and changes with the seasons, such as the greening-up and browning-down of forests, and how these events are influenced by variations in climate. A National Phenology Data Set, based on Moderate Resolution Imaging Spectroradiometer satellite images covering 2002 through 2009, is now available from work by NASA, the US Forest Service, and Oak Ridge National Laboratory. This new data set provides an easily interpretable product useful for detecting changes to the landscape due to long-term factors such as climate change, as well as finding areas affected by short-term forest threats such as insects or disease. The Early Warning System (EWS) is a toolset being developed by the US Forest Service and the University of North Carolina-Asheville to support distribution and use of the National Phenology Data Set. The Early Warning System will help research scientists, US Forest Service personnel, forest and natural resources managers, decision makers, and the public in the use of phenology data to better understand unexpected change within our nation’s forests. These changes could have multiple natural sources such as insects, disease, or storm damage, or may be due to human-induced events, like thinning, harvest, forest conversion to agriculture, or residential and commercial use. The primary goal of the Early Warning System is to provide a seamless integration between monitoring, detection, early warning and prediction of these forest disturbances as observed through phenological data. The system consists of PC and web-based components that are structured to support four user stages of increasing knowledge and data sophistication. Building Literacy: This stage of the Early Warning System educates potential users about the system, why the system should be used, and the fundamentals about the data the system uses. The channels for this education include a website, interactive tutorials, pamphlets, and other technology transfer methodologies. Achieving Context and Meaning: To provide deeper meaning and knowledge about the Early Warning System to users, this stage of the Early Warning System provides more information about specific examples of disturbances seen in the phenological data, as well the spatial and temporal context to these disturbances. The main components of this stage are specific case studies of forest disturbances. Accessing Data: This component of the Early Warning System includes products for research scientists, the aerial detection survey sketch mapper community, and others who will access and analyze the Early Warning System and phenological data. Products and data will be available through online GIS mashups and WMS and KML downloads. Utilizing Services: The final stage of the Early Warning System supports the analysis of phenological data and serves the results to those end users, including forest managers, the forest industry, and the public, who need to locate past, present, and potential forest disturbances. The main components of this stage include data-driven web tools, automated analysis processes, and end user training programs.
National Volcano Early Warning and Monitoring Program Act
Sen. Murkowski, Lisa [R-AK
2009-04-02
Senate - 03/02/2010 Placed on Senate Legislative Calendar under General Orders. Calendar No. 283. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Companion, Michèle
2008-09-01
Famine Early Warning Systems (EWS) are reliant on data aggregated from multiple sources. Consequently, they are often insensitive to localized changes in food security status, leading to delayed response or interventions. While price and infrastructural data are often gathered, this case study suggests that local street markets and vendor knowledge are underutilized. Few efforts have been made to monitor systematically the street markets as an indicator of local stressors. Findings from Ethiopia show that knowledge generated by expanding food security indicators in this sector can be used in combination with EWS to facilitate earlier intervention in, or to monitor more effectively, on-going humanitarian crises. Indicators developed from this study are accurate, cost effective, and sensitive to local climatic and food stressors.
Alados, C.L.; Escos, J.; Emlen, J.M.
1994-01-01
Developmental lnstability (DI) has been proposed as an inexpensive, quickly applied, and sensitive indicator of stress that can be utilized in early warning and in monitoring anthropogenic impacts on fish and other animals and plants. A problem arises, however, to the extent that natural stressors confound the effects of human-induced disturbances. Our objective in this work was to investigate whether a natural stressor, in the form of EI Nino conditions, contributed to DI in the Pacific hake. Right-left (fluctuating> asymmetry of otolith length, width, growth rate, and weight, as well as right-left otolith shape differences, were used as measures of DI. Results show that indeed EI Nino disrupts development, indicating stress. This outcome suggests that DI, as an early warning and monitoring tool for stress, must be used with caution.
A SDMS Model: Early Warning Coordination Centres
NASA Astrophysics Data System (ADS)
Santos-Reyes, Jaime
2010-05-01
Following the tsunami disaster in 2004, the General Secretary of the United Nations (UN) Kofi Annan called for a global early warning system for all hazards and for all communities. He also requested the ISDR (International Strategy fort Disaster Reduction) and its UN partners to conduct a global survey of capacities, gaps and opportunities in relation to early warning systems. The produced report, "Global survey of Early Warning Systems", concluded that there are many gaps and shortcomings and that much progress has been made on early warning systems and great capabilities are available around the world. However, it may be argued that an early warning system (EWS) may not be enough to prevent fatalities due to a natural hazard; i.e., it should be seen as part of a ‘wider' or total system. Furthermore, an EWS may work very well when assessed individually but it is not clear whether it will contribute to accomplish the purpose of the ‘total disaster management system'; i.e., to prevent fatalities. For instance, a regional EWS may only work if it is well co-ordinated with the local warning and emergency response systems that ensure that the warning is received, communicated and acted upon by the potentially affected communities. It may be argued that without these local measures being in place, a regional EWS will have little impact in saving lives. Researchers argued that unless people are warned in remote areas, the technology is useless; for instance McGuire [5] argues that: "I have no doubt that the technical element of the warning system will work very well,"…"But there has to be an effective and efficient communications cascade from the warning centre to the fisherman on the beach and his family and the bar owners." Similarly, McFadden [6] states that: "There's no point in spending all the money on a fancy monitoring and a fancy analysis system unless we can make sure the infrastructure for the broadcast system is there,"… "That's going to require a lot of work. If it's a tsunami, you've got to get it down to the last Joe on the beach. This is the stuff that is really very hard." Given the above, the paper argues that there is a need for a systemic approach to early warning centres. Systemic means looking upon things as a system; systemic means seeing pattern and inter-relationship within a complex whole; i.e., to see events as products of the working of a system. System may be defined as a whole which is made of parts and relationships. Given this, ‘failure' may be seen as the product of a system and, within that, see death/injury/property loss etc. as results of the working of systems. This paper proposes a preliminary model of ‘early warning coordination centres' (EWCC); it should be highlighted that an EWCC is a subsystem of the Systemic Disaster Management System (SDMS) model.
Land Surface Modeling Applications for Famine Early Warning
NASA Astrophysics Data System (ADS)
McNally, A.; Verdin, J. P.; Peters-Lidard, C. D.; Arsenault, K. R.; Wang, S.; Kumar, S.; Shukla, S.; Funk, C. C.; Pervez, M. S.; Fall, G. M.; Karsten, L. R.
2015-12-01
AGU 2015 Fall Meeting Session ID#: 7598 Remote Sensing Applications for Water Resources Management Land Surface Modeling Applications for Famine Early Warning James Verdin, USGS EROS Christa Peters-Lidard, NASA GSFC Amy McNally, NASA GSFC, UMD/ESSIC Kristi Arsenault, NASA GSFC, SAIC Shugong Wang, NASA GSFC, SAIC Sujay Kumar, NASA GSFC, SAIC Shrad Shukla, UCSB Chris Funk, USGS EROS Greg Fall, NOAA Logan Karsten, NOAA, UCAR Famine early warning has traditionally required close monitoring of agro-climatological conditions, putting them in historical context, and projecting them forward to anticipate end-of-season outcomes. In recent years, it has become necessary to factor in the effects of a changing climate as well. There has also been a growing appreciation of the linkage between food security and water availability. In 2009, Famine Early Warning Systems Network (FEWS NET) science partners began developing land surface modeling (LSM) applications to address these needs. With support from the NASA Applied Sciences Program, an instance of the Land Information System (LIS) was developed to specifically support FEWS NET. A simple crop water balance model (GeoWRSI) traditionally used by FEWS NET took its place alongside the Noah land surface model and the latest version of the Variable Infiltration Capacity (VIC) model, and LIS data readers were developed for FEWS NET precipitation forcings (NOAA's RFE and USGS/UCSB's CHIRPS). The resulting system was successfully used to monitor and project soil moisture conditions in the Horn of Africa, foretelling poor crop outcomes in the OND 2013 and MAM 2014 seasons. In parallel, NOAA created another instance of LIS to monitor snow water resources in Afghanistan, which are an early indicator of water availability for irrigation and crop production. These successes have been followed by investment in LSM implementations to track and project water availability in Sub-Saharan Africa and Yemen, work that is now underway. Adoption of LSM and data assimilation technology has enabled FEWS NET to take greater advantage of remote sensing observations to robustly estimate key agro-climatological states, like soil moisture and snow water equivalent, building confidence in our understanding of conditions in data sparse regions of the world.
Adjustment of the water treatment process to changes in the water quality has been an area of focus for engineers and managers of water treatment plants. This desired and preferred capability depends on timely and quantitative knowledge of water quality monitoring in terms of tot...
29. View of typical radio frequency monitor group electronic tubetype ...
29. View of typical radio frequency monitor group electronic tube-type cabinet. System is water-cooled with antenna assist. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
Climate Engine - Monitoring Drought with Google Earth Engine
NASA Astrophysics Data System (ADS)
Hegewisch, K.; Daudert, B.; Morton, C.; McEvoy, D.; Huntington, J. L.; Abatzoglou, J. T.
2016-12-01
Drought has adverse effects on society through reduced water availability and agricultural production and increased wildfire risk. An abundance of remotely sensed imagery and climate data are being collected in near-real time that can provide place-based monitoring and early warning of drought and related hazards. However, in an era of increasing wealth of earth observations, tools that quickly access, compute, and visualize archives, and provide answers at relevant scales to better inform decision-making are lacking. We have developed ClimateEngine.org, a web application that uses Google's Earth Engine platform to enable users to quickly compute and visualize real-time observations. A suite of drought indices allow us to monitor and track drought from local (30-meters) to regional scales and contextualize current droughts within the historical record. Climate Engine is currently being used by U.S. federal agencies and researchers to develop baseline conditions and impact assessments related to agricultural, ecological, and hydrological drought. Climate Engine is also working with the Famine Early Warning Systems Network (FEWS NET) to expedite monitoring agricultural drought over broad areas at risk of food insecurity globally.
Baeza, A; Corbacho, J A; Caballero, J M; Ontalba, M A; Vasco, J; Valencia, D
2017-09-25
Automatic real-time warning networks are essential for the almost immediate detection of anomalous levels of radioactivity in the environment. In the case of Extremadura region (SW Spain), a radiological network (RARE) has been operational in the vicinity of the Almaraz nuclear power plant and in other areas farther away since 1992. There are ten air monitoring stations equipped with Geiger-Müller counters in order to evaluate the external ambient gamma dose rate. Four of these stations have a commercial system that provides estimates of the total artificial alpha and beta activity concentrations in aerosols, and of the 131 I activity (gaseous fraction). Despite experience having demonstrated the benefits and robustness of these commercial systems, important improvements have been made to one of these air monitoring systems. In this paper, the analytical and maintenance shortcomings of the original commercial air monitoring system are described first; the new custom-designed advanced air monitoring system is then presented. This system is based mainly on the incorporation of gamma spectrometry using two scintillation detectors, one of NaI:Tl and the other of LaBr 3 :Ce, and compact multichannel analysers. Next, a comparison made of the results provided by the two systems operating simultaneously at the same location for three months shows the advantages of the new advanced air monitoring system. As a result, the gamma spectrometry analysis allows passing from global alpha and beta activity determinations due to artificial radionuclides in aerosols, and the inaccurate measurement of the gaseous 131 I activity concentration, to the possibility of identifying a large number of radionuclides and quantifying each of their activity concentrations. Moreover, the new station's dual capacity is designed to work in early warning monitoring mode and surveillance monitoring mode. This is based on custom developed software that includes an intelligent system to issue the necessary warnings when radiological anomalies or technical problems are identified. Implicitly, for the construction of the advanced station, substantial mechanical and electronic developments have been required. They have essentially consisted of integrating a new replacement device, whose operation has reduced the maintenance tasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HargroveJr., William Walter; Spruce, Joe; Gasser, Gerry
2009-01-01
Imagine a national system with the ability to quickly identify forested areas under attack from insects or disease. Such an early warning system might minimize surprises such as the explosion of caterpillars referred to in the quotation to the left. Moderate resolution (ca. 500m) remote sensing repeated at frequent (ca. weekly) intervals could power such a monitoring system that would respond in near real-time. An ideal warning system would be national in scope, automated, able to improve its prognostic ability with experience, and would provide regular map updates online in familiar and accessible formats. Such a goal is quite ambitiousmore » - analyzing vegetation change weekly at a national scale with moderate resolution is a daunting task. The foremost challenge is discerning unusual or unexpected disturbances from the normal backdrop of seasonal and annual changes in vegetation conditions. A historical perspective is needed to define a 'baseline' for expected, normal behavior against which detected changes can be correctly interpreted. It would be necessary to combine temperature, precipitation, soils, and topographic information with the remotely sensed data to discriminate and interpret the changing vegetation conditions on the ground. Conterminous national coverage implies huge data volumes, even at a moderate resolution (250-500m), and likely requires a supercomputing capability. Finally, such a national warning system must carefully balance the rate of successful threat detection with false positives. Since 2005, the USDA Forest Service has partnered with the NASA Stennis Space Center and Oak Ridge National Laboratory to develop methods for monitoring environmental threats, including native insects and diseases, wildfire, invasive pests and pathogens, tornados, hurricanes, and hail. These tools will be instrumental in helping the Forest Service's two Environmental Threat Assessment Centers better meet their Congressional mandate to help track the health of the Nation's forests and rangelands. We envision two scales of forest monitoring: (1) a strategic, satellite-based monitoring of broad regions to identify particular locations where threats are suspected (i.e., early warning), and (2) a fine-scale, tactical tier consisting of airborne overflights and on-the-ground monitoring to check the validity of warnings from the upper tier. The tactical tier is already largely in place within the Forest Service and its State collaborators, consisting of aerial detection surveys (sketch mapping from aircraft), ground surveys, and trapping programs. However, these efforts are expensive and labor-intensive, can be dangerous, and may not provide sufficient broad-area coverage. Far from replacing the tactical tier, the national system will rely on the finer-scale efforts to confirm, validate, and attribute causes of detected forest disturbances. One important objective of the national warning system will be to help direct the focus of the tactical tier, making their efforts more cost efficient and effective.« less
Efforts Toward an Early Warning Crop Monitor for Countries at Risk
NASA Astrophysics Data System (ADS)
Budde, M. E.; Verdin, J. P.; Barker, B.; Humber, M. L.; Becker-Reshef, I.; Justice, C. O.; Magadzire, T.; Galu, G.; Rodriguez, M.; Jayanthi, H.
2015-12-01
Assessing crop growing conditions is a crucial aspect of monitoring food security in the developing world. One of the core components of the Group on Earth Observations - Global Agricultural Monitoring (GEOGLAM) targets monitoring Countries at Risk (component 3). The Famine Early Warning Systems Network (FEWS NET) has a long history of utilizing remote sensing and crop modeling to address food security threats in the form of drought, floods, pest infestation, and climate change in some of the world's most at risk countries. FEWS NET scientists at the U.S. Geological Survey Earth Resources Observation and Science (EROS) Center and the University of Maryland Department of Geography have undertaken efforts to address component 3, by promoting the development of a collaborative Early Warning Crop Monitor (EWCM) that would specifically address Countries at Risk. A number of organizations utilize combinations of satellite earth observations, field campaigns, network partner inputs, and crop modeling techniques to monitor crop conditions throughout the world. Agencies such as the Food and Agriculture Organization of the United Nations (FAO), United Nations World Food Programme (WFP), and the European Commission's Joint Research Centre (JRC) provide agricultural monitoring information and reporting across a broad number of areas at risk and in many cases, organizations routinely report on the same countries. The latter offers an opportunity for collaboration on crop growing conditions among agencies. The reduction of uncertainty and achievement of consensus will help strengthen confidence in decisions to commit resources for mitigation of acute food insecurity and support for resilience and development programs. In addition, the development of a collaborative global EWCM will provide each of the partner agencies with the ability to quickly gather crop condition information for areas where they may not typically work or have access to local networks. Using a framework developed by GEOGLAM for monitoring crop conditions in support of the Agricultural Market Information System, we developed an EWCM system for countries at risk. We present the current status of that implementation and highlight achievements to date along with future plans to support the needs of the global agricultural monitoring community.
Famine Early Warning Systems and Their Use of Satellite Remote Sensing Data
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Essam, Timothy; Leonard, Kenneth
2011-01-01
Famine early warning organizations have experience that has much to contribute to efforts to incorporate climate and weather information into economic and political systems. Food security crises are now caused almost exclusively by problems of food access, not absolute food availability, but the role of monitoring agricultural production both locally and globally remains central. The price of food important to the understanding of food security in any region, but it needs to be understood in the context of local production. Thus remote sensing is still at the center of much food security analysis, along with an examination of markets, trade and economic policies during food security analyses. Technology including satellite remote sensing, earth science models, databases of food production and yield, and modem telecommunication systems contributed to improved food production information. Here we present an econometric approach focused on bringing together satellite remote sensing and market analysis into food security assessment in the context of early warning.
Li, Dong; Chen, Lin; Liu, Xiaofeng; Mei, Zili; Ren, Haiwei; Cao, Qin; Yan, Zhiying
2017-12-01
In order to elucidate the instability mechanism, screen early warning indicators, and propose control measures, the mesophilic digestion of vegetable waste (VW) was carried out at organic loading rates (OLR) of 0.5, 1.0, and 1.5g volatile solid (VS)/(Ld). The process parameters, including biogas components, volatile fatty acids (VFA), ammonia, pH, total alkalinity (TA), bicarbonate alkalinity (BA), and intermediate alkalinity (IA), were monitored every day. Digestion was inhibited at OLR of 1.5gVS/(Ld). The primary causes of instability are a high sugar and negligible ammonia content, in addition to the feed without effluent recirculation, which led to BA loss. The ratios of CH 4 /CO 2 , VFA/BA, propionate, n-butyrate and iso-valerate were selected as early warning indicators. In order to maintain the digestion of VW at a high OLR, control measures including effluent recirculation and trace element addition are recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Trend of Voluntary Warnings in Electronic Nicotine Delivery System Magazine Advertisements.
Shang, Ce; Chaloupka, Frank J
2017-01-10
Some manufacturers of electronic nicotine delivery systems (ENDS) voluntarily carried health warnings in their advertisements. This study examined these voluntary warnings in magazine ads and plotted their trends between 2012 and early 2015. ENDS magazine ads were obtained through Kantar media and warnings were collected from the Chicago Public Library or the Trinkets and Trash surveillance system. The prevalence of voluntary warnings, warnings with the specific capitalized word "WARNING", and MarkTen warnings were examined after being weighted using factors related to exposure between January 2012 and March 2015. Five brands (MarkTen, NJOY, MISTIC, and some Blu) carried warnings during the study period. The prevalence of warnings post 2012 that contained a description of nicotine did not significantly increase until the launch of MarkTen, which also happened several months before April 2014 when the U.S. food and drug administration (FDA) published its proposed deeming rule. In addition, none of these warnings met the criteria required by the FDA in the final rules. Voluntary warnings, particularly MarkTen warnings, significantly increased in ENDS magazine ads between 2014 and 2015. It is important to monitor how ENDS manufacturers will comply with the FDA regulation related to warnings and how this regulation will ultimately impact ENDS risk perceptions and use.
Global situational awareness and early warning of high-consequence climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Carr, Martin J.; Boslough, Mark Bruce Elrick
2009-08-01
Global monitoring systems that have high spatial and temporal resolution, with long observational baselines, are needed to provide situational awareness of the Earth's climate system. Continuous monitoring is required for early warning of high-consequence climate change and to help anticipate and minimize the threat. Global climate has changed abruptly in the past and will almost certainly do so again, even in the absence of anthropogenic interference. It is possible that the Earth's climate could change dramatically and suddenly within a few years. An unexpected loss of climate stability would be equivalent to the failure of an engineered system on amore » grand scale, and would affect billions of people by causing agricultural, economic, and environmental collapses that would cascade throughout the world. The probability of such an abrupt change happening in the near future may be small, but it is nonzero. Because the consequences would be catastrophic, we argue that the problem should be treated with science-informed engineering conservatism, which focuses on various ways a system can fail and emphasizes inspection and early detection. Such an approach will require high-fidelity continuous global monitoring, informed by scientific modeling.« less
Focus Upon Implementing the GGOS Decadal Vision for Geohazards Monitoring
NASA Astrophysics Data System (ADS)
LaBrecque, John; Stangl, Gunter
2017-04-01
The Global Geodetic Observing System of the IAG identified present and future roles for Geodesy in the development and well being of the global society. The GGOS is focused upon the development of infrastructure, information, analysis, and educational systems to advance the International Global Reference Frame, the International Celestial Reference System, the International Height Reference System, atmospheric dynamics, sea level change and geohazards monitoring. The geohazards initiative is guided by an eleven nation working group initially focused upon the development and integration of regional multi-GNSS networks and analysis systems for earthquake and tsunami early warning. The opportunities and challenges being addressed by the Geohazards working group include regional network design, algorithm development and implementation, communications, funding, and international agreements on data access. This presentation will discuss in further detail these opportunities and challenges for the GGOS focus upon earthquake and tsunami early warning.
Real-time decision support systems: the famine early warning system network
Funk, Christopher C.; Verdin, James P.
2010-01-01
A multi-institutional partnership, the US Agency for International Development’s Famine Early Warning System Network (FEWS NET) provides routine monitoring of climatic, agricultural, market, and socioeconomic conditions in over 20 countries. FEWS NET supports and informs disaster relief decisions that impact millions of people and involve billions of dollars. In this chapter, we focus on some of FEWS NET’s hydrologic monitoring tools, with a specific emphasis on combining “low frequency” and “high frequency” assessment tools. Low frequency assessment tools, tied to water and food balance estimates, enable us to evaluate and map long-term tendencies in food security. High frequency assessments are supported by agrohydrologic models driven by satellite rainfall estimates, such as the Water Requirement Satisfaction Index (WRSI). Focusing on eastern Africa, we suggest that both these high and low frequency approaches are necessary to capture the interaction of slow variations in vulnerability and the relatively rapid onset of climatic shocks.
How to Decide? Multi-Objective Early-Warning Monitoring Networks for Water Suppliers
NASA Astrophysics Data System (ADS)
Bode, Felix; Loschko, Matthias; Nowak, Wolfgang
2015-04-01
Groundwater is a resource for drinking water and hence needs to be protected from contaminations. However, many well catchments include an inventory of known and unknown risk sources, which cannot be eliminated, especially in urban regions. As a matter of risk control, all these risk sources should be monitored. A one-to-one monitoring situation for each risk source would lead to a cost explosion and is even impossible for unknown risk sources. However, smart optimization concepts could help to find promising low-cost monitoring network designs. In this work we develop a concept to plan monitoring networks using multi-objective optimization. Our considered objectives are to maximize the probability of detecting all contaminations, to enhance the early warning time before detected contaminations reach the drinking water well, and to minimize the installation and operating costs of the monitoring network. Using multi-objectives optimization, we avoid the problem of having to weight these objectives to a single objective-function. These objectives are clearly competing, and it is impossible to know their mutual trade-offs beforehand - each catchment differs in many points and it is hardly possible to transfer knowledge between geological formations and risk inventories. To make our optimization results more specific to the type of risk inventory in different catchments we do risk prioritization of all known risk sources. Due to the lack of the required data, quantitative risk ranking is impossible. Instead, we use a qualitative risk ranking to prioritize the known risk sources for monitoring. Additionally, we allow for the existence of unknown risk sources that are totally uncertain in location and in their inherent risk. Therefore, they can neither be located nor ranked. Instead, we represent them by a virtual line of risk sources surrounding the production well. We classify risk sources into four different categories: severe, medium and tolerable for known risk sources and an extra category for the unknown ones. With that, early warning time and detection probability become individual objectives for each risk class. Thus, decision makers can identify monitoring networks valid for controlling the top risk sources, and evaluate the capabilities (or search for least-cost upgrades) to also cover moderate, tolerable and unknown risk sources. Monitoring networks, which are valid for the remaining risk also cover all other risk sources, but only with a relatively poor early-warning time. The data provided for the optimization algorithm are calculated in a preprocessing step by a flow and transport model. It simulates, which potential contaminant plumes from the risk sources would be detectable where and when by all possible candidate positions for monitoring wells. Uncertainties due to hydro(geo)logical phenomena are taken into account by Monte-Carlo simulations. These include uncertainty in ambient flow direction of the groundwater, uncertainty of the conductivity field, and different scenarios for the pumping rates of the production wells. To avoid numerical dispersion during the transport simulations, we use particle-tracking random walk methods when simulating transport.
NASA Astrophysics Data System (ADS)
Giordan, Daniele; Manconi, Andrea; Allasia, Paolo
2015-04-01
In the last decades, technological evolution has strongly increased the number of instruments that can be used to monitor landslide phenomena. Robotized Total Stations, GB-InSAR, and GPS are only few examples of the systems that can be used for the control of the topographic changes due to the landslide activity. These monitoring systems are often merged in a complex network, aimed at controlling the most important physical parameters influencing the evolution of landslide activity. The technological level reached by these systems allows us to use them for early warning purposes. Critical thresholds are identified and, when overcome, emergency actions are associated to protect population living in areas potentially involved by landslide failure. The use of these early warning systems can be very useful for the decision makers, which have to manage emergency conditions due to a landslide acceleration likely precursor of a collapse. At this stage, every instrument has a proper management system and the dataset obtained is often not compatible with the results of the others systems. The level of complexity increases with the number of monitoring systems and often could generate a paradox: the source of data are so numerous and difficult to interpret that a full understanding of the phenomenon could be hampered. Nowadays, a correct divulgation of the recent evolution of a landslide potentially dangerous for the population is very important. The Geohazard Monitoring Group of CNR IRPI developed a communication strategy to divulgate the monitoring network results based on both, a dedicated web page (for the publication in near real time of last updates), and periodical bulletins (for a deeper analysis of the available dataset). To manage the near real time application we developed a system called ADVICE (ADVanced dIsplaCement monitoring system for Early warning) that collects all the available data of a monitoring network and creates user-friendly representations of the recent landslide evolution. The system is also able to manage early warnings based on pre-defined thresholds (usually related to the analysis of displacement and/or velocity) sending emails and SMS. Starting from the same dataset, the representations are different if the information has to be delivered to the population or the technicians involved in the landslide emergency. Our communication strategy considers three different levels of representations of the acquired dataset to be able to communicate the results to the different stakeholders potentially involved in the emergency. This communication scheme has been achieved over time, thank to the experience acquired during the management of monitoring networks relevant to different case studies, such as: Mt. de La Saxe Landslide (Aosta Valley, NW Italy), Ripoli landslide (Emilia Romagna region, central Italy), Montaguto landslide (Campania region, south Italy). Here we present how the correct and user-friendly communication of the monitoring results has been an important added value to support decision makers and population during emergency scenarios.
NASA Astrophysics Data System (ADS)
Qi, Yuan; Zhao, Hongtao
2017-04-01
China is one of few several natural disaster prone countries, which has complex geological and geographical environment and abnormal climate. On August 8, 2010, a large debris flow disaster happened in Zhouqu Country, Gansu province, resulting in more than 1700 casualties and more than 200 buildings damaged. In order to percept landslide and debris flow, an early warning system was established in the county. Spatial information technologies, such as remote sensing, GIS, and GPS, play core role in the early warning system, due to their functions in observing, analyzing, and locating geological disasters. However, all of these spatial information technologies could play an important role only guided by the emergency response mechanism. This article takes the establishment of Zhouqu Country's Disaster Emergency Response Interaction Mechanism (DERIM) as an example to discuss the risk management of country-level administrative units. The country-level risk management aims to information sharing, resources integration, integrated prevention and unified command. Then, nine subsystems support DERIM, which included disaster prevention and emergency data collection and sharing system, joint duty system, disaster verification and evaluation system, disaster consultation system, emergency warning and information release system, emergency response system, disaster reporting system, plan management system, mass prediction and prevention management system. At last, an emergency command platform in Zhouqu Country built up to realize DERIM. The core mission of the platform consists of daily management of disaster, monitoring and warning, comprehensive analysis, information release, consultation and decision-making, emergency response, etc. Five functional modules, including module of disaster information management, comprehensive monitoring module (geological monitoring, meteorological monitoring, water conservancy and hydrological monitoring), alarm management module, emergency command and disaster dispatching management module are developed on the basis of this platform. Based on the internet technology, an web-based office platform is exploited for the nodes scattered in departments and towns, which includes daily business, monitoring and warning, alarm notification, alarm recording, personnel management and update in disaster region, query and analysis of real-time observation data, etc. The platform experienced 3 years' test of the duty in flood period since 2013, and two typical disaster cases during this period fully illustrates the effectiveness of the DERIM and the emergency command platform.
The Trend of Voluntary Warnings in Electronic Nicotine Delivery System Magazine Advertisements
Shang, Ce; Chaloupka, Frank J.
2017-01-01
Some manufacturers of electronic nicotine delivery systems (ENDS) voluntarily carried health warnings in their advertisements. This study examined these voluntary warnings in magazine ads and plotted their trends between 2012 and early 2015. ENDS magazine ads were obtained through Kantar media and warnings were collected from the Chicago Public Library or the Trinkets and Trash surveillance system. The prevalence of voluntary warnings, warnings with the specific capitalized word “WARNING”, and MarkTen warnings were examined after being weighted using factors related to exposure between January 2012 and March 2015. Five brands (MarkTen, NJOY, MISTIC, and some Blu) carried warnings during the study period. The prevalence of warnings post 2012 that contained a description of nicotine did not significantly increase until the launch of MarkTen, which also happened several months before April 2014 when the U.S. food and drug administration (FDA) published its proposed deeming rule. In addition, none of these warnings met the criteria required by the FDA in the final rules. Voluntary warnings, particularly MarkTen warnings, significantly increased in ENDS magazine ads between 2014 and 2015. It is important to monitor how ENDS manufacturers will comply with the FDA regulation related to warnings and how this regulation will ultimately impact ENDS risk perceptions and use. PMID:28075420
Milinovich, Gabriel J; Avril, Simon M R; Clements, Archie C A; Brownstein, John S; Tong, Shilu; Hu, Wenbiao
2014-12-31
Internet-based surveillance systems provide a novel approach to monitoring infectious diseases. Surveillance systems built on internet data are economically, logistically and epidemiologically appealing and have shown significant promise. The potential for these systems has increased with increased internet availability and shifts in health-related information seeking behaviour. This approach to monitoring infectious diseases has, however, only been applied to single or small groups of select diseases. This study aims to systematically investigate the potential for developing surveillance and early warning systems using internet search data, for a wide range of infectious diseases. Official notifications for 64 infectious diseases in Australia were downloaded and correlated with frequencies for 164 internet search terms for the period 2009-13 using Spearman's rank correlations. Time series cross correlations were performed to assess the potential for search terms to be used in construction of early warning systems. Notifications for 17 infectious diseases (26.6%) were found to be significantly correlated with a selected search term. The use of internet metrics as a means of surveillance has not previously been described for 12 (70.6%) of these diseases. The majority of diseases identified were vaccine-preventable, vector-borne or sexually transmissible; cross correlations, however, indicated that vector-borne and vaccine preventable diseases are best suited for development of early warning systems. The findings of this study suggest that internet-based surveillance systems have broader applicability to monitoring infectious diseases than has previously been recognised. Furthermore, internet-based surveillance systems have a potential role in forecasting emerging infectious disease events, especially for vaccine-preventable and vector-borne diseases.
Yang, Zhongshan; Wang, Jian
2017-10-01
Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM 10 and PM 2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability. Copyright © 2017 Elsevier Inc. All rights reserved.
Development of a Global Agricultural Hotspot Detection and Early Warning System
NASA Astrophysics Data System (ADS)
Lemoine, G.; Rembold, F.; Urbano, F.; Csak, G.
2015-12-01
The number of web based platforms for crop monitoring has grown rapidly over the last years and anomaly maps and time profiles of remote sensing derived indicators can be accessed online thanks to a number of web based portals. However, while these systems make available a large amount of crop monitoring data to the agriculture and food security analysts, there is no global platform which provides agricultural production hotspot warning in a highly automatic and timely manner. Therefore a web based system providing timely warning evidence as maps and short narratives is currently under development by the Joint Research Centre. The system (called "HotSpot Detection System of Agriculture Production Anomalies", HSDS) will focus on water limited agricultural systems worldwide. The automatic analysis of relevant meteorological and vegetation indicators at selected administrative units (Gaul 1 level) will trigger warning messages for the areas where anomalous conditions are observed. The level of warning (ranging from "watch" to "alert") will depend on the nature and number of indicators for which an anomaly is detected. Information regarding the extent of the agricultural areas concerned by the anomaly and the progress of the agricultural season will complement the warning label. In addition, we are testing supplementary detailed information from other sources for the areas triggering a warning. These regard the automatic web-based and food security-tailored analysis of media (using the JRC Media Monitor semantic search engine) and the automatic detection of active crop area using Sentinel 1, upcoming Sentinel-2 and Landsat 8 imagery processed in Google Earth Engine. The basic processing will be fully automated and updated every 10 days exploiting low resolution rainfall estimates and satellite vegetation indices. Maps, trend graphs and statistics accompanied by short narratives edited by a team of crop monitoring experts, will be made available on the website on a monthly basis.
A tsunami early warning system for the coastal area modeling
NASA Astrophysics Data System (ADS)
Soebroto, Arief Andy; Sunaryo, Suhartanto, Ery
2015-04-01
The tsunami disaster is a potential disaster in the territory of Indonesia. Indonesia is an archipelago country and close to the ocean deep. The tsunami occurred in Aceh province in 2004. Early prevention efforts have been carried out. One of them is making "tsunami buoy" which has been developed by BPPT. The tool puts sensors on the ocean floor near the coast to detect earthquakes on the ocean floor. Detection results are transmitted via satellite by a transmitter placed floating on the sea surface. The tool will cost billions of dollars for each system. Another constraint was the transmitter theft "tsunami buoy" in the absence of guard. In this study of the system has a transmission system using radio frequency and focused on coastal areas where costs are cheaper, so that it can be applied at many beaches in Indonesia are potentially affected by the tsunami. The monitoring system sends the detection results to the warning system using a radio frequency with a capability within 3 Km. Test results on the sub module sensor monitoring system generates an error of 0.63% was taken 10% showed a good quality sensing. The test results of data transmission from the transceiver of monitoring system to the receiver of warning system produces 100% successful delivery and reception of data. The test results on the whole system to function 100% properly.
Early Warning Systems Assure Safe Schools
ERIC Educational Resources Information Center
Greenhalgh, John
1973-01-01
Fairfield, Connecticut, public schools are protected by an automatic fire detection system covering every area of every building through an electric monitor. An intrusion alarm system that relies primarily on pulsed infra-red beams protects the plant investment. (Author/MF)
WATERSHED EARLY WARNING SYSTEMS
Contaminants are of concern when they are found in concentrations that are toxic to plants and/or animals. On-line Toxicity Monitors (OTMs) integrate all factors resulting in stress including physical and chemical qualities. This is important because of the limitations of chemic...
Recknagel, Friedrich; Orr, Philip T; Bartkow, Michael; Swanepoel, Annelie; Cao, Hongqing
2017-11-01
An early warning scheme is proposed that runs ensembles of inferential models for predicting the cyanobacterial population dynamics and cyanotoxin concentrations in drinking water reservoirs on a diel basis driven by in situ sonde water quality data. When the 10- to 30-day-ahead predicted concentrations of cyanobacteria cells or cyanotoxins exceed pre-defined limit values, an early warning automatically activates an action plan considering in-lake control, e.g. intermittent mixing and ad hoc water treatment in water works, respectively. Case studies of the sub-tropical Lake Wivenhoe (Australia) and the Mediterranean Vaal Reservoir (South Africa) demonstrate that ensembles of inferential models developed by the hybrid evolutionary algorithm HEA are capable of up to 30days forecasts of cyanobacteria and cyanotoxins using data collected in situ. The resulting models for Dolicospermum circinale displayed validity for up to 10days ahead, whilst concentrations of Cylindrospermopsis raciborskii and microcystins were successfully predicted up to 30days ahead. Implementing the proposed scheme for drinking water reservoirs enhances current water quality monitoring practices by solely utilising in situ monitoring data, in addition to cyanobacteria and cyanotoxin measurements. Access to routinely measured cyanotoxin data allows for development of models that predict explicitly cyanotoxin concentrations that avoid to inadvertently model and predict non-toxic cyanobacterial strains. Copyright © 2017 Elsevier B.V. All rights reserved.
Prototype Early Warning Systems for Vector-Borne Diseases in Europe
Semenza, Jan C.
2015-01-01
Globalization and environmental change, social and demographic determinants and health system capacity are significant drivers of infectious diseases which can also act as epidemic precursors. Thus, monitoring changes in these drivers can help anticipate, or even forecast, an upsurge of infectious diseases. The European Environment and Epidemiology (E3) Network has been built for this purpose and applied to three early warning case studies: (1) The environmental suitability of malaria transmission in Greece was mapped in order to target epidemiological and entomological surveillance and vector control activities. Malaria transmission in these areas was interrupted in 2013 through such integrated preparedness and response activities. (2) Since 2010, recurrent West Nile fever outbreaks have ensued in South/eastern Europe. Temperature deviations from a thirty year average proved to be associated with the 2010 outbreak. Drivers of subsequent outbreaks were computed through multivariate logistic regression models and included monthly temperature anomalies for July and a normalized water index. (3) Dengue is a tropical disease but sustained transmission has recently emerged in Madeira. Autochthonous transmission has also occurred repeatedly in France and in Croatia mainly due to travel importation. The risk of dengue importation into Europe in 2010 was computed with the volume of international travelers from dengue affected areas worldwide.These prototype early warning systems indicate that monitoring drivers of infectious diseases can help predict vector-borne disease threats. PMID:26042370
Prototype early warning systems for vector-borne diseases in Europe.
Semenza, Jan C
2015-06-02
Globalization and environmental change, social and demographic determinants and health system capacity are significant drivers of infectious diseases which can also act as epidemic precursors. Thus, monitoring changes in these drivers can help anticipate, or even forecast, an upsurge of infectious diseases. The European Environment and Epidemiology (E3) Network has been built for this purpose and applied to three early warning case studies: (1) The environmental suitability of malaria transmission in Greece was mapped in order to target epidemiological and entomological surveillance and vector control activities. Malaria transmission in these areas was interrupted in 2013 through such integrated preparedness and response activities. (2) Since 2010, recurrent West Nile fever outbreaks have ensued in South/eastern Europe. Temperature deviations from a thirty year average proved to be associated with the 2010 outbreak. Drivers of subsequent outbreaks were computed through multivariate logistic regression models and included monthly temperature anomalies for July and a normalized water index. (3) Dengue is a tropical disease but sustained transmission has recently emerged in Madeira. Autochthonous transmission has also occurred repeatedly in France and in Croatia mainly due to travel importation. The risk of dengue importation into Europe in 2010 was computed with the volume of international travelers from dengue affected areas worldwide.These prototype early warning systems indicate that monitoring drivers of infectious diseases can help predict vector-borne disease threats.
Monitoring and Early Warning of the 2012 Preonzo Catastrophic Rockslope Failure
NASA Astrophysics Data System (ADS)
Loew, Simon; Gschwind, Sophie; Keller-Signer, Alexandra; Valenti, Giorgio
2015-04-01
In this contribution we describe the accelerated creep stage and early warning system of a 210'000 m3 rock slope failure that occurred in May 2012 above the village of Preonzo (Swiss Alps). The very rapid failure occurred from a larger and retrogressive instability in high-grade metamorphic ortho-gneisses and amphibolites with a total volume of about 350'000 m3 located at an alpine meadow called Alpe di Roscioro. This instability showed clearly visible signs of movements since 1989 and accelerated creep with significant hydro-mechanical forcing since about 1999. Because the instability at Preonzo threatened a large industrial facility and important transport routes a cost-effective early warning system was installed in 2010. The alarm thresholds for pre-alarm, general public alarm and evacuation were derived from 10 years of continuous displacement monitoring with crack extensometers and an automated total station. These thresholds were successfully applied to evacuate the industrial facility and close important roads a few days before the catastrophic slope failure of May 15th, 2012. The rock slope failure occurred in two events, exposing a planar rupture plane dipping 42° and generating deposits in the mid-slope portion with a travel angle of 38°. Two hours after the second rockslide, the fresh colluvial deposits became reactivated in a devastating de-bris avalanche reaching the foot of the slope.
NASA Astrophysics Data System (ADS)
Brown, M. E.; Funk, C. C.
2005-12-01
Climatic hazards such as droughts and floods often result in a decline in food production in economically vulnerable pre-industrial economies such as those in Africa. Early warning systems (EWS) have been developed to identify slow onset disasters such famine and epidemic disease that may result from hazardous environmental conditions. These conditions often precede food crises by many months, thus effective monitoring via satellite and in situ observations can allow for successful mitigation activities. Accurate forecasts of NDVI could increase monitoring lead times and allow for effective institutional planning of intervention, making early warning earlier. This paper presents a simple empirical max-to-min model for making 1 to 4 month NDVI projections. These statistical projections are based on parameterized satellite rainfall estimates (RFE) and relative humidity demand (RHD). A heuristic example in central Zimbabwe introduces the RFE growth and RHD loss terms. A quasi-global, one month ahead, 1 degree study then demonstrates reasonable accuracies in many semi-arid regions. In Africa, a 0.1 degree cross-validated skill assessment quantifies the technique's applicability at 1 to 4 month forecast intervals. These results suggest that useful projections can be made over many semi-arid, food insecure regions of Africa, with plausible extensions to drought prone areas of Asia, Australia and South America.
Landslide Geohazard Monitoring, Early Warning and Stabilization Control Methods
NASA Astrophysics Data System (ADS)
Bednarczyk, Zbigniew
2014-03-01
This paper is a presentation of landslide monitoring, early warning and remediation methods recommended for the Polish Carpathians. Instrumentation included standard and automatic on-line measurements with the real-time transfer of data to an Internet web server. The research was funded through EU Innovative Economy Programme and also by the SOPO Landslide Counteraction Project. The landslides investigated were characterized by relatively low rates of the displacements. These ranged from a few millimetres to several centimetres per year. Colluviums of clayey flysch deposits were of a soil-rock type with a very high plasticity and moisture content. The instrumentation consisted of 23 standard inclinometers set to depths of 5-21 m. The starting point of monitoring measurements was in January 2006. These were performed every 1-2 months over the period of 8 years. The measurements taken detected displacements from several millimetres to 40 cm set at a depth of 1-17 m. The modern, on-line monitoring and early warning system was installed in May 2010. The system is the first of its kind in Poland and only one of several such real-time systems in the world. The installation was working with the Local Road Authority in Gorlice. It contained three automatic field stations for investigation of landslide parameters to depths of 12-16 m and weather station. In-place tilt transducers and innovative 3D continuous inclinometer systems with sensors located every 0.5 m were used. It has the possibility of measuring a much greater range of movements compared to standard systems. The conventional and real-time data obtained provided a better recognition of the triggering parameters and the control of geohazard stabilizations. The monitoring methods chosen supplemented by numerical modelling could lead to more reliable forecasting of such landslides and could thus provide better control and landslide remediation possibilities also to stabilization works which prevent landslides.
Implementation and Challenges of the Tsunami Warning System in the Western Mediterranean
NASA Astrophysics Data System (ADS)
Schindelé, F.; Gailler, A.; Hébert, H.; Loevenbruck, A.; Gutierrez, E.; Monnier, A.; Roudil, P.; Reymond, D.; Rivera, L.
2015-03-01
The French Tsunami Warning Center (CENALT) has been in operation since 2012. It is contributing to the North-eastern and Mediterranean (NEAM) tsunami warning and mitigation system coordinated by the United Nations Educational, Scientific, and Cultural Organization, and benefits from data exchange with several foreign institutes. This center is supported by the French Government and provides French civil-protection authorities and member states of the NEAM region with relevant messages for assessing potential tsunami risk when an earthquake has occurred in the Western Mediterranean sea or the Northeastern Atlantic Ocean. To achieve its objectives, CENALT has developed a series of innovative techniques based on recent research results in seismology for early tsunami warning, monitoring of sea level variations and detection capability, and effective numerical computation of ongoing tsunamis.
67. Building 102, view of electronic switching amplifier (in retracted ...
67. Building 102, view of electronic switching amplifier (in retracted or open position) with video monitor mounted at top to monitor performance and condition of system in oil bath. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
Neo, Jacqueline Pei Shan; Tan, Boon Huan
2017-05-01
This review discusses the utilization of wild or domestic animals as surveillance tools for monitoring naturally occurring environmental and human health hazards. Besides providing early warning to natural hazards, animals can also provide early warning to societal hazards like bioterrorism. Animals are ideal surveillance tools to humans because they share the same environment as humans and spend more time outdoors than humans, increasing their exposure risk. Furthermore, the biologically compressed lifespans of some animals may allow them to develop clinical signs more rapidly after exposure to specific pathogens. Animals are an excellent channel for monitoring novel and known pathogens with outbreak potential given that more than 60 % of emerging infectious diseases in humans originate as zoonoses. This review attempts to highlight animal illnesses, deaths, biomarkers or sentinel events, to remind human and veterinary public health programs that animal health can be used to discover, monitor or predict environmental health hazards, human health hazards, or bioterrorism. Lastly, we hope that this review will encourage the implementation of animals as a surveillance tool by clinicians, veterinarians, ecosystem health professionals, researchers and governments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hao, Zengchao; Xia, Youlong; Luo, Lifeng; Singh, Vijay P.; Ouyang, Wei; Hao, Fanghua
2017-08-01
Disastrous impacts of recent drought events around the world have led to extensive efforts in drought monitoring and prediction. Various drought information systems have been developed with different indicators to provide early drought warning. The climate forecast from North American Multimodel Ensemble (NMME) has been among the most salient progress in climate prediction and its application for drought prediction has been considerably growing. Since its development in 1999, the U.S. Drought Monitor (USDM) has played a critical role in drought monitoring with different drought categories to characterize drought severity, which has been employed to aid decision making by a wealth of users such as natural resource managers and authorities. Due to wide applications of USDM, the development of drought prediction with USDM drought categories would greatly aid decision making. This study presented a categorical drought prediction system for predicting USDM drought categories in the U.S., based on the initial conditions from USDM and seasonal climate forecasts from NMME. Results of USDM drought categories predictions in the U.S. demonstrate the potential of the prediction system, which is expected to contribute to operational early drought warning in the U.S.
NASA Astrophysics Data System (ADS)
Haase, J. S.; Bock, Y.; Saunders, J. K.; Goldberg, D.; Restrepo, J. I.
2016-12-01
As part of an effort to promote the use of NASA-sponsored Earth science information for disaster risk reduction, real-time high-rate seismogeodetic data are being incorporated into early warning and structural monitoring systems. Seismogeodesy combines seismic acceleration and GPS displacement measurements using a tightly-coupled Kalman filter to provide absolute estimates of seismic acceleration, velocity and displacement. Traditionally, the monitoring of earthquakes and tsunamis has been based on seismic networks for estimating earthquake magnitude and slip, and tide gauges and deep-ocean buoys for direct measurement of tsunami waves. Real-time seismogeodetic observations at subduction zones allow for more robust and rapid magnitude and slip estimation that increase warning time in the near-source region. A NASA-funded effort to utilize GPS and seismogeodesy in NOAA's Tsunami Warning Centers in Alaska and Hawaii integrates new modules for picking, locating, and estimating magnitudes and moment tensors for earthquakes into the USGS earthworm environment at the TWCs. In a related project, NASA supports the transition of this research to seismogeodetic tools for disaster preparedness, specifically by implementing GPS and low-cost MEMS accelerometers for structural monitoring in partnership with earthquake engineers. Real-time high-rate seismogeodetic structural monitoring has been implemented on two structures. The first is a parking garage at the Autonomous University of Baja California Faculty of Medicine in Mexicali, not far from the rupture of the 2011 Mw 7.2 El Mayor Cucapah earthquake enabled through a UCMexus collaboration. The second is the 8-story Geisel Library at University of California, San Diego (UCSD). The system has also been installed for several proof-of-concept experiments at the UCSD Network for Earthquake Engineering Simulation (NEES) Large High Performance Outdoor Shake Table. We present MEMS-based seismogeodetic observations from the 10 June 2016 Mw 5.2 Borrego Springs earthquake of strong ground motions in near field close to the San Jacinto fault, as well as observations that show the response of the 3 story parking garage. The occurrence of this recent earthquake provided a useful demonstration of structural monitoring applications with seismogeodesy.
Integrated Land- and Underwater-Based Sensors for a Subduction Zone Earthquake Early Warning System
NASA Astrophysics Data System (ADS)
Pirenne, B.; Rosenberger, A.; Rogers, G. C.; Henton, J.; Lu, Y.; Moore, T.
2016-12-01
Ocean Networks Canada (ONC — oceannetworks.ca/ ) operates cabled ocean observatories off the coast of British Columbia (BC) to support research and operational oceanography. Recently, ONC has been funded by the Province of BC to deliver an earthquake early warning (EEW) system that integrates offshore and land-based sensors to deliver alerts of incoming ground shaking from the Cascadia Subduction Zone. ONC's cabled seismic network has the unique advantage of being located offshore on either side of the surface expression of the subduction zone. The proximity of ONC's sensors to the fault can result in faster, more effective warnings, which translates into more lives saved, injuries avoided and more ability for mitigative actions to take place.ONC delivers near real-time data from various instrument types simultaneously, providing distinct advantages to seismic monitoring and earthquake early warning. The EEW system consists of a network of sensors, located on the ocean floor and on land, that detect and analyze the initial p-wave of an earthquake as well as the crustal deformation on land during the earthquake sequence. Once the p-wave is detected and characterized, software systems correlate the data streams of the various sensors and deliver alerts to clients through a Common Alerting Protocol-compliant data package. This presentation will focus on the development of the earthquake early warning capacity at ONC. It will describe the seismic sensors and their distribution, the p-wave detection algorithms selected and the overall architecture of the system. It will further overview the plan to achieve operational readiness at project completion.
Demands on Intranets — Viable System Model as a Foundation for Intranet Design
NASA Astrophysics Data System (ADS)
Amcoff Nyström, Christina
2006-06-01
The number of Intranets increases in organizations but their potential to support viability is not fully exploited. The cybernetic model, the Viable System Model, has not been connected to the Intranet concept before. Characteristics of the VSM, such as highlighting the importance of production, monitoring of production units through Early Warning Systems, autonomy and empowerment, are used as patterns and a base for de-signing essential parts and/or functions of an Intranet. The result is a brief description of functions vital to the operational parts of organizations. Examples are Early Warning Systems, control systems, "gate-keepers," amplifying and damping information to and from the organization and "agents" supporting search abilities on an Intranet.
Experiences from site-specific landslide early warning systems
NASA Astrophysics Data System (ADS)
Michoud, C.; Bazin, S.; Blikra, L. H.; Derron, M.-H.; Jaboyedoff, M.
2013-10-01
Landslide early warning systems (EWSs) have to be implemented in areas with large risk for populations or infrastructures when classical structural remediation measures cannot be set up. This paper aims to gather experiences of existing landslide EWSs, with a special focus on practical requirements (e.g., alarm threshold values have to take into account the smallest detectable signal levels of deployed sensors before being established) and specific issues when dealing with system implementations. Within the framework of the SafeLand European project, a questionnaire was sent to about one-hundred institutions in charge of landslide management. Finally, we interpreted answers from experts belonging to 14 operational units related to 23 monitored landslides. Although no standard requirements exist for designing and operating EWSs, this review highlights some key elements, such as the importance of pre-investigation work, the redundancy and robustness of monitoring systems, the establishment of different scenarios adapted to gradual increasing of alert levels, and the necessity of confidence and trust between local populations and scientists. Moreover, it also confirms the need to improve our capabilities for failure forecasting, monitoring techniques and integration of water processes into landslide conceptual models.
Colles, Frances M.; Cain, Russell J.; Nickson, Thomas; Smith, Adrian L.; Roberts, Stephen J.; Maiden, Martin C. J.; Lunn, Daniel; Dawkins, Marian Stamp
2016-01-01
Campylobacter is the commonest bacterial cause of gastrointestinal infection in humans, and chicken meat is the major source of infection throughout the world. Strict and expensive on-farm biosecurity measures have been largely unsuccessful in controlling infection and are hampered by the time needed to analyse faecal samples, with the result that Campylobacter status is often known only after a flock has been processed. Our data demonstrate an alternative approach that monitors the behaviour of live chickens with cameras and analyses the ‘optical flow’ patterns made by flock movements. Campylobacter-free chicken flocks have higher mean and lower kurtosis of optical flow than those testing positive for Campylobacter by microbiological methods. We show that by monitoring behaviour in this way, flocks likely to become positive can be identified within the first 7–10 days of life, much earlier than conventional on-farm microbiological methods. This early warning has the potential to lead to a more targeted approach to Campylobacter control and also provides new insights into possible sources of infection that could transform the control of this globally important food-borne pathogen. PMID:26740618
Long term real-time GB_InSAR monitoring of a large rock slide
NASA Astrophysics Data System (ADS)
Crosta, G. B.; Agliardi, F.; Sosio, R.; Rivolta, C.; Mannucci, G.
2011-12-01
We analyze a long term monitoring dataset collected for a deep-seated rockslide (Ruinon, Lombardy, Italy). The rockslide has been actively monitored since 1997 by means of an in situ monitoring network (topographic benchmarks, GPS, wire extensometers) and since 2006 by a ground based radar. Monitoring data have been used to set-up and update the geological model, to identify rockslide extent and geometry, to analyse the sensitivity to seasonal changes and their impact on the reliability and early warning potential of monitoring data. GB-InSAR data allowed us to identify sectors characterized by different behaviours and associated to outcropping bedrock, thick debris cover, major structures. GB-Insar data have been used to set-up a "virtual monitoring network" by a posteriori selection of critical locations. Displacement time series extracted from GB-InSAR data provide a large amount of information even in debris-covered areas, when ground-based instrumentation fails. Such spatially-distributed, improved information, validated by selected ground-based measurements, allowed to establish new velocity and displacement thresholds for early warning purposes. The data are analysed to verify the dependency of the observed displacements on the line of sight orientation as well as on that of the framed resolution cell. Relationships with rainfall and morphological slope characteristics have been analysed to verify the sensitivity to rain intensity and amount and to distinguish among the different possible mechanisms.
Efficient near-real-time monitoring of 3D surface displacements in complex landslide scenarios
NASA Astrophysics Data System (ADS)
Allasia, Paolo; Manconi, Andrea; Giordan, Daniele; Baldo, Marco; Lollino, Giorgio
2013-04-01
Ground deformation measurements play a key role in monitoring activities of landslides. A wide spectrum of instruments and methods is nowadays available, going from in-situ to remote sensing approaches. In emergency scenarios, monitoring is often based on automated instruments capable to achieve accurate measurements, possibly with a very high temporal resolution, in order to achieve the best information about the evolution of the landslide in near-real-time, aiming at early warning purposes. However, the available tools for a rapid and efficient exploitation, understanding and interpretation of the retrieved measurements is still a challenge. This issue is particularly relevant in contexts where monitoring is fundamental to support early warning systems aimed at ensuring safety to people and/or infrastructures. Furthermore, in many cases the results obtained might be of difficult reading and divulgation, especially when people of different backgrounds are involved (e.g. scientists, authorities, civil protection operators, decision makers, etc.). In this work, we extend the concept of automatic and near real time from the acquisition of measurements to the data processing and divulgation, in order to achieve an efficient monitoring of surface displacements in landslide scenarios. We developed an algorithm that allows to go automatically and in near-real-time from the acquisition of 3D displacements on a landslide area to the efficient divulgation of the monitoring results via WEB. This set of straightforward procedures is called ADVICE (ADVanced dIsplaCement monitoring system for Early warning), and has been already successfully applied in several emergency scenarios. The algorithm includes: (i) data acquisition and transfer protocols; (ii) data collection, filtering, and validation; (iii) data analysis and restitution through a set of dedicated software, such as ©3DA [1]; (iv) recognition of displacement/velocity threshold and early warning (v) short term prediction of the temporal evolution of the landslide, e.g. through the failure forecast method; (vi) publication of the results on a dedicated webpage. Here we show the results gained in the area of Montaguto (southern Italy, ca. 100 km northeast from Naples), where a large-scale earthflow reached the bottom of the valley and severely damaged the SP90 provincial road, as well as the national railroad [2]. We discuss how the use of ADVICE has speed-up and facilitated the understanding of the landslide evolution, the communication of the monitoring results to the partners, and consequently the decision-making process in a critical landslide scenario. [1] Manconi, A., P. Allasia, D. Giordan, M. Baldo, G. Lollino and A. Corazza, Near-real-time 3D surface deformation model obtained via RTS measurements. In Procedings of World Landslide Forum 2, October 3-9, 2011, Rome, Italy. [2] Giordan, D., P. Allasia, A. Manconi, M. Baldo, G. Lollino, M. Santangelo, M. Cardinali and F. Guzzetti, "Morphological evolution of a large earthflow: the Montaguto landslide southern Italy", Geomorphology, in press.
Definition of rainfall thresholds for shallow landslide early warning in Italy
NASA Astrophysics Data System (ADS)
Cancelliere, A.; Peres, D. J.
2011-12-01
Extreme rainfall is the main cause of shallow landslides. For risk mitigation, landslide early warning systems can be implemented, on the basis of rainfall monitoring and forecasting, and the use of a landslide triggering model. Several empirical, also referred to as statistical, rainfall-landslide triggering models have been proposed in the scientific literature, and used for early warning systems activated worldwide. Nonetheless, it is not clear how effective are landslide warning systems, and it is difficult to quantify the induced benefits for the implemented ones. Many rainfall thresholds have been determined through the statistical analysis of the rainfall events that have been the cause of past landslides only, thus neglecting the cases of true negatives and false positives, with negative effects on the robustness of the proposed threshold and, probably, on the effectiveness of the warning system. In the present work we address the issue of establishing warning thresholds, which, although in an approximate way, account for the related benefits. We propose the maximization of an objective function, that measures the trade-off between true and false warning issues. A ratio between the disadvantages of false positive and false negatives, not greater than one, is introduced in the function. The effect of this ratio on the determination of the thresholds is analysed. The proposed method is based on the availability of a continuous rainfall time series. In Italy, continuous rainfall time series are available from the 1920s, but practical difficulties arise for using them, as they are not published in the Hydrological Annual Reports, by the Servizio Idrografico e Mareografico Nazionale (National Hydrologic and Oceanographic Service), the manager of the most important rainfall monitoring network in Italy. However, it is possible to have a good approximation of the most intense rainfall events, in terms total rainfall, by using the data of annual maxima of precipitation for given durations, which are available in those Reports. The National Research Council's AVI database, the most complete systematic inventory of landslides events occurred in the past century in Italy, can be exploited to determine the thresholds. Hence the method has applicability for whole Italy, and uses large datasets of easy availability. As the method is based on the analysis of subdaily data, it is reliable for shallow landslides, for which low influence of antecedent precipitation on landslide triggering can be supposed. The method is illustrated through its application to case study areas in Sicily, for which there is high interest for activating early warning systems, after that the 1st October 2009 debris flow caused the loss of 37 lives and severe damage to nearby urban areas in the Peloritan Mountains.
Design of early warning system for nuclear preparedness case study at Serpong
NASA Astrophysics Data System (ADS)
Farid, M. M.; Prawito, Susila, I. P.; Yuniarto, A.
2017-07-01
One effort to protect the environment from the increasing of potentially environmental radiation hazards as an impact of radiation discharge around nuclear facilities is by a continuous monitoring of the environmental radiation in real time It is important to disclose the dose rate information to public or authorities for radiological protection. In this research, we have designed a nuclear preparedness early warning system around the Serpong nuclear facility. The design is based on Arduino program, general packet radio service (GPRS) shield, and radio frequencies technology to transmit environmental radiation result of the measurement and meteorological data. Data was collected at a certain location at The Center for Informatics and Nuclear Strategic Zone Utilization BATAN Serpong. The system consistency models are defined by the quality of data and the level of radiation exposure in the deployed environment. Online users can access the website which displays the radiation dose on the environment marked on Google Map. This system is capable to issue an early warning emergency when the dose reaches three times of the background radiation exposure value, 250 nSv/hour.
A land data assimilation system for sub-Saharan Africa food and water security applications
McNally, Amy; Arsenault, Kristi; Kumar, Sujay; Shukla, Shraddhanand; Peterson, Pete; Wang, Shugong; Funk, Chris; Peters-Lidard, Christa D.; Verdin, James P.
2017-01-01
Seasonal agricultural drought monitoring systems, which rely on satellite remote sensing and land surface models (LSMs), are important for disaster risk reduction and famine early warning. These systems require the best available weather inputs, as well as a long-term historical record to contextualize current observations. This article introduces the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS), a custom instance of the NASA Land Information System (LIS) framework. The FLDAS is routinely used to produce multi-model and multi-forcing estimates of hydro-climate states and fluxes over semi-arid, food insecure regions of Africa. These modeled data and derived products, like soil moisture percentiles and water availability, were designed and are currently used to complement FEWS NET’s operational remotely sensed rainfall, evapotranspiration, and vegetation observations. The 30+ years of monthly outputs from the FLDAS simulations are publicly available from the NASA Goddard Earth Science Data and Information Services Center (GES DISC) and recommended for use in hydroclimate studies, early warning applications, and by agro-meteorological scientists in Eastern, Southern, and Western Africa. PMID:28195575
A land data assimilation system for sub-Saharan Africa food and water security applications
McNally, Amy; Arsenault, Kristi; Kumar, Sujay; Shukla, Shraddhanand; Peterson, Pete; Wang, Shugong; Funk, Chris; Peters-Lidard, Christa; Verdin, James
2017-01-01
Seasonal agricultural drought monitoring systems, which rely on satellite remote sensing and land surface models (LSMs), are important for disaster risk reduction and famine early warning. These systems require the best available weather inputs, as well as a long-term historical record to contextualize current observations. This article introduces the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS), a custom instance of the NASA Land Information System (LIS) framework. The FLDAS is routinely used to produce multi-model and multi-forcing estimates of hydro-climate states and fluxes over semi-arid, food insecure regions of Africa. These modeled data and derived products, like soil moisture percentiles and water availability, were designed and are currently used to complement FEWS NET’s operational remotely sensed rainfall, evapotranspiration, and vegetation observations. The 30+ years of monthly outputs from the FLDAS simulations are publicly available from the NASA Goddard Earth Science Data and Information Services Center (GES DISC) and recommended for use in hydroclimate studies, early warning applications, and by agro-meteorological scientists in Eastern, Southern, and Western Africa.
A land data assimilation system for sub-Saharan Africa food and water security applications.
McNally, Amy; Arsenault, Kristi; Kumar, Sujay; Shukla, Shraddhanand; Peterson, Pete; Wang, Shugong; Funk, Chris; Peters-Lidard, Christa D; Verdin, James P
2017-02-14
Seasonal agricultural drought monitoring systems, which rely on satellite remote sensing and land surface models (LSMs), are important for disaster risk reduction and famine early warning. These systems require the best available weather inputs, as well as a long-term historical record to contextualize current observations. This article introduces the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS), a custom instance of the NASA Land Information System (LIS) framework. The FLDAS is routinely used to produce multi-model and multi-forcing estimates of hydro-climate states and fluxes over semi-arid, food insecure regions of Africa. These modeled data and derived products, like soil moisture percentiles and water availability, were designed and are currently used to complement FEWS NET's operational remotely sensed rainfall, evapotranspiration, and vegetation observations. The 30+ years of monthly outputs from the FLDAS simulations are publicly available from the NASA Goddard Earth Science Data and Information Services Center (GES DISC) and recommended for use in hydroclimate studies, early warning applications, and by agro-meteorological scientists in Eastern, Southern, and Western Africa.
Technology, conflict early warning systems, public health, and human rights.
Pham, Phuong N; Vinck, Patrick
2012-12-15
Public health and conflict early warning are evolving rapidly in response to technology changes for the gathering, management, analysis and communication of data. It is expected that these changes will provide an unprecedented ability to monitor, detect, and respond to crises. One of the potentially most profound and lasting expected change affects the roles of the various actors in providing and sharing information and in responding to early warning. Communities and civil society actors have the opportunity to be empowered as a source of information, analysis, and response, while the role of traditional actors shifts toward supporting those communities and building resilience. However, by creating new roles, relationships, and responsibilities, technology changes raise major concerns and ethical challenges for practitioners, pressing the need for practical guidelines and actionable recommendations in line with existing ethical principles. Copyright © 2012 Pham and Vinck. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
NASA Technical Reports Server (NTRS)
McNally, Amy; Arsenault, Krist; Kumar, Sujay; Shukla, Shraddhanand; Peter, Pete; Wang, Shugong; Funk, Chris; Peters-Lidard, Christa D.; Verdin, James
2017-01-01
Seasonal agricultural drought monitoring systems, which rely on satellite remote sensing and land surface models (LSMs), are important for disaster risk reduction and famine early warning. These systems require the best available weather inputs, as well as a long-term historical record to contextualize current observations. This article introduces the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS), a custom instance of the NASA Land Information System (LIS) framework. The FLDAS is routinely used to produce multi-model and multi-forcing estimates of hydro-climate states and fluxes over semi-arid, food insecure regions of Africa. These modeled data and derived products, like soil moisture percentiles and water availability, were designed and are currently used to complement FEWSNETs operational remotely sensed rainfall, evapotranspiration, and vegetation observations. The 30+ years of monthly outputs from the FLDAS simulations are publicly available from the NASA Goddard Earth Science Data and Information Services Center (GES DISC) and recommended for use in hydroclimate studies, early warning applications, and by agro-meteorological scientists in Eastern, Southern, and Western Africa.
A land data assimilation system for sub-Saharan Africa food and water security applications
NASA Astrophysics Data System (ADS)
McNally, Amy; Arsenault, Kristi; Kumar, Sujay; Shukla, Shraddhanand; Peterson, Pete; Wang, Shugong; Funk, Chris; Peters-Lidard, Christa D.; Verdin, James P.
2017-02-01
Seasonal agricultural drought monitoring systems, which rely on satellite remote sensing and land surface models (LSMs), are important for disaster risk reduction and famine early warning. These systems require the best available weather inputs, as well as a long-term historical record to contextualize current observations. This article introduces the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS), a custom instance of the NASA Land Information System (LIS) framework. The FLDAS is routinely used to produce multi-model and multi-forcing estimates of hydro-climate states and fluxes over semi-arid, food insecure regions of Africa. These modeled data and derived products, like soil moisture percentiles and water availability, were designed and are currently used to complement FEWS NET's operational remotely sensed rainfall, evapotranspiration, and vegetation observations. The 30+ years of monthly outputs from the FLDAS simulations are publicly available from the NASA Goddard Earth Science Data and Information Services Center (GES DISC) and recommended for use in hydroclimate studies, early warning applications, and by agro-meteorological scientists in Eastern, Southern, and Western Africa.
Audible monitor for electroplating
NASA Technical Reports Server (NTRS)
Burowick, E. A.
1979-01-01
"No buzzer" indicates early problem in electroplating when parts are properly immersed into electropolating bath. Buzzer sounds when current flows through part; however, if current is cut, buzzer stops warning that parts must be removed and refinished thus preventing unnecessary waste of electrical energy and labor.
National Volcano Early Warning and Monitoring Program Act
Sen. Murkowski, Lisa [R-AK
2011-03-14
Senate - 05/18/2011 Committee on Energy and Natural Resources Subcommittee on Public Lands and Forests. Hearings held. With printed Hearing: S.Hrg. 112-39. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Signature-forecasting and early outbreak detection system
Naumova, Elena N.; MacNeill, Ian B.
2008-01-01
SUMMARY Daily disease monitoring via a public health surveillance system provides valuable information on population risks. Efficient statistical tools for early detection of rapid changes in the disease incidence are a must for modern surveillance. The need for statistical tools for early detection of outbreaks that are not based on historical information is apparent. A system is discussed for monitoring cases of infections with a view to early detection of outbreaks and to forecasting the extent of detected outbreaks. We propose a set of adaptive algorithms for early outbreak detection that does not rely on extensive historical recording. We also include knowledge of infection disease epidemiology into forecasts. To demonstrate this system we use data from the largest water-borne outbreak of cryptosporidiosis, which occurred in Milwaukee in 1993. Historical data are smoothed using a loess-type smoother. Upon receipt of a new datum, the smoothing is updated and estimates are made of the first two derivatives of the smooth curve, and these are used for near-term forecasting. Recent data and the near-term forecasts are used to compute a color-coded warning index, which quantify the level of concern. The algorithms for computing the warning index have been designed to balance Type I errors (false prediction of an epidemic) and Type II errors (failure to correctly predict an epidemic). If the warning index signals a sufficiently high probability of an epidemic, then a forecast of the possible size of the outbreak is made. This longer term forecast is made by fitting a ‘signature’ curve to the available data. The effectiveness of the forecast depends upon the extent to which the signature curve captures the shape of outbreaks of the infection under consideration. PMID:18716671
Forecasting infectious disease emergence subject to seasonal forcing.
Miller, Paige B; O'Dea, Eamon B; Rohani, Pejman; Drake, John M
2017-09-06
Despite high vaccination coverage, many childhood infections pose a growing threat to human populations. Accurate disease forecasting would be of tremendous value to public health. Forecasting disease emergence using early warning signals (EWS) is possible in non-seasonal models of infectious diseases. Here, we assessed whether EWS also anticipate disease emergence in seasonal models. We simulated the dynamics of an immunizing infectious pathogen approaching the tipping point to disease endemicity. To explore the effect of seasonality on the reliability of early warning statistics, we varied the amplitude of fluctuations around the average transmission. We proposed and analyzed two new early warning signals based on the wavelet spectrum. We measured the reliability of the early warning signals depending on the strength of their trend preceding the tipping point and then calculated the Area Under the Curve (AUC) statistic. Early warning signals were reliable when disease transmission was subject to seasonal forcing. Wavelet-based early warning signals were as reliable as other conventional early warning signals. We found that removing seasonal trends, prior to analysis, did not improve early warning statistics uniformly. Early warning signals anticipate the onset of critical transitions for infectious diseases which are subject to seasonal forcing. Wavelet-based early warning statistics can also be used to forecast infectious disease.
A search for applications of Fiber Optics in early warning systems for natural hazards.
NASA Astrophysics Data System (ADS)
Wenker, Koen; Bogaard, Thom
2013-04-01
In order to reduce the societal risk associated with natural hazards novel technologies could help to advance in early warning systems. In our study we evaluate the use of multi-sensor technologies as possible early-warning systems for landslides and man-made structures, and the integration of the information in a simple Decision Support System (DSS). In this project, particular attention will be paid to some new possibilities available in the field of distributed monitoring systems of relevant parameters for landslide and man-made structures monitoring (such as large dams and bridges), and among them the distributed monitoring of temperature, strain and acoustic signals by FO cables. Fiber Optic measurements are becoming more and more popular. Fiber optic cables have been developed in the telecommunication business to send large amounts of information over large distances with the speed of light. Because of the commercial application, production costs are relatively low. Using fiber optics for measurements has several advantages. This novel technology is, for instance, immune to electromagnetic interference, appears stable, very accurate, and has the potential to measure several independent physical properties in a distributed manner. The high resolution spatial and temporal distributed information on e.g. temperature or strain (or both) make fiber optics an interesting measurement technique. Several applications have been developed in both engineering as science and the possibilities seem numerous. We will present a thorough literature review that was done to assess the applicability and limitations of FO cable technology. This review was focused but not limited to application in landslide research. Several examples of current practices will be shown, also from outside the natural hazard practice and possible application will be discussed.
Enhanced early warning system impact on nursing practice: A phenomenological study.
Burns, Kathleen A; Reber, Tracey; Theodore, Karen; Welch, Brenda; Roy, Debra; Siedlecki, Sandra L
2018-05-01
To determine how an enhanced early warning system has an impact on nursing practice. Early warning systems score physiologic measures and alert nurses to subtle changes in patient condition. Critics of early warning systems have expressed concern that nurses would rely on a score rather than assessment skills and critical thinking to determine the need for intervention. Enhancing early warning systems with innovative technology is still in its infancy, so the impact of an enhanced early warning system on nursing behaviours or practice has not yet been studied. Phenomenological design. Scripted, semistructured interviews were conducted in September 2015 with 25 medical/surgical nurses who used the enhanced early warning system. Data were analysed using thematic analysis techniques (coding and bracketing). Emerging themes were examined for relationships and a model describing the enhanced early warning system experience was developed. Nurses identified awareness leading to investigation and ease of prioritization as the enhanced early warning system's most important impact on their nursing practice. There was also an impact on organizational culture, with nurses reporting improved communication, increased collaboration, increased accountability and proactive responses to early changes in patient condition. Rather than hinder critical thinking, as many early warning systems' critics claim, nurses in this study found that the enhanced early warning system increased their awareness of changes in a patient's condition, resulting in earlier response and reassessment times. It also had an impact on the organization by improving communication and collaboration and supporting a culture of proactive rather than reactive response to early signs of deterioration. © 2017 John Wiley & Sons Ltd.
Cardona-Morrell, M; Prgomet, M; Lake, R; Nicholson, M; Harrison, R; Long, J; Westbrook, J; Braithwaite, J; Hillman, K
2016-04-01
High profile safety failures have demonstrated that recognising early warning signs of clinical and physiological deterioration can prevent or reduce harm resulting from serious adverse events. Early warning scoring systems are now routinely used in many places to detect and escalate deteriorating patients. Timely and accurate vital signs monitoring are critical for ensuring patient safety through providing data for early warning scoring systems, but little is known about current monitoring practices. To establish a profile of nurses' vital signs monitoring practices, related dialogue, and adherence to health service protocol in New South Wales, Australia. Direct observations of nurses' working practices were conducted in two wards. The observations focused on times of the day when vital signs were generally measured. Patient interactions were recorded if occurring any time during the observation periods. Participants (n=42) included nursing staff on one chronic disease medical and one acute surgical ward in a large urban teaching hospital in New South Wales. We observed 441 patient interactions. Measurement of vital signs occurred in 52% of interactions. The minimum five vital signs measures required by New South Wales Health policy were taken in only 6-21% of instances of vital signs monitoring. Vital signs were documented immediately on 93% of vitals-taking occasions and documented according to the policy in the patient's chart on 89% of these occasions. Nurse-patient interactions were initiated for the purpose of taking vital signs in 49% of interactions, with nurse-patient discourse observed during 88% of all interactions. Nurse-patient dialogue led to additional care being provided to patients in 12% of interactions. The selection of appropriate vital signs measured and responses to these appears to rely on nurses' clinical judgement or time availability rather than on policy-mandated frequency. The prevalence of incomplete sets of vital signs may limit identification of deteriorating patients. The findings from this study present an important baseline profile against which to evaluate the impact of introducing continuous monitoring approaches on current hospital practice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Performance Analysis of a Citywide Real-time Landslide Early Warning System in Korea
NASA Astrophysics Data System (ADS)
Park, Joon-Young; Lee, Seung-Rae; Kang, Sinhang; Lee, Deuk-hwan; Nedumpallile Vasu, Nikhil
2017-04-01
Rainfall-induced landslide has been one of the major disasters in Korea since the beginning of 21st century when the global climate change started to give rise to the growth of the magnitude and frequency of extreme precipitation events. In order to mitigate the increasing damage to properties and loss of lives and to provide an effective tool for public officials to manage the landslide disasters, a real-time landslide early warning system with an advanced concept has been developed by taking into account for Busan, the second largest metropolitan city in Korea, as an operational test-bed. The system provides with warning information based on a five-level alert scheme (Normal, Attention, Watch, Alert, and Emergency) using the forecasted/observed rainfall data or the data obtained from ground monitoring (volumetric water content and matric suction). The alert levels are determined by applying seven different thresholds in a step-wise manner following a decision tree. In the pursuit of improved reliability of an early warning level assigned to a specific area, the system makes assessments repetitively using the thresholds of different theoretical backgrounds including statistical(empirical), physically-based, and mathematical analyses as well as direct measurement-based approaches. By mapping the distribution of the five early warning levels determined independently for each of tens of millions grids covering the entire mountainous area of Busan, the regional-scale system can also provide with the early warning information for a specific local area. The fact that the highest warning level is determined by using a concept of a numerically-modelled potential debris-flow risk is another distinctive feature of the system. This study tested the system performance by applying it for four previous rainy seasons in order to validate the operational applicability. During the rainy seasons of 2009, 2011, and 2014, the number of landslides recorded throughout Busan's territory reached 156, 64, and 37, respectively. In 2016, only three landslides were recorded even though the city experienced a couple of heavy rainfall events during the rainy season. The system performance test results show good agreement with the observation results for the past rainfall events. It seems that the system can also provide with reliable warning information for the future rainfall events.
Drought early warning and risk management in a changing environment
NASA Astrophysics Data System (ADS)
Pulwarty, R. S.
2011-12-01
Drought has long been recognized as falling into the category of incremental but long-term and cumulative environmental changes, also termed slow-onset or creeping events. These event types would include: air and water quality decline, desertification processes, deforestation and forest fragmentation, loss of biodiversity and habitats, and nitrogen overloading, among others. Climate scientists continue to struggle with recognizing the onset of drought and scientists and policy makers continue to debate the basis (i.e., criteria) for declaring an end to a drought. Risk-based management approaches to drought planning at the national and regional levels have been recommended repeatedly over the years but their prototyping, testing and operational implementation have been limited. This presentation will outline two avenues for disaster risk reduction in the context of drought (1) integrated early warning information systems, and (2) linking disaster risk reduction to climate change adaptation strategies. Adaptation involves not only using operational facilities and infrastructure to cope with the immediate problems but also leaving slack or reserve for coping with multiple stress problems that produce extreme impacts and surprise. Increasing the 'anticipatability' of an event, involves both monitoring of key indicators from appropriate baseline data, and observing early warning signs that assumptions in risk management plans are failing and critical transitions are occurring. Illustrative cases will be drawn from the IPCC Special Report on Managing the Risks of Extreme Events and Disasters (2011), the UN Global Assessment of Disaster Risk Reduction (2011) and implementation activities in which the author has been engaged. Most drought early warning systems have tended to focus on the development and use of physical system indicators and forecasts of trends and thresholds. We show that successful early warning systems that meet expectations of risk management also have explicit foci on (1) integrating physical and social vulnerability indicators across timescales, (2) analytical capacity to generate local scenarios of risk using both analogs and projections, (3) the communication of risk-based information, and (4) the support and governance of a collaborative framework for early warning structures across spatial scales.
NASA Astrophysics Data System (ADS)
Zimakov, L. G.; Passmore, P.; Raczka, J.; Alvarez, M.; Jackson, M.
2014-12-01
Scientific GNSS networks are moving towards a model of real-time data acquisition, epoch-by-epoch storage integrity, and on-board real-time position and displacement calculations. This new paradigm allows the integration of real-time, high-rate GNSS displacement information with acceleration and velocity data to create very high-rate displacement records. The mating of these two instruments allows the creation of a new, very high-rate (200 sps) displacement observable that has the full-scale displacement characteristics of GNSS and high-precision dynamic motions of seismic technologies. It is envisioned that these new observables can be used for earthquake early warning studies, volcano monitoring, and critical infrastructure monitoring applications. Our presentation will focus on the characteristics of GNSS, seismic, and strong motion sensors in high dynamic environments, including historic earthquakes in Southern California and the Pacific Rim, replicated on a shake table, over a range of displacements and frequencies. We will explore the optimum integration of these sensors from a filtering perspective including simple harmonic impulses over varying frequencies and amplitudes and under the dynamic conditions of various earthquake scenarios. In addition we will discuss implementation of a Rapid Seismic Event Notification System that provides quick delivery of digital data from seismic stations to the acquisition and processing center and a full data integrity model for real-time earthquake notification that provides warning prior to significant ground shaking.
Ceccato, P; Connor, S J; Jeanne, I; Thomson, M C
2005-03-01
Despite over 30 years of scientific research, algorithm development and multitudes of publications relating Remote Sensing (RS) information with the spatial and temporal distribution of malaria, it is only in recent years that operational products have been adopted by malaria control decision-makers. The time is ripe for the wealth of research knowledge and products from developed countries be made available to the decision-makers in malarious regions of the globe where this information is urgently needed. This paper reviews the capability of RS to provide useful information for operational malaria early warning systems. It also reviews the requirements for monitoring the major components influencing emergence of malaria and provides examples of applications that have been made. Discussion of the issues that have impeded implementation on a global scale and how those barriers are disappearing with recent economic, technological and political developments are explored; and help pave the way for implementation of an integrated Malaria Early Warning System framework using RS technologies.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Ryan, Robert E.; McKellip, Rodney
2008-01-01
The Healthy Forest Restoration Act of 2003 mandated that a national forest threat Early Warning System (EWS) be developed. The USFS (USDA Forest Service) is currently building this EWS. NASA is helping the USFS to integrate remotely sensed data into the EWS, including MODIS data for monitoring forest disturbance at broad regional scales. This RPC experiment assesses the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) and MODIS (Moderate Resolution Imaging Spectroradiometer) data for contribution to the EWS. In doing so, the RPC project employed multitemporal simulated VIIRS and MODIS data for detecting and monitoring forest defoliation from the non-native Eurasian gypsy moth (Lymantria despar). Gypsy moth is an invasive species threatening eastern U.S. hardwood forests. It is one of eight major forest insect threats listed in the Healthy Forest Restoration Act of 2003. This RPC experiment is relevant to several nationally important mapping applications, including carbon management, ecological forecasting, coastal management, and disaster management
NASA Astrophysics Data System (ADS)
Manconi, A.; Giordan, D.
2015-02-01
We investigate the use of landslide failure forecast models by exploiting near-real-time monitoring data. Starting from the inverse velocity theory, we analyze landslide surface displacements on different temporal windows, and apply straightforward statistical methods to obtain confidence intervals on the estimated time of failure. Here we describe the main concepts of our method, and show an example of application to a real emergency scenario, the La Saxe rockslide, Aosta Valley region, northern Italy. Based on the herein presented case study, we identify operational thresholds based on the reliability of the forecast models, in order to support the management of early warning systems in the most critical phases of the landslide emergency.
Smith, G B; Isaacs, R; Andrews, L; Wee, M Y K; van Teijlingen, E; Bick, D E; Hundley, V
2017-05-01
Obstetric early warning systems are recommended for monitoring hospitalised pregnant and postnatal women. We decided to compare: (i) vital sign values used to define physiological normality; (ii) symptoms and signs used to escalate care; (iii) type of chart used; and (iv) presence of explicit instructions for escalating care. One-hundred-and-twenty obstetric early warning charts and escalation protocols were obtained from consultant-led maternity units in the UK and Channel Islands. These data were extracted: values used to determine normality for each maternal vital sign; chart colour-coding; instructions following early warning system triggering; other criteria used as triggers. There was considerable variation in the charts, warning systems and escalation protocols. Of 120 charts, 89.2% used colour; 69.2% used colour-coded escalation systems. Forty-one (34.2%) systems required the calculation of weighted scores. Seventy-five discrete combinations of 'normal' vital sign ranges were found, the most common being: heart rate=50-99beats/min; respiratory rate=11-20breaths/min; blood pressure, systolic=100-149mmHg, diastolic ≤89mmHg; SpO 2 =95-100%; temperature=36.0-37.9°C; and Alert-Voice-Pain-Unresponsive assessment=Alert. Most charts (90.8%) provided instructions about who to contact following triggering, but only 41.7% gave instructions about subsequent observation frequency. The wide range of 'normal' vital sign values in different systems suggests a lack of equity in the processes for detecting deterioration and escalating care in hospitalised pregnant and postnatal women. Agreement regarding 'normal' vital sign ranges is urgently required and would assist the development of a standardised obstetric early warning system and chart. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, J.; Becker-Reshef, I.; Justice, C. O.
2013-12-01
Although agricultural production has been rising in the past years, drought remains the primary cause of crop failure, leading to food price instability and threatening food security. The recent 'Global Food Crisis' in 2008, 2011 and 2012 has put drought and its impact on crop production at the forefront, highlighting the need for effective agricultural drought monitoring. Satellite observations have proven a practical, cost-effective and dynamic tool for drought monitoring. However, most satellite based methods are not specially developed for agriculture and their performances for agricultural drought monitoring still need further development. Wheat is the most widely grown crop in the world, and the recent droughts highlight the importance of drought monitoring in major wheat producing areas. As the largest wheat producing state in the US, Kansas plays an important role in both global and domestic wheat markets. Thus, the objective of this study is to investigate the capabilities of remotely sensed crop indicators for effective agricultural drought monitoring in Kansas wheat-grown regions using MODIS data and crop yield statistics. First, crop indicators such as NDVI, anomaly and cumulative metrics were calculated. Second, the varying impacts of agricultural drought at different stages were explored by examining the relationship between the derived indicators and yields. Also, the starting date of effective agricultural drought early detection and the key agricultural drought alert period were identified. Finally, the thresholds of these indicators for agricultural drought early warning were derived and the implications of these indicators for agricultural drought monitoring were discussed. The preliminary results indicate that drought shows significant impacts from the mid-growing-season (after Mid-April); NDVI anomaly shows effective drought early detection from Late-April, and Late-April to Early-June can be used as the key alert period for agricultural drought early warning; and drought occurring in Early-May has the most significant agricultural impacts. This research intends to help prototype an agricultural drought alert system, which could alert crop analysts to agricultural drought vulnerable areas/periods and provide tools for assessing crop outlooks in these regions.
Kavanaugh, Michael J; So, Joanne D; Park, Peter J; Davis, Konrad L
2017-02-01
Risk stratification with the Modified Early Warning System (MEWS) or electronic cardiac arrest trigger (eCART) has been utilized with ward patients to preemptively identify high-risk patients who might benefit from enhanced monitoring, including early intensive care unit (ICU) transfer. In-hospital mortality from cardiac arrest is ∼80%, making preventative interventions an important focus area. ICUs have lower patient to nurse ratios than wards, resulting in less emphasis on the development of ICU early warning systems. Our institution developed an early warning dashboard (EWD) identifying patients who may benefit from earlier interventions. Using the adverse outcomes of cardiac arrest, ICU mortality, and ICU readmissions, a retrospective case-control study was performed using three demographic items (age, diabetes, and morbid obesity) and 24 EWD measured items, including vital signs, laboratory values, ventilator information, and other clinical information, to validate the EWD. Ten statistically significant areas were identified for cardiac arrest and 13 for ICU death. Identified items included heart rate, dialysis, leukocytosis, and lactate. The ICU readmission outcome was compared to controls from both ICU patients and ward patients, and statistical significance was identified for respiratory rate >30. With several statistically significant data elements, the EWD parameters have been incorporated into advanced clinical decision algorithms to identify at-risk ICU patients. Earlier identification and treatment of organ failure in the ICU improve outcomes and the EWD can serve as a safety measure for both at-risk in-house patients and also extend critical care expertise through telemedicine to smaller hospitals.
NASA Astrophysics Data System (ADS)
Hain, C.; Anderson, M. C.; Otkin, J.; Holmes, T. R.; Gao, F.
2017-12-01
This presentation will describe the development of a global agricultural monitoring tool, with a focus on providing early warning of developing vegetation stress for agricultural decision-makers and stakeholders at relatively high spatial resolution (5-km). The tool is based on remotely sensed estimates of evapotranspiration, retrieved via energy balance principals using observations of land surface temperature. The Evaporative Stress Index (ESI) represents anomalies in the ratio of actual-to-potential ET generated with the ALEXI surface energy balance model. The LST inputs to ESI have been shown to provide early warning information about the development of vegetation stress with stress-elevated canopy temperatures observed well before a decrease in greenness is detected in remotely sensed vegetation indices. As a diagnostic indicator of actual ET, the ESI requires no information regarding antecedent precipitation or soil moisture storage capacity - the current available moisture to vegetation is deduced directly from the remotely sensed LST signal. This signal also inherently accounts for both precipitation and non-precipitation related inputs/sinks to the plant-available soil moisture pool (e.g., irrigation) which can modify crop response to rainfall anomalies. Independence from precipitation data is a benefit for global agricultural monitoring applications due to sparseness in existing ground-based precipitation networks, and time delays in public reporting. Several enhancements to the current ESI framework will be addressed as requested from project stakeholders: (a) integration of "all-sky" MW Ka-band LST retrievals to augment "clear-sky" thermal-only ESI in persistently cloudy regions; (b) operational production of ESI Rapid Change Indices which provide important early warning information related to onset of actual vegetation stress; and (c) assessment of ESI as a predictor of global yield anomalies; initial studies have shown the ability of intra-seasonal ESI to provide an early indication of at-harvest agricultural yield anomalies.
NASA Astrophysics Data System (ADS)
Hadwen, T.; Heim, R. R.; Howard, A.
2011-12-01
Drought is a difficult phenomenon to define; the way in which it is monitored, measured, assessed and even the very definition of drought vary from location to location based on the regional climate and the potential impacts. Drought is not an absolute condition but an evolving state brought on by relatively dry weather, growing more severe over time. There are many factors that define a drought and many more that define its impacts. Many definitions and indices are based solely on meteorological characteristics. Although this approach has merit, it is often necessary to go further to define those meteorological conditions in a way that is relevant to the land and water use in a region. A Drought Indices and Definitions Study was initiated in 2010 as part of a GEO Bilateral effort to examine drought across the U.S. and Canada. The Study's deliverables will include a survey of the drought indices used to monitor drought, and a bibliography of research addressing the nature of drought, across the diverse climates of the continent. With an increasing pressure to utilize drought monitoring as a primary indicator of need for disaster assistance, the reliability of drought indices must be validated and utilized in appropriate in various regions. In 2009, following over five years of participation in the North American Drought Monitor (NA-DM), the National Agroclimate Information Service of Agriculture and Agri-Food Canada initiated a project to develop a Canadian Drought Monitor (Can-DM), based on primary principles used in the NA-DM and the US Drought Monitor (US-DM). The process of developing an operational monitoring tool and using drought indices in a vast and environmentally diverse country has been challenging. in Canada, many of the commonly used indices are not appropriate in certain regions or data densities do not allow for proper use. This paper will discuss the experiences that the Can-DM team has had dealing with these challenges, how these experiences provide recommendations for a global drought early warning system, and implications of the Drought Indices and Definitions Study for improving both the Can-DM and a global drought early warning system.
NASA Astrophysics Data System (ADS)
Terzi, L.; Kalinowski, M.; Schoeppner, M.; kusmierczyk-michulec, J.
2017-12-01
With 80 radionuclide detector systems worldwide, the International Monitoring System (IMS) offers an unprecedented opportunity to use 7Be as an aerosol tracer for global atmospheric cell dynamics. Meteorological processes such as ENSO onset, ITCZ shift, location and progression of Hadley-Ferrel cell convergence zone (HFCZ) have been reconstructed using long term timeseries of ground based 7Be observations. Cross correlation of 7Be activity concentrations also demonstrated to serve as an early warning indicator for Indian monsoons showing a possible 30-day warning prior to monsoon onset (Terzi and Kalinowski, 2017). Here we present what role phenomena that we can observe with 7Be, namely ITCZ and HFCZ, play in monsoon formation and how the prediction of monsoon onset relates to ENSO prediction. Performance, lead time and reliability of 7Be as monsoon onset indicator are then compared to current meteorological indicators. Near surface 7Be activity concentrations may help address outstanding challenges in monsoon research by integrating a new perspective across disciplines.
Klumpner, Thomas T; Kountanis, Joanna A; Langen, Elizabeth S; Smith, Roger D; Tremper, Kevin K
2018-06-26
Maternal early warning systems reduce maternal morbidity. We developed an electronic maternal surveillance system capable of visually summarizing the labor and delivery census and identifying changes in clinical status. Automatic page alerts to clinical providers, using an algorithm developed at our institution, were incorporated in an effort to improve early detection of maternal morbidity. We report the frequency of pages generated by the system. To our knowledge, this is the first time such a system has been used in peripartum care. Alert criteria were developed after review of maternal early warning systems, including the Maternal Early Warning Criteria (MEWC). Careful consideration was given to the frequency of pages generated by the surveillance system. MEWC notification criteria were liberalized and a paging algorithm was created that triggered paging alerts to first responders (nurses) and then managing services due to the assumption that paging all clinicians for each vital sign triggering MEWC would generate an inordinate number of pages. For preliminary analysis, to determine the effect of our automated paging algorithm on alerting frequency, the paging frequency of this system was compared to the frequency of vital signs meeting the Maternal Early Warning Criteria (MEWC). This retrospective analysis was limited to a sample of 34 patient rooms uniquely capable of storing every vital sign reported by the bedside monitor. Over a 91-day period, from April 1 to July 1, 2017, surveillance was conducted from 64 monitored beds, and the obstetrics service received one automated page every 2.3 h. The most common triggers for alerts were for hypertension and tachycardia. For the subset of 34 patient rooms uniquely capable of real-time recording, one vital sign met the MEWC every 9.6 to 10.3 min. Anecdotally, the system was well-received. This novel electronic maternal surveillance system is designed to reduce cognitive bias and improve timely clinical recognition of maternal deterioration. The automated paging algorithm developed for this software dramatically reduces paging frequency compared to paging for isolated vital sign abnormalities alone. Long-term, prospective studies will be required to determine its impact on patient outcomes.
Informing climate change adaptation with insights from famine early warning (Invited)
NASA Astrophysics Data System (ADS)
Funk, C. C.; Verdin, J. P.
2010-12-01
Famine early warning systems provide a unique viewpoint for understanding the implications of climate change on food security, identifying the locations and seasons where millions of food insecure people are dependent upon climate-sensitive agricultural systems. The Famine Early Warning Systems Network (FEWS NET) is a decision support system sponsored by the Office of Food for Peace of the U.S. Agency for International Development (USAID), which distributes over two billion dollars of food aid to more than 40 countries each year. FEWS NET identifies the times and places where food aid is required by the most climatically sensitive and consequently food insecure populations of the developing world. As result, FEWS NET has developed its own "climate service", implemented by USGS, NOAA, and NASA, to support its decision making processes. The foundation of this climate service is the monitoring of current growing conditions for early identification of agricultural drought that might impact food security. Since station networks are sparse in the countries monitored, FEWS NET has a tradition (dating back to 1985) of reliance on satellite remote sensing of vegetation and rainfall. In the last ten years, climate forecasts have become an additional tool for food security assessment, extending the early warning perspective to include expected agricultural outcomes for the season ahead. More recently, research has expanded to include detailed analyses of recent observed climate trends, combined with diagnostic ocean-atmosphere studies. These studies are then used to develop interpretations of GCM scenarios and their implications for future patterns of precipitation and temperature, revealing trends towards warmer/drier climate conditions and increases in the relative frequency of drought. In some regions, like Eastern Africa, such changes seem to be already occurring, with an associated increase in food insecurity. Sub-national analyses for Kenya, for example, point to the need for adaptation through improved agricultural practices, so that increased yields can offset the impacts of rising temperatures and declining rainfall. Future work will focus on assessing temperature-PET linkages, and evaluating pathways for agricultural development.
The Role of North American Aerospace Defense Command (NORAD) In Military Cyber Attack Warning
2015-09-01
WARNING MISSIONS .....................................5 1. Early North American Air Defense Warning ...................................5 2...BLANK xi LIST OF FIGURES Figure 1. North American Distant Early Warning (DEW) Site. .......................................6 Figure 2. Original... Early Warning (AEW) Aircraft .........................................11 Figure 7. Headquarters NORAD and USNORTHCOM
Global Environmental Alert Service
NASA Astrophysics Data System (ADS)
Grasso, V. F.; Cervone, G.; Singh, A.; Kafatos, M.
2006-12-01
Every year natural disasters such as earthquakes, floods, hurricanes, tsunamis, etc. occur around the world, causing hundreds of thousands of deaths and injuries, billions of dollars in economic losses, and destroying natural landmarks and adveresely affecting ecosystems. Due to increasing urbanization, and increasingly higher percentage of the world's population living in megacities, the existence of nuclear power plants and other facilities whose potential destruction poses unacceptable high risks, natural hazards represent an increasing threat for economic losses, as well as risk to people and property. Warning systems represent an innovative and effective approach to mitigate the risks associated with natural hazards. Several state-of-the-art analyses show that early warning technologies are now available for most natural hazards and systems are already in operation in some parts of the world. Nevertheless, recent disasters such as the 2004 Indian Ocean tsunami, the 2005 Kashmir earthquake and the 2005 Katrina hurricane, highlighted inadequacies in early warning system technologies. Furthermore, not all available technologies are deployed in every part of the world, due to the lack of awareness and resources in the poorer countries, leaving very large and densely populated areas at risk. Efforts towards the development of a global warning system are necessary for filling the gaps of existing technologies. A globally comprehensive early warning system based on existing technologies will be a means to consolidate scientific knowledge, package it in a form usable to international and national decision makers and actively disseminate this information to protect people and properties. There is not a single information broker who searches and packages the policy relevant material and delivers it in an understandable format to the public and decision makers. A critical review of existing systems reveals the need for the innovative service. We propose here a Global Environmental Alert Service (GEAS) that could provide information from monitoring, Earth observing and early warning systems to users in a near real time mode and bridge the gap between the scientific community and policy makers. Characteristics and operational aspects of GEAS are discussed.
Benchmarking a soil moisture data assimilation system for agricultural drought monitoring
USDA-ARS?s Scientific Manuscript database
Agricultural drought is defined as a shortage of moisture in the root zone of plants. Recently available satellite-based remote sensing data have accelerated development of drought early warning system by providing spatially continuous soil moisture information repeatedly at short-term interval. Non...
NASA Astrophysics Data System (ADS)
Budde, M. E.; Rowland, J.; Senay, G. B.; Funk, C. C.; Pedreros, D.; Husak, G. J.; Bohms, S.
2011-12-01
The high global food prices in 2008 led to the acknowledgement that there is a need to monitor the inter-connectivity of global and regional markets and their potential impacts on food security in many more regions than previously considered. The crisis prompted an expansion of monitoring by the Famine Early Warning Systems Network (FEWS NET) to include additional countries, beyond those where food security has long been of concern. Scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the University of California Santa Barbara Climate Hazards Group have provided new and improved data products as well as visualization and analysis tools in support of this increased mandate for remote monitoring. We present a new product for measuring actual evapotranspiration (ETa) based on the implementation of a surface energy balance model and site improvements of two standard FEWS NET monitoring products: normalized difference vegetation index (NDVI) and satellite-based rainfall estimates. USGS FEWS NET has implemented a simplified surface energy balance model to produce operational ETa anomalies for Africa. During the growing season, ETa anomalies express surplus or deficit crop water use which is directly related to crop condition and biomass. The expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) production system provides FEWS NET with a much improved NDVI dataset for crop and rangeland monitoring. eMODIS NDVI provides a reliable data stream with a vastly improved spatial resolution (250-m) and short latency period (less than 12 hours) which allows for better operational vegetation monitoring. FEWS NET uses satellite rainfall estimates as inputs for monitoring agricultural food production. By combining high resolution (0.05 deg) rainfall mean fields with Tropical Rainfall Measuring Mission rainfall estimates and infrared temperature data, we provide pentadal (5-day) rainfall fields suitable for crop monitoring and modeling. We also present two new monitoring tools, the Early Warning eXplorer (EWX) and the Decision Support Interface (DSI). The EWX is a data analysis tool which provides the ability to rapidly visualize multiple remote sensing datasets and compare standardized anomaly maps and time series. The DSI uses remote sensing data in an automated fashion to map areas of drought concern and ranks their severity at both crop zone and administrative levels. New and improved data products and more targeted analysis tools are a necessity as food security monitoring requirements expand and resources become limited.
Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System
Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke
2011-01-01
The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, adata center module and aWEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB). PMID:22319377
Design and implementation of a wireless sensor network-based remote water-level monitoring system.
Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke
2011-01-01
The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, a data center module and a WEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB).
Development of a consortium for water security and safety: Planning for an early warning system
Clark, R.M.; Adam, N.R.; Atluri, V.; Halem, M.; Vowinkel, E.F.; ,
2004-01-01
The events of September 11, 2001 have raised concerns over the safety and security of the Nation's critical infrastructure including water and waste water systems. In June 2002, the U.S. EPA's Region II Office (New York City), in response to concerns over water security, in collaboration with Rutgers University agreed to establish a Regional Drinking Water Security and Safety Consortium (RDWSSC). Members of the consortium include: Rutgers University's Center for Information Management, Integration and Connectivity (CIMIC), American Water (AW), the Passaic Valley Water Commission (PVWC), the North Jersey District Water Supply Commission (NJDWSC), the N.J. Department of Environmental Protection, the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agencies, Region II Office. In December of 2002 the consortium members signed a memorandum of understanding (MOU) to pursue activities to enhance regional water security. Development of an early warning system for source and distributed water was identified as being of primary importance by the consortium. In this context, an early warning system (EWS) is an integrated system of monitoring stations located at strategic points in a water utilities source waters or in its distribution system, designed to warn against contaminants that might threaten the health and welfare of drinking water consumers. This paper will discuss the consortium's progress in achieving these important objectives.
Vulnerability analysis for a drought Early Warning System
NASA Astrophysics Data System (ADS)
Angeluccetti, Irene; Demarchi, Alessandro; Perez, Francesca
2014-05-01
Early Warning Systems (EWS) for drought are often based on risk models that do not, or marginally, take into account the vulnerability factor. The multifaceted nature of drought (hydrological, meteorological, and agricultural) is source of coexistence for different ways to measure this phenomenon and its effects. The latter, together with the complexity of impacts generated by this hazard, causes the current underdevelopment of drought EWS compared to other hazards. In Least Developed Countries, where drought events causes the highest numbers of affected people, the importance of correct monitoring and forecasting is considered essential. Existing early warning and monitoring systems for drought produced at different geographic levels, provide only in a few cases an actual spatial model that tries to describe the cause-effect link between where the hazard is detected and where impacts occur. Integrate vulnerability information in such systems would permit to better estimate affected zones and livelihoods, improving the effectiveness of produced hazard-related datasets and maps. In fact, the need of simplification and, in general, of a direct applicability of scientific outputs is still a matter of concern for field experts and early warning products end-users. Even if the surplus of hazard related information produced right after catastrophic events has, in some cases, led to the creation of specific data-sharing platforms, the conveyed meaning and usefulness of each product has not yet been addressed. The present work is an attempt to fill this gap which is still an open issue for the scientific community as well as for the humanitarian aid world. The study aims at conceiving a simplified vulnerability model to embed into an existing EWS for drought, which is based on the monitoring of vegetation phenological parameters and the Standardized Precipitation Index, both produced using free satellite derived datasets. The proposed vulnerability model includes (i) a pure agricultural vulnerability and (ii) a systemic vulnerability. The first considers the agricultural potential of terrains, the diversity of cultivated crops and the percentage of irrigated area as main driving factors. The second vulnerability aspect consists of geographic units in which a set of socio-economic factors are modeled geographically on the basis of the physical accessibility to market centers in one case, and according to a spatial gravity model of market areas in another case. Results of the model applied to a case study (Niger) and evaluated with food insecurity data, are presented.
Bridging Empirical and Physical Approaches for Landslide Monitoring and Early Warning
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Peters-Lidard, Christa; Adler, Robert; Kumar, Sujay; Harrison, Ken
2011-01-01
Rainfall-triggered landslides typically occur and are evaluated at local scales, using slope-stability models to calculate coincident changes in driving and resisting forces at the hillslope level in order to anticipate slope failures. Over larger areas, detailed high resolution landslide modeling is often infeasible due to difficulties in quantifying the complex interaction between rainfall infiltration and surface materials as well as the dearth of available in situ soil and rainfall estimates and accurate landslide validation data. This presentation will discuss how satellite precipitation and surface information can be applied within a landslide hazard assessment framework to improve landslide monitoring and early warning by considering two disparate approaches to landslide hazard assessment: an empirical landslide forecasting algorithm and a physical slope-stability model. The goal of this research is to advance near real-time landslide hazard assessment and early warning at larger spatial scales. This is done by employing high resolution surface and precipitation information within a probabilistic framework to provide more physically-based grounding to empirical landslide triggering thresholds. The empirical landslide forecasting tool, running in near real-time at http://trmm.nasa.gov, considers potential landslide activity at the global scale and relies on Tropical Rainfall Measuring Mission (TRMM) precipitation data and surface products to provide a near real-time picture of where landslides may be triggered. The physical approach considers how rainfall infiltration on a hillslope affects the in situ hydro-mechanical processes that may lead to slope failure. Evaluation of these empirical and physical approaches are performed within the Land Information System (LIS), a high performance land surface model processing and data assimilation system developed within the Hydrological Sciences Branch at NASA's Goddard Space Flight Center. LIS provides the capabilities to quantify uncertainty from model inputs and calculate probabilistic estimates for slope failures. Results indicate that remote sensing data can provide many of the spatiotemporal requirements for accurate landslide monitoring and early warning; however, higher resolution precipitation inputs will help to better identify small-scale precipitation forcings that contribute to significant landslide triggering. Future missions, such as the Global Precipitation Measurement (GPM) mission will provide more frequent and extensive estimates of precipitation at the global scale, which will serve as key inputs to significantly advance the accuracy of landslide hazard assessment, particularly over larger spatial scales.
ADVANCED SURVEILLANCE OF ENVIROMENTAL RADIATION IN AUTOMATIC NETWORKS.
Benito, G; Sáez, J C; Blázquez, J B; Quiñones, J
2018-06-01
The objective of this study is the verification of the operation of a radiation monitoring network conformed by several sensors. The malfunction of a surveillance network has security and economic consequences, which derive from its maintenance and could be avoided with an early detection. The proposed method is based on a kind of multivariate distance, and the verification for the methodology has been tested at CIEMAT's local radiological early warning network.
HIV Drug Resistance Early Warning Indicators in Namibia for Public Health Action
Jonas, Anna; Gweshe, Justice; Siboleka, Milner; DeKlerk, Michael; Gawanab, Michael; Badi, Alfons; Sumbi, Victor; Pereko, Dawn; Blom, Abraham; Mwinga, Samson; Jordan, Michael R.; Jerger, Logan; Lau, Kiger; Hong, Steven Y.
2013-01-01
Background HIV drug resistance (HIVDR) testing is not routinely available in many resource-limited settings, therefore antiretroviral therapy (ART) program and site factors known to be associated with emergence of HIVDR should be monitored to optimize the quality of patient care and minimize the emergence of preventable HIVDR. Methods In 2010, Namibia selected five World Health Organization Early Warning Indicators (EWIs) and scaled-up monitoring from 9 to 33 ART sites: ART prescribing practices, Patients lost to follow-up (LTFU) at 12 months, Patients switched to a second-line regimen at 12 months, On-time antiretroviral (ARV) drug pick-up, and ARV drug-supply continuity. Results Records allowed reporting on three of the five selected EWIs. 22 of 33 (67%) sites met the target of 100% initiated on appropriate first-line regimens. 17 of 33 (52%) sites met the target of ≤20% LTFU. 15 of 33 (45%) sites met the target of 0% switched to a second-line regimen. Conclusions EWI monitoring directly resulted in public health action which will optimize the quality of care, specifically the strengthening of ART record systems, engagement of ART sites, and operational research for improved adherence assessment and ART patient defaulter tracing. PMID:23762406
TRMM Applications for Rainfall-Induced Landslide Early Warning
NASA Astrophysics Data System (ADS)
Dok, A.; Fukuoka, H.; Hong, Y.
2012-04-01
Early warning system (EWS) is the most effective method in saving lives and reducing property damages resulted from the catastrophic landslides if properly implemented in populated areas of landslide-prone nations. For predicting the occurrence of landslides, it requires examination of empirical relationship between rainfall characteristics and past landslide occurrence. In developed countries like Japan and the US, precipitation is monitored by rain radars and ground-based rain gauge matrix. However, in developing regions like Southeast Asian countries, very limited number of rain gauges is available, and there is no implemented methodology for issuing effective warming of landslides yet. Correspondingly, satellite precipitation monitoring could be therefore a possible and promising solution for launching landslide quasi-real-time early warning system in those countries. It is due to the fact that TMPA (TRMM Multi-satellite Precipitation Analysis) can provides a globally calibration-based sequential scheme for combining precipitation estimates from multiple satellites, and gauge analyses where feasible, at fine scales (3-hourly with 0.25°x0.25° spatial resolution). It is available both after and in quasi-real time, calibrated by TRMM Combined Instrument and TRMM Microwave Imager precipitation product. However, validation of ground based rain gauge and TRMM satellite data in the vulnerable regions is still not yet operative. Snake-line/Critical-line and Soil Water Index (SWI) are used for issuing warning of landslide occurrence in Japan; whereas, Caine criterion is preferable in Europe and western nations. Herewith, it presents rainfall behavior which took place in Beichuan city (located on the 2008 Chinese Wenchuan earthquake fault), Hofu and Shobara cities in Japan where localized heavy rainfall attacked in 2009 and 2010, respectively, from TRMM 3B42RT correlated with ground based rain gauge data. The 1-day rainfall intensity and 15-day cumulative rainfall (snake line) were independently plotted to investigate the impact of short-term rainfall intensity and accumulated effective rainfall volume respectively for obtaining some probabilistic threshold. Japanese SWI was also tested to distribute threshold regarding to highly nonlinear rainfall patterns in predicting the landslide occurrence through the plot of total water of 3 serial tank models and daily precipitation. As a result, the snake line plots using TMPA work well for landslide warning in the selected cities; while SWI plots shows unusual peak value on the day of the debris flow occurrence. Graph of daily precipitation vs SWI implies possible zone of critical line, and second peak appearance 1 day before, indicating possibility of early warning.
Earthquake Early Warning and Public Policy: Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Goltz, J. D.; Bourque, L.; Tierney, K.; Riopelle, D.; Shoaf, K.; Seligson, H.; Flores, P.
2003-12-01
Development of an earthquake early warning capability and pilot project were objectives of TriNet, a 5-year (1997-2001) FEMA-funded project to develop a state-of-the-art digital seismic network in southern California. In parallel with research to assemble a protocol for rapid analysis of earthquake data and transmission of a signal by TriNet scientists and engineers, the public policy, communication and educational issues inherent in implementation of an earthquake early warning system were addressed by TriNet's outreach component. These studies included: 1) a survey that identified potential users of an earthquake early warning system and how an earthquake early warning might be used in responding to an event, 2) a review of warning systems and communication issues associated with other natural hazards and how lessons learned might be applied to an alerting system for earthquakes, 3) an analysis of organization, management and public policy issues that must be addressed if a broad-based warning system is to be developed and 4) a plan to provide earthquake early warnings to a small number of organizations in southern California as an experimental prototype. These studies provided needed insights into the social and cultural environment in which this new technology will be introduced, an environment with opportunities to enhance our response capabilities but also an environment with significant barriers to overcome to achieve a system that can be sustained and supported. In this presentation we will address the main public policy issues that were subjects of analysis in these studies. They include a discussion of the possible division of functions among organizations likely to be the principle partners in the management of an earthquake early warning system. Drawing on lessons learned from warning systems for other hazards, we will review the potential impacts of false alarms and missed events on warning system credibility, the acceptability of fully automated warning systems and equity issues associated with possible differential access to warnings. Finally, we will review the status of legal authorities and liabilities faced by organizations that assume various warning system roles and possible approaches to setting up a pilot project to introduce early warning. Our presentation will suggest that introducing an early warning system requires multi-disciplinary and multi-agency cooperation and thoughtful discussion among organizations likely to be providers and participants in an early warning system. Recalling our experience with earthquake prediction, we will look at early warning as a promising but unproven technology and recommend moving forward with caution and patience.
Given, Douglas D.; Cochran, Elizabeth S.; Heaton, Thomas; Hauksson, Egill; Allen, Richard; Hellweg, Peggy; Vidale, John; Bodin, Paul
2014-01-01
Earthquake Early Warning (EEW) systems can provide as much as tens of seconds of warning to people and automated systems before strong shaking arrives. The United States Geological Survey (USGS) and its partners are developing such an EEW system, called ShakeAlert, for the West Coast of the United States. This document describes the technical implementation of that system, which leverages existing stations and infrastructure of the Advanced National Seismic System (ANSS) regional networks to achieve this new capability. While significant progress has been made in developing the ShakeAlert early warning system, improved robustness of each component of the system and additional testing and certification are needed for the system to be reliable enough to issue public alerts. Major components of the system include dense networks of ground motion sensors, telecommunications from those sensors to central processing systems, algorithms for event detection and alert creation, and distribution systems to alert users. Capital investment costs for a West Coast EEW system are projected to be $38.3M, with additional annual maintenance and operations totaling $16.1M—in addition to current ANSS expenditures for earthquake monitoring. An EEW system is complementary to, but does not replace, other strategies to mitigate earthquake losses. The system has limitations: false and missed alerts are possible, and the area very near to an earthquake epicenter may receive little or no warning. However, such an EEW system would save lives, reduce injuries and damage, and improve community resilience by reducing longer-term economic losses for both public and private entities.
Tipping point analysis of seismological data
NASA Astrophysics Data System (ADS)
Livina, Valerie N.; Tolkova, Elena
2014-05-01
We apply the tipping point toolbox [1-7] to study sensor data of pressure variations and vertical velocity of the sea floor after two seismic events: 21 October 2010, M6.9, D10km (California) and 11 March 2011, M9.0, D30km (Japan). One type of datasets was measured by nano-resolution pressure sensor [8], while the other, for comparison, by a co-located ocean bottom seismometer. Both sensors registered the seismic wave, and we investigated the early warning and detection signals of the wave arrival for possible application with a remote and cabled tsunami warning detector network (NOAA DART system and Japan Trench Tsunami Observation System). We study the early warning and detection signals of the wave arrival using methodology that combines degenerate fingerprinting and potential analysis techniques for anticipation, detection and forecast of tipping points in a dynamical system. Degenerate fingerprinting indicator is a dynamically derived lag-1 autocorrelation, ACF (or, alternatively, short-range scaling exponent of Detrended Fluctuation Analysis, DFA [1]), which shows short-term memory in a series. When such values rise monotonically, this indicates an upcoming transition or bifurcation in a series and can be used for early warning signals analysis. The potential analysis detects a transition or bifurcation in a series at the time when it happens, which is illustrated in a special contour plot mapping the potential dynamics of the system [2-6]. The methodology has been extensively tested on artificial data and on various geophysical, ecological and industrial sensor datasets [2-5,7], and proved to be applicable to trajectories of dynamical systems of arbitrary origin [9]. In this seismological application, we have obtained early warning signals in the described series using ACF- and DFA-indicators and detected the Rayleigh wave arrival in the potential contour plots. In the case of the event in 2010, the early warning signal starts appearing about 2 min before the first peak of the Rayleigh train is detected by the sensor, whereas in the case of event of 2011, the early warning signal appears closer to the peak arrival, within 1 min. The different strength of early warning signals of the Rayleigh trains may be due to different depths of the events (10 and 30 km), which we plan to test in further analysis. References: [1] Livina and Lenton, GRL 2007; [2] Livina et al, Climate of the Past 2010; [3] Livina et al, Climate Dynamics 2011; [4] Livina et al, Physica A 2012; [5] Livina and Lenton, Cryosphere 2013; [6] Livina et al, Physica A 2013; [7] Livina et al, Journal of Civil Structural Health Monitoring, in press; [8] Tolkova and Schaad, arXiv:1401.0096v1; [9] Vaz Martins et al, PRE 2010.
Drought Monitoring and Forecasting: Experiences from the US and Africa
NASA Astrophysics Data System (ADS)
Sheffield, Justin; Chaney, Nate; Yuan, Xing; Wood, Eric
2013-04-01
Drought has important but very different consequences regionally due to differences in vulnerability. These differences derive from variations in exposure related to climate variability and change, sensitivity of local populations, and coping capacity at all levels. Managing the risk of drought impacts relies on a variety of measures to reduce vulnerability that includes forewarning of drought development through early-warning systems. Existing systems rely on a variety of observing systems from satellites to local observers, modeling tools, and data dissemination methods. They range from sophisticated state-of-the-art systems to simple ground reports. In some regions, systems are virtually non-existent due to limited national capacity. This talk describes our experiences in developing and implementing drought monitoring and seasonal forecast systems in the US and sub-Saharan Africa as contrasting examples of the scientific challenges and user needs in developing early warning systems. In particular, early warning can help improve livelihoods based on subsistence farming in sub-Saharan Africa; whist reduction of economic impacts is generally foremost in the US. For the US, our national drought monitoring and seasonal forecast system has been operational for over 8 years and provides near real-time updates on hydrological states at ~12km resolution and hydrological forecasts out to 9 months. Output from the system contributes to national assessments such as from the NOAA Climate Prediction Center (CPC) and the US National Drought Monitor (USDM). For sub-Saharan Africa, our experimental drought monitoring system was developed as a translation of the US system but presents generally greater challenges due to, for example, lack of ground data and unique user needs. The system provides near real-time updates based on hydrological modeling and satellite based precipitation estimates, and has recently been augmented by a seasonal forecast component. We discuss the differences in experiences in development and implementation between the two systems in terms of the scientific challenges and the utility of the systems to stakeholders, for whom the information must be relevant to local conditions and needs.
Data analysis protocol for using resistivity array as an early-warning wastewater pond leak detector
USDA-ARS?s Scientific Manuscript database
Typically, holding ponds are used to control runoff from concentrated animal feeding operations. The integrity of these holding ponds has come under increased scrutiny since subsurface leakage has the potential to affect soil and groundwater quality. Traditionally, ponds are monitored by installin...
77 FR 24960 - Agency Forms Undergoing Paperwork Reduction Act Review
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention [30Day-12-0010... Description CDC has been monitoring the occurrence of serious birth defects and genetic diseases in Atlanta... early warning system for new teratogens. In 1997, the Birth Defects Risk Factor Surveillance (BDRFS...
Since the terrorist attacks on the United States on September 11, 2001, the safety and security of the United States drinking water distribution systems has been reassessed. Several chemical and biological agents have been identified that could constitute a credible threat agains...
Vermont management in focal areas
Judy Rosovsky; Bruce L. Parker; Luke Curtis
1991-01-01
Following the 1979 outbreak of gypsy moths Lymantria dispar L. in Vermont, state personnel began monitoring a number of focal areas for signs of increase in gypsy moth populations. In 1986 data from this early warning system indicated an incipient outbreak. We took advantage of this increase to test an experimental management technique. Would...
NASA Astrophysics Data System (ADS)
Zakhidova, D. V.; Kadyrhodjaev, A.; Scientific Team Of Hydroengeo Institute On Natural Hazards
2010-12-01
Well-timed warning of the population about possible landslide threat is one of the main positions in order to provide safe and stable country development. The system of monitoring over dangerous geological processes includes such components, as observation, forecast, control and management. Aspects of forecasting take special place. Having wide row of observations there can be possible to reveal some regularity of the phenomena, basing on which, it is possible to proceed forecasting. We looked through many approaches of forecasting that are used in different countries. The analysis of the available work has allowed to draw up a conclusion that while referring to the question of landslide forecasting, it is necessary to approach in system form, taking into account interacting components of the nature. The study of landslide processes has shown that these processes lies within the framework of engineering-geological directions of the science and also interacts with tectonics, geomorphology, hydrogeology, hydrology, climate change, technogenesis and etc. Thereby, the necessity of system approach, achievements of modern science and technology the most expedient approach to make a decision at landslide forecasting is probabilistic-statistical method with complex use of geological and satellite data, specific images processed through geoinformation systems. In this connection, probabilistic-statistical approach, reflecting natural characteristics of interacting natural system, allows to take into account multi-factored processes of landslide activations. Among the many factors, influencing on landslide activation, there exist ones that are not amenable to numerical feature. The parameters of these factors have descriptive, qualitative, rather than quantitative nature. Leaving these factors with lack of attention is absolutely not reasonable. Proposed approach has one more advantage, which allows taking into account not only numerical, but also non-numeric parameters. Combination of multidisciplinary, systematic feature, multifactorness of the account, probabilistic and statistical methods of the calculation, complex use of geological and satellite data, using modern technology processing and analysis of information - all these aspects were collected in one at proposed by authors approach to solve the question of defining the area of possible landslide activation. Proposed by authors method could be a part of the monitoring system for early warning of landslide activation. Thus, the authors propose to initialize the project “System development over the monitoring for the purpose of early warning of population from the threat of landslides”. In the process of project implementation there to be revealed such results like: 1. System of Geo-indicators in order to early warn quick-running landslide processes. 2. United interconnected system for remote, surface and underground types of observations over Geo-indicators. 3. Notification system of population about forthcoming threat by means of alerts, light signals, mobilization of municipalities and related ministries. In the result of project implementation there considered to reveal economic, technical, and social outputs.
Climate Change Implications and Use of Early Warning Systems for Global Dust Storms
NASA Astrophysics Data System (ADS)
Harriman, L.
2014-12-01
Increased changes in land cover and global climate have led to increased frequency and/or intensity of dust storms in some regions of the world. Early detection and warning of dust storms, in conjunction with effective and widespread information broadcasts, will be essential to the prevention and mitigation of future risks and impacts to people and the environment. Since frequency and intensity of dust storms can vary from region to region, there is a demonstrated need for more research to be conducted over longer periods of time to analyze trends of dust storm events [1]. Dust storms impact their origin area, but also land, water and people a great distance away from where dust finally settles [2, 3]. These transboundary movements and accompanying impacts further warrant the need for global collaboration to help predict the onset, duration and path of a dust storm. Early warning systems can help communicate when a dust storm is occurring, the projected intensity of the dust storm and its anticipated physical impact over a particular geographic area. Development of regional dust storm models, such as CUACE/Dust for East Asia, and monitoring networks, like the Sand and Dust Storm Warning Network operated by the World Meteorological Organization, and the use of remote sensing and satellite imagery derived products [4], including MODIS, are currently being incorporated into early warning and monitoring initiatives. However, to increase future certainty of impacts of dust storms on vulnerable populations and ecosystems, more research is needed to analyze the influences of human activities, seasonal variations and long-term climatic patterns on dust storm generation, movement and impact. Sources: [1] Goudie, A.S. (2009), Dust storms: recent developments, J Environ. Manage., 90. [2] Lee, H., and Liu, C. (2004), Coping with dust storm events: information, impacts, and policymaking in Taiwan, TAO, 15(5). [3] Marx, S.K., McGowan, H.A., and Balz, K.S. (2009), Long-range dust transport from eastern Australia: a proxy for Holocene aridity and ENSO-type climate variability, Earth Planet Sci. Lett., 282. [4] Kimura, R. (2012), Factors contributing to dust storms in source regions producing the yellow-sand phenomena observed in Japan from 1993 to 2002, J. Arid Environ. 80
Liu, Yan; Xu, Zhen-Jun
2013-01-01
As a high-risk subindustry involved in construction projects, highway construction safety has experienced major developments in the past 20 years, mainly due to the lack of safe early warnings in Chinese construction projects. By combining the current state of early warning technology with the requirements of the State Administration of Work Safety and using case-based reasoning (CBR), this paper expounds on the concept and flow of highway construction safety early warnings based on CBR. The present study provides solutions to three key issues, index selection, accident cause association analysis, and warning degree forecasting implementation, through the use of association rule mining, support vector machine classifiers, and variable fuzzy qualitative and quantitative change criterion modes, which fully cover the needs of safe early warning systems. Using a detailed description of the principles and advantages of each method and by proving the methods' effectiveness and ability to act together in safe early warning applications, effective means and intelligent technology for a safe highway construction early warning system are established. PMID:24191134
Liu, Yan; Yi, Ting-Hua; Xu, Zhen-Jun
2013-01-01
As a high-risk subindustry involved in construction projects, highway construction safety has experienced major developments in the past 20 years, mainly due to the lack of safe early warnings in Chinese construction projects. By combining the current state of early warning technology with the requirements of the State Administration of Work Safety and using case-based reasoning (CBR), this paper expounds on the concept and flow of highway construction safety early warnings based on CBR. The present study provides solutions to three key issues, index selection, accident cause association analysis, and warning degree forecasting implementation, through the use of association rule mining, support vector machine classifiers, and variable fuzzy qualitative and quantitative change criterion modes, which fully cover the needs of safe early warning systems. Using a detailed description of the principles and advantages of each method and by proving the methods' effectiveness and ability to act together in safe early warning applications, effective means and intelligent technology for a safe highway construction early warning system are established.
Study on Early-Warning System of Cotton Production in Hebei Province
NASA Astrophysics Data System (ADS)
Zhang, Runqing; Ma, Teng
Cotton production plays an important role in Hebei. It straightly influences cotton farmers’ life, agricultural production and national economic development as well. In recent years, due to cotton production frequently fluctuating, two situations, “difficult selling cotton” and “difficult buying cotton” have alternately occurred, and brought disadvantages to producers, businesses and national finance. Therefore, it is very crucial to research the early warning of cotton production for solving the problem of cotton production’s frequent fluctuation and ensuring the cotton industry’s sustainable development. This paper founds a signal lamp model of early warning through employing time-difference correlation analysis method to select early-warning indicators and statistical analysis method associated with empirical analysis to determine early-warning limits. Finally, it not only obtained warning conditions of cotton production from 1993 to 2006 and forecast 2007’s condition, but also put forward corresponding countermeasures to prevent cotton production from fluctuating. Furthermore, an early-warning software of cotton production is completed through computer programming on the basis of the early warning model above.
Implementing Obstetric Early Warning Systems.
Friedman, Alexander M; Campbell, Mary L; Kline, Carolyn R; Wiesner, Suzanne; D'Alton, Mary E; Shields, Laurence E
2018-04-01
Severe maternal morbidity and mortality are often preventable and obstetric early warning systems that alert care providers of potential impending critical illness may improve maternal safety. While literature on outcomes and test characteristics of maternal early warning systems is evolving, there is limited guidance on implementation. Given current interest in early warning systems and their potential role in care, the 2017 Society for Maternal-Fetal Medicine (SMFM) Annual Meeting dedicated a session to exploring early warning implementation across a wide range of hospital settings. This manuscript reports on key points from this session. While implementation experiences varied based on factors specific to individual sites, common themes relevant to all hospitals presenting were identified. Successful implementation of early warnings systems requires administrative and leadership support, dedication of resources, improved coordination between nurses, providers, and ancillary staff, optimization of information technology, effective education, evaluation of and change in hospital culture and practices, and support in provider decision-making. Evolving data on outcomes on early warning systems suggest that maternal risk may be reduced. To effectively reduce maternal, risk early warning systems that capture deterioration from a broad range of conditions may be required in addition to bundles tailored to specific conditions such as hemorrhage, thromboembolism, and hypertension.
NASA Astrophysics Data System (ADS)
Manconi, A.; Giordan, D.
2015-07-01
We apply failure forecast models by exploiting near-real-time monitoring data for the La Saxe rockslide, a large unstable slope threatening Aosta Valley in northern Italy. Starting from the inverse velocity theory, we analyze landslide surface displacements automatically and in near real time on different temporal windows and apply straightforward statistical methods to obtain confidence intervals on the estimated time of failure. Here, we present the result obtained for the La Saxe rockslide, a large unstable slope located in Aosta Valley, northern Italy. Based on this case study, we identify operational thresholds that are established on the reliability of the forecast models. Our approach is aimed at supporting the management of early warning systems in the most critical phases of the landslide emergency.
Nutritional status as an indicator of impending food stress*.
Galvin, K A
1988-06-01
Famine early warning systems benefit from a variety of indicators which together signal the initial stages of food stress for particular population groups. Anthropometry has been used as an indicator in early warning systems, but there are inherent problems in its use which should be understood. Using data from Turkana pastoralists of northwest Kenya, this paper discusses the problems of: time lag between food shortages and changes in body size and composition; use of reference points; accurate age assessment; and establishment of baseline data. Diet composition data are suggested to be an additional nutrition-oriented indicator of impending food stress and one in which problems associated with anthropometry are not inherent. Both measures may be useful in monitoring a population, but their strengths and weaknesses should be appreciated.
NASA Astrophysics Data System (ADS)
Jackson, Michael; Zimakov, Leonid; Moessmer, Matthias
2015-04-01
Scientific GNSS networks are moving towards a model of real-time data acquisition, epoch-by-epoch storage integrity, and on-board real-time position and displacement calculations. This new paradigm allows the integration of real-time, high-rate GNSS displacement information with acceleration and velocity data to create very high-rate displacement records. The mating of these two instruments allows the creation of a new, very high-rate (200 Hz) displacement observable that has the full-scale displacement characteristics of GNSS and high-precision dynamic motions of seismic technologies. It is envisioned that these new observables can be used for earthquake early warning studies, volcano monitoring, and critical infrastructure monitoring applications. Our presentation will focus on the characteristics of GNSS, seismic, and strong motion sensors in high dynamic environments, including historic earthquakes replicated on a shake table over a range of displacements and frequencies. We will explore the optimum integration of these sensors from a filtering perspective including simple harmonic impulses over varying frequencies and amplitudes and under the dynamic conditions of various earthquake scenarios. We will also explore the tradeoffs between various GNSS processing schemes including real-time precise point positioning (PPP) and real-time kinematic (RTK) as applied to seismogeodesy. In addition we will discuss implementation of a Rapid Seismic Event Notification System that provides quick delivery of digital data from seismic stations to the acquisition and processing center and a full data integrity model for real-time earthquake notification that provides warning prior to significant ground shaking.
Study of flash floods over some parts of Brazil using precipitation index
NASA Astrophysics Data System (ADS)
Souza, D.; de Souza, R. L. M.; Araujo, R.
2016-12-01
In Brazil, the main phenomena related to natural disasters are derived from the Earth's external dynamics such as floods and flash floods, landslides and storms, where the flash flood phenomenon causes the second highest number of victims, totaling more than 32% of deaths. Floods and flash floods are natural events often triggered by storms or long period of rains, usually associated with rising volume of rainfall on the watershed, leading the river to exceed its maximum. Whereas the occurrence of natural disasters in Brazil is increasing in recent years, the use of more accurate tools to aid in the monitoring of extreme hydrological events it becomes necessary, aiming to decrease the number of human and material losses. In this context, this paper aims to implement an early warning and monitoring system related to extreme precipitation values and hydrological processes. So, initially was studied flood events in the states of São Paulo and Paraná, aimed de determination of the characteristics of rainfall and atmosphere. Later it was used an indicator of precipitation based on the climatology, which indicates warning points on the drainage network related to extreme precipitation, which are obtained by remote sensing sources, for example, radar and satellite, and numerical weather prediction data of short and very short term. The results indicated that most of the flood events over the study area was related to rainfall of deep convection. The use of precipitation indicators also helped the monitoring and the early warning, showing this to be an excellent tool for applications related to flash floods.
Milner, Abby; Lewis, William J; Ellis, Charles
2008-01-01
The inclusion of stroke education modules early in medical school curricula has resulted in improved stroke knowledge in graduate physicians. The success of these programs suggests that allied health professions programs should also consider strategies to improve stroke knowledge in students preparing for allied health careers that also require knowledge of stroke risk factors and early warning signs. Currently, little is known about stroke knowledge in students enrolled in allied health professions programs. 208 first- and second-year students enrolled in allied health programs completed a survey of stroke risk factors and early warning signs of stroke. Risk factor knowledge - 99% identified smoking as a risk factor; 67% identified diabetes; 93% identified high cholesterol; 89% identified age; and 92% identified physical inactivity. Less than 50% of the students identified all 5 risk factors. There were no differences between first- and second-year students in risk factor knowledge. Early warning signs and first response knowledge - 89% recognized sudden confusion or trouble speaking; 94% recognized sudden facial, arm, or leg weakness; 65% recognized sudden vision loss; 82% recognized sudden trouble walking; and 73% recognized sudden headache as early warning signs of stroke. Eighty-one percent recognized calling 9-1-1 as the appropriate first action. However, only 25% recognized all five early warning signs and only 20% recognized all five early warning signs and would call 9-1-1 as the first action. There were differences between first- and second-year students in recognizing 3 of 5 early warning signs and appropriate first action to call 9-1-1. Most students recognized individual stroke risk factors and early warning signs but few recognized multiple risk factors and early warning signs of stroke.
DISTANT EARLY WARNING SYSTEM for Tsunamis - A wide-area and multi-hazard approach
NASA Astrophysics Data System (ADS)
Hammitzsch, Martin; Lendholt, Matthias; Wächter, Joachim
2010-05-01
The DEWS (Distant Early Warning System) [1] project, funded under the 6th Framework Programme of the European Union, has the objective to create a new generation of interoperable early warning systems based on an open sensor platform. This platform integrates OGC [2] SWE [3] compliant sensor systems for the rapid detection of hazardous events, like earthquakes, sea level anomalies, ocean floor occurrences, and ground displacements in the case of tsunami early warning. Based on the upstream information flow DEWS focuses on the improvement of downstream capacities of warning centres especially by improving information logistics for effective and targeted warning message aggregation for a multilingual environment. Multiple telecommunication channels will be used for the dissemination of warning messages. Wherever possible, existing standards have been integrated. The Command and Control User Interface (CCUI), a rich client application based on Eclipse RCP (Rich Client Platform) [4] and the open source GIS uDig [5], integrates various OGC services. Using WMS (Web Map Service) [6] and WFS (Web Feature Service) [7] spatial data are utilized to depict the situation picture and to integrate a simulation system via WPS (Web Processing Service) [8] to identify affected areas. Warning messages are compiled and transmitted in the OASIS [9] CAP (Common Alerting Protocol) [10] standard together with addressing information defined via EDXL-DE (Emergency Data Exchange Language - Distribution Element) [11]. Internal interfaces are realized with SOAP [12] web services. Based on results of GITEWS [13] - in particular the GITEWS Tsunami Service Bus [14] - the DEWS approach provides an implementation for tsunami early warning systems but other geological paradigms are going to follow, e.g. volcanic eruptions or landslides. Therefore in future also multi-hazard functionality is conceivable. The specific software architecture of DEWS makes it possible to dock varying sensors to the system and to extend the CCUI with hazard specific functionality. The presentation covers the DEWS project, the system architecture and the CCUI in conjunction with details of information logistics. The DEWS Wide Area Centre connecting national centres to allow the international communication and warning exchange is presented also. REFERENCES: [1] DEWS, www.dews-online.org [2] OGC, www.opengeospatial.org [3] SWE, www.opengeospatial.org/projects/groups/sensorweb [4] Eclipse RCP, www.eclipse.org/home/categories/rcp.php [5] uDig, udig.refractions.net [6] WMS, www.opengeospatial.org/standards/wms [7] WFS, www.opengeospatial.org/standards/wfs [8] WPS, www.opengeospatial.org/standards/wps [9] OASIS, www.oasis-open.org [10] CAP, www.oasis-open.org/specs/#capv1.1 [11] EDXL-DE, www.oasis-open.org/specs/#edxlde-v1.0 [12] SOAP, www.w3.org/TR/soap [13] GITEWS (German Indonesian Tsunami Early Warning System) is a project of the German Federal Government to aid the recon¬struction of the tsunami-prone Indian Ocean region, www.gitews.org [14] The Tsunami Service Bus is the GITEWS sensor system integration platform offering standardised services for the detection and monitoring of tsunamis
Carle, C; Alexander, P; Columb, M; Johal, J
2013-04-01
We designed and internally validated an aggregate weighted early warning scoring system specific to the obstetric population that has the potential for use in the ward environment. Direct obstetric admissions from the Intensive Care National Audit and Research Centre's Case Mix Programme Database were randomly allocated to model development (n = 2240) or validation (n = 2200) sets. Physiological variables collected during the first 24 h of critical care admission were analysed. Logistic regression analysis for mortality in the model development set was initially used to create a statistically based early warning score. The statistical score was then modified to create a clinically acceptable early warning score. Important features of this clinical obstetric early warning score are that the variables are weighted according to their statistical importance, a surrogate for the FI O2 /Pa O2 relationship is included, conscious level is assessed using a simplified alert/not alert variable, and the score, trigger thresholds and response are consistent with the new non-obstetric National Early Warning Score system. The statistical and clinical early warning scores were internally validated using the validation set. The area under the receiver operating characteristic curve was 0.995 (95% CI 0.992-0.998) for the statistical score and 0.957 (95% CI 0.923-0.991) for the clinical score. Pre-existing empirically designed early warning scores were also validated in the same way for comparison. The area under the receiver operating characteristic curve was 0.955 (95% CI 0.922-0.988) for Swanton et al.'s Modified Early Obstetric Warning System, 0.937 (95% CI 0.884-0.991) for the obstetric early warning score suggested in the 2003-2005 Report on Confidential Enquiries into Maternal Deaths in the UK, and 0.973 (95% CI 0.957-0.989) for the non-obstetric National Early Warning Score. This highlights that the new clinical obstetric early warning score has an excellent ability to discriminate survivors from non-survivors in this critical care data set. Further work is needed to validate our new clinical early warning score externally in the obstetric ward environment. Anaesthesia © 2013 The Association of Anaesthetists of Great Britain and Ireland.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Hargrove, William W.; Gasser, Gerald
2013-01-01
Forest threats across the US have become increasingly evident in recent years. Sometimes these have resulted in regionally evident disturbance progressions (e.g., from drought, bark beetle outbreaks, and wildfires) that can occur across multiyear durations and have resulted in extensive forest overstory mortality. In addition to stand replacement disturbances, other forests are subject to ephemeral, sometimes yearly defoliation from various insects and varying types and intensities of ephemeral damage from storms. Sometimes, after prolonged severe disturbance, signs of recovery in terms of Normalized Difference Vegetation Index (NDVI) can occur. The growing prominence and threat of forest disturbances in part have led to the formation and implementation of the 2003 Healthy Forest Restoration Act which mandated that national forest threat early warning system be developed and deployed. In response, the US Forest Service collaborated with NASA, DOE Oakridge National Laboratory, and the USGS Eros Data Center to build and roll-out the near real time ForWarn early warning system for monitoring regionally evident forest disturbances. Given the diversity of disturbance types, severities, and durations, ForWarn employs multiple historical baselines that are used with current NDVI to derive a suite of six forest change products that are refreshed every 8 days. ForWarn employs daily quarter kilometer MODIS NDVI data from the Aqua and Terra satellites, including MOD13 data for deriving historical baseline NDVIs and eMODIS 7 NDVI for compiling current NDVI. In doing so, the Time Series Product Tool and the Phenological Parameters Estimation Tool are used to temporally de-noise, fuse, and aggregate current and historical MODIS NDVIs into 24 day composites refreshed every 8 days with 46 dates of products per year. The 24 day compositing interval enables disturbances to be detected, while minimizing the frequency of residual atmospheric contamination. Forest change products are computed versus the previous 1, previous 3, and all previous years in the MODIS record for a given 24 day interval. Other "weekly" forest change products include one computed using an adaptive length compositing method for quicker detection of disturbances, two others that adjust for seasonal fluctuations in normal vegetation phenology (e.g., early versus late springs). This overall approach enables forest disturbance dynamics from a variety of regionally evident biotic and abiotic forest disturbances to be viewed and assessed through the calendar year. The change products are also being utilized for forest change trend analysis and for developing regional forest overstory mortality products. ForWarn's forest change products are used to alert forest health specialists about new forest disturbances. Such alerts are also typically based on available Landsat, aerial, and ground data as well as communications with forest health specialists and previous experience. ForWarn products have been used to detect and track many types of regional disturbances to multiple forest types, including defoliation from caterpillars and severe storms, as well as mortality from both biotic and abiotic agents (e.g., bark beetles, drought, fire, anthropogenic clearing). ForWarn offers products that could be combined with other geospatial data on forest biomass to assess forest disturbance carbon impacts within the conterminous US.
NASA Astrophysics Data System (ADS)
Humber, M. L.; Becker-Reshef, I.; Nordling, J.; Barker, B.; McGaughey, K.
2014-12-01
The GEOGLAM Crop Monitor's Crop Assessment Tool was released in August 2013 in support of the GEOGLAM Crop Monitor's objective to develop transparent, timely crop condition assessments in primary agricultural production areas, highlighting potential hotspots of stress/bumper crops. The Crop Assessment Tool allows users to view satellite derived products, best available crop masks, and crop calendars (created in collaboration with GEOGLAM Crop Monitor partners), then in turn submit crop assessment entries detailing the crop's condition, drivers, impacts, trends, and other information. Although the Crop Assessment Tool was originally intended to collect data on major crop production at the global scale, the types of data collected are also relevant to the food security and rangelands monitoring communities. In line with the GEOGLAM Countries at Risk philosophy of "foster[ing] the coordination of product delivery and capacity building efforts for national and regional organizations, and the development of harmonized methods and tools", a modified version of the Crop Assessment Tool is being developed for the USAID Famine Early Warning Systems Network (FEWS NET). As a member of the Countries at Risk component of GEOGLAM, FEWS NET provides agricultural monitoring, timely food security assessments, and early warnings of potential significant food shortages focusing specifically on countries at risk of food security emergencies. While the FEWS NET adaptation of the Crop Assessment Tool focuses on crop production in the context of food security rather than large scale production, the data collected is nearly identical to the data collected by the Crop Monitor. If combined, the countries monitored by FEWS NET and GEOGLAM Crop Monitor would encompass over 90 countries representing the most important regions for crop production and food security.
ERIC Educational Resources Information Center
Therriault, Susan Bowles; Heppen, Jessica; O'Cummings, Mindee; Fryer, Lindsay; Johnson, Amy
2010-01-01
This Early Warning System (EWS) Implementation Guide is a supporting document for schools and districts that are implementing the National High School Center's Early Warning System (EWS) Tool v2.0. Developed by the National High School Center at the American Institutes for Research (AIR), the guide and tool support the establishment and…
Performance analysis of landslide early warning systems at regional scale: the EDuMaP method
NASA Astrophysics Data System (ADS)
Piciullo, Luca; Calvello, Michele
2016-04-01
Landslide early warning systems (LEWSs) reduce landslide risk by disseminating timely and meaningful warnings when the level of risk is judged intolerably high. Two categories of LEWSs, can be defined on the basis of their scale of analysis: "local" systems and "regional" systems. LEWSs at regional scale (ReLEWSs) are used to assess the probability of occurrence of landslides over appropriately-defined homogeneous warning zones of relevant extension, typically through the prediction and monitoring of meteorological variables, in order to give generalized warnings to the public. Despite many studies on ReLEWSs, no standard requirements exist for assessing their performance. Empirical evaluations are often carried out by simply analysing the time frames during which significant high-consequence landslides occurred in the test area. Alternatively, the performance evaluation is based on 2x2 contingency tables computed for the joint frequency distribution of landslides and alerts, both considered as dichotomous variables. In all these cases, model performance is assessed neglecting some important aspects which are peculiar to ReLEWSs, among which: the possible occurrence of multiple landslides in the warning zone; the duration of the warnings in relation to the time of occurrence of the landslides; the level of the warning issued in relation to the landslide spatial density in the warning zone; the relative importance system managers attribute to different types of errors. An original approach, called EDuMaP method, is proposed to assess the performance of landslide early warning models operating at regional scale. The method is composed by three main phases: Events analysis, Duration Matrix, Performance analysis. The events analysis phase focuses on the definition of landslide (LEs) and warning events (WEs), which are derived from available landslides and warnings databases according to their spatial and temporal characteristics by means of ten input parameters. The evaluation of time associated with the occurrence of landslide events (LE) in relation to the occurrence of warning events (WE) in their respective classes is a fundamental step to determine the duration matrix elements. On the other hand the classification of LEs and WEs establishes the structure of the duration matrix. Indeed, the number of rows and columns of the matrix is equal to the number of classes defined for the warning and landslide events, respectively. Thus the matrix is not expressed as a 2x2 contingency and LEs and WEs are not expressed as dichotomous variables. The final phase of the method is the evaluation of the duration matrix based on a set of performance criteria assigning a performance meaning to the element of the matrix. To this aim different criteria can be defined, for instance employing an alert classification scheme derived from 2x2 contingency tables or assigning a colour code to the elements of the matrix in relation to their grade of correctness. Finally, performance indicators can be derived from the performance criteria to quantify successes and errors of the early warning models. EDuMaP has been already applied to different real case studies, highlighting the adaptability of the method to analyse the performance of structurally different ReLEWSs.
Systems and Sensors for Debris-flow Monitoring and Warning
Arattano, Massimo; Marchi, Lorenzo
2008-01-01
Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and non-structural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums, photocells, trip wires etc. Event warning systems for debris flows have a strong linkage with debris-flow monitoring that is carried out for research purposes: the same sensors are often used for both monitoring and warning, although warning systems have higher requirements of robustness than monitoring systems. The paper presents a description of the sensors employed for debris-flow monitoring and event warning systems, with attention given to advantages and drawbacks of different types of sensors. PMID:27879828
Application of the Risk-Based Early Warning Method in a Fracture-Karst Water Source, North China.
Guo, Yongli; Wu, Qing; Li, Changsuo; Zhao, Zhenhua; Sun, Bin; He, Shiyi; Jiang, Guanghui; Zhai, Yuanzheng; Guo, Fang
2018-03-01
The paper proposes a risk-based early warning considering characteristics of fracture-karst aquifer in North China and applied it in a super-large fracture-karst water source. Groundwater vulnerability, types of land use, water abundance, transmissivity and spatial temporal variation of groundwater quality were chosen as indexes of the method. Weights of factors were obtained by using AHP method based on relative importance of factors, maps of factors were zoned by GIS, early warning map was conducted based on extension theory with the help of GIS, ENVI+IDL. The early warning map fused five factors very well, serious and tremendous warning areas are mainly located in northwest and east with high or relatively high transmissivity and groundwater pollutant loading, and obviously deteriorated or deteriorated trend of petroleum. The early warning map warns people where more attention should be paid, and the paper guides decision making to take appropriate protection actions in different warning levels areas.
Summary of the stakeholders workshop to develop a National Volcano Early Warning System (NVEWS)
Guffanti, Marianne; Scott, William E.; Driedger, Carolyn L.; Ewert, John W.
2006-01-01
The importance of investing in monitoring, mitigation, and preparedness before natural hazards occur has been amply demonstrated by recent disasters such as the Indian Ocean Tsunami in December 2004 and Hurricane Katrina in August 2005. Playing catch-up with hazardous natural phenomena such as these limits our ability to work with public officials and the public to lessen adverse impacts. With respect to volcanic activity, the starting point of effective pre-event mitigation is monitoring capability sufficient to detect and diagnose precursory unrest so that communities at risk have reliable information and sufficient time to respond to hazards with which they may be confronted. Recognizing that many potentially dangerous U.S. volcanoes have inadequate or no ground-based monitoring, the U.S Geological Survey (USGS) Volcano Hazards Program (VHP) and partners recently evaluated U.S. volcano-monitoring capabilities and published 'An Assessment of Volcanic Threat and Monitoring Capabilities in the United States: Framework for a National Volcano Early Warning System (NVEWS).' Results of the NVEWS volcanic threat and monitoring assessment are being used to guide long-term improvements to the national volcano-monitoring infrastructure operated by the USGS and affiliated groups. The NVEWS report identified the need to convene a workshop of a broad group of stakeholders--such as representatives of emergency- and land-management agencies at the Federal, State, and local levels and the aviation sector--to solicit input about implementation of NVEWS and their specific information requirements. Accordingly, an NVEWS Stakeholders Workshop was held in Portland, Oregon, on 22-23 February 2006. A summary of the workshop is presented in this document.
Genocide: The Ultimate Human Rights Problem.
ERIC Educational Resources Information Center
Charny, Israel W.
1987-01-01
Argues for a more humanistic definition of genocide; one that includes the intentional murder of a group of human beings on the basis of any shared identity. Identifies the Holocaust as the world's major genocidal event but urges recognition of the Armenian, Cambodian, and similar tragedies. Proposes an early-warning organization to monitor and…
49. View of waveguide system entering building no. 105 (typical ...
49. View of waveguide system entering building no. 105 (typical of all radar scanner buildings), showing testing connection points and monitoring equipment. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
USDA-ARS?s Scientific Manuscript database
Background: Continuous monitoring of influenza viruses circulating in the natural reservoir in wild birds is important for early warning and forecasting of epizootic and epidemiological situation with influenza. These studies allow getting much valuable information on the environmental features of ...
The research presented here is a continuation of work designed to further the science of available and developing online toxicity monitors(OTMs) and how they may be most effectively deployed in a watershed management plan and/or water quality early warning system. Source waters o...
The research presented here was designed to further the science of available and developing continuous, automated water quality monitors and how they may be most effectively deployed in a watershed management plan and/or water quality early warning system (WQEWS). Source waters ...
The research presented here is a continuation of work designed to further the science of available and developing continuous, automated water quality monitors and how they may be most effectively deployed in a watershed management plan and/or water quality early warning system (W...
NASA Technical Reports Server (NTRS)
Spruce, Joseph; Hargrove, William W.; Gasser, Jerry; Smoot, James; Ross, Kenton
2010-01-01
This presentation discusses an effort to use select MODIS phenological products for forest disturbance monitoring at the regional and CONUS scales. Forests occur on 1/3 of the U.S. land base and include regionally prevalent forest disturbances that can threaten forest sustainability. Regional and CONUS forest disturbance monitoring is needed for a national forest threat early warning system being developed by the USDA Forest Service with help from NASA, ORNL, and USGS. MODIS NDVI phenology products are being used to develop forest disturbance monitoring capabilities of this EWS.
Lacroix, C; Coquillé, V; Guyomarch, J; Auffret, M; Moraga, D
2014-09-15
mRNA biomarkers are promising tools for environmental health assessment and reference genes are needed to perform relevant qPCR analyses in tissue samples of sentinel species. In the present study, potential reference genes and mRNA biomarkers were tested in the gills and digestive glands of native and caged mussels (Mytilus spp.) exposed to harbor pollution. Results highlighted the difficulty to find stable reference genes in wild, non-model species and suggested the use of normalization indices instead of single genes as they exhibit a higher stability. Several target genes were found differentially expressed between mussel groups, especially in gills where cyp32, π-gst and CuZn-sod mRNA levels could be biomarker candidates. Multivariate analyses confirmed the ability of mRNA levels to highlight site-effects and suggested the use of several combined markers instead of individual ones. These findings support the use of qPCR technology and mRNA levels as early-warning biomarkers in marine monitoring programs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Yingying; Wang, Juncheng; Vorontsov, A M; Hou, Guangli; Nikanorova, M N; Wang, Hongliang
2014-01-01
The international marine ecological safety monitoring demonstration station in the Yellow Sea was developed as a collaborative project between China and Russia. It is a nonprofit technical workstation designed as a facility for marine scientific research for public welfare. By undertaking long-term monitoring of the marine environment and automatic data collection, this station will provide valuable information for marine ecological protection and disaster prevention and reduction. The results of some initial research by scientists at the research station into predictive modeling of marine ecological environments and early warning are described in this paper. Marine ecological processes are influenced by many factors including hydrological and meteorological conditions, biological factors, and human activities. Consequently, it is very difficult to incorporate all these influences and their interactions in a deterministic or analysis model. A prediction model integrating a time series prediction approach with neural network nonlinear modeling is proposed for marine ecological parameters. The model explores the natural fluctuations in marine ecological parameters by learning from the latest observed data automatically, and then predicting future values of the parameter. The model is updated in a "rolling" fashion with new observed data from the monitoring station. Prediction experiments results showed that the neural network prediction model based on time series data is effective for marine ecological prediction and can be used for the development of early warning systems.
Performance evaluation of the national early warning system for shallow landslides in Norway
NASA Astrophysics Data System (ADS)
Dahl, Mads-Peter; Piciullo, Luca; Devoli, Graziella; Colleuille, Hervé; Calvello, Michele
2017-04-01
As a consequence of the increased number of rainfall-and snowmelt-induced landslides (debris flows, debris slides, debris avalanches and slush flows) occurring in Norway, a national landslide early warning system (EWS) has been developed for monitoring and forecasting the hydro-meteorological conditions potentially necessary of triggering slope failures. The system, operational since 2013, is managed by the Norwegian Water Resources and Energy Directorate (NVE) and has been designed in cooperation with the Norwegian Public Road Administration (SVV), the Norwegian National Rail Administration (JBV) and the Norwegian Meteorological Institute (MET). Decision-making in the EWS is based upon hazard threshold levels, hydro-meteorological and real-time landslide observations as well as landslide inventory and susceptibility maps. Hazard threshold levels have been obtained through statistical analyses of historical landslides and modelled hydro-meteorological parameters. Daily hydro-meteorological conditions such as rainfall, snowmelt, runoff, soil saturation, groundwater level and frost depth have been derived from a distributed version of the hydrological HBV-model. Two different landslide susceptibility maps are used as supportive data in deciding daily warning levels. Daily alerts are issued throughout the country considering variable warning zones. Warnings are issued once per day for the following 3 days with an update possibility later during the day according to the information gathered by the monitoring variables. The performance of the EWS has been evaluated applying the EDuMaP method. In particular, the performance of warnings issued in Western Norway, in the period 2013-2014 has been evaluated using two different landslide datasets. The best performance is obtained for the smallest and more accurate dataset. Different performance results may be observed as a function of changing the landslide density criterion, Lden(k), (i.e., thresholds considered to differentiate among classes of landslide events) used as an input parameter within the EDuMaP method. To investigate this issue, a parametric analysis has been conducted; the results of the analysis show clear differences among computed performances when absolute or relative landslide density criteria are considered.
NASA Astrophysics Data System (ADS)
Sabeur, Z. A.; Wächter, J.; Middleton, S. E.; Zlatev, Z.; Häner, R.; Hammitzsch, M.; Loewe, P.
2012-04-01
The intelligent management of large volumes of environmental monitoring data for early tsunami warning requires the deployment of robust and scalable service oriented infrastructure that is supported by an agile knowledge-base for critical decision-support In the TRIDEC project (TRIDEC 2010-2013), a sensor observation service bus of the TRIDEC system is being developed for the advancement of complex tsunami event processing and management. Further, a dedicated TRIDEC system knowledge-base is being implemented to enable on-demand access to semantically rich OGC SWE compliant hydrodynamic observations and operationally oriented meta-information to multiple subscribers. TRIDEC decision support requires a scalable and agile real-time processing architecture which enables fast response to evolving subscribers requirements as the tsunami crisis develops. This is also achieved with the support of intelligent processing services which specialise in multi-level fusion methods with relevance feedback and deep learning. The TRIDEC knowledge base development work coupled with that of the generic sensor bus platform shall be presented to demonstrate advanced decision-support with situation awareness in context of tsunami early warning and crisis management.
Ballistic Missile Early Warning System Clear Air Force Station, ...
Ballistic Missile Early Warning System - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
NASA Astrophysics Data System (ADS)
Pandeya, B.; Uprety, M.; Paul, J. D.; Dugar, S.; Buytaert, W.
2017-12-01
With a robust and affordable monitoring system, a wealth of hydrological data can be generated which is fundamental to predict flood risks more accurately. Since the Himalayan region is characterized by data deficiency and unpredictable hydrological behaviour, a locally based participatory monitoring system is a necessity to deal with frequently occurring flooding incidents. A gap in hydrological data is the main bottleneck for establishing any effective flood early warning system. Therefore, an alternative and affordable technical solution can only overcome the situation and support flood risks management activities in the region. In coordination with local people, government authorities and NGOs, we have established a citizen science monitoring system, in which we tested two types of low-cost sensors, ultrasound and LiDAR, in the Karnali river basin of Nepal. The results confirm the robustness of sensor data when compared to conventional radar system based monitoring data. Additionally, our findings also confirmed that the ultrasound sensors are only useful to small rivers whereas the LiDAR sensors are suitable to large river basins with highly variable local climatic conditions. Since the collected sensor data can be directly used in operational flood early warning system in the basin, an opportunity has been created for integrating both affordable technology and citizen science into existing hydrological monitoring practice. Finally, a successful integration could become a testament for upscaling the practice and building flood risk resilient communities in the region.
Potential coping capacities to avoid tsunamis in Mentawai
NASA Astrophysics Data System (ADS)
Panjaitan, Berton; Gomez, Christopher; Pawson, Eric
2017-07-01
In 2010 a tsunamigenic earthquake triggered tsunami waves reaching the Mentawai archipelago in less than ten minutes. Similar events can occur any time as seismic scholars predict enormous energy remains trapped on the Sunda Megathrust - approximately 30 km offshore from the archipelago. Therefore, the local community of Mentawai is vulnerable to tsunami hazards. In the absence of modern technology to monitor the sea surface interventions, existing strategies need to be improved. This study was based on a qualitative research and literature review about developing coping capacity on tsunami hazards for Mentawai. A community early-warning system is the main strategy to develop the coping capacity at the community level. This consists of risk knowledge, monitoring, warning dissemination, and capability response. These are interlocked and are an end-to-end effort. From the study, the availability of risk assessments and risk mappings were mostly not found at dusun, whereas they are effective to increase tsunami risk knowledge. Also, the monitoring of tsunami waves can be maximized by strengthening and expanding the community systems for the people to avoid the waves. Moreover, the traditional tools are potential to deliver warnings. Lastly, although the local government has provided a few public facilities to increase the response capability, the people often ignore them. Therefore, their traditional values should be revitalized.
Anderson, Ian
2016-03-01
There are several secondary care early warning scores which alert for severe illness including sepsis. None are specifically adjusted for primary care. A Primary Health Early Warning Score (PHEWS) is proposed which incorporates practical parameters from both secondary and primary care.
An early warning system for high climate sensitivity? (Invited)
NASA Astrophysics Data System (ADS)
Pierrehumbert, R.
2010-12-01
The scientific case for the clear and present danger of global warming has been unassailable at least since the release of the Charney Report more than thirty years ago, if not longer. While prompt action to begin decarbonizing energy systems could still head off much of the potential warming, it is distinctly possible that emissions will continue unabated in the coming decades, leading to a doubling or more of pre-industrial carbon dioxide concentrations. At present, we are in the unenviable position of not even knowing how bad things will get if this scenario comes to pass, because of the uncertainty in climate sensitivity. If climate sensitivity is high, then the consequences will be dire, perhaps even catastrophic. As the world continues to warm in response to continued carbon dioxide emissions, will we at least be able to monitor the climate and provide an early warning that the planet is on a high-sensitivity track, if such turns out to be the case? At what point will we actually know the climate sensitivity? It has long been recognized that the prime contributor to uncertainty in climate sensitivity is uncertainty in cloud feedbacks. Study of paleoclimate and climate of the past century has not been able to resolve which models do cloud feedback most correctly, because of uncertainties in radiative forcing. In this talk, I will discuss monitoring requirements, and analysis techniques, that might have the potential to determine which climate models most faithfully represent climate feedbacks, and thus determine which models provide the best estimate of climate sensitivity. The endeavor is complicated by the distinction between transient climate response and equilibrium climate sensitivity. I will discuss the particular challenges posed by this issue, particularly in light of recent indications that the pattern of ocean heat storage may lead to different cloud feedbacks in the transient warming stage than apply once the system has reached equilibrium. Apart from this problem, the transient nature of climate response driven by increasing CO2 requires careful monitoring of ocean heat storage as well as top-of-atmosphere radiative budgets, if climate sensitivity is to be estimated. Water vapor feedback is not considered as uncertain as cloud feedback, but there is still a considerable potential for surprises. I will discuss microwave monitoring requirements for tracking water vapor feedback. At the other extreme, the longer term feedbacks that contribute to Earth System Sensitivity are even more uncertain than cloud feedbacks, particularly with regard to the terrestrial carbon cycle. Prospects for obtaining an early warning of a PETM-type organic carbon release seem bleak. Finally, I will discuss the particular challenge of obtaining an early warning of high climate sensitivity in the case that the climate system has a bifurcation.
NASA Astrophysics Data System (ADS)
Zhu, Feng; Hu, Xiaofeng; He, Xiaoyuan; Guo, Rui; Li, Kaiming; Yang, Lu
2017-11-01
In the military field, the performance evaluation of early-warning aircraft deployment or construction is always an important problem needing to be explored. As an effective approach of enterprise management and performance evaluation, Balanced Score Card (BSC) attracts more and more attentions and is studied more and more widely all over the world. It can also bring feasible ideas and technical approaches for studying the issue of the performance evaluation of the deployment or construction of early-warning aircraft which is the important component in early-warning detection system of systems (SoS). Therefore, the deep explored researches are carried out based on the previously research works. On the basis of the characteristics of space exploration and aerial detection effectiveness of early-warning detection SoS and the cardinal principle of BSC are analyzed simply, and the performance evaluation framework of the deployment or construction of early-warning aircraft is given, under this framework, aimed at the evaluation issue of aerial detection effectiveness of early-warning detection SoS with the cooperation efficiency factors of the early-warning aircraft and other land based radars, the evaluation indexes are further designed and the relative evaluation model is further established, especially the evaluation radar chart being also drawn to obtain the evaluation results from a direct sight angle. Finally, some practical computer simulations are launched to prove the validity and feasibility of the research thinking and technologic approaches which are proposed in the paper.
Dawkins, M S; Roberts, S J; Cain, R J; Nickson, T; Donnelly, C A
2017-05-20
Footpad dermatitis and hockburn are serious welfare and economic issues for the production of broiler (meat) chickens. The authors here describe the use of an inexpensive camera system that monitors the movements of broiler flocks throughout their lives and suggest that it is possible to predict, even in young birds, the cross-sectional prevalence at slaughter of footpad dermatitis and hockburn before external signs are visible. The skew and kurtosis calculated from the authors' camera-based optical flow system had considerably more power to predict these outcomes in the 50 flocks reported here than water consumption, bodyweight or mortality and therefore have the potential to inform improved flock management through giving farmers early warning of welfare issues. Further trials are underway to establish the generality of the results. British Veterinary Association.
Alaskan Air Defense and Early Warning Systems Clear Air ...
Alaskan Air Defense and Early Warning Systems - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
Application of a multi-channel system for continuous monitoring and an early warning system.
Lee, J H; Song, C H; Kim, B C; Gu, M B
2006-01-01
A multi-channel continuous toxicity monitoring system developed in our laboratory, based on two-stage mini-bioreactors, was successfully implemented in the form of computer-based data acquisition. The multi-channel system consists of a series of a two-stage minibioreactor systems connected by a fiber optic probe to a luminometer, and uses genetically engineered bioluminescent bacteria for the detection of the potential toxicity from the soluble chemicals. This system can be stably and continuously operated due to the separation of the culture reactor from the test reactor and accomplish easy and long-term monitoring without system shut down by abrupt inflows of severe polluting chemicals. Four different recombinant bioluminescent bacteria were used in different channels so that the modes of the samples toxicities can be reasonably identified and evaluated based upon the response signature of each channel. The bioluminescent signatures were delivered from four channels by switching one at once, while the data is automatically logged to an IBM compatible computer. We also achieved the enhancement of the system through the manipulation of the dilution rate and the use of thermo-lux fusion strains. Finally, this system is now being implemented to a drinking water reservoir and river for remote sensing as an early warning system.
A introduction of a Scientific Research Program on Chinese Drought
NASA Astrophysics Data System (ADS)
Li, Y.
2014-12-01
Drought is one of the major meteorological disasters, with high frequencies, wide distributions and serious conditions. It is one of the biggest impacts on global agricultural productions, ecological environment and socioeconomic sustainable developments. China is particularly one of the countries in the world with serious drought disasters. The goal of this project is improving the capabilities in drought monitoring and forecasting based on an in-depth theories of drought. The project will be implemented in the typical extreme drought area based on comprehensive and systemic observation network and numerical experiments It will show a complete feedback mechanism among the atmospheric, water, biological and other spheres for forming drought. First, the atmospheric droughts that leads to agriculture and hydrologic drought and the possible causes for these disasters will be explored using our observation data sets. Second, the capability of monitoring, forecasting and early warning for drought will be developed with numerical model (regional climate model and land surface model, etc.). Last but not the least, evaluation approaches for the risk of drought and the strategy of predicting/prohibiting the drought at regional scale will be proposed. Meanwhile, service system and information sharing platform of drought monitoring and early warning will be established to improve the technical level of drought disaster preparedness and response in China.
NASA Astrophysics Data System (ADS)
Alberti, Stefano; Battista Crosta, Giovanni; Rivolta, Carlo
2016-04-01
Rockslides are characterized by complex spatial and temporal evolution. Forecasting their behaviour is a hard task, due to non-linear displacement trends and the significant effects of seasonal or occasional events. The displacement rate and the landslide evolution are influenced by various factors like lithology, structural and hydrological settings, as well as meteo-climatic factors (e.g. snowmelt and rainfall). The nature of the relationships among these factors is clearly non linear, site specific and even specific to each sector that can be individuated within the main landslide mass. In this contribution, total displacement and displacement rate time series are extracted from Ground-based Interferometric synthetic aperture radar (GB-InSAR) surveys, monitoring of optical targets by total stations, a GPS network and multi-parametric borehole probes. Different Early Warning domains, characterized by different velocity regimes (slow to fast domains) and with different sensitivity to external perturbations (e.g. snowmelt and rainfall), have been identified in previous studies at the two sites. The Mont de La Saxe rockslide (ca. 8 x 106 m3) is located in the Upper Aosta Valley, and it has been intensively monitored since 2009 by the Valle D'Aosta Geological Survey. The Ruinon landslide (ca. 15 x 106 to 20 x 106 m3) is located in the Upper Valtellina (Lombardy region) and monitoring data are available starting since 2006 and have been provided by ARPA Lombardia. Both phenomena are alpine deep-seated rockslides characterized by different displacement velocity, from few centimetres to over 1 meter per year, and which have undergone exceptional accelerations during some specific events. We experiment the use of normal probability plots for the analysis of displacement rates of specific points belonging to different landslide sectors and recorded during almost ten years of monitoring. This analyses allow us to define: (i) values with a specific probability value expressed in terms of percentiles; (ii) values for which a specific change in behaviour is observed which could be associated to a specific type of triggering event (e.g. rainfall intensity, duration or amount; snowmelt amount) . These values could be used to support the choice of threshold values for the management of Early Warning System, by considering also the minimization of false alarms. The analyses have been performed by using data averaged over different time intervals so to study the effects of noise on the threshold values. Analyses of false alarm triggered by the choice of different threshold values (i.e. different percentiles) have been performed and analysed. This could be an innovative approach to define velocity thresholds of Early Warning system and to analyse the quantitative data derived from remote sensing monitoring and filed surveys, by linking them to both spatial and temporal changes.
Assessing the performance of regional landslide early warning models: the EDuMaP method
NASA Astrophysics Data System (ADS)
Calvello, M.; Piciullo, L.
2015-10-01
The paper proposes the evaluation of the technical performance of a regional landslide early warning system by means of an original approach, called EDuMaP method, comprising three successive steps: identification and analysis of the Events (E), i.e. landslide events and warning events derived from available landslides and warnings databases; definition and computation of a Duration Matrix (DuMa), whose elements report the time associated with the occurrence of landslide events in relation to the occurrence of warning events, in their respective classes; evaluation of the early warning model Performance (P) by means of performance criteria and indicators applied to the duration matrix. During the first step, the analyst takes into account the features of the warning model by means of ten input parameters, which are used to identify and classify landslide and warning events according to their spatial and temporal characteristics. In the second step, the analyst computes a time-based duration matrix having a number of rows and columns equal to the number of classes defined for the warning and landslide events, respectively. In the third step, the analyst computes a series of model performance indicators derived from a set of performance criteria, which need to be defined by considering, once again, the features of the warning model. The proposed method is based on a framework clearly distinguishing between local and regional landslide early warning systems as well as among correlation laws, warning models and warning systems. The applicability, potentialities and limitations of the EDuMaP method are tested and discussed using real landslides and warnings data from the municipal early warning system operating in Rio de Janeiro (Brazil).
Developments in real-time monitoring for geologic hazard warnings (Invited)
NASA Astrophysics Data System (ADS)
Leith, W. S.; Mandeville, C. W.; Earle, P. S.
2013-12-01
Real-time data from global, national and local sensor networks enable prompt alerts and warnings of earthquakes, tsunami, volcanic eruptions, geomagnetic storms , broad-scale crustal deformation and landslides. State-of-the-art seismic systems can locate and evaluate earthquake sources in seconds, enabling 'earthquake early warnings' to be broadcast ahead of the damaging surface waves so that protective actions can be taken. Strong motion monitoring systems in buildings now support near-real-time structural damage detection systems, and in quiet times can be used for state-of-health monitoring. High-rate GPS data are being integrated with seismic strong motion data, allowing accurate determination of earthquake displacements in near-real time. GPS data, combined with rainfall, groundwater and geophone data, are now used for near-real-time landslide monitoring and warnings. Real-time sea-floor water pressure data are key for assessing tsunami generation by large earthquakes. For monitoring remote volcanoes that lack local ground-based instrumentation, the USGS uses new technologies such as infrasound arrays and the worldwide lightning detection array to detect eruptions in progress. A new real-time UV-camera system for measuring the two dimensional SO2 flux from volcanic plumes will allow correlations with other volcano monitoring data streams to yield fundamental data on changes in gas flux as an eruption precursor, and how magmas de-gas prior to and during eruptions. Precision magnetic field data support the generation of real-time indices of geomagnetic disturbances (Dst, K and others), and can be used to model electrical currents in the crust and bulk power system. Ground-induced electrical current monitors are used to track those currents so that power grids can be effectively managed during geomagnetic storms. Beyond geophysical sensor data, USGS is using social media to rapidly detect possible earthquakes and to collect firsthand accounts of the impacts of natural disasters useful for social science studies. Monitoring of tweets in real-time, when analyzed statistically and geographically, can give a prompt indication of an earthquake, well before seismic networks in sparsely instrumented regions can locate an event and determine its magnitude. With more and more real-time data becoming available, new applications and products are inevitable.
Senay, Gabriel; Velpuri, Naga Manohar; Bohms, Stefanie; Budde, Michael; Young, Claudia; Rowland, James; Verdin, James
2015-01-01
Drought monitoring is an essential component of drought risk management. It is usually carried out using drought indices/indicators that are continuous functions of rainfall and other hydrometeorological variables. This chapter presents a few examples of how remote sensing and hydrologic modeling techniques are being used to generate a suite of drought monitoring indicators at dekadal (10-day), monthly, seasonal, and annual time scales for several selected regions around the world. Satellite-based rainfall estimates are being used to produce drought indicators such as standardized precipitation index, dryness indicators, and start of season analysis. The Normalized Difference Vegetation Index is being used to monitor vegetation condition. Several satellite data products are combined using agrohydrologic models to produce multiple short- and long-term indicators of droughts. All the data sets are being produced and updated in near-real time to provide information about the onset, progression, extent, and intensity of drought conditions. The data and products produced are available for download from the Famine Early Warning Systems Network (FEWS NET) data portal at http://earlywarning.usgs.gov. The availability of timely information and products support the decision-making processes in drought-related hazard assessment, monitoring, and management with the FEWS NET. The drought-hazard monitoring approach perfected by the U.S. Geological Survey for FEWS NET through the integration of satellite data and hydrologic modeling can form the basis for similar decision support systems. Such systems can operationally produce reliable and useful regional information that is relevant for local, district-level decision making.
Wuytack, Francesca; Meskell, Pauline; Conway, Aislinn; McDaid, Fiona; Santesso, Nancy; Hickey, Fergal G; Gillespie, Paddy; Raymakers, Adam J N; Smith, Valerie; Devane, Declan
2017-12-06
Changes to physiological parameters precede deterioration of ill patients. Early warning and track and trigger systems (TTS) use routine physiological measurements with pre-specified thresholds to identify deteriorating patients and trigger appropriate and timely escalation of care. Patients presenting to the emergency department (ED) are undiagnosed, undifferentiated and of varying acuity, yet the effectiveness and cost-effectiveness of using early warning systems and TTS in this setting is unclear. We aimed to systematically review the evidence on the use, development/validation, clinical effectiveness and cost-effectiveness of physiologically based early warning systems and TTS for the detection of deterioration in adult patients presenting to EDs. We searched for any study design in scientific databases and grey literature resources up to March 2016. Two reviewers independently screened results and conducted quality assessment. One reviewer extracted data with independent verification of 50% by a second reviewer. Only information available in English was included. Due to the heterogeneity of reporting across studies, results were synthesised narratively and in evidence tables. We identified 6397 citations of which 47 studies and 1 clinical trial registration were included. Although early warning systems are increasingly used in EDs, compliance varies. One non-randomised controlled trial found that using an early warning system in the ED may lead to a change in patient management but may not reduce adverse events; however, this is uncertain, considering the very low quality of evidence. Twenty-eight different early warning systems were developed/validated in 36 studies. There is relatively good evidence on the predictive ability of certain early warning systems on mortality and ICU/hospital admission. No health economic data were identified. Early warning systems seem to predict adverse outcomes in adult patients of varying acuity presenting to the ED but there is a lack of high quality comparative studies to examine the effect of using early warning systems on patient outcomes. Such studies should include health economics assessments.
New early warning system for gravity-driven ruptures based on codetection of acoustic signal
NASA Astrophysics Data System (ADS)
Faillettaz, J.
2016-12-01
Gravity-driven rupture phenomena in natural media - e.g. landslide, rockfalls, snow or ice avalanches - represent an important class of natural hazards in mountainous regions. To protect the population against such events, a timely evacuation often constitutes the only effective way to secure the potentially endangered area. However, reliable prediction of imminence of such failure events remains challenging due to the nonlinear and complex nature of geological material failure hampered by inherent heterogeneity, unknown initial mechanical state, and complex load application (rainfall, temperature, etc.). Here, a simple method for real-time early warning that considers both the heterogeneity of natural media and characteristics of acoustic emissions attenuation is proposed. This new method capitalizes on codetection of elastic waves emanating from microcracks by multiple and spatially separated sensors. Event-codetection is considered as surrogate for large event size with more frequent codetected events (i.e., detected concurrently on more than one sensor) marking imminence of catastrophic failure. Simple numerical model based on a Fiber Bundle Model considering signal attenuation and hypothetical arrays of sensors confirms the early warning potential of codetection principles. Results suggest that although statistical properties of attenuated signal amplitude could lead to misleading results, monitoring the emergence of large events announcing impeding failure is possible even with attenuated signals depending on sensor network geometry and detection threshold. Preliminary application of the proposed method to acoustic emissions during failure of snow samples has confirmed the potential use of codetection as indicator for imminent failure at lab scale. The applicability of such simple and cheap early warning system is now investigated at a larger scale (hillslope). First results of such a pilot field experiment are presented and analysed.
An aquatic macroinvertebrate monitoring program is suggested for 'early warning' detection of toxic discharges to streams in oil shale development areas. Changes in stream biota are used to signal need for increasing levels of chemical analyses to identify and quantify toxic poll...
USDA-ARS?s Scientific Manuscript database
Drought has significant impacts over broad spatial and temporal scales, and information about the timing and extent of such conditions is of critical importance to many end users in the agricultural and water resource management communities. The ability to accurately monitor effects on crops, and p...
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
USDA-ARS?s Scientific Manuscript database
Rift Valley fever is a mosquito-borne viral zoonosis that primarily affects animals but also has the capacity to infect humans. Outbreaks of this disease in eastern Africa are closely associated with periods of heavy rainfall and forecasting models and early warning systems have been developed to en...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... Environment Monitoring System for Food (GEMS/Food), Global Early Warning Systems for Animal Diseases Including... leafy vegetables and herbs also acknowledged the success of the FIVE KEYS to safe food as it reviewed..., working together with FDA, developed FIVE KEYS to Growing Safer Fruits and Vegetables: Promoting Health by...
NASA Technical Reports Server (NTRS)
Rochon, Gilbert L.
1989-01-01
Parameters were described for spatial database to facilitate drought monitoring and famine early warning in the African Sahel. The proposed system, referred to as the African Drought and Famine Information System (ADFIS) is ultimately recommended for implementation with the NASA/FEMA Spatial Analysis and Modeling System (SAMS), a GIS/Dymanic Modeling software package, currently under development. SAMS is derived from FEMA'S Integration Emergency Management Information System (IEMIS) and the Pacific Northwest Laborotory's/Engineering Topographic Laboratory's Airland Battlefield Environment (ALBE) GIS. SAMS is primarily intended for disaster planning and resource management applications with the developing countries. Sources of data for the system would include the Developing Economics Branch of the U.S. Dept. of Agriculture, the World Bank, Tulane University School of Public Health and Tropical Medicine's Famine Early Warning Systems (FEWS) Project, the USAID's Foreign Disaster Assistance Section, the World Resources Institute, the World Meterological Institute, the USGS, the UNFAO, UNICEF, and the United Nations Disaster Relief Organization (UNDRO). Satellite imagery would include decadal AVHRR imagery and Normalized Difference Vegetation Index (NDVI) values from 1981 to the present for the African continent and selected Landsat scenes for the Sudan pilot study. The system is initially conceived for the MicroVAX 2/GPX, running VMS. To facilitate comparative analysis, a global time-series database (1950 to 1987) is included for a basic set of 125 socio-economic variables per country per year. A more detailed database for the Sahelian countries includes soil type, water resources, agricultural production, agricultural import and export, food aid, and consumption. A pilot dataset for the Sudan with over 2,500 variables from the World Bank's ANDREX system, also includes epidemiological data on incidence of kwashiorkor, marasmus, other nutritional deficiencies, and synergistically-related infectious diseases.
Air quality early-warning system for cities in China
NASA Astrophysics Data System (ADS)
Xu, Yunzhen; Yang, Wendong; Wang, Jianzhou
2017-01-01
Air pollution has become a serious issue in many developing countries, especially in China, and could generate adverse effects on human beings. Air quality early-warning systems play an increasingly significant role in regulatory plans that reduce and control emissions of air pollutants and inform the public in advance when harmful air pollution is foreseen. However, building a robust early-warning system that will improve the ability of early-warning is not only a challenge but also a critical issue for the entire society. Relevant research is still poor in China and cannot always satisfy the growing requirements of regulatory planning, despite the issue's significance. Therefore, in this paper, a hybrid air quality early-warning system was successfully developed, composed of forecasting and evaluation. First, a hybrid forecasting model was proposed as an important part of this system based on the theory of "decomposition and ensemble" and combined with the advanced data processing technique, support vector machine, the latest bio-inspired optimization algorithm and the leave-one-out strategy for deciding weights. Afterwards, to intensify the research, fuzzy evaluation was performed, which also plays an indispensable role in the early-warning system. The forecasting model and fuzzy evaluation approaches are complementary. Case studies using daily air pollution concentrations of six air pollutants from three cities in China (i.e., Taiyuan, Harbin and Chongqing) are used as examples to evaluate the efficiency and effectiveness of the developed air quality early-warning system. Experimental results demonstrate that both the accuracy and the effectiveness of the developed system are greatly superior for air quality early warning. Furthermore, the application of forecasting and evaluation enables the informative and effective quantification of future air quality, offering a significant advantage, and can be employed to develop rapid air quality early-warning systems.
Urban Flood Prevention and Early Warning System in Jinan City
NASA Astrophysics Data System (ADS)
Feng, Shiyuan; Li, Qingguo
2018-06-01
The system construction of urban flood control and disaster reduction in China is facing pressure and challenge from new urban water disaster. Under the circumstances that it is difficult to build high standards of flood protection engineering measures in urban areas, it is particularly important to carry out urban flood early warning. In Jinan City, a representative inland area, based on the index system of early warning of flood in Jinan urban area, the method of fuzzy comprehensive evaluation was adopted to evaluate the level of early warning. Based on the cumulative rainfall of 3 hours, the CAflood simulation results based on cellular automaton model of urban flooding were used as evaluation indexes to realize the accuracy and integration of urban flood control early warning.
GOSAT/TANSO-FTS Measurement of Volcanic and Geothermal CO2 Emissions
NASA Astrophysics Data System (ADS)
Schwandner, Florian M.; Carn, Simon A.; Newhall, Christopher G.
2010-05-01
Approximately one tenth of the Earth's human population lives in direct reach of volcanic hazards. Being able to provide sufficiently early and scientifically sound warning is a key to volcanic hazard mitigation. Quantitative time-series monitoring of volcanic CO2 emissions will likely play a key role in such early warning activities in the future. Impending volcanic eruptions or any potentially disastrous activity that involves movement of magma in the subsurface, is often preceded by an early increase of CO2 emissions. Conventionally, volcanic CO2 monitoring is done either in campaigns of soil emission measurements (grid of one-time measuring points) that are labor intensive and slow, or by ground-based remote FTIR measurements in emission plumes. These methods are not easily available at all sites of potential activity and prohibitively costly to employ on a large number of volcanoes. In addition, both of these ground-based approaches pose a significant risk to the workers conducting these measurements. Some aircraft-based measurements have been conducted as well in the past, however these are limited by the usually meager funding situation of individual observatories, the hazard such flights pose to equipment and crew, and by the inaccessibility of parts of the plume due to ash hazards. The core motivation for this study is therefore to develop a method for volcanic CO2 monitoring from space that will provide sufficient coverage, resolution, and data quality for an application to quantitative time series monitoring and correlation with other available datasets, from a safe distance and with potentially global reach. In summary, the purpose of the proposed research is to quantify volcanic CO2 emissions using satellite-borne observations. Quantitative estimates will be useful for warning of impending volcanic eruptions, and assessing the contribution of volcanic CO2 to global GHG. Our approach encompasses method development and testing for the detection of volcanic CO2 anomalies using GOSAT and correlation with Aura/OMI, AIRS, and ASTER determined SO2 fluxes and ground based monitoring of CO2 and other geophysical and geochemical parameters. This will provide the ground work for future higher spatial resolution satellite missions. This is a joint effort from two GOSAT-IBUKI data application projects: "Satellite-Borne Quantification of Carbon Dioxide Emissions from Volcanoes and Geothermal Areas" (PI Schwandner), and "Application of GOSAT/TANSO-FTS to the Measurement of Volcanic CO2 Emissions" (PI Carn).
NASA Astrophysics Data System (ADS)
Segoni, S.; Battistini, A.; Rossi, G.; Rosi, A.; Lagomarsino, D.; Catani, F.; Moretti, S.; Casagli, N.
2014-10-01
We set up an early warning system for rainfall-induced landslides in Tuscany (23 000 km2). The system is based on a set of state-of-the-art intensity-duration rainfall thresholds (Segoni et al., 2014b), makes use of LAMI rainfall forecasts and real-time rainfall data provided by an automated network of more than 300 rain-gauges. The system was implemented in a WebGIS to ease the operational use in civil protection procedures: it is simple and intuitive to consult and it provides different outputs. Switching among different views, the system is able to focus both on monitoring of real time data and on forecasting at different lead times up to 48 h. Moreover, the system can switch between a very straightforward view where a synoptic scenario of the hazard can be shown all over the region and a more in-depth view were the rainfall path of rain-gauges can be displayed and constantly compared with rainfall thresholds. To better account for the high spatial variability of the physical features, which affects the relationship between rainfall and landslides, the region is subdivided into 25 alert zones, each provided with a specific threshold. The warning system reflects this subdivision: using a network of 332 rain gauges, it allows monitoring each alert zone separately and warnings can be issued independently from an alert zone to another. An important feature of the warning system is the use of thresholds that may vary in time adapting at the conditions of the rainfall path recorded by the rain-gauges. Depending on when the starting time of the rainfall event is set, the comparison with the threshold may produce different outcomes. Therefore, a recursive algorithm was developed to check and compare with the thresholds all possible starting times, highlighting the worst scenario and showing in the WebGIS interface at what time and how much the rainfall path has exceeded or will exceed the most critical threshold. Besides forecasting and monitoring the hazard scenario over the whole region with hazard levels differentiated for 25 distinct alert zones, the system can be used to gather, analyze, visualize, explore, interpret and store rainfall data, thus representing a potential support to both decision makers and scientists.
Technology-Based Early Warning Systems for Bipolar Disorder: A Conceptual Framework
Torous, John; Thompson, Wesley
2016-01-01
Recognition and timely action around “warning signs” of illness exacerbation is central to the self-management of bipolar disorder. Due to its heterogeneity and fluctuating course, passive and active mobile technologies have been increasingly evaluated as adjunctive or standalone tools to predict and prevent risk of worsening of course in bipolar disorder. As predictive analytics approaches to big data from mobile health (mHealth) applications and ancillary sensors advance, it is likely that early warning systems will increasingly become available to patients. Such systems could reduce the amount of time spent experiencing symptoms and diminish the immense disability experienced by people with bipolar disorder. However, in addition to the challenges in validating such systems, we argue that early warning systems may not be without harms. Probabilistic warnings may be delivered to individuals who may not be able to interpret the warning, have limited information about what behaviors to change, or are unprepared to or cannot feasibly act due to time or logistic constraints. We propose five essential elements for early warning systems and provide a conceptual framework for designing, incorporating stakeholder input, and validating early warning systems for bipolar disorder with a focus on pragmatic considerations. PMID:27604265
NASA Astrophysics Data System (ADS)
Bode, F.; Nowak, W.; Reed, P. M.; Reuschen, S.
2016-12-01
Drinking-water well catchments need effective early-warning monitoring networks. Groundwater water supply wells in complex urban environments are in close proximity to a myriad of potential industrial pollutant sources that could irreversibly damage their source aquifers. These urban environments pose fiscal and physical challenges to designing monitoring networks. Ideal early-warning monitoring networks would satisfy three objectives: to detect (1) all potential contaminations within the catchment (2) as early as possible before they reach the pumping wells, (3) while minimizing costs. Obviously, the ideal case is nonexistent, so we search for tradeoffs using multiobjective optimization. The challenge of this optimization problem is the high number of potential monitoring-well positions (the search space) and the non-linearity of the underlying groundwater flow-and-transport problem. This study evaluates (1) different ways to effectively restrict the search space in an efficient way, with and without expert knowledge, (2) different methods to represent the search space during the optimization and (3) the influence of incremental increases in uncertainty in the system. Conductivity, regional flow direction and potential source locations are explored as key uncertainties. We show the need and the benefit of our methods by comparing optimized monitoring networks for different uncertainty levels with networks that seek to effectively exploit expert knowledge. The study's main contributions are the different approaches restricting and representing the search space. The restriction algorithms are based on a point-wise comparison of decision elements of the search space. The representation of the search space can be either binary or continuous. For both cases, the search space must be adjusted properly. Our results show the benefits and drawbacks of binary versus continuous search space representations and the high potential of automated search space restriction algorithms for high-dimensional, highly non-linear optimization problems.
[Ecological security early-warning in Zhoushan Islands based on variable weight model].
Zhou, Bin; Zhong, Lin-sheng; Chen, Tian; Zhou, Rui
2015-06-01
Ecological security early warning, as an important content of ecological security research, is of indicating significance in maintaining regional ecological security. Based on driving force, pressure, state, impact and response (D-P-S-I-R) framework model, this paper took Zhoushan Islands in Zhejiang Province as an example to construct the ecological security early warning index system, test degrees of ecological security early warning of Zhoushan Islands from 2000 to 2012 by using the method of variable weight model, and forecast ecological security state of 2013-2018 by Markov prediction method. The results showed that the variable weight model could meet the study needs of ecological security early warning of Zhoushan Islands. There was a fluctuant rising ecological security early warning index from 0.286 to 0.484 in Zhoushan Islands between year 2000 and 2012, in which the security grade turned from "serious alert" into " medium alert" and the indicator light turned from "orange" to "yellow". The degree of ecological security warning was "medium alert" with the light of "yellow" for Zhoushan Islands from 2013 to 2018. These findings could provide a reference for ecological security maintenance of Zhoushan Islands.
A Sustainable Early Warning System for Climate Change Impacts on Water Quality Management
NASA Astrophysics Data System (ADS)
Lee, T.; Tung, C.; Chung, N.
2007-12-01
In this era of rapid social and technological change leading to interesting life complexity and environmental displacement, both positive and negative effects among ecosystems call for a balance in which there are impacts by climate changes. Early warning systems for climate change impacts are necessary in order to allow society as a whole to properly and usefully assimilate the masses of new information and knowledge. Therefore, our research addresses to build up a sustainable early warning mechanism. The main goal is to mitigate the cumulative impacts on the environment of climate change and enhance adaptive capacities. An effective early warning system has been proven for protection. However, there is a problem that estimate future climate changes would be faced with high uncertainty. In general, take estimations for climate change impacts would use the data from General Circulation Models and take the analysis as the Intergovernmental Panel on Climate Change declared. We follow the course of the method for analyzing climate change impacts and attempt to accomplish the sustainable early warning system for water quality management. Climate changes impact not only on individual situation but on short-term variation and long-term gradually changes. This kind characteristic should adopt the suitable warning system for long-term formulation and short- term operation. To continue the on-going research of the long-term early warning system for climate change impacts on water quality management, the short-term early warning system is established by using local observation data for reappraising the warning issue. The combination of long-term and short-term system can provide more circumstantial details. In Taiwan, a number of studies have revealed that climate change impacts on water quality, especially in arid period, the concentration of biological oxygen demand may turn into worse. Rapid population growth would also inflict injury on its assimilative capacity to degenerate. To concern about those items, the sustainable early warning system is established and the initiative fall into the following categories: considering the implications for policies, applying adaptive strategies and informing the new climate changes. By setting up the framework of early warning system expectantly can defend stream area from impacts damaging and in sure the sustainable development.
49 CFR Appendix C to Part 512 - Early Warning Reporting Class Determinations
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 6 2011-10-01 2011-10-01 false Early Warning Reporting Class Determinations C Appendix C to Part 512 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL.... 512, App. C Appendix C to Part 512—Early Warning Reporting Class Determinations (a) The Chief Counsel...
49 CFR Appendix C to Part 512 - Early Warning Reporting Class Determinations
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 6 2012-10-01 2012-10-01 false Early Warning Reporting Class Determinations C Appendix C to Part 512 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL.... 512, App. C Appendix C to Part 512—Early Warning Reporting Class Determinations (a) The Chief Counsel...
49 CFR Appendix C to Part 512 - Early Warning Reporting Class Determinations
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 6 2010-10-01 2010-10-01 false Early Warning Reporting Class Determinations C Appendix C to Part 512 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL.... 512, App. C Appendix C to Part 512—Early Warning Reporting Class Determinations (a) The Chief Counsel...
49 CFR Appendix C to Part 512 - Early Warning Reporting Class Determinations
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 6 2013-10-01 2013-10-01 false Early Warning Reporting Class Determinations C Appendix C to Part 512 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL.... 512, App. C Appendix C to Part 512—Early Warning Reporting Class Determinations (a) The Chief Counsel...
49 CFR Appendix C to Part 512 - Early Warning Reporting Class Determinations
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 6 2014-10-01 2014-10-01 false Early Warning Reporting Class Determinations C Appendix C to Part 512 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL.... 512, App. C Appendix C to Part 512—Early Warning Reporting Class Determinations (a) The Chief Counsel...
Bonnici, Timothy; Gerry, Stephen; Wong, David; Knight, Julia; Watkinson, Peter
2016-02-09
An Early Warning Score is a clinical risk score based upon vital signs intended to aid recognition of patients in need of urgent medical attention. The use of an escalation of care policy based upon an Early Warning Score is mandated as the standard of practice in British hospitals. Electronic systems for recording vital sign observations and Early Warning Score calculation offer theoretical benefits over paper-based systems. However, the evidence for their clinical benefit is limited. Previous studies have shown inconsistent results. The majority have employed a "before and after" study design, which may be strongly confounded by simultaneously occurring events. This study aims to examine how the implementation of an electronic early warning score system, System for Notification and Documentation (SEND), affects the recognition of clinical deterioration occurring in hospitalised adult patients. This study is a non-randomised stepped wedge evaluation carried out across the four hospitals of the Oxford University Hospitals NHS Trust, comparing charting on paper and charting using SEND. We assume that more frequent monitoring of acutely ill patients is associated with better recognition of patient deterioration. The primary outcome measure is the time between a patient's first observations set with an Early Warning Score above the alerting threshold and their subsequent set of observations. Secondary outcome measures are in-hospital mortality, cardiac arrest and Intensive Care admission rates, hospital length of stay and system usability measured using the System Usability Scale. We will also measure Intensive Care length of stay, Intensive Care mortality, Acute Physiology and Chronic Health Evaluation (APACHE) II acute physiology score on admission, to examine whether the introduction of SEND has any effect on Intensive Care-related outcomes. The development of this protocol has been informed by guidance from the Agency for Healthcare Research and Quality (AHRQ) Health Information Technology Evaluation Toolkit and Delone and McLeans's Model of Information System Success. Our chosen trial design, a stepped wedge study, is well suited to the study of a phased roll out. The choice of primary endpoint is challenging. We have selected the time from the first triggering observation set to the subsequent observation set. This has the benefit of being easy to measure on both paper and electronic charting and having a straightforward interpretation. We have collected qualitative measures of system quality via a user questionnaire and organisational descriptors to help readers understand the context in which SEND has been implemented.
Intra-seasonal NDVI change projections in semi-arid Africa
Funk, Christopher C.; Brown, Molly E.
2006-01-01
Early warning systems (EWS) tend to focus on the identification of slow onset disasters such famine and epidemic disease. Since hazardous environmental conditions often precede disastrous outcomes by many months, effective monitoring via satellite and in situ observations can successfully guide mitigation activities. Accurate short term forecasts of NDVI could increase lead times, making early warning earlier. This paper presents a simple empirical model for making 1 to 4 month NDVI projections. These statistical projections are based on parameterized satellite rainfall estimates (RFE) and relative humidity demand (RHD). A quasi-global, 1 month ahead, 1° study demonstrates reasonable accuracies in many semi-arid regions. In Africa, a 0.1° cross-validated skill assessment quantifies the technique's applicability at 1 to 4 month forecast intervals. These results suggest that useful projections can be made over many semi-arid, food insecure regions of Africa, with plausible extensions to drought prone areas of Asia, Australia and South America.
Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.
2008-01-01
As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at midlatitude or high-latitude volcanoes; (c) safety factors during unrest, which can limit where new instrumentation can safely be installed (particularly at near-vent sites that can be critical for precursor detection and eruption forecasting); and (d) the remoteness of many U.S. volcanoes (particularly those in the Aleutians and the Marianas Islands), where access is difficult or impossible most of the year. Given these difficulties, it is reasonable to anticipate that ground-based monitoring of eruptions at U.S. volcanoes will likely be performed primarily with instruments installed before unrest begins. 2. Given a growing awareness of previously undetected 2. phenomena that may occur before an eruption begins, at present the types and (or) density of instruments in use at most U.S. volcanoes is insufficient to provide reliable early warning of volcanic eruptions. As shown by the gap analysis of Ewert and others (2005), a number of U.S. volcanoes lack even rudimentary monitoring. At those volcanic systems with monitoring instrumentation in place, only a few types of phenomena can be tracked in near-real time, principally changes in seismicity, deformation, and large-scale changes in thermal flux (through satellite-based remote sensing). Furthermore, researchers employing technologically advanced instrumentation at volcanoes around the world starting in the 1990s have shown that subtle and previously undetectable phenomena can precede or accompany eruptions. Detection of such phenomena would greatly improve the ability of U.S. volcano observatories to provide accurate early warnings of impending eruptions, and is a critical capability particularly at the very high-threat volcanoes identified by Ewert and others (2005). For these two reasons, change from a reactive to a proactive volcano-monitoring strategy is clearly needed at U.S. volcanoes. Monitoring capabilities need to be expanded at virtually every volcanic center, regardless of its current state of
NASA Astrophysics Data System (ADS)
Rowland, J.; Budde, M. E.
2010-12-01
The Famine Early Warning Systems Network (FEWS NET) has requirements for near real-time monitoring of vegetation conditions for food security applications. Accurate and timely assessments of crop conditions are an important element of food security decision making. FEWS NET scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center are utilizing a new Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) dataset for operational monitoring of crop and pasture conditions in parts of the world where food availability is highly dependent on subsistence agriculture and animal husbandry. The expedited MODIS, or eMODIS, production system processes NDVI data using MODIS surface reflectance provided by the Land Atmosphere Near-real-time Capability for EOS (LANCE). Benefits of this production system include customized compositing schedules, near real-time data availability, and minimized re-sampling. FEWS NET has implemented a 10-day compositing scheme every five days to accommodate the need for timely information on vegetation conditions. The data are currently being processed at 250-meter spatial resolution for Central America, Hispaniola, and Africa. Data are further enhanced by the application of a temporal smoothing filter which helps remove contamination due to clouds and other atmospheric effects. The results of this near real-time monitoring capability have been the timely provision of NDVI and NDVI anomaly maps for each of the FEWS NET monitoring regions and the availability of a consistently processed dataset to aid crop assessment missions and to facilitate customized analyses of crop production, drought, and agro-pastoral conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs
Annual Illness and Injury Surveillance Program report for 2003 for the Savannah River Site. DOE is commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The report monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs
Annual Illness and Injury Surveillance Program report for the Hanford site. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers. The prpogram is part of DOE's commitment to assuring the health and safety of its workers and includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs
Annual Illness and Injury Surveillance Program report for 2003 for the Pantex Plant. DOE is commited to assuring the health and safety of its workers. This includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
NASA Technical Reports Server (NTRS)
1998-01-01
Under a NASA SBIR (Small Business Innovative Research), Research International developed the solid state micromachined pump used for cooling electronics in space, circulation of heat transfer fluids on spacecraft, and monitoring fire and gas hazards aboard naval warships. Incorporating Lewis Research Center's pumping technology, commercial applications for this product include both detection of toxins and pollutants in coal mines, and early warning smoke detectors for industrial applications.
Internal and External Crisis Early Warning and Monitoring.
1980-12-01
refining EWAMS. Initial EWAMS research revolved around the testing of quantitative political indicators, the development of general scans, and the...Initial Research ...................27 3.1.1 Quantitative indicators .......... 28 03.1.2 General scans.................34 3.1.3 Computer base...generalizations reinforce the desirability of the research from the vantage point of the I&W thrust. One is the proliferation of quantitative and
NASA Astrophysics Data System (ADS)
Stauffer, Donald R.; Lenz, James
1997-02-01
Single vehicle run-off-road accidents are responsible for significant numbers of injuries and fatalities, and significant property damage. This fact spurs interest in warning systems to alert drivers that vehicles are drifting towards the edge of the road, and that a run-off road accident is imminent. An early attempt at such a warning system is the use of machined grooves on the shoulder to create a rumble strip. Such a system only provides warning, however, as the vehicle actually leaves the traffic lane. More desirable is a system that warns in anticipation of such departure. Honeywell has under development a magnetic lateral guidance system that couples a sensitive magnetoresistive transducer with a magnetic traffic marking tape being developed by 3M. While this development was initially undertaken for use in automated highways, or for special tasks such as guiding snowplow owners, the system can provide an effective, all-weather warning system to provide alert of impending departure from the roadway. This electronic rumble strip is actually a simpler system than the baseline guidance system, and can monitor both distance from the traffic lane edge and the speed of approach to the edge with a low cost sensor.
Design and installation of a Prototype Geohazard Monitoring System near Machu Picchu, Peru
NASA Astrophysics Data System (ADS)
Bulmer, M. H.; Farquhar, T.
2010-09-01
The town of Machu Picchu, Peru, serves the >700 000 tourists visiting Machu Picchu annually. It has grown threefold in population in the past two decades. Due to the limited low-lying ground, construction is occurring on the unstable valley slopes. Slopes range from <10° on the valley floor to >70° in the surrounding mountains. The town has grown on a delta formed at the confluence of the Alcamayo, Aguas Calientes and Vilcanota Rivers. Geohazards in and around the town of particular concern are 1) large rocks falling onto the town and/or the rail line, 2) flash flooding by any one of its three rivers, and 3) mudflows and landslides. A prototype early warning system that could monitor weather, river flow and slope stability was installed along the Aguas Calientes River in 2009. This has a distributed modular construction allowing components to be installed, maintained, salvaged, and repaired by local technicians. A diverse set of candidate power, communication and sensor technologies was evaluated. Most of the technologies had never been deployed in similar terrain, altitude or weather. The successful deployment of the prototype proved that it is technically feasible to develop early warning capacity in the town.
Early Warning Systems of natural disasters in the frame of EUNADICS-AV
NASA Astrophysics Data System (ADS)
Brenot, Hugues; Theys, Nicolas; Clarisse, Lieven; Kopp, Anna; Graf, Kaspar; Mona, Lucia; Coltelli, Mauro; Peltonen, Tuomas; Hirtl, Marcus; Virtanen, Timo; Nína Petersen, Guðrún
2017-04-01
Aviation is one of the most critical infrastructures of the 21st century. In Europe, safe flight operations, air traffic management and air traffic control are shared responsibilities of EUROCONTROL, national authorities, airlines and pilots. All stakeholders have one common goal, namely to warrant and maintain the safety of flight crews and passengers. Currently, however, there is a significant gap in the availability of real-time hazard measurement and monitoring information for airborne hazards. The main objective of the new Horizon 2020 project EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation; http://www.eunadics.eu) is to close this gap in data and information availability, enabling all stakeholders in the aviation system to obtain fast, coherent, and consistent information. Here we report on WP5 of EUNADICS-AV, the objective of which is to develop a prototype multi-hazard monitoring and early warning system. This task includes the development of a service for improved near real-time analyses (delay of a few hours maximum) of observations from satellite and ground-based platforms in order to detect ash and SO2 plumes (at the global scale), as well as desert sand dusts, fire plumes, and radioactive plumes.
Miniaturized Water Flow and Level Monitoring System for Flood Disaster Early Warning
NASA Astrophysics Data System (ADS)
Ifedapo Abdullahi, Salami; Hadi Habaebi, Mohamed; Surya Gunawan, Teddy; Rafiqul Islam, MD
2017-11-01
This study presents the performance of a prototype miniaturised water flow and water level monitoring sensor designed towards supporting flood disaster early warning systems. The design involved selection of sensors, coding to control the system mechanism, and automatic data logging and storage. During the design phase, the apparatus was constructed where all the components were assembled using locally sourced items. Subsequently, under controlled laboratory environment, the system was tested by running water through the inlet during which the flow rate and rising water levels are automatically recorded and stored in a database via Microsoft Excel using Coolterm software. The system is simulated such that the water level readings measured in centimeters is output in meters using a multiplicative of 10. A total number of 80 readings were analyzed to evaluate the performance of the system. The result shows that the system is sensitive to water level rise and yielded accurate measurement of water level. But, the flow rate fluctuates due to the manual water supply that produced inconsistent flow. It was also observed that the flow sensor has a duty cycle of 50% of operating time under normal condition which implies that the performance of the flow sensor is optimal.
Review of FEWS NET Biophysical Monitoring Requirements
NASA Technical Reports Server (NTRS)
Ross, K. W.; Brown, Molly E.; Verdin, J.; Underwood, L. W.
2009-01-01
The Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to famine and food insecurity. FEWS NET transforms satellite remote sensing data into rainfall and vegetation information that can be used by these decision makers. The National Aeronautics and Space Administration has recently funded activities to enhance remote sensing inputs to FEWS NET. To elicit Earth observation requirements, a professional review questionnaire was disseminated to FEWS NET expert end-users: it focused upon operational requirements to determine additional useful remote sensing data and; subsequently, beneficial FEWS NET biophysical supplementary inputs. The review was completed by over 40 experts from around the world, enabling a robust set of professional perspectives to be gathered and analyzed rapidly. Reviewers were asked to evaluate the relative importance of environmental variables and spatio-temporal requirements for Earth science data products, in particular for rainfall and vegetation products. The results showed that spatio-temporal resolution requirements are complex and need to vary according to place, time, and hazard: that high resolution remote sensing products continue to be in demand, and that rainfall and vegetation products were valued as data that provide actionable food security information.
Truck monitoring and warning systems for freeway-to-freeway connections
DOT National Transportation Integrated Search
1999-10-01
This research focuses on the development and evaluation of a truck monitoring and warning (TM&W) system for detecting high, long, fast trucks at freeway-to-freeway connections and activating displays to warn the truck drivers of potential hazards as ...
PRESSCA: A regional operative Early Warning System for landslides risk scenario assessment
NASA Astrophysics Data System (ADS)
Ponziani, Francesco; Stelluti, Marco; Berni, Nicola; Brocca, Luca; Moramarco, Tommaso
2013-04-01
The Italian national alert system for the hydraulic and hydrogeological risk is ensured by the National Civil Protection Department, through the "Functional Centres" Network, together with scientific/technical Support Centres, named "Competence Centres". The role of the Functional Centres is to alert regional/national civil protection network, to manage the prediction and the monitoring phases, thus ensuring the flow of data for the management of the emergency. The Umbria regional alerting procedure is based on three increasing warning levels of criticality for 6 sub-areas (~1200 km²). Specifically, for each duration (from 1 to 48 hours), three criticality levels are assigned to the rainfall values corresponding to a recurrence interval of 2, 5, and 10 years. In order to improve confidence on the daily work for hydrogeological risk assessment and management, a simple and operational early warning system for the prediction of shallow landslide triggering on regional scale was implemented. The system is primarily based on rainfall thresholds, which represent the main element of evaluation for the early-warning procedures of the Italian Civil Protection system. Following previous studies highlighting that soil moisture conditions play a key role on landslide triggering, a continuous physically-based soil water balance model was implemented for the estimation of soil moisture conditions over the whole regional territory. In fact, a decreasing trend between the cumulated rainfall values over 24, 36 and 48 hours and the soil moisture conditions prior to past landslide events was observed. This trend provides an easy-to-use tool to dynamically adjust the operational rainfall thresholds with the soil moisture conditions simulated by the soil water balance model prior to rainfall events. The application of this procedure allowed decreasing the uncertainties tied to the application of the rainfall thresholds only. The system is actually operational in real-time and it was recently coupled with quantitative rainfall and temperature forecasts (given by the COSMO ME local scale models for Umbria) to extend the prediction up to 72 hours forecast. The main output is constituted by four spatially distributed early warning indicators (normal, caution, warning, alarm), in compliance with national and regional law, based on the comparison between the observed (forecasted) rainfall and the dynamic thresholds. The early warning indicators, calculated over the whole regional territory, are combined with susceptibility and vulnerability layers using a WEB-GIS platform, in order to build a near real time risk scenario. The main outcome of the system is a spatially distributed landslide hazard map with the highlight of areas where local risk situations may arise due to landslides induced by the interaction between meteorological forcing and the presence of vulnerability elements. The System is inclusive of specific sections dedicated to areas with specific risks (as debris flows prone areas), with specific thresholds. The main purpose of this study is firstly to describe the operational early warning system. Then, the integration of near real-time soil moisture data obtained through the satellite sensor ASCAT (Advanced SCATterometer) within the system is shown. This could allow enhancing the reliability of the modelled soil moisture data over the regional territory. The recent rainfall event of 11-14 November 2012 is used as case study. Reported triggered landslides are studied and used in order to check/refine the early warning system.
Istanbul Earthquake Early Warning and Rapid Response System
NASA Astrophysics Data System (ADS)
Erdik, M. O.; Fahjan, Y.; Ozel, O.; Alcik, H.; Aydin, M.; Gul, M.
2003-12-01
As part of the preparations for the future earthquake in Istanbul a Rapid Response and Early Warning system in the metropolitan area is in operation. For the Early Warning system ten strong motion stations were installed as close as possible to the fault zone. Continuous on-line data from these stations via digital radio modem provide early warning for potentially disastrous earthquakes. Considering the complexity of fault rupture and the short fault distances involved, a simple and robust Early Warning algorithm, based on the exceedance of specified threshold time domain amplitude levels is implemented. The band-pass filtered accelerations and the cumulative absolute velocity (CAV) are compared with specified threshold levels. When any acceleration or CAV (on any channel) in a given station exceeds specific threshold values it is considered a vote. Whenever we have 2 station votes within selectable time interval, after the first vote, the first alarm is declared. In order to specify the appropriate threshold levels a data set of near field strong ground motions records form Turkey and the world has been analyzed. Correlations among these thresholds in terms of the epicenter distance the magnitude of the earthquake have been studied. The encrypted early warning signals will be communicated to the respective end users by UHF systems through a "service provider" company. The users of the early warning signal will be power and gas companies, nuclear research facilities, critical chemical factories, subway system and several high-rise buildings. Depending on the location of the earthquake (initiation of fault rupture) and the recipient facility the alarm time can be as high as about 8s. For the rapid response system one hundred 18 bit-resolution strong motion accelerometers were placed in quasi-free field locations (basement of small buildings) in the populated areas of the city, within an area of approximately 50x30km, to constitute a network that will enable early damage assessment and rapid response information after a damaging earthquake. Early response information is achieved through fast acquisition and analysis of processed data obtained from the network. The stations are routinely interrogated on regular basis by the main data center. After triggered by an earthquake, each station processes the streaming strong motion data to yield the spectral accelerations at specific periods, 12Hz filtered PGA and PGV and will send these parameters in the form of SMS messages at every 20s directly to the main data center through a designated GSM network and through a microwave system. A shake map and damage distribution map (using aggregate building inventories and fragility curves) will be automatically generated using the algorithm developed for this purpose. Loss assessment studies are complemented by a large citywide digital database on the topography, geology, soil conditions, building, infrastructure and lifeline inventory. The shake and damage maps will be conveyed to the governor's and mayor's offices, fire, police and army headquarters within 3 minutes using radio modem and GPRS communication. An additional forty strong motion recorders were placed on important structures in several interconnected clusters to monitor the health of these structures after a damaging earthquake.
NASA Astrophysics Data System (ADS)
Laumal, F. E.; Nope, K. B. N.; Peli, Y. S.
2018-01-01
Early warning is a warning mechanism before an actual incident occurs, can be implemented on natural events such as tsunamis or earthquakes. Earthquakes are classified in tectonic and volcanic types depend on the source and nature. The tremor in the form of energy propagates in all directions as Primary and Secondary waves. Primary wave as initial earthquake vibrations propagates longitudinally, while the secondary wave propagates like as a sinusoidal wave after Primary, destructive and as a real earthquake. To process the primary vibration data captured by the earthquake sensor, a network management required client computer to receives primary data from sensors, authenticate and forward to a server computer to set up an early warning system. With the water propagation concept, a method of early warning system has been determined in which some sensors are located on the same line, sending initial vibrations as primary data on the same scale and the server recommended to the alarm sound as an early warning.
ERIC Educational Resources Information Center
Massachusetts Department of Elementary and Secondary Education, 2013
2013-01-01
The Massachusetts Department of Elementary and Secondary Education (Department) created the grades 1-12 Early Warning Indicator System (EWIS) in response to district interest in the Early Warning Indicator Index (EWII) that the Department previously created for rising grade 9 students. Districts shared that the EWII data were helpful, but also…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-26
... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Parts 573, 577, and 579 [Docket No. NHTSA--2012-0068; Notice 3] RIN 2127-AK72 Early Warning Reporting, Foreign Defect... final rule. Id. Manufacturers with early warning reporting (EWR) accounts may obtain a copy of the VIN...
Looming auditory collision warnings for driving.
Gray, Rob
2011-02-01
A driving simulator was used to compare the effectiveness of increasing intensity (looming) auditory warning signals with other types of auditory warnings. Auditory warnings have been shown to speed driver reaction time in rear-end collision situations; however, it is not clear which type of signal is the most effective. Although verbal and symbolic (e.g., a car horn) warnings have faster response times than abstract warnings, they often lead to more response errors. Participants (N=20) experienced four nonlooming auditory warnings (constant intensity, pulsed, ramped, and car horn), three looming auditory warnings ("veridical," "early," and "late"), and a no-warning condition. In 80% of the trials, warnings were activated when a critical response was required, and in 20% of the trials, the warnings were false alarms. For the early (late) looming warnings, the rate of change of intensity signaled a time to collision (TTC) that was shorter (longer) than the actual TTC. Veridical looming and car horn warnings had significantly faster brake reaction times (BRT) compared with the other nonlooming warnings (by 80 to 160 ms). However, the number of braking responses in false alarm conditions was significantly greater for the car horn. BRT increased significantly and systematically as the TTC signaled by the looming warning was changed from early to veridical to late. Looming auditory warnings produce the best combination of response speed and accuracy. The results indicate that looming auditory warnings can be used to effectively warn a driver about an impending collision.
Agulnik, Asya; Forbes, Peter W; Stenquist, Nicole; Rodriguez-Galindo, Carlos; Kleinman, Monica
2016-04-01
To evaluate the correlation of a Pediatric Early Warning Score with unplanned transfer to the PICU in hospitalized oncology and hematopoietic stem cell transplant patients. We performed a retrospective matched case-control study, comparing the highest documented Pediatric Early Warning Score within 24 hours prior to unplanned PICU transfers in hospitalized pediatric oncology and hematopoietic stem cell transplant patients between September 2011 and December 2013. Controls were patients who remained on the inpatient unit and were matched 2:1 using age, condition (oncology vs hematopoietic stem cell transplant), and length of hospital stay. Pediatric Early Warning Scores were documented by nursing staff at least every 4 hours as part of routine care. Need for transfer was determined by a PICU physician called to evaluate the patient. A large tertiary/quaternary free-standing academic children's hospital. One hundred ten hospitalized pediatric oncology patients (42 oncology, 68 hematopoietic stem cell transplant) requiring unplanned PICU transfer and 220 matched controls. None. Using the highest score in the 24 hours prior to transfer for cases and a matched time period for controls, the Pediatric Early Warning Score was highly correlated with the need for PICU transfer overall (area under the receiver operating characteristic = 0.96), and in the oncology and hematopoietic stem cell transplant groups individually (area under the receiver operating characteristic = 0.95 and 0.96, respectively). The difference in Pediatric Early Warning Score results between the cases and controls was noted as early as 24 hours prior to PICU admission. Seventeen patients died (15.4%). Patients with higher Pediatric Early Warning Scores prior to transfer had increased PICU mortality (p = 0.028) and length of stay (p = 0.004). We demonstrate that our institution's Pediatric Early Warning Score is highly correlated with the need for unplanned PICU transfer in hospitalized oncology and hematopoietic stem cell transplant patients. Furthermore, we found an association between higher scores and PICU mortality. This is the first validation of a Pediatric Early Warning Score specific to the pediatric oncology and hematopoietic stem cell transplant populations, and supports the use of Pediatric Early Warning Scores as a method of early identification of clinical deterioration in this high-risk population.
Exploring the Role of Social Memory of Floods for Designing Flood Early Warning Operations
NASA Astrophysics Data System (ADS)
Girons Lopez, Marc; Di Baldassarre, Giuliano; Grabs, Thomas; Halldin, Sven; Seibert, Jan
2016-04-01
Early warning systems are an important tool for natural disaster mitigation practices, especially for flooding events. Warnings rely on near-future forecasts to provide time to take preventive actions before a flood occurs, thus reducing potential losses. However, on top of the technical capacities, successful warnings require an efficient coordination and communication among a range of different actors and stakeholders. The complexity of integrating the technical and social spheres of warning systems has, however, resulted in system designs neglecting a number of important aspects such as social awareness of floods thus leading to suboptimal results. A better understanding of the interactions and feedbacks among the different elements of early warning systems is therefore needed to improve their efficiency and therefore social resilience. When designing an early warning system two important decisions need to be made regarding (i) the hazard magnitude at and from which a warning should be issued and (ii) the degree of confidence required for issuing a warning. The first decision is usually taken based on the social vulnerability and climatic variability while the second one is related to the performance (i.e. accuracy) of the forecasting tools. Consequently, by estimating the vulnerability and the accuracy of the forecasts, these two variables can be optimized to minimize the costs and losses. Important parameters with a strong influence on the efficiency of warning systems such as social awareness are however not considered in their design. In this study we present a theoretical exploration of the impact of social awareness on the design of early warning systems. For this purpose we use a definition of social memory of flood events as a proxy for flood risk awareness and test its effect on the optimization of the warning system design variables. Understanding the impact of social awareness on warning system design is important to make more robust warnings that can better adapt to different social settings and more efficiently reduce vulnerability.
Truck monitoring and warning systems for freeway-to-freeway connections : summary
DOT National Transportation Integrated Search
1999-10-01
This project focuses on the development and evaluation of a truck monitoring and warning (TM&W) system for detecting high, long, fast trucks at freeway-to-freeway connections and activating displays to warn the truck drivers of potential hazards as t...
Strategies and Pitfalls of Motor-Evoked Potential Monitoring during Supratentorial Aneurysm Surgery.
Maruta, Yuichi; Fujii, Masami; Imoto, Hirochika; Nomura, Sadahiro; Tanaka, Nobuhiro; Inamura, Akinori; Sadahiro, Hirokazu; Oka, Fumiaki; Goto, Hisaharu; Shirao, Satoshi; Ideguchi, Makoto; Yoneda, Hiroshi; Suehiro, Eiichi; Koizumi, Hiroyasu; Ishihara, Hideyuki; Suzuki, Michiyasu
2016-02-01
The aims of this study were to reveal the strategies and pitfalls of motor-evoked potential (MEP) monitoring methods during supratentorial aneurysm surgery, and to discuss the drawbacks and advantages of each method by reviewing our experiences. Intraoperative MEP monitoring was performed in 250 patients. Results from 4 monitoring techniques using combinations of 2 stimulation sites and 2 recording sites were analyzed retrospectively. MEP was recorded successfully in 243 patients (97.2%). Direct cortical stimulation (DCS)-spinal recorded MEP (sMEP) was used in 134 patients, DCS-muscle recorded MEP (mMEP) in 97, transcranial electrical stimulation (TES)-mMEP in 11 and TES-sMEP in 1. TES-mMEP during closure of the skull was used in 21 patients. DCS-mMEP was able to detect waveforms from upper and/or lower limb muscles. Alternatively, DCS-sMEP (direct [D]-wave) could accurately estimate amplitude changes. A novel "early warning sign" indicating ischemia was found in 21 patients, which started with a transiently increased amplitude of D-wave and then decreased after proximal interruption of major arteries. False-negative findings in MEP monitoring in 2 patients were caused by a blood insufficiency in the lenticulostriate artery and by a TES-sMEP recording, respectively. The results of this study suggest that to perform accurate MEP monitoring, DCS-mMEP or DCS-sMEP recording should be used as the situation demands, with combined use of TES-mMEP recording during closure of the skull. DCS-sMEP is recommended for accurate analysis of waveforms. We also propose a novel "early warning sign" of blood insufficiency in the D-wave. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Managing Risks? Early Warning Systems for Climate Change
NASA Astrophysics Data System (ADS)
Sitati, A. M.; Zommers, Z. A.; Habilov, M.
2014-12-01
Early warning systems are a tool with which to minimize risks posed by climate related hazards. Although great strides have been made in developing early warning systems most deal with one hazard, only provide short-term warnings and do not reach the most vulnerable. This presentation will review research results of the United Nations Environment Programme's CLIM-WARN project. The project seeks to identify how governments can better communicate risks by designing multi-hazard early warning systems that deliver actionable warnings across timescales. Household surveys and focus group discussions were conducted in 36 communities in Kenya, Ghana and Burkina Faso in order to identify relevant climate related hazards, current response strategies and early warning needs. Preliminary results show significant variability in both risks and needs within and between countries. For instance, floods are more frequent in rural western parts of Kenya. Droughts are frequent in the north while populations in urban areas face a range of hazards - floods, droughts, disease outbreaks - that sometimes occur simultaneously. The majority of the rural population, especially women, the disabled and the elderly, do not have access to modern media such as radio, television, or internet. While 55% of rural populace never watches television, 64% of urban respondents watch television on a daily basis. Communities have different concepts of how to design warning systems. It will be a challenge for national governments to create systems that accommodate such diversity yet provide standard quality of service to all. There is a need for flexible and forward-looking early warning systems that deliver broader information about risks. Information disseminated through the system could not only include details of hazards, but also long-term adaptation options, general education, and health information, thus increasingly both capabilities and response options.
New Local, National and Regional Cereal Price Indices for Improved Identification of Food Insecurity
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Tondel, Fabien; Thorne, Jennifer A.; Essam, Timothy; Mann, Bristol F.; Stabler, Blake; Eilerts, Gary
2011-01-01
Large price increases over a short time period can be indicative of a deteriorating food security situation. Food price indices developed by the United Nations Food and Agriculture Organization (FAO) are used to monitor food price trends at a global level, but largely reflect supply and demand conditions in export markets. However, reporting by the United States Agency for International Development (USAID)'s Famine Early Warning Systems Network (FEWS NET) indicates that staple cereal prices in many markets of the developing world, especially in surplus-producing areas, often have a delayed and variable response to international export market price trends. Here we present new price indices compiled for improved food security monitoring and assessment, and specifically for monitoring conditions of food access across diverse food insecure regions. We found that cereal price indices constructed using market prices within a food insecure region showed significant differences from the international cereals price, and had a variable price dispersion across markets within each marketshed. Using satellite-derived remote sensing information that estimates local production and the FAO Cereals Index as predictors, we were able to forecast movements of the local or national price indices in the remote, arid and semi-arid countries of the 38 countries examined. This work supports the need for improved decision-making about targeted aid and humanitarian relief, by providing earlier early warning of food security crises.
Early warnings, weak signals and learning from healthcare disasters.
Macrae, Carl
2014-06-01
In the wake of healthcare disasters, such as the appalling failures of care uncovered in Mid Staffordshire, inquiries and investigations often point to a litany of early warnings and weak signals that were missed, misunderstood or discounted by the professionals and organisations charged with monitoring the safety and quality of care. Some of the most urgent challenges facing those responsible for improving and regulating patient safety are therefore how to identify, interpret, integrate and act on the early warnings and weak signals of emerging risks-before those risks contribute to a disastrous failure of care. These challenges are fundamentally organisational and cultural: they relate to what information is routinely noticed, communicated and attended to within and between healthcare organisations-and, most critically, what is assumed and ignored. Analysing these organisational and cultural challenges suggests three practical ways that healthcare organisations and their regulators can improve safety and address emerging risks. First, engage in practices that actively produce and amplify fleeting signs of ignorance. Second, work to continually define and update a set of specific fears of failure. And third, routinely uncover and publicly circulate knowledge on the sources of systemic risks to patient safety and the improvements required to address them. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
TRIDEC Cloud - a Web-based Platform for Tsunami Early Warning tested with NEAMWave14 Scenarios
NASA Astrophysics Data System (ADS)
Hammitzsch, Martin; Spazier, Johannes; Reißland, Sven; Necmioglu, Ocal; Comoglu, Mustafa; Ozer Sozdinler, Ceren; Carrilho, Fernando; Wächter, Joachim
2015-04-01
In times of cloud computing and ubiquitous computing the use of concepts and paradigms introduced by information and communications technology (ICT) have to be considered even for early warning systems (EWS). Based on the experiences and the knowledge gained in research projects new technologies are exploited to implement a cloud-based and web-based platform - the TRIDEC Cloud - to open up new prospects for EWS. The platform in its current version addresses tsunami early warning and mitigation. It merges several complementary external and in-house cloud-based services for instant tsunami propagation calculations and automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The TRIDEC Cloud can be accessed in two different modes, the monitoring mode and the exercise-and-training mode. The monitoring mode provides important functionality required to act in a real event. So far, the monitoring mode integrates historic and real-time sea level data and latest earthquake information. The integration of sources is supported by a simple and secure interface. The exercise and training mode enables training and exercises with virtual scenarios. This mode disconnects real world systems and connects with a virtual environment that receives virtual earthquake information and virtual sea level data re-played by a scenario player. Thus operators and other stakeholders are able to train skills and prepare for real events and large exercises. The GFZ German Research Centre for Geosciences (GFZ), the Kandilli Observatory and Earthquake Research Institute (KOERI), and the Portuguese Institute for the Sea and Atmosphere (IPMA) have used the opportunity provided by NEAMWave14 to test the TRIDEC Cloud as a collaborative activity based on previous partnership and commitments at the European scale. The TRIDEC Cloud has not been involved officially in Part B of the NEAMWave14 scenarios. However, the scenarios have been used by GFZ, KOERI, and IPMA for testing in exercise runs on October 27-28, 2014. Additionally, the Greek NEAMWave14 scenario has been tested in an exercise run by GFZ only on October 29, 2014 (see ICG/NEAMTWS-XI/13). The exercise runs demonstrated that operators in warning centres and stakeholders of other involved parties just need a standard web browser to access a full-fledged TEWS. The integration of GPU accelerated tsunami simulation computations have been an integral part to foster early warning with on-demand tsunami predictions based on actual source parameters. Thus tsunami travel times, estimated times of arrival and estimated wave heights are available immediately for visualization and for further analysis and processing. The generation of warning messages is based on internationally agreed message structures and includes static and dynamic information based on earthquake information, instant computations of tsunami simulations, and actual measurements. Generated messages are served for review, modification, and addressing in one simple form for dissemination via Cloud Messages, Shared Maps, e-mail, FTP/GTS, SMS, and FAX. Cloud Messages and Shared Maps are complementary channels and integrate interactive event and simulation data. Thus recipients are enabled to interact dynamically with a map and diagrams beyond traditional text information.
NASA Astrophysics Data System (ADS)
González-Carrasco, J. F.; Benavente, R. F.; Zelaya, C.; Núñez, C.; Gonzalez, G.
2017-12-01
The 2017 Mw 8.1, Tehuantepec earthquake generated a moderated tsunami, which was registered in near-field tide gauges network activating a tsunami threat state for Mexico issued by PTWC. In the case of Chile, the forecast of tsunami waves indicate amplitudes less than 0.3 meters above the tide level, advising an informative state of threat, without activation of evacuation procedures. Nevertheless, during sea level monitoring of network we detect wave amplitudes (> 0.3 m) indicating a possible change of threat state. Finally, NTWS maintains informative level of threat based on mathematical filtering analysis of sea level records. After 2010 Mw 8.8, Maule earthquake, the Chilean National Tsunami Warning System (NTWS) has increased its observational capabilities to improve early response. Most important operational efforts have focused on strengthening tide gauge network for national area of responsibility. Furthermore, technological initiatives as Integrated Tsunami Prediction and Warning System (SIPAT) has segmented the area of responsibility in blocks to focus early warning and evacuation procedures on most affected coastal areas, while maintaining an informative state for distant areas of near-field earthquake. In the case of far-field events, NTWS follow the recommendations proposed by Pacific Tsunami Warning Center (PTWC), including a comprehensive monitoring of sea level records, such as tide gauges and DART (Deep-Ocean Assessment and Reporting of Tsunami) buoys, to evaluate the state of tsunami threat in the area of responsibility. The main objective of this work is to analyze the first-order physical processes involved in the far-field propagation and coastal impact of tsunami, including implications for decision-making of NTWS. To explore our main question, we construct a finite-fault model of the 2017, Mw 8.1 Tehuantepec earthquake. We employ the rupture model to simulate a transoceanic tsunami modeled by Neowave2D. We generate synthetic time series at tide gauge stations and compare them with recorded sea level data, to dismiss meteorological processes, such as storms and surges. Resonance analysis is performed by wavelet technique.
Marini, G W; Wellguni, H
2003-01-01
The worsening environmental situation of the Brantas River, East Java, is addressed by a comprehensive basin management strategy which relies on accurate water quantity and quality data retrieved from a newly installed online monitoring network. Integrated into a Hydrological Information System, the continuously measured indicative parameters allow early warning, control and polluter identification. Additionally, long-term analyses have been initiated for improving modelling applications like flood forecasting, water resource management and pollutant propagation. Preliminary results illustrate the efficiency of the installed system.
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.; Gasser, Gerald; Hargrove, William; Smoot, James; Kuper, Philip D.
2014-01-01
The on-line near real time (NRT) ForWarn system is currently deployed to monitor regional forest disturbances within the conterminous United States (CONUS), using daily MODIS Aqua and Terra NDVI data to derive monitoring products. The Healthy Forest Restoration Act of 2003 mandated such a system. Work on ForWarn began in 2006 with development and validation of retrospective MODIS NDVI-based forest monitoring products. Subsequently, NRT forest disturbance monitoring products were demonstrated, leading to the actual system deployment in 2010. ForWarn provides new CONUS forest disturbance monitoring products every 8 days, using USGS eMODIS data for current NDVI. ForWarn currently does not cover Alaska, which includes extensive forest lands at risk to multiple biotic and abiotic threats. This poster discusses a case study using Alaska eMODIS Terra data to derive ForWarn like forest change products during the 2010 growing season. The eMODIS system provides current MODIS Terra NDVI products for Alaska. Resulting forest change products were assessed with ground, aerial, and Landsat reference data. When cloud and snow free, these preliminary products appeared to capture regional forest disturbances from insect defoliation and fires; however, more work is needed to mitigate cloud and snow contamination, including integration of eMODIS Aqua data.
Body size shifts and early warning signals precede the historic collapse of whale stocks.
Clements, Christopher F; Blanchard, Julia L; Nash, Kirsty L; Hindell, Mark A; Ozgul, Arpat
2017-06-22
Predicting population declines is a key challenge in the face of global environmental change. Abundance-based early warning signals have been shown to precede population collapses; however, such signals are sensitive to the low reliability of abundance estimates. Here, using historical data on whales harvested during the 20th century, we demonstrate that early warning signals can be present not only in the abundance data, but also in the more reliable body size data of wild populations. We show that during the period of commercial whaling, the mean body size of caught whales declined dramatically (by up to 4 m over a 70-year period), leading to early warning signals being detectable up to 40 years before the global collapse of whale stocks. Combining abundance and body size data can reduce the length of the time series required to predict collapse, and decrease the chances of false positive early warning signals.
NASA Astrophysics Data System (ADS)
Hargrove, W. W.; Spruce, J.; Kumar, J.; Hoffman, F. M.
2012-12-01
The Eastern Forest Environmental Threat Assessment Center and Western Wildland Environmental Assessment Center of the USDA Forest Service have collaborated with NASA Stennis Space Center to develop ForWarn, a forest monitoring tool that uses MODIS satellite imagery to produce weekly snapshots of vegetation conditions across the lower 48 United States. Forest and natural resource managers can use ForWarn to rapidly detect, identify, and respond to unexpected changes in the nation's forests caused by insects, diseases, wildfires, severe weather, or other natural or human-caused events. ForWarn detects most types of forest disturbances, including insects, disease, wildfires, frost and ice damage, tornadoes, hurricanes, blowdowns, harvest, urbanization, and landslides. It also detects drought, flood, and temperature effects, and shows early and delayed seasonal vegetation development. Operating continuously since January 2010, results show ForWarn to be a robust and highly capable tool for detecting changes in forest conditions. To help forest and natural resource managers rapidly detect, identify, and respond to unexpected changes in the nation's forests, ForWarn produces sets of national maps showing potential forest disturbances at 231m resolution every 8 days, and posts the results to the web for examination. ForWarn compares current greenness with the "normal," historically seen greenness that would be expected for healthy vegetation for a specific location and time of the year, and then identifies areas appearing less green than expected to provide a strategic national overview of potential forest disturbances that can be used to direct ground and aircraft efforts. In addition to forests, ForWarn also tracks potential disturbances in rangeland vegetation and agriculural crops. ForWarn is the first national-scale system of its kind based on remote sensing developed specifically for forest disturbances. The ForWarn system had an official unveiling and rollout in March 2012, initiated by a joint NASA and USDA press release, and followed by a series of training webinars. Almost 60 early-adopter state and federal forest managers attended at least one of the ForWarn rollout webinars. The ForWarn home page has had 2,632 unique visitors since rollout in March 2012, with 39% returning visits. ForWarn was used to map tornado scars from the historic April 27, 2011 tornado outbreak, and detected timber damage within more than a dozen tornado tracks across northern Mississippi, Alabama, and Georgia. ForWarn is the result of an ongoing, substantive cooperation among four different government agencies: USDA, NASA, USGS, and DOE. Disturbance maps are available on the web through the ForWarn Change Assessment Viewer at http://forwarn.forestthreats.org/fcav.
Technology Transfer Opportunities: Automated Ground-Water Monitoring, A Proven Technology
Smith, Kirk P.; Granato, Gregory E.
1998-01-01
Introduction The U.S. Geological Survey (USGS) has developed and tested an automated ground-water monitoring system that measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automated ground-water monitoring systems can be used to monitor known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, to serve as early warning systems monitoring ground-water quality near public water-supply wells, and for ground-water quality research.
Accuracy of a pediatric early warning score in the recognition of clinical deterioration.
Miranda, Juliana de Oliveira Freitas; Camargo, Climene Laura de; Nascimento, Carlito Lopes; Portela, Daniel Sales; Monaghan, Alan
2017-07-10
to evaluate the accuracy of the version of the Brighton Pediatric Early Warning Score translated and adapted for the Brazilian context, in the recognition of clinical deterioration. a diagnostic test study to measure the accuracy of the Brighton Pediatric Early Warning Score for the Brazilian context, in relation to a reference standard. The sample consisted of 271 children, aged 0 to 10 years, blindly evaluated by a nurse and a physician, specialists in pediatrics, with interval of 5 to 10 minutes between the evaluations, for the application of the Brighton Pediatric Early Warning Score for the Brazilian context and of the reference standard. The data were processed and analyzed using the Statistical Package for the Social Sciences and VassarStats.net programs. The performance of the Brighton Pediatric Early Warning Score for the Brazilian context was evaluated through the indicators of sensitivity, specificity, predictive values, area under the ROC curve, likelihood ratios and post-test probability. the Brighton Pediatric Early Warning Score for the Brazilian context showed sensitivity of 73.9%, specificity of 95.5%, positive predictive value of 73.3%, negative predictive value of 94.7%, area under Receiver Operating Characteristic Curve of 91.9% and the positive post-test probability was 80%. the Brighton Pediatric Early Warning Score for the Brazilian context, presented good performance, considered valid for the recognition of clinical deterioration warning signs of the children studied. avaliar a acurácia da versão traduzida e adaptada do Brighton Paediatric Early Warning Score para o contexto brasileiro, no reconhecimento da deterioração clínica. estudo de teste diagnóstico para medir a acurácia do Brighton Paediatric Early Warning Score, para o contexto brasileiro, em relação a um padrão de referência. A amostra foi composta por 271 crianças de 0 a 10 anos, avaliadas de forma cega por uma enfermeira e um médico, especialistas em pediatria, com intervalo de 5 a 10 minutos entre as avaliações, para aplicação do Brighton Paediatric Early Warning Score, para o contexto brasileiro e do padrão de referência. Os dados foram processados e analisados nos programas Statistical Package for the Social Sciences e VassarStats.net. O desempenho do Brighton Paediatric Early Warning Score para o contexto brasileiro foi avaliado por meio dos indicadores de sensibilidade, especificidade, valores preditivos, área sob a curva ROC, razões de probabilidades e probabilidade pós-teste. o Brighton Paediatric Early Warning Score para o contexto brasileiro apresentou sensibilidade de 73,9%, especificidade de 95,5%, valor preditivo positivo de 73,3%, valor preditivo negativo de 94,7%, área sob a Receiver Operating Characteristic Curve de 91,9% e a probabilidade pós-teste positivo foi de 80%. o Brighton Paediatric Early Warning Score, para o contexto brasileiro, apresentou bom desempenho, considerado válido para o reconhecimento de sinais de alerta de deterioração clínica das crianças estudadas. evaluar la precisión de la versión traducida y adaptada del Brighton Paediatric Early Warning Score para el contexto brasileño, en el reconocimiento de la deterioración clínica. estudio de test diagnóstico para medir la precisión del Brighton Paediatric Early Warning Score para el contexto brasileño, en relación a un estándar de referencia. La muestra estuvo compuesta por 271 niños de 0 a 10 años, evaluadas de forma ciega por especialistas en pediatría, una enfermera y un médico, con intervalo de 5 a 10 minutos entre las evaluaciones, para aplicación del Brighton Paediatric Early Warning Score para el contexto brasileño. Los datos fueron procesados y analizados en los programas Statistical Package for the Social Sciences y VassarStats.net. El desempeño del Brighton Paediatric Early Warning Score para el contexto brasileño fue evaluado por medio de los indicadores de sensibilidad, especificidad, valores predictivos, área debajo de la curva ROC, razones de probabilidades y probabilidad postest. el Brighton Paediatric Early Warning Score para el contexto brasileño presentó sensibilidad de 73,9%, especificidad de 95,5%, valor predictivo positivo de 73,3%, valor predictivo negativo de 94,7%, área bajo la Receiver Operating Characteristic Curve de 91,9% y la probabilidad postest positivo fue de 80%. el Brighton Paediatric Early Warning Score para el contexto brasileño, presentó buen desempeño, considerado válido para el reconocimiento de señales de alerta de deterioración clínica de los niños estudiados.
A national survey of obstetric early warning systems in the United Kingdom: five years on.
Isaacs, R A; Wee, M Y K; Bick, D E; Beake, S; Sheppard, Z A; Thomas, S; Hundley, V; Smith, G B; van Teijlingen, E; Thomas, P W
2014-07-01
The Confidential Enquiries into Maternal Deaths in the UK have recommended obstetric early warning systems for early identification of clinical deterioration to reduce maternal morbidity and mortality. This survey explored early warning systems currently used by maternity units in the UK. An electronic questionnaire was sent to all 205 lead obstetric anaesthetists under the auspices of the Obstetric Anaesthetists' Association, generating 130 (63%) responses. All respondents reported use of an obstetric early warning system, compared with 19% in a similar survey in 2007. Respondents agreed that the six most important physiological parameters to record were respiratory rate, heart rate, temperature, systolic and diastolic blood pressure and oxygen saturation. One hundred and eighteen (91%) lead anaesthetists agreed that early warning systems helped to prevent obstetric morbidity. Staffing pressures were perceived as the greatest barrier to their use, and improved audit, education and training for healthcare professionals were identified as priority areas. © 2014 The Association of Anaesthetists of Great Britain and Ireland.
2010 Kansas City Plant Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2011-06-20
The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2010 Savannah River Site Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2011-09-12
The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2007 Hanford Site Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety, and Security
2009-07-16
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2010 Idaho National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2011-09-26
The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2010 Brookhaven National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2011-08-16
The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2007 Sandia National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2009-02-04
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2007 Pantex Plant Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2008-07-31
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2008 Savannah River Site Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2009-09-29
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2008 Brookhaven National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2009-12-10
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2006 Hanford Site Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2008-05-14
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2009 Hanford Site Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2010-12-01
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2008 Nevada Test Site Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2009-10-05
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2010 Pantex Plant Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2011-06-29
The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2009 Brookhaven National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2010-11-24
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2008 Sandia National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2009-09-17
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2009 Argonne National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2010-08-19
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2007 Kansas City Plant Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2009-07-13
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2009 Pantex Plant Annual Illness and Injury Surveillance
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2010-12-15
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2007 Nevada Test Site Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2009-06-30
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2007 Savannah River Site Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2009-05-05
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2010 Sandia National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2011-10-26
The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2008 Kansas City Plant Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2009-09-22
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2006 Pantex Plant Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2008-05-19
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2008 Idaho National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2010-11-23
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2010 Argonne National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2011-06-20
The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
Armored Combat Vehicles Science and Technology Plan
1982-11-01
APPLICATION OF SENSORS Investigate the seismic, acoustic, and electromagnetic signatures of military and intruder -type targets and the theoretical aspects...a prototype sampling system which has the capability to monitor ambieut air both outside and inside vehicles and provide an early warning to the crew...and through various processing modules provide automated functions for simultaneous tracking of targets and automitic recognition, 74 f’," SENSING
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs
Annual Illness and Injury Surveillance Program report for 2003 for Los Alamos National Lab. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs
Annual Illness and Injury Surveillance Program report for 2004 for the Hanford site. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs
Annual Illness and Injury Surveillance Program report for 2003 for Brookhaven National Lab. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs
Annual Illness and Injury Surveillance Program report for 2003 for the Kansas City Plant. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
NASA Astrophysics Data System (ADS)
Emolo, Antonio; Zollo, Aldo; Picozzi, Matteo; Martino, Claudio; Elia, Luca; Verderame, Gerardo; De Risi, Maria Teresa; Ricci, Paolo; Lombardi, Anna; Bindi, Dino; Parolai, Stefano; Boxberger, Tobias; Miranda, Nicola
2014-05-01
One of the main objective of the WP7 (Strategic Applications and Capacity Building) in the framework of the REAKT-Strategies and tools for Real Time Earthquake RisK ReducTion FP7 European project, is to evaluate the effectiveness of EEW and real-time risk assessment procedures in reducing seismic risk to various industrial partners and end-users. In the context of the REAKT project, the AMRA-RISSCLab group is engaged in a feasibility study on the application of earthquake early-warning procedures in two high schools located in the Irpinia region (South Italy), an area that in the 1980 was struck by a magnitude 6.9 earthquake. In this work we report on the activities carried out during the last 24 Months at the school ITIS 'E. Majorana', located in Somma Vesuviana, a village in the neighbourhood of Naples. In order to perform a continuous seismic monitoring of the site, which includes a rather complex structure building, 5 accelerometric stations have been installed in different part of the school. In particular, a 24-bit ADC (Sigma/Delta) Agecodagis-Kefren data-logger has been installed with a Guralp CMG-5TC accelerometer with a 0.25g full-scale in the school courtyard, while 4 SOSEWIN sensors have been also installed at different locations within the building. Commercial ADSL lines provide transmission of real-time data to the EEW centre. Data streams are now acquired in real-time in the PRESToPlus (regional and on-site, threshold-based early-warning) software platform [1]. The recent December 29, 2013 M 5.1 Monti del Matese Earthquake, gave us the unique opportunity to use real strong motion data to test the performance of threshold-based early warning method at the school. The on-site method [2] aims to define alert levels at the monitored site. In particular, at each station the characteristic P-waves period (τc) and the peak displacement (Pd) are measured on the initial P-wave signal. They are compared with threshold values, previously established through an empirical regression analysis, to produce an alert level at each station that can be correlated with the expected local damage in a robust way. At the same time, by means of the software PRESTo and a newly developed prototype of a low-cost EEW sentinel, these data have been also used to run an EEW drill at a few school classes. Finally, the preliminary results of the vulnerability study carried out at the school will be also shown. Indeed, after some preliminary in-situ surveys, structural and non-structural components, which are involved in the vulnerability analysis, have been identified. Hence, geometrical and mechanical model definition was performed and dynamic properties were carried out through a modal analysis. The evaluation of the seismic capacity has been performed through an incremental nonlinear static analysis approach, thus identifying seismic intensity levels leading to different Damage States in structural and non-structural components. References Satriano, Elia et al. (2010). PRESTo, the earthquake early warning system for Southern Italy: Concepts, capabilities and future perspectives. Soil Dyn Earthq Eng, doi 10.1016/j.soildyn.2010.06.008. Zollo et al. (2010). A threshold-based earthquake early warning using dense accelerometer networks. Geophys. J. Int. 183, 963-974.
NASA Astrophysics Data System (ADS)
AghaKouchak, A.; Huning, L. S.; Love, C. A.; Farahmand, A.
2017-12-01
This presentation surveys current and emerging drought monitoring approaches using satellite remote sensing observations from climatological and ecosystem perspectives. Satellite observations that are not currently used for operational drought monitoring, such as near-surface air relative humidity and water vapor, provide opportunities to improve early drought warning. Current and future satellite missions offer opportunities to develop composite and multi-indicator drought models. This presentation describes how different satellite observations can be combined for overall drought development and impact assessment. Finally, we provide an overview of the research gaps and challenges that are facing us ahead in the remote sensing of drought.
NASA Astrophysics Data System (ADS)
Krumov, A.; Nikolova, A.; Vassilev, N.; Vassilev, V.
Monitoring of terrestrial vegetation for the needs of agriculture, forestry and scientific investigation has demonstrated significant contribution to Earth' sciences in general and particular in ecological surveys and disaster management. Remote sensing of specific vegetation signature by space-born instruments is the only technique allowing large scale (regional or global) repeated observation, which can be used for early warning of natural hazards. Nowadays reflectance spectra are the main optical signatures used for monitoring of plant biomes. However, such a spectrum provides only data primarily related to the total quantity of vegetation and the concentration of their constituents. In fact, changes in the reflectance signature appear only after serious damage of the bio-systems has occurred. Thus, the use of reflectance signal as an early indicator of stress factors is rather impossible. More recently, the interest of the scientific community is increasingly devoted to the vegetation fluorescence emission, known to be an intrinsic early indicator of plant photosynthetic activity. With respect to reflectance, fluorescence is more specific as an observable of the basic biophysical processes in the plant cells. Several projects dedicated to remote measurements of solar-induced plant fluorescence, have shown the feasibility the fluorescence signal to be remotely sensed from a satellite altitudes. However, the correlation between reflectance and fluorescence still needs to be investigated. This work presents a set of experiments aimed to investigate the link between reflectance and fluorescence emission under controlled illumination conditions. They were performed in a specially designed laboratory bio chamber. The hardware of the bio-chamber allows monitoring of the plants vitality both by fluorescence and reflectance spectral imaging. Different types of stress factors (water, drought stress, acid impact etc.) were investigated. The acquired fluorescence and spectral data are analysed, interpreted and compared by their sensibility, rapidity of changes in response to stress changes, and informational diversity. Selected images illustrate an early detection of plant dysfunction and also regeneration of plants after removing of the negative factors.
NASA Astrophysics Data System (ADS)
Wang, Thea; Krøgli, Ingeborg; Boje, Søren; Colleuille, Hervé
2017-04-01
Since 2013 the Norwegian Water Resources and Energy Directorate (NVE) has operated a landslide early warning system (LEWS) for mainland Norway. The Svalbard islands, situated 800 km north of the Norwegian mainland, and 1200 km from the North Pole, are not part of the conventional early warning service. However, following the fatal snow avalanche event 19 Dec. 2015 in the settlement of Longyearbyen (78° north latitude), local authorities and the NVE have initiated monitoring of the hydro-meteorological conditions for the area of Longyearbyen, as an extraordinary precaution. Two operational forecasting teams from the NVE; the snow avalanche and the landslide hazard forecasters, perform hazard assessment related to snow avalanches, slush flows, debris flows, shallow slides and local flooding. This abstract will focus on recent experiences made by the landslide hazard team during the autumn 2016 landslide events, caused by a record setting wet and warm summer and autumn of 2016. The general concept of the Norwegian LEWS is based on frequency intervals of extreme hydro-meteorological conditions. This general concept has been transposed to the Longyearbyen area. Although the climate is considerably colder and drier than mainland Norway, experiences so far are positive and seem useful to the local authorities. Initially, the landslide hazard evaluation was intended to consider only slush flow hazard during the snow covered season. However, due to the extraordinary warm and wet summer and autumn 2016, the landslide hazard forecasters unexpectedly had to issue warnings for the local authorities due to increased risk of shallow landslides and debris flows. This was done in close cooperation with the Norwegian Meteorological Institute, who provided weather forecasts from the recently developed weather prediction model, AROME-Arctic. Two examples, from 14-15 Oct and 8-9 Nov 2016, will be given to demonstrate how the landslide hazard assessment for the Longyearbyen area is carried out. Several aspects contrast hazard monitoring and forecasting on the mainland, such as the challenges that transpire with sparse observations of hydrometeorologial variables, landslide inventories and hydrological simulations. Particular challenges that are faced on Svalbard, are the even greater remoteness of the settlements and the strong effect permafrost has on the soil structure. The planned development for improving the monitoring of slush avalanches and landslide hazards in the Longyearbyen area will also be presented.
NASA Astrophysics Data System (ADS)
Spruce, J.; Hargrove, W. W.; Gasser, J.; Norman, S. P.
2013-12-01
Forest threats across the US have become increasingly evident in recent years. These include regionally extensive disturbances (e.g., from drought, bark beetle outbreaks, and wildfires) that can occur across multiyear durations and result in extensive forest mortality. In addition, forests can be subject to ephemeral, sometimes yearly defoliation from various insects and types of storm damage. After prolonged severe disturbance, signs of forest recovery can vary in terms of satellite-based Normalized Difference Vegetation Index (NDVI) values. The increased extent and threat of forest disturbances in part led to the enactment of the 2003 Healthy Forest Restoration Act, which mandated that a national forest threat Early Warning System (EWS) be deployed. In response, the US Forest Service collaborated with NASA, DOE Oak Ridge National Laboratory, and the USGS Eros Data Center to build the near real time ForWarn forest threat EWS for monitoring regionally evident forest disturbances, starting on-line operations in 2010. Given the diversity of disturbance types, severities, and durations, ForWarn employs multiple historical baselines used with current NDVI to derive a suite of six nationwide 'weekly' forest change products. ForWarn uses daily 232 meter MODIS Aqua and Terra satellite NDVI data, including MOD13 products for deriving historical baseline NDVIs and eMODIS products for compiling current NDVI. Separately pre-processing the current and historical NDVIs, the Time Series Product Tool and the Phenological Parameters Estimation Tool are used to temporally reduce noise, fuse, and aggregate MODIS NDVIs into 24 day composites refreshed every 8 days with 46 dates of forest change products per year. The 24 day compositing interval typically enables new disturbances to be detected, while minimizing the frequency of residual atmospheric contamination. ForWarn's three standard forest change products compare current NDVI to that from the previous year, previous 3 years, and all previous years since 2000. Other forest change products added in 2013 include one for quicker disturbance detection and two others that adjust for seasonal fluctuations in normal vegetation phenology. This product suite and ForWarn's geospatial data viewer allow end users to view and assess disturbance dynamics for many regionally evident biotic and abiotic forest disturbances throughout a given current year. ForWarn's change products are also being used for forest change trend analysis and for developing regional forest overstory mortality products. They are used to alert forest health specialists about new regional forest disturbances. Such alerts also typically consider available Landsat, aerial, and ground data as well as communications with forest health specialists and previous experience. ForWarn products have been used to detect and track many types of regional disturbances for multiple forest types, including defoliation from caterpillars and severe storms, as well as mortality from both biotic and abiotic agents (e.g., bark beetles, drought, fire, anthropogenic clearing). ForWarn provides forest change products that could be combined with other geospatial data on forest biomass to help assess forest disturbance carbon impacts within the conterminous US.
NASA Astrophysics Data System (ADS)
Dugar, Sumit; Smith, Paul; Parajuli, Binod; Khanal, Sonu; Brown, Sarah; Gautam, Dilip; Bhandari, Dinanath; Gurung, Gehendra; Shakya, Puja; Kharbuja, RamGopal; Uprety, Madhab
2017-04-01
Operationalising effective Flood Early Warning Systems (EWS) in developing countries like Nepal poses numerous challenges, with complex topography and geology, sparse network of river and rainfall gauging stations and diverse socio-economic conditions. Despite these challenges, simple real-time monitoring based EWSs have been in place for the past decade. A key constraint of these simple systems is the very limited lead time for response - as little as 2-3 hours, especially for rivers originating from steep mountainous catchments. Efforts to increase lead time for early warning are focusing on imbedding forecasts into the existing early warning systems. In 2016, the Nepal Department of Hydrology and Meteorology (DHM) piloted an operational Probabilistic Flood Forecasting Model in major river basins across Nepal. This comprised a low data approach to forecast water levels, developed jointly through a research/practitioner partnership with Lancaster University and WaterNumbers (UK) and the International NGO Practical Action. Using Data-Based Mechanistic Modelling (DBM) techniques, the model assimilated rainfall and water levels to generate localised hourly flood predictions, which are presented as probabilistic forecasts, increasing lead times from 2-3 hours to 7-8 hours. The Nepal DHM has simultaneously started utilizing forecasts from the Global Flood Awareness System (GLoFAS) that provides streamflow predictions at the global scale based upon distributed hydrological simulations using numerical ensemble weather forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). The aforementioned global and local models have already affected the approach to early warning in Nepal, being operational during the 2016 monsoon in the West Rapti basin in Western Nepal. On 24 July 2016, GLoFAS hydrological forecasts for the West Rapti indicated a sharp rise in river discharge above 1500 m3/sec (equivalent to the river warning level at 5 meters) with 53% probability of exceeding the Medium Level Alert in two days. Rainfall stations upstream of the West Rapti catchment recorded heavy rainfall on 26 July, and localized forecasts from the probabilistic model at 8 am suggested that the water level would cross a pre-determined warning level in the next 3 hours. The Flood Forecasting Section at DHM issued a flood advisory, and disseminated SMS flood alerts to more than 13,000 at-risk people residing along the floodplains. Water levels crossed the danger threshold (5.4 meters) at 11 am, peaking at 8.15 meters at 10 pm. Extension of the warning lead time from probabilistic forecasts was significant in minimising the risk to lives and livelihoods as communities gained extra time to prepare, evacuate and respond. Likewise, longer timescale forecasts from GLoFAS could be potentially linked with no-regret early actions leading to improved preparedness and emergency response. These forecasting tools have contributed to enhance the effectiveness and efficiency of existing community based systems, increasing the lead time for response. Nevertheless, extensive work is required on appropriate ways to interpret and disseminate probabilistic forecasts having longer (2-14 days) and shorter (3-5 hours) time horizon for operational deployment as there are numerous uncertainties associated with predictions.
Paliwoda, Michelle; New, Karen; Bogossian, Fiona
2016-09-01
All newborns are at risk of deterioration as a result of failing to make the transition to extra uterine life. Signs of deterioration can be subtle and easily missed. It has been postulated that the use of an Early Warning Tool may assist clinicians in recognising and responding to signs of deterioration earlier in neonates, thereby preventing a serious adverse event. To examine whether observations from a Standard Observation Tool, applied to three neonatal Early Warning Tools, would hypothetically trigger an escalation of care more frequently than actual escalation of care using the Standard Observation Tool. A retrospective case-control study. A maternity unit in a tertiary public hospital in Australia. Neonates born in 2013 of greater than or equal to 34(+0) weeks gestation, admitted directly to the maternity ward from their birthing location and whose subsequent deterioration required admission to the neonatal unit, were identified as cases from databases of the study hospital. Each case was matched with three controls, inborn during the same period and who did not experience deterioration and neonatal unit admission. Clinical and physiological data recorded on a Standard Observation Tool, from time of admission to the maternity ward, for cases and controls were charted onto each of three Early Warning Tools. The primary outcome was whether the tool 'triggered an escalation of care'. Descriptive statistics (n, %, Mean and SD) were employed. Cases (n=26) comprised late preterm, early term and post-term neonates and matched by gestational age group with 3 controls (n=78). Overall, the Standard Observation Tool triggered an escalation of care for 92.3% of cases compared to the Early Warning Tools; New South Wales Health 80.8%, United Kingdom Newborn Early Warning Chart 57.7% and The Australian Capital Territory Neonatal Early Warning Score 11.5%. Subgroup analysis by gestational age found differences between the tools in hypothetically triggering an escalation of care. The Standard Observation Tool triggered an escalation of care more frequently than the Early Warning Tools, which may be as a result of behavioural data captured on the Standard Observation Tool and escalated, which could not be on the Early Warning Tools. Findings demonstrate that a single tool applied to all gestational age ranges may not be effective in identifying early deterioration or may over trigger an escalation of care. Further research is required into the sensitivity and specificity of Early Warning Tools in neonatal sub-populations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Early warning signals of regime shifts in coupled human–environment systems
Bauch, Chris T.; Sigdel, Ram; Pharaon, Joe; Anand, Madhur
2016-01-01
In complex systems, a critical transition is a shift in a system’s dynamical regime from its current state to a strongly contrasting state as external conditions move beyond a tipping point. These transitions are often preceded by characteristic early warning signals such as increased system variability. However, early warning signals in complex, coupled human–environment systems (HESs) remain little studied. Here, we compare critical transitions and their early warning signals in a coupled HES model to an equivalent environment model uncoupled from the human system. We parameterize the HES model, using social and ecological data from old-growth forests in Oregon. We find that the coupled HES exhibits a richer variety of dynamics and regime shifts than the uncoupled environment system. Moreover, the early warning signals in the coupled HES can be ambiguous, heralding either an era of ecosystem conservationism or collapse of both forest ecosystems and conservationism. The presence of human feedback in the coupled HES can also mitigate the early warning signal, making it more difficult to detect the oncoming regime shift. We furthermore show how the coupled HES can be “doomed to criticality”: Strategic human interactions cause the system to remain perpetually in the vicinity of a collapse threshold, as humans become complacent when the resource seems protected but respond rapidly when it is under immediate threat. We conclude that the opportunities, benefits, and challenges of modeling regime shifts and early warning signals in coupled HESs merit further research. PMID:27815533
Kroll, Ryan R; Boyd, J Gordon; Maslove, David M
2016-09-20
As the sensing capabilities of wearable devices improve, there is increasing interest in their application in medical settings. Capabilities such as heart rate monitoring may be useful in hospitalized patients as a means of enhancing routine monitoring or as part of an early warning system to detect clinical deterioration. To evaluate the accuracy of heart rate monitoring by a personal fitness tracker (PFT) among hospital inpatients. We conducted a prospective observational study of 50 stable patients in the intensive care unit who each completed 24 hours of heart rate monitoring using a wrist-worn PFT. Accuracy of heart rate recordings was compared with gold standard measurements derived from continuous electrocardiographic (cECG) monitoring. The accuracy of heart rates measured by pulse oximetry (Spo2.R) was also measured as a positive control. On a per-patient basis, PFT-derived heart rate values were slightly lower than those derived from cECG monitoring (average bias of -1.14 beats per minute [bpm], with limits of agreement of 24 bpm). By comparison, Spo2.R recordings produced more accurate values (average bias of +0.15 bpm, limits of agreement of 13 bpm, P<.001 as compared with PFT). Personal fitness tracker device performance was significantly better in patients in sinus rhythm than in those who were not (average bias -0.99 bpm vs -5.02 bpm, P=.02). Personal fitness tracker-derived heart rates were slightly lower than those derived from cECG monitoring in real-world testing and not as accurate as Spo2.R-derived heart rates. Performance was worse among patients who were not in sinus rhythm. Further clinical evaluation is indicated to see if PFTs can augment early warning systems in hospitals. ClinicalTrials.gov NCT02527408; https://clinicaltrials.gov/ct2/show/NCT02527408 (Archived by WebCite at http://www.webcitation.org/6kOFez3on).
NASA Astrophysics Data System (ADS)
Hammitzsch, M.; Spazier, J.; Reißland, S.
2014-12-01
Usually, tsunami early warning and mitigation systems (TWS or TEWS) are based on several software components deployed in a client-server based infrastructure. The vast majority of systems importantly include desktop-based clients with a graphical user interface (GUI) for the operators in early warning centers. However, in times of cloud computing and ubiquitous computing the use of concepts and paradigms, introduced by continuously evolving approaches in information and communications technology (ICT), have to be considered even for early warning systems (EWS). Based on the experiences and the knowledge gained in three research projects - 'German Indonesian Tsunami Early Warning System' (GITEWS), 'Distant Early Warning System' (DEWS), and 'Collaborative, Complex, and Critical Decision-Support in Evolving Crises' (TRIDEC) - new technologies are exploited to implement a cloud-based and web-based prototype to open up new prospects for EWS. This prototype, named 'TRIDEC Cloud', merges several complementary external and in-house cloud-based services into one platform for automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The prototype in its current version addresses tsunami early warning and mitigation. The integration of GPU accelerated tsunami simulation computations have been an integral part of this prototype to foster early warning with on-demand tsunami predictions based on actual source parameters. However, the platform is meant for researchers around the world to make use of the cloud-based GPU computation to analyze other types of geohazards and natural hazards and react upon the computed situation picture with a web-based GUI in a web browser at remote sites. The current website is an early alpha version for demonstration purposes to give the concept a whirl and to shape science's future. Further functionality, improvements and possible profound changes have to implemented successively based on the users' evolving needs.
Range Atmospheric and Oceanic Environmental Support Capabilities
2011-12-01
Precipitation location/intensity, thunderstorm location/intensity, rainfall/flash flood warning, hydrometer characterization, wind warnings, and...intensity, lightning monitoring, rainfall and flash flood warning, hydrometer characterization, and wind warnings. b. Satellite: MTSAT, GOES-10
Wang, Ruiping; Jiang, Yonggen; Michael, Engelgau; Zhao, Genming
2017-06-12
China Centre for Diseases Control and Prevention (CDC) developed the China Infectious Disease Automated Alert and Response System (CIDARS) in 2005. The CIDARS was used to strengthen infectious disease surveillance and aid in the early warning of outbreak. The CIDARS has been integrated into the routine outbreak monitoring efforts of the CDC at all levels in China. Early warning threshold is crucial for outbreak detection in the CIDARS, but CDCs at all level are currently using thresholds recommended by the China CDC, and these recommended thresholds have recognized limitations. Our study therefore seeks to explore an operational method to select the proper early warning threshold according to the epidemic features of local infectious diseases. The data used in this study were extracted from the web-based Nationwide Notifiable Infectious Diseases Reporting Information System (NIDRIS), and data for infectious disease cases were organized by calendar week (1-52) and year (2009-2015) in Excel format; Px was calculated using a percentile-based moving window (moving window [5 week*5 year], x), where x represents one of 12 centiles (0.40, 0.45, 0.50….0.95). Outbreak signals for the 12 Px were calculated using the moving percentile method (MPM) based on data from the CIDARS. When the outbreak signals generated by the 'mean + 2SD' gold standard were in line with a Px generated outbreak signal for each week during the year of 2014, this Px was then defined as the proper threshold for the infectious disease. Finally, the performance of new selected thresholds for each infectious disease was evaluated by simulated outbreak signals based on 2015 data. Six infectious diseases were selected in this study (chickenpox, mumps, hand foot and mouth diseases (HFMD), scarlet fever, influenza and rubella). Proper thresholds for chickenpox (P75), mumps (P80), influenza (P75), rubella (P45), HFMD (P75), and scarlet fever (P80) were identified. The selected proper thresholds for these 6 infectious diseases could detect almost all simulated outbreaks within a shorter time period compared to thresholds recommended by the China CDC. It is beneficial to select the proper early warning threshold to detect infectious disease aberrations based on characteristics and epidemic features of local diseases in the CIDARS.
NASA Astrophysics Data System (ADS)
Raju, P. L. N.; Sarma, K. K.; Barman, D.; Handique, B. K.; Chutia, D.; Kundu, S. S.; Das, R. Kr.; Chakraborty, K.; Das, R.; Goswami, J.; Das, P.; Devi, H. S.; Nongkynrih, J. M.; Bhusan, K.; Singh, M. S.; Singh, P. S.; Saikhom, V.; Goswami, C.; Pebam, R.; Borgohain, A.; Gogoi, R. B.; Singh, N. R.; Bharali, A.; Sarma, D.; Lyngdoh, R. B.; Mandal, P. P.; Chabukdhara, M.
2016-06-01
North Eastern Region (NER) of India comprising of eight states considered to be most unique and one of the most challenging regions to govern due to its unique physiographic condition, rich biodiversity, disaster prone and diverse socio-economic characteristics. Operational Remote Sensing services increased manifolds in the region with the establishment of North Eastern Space Applications Centre (NESAC) in the year 2000. Since inception, NESAC has been providing remote sensing services in generating inventory, planning and developmental activities, and management of natural resources, disasters and dissemination of information and services through geo-web services for NER. The operational remote sensing services provided by NESAC can be broadly divided into three categories viz. natural resource planning and developmental services, disaster risk reduction and early warning services and information dissemination through geo-portal services. As a apart of natural resources planning and developmental services NESAC supports the state forest departments in preparing the forest working plans by providing geospatial inputs covering entire NER, identifying the suitable culturable wastelands for cultivation of silkworm food plants, mapping of natural resources such as land use/land cover, wastelands, land degradation etc. on temporal basis. In the area of disaster risk reduction, NESAC has initiated operational services for early warning and post disaster assessment inputs for flood early warning system (FLEWS) using satellite remote sensing, numerical weather prediction, hydrological modeling etc.; forest fire alert system with actionable attribute information; Japanese Encephalitis Early Warning System (JEWS) based on mosquito vector abundance, pig population and historical disease intensity and agriculture drought monitoring for the region. The large volumes of geo-spatial databases generated as part of operational services are made available to the administrators and local government bodies for better management, preparing prospective planning, and sustainable use of available resources. The knowledge dissemination is being done through online web portals wherever the internet access is available and as well as offline space based information kiosks, where the internet access is not available or having limited bandwidth availability. This paper presents a systematic and comprehensive study on the remote sensing services operational in NER of India for natural resources management, disaster risk reduction and dissemination of information and services, in addition to outlining future areas and direction of space applications for the region.
An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web
NASA Astrophysics Data System (ADS)
Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.
2013-09-01
Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an architecture to represent how integrate air quality sensor data stream into geospatial data infrastructure to present an interoperable air quality monitoring system for supporting disaster management systems by real time information. Developed system tested on Tehran air pollution sensors for calculating Air Quality Index (AQI) for CO pollutant and subsequently notifying registered users in emergency cases by sending warning E-mails. Air quality monitoring portal used to retrieving and visualize sensor observation through interoperable framework. This system provides capabilities to retrieve SOS observation using WPS in a cascaded service chaining pattern for monitoring trend of timely sensor observation.
Cluster-search based monitoring of local earthquakes in SeisComP3
NASA Astrophysics Data System (ADS)
Roessler, D.; Becker, J.; Ellguth, E.; Herrnkind, S.; Weber, B.; Henneberger, R.; Blanck, H.
2016-12-01
We present a new cluster-search based SeisComP3 module for locating local and regional earthquakes in real time. Real-time earthquake monitoring systems such as SeisComP3 provide the backbones for earthquake early warning (EEW), tsunami early warning (TEW) and the rapid assessment of natural and induced seismicity. For any earthquake monitoring system fast and accurate event locations are fundamental determining the reliability and the impact of further analysis. SeisComP3 in the OpenSource version includes a two-stage detector for picking P waves and a phase associator for locating earthquakes based on P-wave detections. scanloc is a more advanced earthquake location program developed by gempa GmbH with seamless integration into SeisComP3. scanloc performs advanced cluster search to discriminate earthquakes occurring closely in space and time and makes additional use of S-wave detections. It has proven to provide fast and accurate earthquake locations at local and regional distances where it outperforms the base SeisComP3 tools. We demonstrate the performance of scanloc for monitoring induced seismicity as well as local and regional earthquakes in different tectonic regimes including subduction, spreading and intra-plate regions. In particular we present examples and catalogs from real-time monitoring of earthquake in Northern Chile based on data from the IPOC network by GFZ German Research Centre for Geosciences for the recent years. Depending on epicentral distance and data transmission, earthquake locations are available within a few seconds after origin time when using scanloc. The association of automatic S-wave detections provides a better constraint on focal depth.
NASA Astrophysics Data System (ADS)
Becker-Reshef, I.; Barker, B.; McGaughey, K.; Humber, M. L.; Sanchez, A.; Justice, C. O.; Rembold, F.; Verdin, J. P.
2016-12-01
Timely, reliable information on crop conditions, and prospects at the subnational scale, is critical for making informed policy and agricultural decisions for ensuring food security, particularly for the most vulnerable countries. However, such information is often incomplete or lacking. As such, the Crop Monitor for Early Warning (CM for EW) was developed with the goal to reduce uncertainty and strengthen decision support by providing actionable information on a monthly basis to national, regional and global food security agencies through timely consensus assessments of crop conditions. This information is especially critical in recent years, given the extreme weather conditions impacting food supplies including the most recent El Nino event. This initiative brings together the main international food security monitoring agencies and organizations to develop monthly crop assessments based on satellite observations, meteorological information, field observations and ground reports, which reflect an international consensus. This activity grew out of the successful Crop Monitor for the G20 Agricultural Market Information System (AMIS), which provides operational monthly crop assessments of the main producing countries of the world. The CM for EW was launched in February 2016 and has already become a trusted source of information internationally and regionally. Its assessments have been featured in a large number of news articles, reports, and press releases, including a joint statement by the USAID's FEWS NET, UN World Food Program, European Commission Joint Research Center, and the UN Food and Agriculture Organziation, on the devastating impacts of the southern African drought due to El Nino. One of the main priorities for this activity going forward is to expand its partnership with regional and national monitoring agencies, and strengthen capacity for national crop condition assessments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Aubrey E.; Hopkinson, Leslie; Soeder, Daniel
Surface water and groundwater risks associated with unconventional oil and gas development result from potential spills of the large volumes of chemicals stored on-site during drilling and hydraulic fracturing operations, and the return to the surface of significant quantities of saline water produced during oil or gas well production. To better identify and mitigate risks, watershed models and tools are needed to evaluate the dispersion of pollutants in possible spill scenarios. This information may be used to determine the placement of in-stream water-quality monitoring instruments and to develop early-warning systems and emergency plans. A chemical dispersion model has been usedmore » to estimate the contaminant signal for in-stream measurements. Spills associated with oil and gas operations were identified within the Susquehanna River Basin Commission’s Remote Water Quality Monitoring Network. The volume of some contaminants was found to be sufficient to affect the water quality of certain drainage areas. The most commonly spilled compounds and expected peak concentrations at monitoring stations were used in laboratory experiments to determine if a signal could be detected and positively identified using standard water-quality monitoring equipment. The results were compared to historical data and baseline observations of water quality parameters, and showed that the chemicals tested do commonly affect water quality parameters. This work is an effort to demonstrate that hydrologic and water quality models may be applied to improve the placement of in-stream water quality monitoring devices. This information may increase the capability of early-warning systems to alert community health and environmental agencies of surface water spills associated with unconventional oil and gas operations.« less
Assessment of Gas Potential in the Niobrara Formation, Rosebud Reservation, South Dakota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Aubrey E.; Hopkinson, Leslie; Soeder, Daniel
2016-01-23
Surface water and groundwater risks associated with unconventional oil and gas development result from potential spills of the large volumes of chemicals stored on-site during drilling and hydraulic fracturing operations, and the return to the surface of significant quantities of saline water produced during oil or gas well production. To better identify and mitigate risks, watershed models and tools are needed to evaluate the dispersion of pollutants in possible spill scenarios. This information may be used to determine the placement of in-stream water-quality monitoring instruments and to develop early-warning systems and emergency plans. A chemical dispersion model has been usedmore » to estimate the contaminant signal for in-stream measurements. Spills associated with oil and gas operations were identified within the Susquehanna River Basin Commission’s Remote Water Quality Monitoring Network. The volume of some contaminants was found to be sufficient to affect the water quality of certain drainage areas. The most commonly spilled compounds and expected peak concentrations at monitoring stations were used in laboratory experiments to determine if a signal could be detected and positively identified using standard water-quality monitoring equipment. The results were compared to historical data and baseline observations of water quality parameters, and showed that the chemicals tested do commonly affect water quality parameters. This work is an effort to demonstrate that hydrologic and water quality models may be applied to improve the placement of in-stream water quality monitoring devices. This information may increase the capability of early-warning systems to alert community health and environmental agencies of surface water spills associated with unconventional oil and gas operations.« less
ERIC Educational Resources Information Center
Massachusetts Department of Elementary and Secondary Education, 2013
2013-01-01
The Massachusetts Department of Elementary and Secondary Education (Department) created the grades 1-12 Early Warning Indicator System (EWIS) in response to district interest in the Early Warning Indicator Index (EWII) that the Department previously created for rising grade 9 students. Districts shared that the EWII data were helpful, but also…
Crowd-Sourced Global Earthquake Early Warning
NASA Astrophysics Data System (ADS)
Minson, S. E.; Brooks, B. A.; Glennie, C. L.; Murray, J. R.; Langbein, J. O.; Owen, S. E.; Iannucci, B. A.; Hauser, D. L.
2014-12-01
Although earthquake early warning (EEW) has shown great promise for reducing loss of life and property, it has only been implemented in a few regions due, in part, to the prohibitive cost of building the required dense seismic and geodetic networks. However, many cars and consumer smartphones, tablets, laptops, and similar devices contain low-cost versions of the same sensors used for earthquake monitoring. If a workable EEW system could be implemented based on either crowd-sourced observations from consumer devices or very inexpensive networks of instruments built from consumer-quality sensors, EEW coverage could potentially be expanded worldwide. Controlled tests of several accelerometers and global navigation satellite system (GNSS) receivers typically found in consumer devices show that, while they are significantly noisier than scientific-grade instruments, they are still accurate enough to capture displacements from moderate and large magnitude earthquakes. The accuracy of these sensors varies greatly depending on the type of data collected. Raw coarse acquisition (C/A) code GPS data are relatively noisy. These observations have a surface displacement detection threshold approaching ~1 m and would thus only be useful in large Mw 8+ earthquakes. However, incorporating either satellite-based differential corrections or using a Kalman filter to combine the raw GNSS data with low-cost acceleration data (such as from a smartphone) decreases the noise dramatically. These approaches allow detection thresholds as low as 5 cm, potentially enabling accurate warnings for earthquakes as small as Mw 6.5. Simulated performance tests show that, with data contributed from only a very small fraction of the population, a crowd-sourced EEW system would be capable of warning San Francisco and San Jose of a Mw 7 rupture on California's Hayward fault and could have accurately issued both earthquake and tsunami warnings for the 2011 Mw 9 Tohoku-oki, Japan earthquake.
NASA Astrophysics Data System (ADS)
He, Xin; Stisen, Simon; Wiese, Marianne B.; Jørgen Henriksen, Hans
2015-04-01
In Denmark, increasing focus on extreme weather events has created considerable demand for short term forecasts and early warnings in relation to groundwater and surface water flooding. The Geological Survey of Denmark and Greenland (GEUS) has setup, calibrated and applied a nationwide water resources model, the DK-Model, primarily for simulating groundwater and surface water flows and groundwater levels during the past 20 years. So far, the DK-model has only been used in offline historical and future scenario simulations. Therefore, challenges arise in operating such a model for online forecasts and early warnings, which requires access to continuously updated observed climate input data and forecast data of precipitation, temperature and global radiation for the next 48 hours or longer. GEUS has a close collaboration with the Danish Meteorological Institute in order to test and enable this data input for the DK model. Due to the comprehensive physical descriptions of the DK-Model, the simulation results can potentially be any component of the hydrological cycle within the models domain. Therefore, it is important to identify which results need to be updated and saved in the real-time mode, since it is not computationally economical to save every result considering the heavy load of data. GEUS have worked closely with the end-users and interest groups such as water planners and emergency managers from the municipalities, water supply and waste water companies, consulting companies and farmer organizations, in order to understand their possible needs for real time simulation and monitoring of the nationwide water cycle. This participatory process has been supported by a web based questionnaire survey, and a workshop that connected the model developers and the users. For qualifying the stakeholder engagement, GEUS has selected a representative catchment area (Skjern River) for testing and demonstrating a prototype of the web based hydrological warning system at the workshop, and illustrated simulated groundwater levels, streamflow and water content in the root zone. The webpages can be tailor-made to meet the requirements of the end-users and also enable flexibility to extend while the users' demand changes. The active involvement of stakeholders in the workshop provided very valuable insights and feedbacks for GEUS, relevant for the future development of the nationwide real-time modeling and water cycle monitoring system for Denmark, including possible linking to early warning and real-time forecasting systems operating at the local scale.
APDS: Autonomous Pathogen Detection System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langlois, R G; Brown, S; Burris, L
An early warning system to counter bioterrorism, the Autonomous Pathogen Detection System (APDS) continuously monitors the environment for the presence of biological pathogens (e.g., anthrax) and once detected, it sounds an alarm much like a smoke detector warns of a fire. Long before September 11, 2001, this system was being developed to protect domestic venues and events including performing arts centers, mass transit systems, major sporting and entertainment events, and other high profile situations in which the public is at risk of becoming a target of bioterrorist attacks. Customizing off-the-shelf components and developing new components, a multidisciplinary team developed APDS,more » a stand-alone system for rapid, continuous monitoring of multiple airborne biological threat agents in the environment. The completely automated APDS samples the air, prepares fluid samples in-line, and performs two orthogonal tests: immunoassay and nucleic acid detection. When compared to competing technologies, APDS is unprecedented in terms of flexibility and system performance.« less
Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns
Brock, William A.; Carpenter, Stephen R.; Ellison, Aaron M.; Livina, Valerie N.; Seekell, David A.; Scheffer, Marten; van Nes, Egbert H.; Dakos, Vasilis
2014-01-01
A number of ecosystems can exhibit abrupt shifts between alternative stable states. Because of their important ecological and economic consequences, recent research has focused on devising early warning signals for anticipating such abrupt ecological transitions. In particular, theoretical studies show that changes in spatial characteristics of the system could provide early warnings of approaching transitions. However, the empirical validation of these indicators lag behind their theoretical developments. Here, we summarize a range of currently available spatial early warning signals, suggest potential null models to interpret their trends, and apply them to three simulated spatial data sets of systems undergoing an abrupt transition. In addition to providing a step-by-step methodology for applying these signals to spatial data sets, we propose a statistical toolbox that may be used to help detect approaching transitions in a wide range of spatial data. We hope that our methodology together with the computer codes will stimulate the application and testing of spatial early warning signals on real spatial data. PMID:24658137
The effects of volcanoes on health: preparedness in Mexico.
Zeballos, J L; Meli, R; Vilchis, A; Barrios, L
1996-01-01
The article reviews the most important aspects of volcanic eruptions and presents a summary of the harmful materials they emit. The main health effects can be classified as either physical (trauma, respiratory diseases, etc.) or psychological (depression, anxiety, nightmares, neurosis, etc.). Popocatépetl, the most famous active volcano in Mexico, lies on the borders of the States of Mexico, Puebla and Morelos. In 1993, seismic activity intensified, as did as the emission of fumaroles, followed in December 1994 by moderate tremors and strong emissions of gases and ash. In 1996, a number of seismic events led to an unexpected explosion. A daily emission of 8,000 to 15,000 tonnes of sulfur dioxide has been measured. Popocatépetl is located in a densely populated region of Mexico. A complex network to monitor the volcano using sophisticated equipment has been set up, including visual surveillance, seismic, geochemical and geodesic monitoring. An early warning system (SINAPROC/CENAPRED) has been developed to keep the population permanently informed. The warning system uses colour codes: green for normal, yellow for alert, and red for warning and evacuation. An emergency plan has been prepared, including evacuation and preparation for medical centres and hospitals in the region, as well as intense public information campaigns.
NASA Astrophysics Data System (ADS)
Gebert, Niklas; Post, Joachim
2010-05-01
The development of early warning systems are one of the key domains of adaptation to global environmental change and contribute very much to the development of societal reaction and adaptive capacities to deal with extreme events. Especially, Indonesia is highly exposed to tsunami. In average every three years small and medium size tsunamis occur in the region causing damage and death. In the aftermath of the Indian Ocean Tsunami 2004, the German and Indonesian government agreed on a joint cooperation to develop a People Centered End-to-End Early Warning System (GITEWS). The analysis of risk and vulnerability, as an important step in risk (and early warning) governance, is a precondition for the design of effective early warning structures by delivering the knowledge base for developing institutionalized quick response mechanisms of organizations involved in the issuing of a tsunami warning, and of populations exposed to react to warnings and to manage evacuation before the first tsunami wave hits. Thus, a special challenge for developing countries is the governance of complex cross-sectoral and cross-scale institutional, social and spatial processes and requirements for the conceptualization, implementation and optimization of a people centered tsunami early warning system. In support of this, the risk and vulnerability assessment of the case study aims at identifying those factors that constitute the causal structure of the (dis)functionality between the technological warning and the social response system causing loss of life during an emergency situation: Which social groups are likely to be less able to receive and respond to an early warning alert? And, are people able to evacuate in due time? Here, only an interdisciplinary research approach is capable to analyze the socio-spatial and environmental conditions of vulnerability and risk and to produce valuable results for decision makers and civil society to manage tsunami risk in the early warning context. This requires the integration of natural / spatial and social science concepts, methods and data: E.g. a scenario based approach for tsunami inundation modeling was developed to provide decision makers with options to decide up to what level they aim to protect their people and territory, on the contrary household surveys were conducted for the spatial analysis of the evacuation preparedness of the population as a function of place specific hazard, risk, warning and evacuation perception; remote sensing was applied for the spatial analysis (land-use) of the socio-physical conditions of a city and region for evacuation; and existing social / population statistics were combined with land-use data for the precise spatial mapping of the population exposed to tsunami risks. Only by utilizing such a comprehensive assessment approach valuable information for risk governance can be generated. The results are mapped using GIS and designed according to the specific needs of different end-users, such as public authorities involved in the design of warning dissemination strategies, land-use planners (shelter planning, road network configuration) and NGOs mandated to provide education for the general public on tsunami risk and evacuation behavior. The case study of the city of Padang (one of the pilot areas of GITEWS), Indonesia clearly show, that only by intersecting social (vulnerability) and natural hazards research a comprehensive picture on tsunami risk can be provided with which risk governance in the early warning context can be conducted in a comprehensive, systemic and sustainable manner.
2007 Brookhaven National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2008-07-31
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2007 East Tennessee Technology Park Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2009-07-13
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2010 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2011-08-16
The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2010 Nevada National Security Site Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2011-07-28
The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2006 Oak Ridge National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2008-05-16
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2006 Brookhaven National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2008-03-06
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2006 Y-12 National Security Complex Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2008-04-17
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2009 Y-12 National Security Complex Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2010-07-09
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2008 East Tennessee Technology Park Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2010-10-26
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2008 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2009-09-21
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2010 East Tennessee Technology Park Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2011-08-16
The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2006 Los Alamos National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2008-06-13
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2007 Oak Ridge National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2009-03-04
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2010 Oak Ridge National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2011-07-28
The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2007 Idaho National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2009-05-04
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2007 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2008-05-20
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2008 Y-12 National Security Complex Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2009-12-11
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2010 Y-12 National Security Complex Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2011-08-31
The U.S. Department of Energy's (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2006 Lawrence Livermore National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2008-03-27
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2008 Oak Ridge National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2009-12-14
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
2006 Savannah River Site Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2008-08-20
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2006 Nevada Test Site Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2008-04-24
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2006 Kansas City Plant Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2008-06-13
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of illness and injury surveillance activities that provide an early warning system to detect health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence, occupational injuries and illnesses, and disabilities and deaths among current workers.
2007 Y-12 National Security Complex Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Health, Office of Health and Safety, Office of Illness and Injury Prevention Programs
2009-07-01
The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs
Annual Illness and Injury Surveillance Program for 2004 for the Hanford site. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs
Annual Illness and Injury Surveillance Program report for 2003 for the Fernald Environmental Management Project. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The IISP monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
Polanco, Carlos; Castañón-González, Jorge Alberto; Macías, Alejandro E; Samaniego, José Lino; Buhse, Thomas; Villanueva-Martínez, Sebastián
2013-01-01
A severe respiratory disease epidemic outbreak correlates with a high demand of specific supplies and specialized personnel to hold it back in a wide region or set of regions; these supplies would be beds, storage areas, hemodynamic monitors, and mechanical ventilators, as well as physicians, respiratory technicians, and specialized nurses. We describe an online cumulative sum based model named Overcrowd-Severe-Respiratory-Disease-Index based on the Modified Overcrowd Index that simultaneously monitors and informs the demand of those supplies and personnel in a healthcare network generating early warnings of severe respiratory disease epidemic outbreaks through the interpretation of such variables. A post hoc historical archive is generated, helping physicians in charge to improve the transit and future allocation of supplies in the entire hospital network during the outbreak. The model was thoroughly verified in a virtual scenario, generating multiple epidemic outbreaks in a 6-year span for a 13-hospital network. When it was superimposed over the H1N1 influenza outbreak census (2008-2010) taken by the National Institute of Medical Sciences and Nutrition Salvador Zubiran in Mexico City, it showed that it is an effective algorithm to notify early warnings of severe respiratory disease epidemic outbreaks with a minimal rate of false alerts.
What are we assessing when we measure food security? A compendium and review of current metrics.
Jones, Andrew D; Ngure, Francis M; Pelto, Gretel; Young, Sera L
2013-09-01
The appropriate measurement of food security is critical for targeting food and economic aid; supporting early famine warning and global monitoring systems; evaluating nutrition, health, and development programs; and informing government policy across many sectors. This important work is complicated by the multiple approaches and tools for assessing food security. In response, we have prepared a compendium and review of food security assessment tools in which we review issues of terminology, measurement, and validation. We begin by describing the evolving definition of food security and use this discussion to frame a review of the current landscape of measurement tools available for assessing food security. We critically assess the purpose/s of these tools, the domains of food security assessed by each, the conceptualizations of food security that underpin each metric, as well as the approaches that have been used to validate these metrics. Specifically, we describe measurement tools that 1) provide national-level estimates of food security, 2) inform global monitoring and early warning systems, 3) assess household food access and acquisition, and 4) measure food consumption and utilization. After describing a number of outstanding measurement challenges that might be addressed in future research, we conclude by offering suggestions to guide the selection of appropriate food security metrics.
What Are We Assessing When We Measure Food Security? A Compendium and Review of Current Metrics12
Jones, Andrew D.; Ngure, Francis M.; Pelto, Gretel; Young, Sera L.
2013-01-01
The appropriate measurement of food security is critical for targeting food and economic aid; supporting early famine warning and global monitoring systems; evaluating nutrition, health, and development programs; and informing government policy across many sectors. This important work is complicated by the multiple approaches and tools for assessing food security. In response, we have prepared a compendium and review of food security assessment tools in which we review issues of terminology, measurement, and validation. We begin by describing the evolving definition of food security and use this discussion to frame a review of the current landscape of measurement tools available for assessing food security. We critically assess the purpose/s of these tools, the domains of food security assessed by each, the conceptualizations of food security that underpin each metric, as well as the approaches that have been used to validate these metrics. Specifically, we describe measurement tools that 1) provide national-level estimates of food security, 2) inform global monitoring and early warning systems, 3) assess household food access and acquisition, and 4) measure food consumption and utilization. After describing a number of outstanding measurement challenges that might be addressed in future research, we conclude by offering suggestions to guide the selection of appropriate food security metrics. PMID:24038241
Castañón-González, Jorge Alberto; Macías, Alejandro E.; Samaniego, José Lino; Buhse, Thomas; Villanueva-Martínez, Sebastián
2013-01-01
A severe respiratory disease epidemic outbreak correlates with a high demand of specific supplies and specialized personnel to hold it back in a wide region or set of regions; these supplies would be beds, storage areas, hemodynamic monitors, and mechanical ventilators, as well as physicians, respiratory technicians, and specialized nurses. We describe an online cumulative sum based model named Overcrowd-Severe-Respiratory-Disease-Index based on the Modified Overcrowd Index that simultaneously monitors and informs the demand of those supplies and personnel in a healthcare network generating early warnings of severe respiratory disease epidemic outbreaks through the interpretation of such variables. A post hoc historical archive is generated, helping physicians in charge to improve the transit and future allocation of supplies in the entire hospital network during the outbreak. The model was thoroughly verified in a virtual scenario, generating multiple epidemic outbreaks in a 6-year span for a 13-hospital network. When it was superimposed over the H1N1 influenza outbreak census (2008–2010) taken by the National Institute of Medical Sciences and Nutrition Salvador Zubiran in Mexico City, it showed that it is an effective algorithm to notify early warnings of severe respiratory disease epidemic outbreaks with a minimal rate of false alerts. PMID:24069063
Airlock caution and warning system
NASA Technical Reports Server (NTRS)
Mayfield, W. J.; Cork, L. Z.; Malchow, R. G.; Hornback, G. L.
1972-01-01
Caution and warning system, used to monitor performance and warn of hazards or out-of-limit conditions on space vehicles, may have application to aircraft and railway transit systems. System consists of caution and warning subsystem and emergency subsystem.
Ruiz, Daniel; Cerón, Viviana; Molina, Adriana M.; Quiñónes, Martha L.; Jiménez, Mónica M.; Ahumada, Martha; Gutiérrez, Patricia; Osorio, Salua; Mantilla, Gilma; Connor, Stephen J.; Thomson, Madeleine C.
2014-01-01
As part of the Integrated National Adaptation Pilot project and the Integrated Surveillance and Control System, the Colombian National Institute of Health is working on the design and implementation of a Malaria Early Warning System framework, supported by seasonal climate forecasting capabilities, weather and environmental monitoring, and malaria statistical and dynamic models. In this report, we provide an overview of the local ecoepidemiologic settings where four malaria process-based mathematical models are currently being implemented at a municipal level. The description includes general characteristics, malaria situation (predominant type of infection, malaria-positive cases data, malaria incidence, and seasonality), entomologic conditions (primary and secondary vectors, mosquito densities, and feeding frequencies), climatic conditions (climatology and long-term trends), key drivers of epidemic outbreaks, and non-climatic factors (populations at risk, control campaigns, and socioeconomic conditions). Selected pilot sites exhibit different ecoepidemiologic settings that must be taken into account in the development of the integrated surveillance and control system. PMID:24891460
Setting up an early warning system for epidemic-prone diseases in Darfur: a participative approach.
Pinto, Augusto; Saeed, Mubarak; El Sakka, Hammam; Rashford, Adrienne; Colombo, Alessandro; Valenciano, Marta; Sabatinelli, Guido
2005-12-01
In April-May 2004, the World Health Organization (WHO) implemented, with local authorities, United Nations (UN) agencies and non-governmental organisations (NGOs), an early warning system (EWS) in Darfur, West Sudan, for internally displaced persons (IDPs). The number of consultations and deaths per week for 12 health events is recorded for two age groups (less than five years and five years and above). Thresholds are used to detect potential outbreaks. Ten weeks after the introduction of the system, NGOs were covering 54 camps, and 924,281 people (IDPs and the host population). Of these 54 camps, 41 (76%) were reporting regularly under the EWS. Between 22 May and 30 July, 179,795 consultations were reported: 18.7% for acute respiratory infections; 15% for malaria; 8.4% for bloody diarrhoea; and 1% for severe acute malnutrition. The EWS is useful for detecting outbreaks and monitoring the number of consultations required to trigger actions, but not for estimating mortality.
Fall Risk Assessment and Early-Warning for Toddler Behaviors at Home
Yang, Mau-Tsuen; Chuang, Min-Wen
2013-01-01
Accidental falls are the major cause of serious injuries in toddlers, with most of these falls happening at home. Instead of providing immediate fall detection based on short-term observations, this paper proposes an early-warning childcare system to monitor fall-prone behaviors of toddlers at home. Using 3D human skeleton tracking and floor plane detection based on depth images captured by a Kinect system, eight fall-prone behavioral modules of toddlers are developed and organized according to four essential criteria: posture, motion, balance, and altitude. The final fall risk assessment is generated by a multi-modal fusion using either a weighted mean thresholding or a support vector machine (SVM) classification. Optimizations are performed to determine local parameter in each module and global parameters of the multi-modal fusion. Experimental results show that the proposed system can assess fall risks and trigger alarms with an accuracy rate of 92% at a speed of 20 frames per second. PMID:24335727
Fall risk assessment and early-warning for toddler behaviors at home.
Yang, Mau-Tsuen; Chuang, Min-Wen
2013-12-10
Accidental falls are the major cause of serious injuries in toddlers, with most of these falls happening at home. Instead of providing immediate fall detection based on short-term observations, this paper proposes an early-warning childcare system to monitor fall-prone behaviors of toddlers at home. Using 3D human skeleton tracking and floor plane detection based on depth images captured by a Kinect system, eight fall-prone behavioral modules of toddlers are developed and organized according to four essential criteria: posture, motion, balance, and altitude. The final fall risk assessment is generated by a multi-modal fusion using either a weighted mean thresholding or a support vector machine (SVM) classification. Optimizations are performed to determine local parameter in each module and global parameters of the multi-modal fusion. Experimental results show that the proposed system can assess fall risks and trigger alarms with an accuracy rate of 92% at a speed of 20 frames per second.
Early warning and crop condition assessment research
NASA Technical Reports Server (NTRS)
Boatwright, G. O.; Whitehead, V. S.
1986-01-01
The Early Warning Crop Condition Assessment Project of AgRISTARS was a multiagency and multidisciplinary effort. Its mission and objectives were centered around development and testing of remote-sensing techniques that enhance operational methodologies for global crop-condition assessments. The project developed crop stress indicators models that provide data filter and alert capabilities for monitoring global agricultural conditions. The project developed a technique for using NOAA-n satellite advanced very-high-resolution radiometer (AVHRR) data for operational crop-condition assessments. This technology was transferred to the Foreign Agricultural Service of the USDA. The project developed a U.S. Great Plains data base that contains various meteorological parameters and vegetative index numbers (VIN) derived from AVHRR satellite data. It developed cloud screening techniques and scan angle correction models for AVHRR data. It also developed technology for using remotely acquired thermal data for crop water stress indicator modeling. The project provided basic technology including spectral characteristics of soils, water, stressed and nonstressed crop and range vegetation, solar zenith angle, and atmospheric and canopy structure effects.
Impact of social preparedness on flood early warning systems
NASA Astrophysics Data System (ADS)
Girons Lopez, M.; Di Baldassarre, G.; Seibert, J.
2017-01-01
Flood early warning systems play a major role in the disaster risk reduction paradigm as cost-effective methods to mitigate flood disaster damage. The connections and feedbacks between the hydrological and social spheres of early warning systems are increasingly being considered as key aspects for successful flood mitigation. The behavior of the public and first responders during flood situations, determined by their preparedness, is heavily influenced by many behavioral traits such as perceived benefits, risk awareness, or even denial. In this study, we use the recency of flood experiences as a proxy for social preparedness to assess its impact on the efficiency of flood early warning systems through a simple stylized model and implemented this model using a simple mathematical description. The main findings, which are based on synthetic data, point to the importance of social preparedness for flood loss mitigation, especially in circumstances where the technical forecasting and warning capabilities are limited. Furthermore, we found that efforts to promote and preserve social preparedness may help to reduce disaster-induced losses by almost one half. The findings provide important insights into the role of social preparedness that may help guide decision-making in the field of flood early warning systems.
The Financial Benefit of Early Flood Warnings in Europe
NASA Astrophysics Data System (ADS)
Pappenberger, Florian; Cloke, Hannah L.; Wetterhall, Fredrik; Parker, Dennis J.; Richardson, David; Thielen, Jutta
2015-04-01
Effective disaster risk management relies on science based solutions to close the gap between prevention and preparedness measures. The outcome of consultations on the UNIDSR post-2015 framework for disaster risk reduction highlight the need for cross-border early warning systems to strengthen the preparedness phases of disaster risk management in order to save people's lives and property and reduce the overall impact of severe events. In particular, continental and global scale flood forecasting systems provide vital information to various decision makers with which early warnings of floods can be made. Here the potential monetary benefits of early flood warnings using the example of the European Flood Awareness System (EFAS) are calculated based on pan-European Flood damage data and calculations of potential flood damage reductions. The benefits are of the order of 400 Euro for every 1 Euro invested. Because of the uncertainties which accompany the calculation, a large sensitivity analysis is performed in order to develop an envelope of possible financial benefits. Current EFAS system skill is compared against perfect forecasts to demonstrate the importance of further improving the skill of the forecasts. Improving the response to warnings is also essential in reaping the benefits of flood early warnings.
Henry, Kimberly L; Knight, Kelly E; Thornberry, Terence P
2012-02-01
Over the past 5 years, a great deal of attention has been paid to the development of early warning systems for dropout prevention. These warning systems use a set of indicators based on official school records to identify youth at risk for dropout and then appropriately target intervention. The current study builds on this work by assessing the extent to which a school disengagement warning index predicts not only dropout but also other problem behaviors during middle adolescence, late adolescence, and early adulthood. Data from the Rochester Youth Development Study (N = 911, 73% male, 68% African American, and 17% Latino) were used to examine the effects of a school disengagement warning index based on official 8th and 9th grade school records on subsequent dropout, as well as serious delinquency, official offending, and problem substance use during middle adolescence, late adolescence, and early adulthood. Results indicate that the school disengagement warning index is robustly related to dropout as well as serious problem behaviors across the three developmental stages, even after controlling for important potential confounders. High school dropout mediates the effect of the warning index on serious problem behaviors in early adulthood.
Henry, Kimberly L.; Knight, Kelly E.; Thornberry, Terence P.
2015-01-01
Over the past five years, a great deal of attention has been paid to the development of early warning systems for dropout prevention. These warning systems use a set of indicators based on official school records to identify youth at risk for dropout and then appropriately target intervention. The current study builds on this work by assessing the extent to which a school disengagement warning index predicts not only dropout but also other problem behaviors during middle adolescence, late adolescence, and early adulthood. Data from the Rochester Youth Development Study (n=911, 73% male, 68% African American, and 17% Latino) were used to examine the effects of a school disengagement warning index based on official 8th and 9th grade school records on subsequent dropout, as well as serious delinquency, official offending, and problem substance use during middle adolescence, late adolescence, and early adulthood. Results indicate that the school disengagement warning index is robustly related to dropout as well as serious problem behaviors across the three developmental stages, even after controlling for important potential confounders. High school dropout mediates the effect of the warning index on serious problem behaviors in early adulthood. PMID:21523389
Xu, Mei; Liu, Chun la; Li, Dan; Zhong, Xiao Lin
2017-11-01
Tourism ecological security early warning is of great significance both to the coordination of ecological environment protection and tourism industry rapid development in tourism destination, and the sustainable and healthy development of regional social and economy. Firstly, based on the DPSIR model, the tourism ecological security early warning index system of Zhangjiajie was constructed from 5 aspects, which were driving force, pressure, state, impact and response. Then, by using the improved TOPSIS method, the tourism ecological security situation of Zhangjiajie from 2001 to 2014 was analyzed. Lastly, by using the grey GM (1,1) model, the tourism ecological security evolution trend of 2015-2020 was predicted. The results indicated that, on the whole, the close degree of Zhangjiajie's tourism ecological security showed a slightly upward trend during 2001-2014, the warning degree was the moderate warning. In terms of each subsystem, warning degree of the driving force system and the pressure system of Zhangjiajie's tourism ecological secu-rity were on the rise, which evolved from light warning to heavy warning; warning degree of the state system and the impact system had not changed so much, and had been in the moderate warning; warning degree of the response system was on the decline, which changed from huge warning to no warning during 2001-2014. According to the current development trend, the close degree of Zhangjiajie's tourism ecological security would rise further in 2015-2020, and the warning degree would turn from moderate warning into light warning, but the task of coordinating the relationship between tourism development and ecological construction and environmental protection would be still arduous.
NASA Astrophysics Data System (ADS)
Hammitzsch, Martin; Spazier, Johannes; Reißland, Sven
2016-04-01
The TRIDEC Cloud is a platform that merges several complementary cloud-based services for instant tsunami propagation calculations and automated background computation with graphics processing units (GPU), for web-mapping of hazard specific geospatial data, and for serving relevant functionality to handle, share, and communicate threat specific information in a collaborative and distributed environment. The platform offers a modern web-based graphical user interface so that operators in warning centres and stakeholders of other involved parties (e.g. CPAs, ministries) just need a standard web browser to access a full-fledged early warning and information system with unique interactive features such as Cloud Messages and Shared Maps. Furthermore, the TRIDEC Cloud can be accessed in different modes, e.g. the monitoring mode, which provides important functionality required to act in a real event, and the exercise-and-training mode, which enables training and exercises with virtual scenarios re-played by a scenario player. The software system architecture and open interfaces facilitate global coverage so that the system is applicable for any region in the world and allow the integration of different sensor systems as well as the integration of other hazard types and use cases different to tsunami early warning. Current advances of the TRIDEC Cloud platform will be summarized in this presentation.
A Prototype Flood Early Warning SensorWeb System for Namibia
NASA Astrophysics Data System (ADS)
Sohlberg, R. A.; Mandl, D.; Frye, S. W.; Cappelaere, P. G.; Szarzynski, J.; Policelli, F.; van Langenhove, G.
2010-12-01
During the past two years, there have been extensive floods in the country of Namibia, Africa which have affected up to a quarter of the population. Via a collaboration between a group funded by the Earth Science Technology Office (ESTO) at NASA that has been performing various SensorWeb prototyping activities for disasters, the Department of Hydrology in Namibia and the United Nations Space-based Information for Disaster and Emergency Response (UN-SPIDER) , experiments were conducted on how to apply various satellite resources integrated into a SensorWeb architecture along with in-situ sensors such as river gauges and rain gauges into a flood early warning system. The SensorWeb includes a global flood model and a higher resolution basin specific flood model. Furthermore, flood extent and status is monitored by optical and radar types of satellites and integrated via some automation. We have taken a practical approach to find out how to create a working system by selectively using the components that provide good results. The vision for the future is to combine this with the country side dwelling unit data base to create risk maps that provide specific warnings to houses within high risk areas based on near term predictions. This presentation will show some of the highlights of the effort thus far plus our future plans.
Schievano, Andrea; Colombo, Alessandra; Cossettini, Alessandra; Goglio, Andrea; D'Ardes, Vincenzo; Trasatti, Stefano; Cristiani, Pierangela
2018-01-01
In anaerobic digesters (AD), volatile fatty acids (VFAs) concentration is a critical operative parameter, which is usually manually monitored to prevent inhibition of microbial consortia. An on-line VFAs monitoring system as early-warning for increasing concentrations would be of great help for operators. Here, air-cathode membraneless microbial fuel cells (MFCs) were investigated as potential biosensors, whose electrical signal instantaneously moves from its steady value with the accumulation of VFAs in the anodic solution. MFCs were operated equipping four lab-scale ADs with carbon-based electrodes. Reactors were filled with the digestate from a full-scale AD and fed in batch with four kinds of feedstock (cheese whey, kitchen waste, citrus pulp and fishery waste). The MFC signal initially increased in parallel to VFAs production, then tended to a steady value for VFAs concentrations above 1000mg Ac L -1 . Peak concentrations of tVFAs (2500-4500mg Ac L -1 ) and MFCs potentials were negatively correlated (r=0.916, p<0.05), regardless of the type of substrate. Inhibition of the MFC system occurred when VFAs increased fast above 4000mg Ac L -1 . Polarization curves of electrodes stressed that electroactive bacteria on bioanodes were strongly subjected to inhibition. The inhibition of electroactivity on bioanode trended like typical shock-sensors, opening to direct application as early-warning monitoring system in full-scale ADs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Experimental study on an FBG strain sensor
NASA Astrophysics Data System (ADS)
Liu, Hong-lin; Zhu, Zheng-wei; Zheng, Yong; Liu, Bang; Xiao, Feng
2018-01-01
Landslides and other geological disasters occur frequently and often cause high financial and humanitarian cost. The real-time, early-warning monitoring of landslides has important significance in reducing casualties and property losses. In this paper, by taking the high initial precision and high sensitivity advantage of FBG, an FBG strain sensor is designed combining FBGs with inclinometer. The sensor was regarded as a cantilever beam with one end fixed. According to the anisotropic material properties of the inclinometer, a theoretical formula between the FBG wavelength and the deflection of the sensor was established using the elastic mechanics principle. Accuracy of the formula established had been verified through laboratory calibration testing and model slope monitoring experiments. The displacement of landslide could be calculated by the established theoretical formula using the changing values of FBG central wavelength obtained by the demodulation instrument remotely. Results showed that the maximum error at different heights was 9.09%; the average of the maximum error was 6.35%, and its corresponding variance was 2.12; the minimum error was 4.18%; the average of the minimum error was 5.99%, and its corresponding variance was 0.50. The maximum error of the theoretical and the measured displacement decrease gradually, and the variance of the error also decreases gradually. This indicates that the theoretical results are more and more reliable. It also shows that the sensor and the theoretical formula established in this paper can be used for remote, real-time, high precision and early warning monitoring of the slope.
NASA Astrophysics Data System (ADS)
Sheffield, A. M.
2017-12-01
After more than 5 years of drought, extreme precipitation brought drought relief in California and Nevada and presents an opportunity to reflect upon lessons learned while planning for the future. NOAA's National Integrated Drought Information System (NIDIS) California-Nevada Drought Early Warning System (DEWS) in June 2017 convened a regional coordination workshop to provide a forum to discuss and build upon past drought efforts in the region and increase coordination, collaboration and information sharing across the region as a whole. Participants included federal, tribal, state, academic, and local partners who provided a post-mortem on the recent drought and impacts as well as recent innovations in drought monitoring, forecasts, and decision support tools in response to the historic drought. This presentation will highlight lessons learned from stakeholder outreach and engagement around flooding during drought, and pathways for moving forward coordination and collaboration in the region. Additional focus will be on the potential opportunities from examining California decision making calendars from this drought. Identified gaps and challenges will also be shared, such as the need to connect observations with social impacts, capacity building around available tools and resources, and future drought monitoring needs. Drought will continue to impact California and Nevada, and the CA-NV DEWS works to make climate and drought science readily available, easily understandable and usable for decision makers; and to improve the capacity of stakeholders to better monitor, forecast, plan for and cope with the impacts of drought.
VIDEOR: cultural heritage risk assessment and monitoring on the Web
NASA Astrophysics Data System (ADS)
Monteleone, Antonio; Dore, Nicole; Giovagnoli, Annamaria; Cacace, C.
2016-08-01
Cultural heritage is constantly threatened by several factors, such as anthropic activities (e.g. urbanization, pollution) and natural events (e.g. landslides, subsidence) that compromise cultural assets conservation and integrity over time. Italy is the country with the highest number of UNESCO cultural and natural World Heritage sites (51) containing both monuments and archaeological assets of global significance that need to be preserved for future generations, as declared and requested both by UNESCO and the European Commission. VIDEOR, the first web-service completely dedicated to cultural heritage, arises as support tool to institutions and organisations responsible of CH safeguard, with the goal to guarantee a constant and continuous monitoring of cultural assets considered to be at risk. Thanks to its services, VIDEOR allows a periodic situation evaluation, performed with the use of satellite remote sensing data (both optical and SAR) and aerial platform remote sensing data (UAVs), these last used when satellites identify a critical situation that requires deeper analyses. This constant and periodic monitoring will allow not only always updated information about the asset health status, but also early warnings launched by the operative center (NAIS) directly to experts of the responsible institutions (ISCR) after risk identification. The launch of early warnings will be essential for triggering promptly activities of preventive restoration, a less expensive way of intervention if compared to the post-event restoration, both in economic terms and in terms of historical preservation of a country.
NASA Astrophysics Data System (ADS)
Arnhardt, Christian; Fernández-Steeger, Tomas; Azzam, Rafig
2010-05-01
Monitoring systems in landslide areas are important elements of effective Early Warning structures. Data acquisition and retrieval allows the detection of movement processes and thus is essential to generate warnings in time. Apart from the precise measurement, the reliability of data is fundamental, because outliers can trigger false alarms and leads to the loss of acceptance of such systems. For the monitoring of mass movements and their risk it is important to know, if there is movement, how fast it is and how trustworthy is the information. The joint project "Sensorbased landslide early warning system" (SLEWS) deals with these questions, and tries to improve data quality and to reduce false alarm rates, due to the combination of sensor date (sensor fusion). The project concentrates on the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides by using various low-cost sensors, integrated in a wireless sensor network (WSN). The network consists of numerous connection points (nodes) that transfer data directly or over other nodes (Multi-Hop) in real-time to a data collection point (gateway). From there all the data packages are transmitted to a spatial data infrastructure (SDI) for further processing, analyzing and visualizing with respect to end-user specifications. The ad-hoc characteristic of the network allows the autonomous crosslinking of the nodes according to existing connections and communication strength. Due to the independent finding of new or more stable connections (self healing) a breakdown of the whole system is avoided. The bidirectional data stream enables the receiving of data from the network but also allows the transfer of commands and pointed requests into the WSN. For the detection of surface deformations in landslide areas small low-cost Micro-Electro-Mechanical-Systems (MEMS) and positionsensors from the automobile industries, different industrial applications and from other measurement technologies were chosen. The MEMS-Sensors are acceleration-, tilt- and barometric pressure sensors. The positionsensors are draw wire and linear displacement transducers. In first laboratory tests the accuracy and resolution were investigated. The tests showed good results for all sensors. For example tilt-movements can be monitored with an accuracy of +/- 0,06° and a resolution of 0,1°. With the displacement transducer change in length of >0,1mm is possible. Apart from laboratory tests, field tests in South France and Germany were done to prove data stability and movement detection under real conditions. The results obtained were very satisfying, too. In the next step the combination of numerous sensors (sensor fusion) of the same type (redundancy) or different types (complementary) was researched. Different experiments showed that there is a high concordance between identical sensor-types. According to different sensor parameters (sensitivity, accuracy, resolution) some sensor-types can identify changes earlier. Taking this into consideration, good correlations between different kinds of sensors were achieved, too. Thus the experiments showed that combination of sensors is possible and this could improve the detection of movement and movement rate but also outliers. Based on this results various algorithms were setup that include different statistical methods (outlier tests, testing of hypotheses) and procedures from decision theories (Hurwicz-criteria). These calculation formulas will be implemented in the spatial data infrastructure (SDI) for the further data processing and validation. In comparison with today existing mainly punctually working monitoring systems, the application of wireless sensor networks in combination with low-cost, but precise micro-sensors provides an inexpensive and easy to set up monitoring system also in large areas. The correlation of same but also different sensor-types permits a good data control. Thus the sensor fusion is a promising tool to detect movement more reliable and thus contributes essential to the improvement of Early Warning Systems.
Research on public participant urban infrastructure safety monitoring system using smartphone
NASA Astrophysics Data System (ADS)
Zhao, Xuefeng; Wang, Niannian; Ou, Jinping; Yu, Yan; Li, Mingchu
2017-04-01
Currently more and more people concerned about the safety of major public security. Public participant urban infrastructure safety monitoring and investigation has become a trend in the era of big data. In this paper, public participant urban infrastructure safety protection system based on smart phones is proposed. The system makes it possible to public participant disaster data collection, monitoring and emergency evaluation in the field of disaster prevention and mitigation. Function of the system is to monitor the structural acceleration, angle and other vibration information, and extract structural deformation and implement disaster emergency communications based on smartphone without network. The monitoring data is uploaded to the website to create urban safety information database. Then the system supports big data analysis processing, the structure safety assessment and city safety early warning.
Yang, Xiaolong; Zhang, Peidong; Li, Wentao; Hu, Chengye; Zhang, Xiumei; He, Pingguo
2018-04-23
Seagrasses are major coastal primary producers and are widely distributed on coasts worldwide. Seagrasses show sensitivity to environmental stress due to their high phenotypic plasticity, and therefore, we evaluated the use of constituent elements in four dominant seagrass species as early warning indicators for nitrogen eutrophication of coastal regions. A meta-analysis was conducted with published data to develop a global benchmark for the selected indicator, which was used to evaluate nitrogen loading at a global scale. A case study at three bays was subsequently conducted to test for local-scale differences in leaf C/N ratios in four seagrasses. Additionally, morphological and physiological metrics of seagrasses were measured from the three locations under varied nitrogen levels to develop further assessment indexes. The benchmark and local study showed that leaf C/N ratios of Zostera marina were sensitive to nitrogen discharge, which could be a highly valuable early warning indicator on a global scale. Moreover, the threshold value of seagrass leaf C/N was determined according to the benchmark to differentiate eutrophic and low nitrogen levels at a local scale. Of the eight phenotypic metrics measured, leaf width, total chlorophyll (a + b), chlorophyll ratio (a/b), and starch in the rhizome were the most effective at discriminating between the three locations and could also be promising indicators for monitoring eutrophication. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Meral OZel, Nurcan; Necmioǧlu, Öcal; Ergintav, Semih; Ozel, Oǧuz; Favali, Paolo; Bigarre, Pascal; Çakır, Ziyadin; Ozeren, Sinan; Geli, Louis; Douglas, John; Aochi, Hideo; Bossu, Remy; Zülfikar, Can; Şeşetyan, Karin; Erdik, Mustafa
2016-04-01
The MARsite Project, which started in November 2012,funded by the EC/ FP7-ENV.2012 6.4-2 (Grant 308417) identifies the Marmara region as a 'Supersite' within European initiatives to aggregate on-shore, off-shore and space-based observations, comprehensive geophysical monitoring, improved hazard and risk assessments encompassed in an integrated set of activities. MARsite aimed to harmonize geological, geophysical, geodetic and geochemical observations to provide a better view of the post-seismic deformation of the 1999 Izmit earthquake (in addition to the post-seismic signature of previous earthquakes), loading of submarine and inland active fault segments and transient pre-earthquake signals, related to stress loading with different tectonic properties in and around Marmara Sea. This presentation provides an overview of the achievements of MARSite which aimed to coordinate research groups ranging from seismology to gas geochemistry in a comprehensive monitoring activity developed in the Marmara Region based on collection of multidisciplinary data to be shared, interpreted and merged in consistent theoretical and practical models suitable for the implementation of good practices to move the necessary information to the end users in charge of seismic risk management of the region. In addition, processes involved in earthquake generation and the physics of short-term seismic transients, 4D deformations to understand earthquake cycle processes, fluid activity monitoring and seismicity under the sea floor using existing autonomous instrumentation, early warning and development of real-time shake and loss information, real- and quasi-real-time earthquake and tsunami hazard monitoring and earthquake-induced landslide hazard topics are also covered within MARSite. In particular, achievements and progress in the design and building of a multi-parameter borehole system consisting of very wide dynamic range and stable borehole (VBB) broad band seismic sensor, with incorporated 3-D strain meter, tilt meter, and temperature and local hydrostatic pressure measuring devices would be reported. Progress has been marked on photogeological analysis of DInSAR temporal series and of space multispectral/hyperspectral image data, an important geophysical field survey of one of the most important landslide that yielded a refined geological engineering model, numerical dynamic modelling of this and installation of a real-time monitoring system the field. We improved the existing earthquake early warning and strong motion networks and they are mostly integrated. The early warning signals extend to the critical infrastructure's of Marmara Region like as natural gas distribution line IGDAS and transportation line MARMARAY). The project reached the following goals: intensive monitoring infrastructure have been installed, data sharing among the partners and researchers even the out of the Marsite project have been succesfully realized, more than 70 articles ,reports, presentations have been already issued (or published) and presented by 18 partners institutions.
How do I know if I’ve improved my continental scale flood early warning system?
NASA Astrophysics Data System (ADS)
Cloke, Hannah L.; Pappenberger, Florian; Smith, Paul J.; Wetterhall, Fredrik
2017-04-01
Flood early warning systems mitigate damages and loss of life and are an economically efficient way of enhancing disaster resilience. The use of continental scale flood early warning systems is rapidly growing. The European Flood Awareness System (EFAS) is a pan-European flood early warning system forced by a multi-model ensemble of numerical weather predictions. Responses to scientific and technical changes can be complex in these computationally expensive continental scale systems, and improvements need to be tested by evaluating runs of the whole system. It is demonstrated here that forecast skill is not correlated with the value of warnings. In order to tell if the system has been improved an evaluation strategy is required that considers both forecast skill and warning value. The combination of a multi-forcing ensemble of EFAS flood forecasts is evaluated with a new skill-value strategy. The full multi-forcing ensemble is recommended for operational forecasting, but, there are spatial variations in the optimal forecast combination. Results indicate that optimizing forecasts based on value rather than skill alters the optimal forcing combination and the forecast performance. Also indicated is that model diversity and ensemble size are both important in achieving best overall performance. The use of several evaluation measures that consider both skill and value is strongly recommended when considering improvements to early warning systems.
Early warning signal for interior crises in excitable systems.
Karnatak, Rajat; Kantz, Holger; Bialonski, Stephan
2017-10-01
The ability to reliably predict critical transitions in dynamical systems is a long-standing goal of diverse scientific communities. Previous work focused on early warning signals related to local bifurcations (critical slowing down) and nonbifurcation-type transitions. We extend this toolbox and report on a characteristic scaling behavior (critical attractor growth) which is indicative of an impending global bifurcation, an interior crisis in excitable systems. We demonstrate our early warning signal in a conceptual climate model as well as in a model of coupled neurons known to exhibit extreme events. We observed critical attractor growth prior to interior crises of chaotic as well as strange-nonchaotic attractors. These observations promise to extend the classes of transitions that can be predicted via early warning signals.
Landslide susceptibility and early warning model for shallow landslide in Taiwan
NASA Astrophysics Data System (ADS)
Huang, Chun-Ming; Wei, Lun-Wei; Chi, Chun-Chi; Chang, Kan-Tsun; Lee, Chyi-Tyi
2017-04-01
This study aims to development a regional susceptibility model and warning threshold as well as the establishment of early warning system in order to prevent and reduce the losses caused by rainfall-induced shallow landslides in Taiwan. For the purpose of practical application, Taiwan is divided into nearly 185,000 slope units. The susceptibility and warning threshold of each slope unit were analyzed as basic information for disaster prevention. The geological characteristics, mechanism and the occurrence time of landslides were recorded for more than 900 cases through field investigation and interview of residents in order to discuss the relationship between landslides and rainfall. Logistic regression analysis was performed to evaluate the landslide susceptibility and an I3-R24 rainfall threshold model was proposed for the early warning of landslides. The validations of recent landslide cases show that the model was suitable for the warning of regional shallow landslide and most of the cases can be warned 3 to 6 hours in advanced. We also propose a slope unit area weighted method to establish local rainfall threshold on landslide for vulnerable villages in order to improve the practical application. Validations of the local rainfall threshold also show a good agreement to the occurrence time reported by newspapers. Finally, a web based "Rainfall-induced Landslide Early Warning System" is built and connected to real-time radar rainfall data so that landslide real-time warning can be achieved. Keywords: landslide, susceptibility analysis, rainfall threshold
Method for monitoring environmental and corrosion
Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.
1995-01-01
A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.
The Real-Time Monitoring Service Platform for Land Supervision Based on Cloud Integration
NASA Astrophysics Data System (ADS)
Sun, J.; Mao, M.; Xiang, H.; Wang, G.; Liang, Y.
2018-04-01
Remote sensing monitoring has become the important means for land and resources departments to strengthen supervision. Aiming at the problems of low monitoring frequency and poor data currency in current remote sensing monitoring, this paper researched and developed the cloud-integrated real-time monitoring service platform for land supervision which enhanced the monitoring frequency by acquiring the domestic satellite image data overall and accelerated the remote sensing image data processing efficiency by exploiting the intelligent dynamic processing technology of multi-source images. Through the pilot application in Jinan Bureau of State Land Supervision, it has been proved that the real-time monitoring technical method for land supervision is feasible. In addition, the functions of real-time monitoring and early warning are carried out on illegal land use, permanent basic farmland protection and boundary breakthrough in urban development. The application has achieved remarkable results.
Towards a certification process for tsunami early warning systems
NASA Astrophysics Data System (ADS)
Löwe, Peter; Wächter, Jochen; Hammitzsch, Martin
2013-04-01
The natural disaster of the Boxing Day Tsunami of 2004 was followed by an information catastrophe. Crucial early warning information could not be delivered to the communities under imminent threat, resulting in over 240,000 casualties in 14 countries. This tragedy sparked the development of a new generation of integrated modular Tsunami Early Warning Systems (TEWS). While significant advances were accomplished in the past years, recent events, like the Chile 2010 and the Tohoku 2011 tsunami demonstrate that the key technical challenge for Tsunami Early Warning research on the supranational scale still lies in the timely issuing of status information and reliable early warning messages in a proven workflow. A second challenge stems from the main objective of the Intergovernmental Oceanographic Commission of UNESCO (IOC) Tsunami Programme, the integration of national TEWS towards ocean-wide networks: Each of the increasing number of integrated Tsunami Early Warning Centres has to cope with the continuing evolution of sensors, hardware and software while having to maintain reliable inter-center information exchange services. To avoid future information catastrophes, the performance of all components, ranging from individual sensors, to Warning Centers within their particular end-to-end Warning System Environments, and up to federated Systems of Tsunami Warning Systems has to be regularly validated against defined criteria. Since 2004, GFZ German Research Centre for Geosciences (GFZ) has built up expertise in the field of TEWS. Within GFZ, the Centre for GeoInformation Technology (CeGIT) has focused its work on the geoinformatics aspects of TEWS in two projects already, being the German Indonesian Tsunami Early Warning System (GITEWS) and the Distant Early Warning System (DEWS). This activity is continued in the TRIDEC project (Collaborative, Complex, and Critical Decision Processes in Evolving Crises) funded under the European Union's seventh Framework Programme (FP7). TRIDEC focuses on real-time intelligent information management in Earth management and its long-term application: The technical development is based on mature system architecture models and industry standards. The use of standards already applies to the operation of individual TRIDEC reference installations and their interlinking into an integrated service infrastructure for supranational warning services. This is a first step towards best practices and service lifecycles for Early Warning Centre IT service management, including Service Level Agreements (SLA) and Service Certification. While on a global scale the integration of TEWS progresses towards Systems of Systems (SoS), there is still an absence of accredited and reliable certifications for national TEWS or regional Tsunami Early Warning Systems of Systems (TEWSoS). Concepts for TEWS operations have already been published under the guidance of the IOC, and can now be complemented by the recent research advances concerning SoS architecture. Combined with feedback from the real world, such as the NEAMwave 2012 Tsunami exercise in the Mediterranean, this can serve as a starting point to formulate initial requirements for TEWS and TEWSoS certification: Certification activities will cover the establishment of new TEWS and TEWSoS, and also both maintenance and enhancement of existing TEWS/TEWSoS. While the IOC is expected to take a central role in the development of the certification strategy, it remains to be defined which bodies will actually conduct the certification process. Certification requirements and results are likely to become a valuable information source for various target groups, ranging from national policy decision makers, government agency planners, national and local government preparedness officials, TWC staff members, Disaster Responders, the media and the insurance industry.
Agricultural drought risk monitoring and yield loss forecast with remote sensing data
NASA Astrophysics Data System (ADS)
Nagy, Attila; Tamás, János; Fehér, János
2015-04-01
The World Meteorological Organization (WMO) and Global Water Partnership (GWP) have launched a joint Integrated Drought Management Programme (IDMP) to improve monitoring and prevention of droughts. In the frame of this project this study focuses on identification of agricultural drought characteristics and elaborates a monitoring method (with application of remote sensing data), which could result in appropriate early warning of droughts before irreversible yield loss and/or quality degradation occur. The spatial decision supporting system to be developed will help the farmers in reducing drought risk of the different regions by plant specific calibrated drought indexes. The study area was the Tisza River Basin, which is located in Central Europe within the Carpathian Basin. For the investigations normalized difference vegetation index (NDVI) was used calculated from 16 day moving average chlorophyll intensity and biomass quantity data. The results offer concrete identification of remote sensing and GIS data tools for agricultural drought monitoring and forecast, which eventually provides information on physical implementation of drought risk levels. In the first step, we statistically normalized the crop yield maps and the MODIS satellite data. Then the drought-induced crop yield loss values were classified. The crop yield loss data were validated against the regional meteorological drought index values (SPI), the water management and soil physical data. The objective of this method was to determine the congruency of data derived from spectral data and from field measurements. As a result, five drought risk levels were developed to identify the effect of drought on yields: Watch, Early Warning, Warning, Alert and Catastrophe. In the frame of this innovation such a data link and integration, missing from decision process of IDMP, are established, which can facilitate the rapid spatial and temporal monitoring of meteorological, agricultural drought phenomena and its economic relations, increasing the time factors effectiveness of decision support system. This methodology will be extendable for other Central European countries when country specific data are available and entered into the system. This new drought risk monitoring and forecasting method is an improvement for hydrologists, meteorologists and farmers, allowing to set up a complex drought monitoring system, where for a given period and respective catchment area the expected yield loss can be predicted, and the role of vegetation in the hydrological cycle could be more precisely quantified. Based on the results more water-saving agricultural land use alternatives could be planned on drought areas.
Using SMAP data to improve drought early warning over the US Great Plains
NASA Astrophysics Data System (ADS)
Fu, R.; Fernando, N.; Tang, W.
2015-12-01
A drought prone region such as the Great Plains of the United States (US GP) requires credible and actionable drought early warning. Such information cannot simply be extracted from available climate forecasts because of their large uncertainties at regional scales, and unclear connections to the needs of the decision makers. In particular, current dynamic seasonal predictions and climate projections, such as those produced by the NOAA North American Multi-Model Ensemble experiment (NMME) are much more reliable for winter and spring than for the summer season for the US GP. To mitigate the weaknesses of dynamic prediction/projections, we have identified three key processes behind the spring-to-summer dry memory through observational studies, as the scientific basis for a statistical drought early warning system. This system uses percentile soil moisture anomalies in spring as a key input to provide a probabilistic summer drought early warning. The latter outperforms the dynamic prediction over the US Southern Plains and has been used by the Texas state water agency to support state drought preparedness. A main source of uncertainty for this drought early warning system is the soil moisture input obtained from the NOAA Climate Forecasting System (CFS). We are testing use of the beta version of NASA Soil Moisture Active Passive (SMAP) soil moisture data, along with the Soil Moisture and Ocean Salinity (SMOS), and the long-term Essential Climate Variable Soil Moisture (ECV-SM) soil moisture data, to reduce this uncertainty. Preliminary results based on ECV-SM suggests satellite based soil moisture data could improve early warning of rainfall anomalies over the western US GP with less dense vegetation. The skill degrades over the eastern US GP where denser vegetation is found. We evaluate our SMAP-based drought early warning for 2015 summer against observations.
Ciamarra, Massimo Pica; Cheong, Siew Ann
2018-01-01
There is growing interest in the use of critical slowing down and critical fluctuations as early warning signals for critical transitions in different complex systems. However, while some studies found them effective, others found the opposite. In this paper, we investigated why this might be so, by testing three commonly used indicators: lag-1 autocorrelation, variance, and low-frequency power spectrum at anticipating critical transitions in the very-high-frequency time series data of the Australian Dollar-Japanese Yen and Swiss Franc-Japanese Yen exchange rates. Besides testing rising trends in these indicators at a strict level of confidence using the Kendall-tau test, we also required statistically significant early warning signals to be concurrent in the three indicators, which must rise to appreciable values. We then found for our data set the optimum parameters for discovering critical transitions, and showed that the set of critical transitions found is generally insensitive to variations in the parameters. Suspecting that negative results in the literature are the results of low data frequencies, we created time series with time intervals over three orders of magnitude from the raw data, and tested them for early warning signals. Early warning signals can be reliably found only if the time interval of the data is shorter than the time scale of critical transitions in our complex system of interest. Finally, we compared the set of time windows with statistically significant early warning signals with the set of time windows followed by large movements, to conclude that the early warning signals indeed provide reliable information on impending critical transitions. This reliability becomes more compelling statistically the more events we test. PMID:29538373
Wen, Haoyu; Ciamarra, Massimo Pica; Cheong, Siew Ann
2018-01-01
There is growing interest in the use of critical slowing down and critical fluctuations as early warning signals for critical transitions in different complex systems. However, while some studies found them effective, others found the opposite. In this paper, we investigated why this might be so, by testing three commonly used indicators: lag-1 autocorrelation, variance, and low-frequency power spectrum at anticipating critical transitions in the very-high-frequency time series data of the Australian Dollar-Japanese Yen and Swiss Franc-Japanese Yen exchange rates. Besides testing rising trends in these indicators at a strict level of confidence using the Kendall-tau test, we also required statistically significant early warning signals to be concurrent in the three indicators, which must rise to appreciable values. We then found for our data set the optimum parameters for discovering critical transitions, and showed that the set of critical transitions found is generally insensitive to variations in the parameters. Suspecting that negative results in the literature are the results of low data frequencies, we created time series with time intervals over three orders of magnitude from the raw data, and tested them for early warning signals. Early warning signals can be reliably found only if the time interval of the data is shorter than the time scale of critical transitions in our complex system of interest. Finally, we compared the set of time windows with statistically significant early warning signals with the set of time windows followed by large movements, to conclude that the early warning signals indeed provide reliable information on impending critical transitions. This reliability becomes more compelling statistically the more events we test.
Famines in Africa: is early warning early enough?
Kim, Jeeyon Janet; Guha-Sapir, Debarati
2012-01-01
Following the second Sahelian famine in 1984–1985, major investments were made to establish Early Warning Systems. These systems help to ensure that timely warnings and vulnerability information are available to decision makers to anticipate and avert food crises. In the recent crisis in the Horn of Africa, alarming levels of acute malnutrition were documented from March 2010, and by August 2010, an impending food crisis was forecast. Despite these measures, the situation remained unrecognised, and further deteriorated causing malnutrition levels to grow in severity and scope. By the time the United Nations officially declared famine on 20 July 2011, and the humanitarian community sluggishly went into response mode, levels of malnutrition and mortality exceeded catastrophic levels. At this time, an estimated 11 million people were in desperate and immediate need for food. With warnings of food crises in the Sahel, South Sudan, and forecast of the drought returning to the Horn, there is an immediate need to institutionalize change in the health response during humanitarian emergencies. Early warning systems are only effective if they trigger an early response. PMID:22745628
Famines in Africa: is early warning early enough?
Kim, Jeeyon Janet; Guha-Sapir, Debarati
2012-01-01
Following the second Sahelian famine in 1984-1985, major investments were made to establish Early Warning Systems. These systems help to ensure that timely warnings and vulnerability information are available to decision makers to anticipate and avert food crises. In the recent crisis in the Horn of Africa, alarming levels of acute malnutrition were documented from March 2010, and by August 2010, an impending food crisis was forecast. Despite these measures, the situation remained unrecognised, and further deteriorated causing malnutrition levels to grow in severity and scope. By the time the United Nations officially declared famine on 20 July 2011, and the humanitarian community sluggishly went into response mode, levels of malnutrition and mortality exceeded catastrophic levels. At this time, an estimated 11 million people were in desperate and immediate need for food. With warnings of food crises in the Sahel, South Sudan, and forecast of the drought returning to the Horn, there is an immediate need to institutionalize change in the health response during humanitarian emergencies. Early warning systems are only effective if they trigger an early response.
27. View of entry door to vestibule to MWOC entry ...
27. View of entry door to vestibule to MWOC entry door in transmitter building no. 102 (note coded key pad to left and intercom phone on left) and door to the central systems monitor room (CSMR) to right (out of sight). - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
2005-03-18
Lepomis macrochirus). have been disinfected with chloramines The threshold for a toxicity alarm by was not determined. Biomonitor users the USACEHR...residual solution. This caused an elevated chlorine from water disinfected with chlorine level (measured at 0.08 FRC) chloramines . In testing with a rapid...have been disinfected A Handbook, Volume 2, 8. Kluwer with chloramines . Academic/Plenum Publishers, New York, NY, pp 123-141. 5. Recommendations
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs
Annual Illness and Injury Surveillance Program report for 2003 for the East Tennessee Technology Park (K-25).The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.
Implementing drought early warning systems: policy lessons and future needs
NASA Astrophysics Data System (ADS)
Iglesias, Ana; Werner, Micha; Maia, Rodrigo; Garrote, Luis; Nyabeze, Washington
2014-05-01
Drought forecasting and Warning provides the potential of reducing impacts to society due to drought events. The implementation of effective drought forecasting and warning, however, requires not only science to support reliable forecasting, but also adequate policy and societal response. Here we propose a protocol to develop drought forecasting and early warning based in the international cooperation of African and European institutions in the DEWFORA project (EC, 7th Framework Programme). The protocol includes four major phases that address the scientific knowledge and the social capacity to use the knowledge: (a) What is the science available? Evaluating how signs of impending drought can be detected and predicted, defining risk levels, and analysing of the signs of drought in an integrated vulnerability approach. (b) What are the societal capacities? In this the institutional framework that enables policy development is evaluated. The protocol gathers information on vulnerability and pending hazard in advance so that early warnings can be declared at sufficient lead time and drought mitigation planning can be implemented at an early stage. (c) How can science be translated into policy? Linking science indicators into the actions/interventions that society needs to implement, and evaluating how policy is implemented. Key limitations to planning for drought are the social capacities to implement early warning systems. Vulnerability assessment contributes to identify these limitations and therefore provides crucial information to policy development. Based on the assessment of vulnerability we suggest thresholds for management actions to respond to drought forecasts and link predictive indicators to relevant potential mitigation strategies. Vulnerability assessment is crucial to identify relief, coping and management responses that contribute to a more resilient society. (d) How can society benefit from the forecast? Evaluating how information is provided to potentially affected groups, and how mitigation strategies can be taken in response. This paper presents an outline of the protocol that was developed in the DEWFORA project, outlining the complementary roles of science, policy and societal uptake in effective drought forecasting and warning. A consensus on the need to emphasise the social component of early warning was reached when testing the DEWFORA early warning system protocol among experts from 18 countries.
Technology Transfer Opportunities: Automated Ground-Water Monitoring
Smith, Kirk P.; Granato, Gregory E.
1997-01-01
Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.
Detecting early signs of the 2007–2008 crisis in the world trade
Saracco, Fabio; Di Clemente, Riccardo; Gabrielli, Andrea; Squartini, Tiziano
2016-01-01
Since 2007, several contributions have tried to identify early-warning signals of the financial crisis. However, the vast majority of analyses has focused on financial systems and little theoretical work has been done on the economic counterpart. In the present paper we fill this gap and employ the theoretical tools of network theory to shed light on the response of world trade to the financial crisis of 2007 and the economic recession of 2008–2009. We have explored the evolution of the bipartite World Trade Web (WTW) across the years 1995–2010, monitoring the behavior of the system both before and after 2007. Our analysis shows early structural changes in the WTW topology: since 2003, the WTW becomes increasingly compatible with the picture of a network where correlations between countries and products are progressively lost. Moreover, the WTW structural modification can be considered as concluded in 2010, after a seemingly stationary phase of three years. We have also refined our analysis by considering specific subsets of countries and products: the most statistically significant early-warning signals are provided by the most volatile macrosectors, especially when measured on developing countries, suggesting the emerging economies as being the most sensitive ones to the global economic cycles. PMID:27461469
Earthquake early Warning ShakeAlert system: West coast wide production prototype
Kohler, Monica D.; Cochran, Elizabeth S.; Given, Douglas; Guiwits, Stephen; Neuhauser, Doug; Hensen, Ivan; Hartog, Renate; Bodin, Paul; Kress, Victor; Thompson, Stephen; Felizardo, Claude; Brody, Jeff; Bhadha, Rayo; Schwarz, Stan
2017-01-01
Earthquake early warning (EEW) is an application of seismological science that can give people, as well as mechanical and electrical systems, up to tens of seconds to take protective actions before peak earthquake shaking arrives at a location. Since 2006, the U.S. Geological Survey has been working in collaboration with several partners to develop EEW for the United States. The goal is to create and operate an EEW system, called ShakeAlert, for the highest risk areas of the United States, starting with the West Coast states of California, Oregon, and Washington. In early 2016, the Production Prototype v.1.0 was established for California; then, in early 2017, v.1.2 was established for the West Coast, with earthquake notifications being distributed to a group of beta users in California, Oregon, and Washington. The new ShakeAlert Production Prototype was an outgrowth from an earlier demonstration EEW system that began sending test notifications to selected users in California in January 2012. ShakeAlert leverages the considerable physical, technical, and organizational earthquake monitoring infrastructure of the Advanced National Seismic System, a nationwide federation of cooperating seismic networks. When fully implemented, the ShakeAlert system may reduce damage and injury caused by large earthquakes, improve the nation’s resilience, and speed recovery.
Detecting early signs of the 2007-2008 crisis in the world trade.
Saracco, Fabio; Di Clemente, Riccardo; Gabrielli, Andrea; Squartini, Tiziano
2016-07-27
Since 2007, several contributions have tried to identify early-warning signals of the financial crisis. However, the vast majority of analyses has focused on financial systems and little theoretical work has been done on the economic counterpart. In the present paper we fill this gap and employ the theoretical tools of network theory to shed light on the response of world trade to the financial crisis of 2007 and the economic recession of 2008-2009. We have explored the evolution of the bipartite World Trade Web (WTW) across the years 1995-2010, monitoring the behavior of the system both before and after 2007. Our analysis shows early structural changes in the WTW topology: since 2003, the WTW becomes increasingly compatible with the picture of a network where correlations between countries and products are progressively lost. Moreover, the WTW structural modification can be considered as concluded in 2010, after a seemingly stationary phase of three years. We have also refined our analysis by considering specific subsets of countries and products: the most statistically significant early-warning signals are provided by the most volatile macrosectors, especially when measured on developing countries, suggesting the emerging economies as being the most sensitive ones to the global economic cycles.
Detecting early signs of the 2007-2008 crisis in the world trade
NASA Astrophysics Data System (ADS)
Saracco, Fabio; di Clemente, Riccardo; Gabrielli, Andrea; Squartini, Tiziano
2016-07-01
Since 2007, several contributions have tried to identify early-warning signals of the financial crisis. However, the vast majority of analyses has focused on financial systems and little theoretical work has been done on the economic counterpart. In the present paper we fill this gap and employ the theoretical tools of network theory to shed light on the response of world trade to the financial crisis of 2007 and the economic recession of 2008-2009. We have explored the evolution of the bipartite World Trade Web (WTW) across the years 1995-2010, monitoring the behavior of the system both before and after 2007. Our analysis shows early structural changes in the WTW topology: since 2003, the WTW becomes increasingly compatible with the picture of a network where correlations between countries and products are progressively lost. Moreover, the WTW structural modification can be considered as concluded in 2010, after a seemingly stationary phase of three years. We have also refined our analysis by considering specific subsets of countries and products: the most statistically significant early-warning signals are provided by the most volatile macrosectors, especially when measured on developing countries, suggesting the emerging economies as being the most sensitive ones to the global economic cycles.
Climate change implications and use of early warning systems for global dust storms
Harriman, Lindsey M.
2014-01-01
With increased changes in land cover and global climate, early detection and warning of dust storms in conjunction with effective and widespread information broadcasts will be essential to the prevention and mitigation of future risks and impacts. Human activities, seasonal variations and long-term climatic patterns influence dust storms. More research is needed to analyse these factors of dust mobilisation to create more certainty for the fate of vulnerable populations and ecosystems in the future. Early warning and communication systems, when in place and effectively implemented, can offer some relief to these vulnerable areas. As an issue that affects many regions of the world, there is a profound need to understand the potential changes and ultimately create better early warning systems for dust storms.
Studying the response of drivers against different collision warning systems: a review
NASA Astrophysics Data System (ADS)
Muzammel, M.; Yusoff, M. Zuki; Malik, A. Saeed; Mohamad Saad, M. Naufal; Meriaudeau, F.
2017-03-01
The number of vehicle accidents is rapidly increasing and causing significant economic losses in many countries. According to the World Health Organization, road accidents will become the fifth major cause of death by the year 2030. To minimize these accidents different types of collision warning systems have been proposed for motor vehicle drivers. These systems can early detect and warn the drivers about the potential danger, up to a certain accuracy. Many researchers study the effectiveness of these systems by using different methods, including Electroencephalography (EEG). From the literature review, it has been observed that, these systems increase the drivers' response and can help to minimize the accidents that may occur due to drivers unconsciousness. For these collision warning systems, tactile early warnings are found more effective as compared to the auditory and visual early warnings. This review also highlights the areas, where further research can be performed to fully analyze the collision warning system. For example, some contradictions are found among researchers, about these systems' performance for drivers within different age groups. Similarly, most of the EEG studies focus on the front collision warning systems and only give beep sound to alert the drivers. Therefore, EEG study can be performed for the rear end collision warning systems, against proper auditory warning messages which indicate the types of hazards. This EEG study will help to design more friendly collision warning system and may save many lives.
Preparing for floods: flood forecasting and early warning
NASA Astrophysics Data System (ADS)
Cloke, Hannah
2016-04-01
Flood forecasting and early warning has continued to stride ahead in strengthening the preparedness phases of disaster risk management, saving lives and property and reducing the overall impact of severe flood events. For example, continental and global scale flood forecasting systems such as the European Flood Awareness System and the Global Flood Awareness System provide early information about upcoming floods in real time to various decisionmakers. Studies have found that there are monetary benefits to implementing these early flood warning systems, and with the science also in place to provide evidence of benefit and hydrometeorological institutional outlooks warming to the use of probabilistic forecasts, the uptake over the last decade has been rapid and sustained. However, there are many further challenges that lie ahead to improve the science supporting flood early warning and to ensure that appropriate decisions are made to maximise flood preparedness.
NASA Astrophysics Data System (ADS)
Kucera, P. A.; Steinson, M.
2016-12-01
Accurate and reliable real-time monitoring and dissemination of observations of precipitation and surface weather conditions in general is critical for a variety of research studies and applications. Surface precipitation observations provide important reference information for evaluating satellite (e.g., GPM) precipitation estimates. High quality surface observations of precipitation, temperature, moisture, and winds are important for applications such as agriculture, water resource monitoring, health, and hazardous weather early warning systems. In many regions of the World, surface weather station and precipitation gauge networks are sparsely located and/or of poor quality. Existing stations have often been sited incorrectly, not well-maintained, and have limited communications established at the site for real-time monitoring. The University Corporation for Atmospheric Research (UCAR)/National Center for Atmospheric Research (NCAR), with support from USAID, has started an initiative to develop and deploy low-cost weather instrumentation including tipping bucket and weighing-type precipitation gauges in sparsely observed regions of the world. The goal is to improve the number of observations (temporally and spatially) for the evaluation of satellite precipitation estimates in data-sparse regions and to improve the quality of applications for environmental monitoring and early warning alert systems on a regional to global scale. One important aspect of this initiative is to make the data open to the community. The weather station instrumentation have been developed using innovative new technologies such as 3D printers, Raspberry Pi computing systems, and wireless communications. An initial pilot project have been implemented in the country of Zambia. This effort could be expanded to other data sparse regions around the globe. The presentation will provide an overview and demonstration of 3D printed weather station development and initial evaluation of observed precipitation datasets.
Imen, Sanaz; Chang, Ni-Bin; Yang, Y Jeffrey
2015-09-01
Adjustment of the water treatment process to changes in water quality is a focus area for engineers and managers of water treatment plants. The desired and preferred capability depends on timely and quantitative knowledge of water quality monitoring in terms of total suspended solids (TSS) concentrations. This paper presents the development of a suite of nowcasting and forecasting methods by using high-resolution remote-sensing-based monitoring techniques on a daily basis. First, the integrated data fusion and mining (IDFM) technique was applied to develop a near real-time monitoring system for daily nowcasting of the TSS concentrations. Then a nonlinear autoregressive neural network with external input (NARXNET) model was selected and applied for forecasting analysis of the changes in TSS concentrations over time on a rolling basis onward using the IDFM technique. The implementation of such an integrated forecasting and nowcasting approach was assessed by a case study at Lake Mead hosting the water intake for Las Vegas, Nevada, in the water-stressed western U.S. Long-term monthly averaged results showed no simultaneous impact from forest fire events on accelerating the rise of TSS concentration. However, the results showed a probable impact of a decade of drought on increasing TSS concentration in the Colorado River Arm and Overton Arm. Results of the forecasting model highlight the reservoir water level as a significant parameter in predicting TSS in Lake Mead. In addition, the R-squared value of 0.98 and the root mean square error of 0.5 between the observed and predicted TSS values demonstrates the reliability and application potential of this remote sensing-based early warning system in terms of TSS projections at a drinking water intake. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Picozzi, M.; Milkereit, C.; Zulfikar, C.; Ditommaso, R.; Erdik, M.; Safak, E.; Fleming, K.; Ozel, O.; Zschau, J.; Apaydin, N.
2008-12-01
The monitoring of strategic civil infrastructures to ensure their structural integrity is a task of major importance, especially in earthquake-prone areas. Classical approaches to such monitoring are based on visual inspections and the use of wired systems. While the former has the drawback that the structure is only superficially examined and discontinuously in time, wired systems are relatively expensive and time consuming to install. Today, however, wireless systems represent an advanced, easily installed and operated tool to be used for monitoring purposes, resulting in a wide and interesting range of possible applications. Within the framework of the earthquake early warning projects SAFER (Seismic eArly warning For EuRope) and EDIM (Earthquake Disaster Information systems for the Marmara Sea region, Turkey), new low-cost wireless sensors with the capability to automatically rearrange their communications scheme are being developed. The reduced sensitivity of these sensors, arising from the use of low-cost components, is compensated by the possibility of deploying high-density self-organizing networks performing real-time data acquisition and analysis. Thanks to the developed system's versatility, it has been possible to perform an experimental ambient vibration test with a network of 24 sensors on the Fatih Sultan Mehmet Bridge, Istanbul (Turkey), a gravity-anchored suspension bridge spanning the Bosphorus Strait with distance between its towers of 1090 m. Preliminary analysis of the data has demonstrated that the main modal properties of the bridge can be retrieved, and may therefore be regularly re-evaluated as part of a long-term monitoring program. Using a multi-hop communications technique, data could be exchanged among groups of sensors over distances of a few hundred meters. Thus, the test showed that, although more work is required to optimize the communication parameters, the performance of the network offers encouragement for us to follow this research direction in developing wireless systems for the monitoring of civil infrastructures.
Time Domain Reflectometry (TDR) monitoring system for deep seated landslides
NASA Astrophysics Data System (ADS)
Singer, J.; Thuro, K.; Festl, J.
2012-04-01
In the 1980s Time Domain Reflectometry (TDR) has been introduced as a subsurface deformation monitoring system in boreholes, which allows identifying and localizing discrete deformation zones with high accuracy. While TDR offers several advantages as e.g. low costs and the possibility to continuously monitor deformation along the complete borehole,TDR was not used widespread due to the fact that the amount of deformation sometimes could not be determined accurately and in some cases no deformation was detected at all. By the definition of calibrated installation standards and the usage of advanced signal analysis methods, it is possible to overcome this and a reliable quantification of deformation using TDR is possible. In the ongoing research the attempt is made to define different TDR measuring system configurations (measuring cable and grout combinations), where each is designated for a specific geological environment. These set-ups are then calibrated in laboratory shear tests and finally tested in field, if possible by comparing them with inclinometer measurements. To date monitoring data of three different deep seated landslides in the European Alps (Gschliefgraben, Aggenalm and Triesenberg) have been collected. The field test results clearly show that the new TDR system can fulfill the expectations and the deformation can be determined with sub-centimeter accuracy if one basic prerequisite concerning the mode of deformation is fulfilled: TDR can only be used when localized shear deformation is present. Since TDR data easily can be acquired continuously as well as remotely, it is possible to use a TDR measuring system as a valuable part of a monitoring system for landslide early warning. Since 2008 such a monitoring system is in operation at the Aggenalm landslide, where the TDR subsurface deformation measurements supplement the information on surface deformation from geotechnical and geodetic measuring systems to a 3D early warning system for instable slopes.
Sensors Provide Early Warning of Biological Threats
NASA Technical Reports Server (NTRS)
2009-01-01
Early Warning Inc. of Troy, New York, licensed powerful biosensor technology from Ames Research Center. Incorporating carbon nanotubes tipped with single strands of nucleic acid from waterborne pathogens, the sensor can detect even minute amounts of targeted, disease causing bacteria, viruses, and parasites. Early Warning features the NASA biosensor in its water analyzer, which can provide advance alert of potential biological hazards in water used for agriculture, food and beverages, showers, and at beaches and lakes -- within hours instead of the days required by conventional laboratory methods.
Water quality real-time monitoring system via biological detection based on video analysis
NASA Astrophysics Data System (ADS)
Xin, Chen; Fei, Yuan
2017-11-01
With the development of society, water pollution has become the most serious problem in China. Therefore, real-time water quality monitoring is an important part of human activities and water pollution prevention. In this paper, the behavior of zebrafish was monitored by computer vision. Firstly, the moving target was extracted by the method of saliency detection, and tracked by fitting the ellipse model. Then the motion parameters were extracted by optical flow method, and the data were monitored in real time by means of Hinkley warning and threshold warning. We achieved classification warning through a number of dimensions by comprehensive toxicity index. The experimental results show that the system can achieve more accurate real-time monitoring.
NASA Astrophysics Data System (ADS)
Velasco, David; Sempere-Torres, Daniel; Corral, Carles; Llort, Xavier; Velasco, Enrique
2010-05-01
Early Warning Systems (EWS) are commonly identified as the most efficient tools in order to improve the preparedness and risk management against heavy rains and Flash Floods (FF) with the objective of reducing economical losses and human casualties. In particular, flash floods affecting torrential Mediterranean catchments are a key element to be incorporated within operational EWSs. The characteristic high spatial and temporal variability of the storms requires high-resolution data and methods to monitor/forecast the evolution of rainfall and its hydrological impact in small and medium torrential basins. A first version of an operational FF-EWS has been implemented in Catalonia (NE Spain) under the name of EHIMI system (Integrated Tool for Hydrometeorological Forecasting) with the support of the Catalan Water Agency (ACA) and the Meteorological Service of Catalonia (SMC). Flash flood warnings are issued based on radar-rainfall estimates. Rainfall estimation is performed on radar observations with high spatial and temporal resolution (1km2 and 10 minutes) in order to adapt the warning scale to the 1-km grid of the EWS. The method is based on comparing observed accumulated rainfall against rainfall thresholds provided by the regional Intensity-Duration-Frequency (IDF) curves. The so-called "aggregated rainfall warning" at every river cell is obtained as the spatially averaged rainfall over its associated upstream draining area. Regarding the time aggregation of rainfall, the critical duration is thought to be an accumulation period similar to the concentration time of each cachtment. The warning is issued once the forecasted rainfall accumulation exceeds the rainfall thresholds mentioned above, which are associated to certain probability of occurrence. Finally, the hazard warning is provided and shown to the decision-maker in terms of exceeded return periods at every river cell covering the whole area of Catalonia. The objective of the present work includes the probabilistic component to the FF-EWS. As a first step, we have incorporated the uncertainty in rainfall estimates and forecasts based on an ensemble of equiprobable rainfall scenarios. The presented study has focused on a number of rainfall events and the performance of the FF-EWS evaluated in terms of its ability to produce probabilistic hazard warnings for decision-making support.
Integrating Remote Sensing and Disease Surveillance to Forecast Malaria Epidemics
NASA Astrophysics Data System (ADS)
Wimberly, M. C.; Beyane, B.; DeVos, M.; Liu, Y.; Merkord, C. L.; Mihretie, A.
2015-12-01
Advance information about the timing and locations of malaria epidemics can facilitate the targeting of resources for prevention and emergency response. Early detection methods can detect incipient outbreaks by identifying deviations from expected seasonal patterns, whereas early warning approaches typically forecast future malaria risk based on lagged responses to meteorological factors. A critical limiting factor for implementing either of these approaches is the need for timely and consistent acquisition, processing and analysis of both environmental and epidemiological data. To address this need, we have developed EPIDEMIA - an integrated system for surveillance and forecasting of malaria epidemics. The EPIDEMIA system includes a public health interface for uploading and querying weekly surveillance reports as well as algorithms for automatically validating incoming data and updating the epidemiological surveillance database. The newly released EASTWeb 2.0 software application automatically downloads, processes, and summaries remotely-sensed environmental data from multiple earth science data archives. EASTWeb was implemented as a component of the EPIDEMIA system, which combines the environmental monitoring data and epidemiological surveillance data into a unified database that supports both early detection and early warning models. Dynamic linear models implemented with Kalman filtering were used to carry out forecasting and model updating. Preliminary forecasts have been disseminated to public health partners in the Amhara Region of Ethiopia and will be validated and refined as the EPIDEMIA system ingests new data. In addition to continued model development and testing, future work will involve updating the public health interface to provide a broader suite of outbreak alerts and data visualization tools that are useful to our public health partners. The EPIDEMIA system demonstrates a feasible approach to synthesizing the information from epidemiological surveillance systems and remotely-sensed environmental monitoring systems to improve malaria epidemic detection and forecasting.
Monitoring a restless volcano: The 2004 eruption of Mount St. Helens
Gardner, C.
2005-01-01
Although the precise course of volcanic activity is difficult to predict, volcanologists are pretty adept at interpreting volcanic signals from well-monitored volcanoes in order to make short-term forecasts. Various monitoring tools record effects to give us warning before eruptions, changes in eruptive behavior during eruptions, or signals that an eruption is ending. Foremost among these tools is seismic monitoring. The character, size, depth and rate of earthquakes are all important to the interpretation of what is happening belowground. The first inkling of renewed activity at Mount St. Helens began in the early hours of Sept. 23, when a seismic swarm - tens to hundreds of earthquakes over days to a week - began beneath the volcano. This article details the obervations made during the eruptive sequence.
NASA Astrophysics Data System (ADS)
Feng, Wei; Shi, Rui; Zhu, Dan
2018-02-01
To monitor skin microvascular dysfunction of alloxan-induced type 1 diabetic mice model. In this work, we used laser speckle contrast imaging and hyperspectral imaging through in vivo skin optical clearing method to simultaneously monitor the noradrenaline-induced response of microvascular blood flow and blood oxygen with the development of diabetes. The main results showed that venous and arterious blood flow steadily decreased without recovery after injecting noradrenaline (NE), furthermore the influence of NE-induced arterious blood oxygen response greatly decreased, especially for 2-weeks and 4-weeks diabetic mice. This study demonstrated that skin microvascular function was a potential research biomarker for early warning in the occurrence and development of diabetes. And it provides a feasible solution to realize visualization of cutaneous microvessels for monitoring microvascular reactivity.
NASA Technical Reports Server (NTRS)
Goettelman, R. C.; Grass, L. B.; Millard, J. P.; Nixon, P. R.
1983-01-01
The following multispectral remote-sensing techniques were compared to determine the most suitable method for routinely monitoring agricultural subsurface drain conditions: airborne scanning, covering the visible through thermal-infrared (IR) portions of the spectrum; color-IR photography; and natural-color photography. Color-IR photography was determined to be the best approach, from the standpoint of both cost and information content. Aerial monitoring of drain conditions for early warning of tile malfunction appears practical. With careful selection of season and rain-induced soil-moisture conditions, extensive regional surveys are possible. Certain locations, such as the Imperial Valley, Calif., are precluded from regional monitoring because of year-round crop rotations and soil stratification conditions. Here, farms with similar crops could time local coverage for bare-field and saturated-soil conditions.
NASA Astrophysics Data System (ADS)
Wood, E. F.; Yuan, X.; Sheffield, J.; Pan, M.; Roundy, J.
2013-12-01
One of the key recommendations of the WCRP Global Drought Information System (GDIS) workshop is to develop an experimental real-time global monitoring and prediction system. While great advances has been made in global drought monitoring based on satellite observations and model reanalysis data, global drought forecasting has been stranded in part due to the limited skill both in climate forecast models and global hydrologic predictions. Having been working on drought monitoring and forecasting over USA for more than a decade, the Princeton land surface hydrology group is now developing an experimental global drought early warning system that is based on multiple climate forecast models and a calibrated global hydrologic model. In this presentation, we will test its capability in seasonal forecasting of meteorological, agricultural and hydrologic droughts over global major river basins, using precipitation, soil moisture and streamflow forecasts respectively. Based on the joint probability distribution between observations using Princeton's global drought monitoring system and model hindcasts and real-time forecasts from North American Multi-Model Ensemble (NMME) project, we (i) bias correct the monthly precipitation and temperature forecasts from multiple climate forecast models, (ii) downscale them to a daily time scale, and (iii) use them to drive the calibrated VIC model to produce global drought forecasts at a 1-degree resolution. A parallel run using the ESP forecast method, which is based on resampling historical forcings, is also carried out for comparison. Analysis is being conducted over global major river basins, with multiple drought indices that have different time scales and characteristics. The meteorological drought forecast does not have uncertainty from hydrologic models and can be validated directly against observations - making the validation an 'apples-to-apples' comparison. Preliminary results for the evaluation of meteorological drought onset hindcasts indicate that climate models increase drought detectability over ESP by 31%-81%. However, less than 30% of the global drought onsets can be detected by climate models. The missed drought events are associated with weak ENSO signals and lower potential predictability. Due to the high false alarms from climate models, the reliability is more important than sharpness for a skillful probabilistic drought onset forecast. Validations and skill assessments for agricultural and hydrologic drought forecasts are carried out using soil moisture and streamflow output from the VIC land surface model (LSM) forced by a global forcing data set. Given our previous drought forecasting experiences over USA and Africa, validating the hydrologic drought forecasting is a significant challenge for a global drought early warning system.
Electrical Distribution System (EDS) and Caution and Warning System (CWS)
NASA Technical Reports Server (NTRS)
Mcclung, T.
1975-01-01
An astronaut caution and warning system is described which monitors various life support system parameters and detects out-of-range parameter conditions. The warning system generates a warning tone and displays the malfunction condition to the astronaut along with the proper corrective procedures required.
Early Warnings for Local Labor Markets
ERIC Educational Resources Information Center
Matland, Marc A.
1976-01-01
This articles summarizes the National Planning Association's (NPA) experience in its initial efforts to develop an early warning system to anticipate job openings generated in local communities by large Federal procurement contracts. (WL)
The Promise and Challenges of High Rate GNSS for Environmental Monitoring and Response
NASA Astrophysics Data System (ADS)
LaBrecque, John
2017-04-01
The decadal vision Global Geodetic Observing System recognizes the potential of high rate real time GNSS for environmental monitoring. The GGOS initiated a program to advance GNSS real time high rate measurements to augment seismic and other sensor systems for earthquake and tsunami early warning. High rate multi-GNSS networks can provide ionospheric tomography for the detection and tracking of land, ocean and atmospheric gravity waves that can provide coastal warning of tsunamis induced by earthquakes, volcanic eruptions, severe weather and other catastrophic events. NASA has collaborated on a microsatellite constellation of GPS receivers to measure ocean surface roughness to improve severe storm tracking and a equatorial system of GPS occultation receivers to measure ionospheric and atmospheric dynamics. Systems such as these will be significantly enhanced by the availability of a four fold increase in GNSS satellite systems with new and enhanced signal structures and by the densification of regional multi-GNSS networks. These new GNSS capabilities will rely upon improved and cost effective communications infrastructure for a network of coordinated real time analysis centers with input to national warning systems. Most important, the implementation of these new real time GNSS capabilities will rely upon the broad international support for the sharing of real time GNSS much as is done in weather and seismic observing systems and as supported by the Committee of Experts on UN Global Geodetic Information Management (UNGGIM).
NASA Astrophysics Data System (ADS)
Li, Jun; Jin, Xing; Wei, Yongxiang; Zhang, Hongcai
2013-10-01
In this article, the seismic records of Japan's Kik-net are selected to measure the acceleration, displacement, and effective peak acceleration of each seismic record within a certain time after P wave, then a continuous estimation is given on earthquake early warning magnitude through statistical analysis method, and Wenchuan earthquake record is utilized to check the method. The results show that the reliability of earthquake early warning magnitude continuously increases with the increase of the seismic information, the biggest residual happens if the acceleration is adopted to fit earthquake magnitude, which may be caused by rich high-frequency components and large dispersion of peak value in acceleration record, the influence caused by the high-frequency components can be effectively reduced if the effective peak acceleration and peak displacement is adopted, it is estimated that the dispersion of earthquake magnitude obviously reduces, but it is easy for peak displacement to be affected by long-period drifting. In various components, the residual enlargement phenomenon at vertical direction is almost unobvious, thus it is recommended in this article that the effective peak acceleration at vertical direction is preferred to estimate earthquake early warning magnitude. Through adopting Wenchuan strong earthquake record to check the method mentioned in this article, it is found that this method can be used to quickly, stably, and accurately estimate the early warning magnitude of this earthquake, which shows that this method is completely applicable for earthquake early warning.
Bilve, Augustine; Nogareda, Francisco; Joshua, Cynthia; Ross, Lester; Betcha, Christopher; Durski, Kara; Fleischl, Juliet; Nilles, Eric
2014-11-01
On 6 February 2013, an 8.0 magnitude earthquake generated a tsunami that struck the Santa Cruz Islands, Solomon Islands, killing 10 people and displacing over 4700. A post-disaster assessment of the risk of epidemic disease transmission recommended the implementation of an early warning alert and response network (EWARN) to rapidly detect, assess and respond to potential outbreaks in the aftermath of the tsunami. Almost 40% of the Santa Cruz Islands' population were displaced by the disaster, and living in cramped temporary camps with poor or absent sanitation facilities and insufficient access to clean water. There was no early warning disease surveillance system. By 25 February, an EWARN was operational in five health facilities that served 90% of the displaced population. Eight priority diseases or syndromes were reported weekly; unexpected health events were reported immediately. Between 25 February and 19 May, 1177 target diseases or syndrome cases were reported. Seven alerts were investigated. No sustained transmission or epidemics were identified. Reporting compliance was 85%. The EWARN was then transitioned to the routine four-syndrome early warning disease surveillance system. It was necessary to conduct a detailed assessment to evaluate the risk and potential impact of serious infectious disease outbreaks, to assess whether and how enhanced early warning disease surveillance should be implemented. Local capacities and available resources should be considered in planning EWARN implementation. An EWARN can be an opportunity to establish or strengthen early warning disease surveillance capabilities.
A wireless sensor network for monitoring volcanic tremors
NASA Astrophysics Data System (ADS)
Lopes Pereira, R.; Trindade, J.; Gonçalves, F.; Suresh, L.; Barbosa, D.; Vazão, T.
2013-08-01
Monitoring of volcanic activity is important to learn about the properties of each volcano and provide early warning systems to the population. Monitoring equipment can be expensive and thus, the degree of monitoring varies from volcano to volcano and from country to country, with many volcanoes not being monitored at all. This paper describes the development of a Wireless Sensor Network (WSN) capable of collecting geophysical measurements on remote active volcanoes. Our main goals were to create a flexible, easy to deploy and maintain, adaptable, low-cost WSN for temporary or permanent monitoring of seismic tremor. The WSN enables the easy installation of a sensor array on an area of tens of thousand of m2, allowing the location of the magma movements causing the seismic tremor to be calculated. This WSN can be used by recording data locally for latter analysis or by continuously transmitting it in real time to a remote laboratory for real-time analyses.
Real-time long term measurement using integrated framework for ubiquitous smart monitoring
NASA Astrophysics Data System (ADS)
Heo, Gwanghee; Lee, Giu; Lee, Woosang; Jeon, Joonryong; Kim, Pil-Joong
2007-04-01
Ubiquitous monitoring combining internet technologies and wireless communication is one of the most promising technologies of infrastructure health monitoring against the natural of man-made hazards. In this paper, an integrated framework of the ubiquitous monitoring is developed for real-time long term measurement in internet environment. This framework develops a wireless sensor system based on Bluetooth technology and sends measured acceleration data to the host computer through TCP/IP protocol. And it is also designed to respond to the request of web user on real time basis. In order to verify this system, real time monitoring tests are carried out on a prototype self-anchored suspension bridge. Also, wireless measurement system is analyzed to estimate its sensing capacity and evaluate its performance for monitoring purpose. Based on the evaluation, this paper proposes the effective strategies for integrated framework in order to detect structural deficiencies and to design an early warning system.
76 FR 37241 - Airworthiness Directives; Airbus Model A318, A319, A320, and A321 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
... Aircraft Monitoring] warnings during the landing gear retraction or extension sequence. * * * * * This... [Electronic Centralised Aircraft Monitoring] warnings during the landing gear retraction or extension sequence... [Electronic Centralised Aircraft [[Page 37243
Monitoring and modeling agricultural drought for famine early warning (Invited)
NASA Astrophysics Data System (ADS)
Verdin, J. P.; Funk, C.; Budde, M. E.; Lietzow, R.; Senay, G. B.; Smith, R.; Pedreros, D.; Rowland, J.; Artan, G. A.; Husak, G. J.; Michaelsen, J.; Adoum, A.; Galu, G.; Magadzire, T.; Rodriguez, M.
2009-12-01
The Famine Early Warning Systems Network (FEWS NET) makes quantitative estimates of food insecure populations, and identifies the places and periods during which action must be taken to assist them. Subsistence agriculture and pastoralism are the predominant livelihood systems being monitored, and they are especially drought-sensitive. At the same time, conventional climate observation networks in developing countries are often sparse and late in reporting. Consequently, remote sensing has played a significant role since FEWS NET began in 1985. Initially there was heavy reliance on vegetation index imagery from AVHRR to identify anomalies in landscape greenness indicative of drought. In the latter part of the 1990s, satellite rainfall estimates added a second, independent basis for identification of drought. They are used to force crop water balance models for the principal rainfed staple crops in twenty FEWS NET countries. Such models reveal seasonal moisture deficits associated with yield reduction on a spatially continuous basis. In 2002, irrigated crops in southwest Asia became a concern, and prompted the implementation of a gridded energy balance model to simulate the seasonal mountain snow pack, the main source of irrigation water. MODIS land surface temperature data are also applied in these areas to directly estimate actual seasonal evapotranspiration on the irrigated lands. The approach reveals situations of reduced irrigation water supply and crop production due to drought. The availability of MODIS data after 2000 also brought renewed interest in vegetation index imagery. MODIS NDVI data have proven to be of high quality, thanks to significant spectral and spatial resolution improvements over AVHRR. They are vital to producing rapid harvest assessments for drought-impacted countries in Africa and Asia. The global food crisis that emerged in 2008 has led to expansion of FEWS NET monitoring to over 50 additional countries. Unlike previous practice, these new countries have no local FEWS NET analysts, requiring increased reliance on remote sensing for detection of agricultural drought and potential food insecurity. USGS is increasing its cooperation with NASA, NOAA, and university partners to meet this challenge. New servers for near real time delivery of MODIS NDVI, satellite rainfall estimates, and gridded snow pack estimates are being established. A custom instance of NASA's Land Information System software is also being developed to create a land data assimilation system specifically for FEWS NET domains, data streams, and monitoring and forecast requirements. The system will take better advantage of remote sensing data, including promising new products from the Soil Moisture Active-Passive (SMAP) mission, by integrating them with surface observations for simulation of land surface processes. In this way, the continuous improvement of monitoring and modeling for famine early warning will advance to a new level of sophistication and effectiveness.
2011-01-01
Background The objective of this study was to describe aspects of case study herds investigated by the Department of Agriculture, Fisheries and Food (DAFF) in which animal welfare incidents occurred and to identify key performance indicators (KPIs) that can be monitored to enhance the Early Warning System (EWS). Despite an EWS being in place for a number of years, animal welfare incidents continue to occur. Questionnaires regarding welfare incidents were sent to Superintending Veterinary Inspectors (SVIs), resulting in 18 herds being chosen as case study herds, 12 of which had a clearly defined welfare incident date. For each study herd, data on six potential KPIs were extracted from DAFF databases. The KPIs for those herds with a clearly defined welfare incident date were studied for a consecutive four year window, with the fourth year being the 'incident year', when the welfare incident was disclosed. For study herds without a clearly defined welfare incident date, the KPIs were determined on a yearly basis between 2001 and 2009. Results We found that the late registration of calves, the use of on-farm burial as a method of carcase disposal, an increasing number of moves to knackeries over time and records of animals moved to 'herd unknown' were notable on the case farms. Conclusion Four KPIs were prominent on the case study farms and warrant further investigation in control herds to determine their potential to provide a framework for refining current systems of early warning and prevention. PMID:21982340
Evaluating the Use of Remote Sensing Data in the USAID Famine Early Warning Systems Network
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Brickley, Elizabeth B.
2011-01-01
The US Agency for International Development (USAID) s Famine Early Warning System Network (FEWS NET) provides monitoring and early warning support to decision makers responsible for responding to food insecurity emergencies on three continents. FEWS NET uses satellite remote sensing and ground observations of rainfall and vegetation in order to provide information on drought, floods and other extreme weather events to decision makers. Previous research has presented results from a professional review questionnaire with FEWS NET expert end-users whose focus was to elicit Earth observation requirements. The review provided FEWS NET operational requirements and assessed the usefulness of additional remote sensing data. Here we analyzed 1342 food security update reports from FEWS NET. The reports consider the biophysical, socioeconomic, and contextual influences on the food security in 17 countries in Africa from 2000-2009. The objective was to evaluate the use of remote sensing information in comparison with other important factors in the evaluation of food security crises. The results show that all 17 countries use rainfall information, agricultural production statistics, food prices and food access parameters in their analysis of food security problems. The reports display large scale patterns that are strongly related to history of the FEWS NET program in each country. We found that rainfall data was used 84% of the time, remote sensing of vegetation 28% of the time, and gridded crop models 10%, reflecting the length of use of each product in the regions. More investment is needed in training personnel on remote sensing products to improve use of data products throughout the FEWS NET system.
Thomas, Matthew A.; Mirus, Benjamin B.; Collins, Brian D.; Lu, Ning; Godt, Jonathan W.
2018-01-01
Rainfall-induced shallow landsliding is a persistent hazard to human life and property. Despite the observed connection between infiltration through the unsaturated zone and shallow landslide initiation, there is considerable uncertainty in how estimates of unsaturated soil-water retention properties affect slope stability assessment. This source of uncertainty is critical to evaluating the utility of physics-based hydrologic modeling as a tool for landslide early warning. We employ a numerical model of variably saturated groundwater flow parameterized with an ensemble of texture-, laboratory-, and field-based estimates of soil-water retention properties for an extensively monitored landslide-prone site in the San Francisco Bay Area, CA, USA. Simulations of soil-water content, pore-water pressure, and the resultant factor of safety show considerable variability across and within these different parameter estimation techniques. In particular, we demonstrate that with the same permeability structure imposed across all simulations, the variability in soil-water retention properties strongly influences predictions of positive pore-water pressure coincident with widespread shallow landsliding. We also find that the ensemble of soil-water retention properties imposes an order-of-magnitude and nearly two-fold variability in seasonal and event-scale landslide susceptibility, respectively. Despite the reduced factor of safety uncertainty during wet conditions, parameters that control the dry end of the soil-water retention function markedly impact the ability of a hydrologic model to capture soil-water content dynamics observed in the field. These results suggest that variability in soil-water retention properties should be considered for objective physics-based simulation of landslide early warning criteria.
NASA Astrophysics Data System (ADS)
Huang, Q.; Hattori, K.; Chae, B.
2011-12-01
The Joint Research Collaboration Program (JRCP) for Chinese-Korean-Japanese (CKJ) Research Collaboration is a new cooperative scheme for joint funding from Chinese Department of International Cooperation of the Ministry of Science and Technology (DOIC), Korea Foundation for International Cooperation of Science and Technology (KICOS) and Japan Science and Technology Agency (JST). In this paper, we will introduce the funded CKJ project entitled "Development of early warning system for landslide using electromagnetic, hydrological, geotechnical, and geological approaches". The final goal of the project is to develop a simple methodology for landslide monitoring/forecasting (early warning system) using self potential method in the frame work of joint research among China, Korea, and Japan. The project is developing a new scientific and technical methodology for prevention of natural soil disasters. The outline of the project is as follows: (1) basic understanding on the relationship between resistivity distribution and moisture in soil and their visualization of their dynamical changes in space and time using tomography technique, (2) laboratory experiments of rainfall induced landslides and sandbox for practical use of the basic understanding, (3) in-situ experiments for evaluation. Annual workshops/symposia, seminars will be organized for strengthening the scientific collaborations and exchanges. In consideration of the above issues, integration of geological, hydrological, geotechnical characteristics with electromagnetic one are adopted as the key approach in this project. This study is partially supported by the Joint Research Collaboration Program, DOIC, MOST, China (2010DFA21570) and the National Natural Science Foundation of China (40974038, 41025014).
Method for monitoring environmental and corrosion
Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.
1995-08-01
A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figs.
2010-06-01
was due to jalapeno and Serrano peppers grown and packed in Mexico and distributed in the United States. According to the USDA Rural Cooperative, the...early warning and active syndromic illness and disease monitoring network operating in the United States (U.S.)- Mexico Border Region and targets...Mexican national policies. Primary Users State and local public health epidemiologists at the U.S.- Mexico border Primary Providers of Data Data are
2005-08-25
tests currently available are the same as BTA with the inclusion of Vibrio cholerae O1. The detection limits of bacteria are 10 cfu/mL and for...spp., Burkholderia spp., Campylobacter spp., Clostridium perfringens, E. coli O157:H7, Francisella tularensis, Salmonella typhi, Shigella spp., Vibrio ... cholerae O1, Yersinia pestis, Y. enterocolitica Viruses Caliciviruses, Enteroviruses, Hepatitis A/E, Variola, Venezuelan equine encephalitis virus
2003 Oak Ridge National Laboratory Annual Illness and Injury Surveillance Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs
2007-05-23
Annual Illness and Injury Surveillance Program report for 2003 for ORNL. The U.S. Department of Energy’s (DOE) commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The Illness and Injury Surveillance Program monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.