Sample records for early zebrafish development

  1. Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish

    PubMed Central

    Ba, Qian; Duan, Juan; Tian, Jia-qiang; Wang, Zi-liang; Chen, Tao; Li, Xiao-guang; Chen, Pei-zhan; Wu, Song-jie; Xiang, Li; Li, Jing-quan; Chu, Rui-ai; Wang, Hui

    2013-01-01

    Aim: To investigate the embryotoxicity of dihydroartemisinin (DHA), the main active metabolite of artemisinin, in zebrafish, and explore the corresponding mechanisms. Methods: The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA. Developmental phenotypes of the embryos were observed. Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope. The expression of angiogenesis marker genes vegfa, flk1, and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays. Results: Exposure to DHA (1–10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage. Furthermore, exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP) zebrafish line. Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa, flk1, and flt1 in the embryos. Knockdown of the flk1 protein partially blocked the effects of DHA on embryogenesis. Conclusion: DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development, demonstrating the potential embryotoxicity of DHA. PMID:23708556

  2. Early zebrafish development: It’s in the maternal genes

    PubMed Central

    Abrams, Elliott W.; Mullins, Mary C.

    2009-01-01

    Summary The earliest stages of embryonic development in all animals examined rely on maternal gene products that are generated during oogenesis and supplied to the egg. The period of maternal control of embryonic development varies among animals according to the onset of zygotic transcription and the persistence of maternal gene products. This maternal regulation has been little studied in vertebrates, due to the difficulty in manipulating maternal gene function and lack of basic molecular information. However, recent maternal-effect screens in the zebrafish have generated more than 40 unique mutants that are providing new molecular entry points to the maternal control of early vertebrate development. Here we discuss recent studies of 12 zebrafish mutant genes that illuminate the maternal molecular controls on embryonic development, including advances in the regulation of animal-vegetal polarity, egg activation, cleavage development, body plan formation, tissue morphogenesis, microRNA function and germ cell development. PMID:19608405

  3. Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish.

    PubMed

    Leerberg, Dena M; Sano, Kaori; Draper, Bruce W

    2017-09-01

    The vertebrate ovary and testis develop from a sexually indifferent gonad. During early development of the organism, primordial germ cells (the gamete lineage) and somatic gonad cells coalesce and begin to undergo growth and morphogenesis to form this bipotential gonad. Although this aspect of development is requisite for a fertile adult, little is known about the genetic regulation of early gonadogenesis in any vertebrate. Here, we provide evidence that fibroblast growth factor (Fgf) signaling is required for the early growth phase of a vertebrate bipotential gonad. Based on mutational analysis in zebrafish, we show that the Fgf ligand 24 (Fgf24) is required for proliferation, differentiation, and morphogenesis of the early somatic gonad, and as a result, most fgf24 mutants are sterile as adults. Additionally, we describe the ultrastructural elements of the early zebrafish gonad and show that distinct somatic cell populations can be identified soon after the gonad forms. Specifically, we show that fgf24 is expressed in an epithelial population of early somatic gonad cells that surrounds an inner population of mesenchymal somatic gonad cells that are in direct contact with the germ cells, and that fgf24 is required for stratification of the somatic tissue. Furthermore, based on gene expression analysis, we find that differentiation of the inner mesenchymal somatic gonad cells into functional cell types in the larval and early juvenile-stage gonad is dependent on Fgf24 signaling. Finally, we argue that the role of Fgf24 in zebrafish is functionally analogous to the role of tetrapod FGF9 in early gonad development.

  4. Kcnh1 Voltage-gated Potassium Channels Are Essential for Early Zebrafish Development*

    PubMed Central

    Stengel, Rayk; Rivera-Milla, Eric; Sahoo, Nirakar; Ebert, Christina; Bollig, Frank; Heinemann, Stefan H.; Schönherr, Roland; Englert, Christoph

    2012-01-01

    The Kcnh1 gene encodes a voltage-gated potassium channel highly expressed in neurons and involved in tumor cell proliferation, yet its physiological roles remain unclear. We have used the zebrafish as a model to analyze Kcnh1 function in vitro and in vivo. We found that the kcnh1 gene is duplicated in teleost fish (i.e. kcnh1a and kcnh1b) and that both genes are maternally expressed during early development. In adult zebrafish, kcnh1a and kcnh1b have distinct expression patterns but share expression in brain and testis. Heterologous expression of both genes in Xenopus oocytes revealed a strong conservation of characteristic functional properties between human and fish channels, including a unique sensitivity to intracellular Ca2+/calmodulin and modulation of voltage-dependent gating by extracellular Mg2+. Using a morpholino antisense approach, we demonstrate a strong kcnh1 loss-of-function phenotype in developing zebrafish, characterized by growth retardation, delayed hindbrain formation, and embryonic lethality. This late phenotype was preceded by transcriptional up-regulation of known cell-cycle inhibitors (p21, p27, cdh2) and down-regulation of pro-proliferative factors, including cyclin D1, at 70% epiboly. These results reveal an unanticipated basic activity of kcnh1 that is crucial for early embryonic development and patterning. PMID:22927438

  5. Zebrafish Craniofacial Development: A Window into Early Patterning

    PubMed Central

    Mork, Lindsey; Crump, Gage

    2016-01-01

    The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research. PMID:26589928

  6. Zebrafish E-cadherin: expression during early embryogenesis and regulation during brain development.

    PubMed

    Babb, S G; Barnett, J; Doedens, A L; Cobb, N; Liu, Q; Sorkin, B C; Yelick, P C; Raymond, P A; Marrs, J A

    2001-06-01

    Zebrafish E-cadherin (cdh1) cell adhesion molecule cDNAs were cloned. We investigated spatial and temporal expression of cdh1 during early embryogenesis. Expression was observed in blastomeres, the anterior mesoderm during gastrulation, and developing epithelial structures. In the developing nervous system, cdh1 was detected at the pharyngula stage (24 hpf) in the midbrain-hindbrain boundary (MHB). Developmental regulation of MHB formation involves wnt1 and pax2.1. wnt1 expression preceded cdh1 expression during MHB formation, and cdh1 expression in the MHB was dependent on normal development of this structure. Copyright 2001 Wiley-Liss, Inc.

  7. Ca2+ signalling and early embryonic patterning during zebrafish development.

    PubMed

    Webb, Sarah E; Miller, Andrew L

    2007-09-01

    1. It has been proposed that Ca2+ signalling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern-forming events during early vertebrate development. 2. With reference to the embryo of the zebrafish (Danio rerio), herein we review the Ca2+ transients reported from the cleavage to segmentation periods. This time-window includes most of the major pattern-forming events of early development, which transform a single-cell zygote into a complex multicellular embryo with established primary germ layers and body axes. 3. Data are presented to support our proposal that intracellular Ca2+ waves are an essential feature of embryonic cytokinesis and that propagating intercellular Ca2+ waves (both long and short range) may play a crucial role in: (i) the establishment of the embryonic periderm and the coordination of cell movements during epiboly, convergence and extension; (ii) the establishment of the basic embryonic axes and germ layers; and (iii) definition of the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen. 4. The potential downstream targets of these Ca2+ transients are also discussed, as well as how they may integrate with other pattern-forming signalling pathways known to modulate early developmental events.

  8. Zebrafish pancreas development.

    PubMed

    Tiso, Natascia; Moro, Enrico; Argenton, Francesco

    2009-11-27

    An accurate understanding of the molecular events governing pancreas development can have an impact on clinical medicine related to diabetes, obesity and pancreatic cancer, diseases with a high impact in public health. Until 1996, the main animal models in which pancreas formation and differentiation could be studied were mouse and, for some instances related to early development, chicken and Xenopus. Zebrafish has penetrated this field very rapidly offering a new model of investigation; by joining functional genomics, genetics and in vivo whole mount visualization, Danio rerio has allowed large scale and fine multidimensional analysis of gene functions during pancreas formation and differentiation.

  9. Hedgehog signaling is required at multiple stages of zebrafish tooth development.

    PubMed

    Jackman, William R; Yoo, James J; Stock, David W

    2010-11-30

    The accessibility of the developing zebrafish pharyngeal dentition makes it an advantageous system in which to study many aspects of tooth development from early initiation to late morphogenesis. In mammals, hedgehog signaling is known to be essential for multiple stages of odontogenesis; however, potential roles for the pathway during initiation of tooth development or in later morphogenesis are incompletely understood. We have identified mRNA expression of the hedgehog ligands shha and the receptors ptc1 and ptc2 during zebrafish pharyngeal tooth development. We looked for, but did not detect, tooth germ expression of the other known zebrafish hedgehog ligands shhb, dhh, ihha, or ihhb, suggesting that as in mammals, only Shh participates in zebrafish tooth development. Supporting this idea, we found that morphological and gene expression evidence of tooth initiation is eliminated in shha mutant embryos, and that morpholino antisense oligonucleotide knockdown of shha, but not shhb, function prevents mature tooth formation. Hedgehog pathway inhibition with the antagonist compound cyclopamine affected tooth formation at each stage in which we applied it: arresting development at early stages and disrupting mature tooth morphology when applied later. These results suggest that hedgehog signaling is required continuously during odontogenesis. In contrast, over-expression of shha had no effect on the developing dentition, possibly because shha is normally extensively expressed in the zebrafish pharyngeal region. We have identified previously unknown requirements for hedgehog signaling for early tooth initiation and later morphogenesis. The similarity of our results with data from mouse and other vertebrates suggests that despite gene duplication and changes in the location of where teeth form, the roles of hedgehog signaling in tooth development have been largely conserved during evolution.

  10. Physiological roles of glucocorticoids during early embryonic development of the zebrafish (Danio rerio)

    PubMed Central

    Wilson, K S; Matrone, G; Livingstone, D E W; Al-Dujaili, E A S; Mullins, J J; Tucker, C S; Hadoke, P W F; Kenyon, C J; Denvir, M A

    2013-01-01

    While glucocorticoids (GCs) are known to be present in the zebrafish embryo, little is known about their physiological roles at this stage. We hypothesised that GCs play key roles in stress response, hatching and swim activity during early development. To test this, whole embryo cortisol (WEC) and corticosteroid-related genes were measured in embryos from 6 to 120 h post fertilisation (hpf) by enzyme linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Stress response was assessed by change in WEC following stirring, hypoxia or brief electrical impulses applied to the bathing water. The impact of pharmacological and molecular GC manipulation on the stress response, spontaneous hatching and swim activity at different stages of development was also assessed. WEC levels demonstrated a biphasic pattern during development with a decrease from 0 to 36 hpf followed by a progressive increase towards 120 hpf. This was accompanied by a significant and sustained increase in the expression of genes encoding cyp11b1 (GC biosynthesis), hsd11b2 (GC metabolism) and gr (GC receptor) from 48 to 120 hpf. Metyrapone (Met), an inhibitor of 11β-hydroxylase (encoded by cyp11b1), and cyp11b1 morpholino (Mo) knockdown significantly reduced basal and stress-induced WEC levels at 72 and 120 hpf but not at 24 hpf. Spontaneous hatching and swim activity were significantly affected by manipulation of GC action from approximately 48 hpf onwards. We have identified a number of key roles of GCs in zebrafish embryos contributing to adaptive physiological responses under adverse conditions. The ability to alter GC action in the zebrafish embryo also highlights its potential value for GC research. PMID:24167225

  11. Ca2+ signaling and early embryonic patterning during the blastula and gastrula periods of zebrafish and Xenopus development.

    PubMed

    Webb, Sarah E; Miller, Andrew L

    2006-11-01

    It has been proposed that Ca(2+) signaling, in the form of pulses, waves and steady gradients, may play a crucial role in key pattern forming events during early vertebrate development [L.F. Jaffe, Organization of early development by calcium patterns, BioEssays 21 (1999) 657-667; M.J. Berridge, P. Lipp, M.D. Bootman, The versatility and universality of calcium signaling, Nat. Rev. Mol. Cell Biol. 1 (2000) 11-21; S.E. Webb, A.L. Miller, Calcium signalling during embryonic development, Nat. Rev. Mol. Cell Biol. 4 (2003) 539-551]. With reference to the embryos of zebrafish (Danio rerio) and the frog, Xenopus laevis, we review the Ca(2+) signals reported during the Blastula and Gastrula Periods. This developmental window encompasses the major pattern forming events of epiboly, involution, and convergent extension, which result in the establishment of the basic germ layers and body axes [C.B. Kimmel, W.W. Ballard, S.R. Kimmel, B. Ullmann, T.F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn. 203 (1995) 253-310]. Data will be presented to support the suggestion that propagating waves (both long and short range) of Ca(2+) release, followed by sequestration, may play a crucial role in: (1) Coordinating cell movements during these pattern forming events and (2) Contributing to the establishment of the basic embryonic axes, as well as (3) Helping to define the morphological boundaries of specific tissue domains and embryonic structures, including future organ anlagen [E. Gilland, A.L. Miller, E. Karplus, R. Baker, S.E. Webb, Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation, Proc. Natl. Acad. Sci. USA 96 (1999) 157-161; J.B. Wallingford, A.J. Ewald, R.M. Harland, S.E. Fraser, Calcium signaling during convergent extension in Xenopus, Curr. Biol. 11 (2001) 652-661]. The various potential targets of these Ca(2+) transients will also be discussed, as well as how they might integrate with other known pattern forming

  12. Teratogenic, bioenergetic, and behavioral effects of exposure to total particulate matter on early development of zebrafish (Danio rerio) are not mimicked by nicotine

    PubMed Central

    Massarsky, Andrey; Jayasundara, Nishad; Bailey, Jordan M.; Oliveri, Anthony N.; Levin, Edward D.; Prasad, G.L.; Di Giulio, Richard T.

    2016-01-01

    Cigarette smoke has been associated with a number of pathologies; however, the mechanisms leading to developmental effects are yet to be fully understood. The zebrafish embryo is regarded as a ‘bridge model’; however, not many studies examined its applicability to cigarette smoke toxicity. This study examined the effects of total particulate matter (TPM) from 3R4F reference cigarettes on the early development of zebrafish (Danio rerio). Zebrafish embryos were exposed to two concentrations of TPM (0.4 and 1.4 μg/mL equi-nicotine units) or nicotine at equivalent doses. The exposures began at 2 h post-fertilization (hpf) and lasted until 96 hpf. Several physiological parameters were assessed during or after the exposure. We show that TPM increased mortality, delayed hatching, and increased the incidence of deformities in zebrafish. TPM exposure also increased the incidence of hemorrhage and disrupted the angiogenesis of the major vessels in the brain. Moreover, TPM exposure reduced the larval body length, decreased the heart rate, and reduced the metabolic rate. Biomarkers of xenobiotic metabolism and oxidative stress were also affected. TPM-exposed zebrafish also differed behaviorally: at 24 hpf the embryos had a higher frequency of spontaneous contractions and at 144 hpf the larvae displayed swimming hyperactivity. This study demonstrates that TPM disrupts several aspects of early development in zebrafish. The effects reported for TPM were not attributable to nicotine, since embryos treated with nicotine alone did not differ significantly from the control group. Collectively, our work illustrates the utility of zebrafish as an alternative model to evaluate the toxic effects of cigarette smoke constituents. PMID:26391568

  13. Teratogenic, bioenergetic, and behavioral effects of exposure to total particulate matter on early development of zebrafish (Danio rerio) are not mimicked by nicotine.

    PubMed

    Massarsky, Andrey; Jayasundara, Nishad; Bailey, Jordan M; Oliveri, Anthony N; Levin, Edward D; Prasad, G L; Di Giulio, Richard T

    2015-01-01

    Cigarette smoke has been associated with a number of pathologies; however, the mechanisms leading to developmental effects are yet to be fully understood. The zebrafish embryo is regarded as a 'bridge model'; however, not many studies examined its applicability to cigarette smoke toxicity. This study examined the effects of total particulate matter (TPM) from 3R4F reference cigarettes on the early development of zebrafish (Danio rerio). Zebrafish embryos were exposed to two concentrations of TPM (0.4 and 1.4 μg/mL equi-nicotine units) or nicotine at equivalent doses. The exposures began at 2h post-fertilization (hpf) and lasted until 96 hpf. Several physiological parameters were assessed during or after the exposure. We show that TPM increased mortality, delayed hatching, and increased the incidence of deformities in zebrafish. TPM exposure also increased the incidence of hemorrhage and disrupted the angiogenesis of the major vessels in the brain. Moreover, TPM exposure reduced the larval body length, decreased the heart rate, and reduced the metabolic rate. Biomarkers of xenobiotic metabolism and oxidative stress were also affected. TPM-exposed zebrafish also differed behaviorally: at 24 hpf the embryos had a higher frequency of spontaneous contractions and at 144 hpf the larvae displayed swimming hyperactivity. This study demonstrates that TPM disrupts several aspects of early development in zebrafish. The effects reported for TPM were not attributable to nicotine, since embryos treated with nicotine alone did not differ significantly from the control group. Collectively, our work illustrates the utility of zebrafish as an alternative model to evaluate the toxic effects of cigarette smoke constituents. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Maternal thyroid hormones are essential for neural development in zebrafish.

    PubMed

    Campinho, Marco A; Saraiva, João; Florindo, Claudia; Power, Deborah M

    2014-07-01

    Teleost eggs contain an abundant store of maternal thyroid hormones (THs), and early in zebrafish embryonic development, all the genes necessary for TH signaling are expressed. Nonetheless the function of THs in embryonic development remains elusive. To test the hypothesis that THs are fundamental for zebrafish embryonic development, an monocarboxilic transporter 8 (Mct8) knockdown strategy was deployed to prevent maternal TH uptake. Absence of maternal THs did not affect early specification of the neural epithelia but profoundly modified later dorsal specification of the brain and spinal cord as well as specific neuron differentiation. Maternal THs acted upstream of pax2a, pax7, and pax8 genes but downstream of shha and fgf8a signaling. The lack of inhibitory spinal cord interneurons and increased motoneurons in the mct8 morphants is consistent with their stiff axial body and impaired mobility. The mct8 mutations are associated with X-linked mental retardation in humans, and the cellular and molecular consequences of MCT8 knockdown during embryonic development in zebrafish provides new insight into the potential role of THs in this condition.

  15. Comparison of molecular marker expression in early zebrafish brain development following chronic ethanol or morpholino treatment.

    PubMed

    Zhang, Chengjin; Boa-Amponsem, Oswald; Cole, Gregory J

    2017-08-01

    This study was undertaken to ascertain whether defined markers of early zebrafish brain development are affected by chronic ethanol exposure or morpholino knockdown of agrin, sonic hedgehog, retinoic acid, and fibroblast growth factors, four signaling molecules that are suggested to be ethanol sensitive. Zebrafish embryos were exposed to 2% ethanol from 6 to 24 hpf or injected with agrin, shha, aldh1a3, or fgf8a morpholinos. In situ hybridization was employed to analyze otx2, pax6a, epha4a, krx20, pax2a, fgf8a, wnt1, and eng2b expression during early brain development. Our results showed that pax6a mRNA expression was decreased in eye, forebrain, and hindbrain of both chronic ethanol exposed and select MO treatments. Epha4a expression in rhombomere R1 boundary was decreased in chronic ethanol exposure and aldh1a3 morphants, lost in fgf8a morphants, but largely unaffected in agrin and shha morphants. Ectopic pax6a and epha4a expression in midbrain was only found in fgf8a morphants. These results suggest that while chronic ethanol induces obvious morphological change in brain architecture, many molecular markers of these brain structures are relatively unaffected by ethanol exposure.

  16. Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, C.C.; Hui, Michelle N.Y.; Cheng, S.H. E-mail: bhcheng@cityu.edu.hk

    2007-07-15

    Carbaryl, an acetylcholinesterase inhibitor, is known to be moderately toxic to adult zebrafish and has been reported to cause heart malformations and irregular heartbeat in medaka. We performed experiments to study the toxicity of carbaryl, specifically its effects on the heart, in early developing zebrafish embryos. LC50 and EC50 values for carbaryl at 28 h post-fertilization were 44.66 {mu}g/ml and 7.52 {mu}g/ml, respectively, and 10 {mu}g/ml carbaryl was used in subsequent experiments. After confirming acetylcholinesterase inhibition by carbaryl using an enzymatic method, we observed red blood cell accumulation, delayed hatching and pericardial edema, but not heart malformation as described inmore » some previous reports. Our chronic exposure data also demonstrated carbaryl-induced bradycardia, which is a common effect of acetylcholinesterase inhibitors due to the accumulation of acetylcholine, in embryos from 1 day post-fertilization (dpf) to 5 dpf. The distance between the sinus venosus, the point where blood enters the atrium, and the bulbus arteriosus, the point where blood leaves the ventricle, indicated normal looping of the heart tube. Immunostaining of myosin heavy chains with the ventricle-specific antibody MF20 and the atrium-specific antibody S46 showed normal development of heart chambers. At the same time, acute exposure resulted in carbaryl-induced bradycardia. Heart rate dropped significantly after a 10-min exposure to 100 {mu}g/ml carbaryl but recovered when carbaryl was removed. The novel observation of carbaryl-induced bradycardia in 1- and 2-dpf embryos suggested that carbaryl affected cardiac function possibly through an alternative mechanism other than acetylcholinesterase inhibition such as inhibition of calcium ion channels, since acetylcholine receptors in zebrafish are not functional until 3 dpf. However, the exact nature of this mechanism is currently unknown, and thus further studies are required.« less

  17. The effect of excess expression of GFP in a novel heart-specific green fluorescence zebrafish regulated by nppa enhancer at early embryonic development.

    PubMed

    Huang, Wen; Deng, Yun; Dong, Wei; Yuan, Wuzhou; Wan, Yongqi; Mo, Xiaoyan; Li, Yongqing; Wang, Zequn; Wang, Yuequn; Ocorr, Karen; Zhang, Bo; Lin, Shuo; Wu, Xiushan

    2011-02-01

    In order to study the impalpable effect of GFP in homozygous heart-specific GFP-positive zebrafish during the early stage, the researchers analyzed the heart function of morphology and physiology at the first 3 days after fertilization. This zebrafish line was produced by a large-scale Tol2 transposon mediated enhancer trap screen that generated a transgenic zebrafish with a heart-specific expression of green fluorescent protein (GFP)-tagged under control of the nppa enhancer. In situ hybridization experiments showed that the nppa:GFP line faithfully recapitulated both the spatial and temporal expressions of the endogenous nppa. Green fluorescence was intensively and specifically expressed in the myocardial cells located both in the heart chambers and in the atrioventricular canal. The embryonic heart of nppa:GFP line developed normally compared with those in the wild type. There was no difference between the nappa:GFP and wild type lines with respect to heart rate, overall size, ejection volume, and fractional shortening. Thus the excess expression of GFP in this transgenic line seemed to exert no detrimental effects on zebrafish hearts during the early stages.

  18. Regulation of endoderm formation and left-right asymmetry by miR-92 during early zebrafish development

    PubMed Central

    Li, Nan; Wei, Chunyao; Olena, Abigail F.; Patton, James G.

    2011-01-01

    microRNAs (miRNAs) are a family of 21-23 nucleotide endogenous non-coding RNAs that post-transcriptionally regulate gene expression in a sequence-specific manner. Typically, miRNAs downregulate target genes by recognizing and recruiting protein complexes to 3′UTRs, followed by translation repression or mRNA degradation. miR-92 is a well-studied oncogene in mammalian systems. Here, using zebrafish as a model system, we uncovered a novel tissue-inductive role for miR-92 during early vertebrate development. Overexpression resulted in reduced endoderm formation during gastrulation with consequent cardia and viscera bifida. By contrast, depletion of miR-92 increased endoderm formation, which led to abnormal Kupffer's vesicle development and left-right patterning defects. Using target prediction algorithms and reporter constructs, we show that gata5 is a target of miR-92. Alteration of gata5 levels reciprocally mirrored the effects of gain and loss of function of miR-92. Moreover, genetic epistasis experiments showed that miR-92-mediated defects could be substantially suppressed by modulating gata5 levels. We propose that miR-92 is a critical regulator of endoderm formation and left-right asymmetry during early zebrafish development and provide the first evidence for a regulatory function for gata5 in the formation of Kupffer's vesicle and left-right patterning. PMID:21447552

  19. Effect of PMA-induced protein kinase C activation on development and apoptosis in early zebrafish embryos.

    PubMed

    Hrubik, Jelena; Glisic, Branka; Samardzija, Dragana; Stanic, Bojana; Pogrmic-Majkic, Kristina; Fa, Svetlana; Andric, Nebojsa

    2016-12-01

    Protein kinase C (PKC) isoforms have been implicated in several key steps during early development, but the consequences of xenobiotic-induced PKC activation during early embryogenesis are still unknown. In this study, zebrafish embryos were exposed to a range of phorbol 12-myristate 13-acetate (PMA) concentrations (0-200μg/L) at different time points after fertilization. Results showed that 200μgPMA/L caused development of yolk bags, cardiac edema, slow blood flow, pulsating blood flow, slow pulse, elongated heart, lack of tail fins, curved tail, and coagulation. PMA exposure decreased survival rate of the embryos starting within the first 24h and becoming more pronounced after prolonged exposure (96h). PMA increased the number of apoptotic cells in the brain region as demonstrated by acridine orange staining and caused up-regulation of caspase 9 (casp9) and p53 up-regulated modulator of apoptosis (puma) mRNA in whole embryos. PMA caused oxidative stress in the embryos as demonstrated by decreased mRNA expression of catalase and superoxide dismutase 2. Inhibition of Pkc with GF109203X improved overall survival rate, reduced apoptosis in the brain and decreased expression of casp9 and puma in the PMA-exposed embryos. However, Pkc inhibition neither prevented development of deformities nor reversed oxidative stress in the PMA-exposed embryos. These data suggest that direct over-activation of Pkc during early embryogenesis of zebrafish is associated with apoptosis and decreased survival rate of the embryos. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Insulin-like growth factor (IGF) signalling is required for early dorso-anterior development of the zebrafish embryo.

    PubMed

    Eivers, Edward; McCarthy, Karena; Glynn, Catherine; Nolan, Catherine M; Byrnes, Lucy

    2004-12-01

    The insulin-like growth factor (IGF) signalling pathway has been highly conserved in animal evolution and, in mammals and Xenopus, plays a key role in embryonic growth and development, with the IGF-1 receptor (IGF-1R) being a crucial regulator of the signalling cascade. Here we report the first functional role for the IGF pathway in zebrafish. Expression of mRNA coding for a dominant negative IGF-1R resulted in embryos that were small in size compared to controls and had disrupted head and CNS development. At its most extreme, this phenotype was characterized by a complete loss of head and eye structures, an absence of notochord and the presence of abnormal somites. In contrast, up-regulation of IGF signalling following injection of IGF-1 mRNA, resulted in a greatly expanded development of anterior structures at the expense of trunk and tail. IGF-1R knockdown caused a significant decrease in the expression of Otx2, Rx3, FGF8, Pax6.2 and Ntl, while excess IGF signalling expanded Otx2 expression in presumptive forebrain tissue and widened the Ntl expression domain in the developing notochord. The observation that IGF-1R knockdown reduced expression of two key organizer genes (chordin and goosecoid) suggests that IGF signalling plays a role in regulating zebrafish organizer activity. This is supported by the expression of IGF-1, IGF-2 and IGF-1R in shield-stage zebrafish embryos and the demonstration that IGF signalling influences expression of BMP2b, a gene that plays an important role in zebrafish pattern formation. Our data is consistent with a common pathway for integration of IGF, FGF8 and anti-BMPs in early vertebrate development.

  1. Cloning of zebrafish Mustn1 orthologs and their expression during early development.

    PubMed

    Camarata, Troy; Vasilyev, Aleksandr; Hadjiargyrou, Michael

    2016-11-15

    Mustn1 is a small nuclear protein that is involved in the development and regeneration of the musculoskeletal system. Previous work established a role for Mustn1 in myogenic and chondrogenic differentiation. In addition, recent evidence suggests a potential role for Mustn1 in cilia function in zebrafish. A detailed study of Mustn1 expression has yet to be conducted in zebrafish. As such, we report herein the cloning of the zebrafish Mustn1 orthologs, mustn1a and mustn1b, and their expression during zebrafish embryonic and larval development. Results indicate a 44% nucleotide identity between the two paralogs. Phylogenetic analysis further confirmed that the Mustn1a and 1b predicted proteins were highly related to other vertebrate members of the Mustn1 protein family. Whole mount in situ hybridization revealed expression of both mustn1a and 1b at the 7-somite stage through 72hpf in structures such as Kupffer's vesicle, segmental mesoderm, head structures, and otic vesicle. Additionally, in 5day old larva, mustn1a and 1b expression is detected in the neurocranium, otic capsule, and the gut. Although both were expressed in the neurocranium, mustn1a was localized in the hypophyseal fenestra whereas mustn1b was found near the posterior basicapsular commissure. mustn1b also displayed expression in the ceratohyal and ceratobranchial elements of the pharyngeal skeleton. These expression patterns were verified temporally by q-PCR analysis. Taken together, we conclude that Mustn1 expression is conserved in vertebrates and that the variations in expression of the two zebrafish paralogs suggest different modes of molecular regulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Maternal Thyroid Hormones Are Essential for Neural Development in Zebrafish

    PubMed Central

    Saraiva, João; Florindo, Claudia; Power, Deborah M.

    2014-01-01

    Teleost eggs contain an abundant store of maternal thyroid hormones (THs), and early in zebrafish embryonic development, all the genes necessary for TH signaling are expressed. Nonetheless the function of THs in embryonic development remains elusive. To test the hypothesis that THs are fundamental for zebrafish embryonic development, an monocarboxilic transporter 8 (Mct8) knockdown strategy was deployed to prevent maternal TH uptake. Absence of maternal THs did not affect early specification of the neural epithelia but profoundly modified later dorsal specification of the brain and spinal cord as well as specific neuron differentiation. Maternal THs acted upstream of pax2a, pax7, and pax8 genes but downstream of shha and fgf8a signaling. The lack of inhibitory spinal cord interneurons and increased motoneurons in the mct8 morphants is consistent with their stiff axial body and impaired mobility. The mct8 mutations are associated with X-linked mental retardation in humans, and the cellular and molecular consequences of MCT8 knockdown during embryonic development in zebrafish provides new insight into the potential role of THs in this condition. PMID:24877564

  3. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development.

    PubMed

    De Marco, Rodrigo J; Groneberg, Antonia H; Yeh, Chen-Min; Treviño, Mario; Ryu, Soojin

    2014-01-01

    The relationship between stress and food consumption has been well documented in adults but less so in developing vertebrates. Here we demonstrate that an encounter with a stressor can suppress food consumption in larval zebrafish. Furthermore, we provide indication that food intake suppression cannot be accounted for by changes in locomotion, oxygen consumption and visual responses, as they remain unaffected after exposure to a potent stressor. We also show that feeding reoccurs when basal levels of cortisol (stress hormone in humans and teleosts) are re-established. The results present evidence that the onset of stress can switch off the drive for feeding very early in vertebrate development, and add a novel endpoint for analyses of metabolic and behavioral disorders in an organism suitable for high-throughput genetics and non-invasive brain imaging.

  4. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development

    PubMed Central

    De Marco, Rodrigo J.; Groneberg, Antonia H.; Yeh, Chen-Min; Treviño, Mario; Ryu, Soojin

    2014-01-01

    The relationship between stress and food consumption has been well documented in adults but less so in developing vertebrates. Here we demonstrate that an encounter with a stressor can suppress food consumption in larval zebrafish. Furthermore, we provide indication that food intake suppression cannot be accounted for by changes in locomotion, oxygen consumption and visual responses, as they remain unaffected after exposure to a potent stressor. We also show that feeding reoccurs when basal levels of cortisol (stress hormone in humans and teleosts) are re-established. The results present evidence that the onset of stress can switch off the drive for feeding very early in vertebrate development, and add a novel endpoint for analyses of metabolic and behavioral disorders in an organism suitable for high-throughput genetics and non-invasive brain imaging. PMID:25368561

  5. Functional Development of the Circadian Clock in the Zebrafish Pineal Gland

    PubMed Central

    Ben-Moshe, Zohar; Foulkes, Nicholas S.

    2014-01-01

    The zebrafish constitutes a powerful model organism with unique advantages for investigating the vertebrate circadian timing system and its regulation by light. In particular, the remarkably early and rapid development of the zebrafish circadian system has facilitated exploring the factors that control the onset of circadian clock function during embryogenesis. Here, we review our understanding of the molecular basis underlying functional development of the central clock in the zebrafish pineal gland. Furthermore, we examine how the directly light-entrainable clocks in zebrafish cell lines have facilitated unravelling the general mechanisms underlying light-induced clock gene expression. Finally, we summarize how analysis of the light-induced transcriptome and miRNome of the zebrafish pineal gland has provided insight into the regulation of the circadian system by light, including the involvement of microRNAs in shaping the kinetics of light- and clock-regulated mRNA expression. The relative contributions of the pineal gland central clock and the distributed peripheral oscillators to the synchronization of circadian rhythms at the whole animal level are a crucial question that still remains to be elucidated in the zebrafish model. PMID:24839600

  6. Live imaging reveals a conserved role of fatty acid β-oxidation in early lymphatic development in zebrafish.

    PubMed

    Zecchin, Annalisa; Wong, Brian W; Tembuyser, Bieke; Souffreau, Joris; Van Nuffelen, An; Wyns, Sabine; Vinckier, Stefan; Carmeliet, Peter; Dewerchin, Mieke

    2018-06-18

    During embryonic development, lymphatic endothelial cells (LECs) differentiate from venous endothelial cells (VECs), a process that is tightly regulated by several genetic signals. While the aquatic zebrafish model is regularly used for studying lymphangiogenesis and offers the unique advantage of time-lapse video-imaging of lymphatic development, some aspects of lymphatic development in this model differ from those in the mouse. It therefore remained to be determined whether fatty acid β-oxidation (FAO), which we showed to regulate lymphatic formation in the mouse, also co-determines lymphatic development in this aquatic model. Here, we took advantage of the power of the zebrafish embryo model to visualize the earliest steps of lymphatic development through time-lapse video-imaging. By targeting zebrafish isoforms of carnitine palmitoyltransferase 1a (cpt1a), a rate controlling enzyme of FAO, with multiple morpholinos, we demonstrate that reducing CPT1A levels and FAO flux during zebrafish development impairs lymphangiogenic secondary sprouting, the initiation of lymphatic development in the zebrafish trunk, and the formation of the first lymphatic structures. These findings not only show evolutionary conservation of the importance of FAO for lymphatic development, but also suggest a role for FAO in co-regulating the process of VEC-to-LEC differentiation in zebrafish in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Effects of gamma radiation on the early developmental stages of Zebrafish (Danio rerio).

    PubMed

    Praveen Kumar, M K; Shyama, S K; Kashif, Shamim; Dubey, S K; Avelyno, D'costa; Sonaye, B H; Kadam Samit, B; Chaubey, R C

    2017-08-01

    The zebrafish is gaining importance as a popular vertebrate model organism and is widely employed in ecotoxicological studies, especially for the biomonitoring of pollution in water bodies. There is limited data on the genetic mechanisms governing the adverse health effects in regards to an early developmental exposure to gamma radiation. In the present study zebrafish (Danio rerio) embryos were exposed to 1, 2.5, 5, 7.5 and 10Gy of gamma radiation at 3h post fertilization (hpf). Different developmental toxicity endpoints were investigated. Further, expression of genes associated with the development and DNA damage i.e. (sox2 sox19a and p53) were evaluated using Quantitative PCR (qPCR). The significant changes in the expression of sox2 sox19a and p53 genes were observed. This data was supported the developmental defects observed in the zebrafish embryo exposed to gamma radiation such as i.e. increased DNA damage, decreased hatching rate, increase in median hatching time, decreased body length, increased mortality rate, increased morphological deformities. Further, study shows that the potential ecotoxicological threat of gamma radiation on the early developmental stages of zebrafish. Further, it revealed that the above parameters can be used as predictive biomarkers of gamma radiation exposure. Copyright © 2017. Published by Elsevier Inc.

  8. Smoc2 modulates embryonic myelopoiesis during zebrafish development.

    PubMed

    Mommaerts, Hendrik; Esguerra, Camila V; Hartmann, Ursula; Luyten, Frank P; Tylzanowski, Przemko

    2014-11-01

    SMOC2 is a member of the BM-40 (SPARC) family of matricellular proteins, reported to influence signaling in the extracellular compartment. In mice, Smoc2 is expressed in many different tissues and was shown to enhance the response to angiogenic growth factors, mediate cell adhesion, keratinocyte migration, and metastasis. Additionally, SMOC2 is associated with vitiligo and craniofacial and dental defects. The function of Smoc2 during early zebrafish development has not been determined to date. In pregastrula zebrafish embryos, smoc2 is expressed ubiquitously. As development progresses, the expression pattern becomes more anteriorly restricted. At the onset of blood cell circulation, smoc2 morphants presented a mild ventralization of posterior structures. Molecular analysis of the smoc2 morphants indicated myelopoietic defects in the rostral blood islands during segmentation stages. Hemangioblast development and further specification of the myeloid progenitor cells were shown to be impaired. Additional experiments indicated that Bmp target genes were down-regulated in smoc2 morphants. Our findings reveal that Smoc2 is an essential player in the development of myeloid cells of the anterior lateral plate mesoderm during embryonic zebrafish development. Furthermore, our data show that Smoc2 affects the transcription of Bmp target genes without affecting initial dorsoventral patterning or mesoderm development. Copyright © 2014 Wiley Periodicals, Inc.

  9. Immunotoxicity of bisphenol S and F are similar to that of bisphenol A during zebrafish early development.

    PubMed

    Qiu, Wenhui; Shao, Haiyang; Lei, Penghui; Zheng, Chunmiao; Qiu, Cunxin; Yang, Ming; Zheng, Yi

    2018-03-01

    Bisphenol S (BPS) and bisphenol F (BPF) have been increasingly used as alternatives to bisphenol A (BPA) owing to health concerns. The present study aims to evaluate the impact of these two BPA analogs on oxidative stress and the immune system during zebrafish embryonic and larval development. Environmentally relevant levels of BPS and BPF exposure could increase reactive oxygen species (ROS) content, nitric oxide (NO) content, nitric oxide synthase (NOS) activity, and the expression of immunity-related genes in concentration dependent manners during the early developmental stages in zebrafish. At a concentration of 100 μg/L, BPS and BPF showed similar effects on the immune toxicity of zebrafish as that of BPA. Moreover, BPS and BPF induced both erα and nf-κb expression, and antagonists of estrogen receptor and NF-κB blocked the effects on immunity-related gene expression, providing evidence that the two pathways mediate the actions of BPS and BPF on fish immune response and functions. Thus we conclude that the presence of BPS and BPF in the environment, similar to BPA, may also pose risks to ecosystem and human health and cannot be widely used without limitations and precautions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Pax2.1 is required for the development of thyroid follicles in zebrafish.

    PubMed

    Wendl, Thomas; Lun, Klaus; Mione, Marina; Favor, Jack; Brand, Michael; Wilson, Stephen W; Rohr, Klaus B

    2002-08-01

    The thyroid gland is an organ primarily composed of endoderm-derived follicular cells. Although disturbed embryonic development of the thyroid gland leads to congenital hypothyroidism in humans and mammals, the underlying principles of thyroid organogenesis are largely unknown. In this study, we introduce zebrafish as a model to investigate the molecular and genetic mechanisms that control thyroid development. Marker gene expression suggests that the molecular pathways of early thyroid development are essentially conserved between fish and mammals. However during larval stages, we find both conserved and divergent features of development compared with mammals. A major difference is that in fish, we find evidence for hormone production not only in thyroid follicular cells, but also in an anterior non-follicular group of cells. We show that pax2.1 and pax8, members of the zebrafish pax2/5/8 paralogue group, are expressed in the thyroid primordium. Whereas in mice, only Pax8 has a function during thyroid development, analysis of the zebrafish pax2.1 mutant no isthmus (noi(-/-)) demonstrates that pax2.1 has a role comparable with mouse Pax8 in differentiation of the thyroid follicular cells. Early steps of thyroid development are normal in noi(-/-), but later expression of molecular markers is lost and the formation of follicles fails. Interestingly, the anterior non-follicular site of thyroid hormone production is not affected in noi(-/-). Thus, in zebrafish, some remaining thyroid hormone synthesis takes place independent of the pathway leading to thyroid follicle formation. We suggest that the noi(-/-) mutant serves as a new zebrafish model for hypothyroidism.

  11. Preliminary Evaluation on the Effects of Feeds on the Growth and Early Reproductive Performance of Zebrafish (Danio rerio)

    PubMed Central

    2012-01-01

    This study evaluated the effects of several commercially available feeds and different feeding regimes on the growth and early reproductive performance of zebrafish (Danio rerio). Juvenile zebrafish (n= 20; 5.06 ± 0.69 mg) were stocked into each of 24 tanks (volume, 2 L); 3 tanks were assigned to each of 8 feeding combinations for a period of 60 d. At the end of 60 d, 2 male and 2 female fish from each tank were pooled by dietary treatment (n = 6) and used to evaluate the effects of feeding combinations on early reproductive performance. Zebrafish fed dietary treatments 3 and 7 had significantly greater weight gain than zebrafish fed diet 5. Mean spawning success was significantly greater in zebrafish fed the control diet (Artemiaonly) than in those fed diet 1. Mean hatch rates were greater in zebrafish fed the control feed and diets 1, 2, 3, 5, and 6 than zebrafish fed diet 4. Additional results suggest that female zebrafish are sexually mature after 90 d post fertilization and that fertilization rates are the limiting factor in early reproduction. PMID:23043806

  12. Expression of voltage-activated calcium channels in the early zebrafish embryo.

    PubMed

    Sanhueza, Dayán; Montoya, Andro; Sierralta, Jimena; Kukuljan, Manuel

    2009-05-01

    Increases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish, Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.

  13. Dissection and lateral mounting of zebrafish embryos: analysis of spinal cord development.

    PubMed

    Beck, Aaron P; Watt, Roland M; Bonner, Jennifer

    2014-02-28

    The zebrafish spinal cord is an effective investigative model for nervous system research for several reasons. First, genetic, transgenic and gene knockdown approaches can be utilized to examine the molecular mechanisms underlying nervous system development. Second, large clutches of developmentally synchronized embryos provide large experimental sample sizes. Third, the optical clarity of the zebrafish embryo permits researchers to visualize progenitor, glial, and neuronal populations. Although zebrafish embryos are transparent, specimen thickness can impede effective microscopic visualization. One reason for this is the tandem development of the spinal cord and overlying somite tissue. Another reason is the large yolk ball, which is still present during periods of early neurogenesis. In this article, we demonstrate microdissection and removal of the yolk in fixed embryos, which allows microscopic visualization while preserving surrounding somite tissue. We also demonstrate semipermanent mounting of zebrafish embryos. This permits observation of neurodevelopment in the dorso-ventral and anterior-posterior axes, as it preserves the three-dimensionality of the tissue.

  14. Dissection and Lateral Mounting of Zebrafish Embryos: Analysis of Spinal Cord Development

    PubMed Central

    Beck, Aaron P.; Watt, Roland M.; Bonner, Jennifer

    2014-01-01

    The zebrafish spinal cord is an effective investigative model for nervous system research for several reasons. First, genetic, transgenic and gene knockdown approaches can be utilized to examine the molecular mechanisms underlying nervous system development. Second, large clutches of developmentally synchronized embryos provide large experimental sample sizes. Third, the optical clarity of the zebrafish embryo permits researchers to visualize progenitor, glial, and neuronal populations. Although zebrafish embryos are transparent, specimen thickness can impede effective microscopic visualization. One reason for this is the tandem development of the spinal cord and overlying somite tissue. Another reason is the large yolk ball, which is still present during periods of early neurogenesis. In this article, we demonstrate microdissection and removal of the yolk in fixed embryos, which allows microscopic visualization while preserving surrounding somite tissue. We also demonstrate semipermanent mounting of zebrafish embryos. This permits observation of neurodevelopment in the dorso-ventral and anterior-posterior axes, as it preserves the three-dimensionality of the tissue. PMID:24637734

  15. Development and origins of zebrafish ocular vasculature.

    PubMed

    Kaufman, Rivka; Weiss, Omri; Sebbagh, Meyrav; Ravid, Revital; Gibbs-Bar, Liron; Yaniv, Karina; Inbal, Adi

    2015-03-27

    The developing eye receives blood supply from two vascular systems, the intraocular hyaloid system and the superficial choroidal vessels. In zebrafish, a highly stereotypic and simple set of vessels develops on the surface of the eye prior to development of choroidal vessels. The origins and formation of this so-called superficial system have not been described. We have analyzed the development of superficial vessels by time-lapse imaging and identified their origins by photoconversion experiments in kdrl:Kaede transgenic embryos. We show that the entire superficial system is derived from a venous origin, and surprisingly, we find that the hyaloid system has, in addition to its previously described arterial origin, a venous origin for specific vessels. Despite arising solely from a vein, one of the vessels in the superficial system, the nasal radial vessel (NRV), appears to acquire an arterial identity while growing over the nasal aspect of the eye and this happens in a blood flow-independent manner. Our results provide a thorough analysis of the early development and origins of zebrafish ocular vessels and establish the superficial vasculature as a model for studying vascular patterning in the context of the developing eye.

  16. Temporal cohesion of the structural, functional and molecular characteristics of the developing zebrafish heart.

    PubMed

    Matrone, Gianfranco; Wilson, Kathryn S; Mullins, John J; Tucker, Carl S; Denvir, Martin A

    2015-06-01

    Heart formation is a complex, dynamic and highly coordinated process of molecular, morphogenetic and functional factors with each interacting and contributing to formation of the mature organ. Cardiac abnormalities in early life can be lethal in mammals but not in the zebrafish embryo which has been widely used to study the developing heart. While early cardiac development in the zebrafish has been well characterized, functional changes during development and how these relate to architectural, cellular and molecular aspects of development have not been well described previously. To address this we have carefully characterised cardiac structure, function, cardiomyocyte proliferation and cardiac-specific gene expression between 48 and 120 hpf in the zebrafish. We show that the zebrafish heart increases in volume and changes shape significantly between 48 and 72 hpf accompanied by a 40% increase in cardiomyocyte number. Between 96 and 120 hpf, while external heart expansion slows, there is rapid formation of a mature and extensive trabecular network within the ventricle chamber. While ejection fraction does not change during the course of development other determinants of contractile function increase significantly particularly between 72 and 96 hpf leading to an increase in cardinal vein blood flow. This study has revealed a number of novel aspects of cardiac developmental dynamics with striking temporal orchestration of structure and function within the first few days of development. These changes are associated with changes in expression of developmental and maturational genes. This study provides important insights into the complex temporal relationship between structure and function of the developing zebrafish heart. Copyright © 2015 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  17. Knockdown of prothrombin in zebrafish.

    PubMed

    Day, Kenneth; Krishnegowda, Naveen; Jagadeeswaran, Pudur

    2004-01-01

    Thrombin is a serine protease generated from its zymogen, prothrombin, and plays a central role in the coagulation cascade. It is also important for mammalian development. The zebrafish has now been established as an excellent genetic model for studies on mammalian hemostasis and development. In this report, we used prothrombin-specific antisense morpholinos to knock down the levels of prothrombin to characterize the effects of prothrombin deficiency in the zebrafish embryo. Prothrombin morpholino-injected zebrafish embryos yielded an early phenotype exhibiting severe abnormalities that later showed occasional bleeding. In a second late phenotype, the embryos had no observable morphological abnormalities in early stages, but showed occasional bleeding at later stages. These phenotypes resembled characteristics shown by prothrombin knockout mice. Laser-induced vascular injury on some of the normal appearing phenotypic larvae showed a prolonged time to occlusion, and recombinant zebrafish prothrombin injected into these larvae restored a normal time to occlusion thus showing the specificity of the morpholino effect. The system developed here should be useful for investigation of the role of thrombin in vertebrate development.

  18. Development of molecular markers for zebrafish (Danio rerio) ovarian follicle growth assessment following in-vitro culture in cryopreservation studies.

    PubMed

    Anil, Siji; Rawson, David; Zhang, Tiantian

    2018-05-29

    Development of in vitro culture protocol for early stage ovarian follicles of zebrafish is important since cryopreserved early stage ovarian follicles would need to be matured in vitro following cryopreservation before they can be fertilised. Development of molecular markers for zebrafish (Danio rerio) ovarian follicle growth assessment following in vitro culture of early stage zebrafish ovarian follicles in ovarian tissue fragments is reported here for the first time although some work has been reported for in vitro culture of isolated early stage zebrafish ovarian follicles. The main aim of the present study was to develop molecular markers in an optimised in vitro culture protocol for stage I and stage II zebrafish ovarian follicles in ovarian tissue fragments. The effect of concentration of the hormones human chorionic gonadotropin and follicle stimulating hormones, and additives such as Foetal Bovine Serum and Bovine Serum Albumin were studied. The results showed that early stage zebrafish ovarian fragments containing stage I and stage II follicles which are cultured in vitro for 24 h in 20% FBS and 100mIU/ml FSH in 90% L-15 medium at 28 °C can grow to the size of stage II and stage III ovarian follicles respectively. More importantly the follicle growth from stage I to stage II and from stage II to stage III were confirmed using molecular markers such as cyp19a1a (also known as P450aromA) and vtg1 genes respectively. However, no follicle growth was observed following cryopreservation and in vitro culture. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Embryotoxicity of nitrophenols to the early life stages of zebrafish (Danio rerio).

    PubMed

    Ceylan, Zeynep; Şişman, Turgay; Yazıcı, Zehra; Altıkat, Aysun Özen

    2016-08-01

    The nitrophenols (NPs) are water-soluble compounds. These compounds pose a significant health threat since they are priority environmental pollutants. In this study, 2-Nitrophenol (2NP) and 2,4-dinitrophenol (DNP) were examined for embryo and early life stage toxicity in zebrafish (Danio rerio). Acute toxicity and teratogenicity of 2NP and DNP were tested for 4 days using zebrafish embryos. The typical lesions observed were no somite formation, incomplete eye and head development, tail curvature, weak pigmentation (≤48 hours postfertilization (hpf)), kyphosis, scoliosis, yolk sac deformity, and nonpigmentation (72 hpf). Also, embryo and larval mortality increased and hatching success decreased. The severity of abnormalities and mortalities were concentration- and compound-dependent. Of the compounds tested, 2,4-DNP was found to be highly toxic to the fish embryos following exposure. The median lethal concentrations and median effective concentrations for 2NP are 18.7 mg/L and 7.9 mg/L, respectively; the corresponding values for DNP are 9.65 mg/L and 3.05 mg/L for 48 h. The chorda deformity was the most sensitive endpoint measured. It is suggested that the embryotoxicity may be mediated by an oxidative phosphorylation uncoupling mechanism. This article is the first to describe the teratogenicity and embryotoxicity of two NPs to the early life stages of zebrafish. © The Author(s) 2014.

  20. Early life exposure to PCB126 results in delayed mortality and growth impairment in the zebrafish larvae.

    PubMed

    Di Paolo, Carolina; Groh, Ksenia J; Zennegg, Markus; Vermeirssen, Etiënne L M; Murk, Albertinka J; Eggen, Rik I L; Hollert, Henner; Werner, Inge; Schirmer, Kristin

    2015-12-01

    The occurrence of chronic or delayed toxicity resulting from the exposure to sublethal chemical concentrations is an increasing concern in environmental risk assessment. The Fish Embryo Toxicity (FET) test with zebrafish provides a reliable prediction of acute toxicity in adult fish, but it cannot yet be applied to predict the occurrence of chronic or delayed toxicity. Identification of sublethal FET endpoints that can assist in predicting the occurrence of chronic or delayed toxicity would be advantageous. The present study characterized the occurrence of delayed toxicity in zebrafish larvae following early exposure to PCB126, previously described to cause delayed effects in the common sole. The first aim was to investigate the occurrence and temporal profiles of delayed toxicity during zebrafish larval development and compare them to those previously described for sole to evaluate the suitability of zebrafish as a model fish species for delayed toxicity assessment. The second aim was to examine the correlation between the sublethal endpoints assessed during embryonal and early larval development and the delayed effects observed during later larval development. After exposure to PCB126 (3-3000ng/L) until 5 days post fertilization (dpf), larvae were reared in clean water until 14 or 28 dpf. Mortality and sublethal morphological and behavioural endpoints were recorded daily, and growth was assessed at 28 dpf. Early life exposure to PCB126 caused delayed mortality (300 ng/L and 3000 ng/L) as well as growth impairment and delayed development (100 ng/L) during the clean water period. Effects on swim bladder inflation and cartilaginous tissues within 5 dpf were the most promising for predicting delayed mortality and sublethal effects, such as decreased standard length, delayed metamorphosis, reduced inflation of swim bladder and column malformations. The EC50 value for swim bladder inflation at 5 dpf (169 ng/L) was similar to the LC50 value at 8 dpf (188 and 202 ng/L in

  1. Translating Discovery in Zebrafish Pancreatic Development to Human Pancreatic Cancer: Biomarkers, Targets, Pathogenesis, and Therapeutics

    PubMed Central

    Kazi, Abid A.; Yee, Rosemary K.

    2013-01-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer. PMID:23682805

  2. Translating discovery in zebrafish pancreatic development to human pancreatic cancer: biomarkers, targets, pathogenesis, and therapeutics.

    PubMed

    Yee, Nelson S; Kazi, Abid A; Yee, Rosemary K

    2013-06-01

    Abstract Experimental studies in the zebrafish have greatly facilitated understanding of genetic regulation of the early developmental events in the pancreas. Various approaches using forward and reverse genetics, chemical genetics, and transgenesis in zebrafish have demonstrated generally conserved regulatory roles of mammalian genes and discovered novel genetic pathways in exocrine pancreatic development. Accumulating evidence has supported the use of zebrafish as a model of human malignant diseases, including pancreatic cancer. Studies have shown that the genetic regulators of exocrine pancreatic development in zebrafish can be translated into potential clinical biomarkers and therapeutic targets in human pancreatic adenocarcinoma. Transgenic zebrafish expressing oncogenic K-ras and zebrafish tumor xenograft model have emerged as valuable tools for dissecting the pathogenetic mechanisms of pancreatic cancer and for drug discovery and toxicology. Future analysis of the pancreas in zebrafish will continue to advance understanding of the genetic regulation and biological mechanisms during organogenesis. Results of those studies are expected to provide new insights into how aberrant developmental pathways contribute to formation and growth of pancreatic neoplasia, and hopefully generate valid biomarkers and targets as well as effective and safe therapeutics in pancreatic cancer.

  3. Vascular wall shear stress in zebrafish model of early atherosclerosis

    NASA Astrophysics Data System (ADS)

    Choi, Woorak; Seo, Eunseok; Yeom, Eunseop; Lee, Sang Joon

    2016-11-01

    Although atherosclerosis is a multifactorial disease, the role of hemodynamic force has strong influence on the outbreak of the disease. Low and oscillating wall shear stress (WSS) is associated with the incidence of atherosclerosis. Many researchers have investigated relationships between WSS and the occurrence of atherosclerosis using in vitro and in vivo models. However, these models possess technological limitations in mimicking real biophysiological conditions and monitoring the temporal progression of atherosclerosis. In this study, a hypercholesterolaemic zebrafish model was established as a novel model to resolve these technical limitations. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro PIV technique, and the spatial distribution of lipids inside blood vessels was quantitatively visualized using a confocal microscopy. As a result, lipids are mainly deposited in the regions of low WSS. The oscillating WSS is not induced by blood flows in the zebrafish disease model. The present hypercholesterolaemic zebrafish model would be useful for understanding the effect of WSS on the early stage of atherosclerosis. This work was supported by the National Research Foundation of Korea (NRF) under a Grant funded by the Korean government (MSIP) (No. 2008-0061991).

  4. Development of sensory systems in zebrafish (Danio rerio)

    NASA Technical Reports Server (NTRS)

    Moorman, S. J.

    2001-01-01

    Zebrafish possess all of the classic sensory modalities: taste, tactile, smell, balance, vision, and hearing. For each sensory system, this article provides a brief overview of the system in the adult zebrafish followed by a more detailed overview of the development of the system. By far the majority of studies performed in each of the sensory systems of the zebrafish have involved some aspect of molecular biology or genetics. Although molecular biology and genetics are not major foci of the paper, brief discussions of some of the mutant strains of zebrafish that have developmental defects in each specific sensory system are included. The development of the sensory systems is only a small sampling of the work being done using zebrafish and provides a mere glimpse of the potential of this model for the study of vertebrate development, physiology, and human disease.

  5. Early-life glucocorticoids programme behaviour and metabolism in adulthood in zebrafish

    PubMed Central

    Wilson, K S; Tucker, C S; Al-Dujaili, E A S; Holmes, M C; Hadoke, P W F; Kenyon, C J

    2016-01-01

    Glucocorticoids (GCs) in utero influence embryonic development with consequent programmed effects on adult physiology and pathophysiology and altered susceptibility to cardiovascular disease. However, in viviparous species, studies of these processes are compromised by secondary maternal influences. The zebrafish, being fertilised externally, avoids this problem and has been used here to investigate the effects of transient alterations in GC activity during early development. Embryonic fish were treated either with dexamethasone (a synthetic GC), an antisense GC receptor (GR) morpholino (GR Mo), or hypoxia for the first 120h post fertilisation (hpf); responses were measured during embryonic treatment or later, post treatment, in adults. All treatments reduced cortisol levels in embryonic fish to similar levels. However, morpholino- and hypoxia-treated embryos showed delayed physical development (slower hatching and straightening of head–trunk angle, shorter body length), less locomotor activity, reduced tactile responses and anxiogenic activity. In contrast, dexamethasone-treated embryos showed advanced development and thigmotaxis but no change in locomotor activity or tactile responses. Gene expression changes were consistent with increased (dexamethasone) and decreased (hypoxia, GR Mo) GC activity. In adults, stressed cortisol values were increased with dexamethasone and decreased by GR Mo and hypoxia pre-treatments. Other responses were similarly differentially affected. In three separate tests of behaviour, dexamethasone-programmed fish appeared ‘bolder’ than matched controls, whereas Mo and hypoxia pre-treated fish were unaffected or more reserved. Similarly, the dexamethasone group but not the Mo or hypoxia groups were heavier, longer and had a greater girth than controls. Hyperglycaemia and expression of GC responsive gene (pepck) were also increased in the dexamethasone group. We conclude that GC activity controls many aspects of early-life growth and

  6. Deiodinase knockdown during early zebrafish development affects growth, development, energy metabolism, motility and phototransduction.

    PubMed

    Bagci, Enise; Heijlen, Marjolein; Vergauwen, Lucia; Hagenaars, An; Houbrechts, Anne M; Esguerra, Camila V; Blust, Ronny; Darras, Veerle M; Knapen, Dries

    2015-01-01

    Thyroid hormone (TH) balance is essential for vertebrate development. Deiodinase type 1 (D1) and type 2 (D2) increase and deiodinase type 3 (D3) decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray), biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of energy metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance

  7. Deiodinase Knockdown during Early Zebrafish Development Affects Growth, Development, Energy Metabolism, Motility and Phototransduction

    PubMed Central

    Bagci, Enise; Heijlen, Marjolein; Vergauwen, Lucia; Hagenaars, An; Houbrechts, Anne M.; Esguerra, Camila V.; Blust, Ronny; Darras, Veerle M.; Knapen, Dries

    2015-01-01

    Thyroid hormone (TH) balance is essential for vertebrate development. Deiodinase type 1 (D1) and type 2 (D2) increase and deiodinase type 3 (D3) decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray), biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of energy metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance

  8. Localization of BDNF expression in the developing brain of zebrafish

    PubMed Central

    De Felice, E; Porreca, I; Alleva, E; De Girolamo, P; Ambrosino, C; Ciriaco, E; Germanà, A; Sordino, P

    2014-01-01

    The brain-derived neurotrophic factor (BDNF) gene is expressed in differentiating and post-mitotic neurons of the zebrafish embryo, where it has been implicated in Huntington's disease. Little is known, however, about the full complement of neuronal cell types that express BDNF in this important vertebrate model. Here, we further explored the transcriptional profiles during the first week of development using real-time quantitative polymerase chain reaction (RT-qPCR) and whole-mount in situ hybridization (WISH). RT-qPCR results revealed a high level of maternal contribution followed by a steady increase of zygotic transcription, consistent with the notion of a prominent role of BDNF in neuronal maturation and maintenance. Based on WISH, we demonstrate for the first time that BDNF expression in the developing brain of zebrafish is structure specific. Anatomical criteria and co-staining with genetic markers (shh, pax2a, emx1, krox20, lhx2b and lhx9) visualized major topological domains of BDNF-positive cells in the pallium, hypothalamus, posterior tuberculum and optic tectum. Moreover, the relative timing of BDNF transcription in the eye and tectum may illustrate a mechanism for coordinated development of the retinotectal system. Taken together, our results are compatible with a local delivery and early role of BDNF in the developing brain of zebrafish, adding basic knowledge to the study of neurotrophin functions in neural development and disease. PMID:24588510

  9. Maternal Cortisol Mediates Hypothalamus-Pituitary-Interrenal Axis Development in Zebrafish

    PubMed Central

    Nesan, Dinushan; Vijayan, Mathilakath M.

    2016-01-01

    In zebrafish (Danio rerio), de novo synthesis of cortisol in response to stressor exposure commences only after hatch. Maternally deposited cortisol is present during embryogenesis, but a role for this steroid in early development is unclear. We tested the hypothesis that maternal cortisol is essential for the proper development of hypothalamus-pituitary-interrenal (HPI) axis activity and the onset of the stressor-induced cortisol response in larval zebrafish. In this study, zygotic cortisol content was manipulated by microinjecting antibody to sequester this steroid, thereby making it unavailable during embryogenesis. This was compared with embryos containing excess cortisol by microinjection of exogenous steroid. The resulting larval phenotypes revealed distinct treatment effects, including deformed mesoderm structures when maternal cortisol was unavailable and cardiac edema after excess cortisol. Maternal cortisol unavailability heightened the cortisol stress response in post-hatch larvae, whereas excess cortisol abolished the stressor-mediated cortisol elevation. This contrasting hormonal response corresponded with altered expression of key HPI axis genes, including crf, 11B hydroxylase, pomca, and star, which were upregulated in response to reduced cortisol availability and downregulated when embryos had excess cortisol. These findings for the first time underscore a critical role for maternally deposited cortisol in programming HPI axis development and function in zebrafish. PMID:26940285

  10. Development of the zebrafish mesonephros.

    PubMed

    Diep, Cuong Q; Peng, Zhenzhen; Ukah, Tobechukwu K; Kelly, Paul M; Daigle, Renee V; Davidson, Alan J

    2015-01-01

    The vertebrate kidney plays an essential role in removing metabolic waste and balancing water and salt. This is carried out by nephrons, which comprise a blood filter attached to an epithelial tubule with proximal and distal segments. In zebrafish, two nephrons are first formed as part of the embryonic kidney (pronephros) and hundreds are formed later to make up the adult kidney (mesonephros). Previous studies have focused on the development of the pronephros while considerably less is known about how the mesonephros is formed. Here, we characterize mesonephros development in zebrafish and examine the nephrons that form during larval metamorphosis. These nephrons, arising from proliferating progenitor cells that express the renal transcription factor genes wt1b, pax2a, and lhx1a, form on top of the pronephric tubules and develop a segmentation pattern similar to pronephric nephrons. We find that the pronephros acts as a scaffold for the mesonephros, where new nephrons fuse with the distal segments of the pronephric tubules to form the final branching network that characterizes the adult zebrafish kidney. © 2015 Wiley Periodicals, Inc.

  11. Development of the zebrafish mesonephros

    PubMed Central

    Diep, Cuong Q.; Peng, Zhenzhen; Ukah, Tobechukwu K.; Kelly, Paul M.; Daigle, Renee V.; Davidson, Alan J.

    2015-01-01

    The vertebrate kidney plays an essential role in removing metabolic waste and balancing water and salt. This is carried out by nephrons, which comprise a blood filter attached to an epithelial tubule with proximal and distal segments. In zebrafish, two nephrons are first formed as part of the embryonic kidney (pronephros) and hundreds are formed later to make up the adult kidney (mesonephros). Previous studies have focused on the development of the pronephros while considerably less is known about how the mesonephros is formed. Here, we characterize mesonephros development in zebrafish and examine the nephrons that form during larval metamorphosis. These nephrons, arising from proliferating progenitor cells that express the renal transcription factor genes wt1b, pax2a, and lhx1a, form on top of the pronephric tubules and develop a segmentation pattern similar to pronephric nephrons. We find that the pronephros acts as a scaffold for the mesonephros, where new nephrons fuse with the distal segments of the pronephric tubules to form the final branching network that characterizes the adult zebrafish kidney. PMID:25677367

  12. The Zebrafish G12 Gene is required for Nuclear Positioning and Cell Migrations during Early Development

    NASA Technical Reports Server (NTRS)

    Reinsch, S. S.; Conway, G. C.

    2003-01-01

    After fertilization Zebrafish embryos undergo synchronous cleavage to form a blastula of cells sitting upon a single multinucleate yolk cell. At the beginning of gastrulation these cells undergo extensive cell migrations to form the major body axes. We have discovered a gene, G12, which is required for cell migrations and positioning of nuclei in the large syncytial yolk cell. Overexpression of a G12-GFP fusion protein is not toxic and shows that the protein localizes inside the yolk cell to the yolk nuclei, microtubules, and to the margin between the blastomeres and the large yolk cell. Morpholino (MO) injection into the 1-cell embryo or into just the yolk syncytium conipletely inhibits cell migrations, doming of the yolk cell, and positioning of nuclei around the margin. This effect can be partially rescued by injection of G12-GFP encoding RNA. Given the known role of microtubules in nuclear positioning of yolk nuclei in Zebrafish, we investigated the microtubules in morpholiiio injected and rescued embryos. We find that microtubules are sparse and disorganized in MO-injected embryos and are restored to normal organization upon G12-GFP rescue. G12 plays a pivotal role in organization of inicrotubules during early development. G12 is highly conserved in vertebrates and two homologues exist in the human genome. One of the human hoinologues is amplified in aggressive breast tumors.

  13. Amigo adhesion protein regulates development of neural circuits in zebrafish brain.

    PubMed

    Zhao, Xiang; Kuja-Panula, Juha; Sundvik, Maria; Chen, Yu-Chia; Aho, Vilma; Peltola, Marjaana A; Porkka-Heiskanen, Tarja; Panula, Pertti; Rauvala, Heikki

    2014-07-18

    The Amigo protein family consists of three transmembrane proteins characterized by six leucine-rich repeat domains and one immunoglobulin-like domain in their extracellular moieties. Previous in vitro studies have suggested a role as homophilic adhesion molecules in brain neurons, but the in vivo functions remain unknown. Here we have cloned all three zebrafish amigos and show that amigo1 is the predominant family member expressed during nervous system development in zebrafish. Knockdown of amigo1 expression using morpholino oligonucleotides impairs the formation of fasciculated tracts in early fiber scaffolds of brain. A similar defect in fiber tract development is caused by mRNA-mediated expression of the Amigo1 ectodomain that inhibits adhesion mediated by the full-length protein. Analysis of differentiated neural circuits reveals defects in the catecholaminergic system. At the behavioral level, the disturbed formation of neural circuitry is reflected in enhanced locomotor activity and in the inability of the larvae to perform normal escape responses. We suggest that Amigo1 is essential for the development of neural circuits of zebrafish, where its mechanism involves homophilic interactions within the developing fiber tracts and regulation of the Kv2.1 potassium channel to form functional neural circuitry that controls locomotion. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Localization of BDNF expression in the developing brain of zebrafish.

    PubMed

    De Felice, E; Porreca, I; Alleva, E; De Girolamo, P; Ambrosino, C; Ciriaco, E; Germanà, A; Sordino, P

    2014-05-01

    The brain-derived neurotrophic factor (BDNF) gene is expressed in differentiating and post-mitotic neurons of the zebrafish embryo, where it has been implicated in Huntington's disease. Little is known, however, about the full complement of neuronal cell types that express BDNF in this important vertebrate model. Here, we further explored the transcriptional profiles during the first week of development using real-time quantitative polymerase chain reaction (RT-qPCR) and whole-mount in situ hybridization (WISH). RT-qPCR results revealed a high level of maternal contribution followed by a steady increase of zygotic transcription, consistent with the notion of a prominent role of BDNF in neuronal maturation and maintenance. Based on WISH, we demonstrate for the first time that BDNF expression in the developing brain of zebrafish is structure specific. Anatomical criteria and co-staining with genetic markers (shh, pax2a, emx1, krox20, lhx2b and lhx9) visualized major topological domains of BDNF-positive cells in the pallium, hypothalamus, posterior tuberculum and optic tectum. Moreover, the relative timing of BDNF transcription in the eye and tectum may illustrate a mechanism for coordinated development of the retinotectal system. Taken together, our results are compatible with a local delivery and early role of BDNF in the developing brain of zebrafish, adding basic knowledge to the study of neurotrophin functions in neural development and disease. © 2014 Anatomical Society.

  15. Toxicological and behavioral responses as a tool to assess the effects of natural and synthetic dyes on zebrafish early life.

    PubMed

    Abe, Flavia R; Mendonça, Jacqueline N; Moraes, Luiz A B; Oliveira, Gisele A R de; Gravato, Carlos; Soares, Amadeu M V M; Oliveira, Danielle P de

    2017-07-01

    Organic dyes extracted from natural sources have been widely used to develop safety and eco-friendly dyes as an alternative to synthetic ones, since the latter are usually precursors of mutagenic compounds. Thereby, toxicity tests to non-target organisms are critical step to develop harmless dyes to environment and in this context, zebrafish early life stages are becoming an important alternative model. We aimed to assess the toxic effects of the synthetic dye Basic Red 51 (BR51, used in cosmetic industry), the natural dye erythrostominone (ERY, a potential commercial dye extracted from fungi) and its photodegradation product (DERY), using zebrafish early life assays. Developmental malformations on embryos and behavioral impairment on larvae were explored. Our results showed that embryos exposed to BR51 and ERY exhibited a large yolk sac (LOEC = 7.5 mg L -1 ), possibly due to a deformity or delayed resorption. ERY also induced pericardial and yolk sac edemas at high concentrations (LOEC = 15 and 30 mg L -1 , respectively). Moreover, larvae swan less distance and time when exposed to ERY (LOEC = 7.5 mg L -1 ) and BR51 (LOEC = 1.875 mg L -1 ). The lowest larvae locomotion have been associated with impairment of the yolk sac, important tissue of the energy source. Interestingly, DERY did not affect neither development nor behavior of zebrafish, showing that ERY photodegradation is sufficient to prevent its toxic effects. In conclusion, both natural and synthetic dyes impaired development and behavior of zebrafish early life, therefore, a simple treatment of the natural dye can prevent the aquatic life impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The presence of MWCNTs reduces developmental toxicity of PFOS in early life stage of zebrafish.

    PubMed

    Wang, Shutao; Zhuang, Changlu; Du, Jia; Wu, Chuan; You, Hong

    2017-03-01

    Both carbon nanotubes (CNTs) and perfluorooctane sulfonate (PFOS) are used widely. There is considerable concern regarding their ecotoxicity. CNTs might interact with PFOS in water and result in different impacts compared with those after single exposures. To our knowledge, the developmental toxicity of PFOS in the presence of multi-walled carbon nanotubes (MWCNTs) in the early life stage of zebrafish (from 3 h post fertilization (hpf) to 96 hpf) was investigated for the first time in this study. The embryos and larvae were exposed to PFOS (0.2, 0.4, 0.8, and 1.6 mg/L), MWCNTs (50 mg/L), and a mixture of both. Compared with PFOS exposure, the adverse effects induced by PFOS on the hatching rate of zebrafish embryos and the heart rate and body length of zebrafish larvae were reduced in the presence of MWCNTs, and mortality and malformation were also alleviated. In addition, zebrafish larvae exposed to PFOS showed decreased activities of superoxide dismutase, catalase, and glutathione peroxidase, as well as decreased levels of reactive oxygen species and malondialdehyde, in the presence of MWCNTs, indicating that oxidative stress and lipid peroxidation was relieved. Thus, the presence of MWCNTs reduces the developmental toxicity of PFOS in the early life stage of zebrafish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Histological and transcriptomic effects of 17α-methyltestosterone on zebrafish gonad development.

    PubMed

    Lee, Stephanie Ling Jie; Horsfield, Julia A; Black, Michael A; Rutherford, Kim; Fisher, Amanda; Gemmell, Neil J

    2017-07-24

    Sex hormones play important roles in teleost ovarian and testicular development. In zebrafish, ovarian differentiation appears to be dictated by an oocyte-derived signal via Cyp19a1a aromatase-mediated estrogen production. Androgens and aromatase inhibitors can induce female-to-male sex reversal, however, the mechanisms underlying gonadal masculinisation are poorly understood. We used histological analyses together with RNA sequencing to characterise zebrafish gonadal transcriptomes and investigate the effects of 17α-methyltestosterone on gonadal differentiation. At a morphological level, 17α-methyltestosterone (MT) masculinised gonads and accelerated spermatogenesis, and these changes were paralleled in masculinisation and de-feminisation of gonadal transcriptomes. MT treatment upregulated expression of genes involved in male sex determination and differentiation (amh, dmrt1, gsdf and wt1a) and those involved in 11-oxygenated androgen production (cyp11c1 and hsd11b2). It also repressed expression of ovarian development and folliculogenesis genes (bmp15, gdf9, figla, zp2.1 and zp3b). Furthermore, MT treatment altered epigenetic modification of histones in zebrafish gonads. Contrary to expectations, higher levels of cyp19a1a or foxl2 expression in control ovaries compared to MT-treated testes and control testes were not statistically significant during early gonad development (40 dpf). Our study suggests that both androgen production and aromatase inhibition are important for androgen-induced gonadal masculinisation and natural testicular differentiation in zebrafish.

  18. Acute toxicity and histopathological effects of naproxen in zebrafish (Danio rerio) early life stages.

    PubMed

    Li, Qian; Wang, Peipei; Chen, Ling; Gao, Hongwen; Wu, Lingling

    2016-09-01

    Zebrafish (Danio rerio) embryos and larvae were selected to investigate the potential risk and aquatic toxicity of a widely used pharmaceutical, naproxen. The acute toxicity of naproxen to embryos and larvae was measured, respectively. The histopathology was investigated in the liver of zebrafish larvae after 8-day embryo-larvae exposure to naproxen. The values of 96-h LC50 were 115.2 mg/L for embryos and 147.6 mg/L for larvae, indicating that zebrafish embryos were more sensitive than larvae to naproxen exposure. Large suites of symptoms were induced in zebrafish (D. rerio) early life stages by different dosages of naproxen, including hatching inhibition, lower heart rate, and morphological abnormalities. The most sensitive sub-lethal effect caused by naproxen was pericardial edema, the 72-h EC50 values of which for embryos and larvae were 98.3 and 149.0 mg/L, respectively. In addition, naproxen-treated zebrafish larvae exhibited histopathological liver damage, including swollen hepatocytes, vacuolar degeneration, and nuclei pycnosis. The results indicated that naproxen is a potential threat to aquatic organisms.

  19. Effects of exposure to BPF on development and sexual differentiation during early life stages of zebrafish (Danio rerio).

    PubMed

    Yang, Qian; Yang, Xianhai; Liu, Jining; Chen, Yingwen; Shen, Shubao

    2018-05-16

    Bisphenol F (BPF) has become a predominant bisphenol contaminant in recent years. It has significant estrogenic properties in both in vivo and in vitro studies. We have previously studied the disrupting mechanisms of BPF on the hypothalamic-pituitary-gonadal axis of adult zebrafish. However, the effects of BPF exposure on development and sexual differentiation of zebrafish embryos/larvae remain unclear. To determine the effects of BPF on the critical stage of sex differentiation in zebrafish, zebrafish embryos/larvae were exposed to 1, 10, 100, and 1000 μg/L BPF from fertilization to 60 days post-fertilization (dpf). Developmental malformations were induced by exposure to BPF from 2 h post-fertilization (hpf), with a LC 50 of 10,030 μg/L at 96 hpf and 9391 μg/L at 120 hpf. Long-term exposure during sex differentiation tended to result in a female sex ratio bias. Histological analyses at 60 dpf indicated that the development of ovo-testes and immature ovaries was induced by 100 and 1000 μg/L BPF. Homogenate testosterone levels decreased and 17β-estradiol levels increased in zebrafish in a concentration-dependent manner. BPF exposure suppressed gene expression of double sex, Mab3-related transcription factor 1(dmrt1), fushi tarazu factor 1d (ff1d), sry-box containing gene 9a (sox9a) and anti-Mullerian hormone (amh); induced expression of the forkhead box L2 transcription factor (foxl2), leading to increased expression of aromatase (cyp19a1a), which promoted production of estrogens, and further caused phenotypic feminization of zebrafish. These results suggest that developmental exposure to BPF has adverse effects on sexual differentiation, and the results were useful for a BPF risk assessment. Copyright © 2018. Published by Elsevier Inc.

  20. Quantitative in vivo optical tomography of cancer progression & vasculature development in adult zebrafish

    PubMed Central

    Kumar, Sunil; Lockwood, Nicola; Ramel, Marie-Christine; Correia, Teresa; Ellis, Matthew; Alexandrov, Yuriy; Andrews, Natalie; Patel, Rachel; Bugeon, Laurence; Dallman, Margaret J.; Brandner, Sebastian; Arridge, Simon; Katan, Matilda; McGinty, James; Frankel, Paul; French, Paul M.W.

    2016-01-01

    We describe a novel approach to study tumour progression and vasculature development in vivo via global 3-D fluorescence imaging of live non-pigmented adult zebrafish utilising angularly multiplexed optical projection tomography with compressive sensing (CS-OPT). This “mesoscopic” imaging method bridges a gap between established ~μm resolution 3-D fluorescence microscopy techniques and ~mm-resolved whole body planar imaging and diffuse tomography. Implementing angular multiplexing with CS-OPT, we demonstrate the in vivo global imaging of an inducible fluorescently labelled genetic model of liver cancer in adult non-pigmented zebrafish that also present fluorescently labelled vasculature. In this disease model, addition of a chemical inducer (doxycycline) drives expression of eGFP tagged oncogenic K-RASV12 in the liver of immune competent animals. We show that our novel in vivo global imaging methodology enables non-invasive quantitative imaging of the development of tumour and vasculature throughout the progression of the disease, which we have validated against established methods of pathology including immunohistochemistry. We have also demonstrated its potential for longitudinal imaging through a study of vascular development in the same zebrafish from early embryo to adulthood. We believe that this instrument, together with its associated analysis and data management tools, constitute a new platform for in vivo cancer studies and drug discovery in zebrafish disease models. PMID:27259259

  1. Impact of CdSe/ZnS quantum dots on the development of zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Lei, Yong; Xiao, Qi; Huang, Shan; Xu, Wansu; Zhang, Zhe; He, Zhike; Liu, Yi; Deng, Fengjiao

    2011-12-01

    Due to their unique fluorescent characteristics, quantum dots (QDs) have been successfully applied in the fields of biotechnology and medicine, but there is very limited information regarding their biodistribution and chronic toxicity in vivo. In this article, the biological behavior and toxic effects of mercaptoacetic acid-CdSe/ZnS QDs (MAA-QDs) in developing zebrafish embryos were investigated by in vivo tests. The MAA-QDs were introduced into zebrafish through microinjection at early stage. The results showed that the MAA-QDs at certain concentrations influenced the survival of zebrafish embryos, but treated embryos without developmental defects were also observed. MAA-QDs injected into the cytoplasm at the one-cell stage were allocated to progeny blastoderm cells during proliferation and almost never entered the yolk. The formation of notochord and primordial germ cells with normal morphologies was detected in the treated embryos by whole-mount in situ hybridization. Furthermore, traces of the element cadmium were mainly discovered in the tissue of liver and kidney of 3-month-old-treated zebrafish by quantitative assessment with inductively coupled plasma mass spectrometry. Thus, we hypothesized that low concentration MAA-QDs have chronic toxicities when they were delivered into zebrafish organs.

  2. Progress Towards the Development of a Fathead Minnow Embryo Test and Comparison to the Zebrafish Embryo Test for Assessing Acute Fish Toxicity

    EPA Science Inventory

    The Zebrafish Embryo Test (ZFET) for acute fish toxicity is a well developed method nearing adoption as an OECD Test Guideline. Early drafts of the test guideline (TG) envisioned a suite of potential test species to be covered including zebrafish, fathead minnow, Japanese Medaka...

  3. Textile dyes induce toxicity on zebrafish early life stages.

    PubMed

    de Oliveira, Gisele Augusto Rodrigues; de Lapuente, Joaquín; Teixidó, Elisabet; Porredón, Constança; Borràs, Miquel; de Oliveira, Danielle Palma

    2016-02-01

    Textile manufacturing is one of the most polluting industrial sectors because of the release of potentially toxic compounds, such as synthetic dyes, into the environment. Depending on the class of the dyes, their loss in wastewaters can range from 2% to 50% of the original dye concentration. Consequently, uncontrolled use of such dyes can negatively affect human health and the ecological balance. The present study assessed the toxicity of the textile dyes Direct Black 38 (DB38), Reactive Blue 15 (RB15), Reactive Orange 16 (RO16), and Vat Green 3 (VG3) using zebrafish (Danio rerio) embryos for 144 h postfertilization (hpf). At the tested conditions, none of the dyes caused significant mortality. The highest RO16 dose significantly delayed or inhibited the ability of zebrafish embryos to hatch from the chorion after 96 hpf. From 120 hpf to 144 hpf, all the dyes impaired the gas bladder inflation of zebrafish larvae, DB38 also induced curved tail, and VG3 led to yolk sac edema in zebrafish larvae. Based on these data, DB38, RB15, RO16, and VG3 can induce malformations during embryonic and larval development of zebrafish. Therefore, it is essential to remove these compounds from wastewater or reduce their concentrations to safe levels before discharging textile industry effluents into the aquatic environment. © 2015 SETAC.

  4. Tissue Specific Roles for the Ribosome Biogenesis Factor Wdr43 in Zebrafish Development

    PubMed Central

    Zhao, Chengtian; Andreeva, Viktoria; Gibert, Yann; LaBonty, Melissa; Lattanzi, Victoria; Prabhudesai, Shubhangi; Zhou, Yi; Zon, Leonard; McCann, Kathleen L.; Baserga, Susan; Yelick, Pamela C.

    2014-01-01

    During vertebrate craniofacial development, neural crest cells (NCCs) contribute to most of the craniofacial pharyngeal skeleton. Defects in NCC specification, migration and differentiation resulting in malformations in the craniofacial complex are associated with human craniofacial disorders including Treacher-Collins Syndrome, caused by mutations in TCOF1. It has been hypothesized that perturbed ribosome biogenesis and resulting p53 mediated neuroepithelial apoptosis results in NCC hypoplasia in mouse Tcof1 mutants. However, the underlying mechanisms linking ribosome biogenesis and NCC development remain poorly understood. Here we report a new zebrafish mutant, fantome (fan), which harbors a point mutation and predicted premature stop codon in zebrafish wdr43, the ortholog to yeast UTP5. Although wdr43 mRNA is widely expressed during early zebrafish development, and its deficiency triggers early neural, eye, heart and pharyngeal arch defects, later defects appear fairly restricted to NCC derived craniofacial cartilages. Here we show that the C-terminus of Wdr43, which is absent in fan mutant protein, is both necessary and sufficient to mediate its nucleolar localization and protein interactions in metazoans. We demonstrate that Wdr43 functions in ribosome biogenesis, and that defects observed in fan mutants are mediated by a p53 dependent pathway. Finally, we show that proper localization of a variety of nucleolar proteins, including TCOF1, is dependent on that of WDR43. Together, our findings provide new insight into roles for Wdr43 in development, ribosome biogenesis, and also ribosomopathy-induced craniofacial phenotypes including Treacher-Collins Syndrome. PMID:24497835

  5. Tissue specific roles for the ribosome biogenesis factor Wdr43 in zebrafish development.

    PubMed

    Zhao, Chengtian; Andreeva, Viktoria; Gibert, Yann; LaBonty, Melissa; Lattanzi, Victoria; Prabhudesai, Shubhangi; Zhou, Yi; Zon, Leonard; McCann, Kathleen L; Baserga, Susan; Yelick, Pamela C

    2014-01-01

    During vertebrate craniofacial development, neural crest cells (NCCs) contribute to most of the craniofacial pharyngeal skeleton. Defects in NCC specification, migration and differentiation resulting in malformations in the craniofacial complex are associated with human craniofacial disorders including Treacher-Collins Syndrome, caused by mutations in TCOF1. It has been hypothesized that perturbed ribosome biogenesis and resulting p53 mediated neuroepithelial apoptosis results in NCC hypoplasia in mouse Tcof1 mutants. However, the underlying mechanisms linking ribosome biogenesis and NCC development remain poorly understood. Here we report a new zebrafish mutant, fantome (fan), which harbors a point mutation and predicted premature stop codon in zebrafish wdr43, the ortholog to yeast UTP5. Although wdr43 mRNA is widely expressed during early zebrafish development, and its deficiency triggers early neural, eye, heart and pharyngeal arch defects, later defects appear fairly restricted to NCC derived craniofacial cartilages. Here we show that the C-terminus of Wdr43, which is absent in fan mutant protein, is both necessary and sufficient to mediate its nucleolar localization and protein interactions in metazoans. We demonstrate that Wdr43 functions in ribosome biogenesis, and that defects observed in fan mutants are mediated by a p53 dependent pathway. Finally, we show that proper localization of a variety of nucleolar proteins, including TCOF1, is dependent on that of WDR43. Together, our findings provide new insight into roles for Wdr43 in development, ribosome biogenesis, and also ribosomopathy-induced craniofacial phenotypes including Treacher-Collins Syndrome.

  6. Persistent behavioral effects following early life exposure to retinoic acid or valproic acid in zebrafish

    PubMed Central

    Bailey, Jordan M.; Oliveri, Anthony N.; Karbhari, Nishika; Brooks, Roy A.J.; De La Rocha, Amberlene J.; Janardhan, Sheila; Levin, Edward D.

    2015-01-01

    BACKGROUND Moderate to severe dysregulation in retinoid signaling during early development is associated with a constellation of physical malformations and/or neural tube defects, including spina bifida. It is thought that more subtle dysregulation of this system, which might be achievable via dietary (i.e. hypervitaminosis A) or pharmacological (i.e. valproic acid) exposure in humans, will manifest on behavioral domains including sociability, without overt physical abnormalities. METHODS During early life, zebrafish were exposed to low doses of two chemicals that disrupt retinoid signaling. From 0-5 dpf, larvae were reared in aqueous solutions containing retinoic acid (0, 0.02, 0.2 or 2 nM) or valproic acid (0, 0.5, 5.0 or 50 uM). One cohort of zebrafish was assessed using a locomotor activity screen at 6-dpf; another was reared to adulthood and assessed using a neurobehavioral test battery (startle habituation, novel tank exploration, shoaling, and predator escape/avoidance). RESULTS There was no significant increase in the incidence of physical malformation among exposed fish compared to controls. Both retinoic acid and valproic acid exposures during development disrupted larval activity with persisting behavioral alterations later in life, primarily manifesting as decreased social affiliation. CONCLUSIONS Social behavior and some aspects of motor function were altered in exposed fish; the importance of examining emotional or psychological consequences of early life exposure to retinoid acting chemicals is discussed. PMID:26439099

  7. Zebrafish: an exciting model for investigating the spatio-temporal pattern of enteric nervous system development.

    PubMed

    Doodnath, Reshma; Dervan, Adrian; Wride, Michael A; Puri, Prem

    2010-12-01

    Recently, the zebrafish (Danio rerio) has been shown to be an excellent model for human paediatric research. Advantages over other models include its small size, externally visually accessible development and ease of experimental manipulation. The enteric nervous system (ENS) consists of neurons and enteric glia. Glial cells permit cell bodies and processes of neurons to be arranged and maintained in a proper spatial arrangement, and are essential in the maintenance of basic physiological functions of neurons. Glial fibrillary acidic protein (GFAP) is expressed in astrocytes, but also expressed outside of the central nervous system. The aim of this study was to investigate the spatio-temporal pattern of GFAP expression in developing zebrafish ENS from 24 h post-fertilization (hpf), using transgenic fish that express green fluorescent protein (GFP). Zebrafish embryos were collected from transgenic GFP Tg(GFAP:GFP)(mi2001) adult zebrafish from 24 to 120 hpf, fixed and processed for whole mount immunohistochemistry. Antibodies to Phox2b were used to identify enteric neurons. Specimens were mounted on slides and imaging was performed using a fluorescent laser confocal microscope. GFAP:GFP labelling outside the spinal cord was identified in embryos from 48 hpf. The patterning was intracellular and consisted of elongated profiles that appeared to migrate away from the spinal cord into the periphery. At 72 and 96 hpf, GFAP:GFP was expressed dorsally and ventrally to the intestinal tract. At 120 hpf, GFAP:GFP was expressed throughout the intestinal wall, and clusters of enteric neurons were identified using Phox2b immunofluorescence along the pathway of GFAP:GFP positive processes, indicative of a migratory pathway of ENS precursors from the spinal cord into the intestine. The pattern of migration of GFAP:GFP expressing cells outside the spinal cord suggests an organized, early developing migratory pathway to the ENS. This shows for the first time that Tg(GFAP:GFP)(mi2001

  8. Maternal topoisomerase II alpha, not topoisomerase II beta, enables embryonic development of zebrafish top2a-/- mutants

    PubMed Central

    2011-01-01

    Background Genetic alterations in human topoisomerase II alpha (TOP2A) are linked to cancer susceptibility. TOP2A decatenates chromosomes and thus is necessary for multiple aspects of cell division including DNA replication, chromosome condensation and segregation. Topoisomerase II alpha is also required for embryonic development in mammals, as mouse Top2a knockouts result in embryonic lethality as early as the 4-8 cell stage. The purpose of this study was to determine whether the extended developmental capability of zebrafish top2a mutants arises from maternal expression of top2a or compensation from its top2b paralogue. Results Here, we describe bloody minded (blm), a novel mutant of zebrafish top2a. In contrast to mouse Top2a nulls, zebrafish top2a mutants survive to larval stages (4-5 day post fertilization). Developmental analyses demonstrate abundant expression of maternal top2a but not top2b. Inhibition or poisoning of maternal topoisomerase II delays embryonic development by extending the cell cycle M-phase. Zygotic top2a and top2b are co-expressed in the zebrafish CNS, but endogenous or ectopic top2b RNA appear unable to prevent the blm phenotype. Conclusions We conclude that maternal top2a enables zebrafish development before the mid-zygotic transition (MZT) and that zebrafish top2a and top2b are not functionally redundant during development after activation of the zygotic genome. PMID:22111588

  9. Analysis of Lethality and Malformations During Zebrafish (Danio rerio) Development.

    PubMed

    Raghunath, Azhwar; Perumal, Ekambaram

    2018-01-01

    The versatility offered by zebrafish (Danio rerio) makes it a powerful and an attractive vertebrate model in developmental toxicity and teratogenicity assays. Apart from the newly introduced chemicals as drugs, xenobiotics also induce abnormal developmental abnormalities and congenital malformations in living organisms. Over the recent decades, zebrafish embryo/larva has emerged as a potential tool to test teratogenicity potential of these chemicals. Zebrafish responds to compounds as mammals do as they share similarities in their development, metabolism, physiology, and signaling pathways with that of mammals. The methodology used by the different scientists varies enormously in the zebrafish embryotoxicity test. In this chapter, we present methods to assess lethality and malformations during zebrafish development. We propose two major malformations scoring systems: binomial and relative morphological scoring systems to assess the malformations in zebrafish embryos/larvae. Based on the scoring of the malformations, the test compound can be classified as a teratogen or a nonteratogen and its teratogenic potential is evaluated.

  10. Egfl6 is involved in zebrafish notochord development.

    PubMed

    Wang, Xueqian; Wang, Xin; Yuan, Wei; Chai, Renjie; Liu, Dong

    2015-08-01

    The epidermal growth factor (EGF) repeat motif defines a superfamily of diverse protein involved in regulating a variety of cellular and physiological processes, such as cell cycle, cell adhesion, proliferation, migration, and neural development. Egfl6, an EGF protein, also named MAGE was first cloned in human tissue. Up to date, the study of zebrafish Egfl6 expression pattern and functional analysis of Egfl6 involved in embryonic development of vertebrate in vivo is thus far lacking. Here we reported that Egfl6 was involved in zebrafish notochord development. It was shown that Egfl6 mRNA was expressed in zebrafish, developing somites, fin epidermis, pharyngeal arches, and hindbrain region. Particularly the secreted Egfl6 protein was significantly accumulated in notochord. Loss of Egfl6 function in zebrafish embryos resulted in curved body with distorted notochord in the posterior trunk. It was observed that expression of all Notch ligand and receptors in notochord of 28 hpf Egfl6 morphants was not affected, except notch2, which was up-regulated. We found that inhibition of Notch signaling by DAPT efficiently rescued notochord developmental defect of Egfl6 deficiency embryos.

  11. The effects of triclosan on pluripotency factors and development of mouse embryonic stem cells and zebrafish.

    PubMed

    Chen, Xiaojiao; Xu, Bo; Han, Xiumei; Mao, Zhilei; Chen, Minjian; Du, Guizhen; Talbot, Prue; Wang, Xinru; Xia, Yankai

    2015-04-01

    Triclosan (TCS) poses potential risks to reproduction and development due to its endocrine-disrupting properties. However, the mechanism of TCS's effects on early embryonic development is little known. Embryonic stem cells (ESC) and zebrafish embryos provide valuable models for testing the toxic effects of environmental chemicals on early embryogenesis. In this study, mouse embryonic stem cells (mESC) were acutely exposed to TCS for 24 h, and general cytotoxicity and the effect of TCS on pluripotency were then evaluated. In addition, zebrafish embryos were exposed to TCS from 2- to 24-h post-fertilization (hpf), and their morphology was evaluated. In mESC, alkaline phosphatase staining was significantly decreased after treatment with the highest concentration of TCS (50 μM). Although the expression levels of Sox2 mRNA were not changed, the mRNA levels of Oct4 and Nanog in TCS-treated groups were significantly decreased compared to controls. In addition, the protein levels of Oct4, Sox2 and Nanog were significantly reduced in response to TCS treatment. MicroRNA (miR)-134, an expression inhibitor of pluripotency markers, was significantly increased in TCS-treated mESC. In zebrafish experiments, after 24 hpf of treatment, the controls had developed to the late stage of somitogenesis, while embryos exposed to 300 μg/L of TCS were still at the early stage of somitogenesis, and three genes (Oct4, Sox2 and Nanog) were upregulated in treated groups when compared with the controls. The two models demonstrated that TCS may affect early embryonic development by disturbing the expression of the pluripotency markers (Oct4, Sox2 and Nanog).

  12. In vivo loss of function study reveals the short stature homeobox-containing (shox) gene plays indispensable roles in early embryonic growth and bone formation in zebrafish.

    PubMed

    Sawada, Rie; Kamei, Hiroyasu; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Shimizu, Toshiaki

    2015-02-01

    Congenital loss of the SHOX gene is considered to be a genetic cause of short stature phenotype in Turner syndrome and Leri-Weill dyschondrosteosis patients. Though SHOX expression initiates during early fetal development, little is known about the embryonic roles of SHOX. The evolutionary conservation of the zebrafish shox gene and the convenience of the early developmental stages for analyses make zebrafish a preferred model. Here, we characterized structure, expression, and developmental roles of zebrafish shox through a loss-of-function approach. We found a previously undiscovered Shox protein that has both a homeodomain and an OAR-domain in zebrafish. The shox transcript emerged during the segmentation period and it increased in later stages. The predominant domains of shox expression were mandibular arch, pectoral fin, anterior notochord, rhombencephalon, and mesencephalon, suggesting that Shox is involved in bone and neural development. Translational blockade of Shox mRNA by an antisense morpholino oligo delayed embryonic growth, which was restored by the co-overexpression of morpholino-resistant Shox mRNA. At later stages, impaired Shox expression markedly delayed the calcification process in the anterior vertebral column and craniofacial bones. Our data demonstrate evolutionarily conserved Shox plays roles in early embryonic growth and in later bone formation. © 2014 Wiley Periodicals, Inc.

  13. Development of a transgenic zebrafish model expressing GFP in the notochord, somite and liver directed by the hfe2 gene promoter.

    PubMed

    Bian, Yue-Hong; Xu, Cheng; Li, Junling; Xu, Jin; Zhang, Hongwei; Du, Shao Jun

    2011-08-01

    Hemojuvelin, also known as RGMc, is encoded by hfe2 gene that plays an important role in iron homeostasis. hfe2 is specifically expressed in the notochord, developing somite and skeletal muscles during development. The molecular regulation of hfe2 expression is, however, not clear. We reported here the characterization of hfe2 gene expression and the regulation of its tissue-specific expression in zebrafish embryos. We demonstrated that the 6 kb 5'-flanking sequence upstream of the ATG start codon in the zebrafish hfe2 gene could direct GFP specific expression in the notochord, somites, and skeletal muscle of zebrafish embryos, recapitulating the expression pattern of the endogenous gene. However, the Tg(hfe2:gfp) transgene is also expressed in the liver of fish embryos, which did not mimic the expression of the endogenous hfe2 at the early stage. Nevertheless, the Tg(hfe2:gfp) transgenic zebrafish provides a useful model to study liver development. Treating Tg(hfe2:gfp) transgenic zebrafish embryos with valproic acid, a liver development inhibitor, significantly inhibited GFP expression in zebrafish. Together, these data indicate that the tissue specific expression of hfe2 in the notochord, somites and muscles is regulated by regulatory elements within the 6 kb 5'-flanking sequence of the hfe2 gene. Moreover, the Tg(hfe2:gfp) transgenic zebrafish line provides a useful model system for analyzing liver development in zebrafish.

  14. Alternative Splicing of sept9a and sept9b in Zebrafish Produces Multiple mRNA Transcripts Expressed Throughout Development

    PubMed Central

    Hannibal, Mark C.; Kimelman, David

    2010-01-01

    Background Septins are involved in a number of cellular processes including cytokinesis and organization of the cytoskeleton. Alterations in human septin-9 (SEPT9) levels have been linked to multiple cancers, whereas mutations in SEPT9 cause the episodic neuropathy, hereditary neuralgic amyotrophy (HNA). Despite its important function in human health, the in vivo role of SEPT9 is unknown. Methodology/Principal Findings Here we utilize zebrafish to study the role of SEPT9 in early development. We show that zebrafish possess two genes, sept9a and sept9b that, like humans, express multiple transcripts. Knockdown or overexpression of sept9a transcripts results in specific developmental alterations including circulation defects and aberrant epidermal development. Conclusions/Significance Our work demonstrates that sept9 plays an important role in zebrafish development, and establishes zebrafish as a valuable model organism for the study of SEPT9. PMID:20502708

  15. Expression pattern of cdkl5 during zebrafish early development: implications for use as model for atypical Rett syndrome.

    PubMed

    Vitorino, Marta; Cunha, Nídia; Conceição, Natércia; Cancela, M Leonor

    2018-05-11

    Atypical Rett syndrome is a child neurodevelopmental disorder induced by mutations in CDKL5 gene and characterized by a progressive regression in development with loss of purposeful use of the hands, slowed brain and head growth, problems with walking, seizures, and intellectual disability. At the moment, there is no cure for this pathology and little information is available concerning animal models capable of mimicking its phenotypes, thus the development of additional animal models should be of interest to gain more knowledge about the disease. Zebrafish has been used successfully as model organism for many human genetic diseases; however, no information is available concerning the spatial and temporal expression of cdkl5 orthologous in this organism. In the present study, we identified the developmental expression patterns of cdkl5 in zebrafish by quantitative PCR and whole-mount in situ hybridization. cdkl5 is expressed maternally at low levels during the first 24 h of development. After that the expression of the gene increases significantly and it starts to be expressed mainly in the nervous system and in several brain structures, such as telencephalon, mesencephalon and diencephalon. The expression patterns of cdkl5 in zebrafish is in accordance with the tissues known to be affected in humans and associated to symptoms and deficits observed in Rett syndrome patients thus providing the first evidence that zebrafish could be an alternative model to study the molecular pathways of this disease as well as to test possible therapeutic approaches capable of rescuing the phenotype.

  16. Shoaling develops with age in Zebrafish (Danio rerio)

    PubMed Central

    Buske, Christine; Gerlai, Robert

    2010-01-01

    The biological mechanisms of human social behavior are complex. Animal models may facilitate the understanding of these mechanisms and may help one to develop treatment strategies for abnormal human social behavior, a core symptom in numerous clinical conditions. The zebrafish is perhaps the most social vertebrate among commonly used laboratory species. Given its practical features and the numerous genetic tools developed for it, it should be a promising tool. Zebrafish shoal, i.e. form tight multimember groups, but the ontogenesis of this behavior has not been described. Analyzing the development of shoaling is a step towards discovering the mechanisms of this behavior. Here we study age-dependent changes of shoaling in zebrafish from day 7 post fertilization to over 5 months of age by measuring the distance between all pairs of fish in freely swimming groups of ten subjects. Our longitudinal (repeated measure within subject) and cross sectional (non-repeated measure between subject) analyses both demonstrated a significant increase of shoaling with age (decreased distance between shoal members). Given the sophisticated genetic and developmental biology methods already available for zebrafish, we argue that our behavioral results open a new avenue towards the understanding of the development of vertebrate social behavior and of its mechanisms and abnormalities. PMID:20837077

  17. Znrg, a novel gene expressed mainly in the developing notochord of zebrafish.

    PubMed

    Zhou, Yaping; Xu, Yan; Li, Jianzhen; Liu, Yao; Zhang, Zhe; Deng, Fengjiao

    2010-06-01

    The notochord, a defining characteristic of the chordate embryo is a critical midline structure required for axial skeletal formation in vertebrates, and acts as a signaling center throughout embryonic development. We utilized the digital differential display program of the National Center for Biotechnology Information, and identified a contig of expressed sequence tags (no. Dr. 83747) from the zebrafish ovary library in Genbank. Full-length cDNA of the identified gene was cloned by 5'- and 3'- RACE, and the resulting sequence was confirmed by polymerase chain reaction and sequencing. The cDNA clone contains 2,505 base pairs and encodes a novel protein of 707 amino acids that shares no significant homology with any known proteins. This gene was expressed in mature oocytes and at the one-cell stage, and persisted until the 5th day of development, as determined by RT-PCR. Transcripts were detected by whole-mount RNA in situ hybridization from the two-cell stage to 72 h of embryonic development. This gene was uniformly distributed from the cleavage stage up to the blastula stage. During early gastrulation, it was present in the dorsal region, and became restricted to the notochord and pectoral fin at 48 and 72 h of embryonic development. Based on its abundance in the notochord, we hypothesized that the novel gene may play an important role in notochord development in zebrafish; we named this gene, zebrafish notochord-related gene, or znrg.

  18. Early exposure to caffeine affects gene expression of adenosine receptors, DARPP-32 and BDNF without affecting sensibility and morphology of developing zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Menezes, Fabiano Peres; Nazario, Luiza Reali; Pohlmann, Julhana Bianchini; de Oliveira, Giovanna M T; Fazenda, Lidiane; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2011-01-01

    Adenosine receptors are the most important biochemical targets of caffeine, a common trimethylxanthine found in food and beverages. Adenosine plays modulatory action during the development through adenosine receptors and their intracellular pathways activation. In this study, we aimed to evaluate if caffeine gave to zebrafish in the very first steps of development is able to affect its direct targets, through the adenosine receptors mRNA expression evaluation, and latter indirect targets, through evaluation of the pattern of dopamine and cAMP-regulated phosphoprotein and brain-derived neurotrophic factor (BDNF) mRNA expression. Here, we demonstrate that zebrafish express adenosine receptor subtypes (A1, A2A1, A2A2 and A2B) since 24h post-fertilization (hpf) and that caffeine exposure is able to affect the expression of these receptors. Caffeine exposure from 1 hpf is able to increase A1 expression at 72-96 hpf and A2A1 expression at 72 hpf. No alterations occurred in A2A2 and A2B expression after caffeine treatment. DARPP-32, a phosphoprotein involved in adenosine intracellular pathway is also expressed since 24 hpf and early exposure to caffeine increased DARPP-32 expression at 168 hpf. We also evaluate the expression of BDNF as one of the targets of adenosine intracellular pathway activation. BDNF was also expressed since 24 hpf and caffeine treatment increased its expression at 48 and 72 hpf. No morphological alterations induced by caffeine treatment were registered by the check of general body features and total body length. Assessment of tactile sensibility also demonstrated no alterations by caffeine treatment. Altogether, these results suggest that caffeine is able to affect expression of its cellular targets since early phases of development in zebrafish without affect visible features. The up-regulation of direct and indirect targets of caffeine presents as a compensatory mechanism of maintenance of adenosinergic modulation during the developmental phase

  19. Venous-derived angioblasts generate organ-specific vessels during zebrafish embryonic development.

    PubMed

    Hen, Gideon; Nicenboim, Julian; Mayseless, Oded; Asaf, Lihee; Shin, Masahiro; Busolin, Giorgia; Hofi, Roy; Almog, Gabriella; Tiso, Natascia; Lawson, Nathan D; Yaniv, Karina

    2015-12-15

    Formation and remodeling of vascular beds are complex processes orchestrated by multiple signaling pathways. Although it is well accepted that vessels of a particular organ display specific features that enable them to fulfill distinct functions, the embryonic origins of tissue-specific vessels and the molecular mechanisms regulating their formation are poorly understood. The subintestinal plexus of the zebrafish embryo comprises vessels that vascularize the gut, liver and pancreas and, as such, represents an ideal model in which to investigate the early steps of organ-specific vessel formation. Here, we show that both arterial and venous components of the subintestinal plexus originate from a pool of specialized angioblasts residing in the floor of the posterior cardinal vein (PCV). Using live imaging of zebrafish embryos, in combination with photoconvertable transgenic reporters, we demonstrate that these angioblasts undergo two phases of migration and differentiation. Initially, a subintestinal vein forms and expands ventrally through a Bone Morphogenetic Protein-dependent step of collective migration. Concomitantly, a Vascular Endothelial Growth Factor-dependent shift in the directionality of migration, coupled to the upregulation of arterial markers, is observed, which culminates with the generation of the supraintestinal artery. Together, our results establish the zebrafish subintestinal plexus as an advantageous model for the study of organ-specific vessel development and provide new insights into the molecular mechanisms controlling its formation. More broadly, our findings suggest that PCV-specialized angioblasts contribute not only to the formation of the early trunk vasculature, but also to the establishment of late-forming, tissue-specific vascular beds. © 2015. Published by The Company of Biologists Ltd.

  20. Full Transcriptome Analysis of Early Dorsoventral Patterning in Zebrafish

    PubMed Central

    Horváth, Balázs; Molnár, János; Nagy, István; Tóth, Gábor; Wilson, Stephen W.; Varga, Máté

    2013-01-01

    Understanding the molecular interactions that lead to the establishment of the major body axes during embryogenesis is one of the main goals of developmental biology. Although the past two decades have revolutionized our knowledge about the genetic basis of these patterning processes, the list of genes involved in axis formation is unlikely to be complete. In order to identify new genes involved in the establishment of the dorsoventral (DV) axis during early stages of zebrafish embryonic development, we employed next generation sequencing for full transcriptome analysis of normal embryos and embryos lacking overt DV pattern. A combination of different statistical approaches yielded 41 differentially expressed candidate genes and we confirmed by in situ hybridization the early dorsal expression of 32 genes that are transcribed shortly after the onset of zygotic transcription. Although promoter analysis of the validated genes suggests no general enrichment for the binding sites of early acting transcription factors, most of these genes carry “bivalent” epigenetic histone modifications at the time when zygotic transcription is initiated, suggesting a “poised” transcriptional status. Our results reveal some new candidates of the dorsal gene regulatory network and suggest that a plurality of the earliest upregulated genes on the dorsal side have a role in the modulation of the canonical Wnt pathway. PMID:23922899

  1. CTCF knockout reveals an essential role for this protein during the zebrafish development.

    PubMed

    Carmona-Aldana, Francisco; Zampedri, Cecilia; Suaste-Olmos, Fernando; Murillo-de-Ozores, Adrián; Guerrero, Georgina; Arzate-Mejía, Rodrigo; Maldonado, Ernesto; Navarro, Rosa; Chimal-Monroy, Jesús; Recillas-Targa, Félix

    2018-05-01

    Chromatin regulation and organization are essential processes that regulate gene activity. The CCCTC-binding factor (CTCF) is a protein with different and important molecular functions related with chromatin dynamics. It is conserved since invertebrates to vertebrates, posing it as a factor with an important role in the physiology. In this work, we aimed to understand the distribution and functional relevance of CTCF during the embryonic development of the zebrafish (Danio rerio). We generated a zebrafish specific anti-Ctcf antibody, and found this protein to be ubiquitous, through different stages and tissues. We used the CRISPR-Cas9 system to induce molecular alterations in the locus. This resulted in early lethality. We delayed the lethality performing knockdown morpholino experiments, and found an aberrant embryo morphology involving malformations in structures through all the length of the embryo. These phenotypes were rescued with human CTCF mRNA injections, showing the specificity of the morpholinos and a partial functional conservation between the fish and the human proteins. Lastly, we found that the pro-apoptotic genes p53 and bbc3/PUMA are deregulated in the ctcf morpholino-injected embryos. In conclusion, CTCF is a ubiquitous factor during the zebrafish development, which regulates the correct formation of different structures of the embryo, and its deregulation impacts on essential cell survival genes. Overall, this work provides a basis to look for the particular functions of CTCF in the different developing tissues and organs of the zebrafish. Copyright © 2018. Published by Elsevier B.V.

  2. The zebrafish eye—a paradigm for investigating human ocular genetics

    PubMed Central

    Richardson, R; Tracey-White, D; Webster, A; Moosajee, M

    2017-01-01

    Although human epidemiological and genetic studies are essential to elucidate the aetiology of normal and aberrant ocular development, animal models have provided us with an understanding of the pathogenesis of multiple developmental ocular malformations. Zebrafish eye development displays in depth molecular complexity and stringent spatiotemporal regulation that incorporates developmental contributions of the surface ectoderm, neuroectoderm and head mesenchyme, similar to that seen in humans. For this reason, and due to its genetic tractability, external fertilisation, and early optical clarity, the zebrafish has become an invaluable vertebrate system to investigate human ocular development and disease. Recently, zebrafish have been at the leading edge of preclinical therapy development, with their amenability to genetic manipulation facilitating the generation of robust ocular disease models required for large-scale genetic and drug screening programmes. This review presents an overview of human and zebrafish ocular development, genetic methodologies employed for zebrafish mutagenesis, relevant models of ocular disease, and finally therapeutic approaches, which may have translational leads in the future. PMID:27612182

  3. Long-term in vivo harmonics imaging of zebrafish embryonic development based on a femtosecond Cr:forsterite laser

    NASA Astrophysics Data System (ADS)

    Chen, S.-Y.; Tsai, T.-H.; Hsieh, C.-S.; Tai, S.-P.; Lin, C.-Y.; Ko, C.-Y.; Chen, Y.-C.; Tsai, H.-J.; Hu, C.-H.; Sun, C.-K.

    2005-03-01

    Based on a femtosecond Cr:forsterite laser, harmonics optical microscopy (HOM) provides a truly "noninvasive" tool for in vivo and long-term study of vertebrate embryonic development. Based on optical nonlinearity, HOM provides sub-micrometer 3D spatial resolution and high 3D optical-sectioning power without using invasive and toxic fluorophores. Since only virtual-level-transition is involved, HOM is known to leave no energy deposition and no photodamage. Combined with second harmonic generation, which is sensitive to specific structure such as nerve and muscle fibers, HOM can perform functional studies of early developmental dynamics of many vertebrate physiological systems. Recently, zebrafish has become a standard model for many biological and medical studies of vertebrates, due to the similarity between embryonic development of zebrafish and human being. Here we demonstrate in vivo HOM studies of developmental dynamics of several important embryonic physiological systems in live zebrafish embryos, with focuses on the developments of brains, eyes, ears, and hearts. Based on a femtosecond Cr:forsterite laser, which provides the deepest penetration (~1.5mm) and least photodamage in the zebrafish embryo, complete developing processes of different physiological systems within a period of time longer than 20 hours can be non-invasively observed inside the same embryo.

  4. Using the zebrafish to understand tendon development and repair

    PubMed Central

    Chen, Jessica W.; Galloway, Jenna L.

    2017-01-01

    Tendons are important components of our musculoskeletal system. Injuries to these tissues are very common, resulting from occupational-related injuries, sports-related trauma, and age-related degeneration. Unfortunately, there are few treatment options, and current therapies rarely restore injured tendons to their original function. An improved understanding of the pathways regulating their development and repair would have significant impact in stimulating the formulation of regenerative-based approaches for tendon injury. The zebrafish provides an ideal system in which to perform genetic and chemical screens to identify new pathways involved in tendon biology. Until recently, there had been few descriptions of tendons and ligaments in the zebrafish and their similarity to mammalian tendon tissues. In this chapter, we describe the development of the zebrafish tendon and ligament tissues in the context of their gene expression, structure, and interactions with neighboring musculoskeletal tissues. We highlight the similarities with tendon development in higher vertebrates, showing that the craniofacial tendons and ligaments in zebrafish morphologically, molecularly, and structurally resemble mammalian tendons and ligaments from embryonic to adult stages. We detail methods for fluorescent in situ hybridization and immunohistochemistry as an assay to examine morphological changes in the zebrafish musculoskeleton. Staining assays such as these could provide the foundation for screen-based approaches to identify new regulators of tendon development, morphogenesis, and repair. These discoveries would provide new targets and pathways to study in the context of regenerative medicine-based approaches to improve tendon healing. PMID:28129848

  5. Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio).

    PubMed

    Ghobadian, Mehdi; Nabiuni, Mohammad; Parivar, Kazem; Fathi, Mojtaba; Pazooki, Jamileh

    2015-12-01

    Magnesium oxide nanoparticles (MgONPs) are used in medicine, manufacturing and food industries. Because of their extensive application in our daily lives, environmental exposure to these nanoparticles is inevitable. The present study examined the effects of MgONPs on zebrafish (Danio rerio) early developmental stages. The results showed that, at different concentrations, MgONPs induced cellular apoptosis and intracellular reactive oxygen species. The hatching rate and survival of embryos decreased in a dose dependent manner. The 96-h LC50 value of MgONPs on zebrafish survival was 428 mg/l and the 48-h EC50 value of MgONPs on zebrafish embryo hatching rate was 175 mg/l. Moreover different types of malformation were observed in exposed embryos. The results demonstrate the toxic effects of MgONPs on zebrafish embryos and emphasize the need for further studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Using Zebrafish to Study Podocyte Genesis During Kidney Development and Regeneration

    PubMed Central

    Kroeger, Paul T.; Wingert, Rebecca A.

    2014-01-01

    SUMMARY During development, vertebrates form a progression of up to three different kidneys that are comprised of functional units termed nephrons. Nephron composition is highly conserved across species, and an increasing appreciation of the similarities between zebrafish and mammalian nephron cell types has positioned the zebrafish as a relevant genetic system for nephrogenesis studies. A key component of the nephron blood filter is a specialized epithelial cell known as the podocyte. Podocyte research is of the utmost importance as a vast majority of renal diseases initiate with the dysfunction or loss of podocytes, resulting in a condition known as proteinuria that causes nephron degeneration and eventually leads to kidney failure. Understanding how podocytes develop during organogenesis may elucidate new ways to promote nephron health by stimulating podocyte replacement in kidney disease patients. In this review, we discuss how the zebrafish model can be used to study kidney development, and how zebrafish research has provided new insights into podocyte lineage specification and differentiation. Further, we discuss the recent discovery of podocyte regeneration in adult zebrafish, and explore how continued basic research using zebrafish can provide important knowledge about podocyte genesis in embryonic and adult environments. PMID:24920186

  7. Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function.

    PubMed

    Drummond, I A; Majumdar, A; Hentschel, H; Elger, M; Solnica-Krezel, L; Schier, A F; Neuhauss, S C; Stemple, D L; Zwartkruis, F; Rangini, Z; Driever, W; Fishman, M C

    1998-12-01

    The zebrafish pronephric kidney provides a simplified model of nephron development and epithelial cell differentiation which is amenable to genetic analysis. The pronephros consists of two nephrons with fused glomeruli and paired pronephric tubules and ducts. Nephron formation occurs after the differentiation of the pronephric duct with both the glomeruli and tubules being derived from a nephron primordium. Fluorescent dextran injection experiments demonstrate that vascularization of the zebrafish pronephros and the onset of glomerular filtration occurs between 40 and 48 hpf. We isolated fifteen recessive mutations that affect development of the pronephros. All have visible cysts in place of the pronephric tubule at 2-2.5 days of development. Mutants were grouped in three classes: (1) a group of twelve mutants with defects in body axis curvature and manifesting the most rapid and severe cyst formation involving the glomerulus, tubule and duct, (2) the fleer mutation with distended glomerular capillary loops and cystic tubules, and (3) the mutation pao pao tang with a normal glomerulus and cysts limited to the pronephric tubules. double bubble was analyzed as a representative of mutations that perturb the entire length of the pronephros and body axis curvature. Cyst formation begins in the glomerulus at 40 hpf at the time when glomerular filtration is established suggesting a defect associated with the onset of pronephric function. Basolateral membrane protein targeting in the pronephric duct epithelial cells is also severely affected, suggesting a failure in terminal epithelial cell differentiation and alterations in electrolyte transport. These studies reveal the similarity of normal pronephric development to kidney organogenesis in all vertebrates and allow for a genetic dissection of genes needed to establish the earliest renal function.

  8. Curcumin affects development of zebrafish embryo.

    PubMed

    Wu, Jheng-Yu; Lin, Chin-Yi; Lin, Tien-Wei; Ken, Chuian-Fu; Wen, Yu-Der

    2007-07-01

    Embryotoxic and teratogenic effects of curcumin on the development of zebrafish embryo were investi-gated in this study. The LD(50) values of curcumin (24-h incubation) were estimated at 7.5 microM and 5 microM for embryos and larvae, respectively. The developmental defects caused by curcumin treatments include bent or hook-like tails, spinal column curving, edema in pericardial sac, retarded yolk sac resorption, and shorter body length. In curcumin-treated larvae, fluorescence signals of curcumin were found in edamae sac and some skin cells. Together, these results indicate that zebrafish are suitable model organisms to study the toxic effects of curcumin.

  9. Zebrafish Development: High-throughput Test Systems to Assess Developmental Toxicity

    EPA Science Inventory

    Abstract Because of its developmental concordance, ease of handling and rapid development, the small teleost, zebrafish (Danio rerio), is frequently promoted as a vertebrate model for medium-throughput developmental screens. This present chapter discusses zebrafish as an altern...

  10. Bacterial Community Assembly and Turnover within the Intestines of Developing Zebrafish

    PubMed Central

    Yan, Qingyun; van der Gast, Christopher J.; Yu, Yuhe

    2012-01-01

    Background The majority of animal associated microorganisms are present in digestive tract communities. These intestinal communities arise from selective pressures of the gut habitats as well as host's genotype are regarded as an extra ‘organ’ regulate functions that have not evolved wholly on the host. They are functionally essential in providing nourishment, regulating epithelial development, and influencing immunity in the vertebrate host. As vertebrates are born free of microorganisms, what is poorly understood is how intestinal bacterial communities assemble and develop in conjunction with the development of the host. Methodology/Principal Findings Set within an ecological framework, we investigated the bacterial community assembly and turnover within the intestinal habitats of developing zebrafish (from larvae to adult animals). Spatial and temporal species-richness relationships and Mantel and partial Mantel tests revealed that turnover was low and that richness and composition was best predicted by time and not intestinal volume (habitat size) or changes in food diet. We also observed that bacterial communities within the zebrafish intestines were deterministically assembled (reflected by the observed low turnover) switching to stochastic assembly in the later stages of zebrafish development. Conclusions/Significance This study is of importance as it provides a novel insight into how intestinal bacterial communities assemble in tandem with the host's development (from early to adult stages). It is our hope that by studying intestinal microbiota of this vertebrate model with such or some more refined approaches in the future could well provide ecological insights for clinical benefit. In addition, this study also adds to our still fledgling knowledge of how spatial and temporal species-richness relationships are shaped and provides further mounting evidence that bacterial community assembly and dynamics are shaped by both deterministic and stochastic

  11. Lxr regulates lipid metabolic and visual perception pathways during zebrafish development

    PubMed Central

    Pinto, Caroline Lucia; Kalasekar, Sharanya Maanasi; McCollum, Catherine W.; Riu, Anne; Jonsson, Philip; Lopez, Justin; Swindell, Eric; Bouhlatouf, Abdel; Balaguer, Patrick; Bondesson, Maria; Gustafsson, Jan-Åke

    2015-01-01

    The Liver X Receptors (LXRs) play important roles in multiple metabolic pathways, including fatty acid, cholesterol, carbohydrate and energy metabolism. To expand the knowledge of the functions of LXR signaling during embryonic development, we performed a whole-genome microarray analysis of Lxr target genes in zebrafish larvae treated with either one of the synthetic LXR ligands T0901317 or GW3965. Assessment of the biological processes enriched by differentially expressed genes revealed a prime role for Lxr in regulating lipid metabolic processes, similarly to the function of LXR in mammals. In addition, exposure to the Lxr ligands induced changes in expression of genes in the neural retina and lens of the zebrafish eye, including the photoreceptor guanylate cyclase activators and lens gamma crystallins, suggesting a potential novel role for Lxr in modulating the transcription of genes associated with visual function in zebrafish. The regulation of expression of metabolic genes was phenotypically reflected in an increased absorption of yolk in the zebrafish larvae, and changes in the expression of genes involved in visual perception were associated with morphological alterations in the retina and lens of the developing zebrafish eye. The regulation of expression of both lipid metabolic and eye specific genes was sustained in 1 month old fish. The transcriptional networks demonstrated several conserved effects of LXR activation between zebrafish and mammals, and also identified potential novel functions of Lxr, supporting zebrafish as a promising model for investigating the role of Lxr during development. PMID:26427652

  12. PhOTO Zebrafish: A Transgenic Resource for In Vivo Lineage Tracing during Development and Regeneration

    PubMed Central

    Dempsey, William P.; Fraser, Scott E.; Pantazis, Periklis

    2012-01-01

    Background Elucidating the complex cell dynamics (divisions, movement, morphological changes, etc.) underlying embryonic development and adult tissue regeneration requires an efficient means to track cells with high fidelity in space and time. To satisfy this criterion, we developed a transgenic zebrafish line, called PhOTO, that allows photoconvertible optical tracking of nuclear and membrane dynamics in vivo. Methodology PhOTO zebrafish ubiquitously express targeted blue fluorescent protein (FP) Cerulean and photoconvertible FP Dendra2 fusions, allowing for instantaneous, precise targeting and tracking of any number of cells using Dendra2 photoconversion while simultaneously monitoring global cell behavior and morphology. Expression persists through adulthood, making the PhOTO zebrafish an excellent tool for studying tissue regeneration: after tail fin amputation and photoconversion of a ∼100µm stripe along the cut area, marked differences seen in how cells contribute to the new tissue give detailed insight into the dynamic process of regeneration. Photoconverted cells that contributed to the regenerate were separated into three distinct populations corresponding to the extent of cell division 7 days after amputation, and a subset of cells that divided the least were organized into an evenly spaced, linear orientation along the length of the newly regenerating fin. Conclusions/Significance PhOTO zebrafish have wide applicability for lineage tracing at the systems-level in the early embryo as well as in the adult, making them ideal candidate tools for future research in development, traumatic injury and regeneration, cancer progression, and stem cell behavior. PMID:22431986

  13. Impacts of triclosan exposure on zebrafish early-life stage: Toxicity and acclimation mechanisms.

    PubMed

    Falisse, Elodie; Voisin, Anne-Sophie; Silvestre, Frédéric

    2017-08-01

    Triclosan (TCS) is a broad spectrum antibacterial agent widely used in personal care products and present in most aquatic ecosystems. This study investigated the occurrence of triclosan acclimation and the biological mechanisms underlying the stress response triggered in early-life stage of zebrafish. Zebrafish eggs were first exposed to four different sublethal concentrations of TCS (2, 20, 50 and 100μg/L) for 7days following fertilization and subsequently exposed to a lethal concentration of TCS (1000μg/L). During the time-to-death exposure (TTD), mortality was continuously recorded to evaluate if increased resistance occurred. Overall, larvae exposed to 50μg/L of TCS demonstrated higher sensitivity, with delayed hatching and increased mortality during the sub-lethal exposure and significant lower mean time-to-death (TTD) value compared to the other groups. Interestingly, fish exposed to the highest concentration of TCS (100μg/L) presented a similar mean TTD value as controls and a significantly better survival in comparison with embryos exposed to 50μg/L, suggesting that acclimation process has been triggered at this concentration. Proteomic and enzymatic analyses were conducted on 7days post fertilization (dpf) larvae exposed to 50μg/L and 100μg/L of TCS giving insights into the functional changes triggered at those specific concentrations. TCS seemed to affect proteins involved in cytoskeleton, stress response, eyes and neuronal development. This was endorsed by the enzymatic results, which suggest impairment in glutathione metabolism and acute neurotoxicity. A significant 2.5-fold and 3-fold increase of AChE activity was observed following TCS exposure. Moreover, GPx activity was significantly increased whereas a significant inhibition of GR activity was observed, suggesting that de novo synthesis of reduced GSH might occur in order to maintain the ratio between reduced and oxidized GSH. Proteomic results revealed possible candidate protein involved in

  14. The Influence of Hydroxyapatite Nanoparticle Morphology on Embryonic Development in a Zebrafish Exposure Model

    PubMed Central

    Pujari-Palmer, Shiuli; Lu, Xi; Karlsson Ott, Marjam

    2017-01-01

    Nanomaterials are used in many different industries such as cosmetics, food, clothing, and electronics. There is increasing concern that exposure to nanoparticles (NPs) during pregnancy can adversely affect fetal development. It is well known that the size, charge, and chemistry of a nanoparticle can modulate embryological development. The role that particle morphology plays on early development, however, is still widely unknown. The present study aims to investigate the effect of hydroxyapatite nanoparticle (HANP) morphology on embryological development in a zebrafish exposure model. Four distinct HANP morphologies (dots, long rods, sheets, and fibers) were fabricated and characterized. Zebrafish embryos were exposed to HANPs (0–100 mg/L), and viability and developmental deformities were evaluated for up to 5 days post-fertilization (dpf). Malformations such as pericardial edema and axial curvature were apparent in embryos as early as 1 dpf, following exposure to the dot and fiber particles, and developed in embryos by 3 dpf in the sheet and long rod particle groups. Minimal death was observed in response to dot, long rod, and sheet particles (≤25%), while fiber particles induced overwhelming toxicity (≤60%) after 1 dpf, and complete toxicity during all subsequent time points. Collectively, these results suggest that nanoparticle morphology can significantly impact embryological development and should be a required consideration when designing nanomaterials for commercial use. PMID:28441729

  15. The essential role of endogenous ghrelin in growth hormone expression during zebrafish adenohypophysis development.

    PubMed

    Li, Xi; He, Jiangyan; Hu, Wei; Yin, Zhan

    2009-06-01

    Ghrelin, a multifunctional hormone, including potent GH stimulation activity, has been suggested to be important during embryonic development. Expression of ghrelin has been confirmed in the zebrafish pancreas during embryonic stages. Interfering with ghrelin function using two specific antisense morpholino oligonucleotides causes defects during zebrafish embryonic development. In ghrelin morphants the expression of GH was abolished in zebrafish somatotropes, whereas the expression patterns of the other key molecules involved in hypothalamic-pituitary development and distinct pituitary hormones genes remain largely intact at the appropriate time during zebrafish adenohypophysis development. Effective rescue of the ghrelin morphants with exogenous ghrelin mRNA showed that the correct gene had been targeted. Moreover, by analyzing the efficiencies of the ghrelin morphants rescue experiments with various forms of exogenous mutant ghrelin mRNAs, we also demonstrated the essentiality of the form acyl-ghrelin on GH stimulation during zebrafish adenohypophysis development. Our in vivo experiments, for the first time, also provided evidence of the existence of functional obestatin in the C-terminal part of zebrafish proghrelin peptides. Our research here has demonstrated that zebrafish is a unique model for functional studies of endogenous ghrelin, especially during embryonic development.

  16. Lxr regulates lipid metabolic and visual perception pathways during zebrafish development.

    PubMed

    Pinto, Caroline Lucia; Kalasekar, Sharanya Maanasi; McCollum, Catherine W; Riu, Anne; Jonsson, Philip; Lopez, Justin; Swindell, Eric C; Bouhlatouf, Abdel; Balaguer, Patrick; Bondesson, Maria; Gustafsson, Jan-Åke

    2016-01-05

    The Liver X Receptors (LXRs) play important roles in multiple metabolic pathways, including fatty acid, cholesterol, carbohydrate and energy metabolism. To expand the knowledge of the functions of LXR signaling during embryonic development, we performed a whole-genome microarray analysis of Lxr target genes in zebrafish larvae treated with either one of the synthetic LXR ligands T0901317 or GW3965. Assessment of the biological processes enriched by differentially expressed genes revealed a prime role for Lxr in regulating lipid metabolic processes, similarly to the function of LXR in mammals. In addition, exposure to the Lxr ligands induced changes in expression of genes in the neural retina and lens of the zebrafish eye, including the photoreceptor guanylate cyclase activators and lens gamma crystallins, suggesting a potential novel role for Lxr in modulating the transcription of genes associated with visual function in zebrafish. The regulation of expression of metabolic genes was phenotypically reflected in an increased absorption of yolk in the zebrafish larvae, and changes in the expression of genes involved in visual perception were associated with morphological alterations in the retina and lens of the developing zebrafish eye. The regulation of expression of both lipid metabolic and eye specific genes was sustained in 1 month old fish. The transcriptional networks demonstrated several conserved effects of LXR activation between zebrafish and mammals, and also identified potential novel functions of Lxr, supporting zebrafish as a promising model for investigating the role of Lxr during development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Use of a highly transparent zebrafish mutant for investigations in the development of the vertebrate auditory system (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wisniowiecki, Anna M.; Mattison, Scott P.; Kim, Sangmin; Riley, Bruce; Applegate, Brian E.

    2016-03-01

    Zebrafish, an auditory specialist among fish, offer analogous auditory structures to vertebrates and is a model for hearing and deafness in vertebrates, including humans. Nevertheless, many questions remain on the basic mechanics of the auditory pathway. Phase-sensitive Optical Coherence Tomography has been proven as valuable technique for functional vibrometric measurements in the murine ear. Such measurements are key to building a complete understanding of auditory mechanics. The application of such techniques in the zebrafish is impeded by the high level of pigmentation, which develops superior to the transverse plane and envelops the auditory system superficially. A zebrafish double mutant for nacre and roy (mitfa-/- ;roya-/- [casper]), which exhibits defects for neural-crest derived melanocytes and iridophores, at all stages of development, is pursued to improve image quality and sensitivity for functional imaging. So far our investigations with the casper mutants have enabled the identification of the specialized hearing organs, fluid-filled canal connecting the ears, and sub-structures of the semicircular canals. In our previous work with wild-type zebrafish, we were only able to identify and observe stimulated vibration of the largest structures, specifically the anterior swim bladder and tripus ossicle, even among small, larval specimen, with fully developed inner ears. In conclusion, this genetic mutant will enable the study of the dynamics of the zebrafish ear from the early larval stages all the way into adulthood.

  18. Time-lapse imaging of neural development: zebrafish lead the way into the fourth dimension.

    PubMed

    Rieger, Sandra; Wang, Fang; Sagasti, Alvaro

    2011-07-01

    Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults. Copyright © 2011 Wiley-Liss, Inc.

  19. Guided inquiry lab exercises in development and oxygen consumption using zebrafish.

    PubMed

    Bagatto, Brian

    2009-06-01

    Zebrafish have become a model organism in many areas of research and are now being used with more frequency in the classroom to teach important biological concepts. The two guided inquiry exercises in this article are each aimed at a different level of instruction, but each can be modified to fit the needs of many high school or college-level courses. The "Zebrafish Development and Environment" exercise teaches high school students about zebrafish development by presenting a series of embryos at different ages. Without access to visual references, students are asked to rank developing zebrafish by age and explain their choices. The students also learn about the heart and circulatory system and the effects of temperature on physiological processes. The second exercise, "Oxygen Consumption," is a 2-week laboratory designed for introductory college biology majors and involves the concept of oxygen consumption as a predictor of metabolic rate. During the first week of lab, students are introduced to the concept and learn how to measure oxygen consumption in zebrafish. In the second week, they perform an instructor-approved experiment of their own design, analyze the results using statistics, and write a report.

  20. The zebrafish buttonhead-like factor Bts1 is an early regulator of pax2.1 expression during mid-hindbrain development.

    PubMed

    Tallafuss, A; Wilm, T P; Crozatier, M; Pfeffer, P; Wassef, M; Bally-Cuif, L

    2001-10-01

    Little is known about the factors that control the specification of the mid-hindbrain domain (MHD) within the vertebrate embryonic neural plate. Because the head-trunk junction of the Drosophila embryo and the MHD have patterning similarities, we have searched for vertebrate genes related to the Drosophila head gap gene buttonhead (btd), which in the fly specifies the head-trunk junction. We report here the identification of a zebrafish gene which, like btd, encodes a zinc-finger transcriptional activator of the Sp-1 family (hence its name, bts1 for btd/Sp-related-1) and shows a restricted expression in the head. During zebrafish gastrulation, bts1 is transcribed in the posterior epiblast including the presumptive MHD, and precedes in this area the expression of other MHD markers such as her5, pax2.1 and wnt1. Ectopic expression of bts1 combined to knock-down experiments demonstrate that Bts1 is both necessary and sufficient for the induction of pax2.1 within the anterior neural plate, but is not involved in regulating her5, wnt1 or fgf8 expression. Our results confirm that early MHD development involves several genetic cascades that independently lead to the induction of MHD markers, and identify Bts1 as a crucial upstream component of the pathway selectively leading to pax2.1 induction. In addition, they imply that flies and vertebrates, to control the development of a boundary embryonic region, have probably co-opted a similar strategy: the restriction to this territory of the expression of a Btd/Sp-like factor.

  1. In Vitro Biotransformation of Two Human CYP3A Probe Substrates and Their Inhibition during Early Zebrafish Development.

    PubMed

    Verbueken, Evy; Alsop, Derek; Saad, Moayad A; Pype, Casper; Van Peer, Els M; Casteleyn, Christophe R; Van Ginneken, Chris J; Wilson, Joanna; Van Cruchten, Steven J

    2017-01-22

    At present, the zebrafish embryo is increasingly used as an alternative animal model to screen for developmental toxicity after exposure to xenobiotics. Since zebrafish embryos depend on their own drug-metabolizing capacity, knowledge of their intrinsic biotransformation is pivotal in order to correctly interpret the outcome of teratogenicity assays. Therefore, the aim of this in vitro study was to assess the activity of cytochrome P450 (CYP)-a group of drug-metabolizing enzymes-in microsomes from whole zebrafish embryos (ZEM) of 5, 24, 48, 72, 96 and 120 h post-fertilization (hpf) by means of a mammalian CYP substrate, i.e., benzyloxy-methyl-resorufin (BOMR). The same CYP activity assays were performed in adult zebrafish liver microsomes (ZLM) to serve as a reference for the embryos. In addition, activity assays with the human CYP3A4-specific Luciferin isopropyl acetal (Luciferin-IPA) as well as inhibition studies with ketoconazole and CYP3cide were carried out to identify CYP activity in ZLM. In the present study, biotransformation of BOMR was detected at 72 and 96 hpf; however, metabolite formation was low compared with ZLM. Furthermore, Luciferin-IPA was not metabolized by the zebrafish. In conclusion, the capacity of intrinsic biotransformation in zebrafish embryos appears to be lacking during a major part of organogenesis.

  2. Advances in the Study of Heart Development and Disease Using Zebrafish

    PubMed Central

    Brown, Daniel R.; Samsa, Leigh Ann; Qian, Li; Liu, Jiandong

    2016-01-01

    Animal models of cardiovascular disease are key players in the translational medicine pipeline used to define the conserved genetic and molecular basis of disease. Congenital heart diseases (CHDs) are the most common type of human birth defect and feature structural abnormalities that arise during cardiac development and maturation. The zebrafish, Danio rerio, is a valuable vertebrate model organism, offering advantages over traditional mammalian models. These advantages include the rapid, stereotyped and external development of transparent embryos produced in large numbers from inexpensively housed adults, vast capacity for genetic manipulation, and amenability to high-throughput screening. With the help of modern genetics and a sequenced genome, zebrafish have led to insights in cardiovascular diseases ranging from CHDs to arrhythmia and cardiomyopathy. Here, we discuss the utility of zebrafish as a model system and summarize zebrafish cardiac morphogenesis with emphasis on parallels to human heart diseases. Additionally, we discuss the specific tools and experimental platforms utilized in the zebrafish model including forward screens, functional characterization of candidate genes, and high throughput applications. PMID:27335817

  3. TSH Receptor Function Is Required for Normal Thyroid Differentiation in Zebrafish

    PubMed Central

    Opitz, Robert; Maquet, Emilie; Zoenen, Maxime; Dadhich, Rajesh

    2011-01-01

    TSH is the primary physiological regulator of thyroid gland function. The effects of TSH on thyroid cells are mediated via activation of its membrane receptor [TSH receptor (TSHR)]. In this study, we examined functional thyroid differentiation in zebrafish and characterized the role of TSHR signaling during thyroid organogenesis. Cloning of a cDNA encoding zebrafish Tshr showed conservation of primary structure and functional properties between zebrafish and mammalian TSHR. In situ hybridization confirmed that the thyroid is the major site of tshr expression during zebrafish development. In addition, we identified tpo, iyd, duox, and duoxa as novel thyroid differentiation markers in zebrafish. Temporal analyses of differentiation marker expression demonstrated the induction of an early thyroid differentiation program along with thyroid budding, followed by a delayed onset of duox and duoxa expression coincident with thyroid hormone synthesis. Furthermore, comparative analyses in mouse and zebrafish revealed for the first time a thyroid-enriched expression of cell death regulators of the B-cell lymphoma 2 family during early thyroid morphogenesis. Knockdown of tshr function by morpholino microinjection into embryos did not affect early thyroid morphogenesis but caused defects in later functional differentiation. The thyroid phenotype observed in tshr morphants at later stages comprised a reduction in number and size of functional follicles, down-regulation of differentiation markers, as well as reduced thyroid transcription factor expression. A comparison of our results with phenotypes observed in mouse models of defective TSHR and cAMP signaling highlights the value of zebrafish as a model to enhance the understanding of functional differentiation in the vertebrate thyroid. PMID:21737742

  4. Identification of Estrogen Target Genes during Zebrafish Embryonic Development through Transcriptomic Analysis

    EPA Science Inventory

    Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio) as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 μM 17β-estradiol (E2) or vehicle from 3 hours to 4 days post...

  5. Mutagenesis and phenotyping resources in zebrafish for studying development and human disease

    PubMed Central

    Varshney, Gaurav Kumar

    2014-01-01

    The zebrafish (Danio rerio) is an important model organism for studying development and human disease. The zebrafish has an excellent reference genome and the functions of hundreds of genes have been tested using both forward and reverse genetic approaches. Recent years have seen an increasing number of large-scale mutagenesis projects and the number of mutants or gene knockouts in zebrafish has increased rapidly, including for the first time conditional knockout technologies. In addition, targeted mutagenesis techniques such as zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short sequences (CRISPR) or CRISPR-associated (Cas), have all been shown to effectively target zebrafish genes as well as the first reported germline homologous recombination, further expanding the utility and power of zebrafish genetics. Given this explosion of mutagenesis resources, it is now possible to perform systematic, high-throughput phenotype analysis of all zebrafish gene knockouts. PMID:24162064

  6. Heart-specific expression of laminopathic mutations in transgenic zebrafish.

    PubMed

    Verma, Ajay D; Parnaik, Veena K

    2017-07-01

    Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.

  7. Embryonic senescence and laminopathies in a progeroid zebrafish model.

    PubMed

    Koshimizu, Eriko; Imamura, Shintaro; Qi, Jie; Toure, Jamal; Valdez, Delgado M; Carr, Christopher E; Hanai, Jun-ichi; Kishi, Shuji

    2011-03-30

    Mutations that disrupt the conversion of prelamin A to mature lamin A cause the rare genetic disorder Hutchinson-Gilford progeria syndrome and a group of laminopathies. Our understanding of how A-type lamins function in vivo during early vertebrate development through aging remains limited, and would benefit from a suitable experimental model. The zebrafish has proven to be a tractable model organism for studying both development and aging at the molecular genetic level. Zebrafish show an array of senescence symptoms resembling those in humans, which can be targeted to specific aging pathways conserved in vertebrates. However, no zebrafish models bearing human premature senescence currently exist. We describe the induction of embryonic senescence and laminopathies in zebrafish harboring disturbed expressions of the lamin A gene (LMNA). Impairments in these fish arise in the skin, muscle and adipose tissue, and sometimes in the cartilage. Reduced function of lamin A/C by translational blocking of the LMNA gene induced apoptosis, cell-cycle arrest, and craniofacial abnormalities/cartilage defects. By contrast, induced cryptic splicing of LMNA, which generates the deletion of 8 amino acid residues lamin A (zlamin A-Δ8), showed embryonic senescence and S-phase accumulation/arrest. Interestingly, the abnormal muscle and lipodystrophic phenotypes were common in both cases. Hence, both decrease-of-function of lamin A/C and gain-of-function of aberrant lamin A protein induced laminopathies that are associated with mesenchymal cell lineages during zebrafish early development. Visualization of individual cells expressing zebrafish progerin (zProgerin/zlamin A-Δ37) fused to green fluorescent protein further revealed misshapen nuclear membrane. A farnesyltransferase inhibitor reduced these nuclear abnormalities and significantly prevented embryonic senescence and muscle fiber damage induced by zProgerin. Importantly, the adult Progerin fish survived and remained fertile with

  8. Cadherin-17 is required to maintain pronephric duct integrity during zebrafish development.

    PubMed

    Horsfield, Julia; Ramachandran, Anassuya; Reuter, Katja; LaVallie, Edward; Collins-Racie, Lisa; Crosier, Kathryn; Crosier, Philip

    2002-07-01

    We have isolated a zebrafish cadherin that is orthologous to human LI-cadherin (CDH17). Zebrafish cdh17 is expressed exclusively in the pronephric ducts during embryogenesis, and in the mesonephros during larval development and adulthood. Like its mammalian ortholog, cdh17 is also expressed in liver and intestine in adult zebrafish. We show that cdh17-positive mesodermal cells do not contribute to the hematopoietic system. Consistent with a cell adhesion role for Cdh17, depletion of Cdh17 function using antisense morpholino oligonucleotides compromised cell cohesion during pronephric duct formation. Our results indicate that Cdh17 is necessary for maintaining the integrity of the pronephric ducts during zebrafish embryogenesis. This finding contrasts with the role of mammalian CDH17, which does not appear to be involved in nephric development.

  9. Zebrafish sex: a complicated affair

    PubMed Central

    Liew, Woei Chang

    2014-01-01

    In this review, we provide a detailed overview of studies on the elusive sex determination (SD) and gonad differentiation mechanisms of zebrafish (Danio rerio). We show that the data obtained from most studies are compatible with polygenic sex determination (PSD), where the decision is made by the allelic combinations of several loci. These loci are typically dispersed throughout the genome, but in some teleost species a few of them might be located on a preferential pair of (sex) chromosomes. The PSD system has a much higher level of variation of SD genotypes both at the level of gametes and the sexual genotype of individuals, than that of the chromosomal sex determination systems. The early sexual development of zebrafish males is a complicated process, as they first develop a ‘juvenile ovary’, that later undergoes a transformation to give way to a testis. To date, three major developmental pathways were shown to be involved with gonad differentiation through the modulation of programmed cell death. In our opinion, there are more pathways participating in the regulation of zebrafish gonad differentiation/transformation. Introduction of additional powerful large-scale genomic approaches into the analysis of zebrafish reproduction will result in further deepening of our knowledge as well as identification of additional pathways and genes associated with these processes in the near future. PMID:24148942

  10. Toxicity evaluation of β-diketone antibiotics on the development of embryo-larval zebrafish (Danio rerio).

    PubMed

    Wang, Huili; Che, Baoguang; Duan, Ailian; Mao, Jingwen; Dahlgren, Randy A; Zhang, Minghua; Zhang, Hongqin; Zeng, Aibing; Wang, Xuedong

    2014-10-01

    This study evaluated the effects of β-diketone antibiotics (DKAs) on the development of embryo-larval zebrafish (Danio rerio). When exposure to DKAs, developmental malformations, such as hatching delay, curved body axis, pericardial edema, uninflated swim bladder and yolk sac edema, were observed at 120 h postfertilization (hpf). The estimated 120 hpf nominal concentrations of no observed effect concentration and lowest observed effect concentration for DKAs were 18.75 and 37.50 mg/L, respectively, suggesting that DKAs have much lower toxicity than other persistent pollutants. Following DKA exposure, embryonic heart rates were significantly reduced as compared to the controls at 48 and 60 hpf. The peak bending motion frequency appeared 1 h earlier than in control embryos. The 2.34 and 9.38-mg/L treatment groups had a higher basal swim rate than control groups at 120 hpf in both light and light-to-dark photoperiod experiments. The occurrence of high speed swim rates was enhanced approximately threefold to sevenfold in the 2.34 and 9.38 mg/L treatments compared to the control. Glutathione (GSH) concentrations in the 2.34 and 9.38-mg/L treatments were significantly higher than the control at 72 hpf, suggesting that GSH production was induced at the end of the hatching period. When exposed to DKAs, zebrafish superoxide dismutase enzyme (SOD) activities were significantly inhibited in the early embryonic period, demonstrating that the clearing ability in zebrafish was lower than the generation rate of free radicals. In summary, the combined DKAs were developmentally toxic to zebrafish in their early life stages and had the ability to impair individual behaviors that are of great importance in the assessment of their ecological fitness. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.

  11. Hepassocin is required for hepatic outgrowth during zebrafish hepatogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Ming; Beijing Institute of Radiation Medicine, Beijing 100850; Yan, Hui

    2015-07-31

    Background & aims: Hepassocin (HPS) is a hepatotrophic growth factor that specifically stimulates hepatocyte proliferation and promotes liver regeneration after liver damage. In this paper, zebrafish were used to investigate the role of HPS in liver development. Methods and results: During zebrafish development, HPS expression is enriched in liver throughout hepatogenesis. Knockdown of HPS using its specific morpholino leads to a smaller liver phenotype. Further results showed that the HPS knockdown has no effect on the expression of the early endoderm marker gata6 and early hepatic marker hhex. In addition, results showed that the smaller-liver phenotype in HPS morphants wasmore » caused by suppression of cell proliferation, not induction of cell apoptosis. Conclusions: Current findings indicated that HPS is essential to the later stages of development in vertebrate liver organogenesis. - Highlights: • HPS is enriched in zebrafish liver and has strong similarities with other species. • Knocking down HPS with MOs results in small liver phenotype. • HPS depletion regulates liver outgrowth but not liver specification and budding. • HPS depletion causes hepatocyte proliferation arrest but not apoptosis induction.« less

  12. Genetic Disruption of 21-Hydroxylase in Zebrafish Causes Interrenal Hyperplasia.

    PubMed

    Eachus, Helen; Zaucker, Andreas; Oakes, James A; Griffin, Aliesha; Weger, Meltem; Güran, Tülay; Taylor, Angela; Harris, Abigail; Greenfield, Andy; Quanson, Jonathan L; Storbeck, Karl-Heinz; Cunliffe, Vincent T; Müller, Ferenc; Krone, Nils

    2017-12-01

    Congenital adrenal hyperplasia is a group of common inherited disorders leading to glucocorticoid deficiency. Most cases are caused by 21-hydroxylase deficiency (21OHD). The systemic consequences of imbalanced steroid hormone biosynthesis due to severe 21OHD remains poorly understood. Therefore, we developed a zebrafish model for 21OHD, which focuses on the impairment of glucocorticoid biosynthesis. A single 21-hydroxylase gene (cyp21a2) is annotated in the zebrafish genome based on sequence homology. Our in silico analysis of the 21-hydroxylase (Cyp21a2) protein sequence suggests a sufficient degree of similarity for the usage of zebrafish cyp21a2 to model aspects of human 21OHD in vivo. We determined the spatiotemporal expression patterns of cyp21a2 by whole-mount in situ hybridization and reverse transcription polymerase chain reaction throughout early development. Early cyp21a2 expression is restricted to the interrenal gland (zebrafish adrenal counterpart) and the brain. To further explore the in vivo consequences of 21OHD we created several cyp21a2 null-allele zebrafish lines by using a transcription activator-like effector nuclease genomic engineering strategy. Homozygous mutant zebrafish larvae showed an upregulation of the hypothalamic-pituitary-interrenal (HPI) axis and interrenal hyperplasia. Furthermore, Cyp21a2-deficient larvae had a typical steroid profile, with reduced concentrations of cortisol and increased concentrations of 17-hydroxyprogesterone and 21-deoxycortisol. Affected larvae showed an upregulation of the HPI axis and interrenal hyperplasia. Downregulation of the glucocorticoid-responsive genes pck1 and fkbp5 indicated systemic glucocorticoid deficiency. Our work demonstrates the crucial role of Cyp21a2 in glucocorticoid biosynthesis in zebrafish larvae and establishes an in vivo model allowing studies of systemic consequences of altered steroid hormone synthesis.

  13. Developmental Neurotoxicity of Methamidophos in the Embryo-Larval Stages of Zebrafish.

    PubMed

    He, Xiaowei; Gao, Jiawei; Dong, Tianyu; Chen, Minjian; Zhou, Kun; Chang, Chunxin; Luo, Jia; Wang, Chao; Wang, Shoulin; Chen, Daozhen; Zhou, Zuomin; Tian, Ying; Xia, Yankai; Wang, Xinru

    2016-12-28

    Methamidophos is a representative organophosphate insecticide. The knowledge of its developmental neurotoxicity is limited, especially for zebrafish in the early stages of their life. Four hour post-fertilization (hpf) zebrafish embryos were exposed to several environmentally relevant concentrations of methamidophos (0, 25, and 500 μg/L) for up to 72 hpf. Locomotor behavior was then studied in the zebrafish larvae at this timepoint. Acridine orange (AO) staining was carried out in the zebrafish larvae, and the mRNA levels of genes associated with neural development ( mbp and syn2a ) were analyzed by reverse transcription-polymerase chain reaction (RT-PCR). The number of escape responders for mechanical stimulation was significantly decreased in exposed groups. AO staining showed noticeable signs of apoptosis mainly in the brain. In addition, the mRNA levels of mbp and syn2a were both significantly down-regulated in exposed groups. Our study provides the first evidence that methamidophos exposure can cause developmental neurotoxicity in the early stages of zebrafish life, which may be caused by the effect of methamidophos on neurodevelopmental genes and the activation of cell apoptosis in the brain.

  14. Digestive enzymatic activity during ontogenetic development in zebrafish (Danio rerio).

    PubMed

    Guerrera, Maria Cristina; De Pasquale, Francesca; Muglia, Ugo; Caruso, Gabriella

    2015-12-01

    Despite the growing importance of zebrafish (Danio rerio) as an experimental model in biomedical research, some aspect of physiological and related morphological age dependent changes in digestive system during larval development are still unknown. In this paper, a biochemical and morphological study of the digestive tract of zebrafish was undertaken to record the functional changes occurring in this species during its ontogenetic development, particularly from 24 hr to 47 days post fertilization (dpf). Endo- and exo-proteases, as well as α-amylase enzymes, were quantified in zebrafish larvae before first feeding (7 dpf). The most morphologically significant events during the ontogenesis of the gut occurred between 3 dpf (mouth opening) and 7 dpf (end of exocrine pancreas differentiation). The presence of a wide range of digestive enzymes, already active at earlier zebrafish larval stages, closely related with the omnivorous diet of this species. Increasing enzyme activities were found with increasing age, probably in relation with intestinal mucosa folding and consequent absorption surface increase. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 699-706, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Toxicity of Vascular Disrupting Chemicals to Developing Zebrafish

    EPA Science Inventory

    Vascular development is integral to proper embryonic development and disruption of that process can have serious developmental consequences. We performed static 48-hr exposures of transgenic TG(kdr:EGFP)s843 zebrafish (Danio rerio) embryos with the known vascular inhibitors Vatal...

  16. Zebrafish for the Study of the Biological Effects of Nicotine

    PubMed Central

    Klee, Eric W.; Schneider, Henning; Hurt, Richard D.; Ekker, Stephen C.

    2011-01-01

    Introduction: Zebrafish are emerging as a powerful animal model for studying the molecular and physiological effects of nicotine exposure. The zebrafish have many advantageous physical characteristics, including small size, high fecundity rates, and externally developing transparent embryos. When combined with a battery of molecular–genetic tools and behavioral assays, these attributes enable studies to be conducted that are not practical using traditional animal models. Methods: We reviewed the literature on the application of the zebrafish model as a preclinical model to study the biological effects of nicotine exposure. Results: The identified studies used zebrafish to examine the effects of nicotine exposure on early development, addiction, anxiety, and learning. The methods used included green fluorescent protein–labeled proteins to track in vivo nicotine-altered neuron development, nicotine-conditioned place preference, and locomotive sensitization linked with high-throughput molecular and genetic screens and behavioral models of learning and stress response to nicotine. Data are presented on the complete homology of all known human neural nicotinic acetylcholine receptors in zebrafish and on the biological similarity of human and zebrafish dopaminergic signaling. Conclusions: Tobacco dependence remains a major health problem worldwide. Further understanding of the molecular effects of nicotine exposure and genetic contributions to dependence may lead to improvement in patient treatment strategies. While there are limitations to the use of zebrafish as a preclinical model, it should provide a valuable tool to complement existing model systems. The reviewed studies demonstrate the enormous opportunity zebrafish have to advance the science of nicotine and tobacco research. PMID:21385906

  17. Abnormal photoreceptor outer segment development and early retinal degeneration in kif3a mutant zebrafish.

    PubMed

    Raghupathy, Rakesh K; Zhang, Xun; Alhasani, Reem H; Zhou, Xinzhi; Mullin, Margaret; Reilly, James; Li, Wenchang; Liu, Mugen; Shu, Xinhua

    2016-08-01

    Photoreceptors are highly specialized sensory neurons that possess a modified primary cilium called the outer segment. Photoreceptor outer segment formation and maintenance require highly active protein transport via a process known as intraflagellar transport. Anterograde transport in outer segments is powered by the heterotrimeric kinesin II and coordinated by intraflagellar transport proteins. Here, we describe a new zebrafish model carrying a nonsense mutation in the kinesin II family member 3A (kif3a) gene. Kif3a mutant zebrafish exhibited curved body axes and kidney cysts. Outer segments were not formed in most parts of the mutant retina, and rhodopsin was mislocalized, suggesting KIF3A has a role in rhodopsin trafficking. Both rod and cone photoreceptors degenerated rapidly between 4 and 9 days post fertilization, and electroretinography response was not detected in 7 days post fertilization mutant larvae. Loss of KIF3A in zebrafish also resulted in an intracellular transport defect affecting anterograde but not retrograde transport of organelles. Our results indicate KIF3A plays a conserved role in photoreceptor outer segment formation and intracellular transport. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Teratogenic potential of antiepileptic drugs in the zebrafish model.

    PubMed

    Lee, Sung Hak; Kang, Jung Won; Lin, Tao; Lee, Jae Eun; Jin, Dong Il

    2013-01-01

    The zebrafish model is an attractive candidate for screening of developmental toxicity during early drug development. Antiepileptic drugs (AEDs) arouse concern for the risk of teratogenicity, but the data are limited. In this study, we evaluated the teratogenic potential of seven AEDs (carbamazepine (CBZ), ethosuximide (ETX), valproic acid (VPN), lamotrigine (LMT), lacosamide (LCM), levetiracetam (LVT), and topiramate (TPM)) in the zebrafish model. Zebrafish embryos were exposed to AEDs from initiation of gastrula (5.25 hours post-fertilization (hpf)) to termination of hatching (72 hpf) which mimic the mammalian teratogenic experimental design. The lethality and teratogenic index (TI) of AEDs were determined and the TI values of each drug were compared with the US FDA human pregnancy categories. Zebrafish model was useful screening model for teratogenic potential of antiepilepsy drugs and was in concordance with in vivo mammalian data and human clinical data.

  19. Dmrt1 is necessary for male sexual development in zebrafish

    PubMed Central

    Webster, Kaitlyn A.; Schach, Ursula; Ordaz, Angel; Steinfeld, Jocelyn S.; Draper, Bruce W.; Siegfried, Kellee R.

    2018-01-01

    The dmrt1 (doublesex and mab-3 related transcription factor 1) gene is a key regulator of sex determination and/or gonadal sex differentiation across metazoan animals. This is unusual given that sex determination genes are typically not well conserved. The mechanisms by which zebrafish sex is determined have remained elusive due to the lack of sex chromosomes and the complex polygenic nature of sex determination in domesticated strains. To investigate the role of dmrt1 in zebrafish sex determination and gonad development, we isolated mutations disrupting this gene. We found that the majority of dmrt1 mutant fish develop as fertile females suggesting a complete male-to-female sex reversal in mutant animals that would have otherwise developed as males. A small percentage of mutant animals became males, but were sterile and displayed testicular dysgenesis. Therefore zebrafish dmrt1 functions in male sex determination and testis development. Mutant males had aberrant gonadal development at the onset of gonadal sex-differentiation, displaying reduced oocyte apoptosis followed by development of intersex gonads and failed testis morphogenesis and spermatogenesis. By contrast, female ovaries developed normally. We found that Dmrt1 is necessary for normal transcriptional regulation of the amh (anti-Müllerian hormone) and foxl2 (forkhead box L2) genes, which are thought to be important for male or female sexual development respectively. Interestingly, we identified one dmrt1 mutant allele that cooperates with a linked segregation distorter locus to generate an apparent XY sex determination mechanism. We conclude that dmrt1 is dispensable for ovary development but necessary for testis development in zebrafish, and that dmrt1 promotes male development by transcriptionally regulating male and female genes as has been described in other animals. Furthermore, the strong sex-ratio bias caused by dmrt1 reduction-of-function points to potential mechanisms through which sex

  20. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    PubMed

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism.

  1. Next generation mothers: Maternal control of germline development in zebrafish.

    PubMed

    Dosch, Roland

    2015-01-01

    In many animals, factors deposited by the mother into the egg control the earliest events in development of the zygote. These maternal RNAs and proteins play critical roles in oocyte development and the earliest steps of embryogenesis such as fertilization, cell division and embryonic patterning. Here, this article summarizes recent discoveries made on the maternal control of germline specification in zebrafish. Moreover, this review will discuss the major gaps remaining in our understanding of this process and highlight recent technical innovations in zebrafish, which allow tackling some of these questions in the near future.

  2. FishFace: interactive atlas of zebrafish craniofacial development at cellular resolution

    PubMed Central

    2013-01-01

    Background The vertebrate craniofacial skeleton may exhibit anatomical complexity and diversity, but its genesis and evolution can be understood through careful dissection of developmental programs at cellular resolution. Resources are lacking that include introductory overviews of skeletal anatomy coupled with descriptions of craniofacial development at cellular resolution. In addition to providing analytical guidelines for other studies, such an atlas would suggest cellular mechanisms underlying development. Description We present the Fish Face Atlas, an online, 3D-interactive atlas of craniofacial development in the zebrafish Danio rerio. Alizarin red-stained skulls scanned by fluorescent optical projection tomography and segmented into individual elements provide a resource for understanding the 3D structure of the zebrafish craniofacial skeleton. These data provide the user an anatomical entry point to confocal images of Alizarin red-stained zebrafish with transgenically-labelled pharyngeal arch ectomesenchyme, chondrocytes, and osteoblasts, which illustrate the appearance, morphogenesis, and growth of the mandibular and hyoid cartilages and bones, as viewed in live, anesthetized zebrafish during embryonic and larval development. Confocal image stacks at high magnification during the same stages provide cellular detail and suggest developmental and evolutionary hypotheses. Conclusion The FishFace Atlas is a novel learning tool for understanding craniofacial skeletal development, and can serve as a reference for a variety of studies, including comparative and mutational analyses. PMID:23714426

  3. The Study of Glioma by Xenotransplantation in Zebrafish Early Life Stages

    PubMed Central

    Motaln, Helena; Turnšek, Tamara Lah

    2015-01-01

    Zebrafish (Danio rerio) and their transparent embryos are becoming an increasingly popular tool for studying processes involved in tumor progression and in the search for novel tumor treatment approaches. The xenotransplantation of fluorescently labeled mammalian cancer cells into zebrafish embryos is an approach enabling relatively high-throughput in vivo analyses. The small size of the embryos as well as the relative simplicity of their manipulation and maintenance allow for large numbers of embryos to be processed efficiently in a short time and at low cost. Furthermore, the possibility of fluorescence microscopic imaging of tumor progression within zebrafish embryos and larvae holds unprecedented potential for the real-time visualization of these processes in vivo. This review presents the methodologies of xenotransplantation studies on zebrafish involving research on tumor invasion, proliferation, tumor-induced angiogenesis and screening for antitumor therapeutics. We further focus on the application of these zebrafish to the study of glioma; in particular, its most common and malignant form, glioblastoma. PMID:26109632

  4. In vivo cell biology in zebrafish - providing insights into vertebrate development and disease.

    PubMed

    Vacaru, Ana M; Unlu, Gokhan; Spitzner, Marie; Mione, Marina; Knapik, Ela W; Sadler, Kirsten C

    2014-02-01

    Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease.

  5. A critical period for functional vestibular development in zebrafish

    NASA Technical Reports Server (NTRS)

    Moorman, Stephen J.; Cordova, Rodolfo; Davies, Sarah A.

    2002-01-01

    We have determined a critical period for vestibular development in zebrafish by using a bioreactor designed by NASA to simulate microgravity for cells in culture. A critical period is defined as the briefest period of time during development when stimulus deprivation results in long lasting or permanent sensory deficits. Zebrafish eggs were collected within 3 hours of being laid and fertilized. In experiment 1, eggs were placed in the bioreactor at 3, 24, 30, 36, 48, or 72 hours postfertilization (hPF) and maintained in the bioreactor until 96 hPF. In experiment 2, eggs were placed in the bioreactor immediately after they were collected and maintained in the bioreactor until 24, 36, 48, 60, 66, 72, or 96 hPF. Beginning at 96 hPF, all larvae had their vestibulo-ocular reflexes (VOR) evaluated once each day for 5 days. Only larvae that hatched from eggs that were placed in the bioreactor before 30 hPF in experiment 1 or removed from the bioreactor later than 66 hPF in experiment 2 had VOR deficits that persisted for at least 5 days. These data suggest a critical period for vestibular development in the zebrafish that begins before 30 hPF and ends after 66 hPF. To confirm this, zebrafish eggs were placed in the bioreactor at 24 hPF and removed at 72 hPF. VORs were evaluated in these larvae once each day for 5 days beginning at 96 hPF. These larvae had VOR deficits that persisted for at least 5 days. In addition, larvae that had been maintained in the bioreactor from 24 to 66 hPF or from 30 to 72 hPF, had only temporary VOR deficits. In a final experiment, zebrafish eggs were placed in the bioreactor at 3 hPF and removed at 96 hPF but the bioreactor was turned off from 24 hPF to 72 hPF. These larvae had normal VORs when they were removed from the bioreactor at 96 hPF. Taken as a whole, these data support the idea that there is a critical period for functional maturation of the zebrafish vestibular system. The developmental period identified includes the timeframe

  6. It's time to swim! Zebrafish and the circadian clock.

    PubMed

    Vatine, Gad; Vallone, Daniela; Gothilf, Yoav; Foulkes, Nicholas S

    2011-05-20

    The zebrafish represents a fascinating model for studying key aspects of the vertebrate circadian timing system. Easy access to early embryonic development has made this species ideal for investigating how the clock is first established during embryogenesis. In particular, the molecular basis for the functional development of the zebrafish pineal gland has received much attention. In addition to this dedicated clock and photoreceptor organ, and unlike the situation in mammals, the clocks in zebrafish peripheral tissues and even cell lines are entrainable by direct exposure to light thus providing unique insight into the function and evolution of the light input pathway. Finally, the small size, low maintenance costs and high fecundity of this fish together with the availability of genetic tools make this an attractive model for forward genetic analysis of the circadian clock. Here, we review the work that has established the zebrafish as a valuable clock model organism and highlight the key questions that will shape the future direction of research. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Teratogenic Potential of Antiepileptic Drugs in the Zebrafish Model

    PubMed Central

    Lee, Sung Hak; Kang, Jung Won; Lin, Tao; Lee, Jae Eun; Jin, Dong Il

    2013-01-01

    The zebrafish model is an attractive candidate for screening of developmental toxicity during early drug development. Antiepileptic drugs (AEDs) arouse concern for the risk of teratogenicity, but the data are limited. In this study, we evaluated the teratogenic potential of seven AEDs (carbamazepine (CBZ), ethosuximide (ETX), valproic acid (VPN), lamotrigine (LMT), lacosamide (LCM), levetiracetam (LVT), and topiramate (TPM)) in the zebrafish model. Zebrafish embryos were exposed to AEDs from initiation of gastrula (5.25 hours post-fertilization (hpf)) to termination of hatching (72 hpf) which mimic the mammalian teratogenic experimental design. The lethality and teratogenic index (TI) of AEDs were determined and the TI values of each drug were compared with the US FDA human pregnancy categories. Zebrafish model was useful screening model for teratogenic potential of antiepilepsy drugs and was in concordance with in vivo mammalian data and human clinical data. PMID:24324971

  8. Making Waves: New Developments in Toxicology With the Zebrafish.

    PubMed

    Horzmann, Katharine A; Freeman, Jennifer L

    2018-05-01

    The laboratory zebrafish (Danio rerio) is now an accepted model in toxicologic research. The zebrafish model fills a niche between in vitro models and mammalian biomedical models. The developmental characteristics of the small fish are strategically being used by scientists to study topics ranging from high-throughput toxicity screens to toxicity in multi- and transgenerational studies. High-throughput technology has increased the utility of zebrafish embryonic toxicity assays in screening of chemicals and drugs for toxicity or effect. Additionally, advances in behavioral characterization and experimental methodology allow for observation of recognizable phenotypic changes after xenobiotic exposure. Future directions in zebrafish research are predicted to take advantage of CRISPR-Cas9 genome editing methods in creating models of disease and interrogating mechanisms of action with fluorescent reporters or tagged proteins. Zebrafish can also model developmental origins of health and disease and multi- and transgenerational toxicity. The zebrafish has many advantages as a toxicologic model and new methodologies and areas of study continue to expand the usefulness and application of the zebrafish.

  9. Nanomaterial Toxicity Screening in Developing Zebrafish Embryos

    EPA Science Inventory

    To assess nanomaterial vertebrate toxicity, a high-content screening assay was created using developing zebrafish, Danio rerio. This included a diverse group of nanomaterials (n=42 total) ranging from metallic (Ag, Au) and metal oxide (CeO2, CuO, TiO2, ZnO) nanoparticles, to non...

  10. Malformation of certain brain blood vessels caused by TCDD activation of Ahr2/Arnt1 signaling in developing zebrafish.

    PubMed

    Teraoka, Hiroki; Ogawa, Akira; Kubota, Akira; Stegeman, John J; Peterson, Richard E; Hiraga, Takeo

    2010-08-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). The AHR also plays important roles in normal development in mice, and AHR(-/-) mice show abnormal development of vascular structures in various blood vessels. Our previous studies revealed that Ahr type 2 (Ahr2) activation by TCDD and beta-naphthoflavone (BNF) caused a significant decrease in blood flow in the dorsal midbrain of zebrafish embryos. Here we report effects of TCDD exposure on the morphology of some blood vessels in the head of developing zebrafish. TCDD caused concentration-dependent anatomical rearrangements in the shape of the prosencephalic artery in zebrafish larvae. In contrast, no major vascular defects were recognized in the trunk and tail regions following exposure to TCDD at least at the concentrations used. Essentially, the same observations were also confirmed in BNF-exposed larvae. Knock-down of either Ahr2 or Ahr nuclear translocator type 1 (Arnt1) by morpholino oligonucleotides (MOs) protected larvae against abnormal shape of the prosencephalic artery caused by TCDD and BNF. On the other hand, knock-down of Ahr2 or Arnt1 in vehicle-exposed zebrafish larvae had no clear effect on morphology of the prosencephalic artery or trunk vessels. Ascorbic acid, an antioxidant, protected against the TCDD-induced decrease in blood flow through the prosencephalic artery, but not the abnormal morphological changes in the shape of this artery. These results indicate that activation of Ahr2/Arnt1 pathway by TCDD and BNF affects the shape of certain blood vessels in the brain of developing zebrafish. (c) 2010 Elsevier B.V. All rights reserved.

  11. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos

    PubMed Central

    Sundvik, Maria; Nieminen, Heikki J.; Salmi, Ari; Panula, Pertti; Hæggström, Edward

    2015-01-01

    Acoustic levitation provides potential to characterize and manipulate material such as solid particles and fluid in a wall-less environment. While attempts to levitate small animals have been made, the biological effects of such levitation have been scarcely documented. Here, our goal was to explore if zebrafish embryos can be levitated (peak pressures at the pressure node and anti-node: 135 dB and 144 dB, respectively) with no effects on early development. We levitated the embryos (n = 94) at 2–14 hours post fertilization (hpf) for 1000 (n = 47) or 2000 seconds (n = 47). We compared the size and number of trunk neuromasts and otoliths in sonicated samples to controls (n = 94), and found no statistically significant differences (p > 0.05). While mortality rate was lower in the control group (22.3%) compared to that in the 1000 s (34.0%) and 2000 s (42.6%) levitation groups, the differences were statistically insignificant (p > 0.05). The results suggest that acoustic levitation for less than 2000 sec does not interfere with the development of zebrafish embryos, but may affect mortality rate. Acoustic levitation could potentially be used as a non-contacting wall-less platform for characterizing and manipulating vertebrae embryos without causing major adverse effects to their development. PMID:26337364

  12. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos.

    PubMed

    Sundvik, Maria; Nieminen, Heikki J; Salmi, Ari; Panula, Pertti; Hæggström, Edward

    2015-09-04

    Acoustic levitation provides potential to characterize and manipulate material such as solid particles and fluid in a wall-less environment. While attempts to levitate small animals have been made, the biological effects of such levitation have been scarcely documented. Here, our goal was to explore if zebrafish embryos can be levitated (peak pressures at the pressure node and anti-node: 135 dB and 144 dB, respectively) with no effects on early development. We levitated the embryos (n = 94) at 2-14 hours post fertilization (hpf) for 1000 (n = 47) or 2000 seconds (n = 47). We compared the size and number of trunk neuromasts and otoliths in sonicated samples to controls (n = 94), and found no statistically significant differences (p > 0.05). While mortality rate was lower in the control group (22.3%) compared to that in the 1000 s (34.0%) and 2000 s (42.6%) levitation groups, the differences were statistically insignificant (p > 0.05). The results suggest that acoustic levitation for less than 2000 sec does not interfere with the development of zebrafish embryos, but may affect mortality rate. Acoustic levitation could potentially be used as a non-contacting wall-less platform for characterizing and manipulating vertebrae embryos without causing major adverse effects to their development.

  13. Fgf signaling is required for zebrafish tooth development.

    PubMed

    Jackman, William R; Draper, Bruce W; Stock, David W

    2004-10-01

    We have investigated fibroblast growth factor (FGF) signaling during the development of the zebrafish pharyngeal dentition with the goal of uncovering novel roles for FGFs in tooth development as well as phylogenetic and topographic diversity in the tooth developmental pathway. We found that the tooth-related expression of several zebrafish genes is similar to that of their mouse orthologs, including both epithelial and mesenchymal markers. Additionally, significant differences in gene expression between zebrafish and mouse teeth are indicated by the apparent lack of fgf8 and pax9 expression in zebrafish tooth germs. FGF receptor inhibition with SU5402 at 32 h blocked dental epithelial morphogenesis and tooth mineralization. While the pharyngeal epithelium remained intact as judged by normal pitx2 expression, not only was the mesenchymal expression of lhx6 and lhx7 eliminated as expected from mouse studies, but the epithelial expression of dlx2a, dlx2b, fgf3, and fgf4 was as well. This latter result provides novel evidence that the dental epithelium is a target of FGF signaling. However, the failure of SU5402 to block localized expression of pitx2 suggests that the earliest steps of tooth initiation are FGF-independent. Investigations of specific FGF ligands with morpholino antisense oligonucleotides revealed only a mild tooth shape phenotype following fgf4 knockdown, while fgf8 inhibition revealed only a subtle down-regulation of dental dlx2b expression with no apparent effect on tooth morphology. Our results suggest redundant FGF signals target the dental epithelium and together are required for dental morphogenesis. Further work will be required to elucidate the nature of these signals, particularly with respect to their origins and whether they act through the mesenchyme.

  14. A novel TRIM family member, Trim69, regulates zebrafish development through p53-mediated apoptosis.

    PubMed

    Han, Ruiqin; Zhao, Qing; Zong, Shudong; Miao, Shiying; Song, Wei; Wang, Linfang

    2016-05-01

    Trim69 contains the hallmark domains of a tripartite motif (TRIM) protein, including a Ring-finger domain, B-box domain, and coiled-coil domain. Trim69 is structurally and evolutionarily conserved in zebrafish, mouse, rat, human, and chimpanzee. The role of this protein is unclear, however, so we investigated its function in zebrafish development. Trim69 is extensively expressed in zebrafish adults and developing embryos-particularly in the testis, brain, ovary, and heart-and its expression decreases in a time- and stage-dependent manner. Loss of trim69 in zebrafish induces apoptosis and activates apoptosis-related processes; indeed, the tp53 pathway was up-regulated in response to the knockdown. Expression of human trim69 rescued the apoptotic phenotype, while overexpression of trim69 does not increase cellular apoptosis. Taken together, our results suggest that trim69 participates in tp53-mediated apoptosis during zebrafish development. Mol. Reprod. Dev. 83: 442-454, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. The ontogeny of sleep-wake cycles in zebrafish: a comparison to humans

    PubMed Central

    Sorribes, Amanda; Þorsteinsson, Haraldur; Arnardóttir, Hrönn; Jóhannesdóttir, Ingibjörg Þ.; Sigurgeirsson, Benjamín; de Polavieja, Gonzalo G.; Karlsson, Karl Æ.

    2013-01-01

    Zebrafish (Danio rerio) are used extensively in sleep research; both to further understanding of sleep in general and also as a model of human sleep. To date, sleep studies have been performed in larval and adult zebrafish but no efforts have been made to document the ontogeny of zebrafish sleep–wake cycles. Because sleep differs across phylogeny and ontogeny it is important to validate the use of zebrafish in elucidating the neural substrates of sleep. Here we describe the development of sleep and wake across the zebrafish lifespan and how it compares to humans. We find power-law distributions to best fit wake bout data but demonstrate that exponential distributions, previously used to describe sleep bout distributions, fail to adequately account for the data in either species. Regardless, the data reveal remarkable similarities in the ontogeny of sleep cycles in zebrafish and humans. Moreover, as seen in other organisms, zebrafish sleep levels are highest early in ontogeny and sleep and wake bouts gradually consolidate to form the adult sleep pattern. Finally, sleep percentage, bout duration, bout number, and sleep fragmentation are shown to allow for meaningful comparisons between zebrafish and human sleep. PMID:24312015

  16. Effect of rearing temperatures during embryonic development on the phenotypic sex in zebrafish (Danio rerio).

    PubMed

    Abozaid, H; Wessels, S; Hörstgen-Schwark, G

    2011-01-01

    In zebrafish, Danio rerio, a polygenic pattern of sex determination or a female heterogamety with possible influences of environmental factors is assumed. The present study focuses on the effects of an elevated water temperature (35° C) during the embryonic development on sex determination in zebrafish. Eggs derived from 3 golden females were fertilized by the same mitotic gynogenetic male and exposed to a water temperature of 35° C, applied from 5 to 10 h post fertilization (hpf), from 5 to 24 hpf, and from 5 to 48 hpf, which correspond to the following developmental stages: gastrula, gastrula to segmentation, and gastrula to pharyngula stage, respectively. Hatching and survival rates decreased with increasing exposure to high water temperatures. Reductions in the hatching and survival rates were not responsible for differences in sex ratios. Accordingly, exposition of the fertilized eggs to a high temperature (35° C) leads to an increase of the male proportion from 22.0% in the controls to a balanced sex ratio (48.3, 47.5, and 52.6%) in the gastrula, segmentation, and pharyngula groups, respectively. These results prove the possibility to change the pathway of sexual determination during early embryonic stages in zebrafish by exposure to a high water temperature. Copyright © 2011 S. Karger AG, Basel.

  17. Serotonergic and cholinergic elements of the hypoxic ventilatory response in developing zebrafish.

    PubMed

    Shakarchi, Kamila; Zachar, Peter C; Jonz, Michael G

    2013-03-01

    The chemosensory roles of gill neuroepithelial cells (NECs) in mediating the hyperventilatory response to hypoxia are not clearly defined in fish. While serotonin (5-HT) is the predominant neurotransmitter in O(2)-sensitive gill NECs, acetylcholine (ACh) plays a more prominent role in O(2) sensing in terrestrial vertebrates. The present study characterized the developmental chronology of potential serotonergic and cholinergic chemosensory pathways of the gill in the model vertebrate, the zebrafish (Danio rerio). In immunolabelled whole gills from larvae, serotonergic NECs were observed in epithelia of the gill filaments and gill arches, while non-serotonergic NECs were found primarily in the gill arches. Acclimation of developing zebrafish to hypoxia (P(O2)=75 mmHg) reduced the number of serotonergic NECs observed at 7 days post-fertilization (d.p.f.), and this effect was absent at 10 d.p.f. In vivo administration of 5-HT mimicked hypoxia by increasing ventilation frequency (f(V)) in early stage (7-10 d.p.f.) and late stage larvae (14-21 d.p.f.), while ACh increased f(V) only in late stage larvae. In time course experiments, application of ketanserin inhibited the hyperventilatory response to acute hypoxia (P(O2)=25 mmHg) at 10 d.p.f., while hexamethonium did not have this effect until 12 d.p.f. Cells immunoreactive for the vesicular acetylcholine transporter (VAChT) began to appear in the gill filaments by 14 d.p.f. Characterization in adult gills revealed that VAChT-positive cells were a separate population of neurosecretory cells of the gill filaments. These studies suggest that serotonergic and cholinergic pathways in the zebrafish gill develop at different times and contribute to the hyperventilatory response to hypoxia.

  18. Early life stage trimethyltin exposure induces ADP-ribosylation factor expression and perturbs the vascular system in zebrafish.

    PubMed

    Chen, Jiangfei; Huang, Changjiang; Truong, Lisa; La Du, Jane; Tilton, Susan C; Waters, Katrina M; Lin, Kuanfei; Tanguay, Robert L; Dong, Qiaoxiang

    2012-12-16

    Trimethyltin chloride (TMT) is an organotin contaminant, widely detected in aqueous environments, posing potential human and environmental risks. In this study, we utilized the zebrafish model to investigate the impact of transient TMT exposure on developmental progression, angiogenesis, and cardiovascular development. Embryos were waterborne exposed to a wide TMT concentration range from 8 to 96 h post fertilization (hpf). The TMT concentration that led to mortality in 50% of the embryos (LC(50)) at 96 hpf was 8.2 μM; malformations in 50% of the embryos (EC(50)) was 2.8 μM. The predominant response observed in surviving embryos was pericardial edema. Additionally, using the Tg (fli1a: EGFP) y1 transgenic zebrafish line to non-invasively monitor vascular development, TMT exposure led to distinct disarrangements in the vascular system. The most susceptible developmental stage to TMT exposure was between 48 and 72 hpf. High density whole genome microarrays were used to identify the early transcriptional changes following TMT exposure from 48 to 60 hpf or 72 hpf. In total, 459 transcripts were differentially expressed at least 2-fold (P<0.05) by TMT compared to control. Using Ingenuity Pathway Analysis (IPA) tools, it was revealed that the transcripts misregulated by TMT exposure were clustered in numerous categories including metabolic and cardiovascular disease, cellular function, cell death, molecular transport, and physiological development. In situ localization of highly elevated transcripts revealed intense staining of ADP-ribosylation factors arf3 and arf5 in the head, trunk, and tail regions. When arf5 expression was blocked by morpholinos, the zebrafish did not display the prototypical TMT-induced vascular deficits, indicating that the induction of arf5 was necessary for TMT-induced vascular toxicity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Biomarkers as a tool to assess effects of chromium (VI): comparison of responses in zebrafish early life stages and adults.

    PubMed

    Domingues, Inês; Oliveira, Rhaul; Lourenço, Joana; Grisolia, Cesar Koppe; Mendo, Sónia; Soares, A M V M

    2010-09-01

    The present work aims to compare the sensitivity of embryos and adult zebrafish to chromium (VI) (as potassium dichromate) focusing on biomarkers (cholinesterase, glutathione S-transferase and lactate dehydrogenase) as endpoints. Zebrafish eggs showed less sensitivity to Cr (VI) (96 h-LC50=145.7 mg/L) than adults (96 h-LC50=39.4 mg/L) probably due to the protective action of the chorion. However, biomarkers were much more responsive in larvae than in adults and gave clear indications about Cr (VI) mode of action: it seems to be neurotoxic (inhibited cholinesterase), to inhibit glutathione S-transferase activity and to interfere with cellular metabolic activity (changes in lactate dehydrogenase activity) in larvae. In adults, only glutathione S-transferase was responsive, showing a clear inhibition. The responsiveness of the analyzed biomarkers in larvae reinforces the idea of the usefulness of early life stage assays in the assessment of chemicals effects. Moreover, early life stage assays also contributed with relevant information regarding anomalies in larvae development and behavior. Further research should focus on the use of biomarkers to assess long term effects which are ecologically more relevant. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  20. The effects of cobalt on the development, oxidative stress, and apoptosis in zebrafish embryos.

    PubMed

    Cai, Guiquan; Zhu, Junfeng; Shen, Chao; Cui, Yimin; Du, Jiulin; Chen, Xiaodong

    2012-12-01

    Metal-on-metal hip arthroplasty has been performed with increasing frequency throughout the world, particularly in younger and more active patients, including women of childbearing age. The potential toxicity of cobalt exposure on fetus is concerned since cobalt ions generated by metal-on-metal bearings can traverse the placenta and be detected in fetal blood and amniotic fluid. This study examined the effects of cobalt exposure on early embryonic development and the mechanisms underlying its toxicity. Zebrafish embryos were exposed to a range of cobalt concentrations (0-100 mg/L) between 1 and 144 h postfertilization. The survival and early development of embryos were not significantly affected by cobalt at concentrations <100 μg/L. However, embryos exposed to higher concentrations (>100 μg/L) displayed reduced survival rates and abnormal development, including delayed hatching, aberrant morphology, retarded growth, and bradycardia. Furthermore, this study examined oxidative stress and apoptosis in embryos exposed to cobalt at concentrations of 0-500 μg/L. Lipid peroxidation levels were increased in cobalt-treated embryos at concentrations of 100 and 500 μg/L. The mRNA levels of catalase, superoxide dismutase 2, p53, caspase-3, and caspase-9 genes were upregulated in a dose-dependent manner. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays also revealed abnormal apoptotic signals in the brain, trunk, and tail when treated with 500 μg/L cobalt. These data suggest that oxidative stress and apoptosis are associated with cobalt toxicity in zebrafish embryos.

  1. Insights from zebrafish on human pigment cell disease and treatment.

    PubMed

    Cooper, Cynthia D

    2017-11-01

    Black pigment cells, melanocytes, arise early during development from multipotent neural crest cells. Melanocytes protect human skin from DNA damaging sunrays and provide color for hair, eyes, and skin. Several disorders and diseases originate from these cells, including the deadliest skin cell cancer, melanoma. Thus, melanocytes are critical for a healthy life and for protecting humans from disease. Due to the ease of visualizing pigment cells through transparent larvae skin and conserved roles for zebrafish melanophore genes to mammalian melanocyte genes, zebrafish larvae offer a biologically relevant model for understanding pigment cell development and disease in humans. This review discusses our current knowledge of melanophore biology and how zebrafish are contributing to improving how diseases of melanocytes are understood and treated in humans. Developmental Dynamics 246:889-896, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Vitamin D receptor deficiency impairs inner ear development in zebrafish.

    PubMed

    Kwon, Hye-Joo

    2016-09-16

    The biological actions of vitamin D are largely mediated through binding to the vitamin D receptor (VDR), a member of the nuclear hormone receptor family, which regulates gene expression in a wide variety of tissues and cells. Mutations in VDR gene have been implicated in ear disorders (hearing loss and balance disorder) but the mechanisms are not well established. In this study, to investigate the role of VDR in inner ear development, morpholino-mediated gene knockdown approaches were used in zebrafish model system. Two paralogs for VDR, vdra and vdrb, have been identified in zebrafish. Knockdown of vdra had no effect on ear development, whereas knockdown of vdrb displayed morphological ear defects including smaller otic vesicles with malformed semicircular canals and abnormal otoliths. Loss-of-vdrb resulted in down-regulation of pre-otic markers, pax8 and pax2a, indicating impairment of otic induction. Furthermore, zebrafish embryos lacking vdrb produced fewer sensory hair cells in the ears and showed disruption of balance and motor coordination. These data reveal that VDR signaling plays an important role in ear development. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. In vivo cell biology in zebrafish – providing insights into vertebrate development and disease

    PubMed Central

    Vacaru, Ana M.; Unlu, Gokhan; Spitzner, Marie; Mione, Marina; Knapik, Ela W.; Sadler, Kirsten C.

    2014-01-01

    ABSTRACT Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease. PMID:24481493

  4. Gene transcription ontogeny of hypothalamic-pituitary-thyroid axis development in early-life stage fathead minnow and zebrafish.

    PubMed

    Vergauwen, Lucia; Cavallin, Jenna E; Ankley, Gerald T; Bars, Chloé; Gabriëls, Isabelle J; Michiels, Ellen D G; Fitzpatrick, Krysta R; Periz-Stanacev, Jelena; Randolph, Eric C; Robinson, Serina L; Saari, Travis W; Schroeder, Anthony L; Stinckens, Evelyn; Swintek, Joe; Van Cruchten, Steven J; Verbueken, Evy; Villeneuve, Daniel L; Knapen, Dries

    2018-05-04

    The hypothalamic-pituitary-thyroid (HPT) axis is known to play a crucial role in the development of teleost fish. However, knowledge of endogenous transcription profiles of thyroid-related genes in developing teleosts remains fragmented. We selected two model teleost species, the fathead minnow (Pimephales promelas) and the zebrafish (Danio rerio), to compare the gene transcription ontogeny of the HPT axis. Control organisms were sampled at several time points during embryonic and larval development until 33 days post-fertilization. Total RNA was extracted from pooled, whole fish, and thyroid-related mRNA expression was evaluated using quantitative polymerase chain reaction. Gene transcripts examined included: thyrotropin-releasing hormone receptor (trhr), thyroid-stimulating hormone receptor (tshr), sodium-iodide symporter (nis), thyroid peroxidase (tpo), thyroglobulin (tg), transthyretin (ttr), deiodinases 1, 2, 3a, and 3b (dio1, dio2, dio3a and 3b), and thyroid hormone receptors alpha and beta (thrα and β). A loess regression method was successful in identifying maxima and minima of transcriptional expression during early development of both species. Overall, we observed great similarities between the species, including maternal transfer, at least to some extent, of almost all transcripts (confirmed in unfertilized eggs), increasing expression of most transcripts during hatching and embryo-larval transition, and indications of a fully functional HPT axis in larvae. These data will aid in the development of hypotheses on the role of certain genes and pathways during development. Furthermore, this provides a background reference dataset for designing and interpreting targeted transcriptional expression studies both for fundamental research and for applications such as toxicology. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Development of mandibular, hyoid and hypobranchial muscles in the zebrafish: homologies and evolution of these muscles within bony fishes and tetrapods

    PubMed Central

    Diogo, Rui; Hinits, Yaniv; Hughes, Simon M

    2008-01-01

    Background During vertebrate head evolution, muscle changes accompanied radical modification of the skeleton. Recent studies have suggested that muscles and their innervation evolve less rapidly than cartilage. The freshwater teleostean zebrafish (Danio rerio) is the most studied actinopterygian model organism, and is sometimes taken to represent osteichthyans as a whole, which include bony fishes and tetrapods. Most work concerning zebrafish cranial muscles has focused on larval stages. We set out to describe the later development of zebrafish head muscles and compare muscle homologies across the Osteichthyes. Results We describe one new muscle and show that the number of mandibular, hyoid and hypobranchial muscles found in four day-old zebrafish larvae is similar to that found in the adult. However, the overall configuration and/or the number of divisions of these muscles change during development. For example, the undivided adductor mandibulae of early larvae gives rise to the adductor mandibulae sections A0, A1-OST, A2 and Aω, and the protractor hyoideus becomes divided into dorsal and ventral portions in adults. There is not always a correspondence between the ontogeny of these muscles in the zebrafish and their evolution within the Osteichthyes. All of the 13 mandibular, hyoid and hypobranchial muscles present in the adult zebrafish are found in at least some other living teleosts, and all except the protractor hyoideus are found in at least some extant non-teleost actinopterygians. Of these muscles, about a quarter (intermandibularis anterior, adductor mandibulae, sternohyoideus) are found in at least some living tetrapods, and a further quarter (levator arcus palatini, adductor arcus palatini, adductor operculi) in at least some extant sarcopterygian fish. Conclusion Although the zebrafish occupies a rather derived phylogenetic position within actinopterygians and even within teleosts, with respect to the mandibular, hyoid and hypobranchial muscles it

  6. Gene expression analysis in zebrafish embryos: a potential approach to predict effect concentrations in the fish early life stage test.

    PubMed

    Weil, Mirco; Scholz, Stefan; Zimmer, Michaela; Sacher, Frank; Duis, Karen

    2009-09-01

    Based on the hypothesis that analysis of gene expression could be used to predict chronic fish toxicity, the zebrafish (Danio rerio) embryo test (DarT), developed as a replacement method for the acute fish test, was expanded to a gene expression D. rerio embryo test (Gene-DarT). The effects of 14 substances on lethal and sublethal endpoints of the DarT and on expression of potential marker genes were investigated: the aryl hydrocarbon receptor 2, cytochrome P450 1A (cypla), heat shock protein 70, fizzy-related protein 1, the transcription factors v-maf musculoaponeurotic fibrosarcoma oncogene family protein g (avian) 1 and NF-E2-p45-related factor, and heme oxygenase 1 (hmox1). After exposure of zebrafish embryos for 48 h, differential gene expression was evaluated using reverse transcriptase-polymerase chain reaction, gel electrophoresis, and densitometric analysis of the gels. All tested compounds significantly affected the expression of at least one potential marker gene, with cyp1a and hmox1 being most sensitive. Lowest-observed-effect concentrations (LOECs) for gene expression were below concentrations resulting in 10% lethal effects in the DarT. For 10 (3,4- and 3,5-dichloroaniline, 1,4-dichlorobenzene, 2,4-dinitrophenol, atrazine, parathion-ethyl, chlorotoluron, genistein, 4-nitroquinoline-1-oxide, and cadmium) out of the 14 tested substances, LOEC values derived with the Gene-DarT differ by a factor of less than 10 from LOEC values of fish early life stage tests with zebrafish. For pentachloroaniline and pentachlorobenzene, the Gene-DarT showed a 23- and 153-fold higher sensitivity, respectively, while for lindane, it showed a 13-fold lower sensitivity. For ivermectin, the Gene-DarT was by a factor of more than 1,000 less sensitive than the acute fish test. The results of the present study indicate that gene expression analysis in zebrafish embryos could principally be used to predict effect concentrations in the fish early life stage test.

  7. The Prx1 limb enhancers: targeted gene expression in developing zebrafish pectoral fins.

    PubMed

    Hernández-Vega, Amayra; Minguillón, Carolina

    2011-08-01

    Limbs represent an excellent model to study the induction, growth, and patterning of several organs. A breakthrough to study gene function in various tissues has been the characterization of regulatory elements that allow tissue-specific interference of gene function. The mouse Prx1 promoter has been used to generate limb-specific mutants and overexpress genes in tetrapod limbs. Although zebrafish possess advantages that favor their use to study limb morphogenesis, there is no driver described suitable for specifically interfering with gene function in developing fins. We report the generation of zebrafish lines that express enhanced green fluorescent protein (EGFP) driven by the mouse Prx1 enhancer in developing pectoral fins. We also describe the expression pattern of the zebrafish prrx1 genes and identify three conserved non-coding elements (CNEs) that we use to generate fin-specific EGFP reporter lines. Finally, we show that the mouse and zebrafish regulatory elements may be used to modify gene function in pectoral fins. Copyright © 2011 Wiley-Liss, Inc.

  8. Methods to study maternal regulation of germ cell specification in zebrafish

    PubMed Central

    Kaufman, O.H.; Marlow, F.L.

    2016-01-01

    The process by which the germ line is specified in the zebrafish embryo is under the control of maternal gene products that were produced during oogenesis. Zebrafish are highly amenable to microscopic observation of the processes governing maternal germ cell specification because early embryos are transparent, and the germ line is specified rapidly (within 4–5 h post fertilization). Advantages of zebrafish over other models used to study vertebrate germ cell formation include their genetic tractability, the large numbers of progeny, and the easily manipulable genome, all of which make zebrafish an ideal system for studying the genetic regulators and cellular basis of germ cell formation and maintenance. Classical molecular biology techniques, including expression analysis through in situ hybridization and forward genetic screens, have laid the foundation for our understanding of germ cell development in zebrafish. In this chapter, we discuss some of these classic techniques, as well as recent cutting-edge methodologies that have improved our ability to visualize the process of germ cell specification and differentiation, and the tracking of specific molecules involved in these processes. Additionally, we discuss traditional and novel technologies for manipulating the zebrafish genome to identify new components through loss-of-function studies of putative germ cell regulators. Together with the numerous aforementioned advantages of zebrafish as a genetic model for studying development, we believe these new techniques will continue to advance zebrafish to the forefront for investigation of the molecular regulators of germ cell specification and germ line biology. PMID:27312489

  9. Glutathione S-Transferase Protein Expression in Different Life Stages of Zebrafish (Danio rerio)

    PubMed Central

    Tierbach, Alena; Groh, Ksenia J; Schönenberger, René; Schirmer, Kristin

    2018-01-01

    Abstract Zebrafish is a widely used animal model in biomedical sciences and toxicology. Although evidence for the presence of phases I and II xenobiotic defense mechanisms in zebrafish exists on the transcriptional and enzyme activity level, little is known about the protein expression of xenobiotic metabolizing enzymes. Given the important role of glutathione S-transferases (GSTs) in phase II biotransformation, we analyzed cytosolic GST proteins in zebrafish early life stages and different organs of adult male and female fish, using a targeted proteomics approach. The established multiple reaction monitoring-based assays enable the measurement of the relative abundance of specific GST isoenzymes and GST classes in zebrafish through a combination of proteotypic peptides and peptides shared within the same class. GSTs of the classes alpha, mu, pi and rho are expressed in zebrafish embryo as early as 4 h postfertilization (hpf). The majority of GST enzymes are present at 72 hpf followed by a continuous increase in expression thereafter. In adult zebrafish, GST expression is organ dependent, with most of the GST classes showing the highest expression in the liver. The expression of a wide range of cytosolic GST isoenzymes and classes in zebrafish early life stages and adulthood supports the use of zebrafish as a model organism in chemical-related investigations. PMID:29361160

  10. The SCL gene specifies haemangioblast development from early mesoderm.

    PubMed

    Gering, M; Rodaway, A R; Göttgens, B; Patient, R K; Green, A R

    1998-07-15

    The SCL gene encodes a basic helix-loop-helix (bHLH) transcription factor that is essential for the development of all haematopoietic lineages. SCL is also expressed in endothelial cells, but its function is not essential for specification of endothelial progenitors and the role of SCL in endothelial development is obscure. We isolated the zebrafish SCL homologue and show that it was co-expressed in early mesoderm with markers of haematopoietic, endothelial and pronephric progenitors. Ectopic expression of SCL mRNA in zebrafish embryos resulted in overproduction of common haematopoietic and endothelial precursors, perturbation of vasculogenesis and concomitant loss of pronephric duct and somitic tissue. Notochord and neural tube formation were unaffected. These results provide the first evidence that SCL specifies formation of haemangioblasts, the proposed common precursor of blood and endothelial lineages. Our data also underline the striking similarities between the role of SCL in haematopoiesis/vasculogenesis and the function of other bHLH proteins in muscle and neural development.

  11. The transcriptional activator ZNF143 is essential for normal development in zebrafish

    PubMed Central

    2012-01-01

    Background ZNF143 is a sequence-specific DNA-binding protein that stimulates transcription of both small RNA genes by RNA polymerase II or III, or protein-coding genes by RNA polymerase II, using separable activating domains. We describe phenotypic effects following knockdown of this protein in developing Danio rerio (zebrafish) embryos by injection of morpholino antisense oligonucleotides that target znf143 mRNA. Results The loss of function phenotype is pleiotropic and includes a broad array of abnormalities including defects in heart, blood, ear and midbrain hindbrain boundary. Defects are rescued by coinjection of synthetic mRNA encoding full-length ZNF143 protein, but not by protein lacking the amino-terminal activation domains. Accordingly, expression of several marker genes is affected following knockdown, including GATA-binding protein 1 (gata1), cardiac myosin light chain 2 (cmlc2) and paired box gene 2a (pax2a). The zebrafish pax2a gene proximal promoter contains two binding sites for ZNF143, and reporter gene transcription driven by this promoter in transfected cells is activated by this protein. Conclusions Normal development of zebrafish embryos requires ZNF143. Furthermore, the pax2a gene is probably one example of many protein-coding gene targets of ZNF143 during zebrafish development. PMID:22268977

  12. The transcriptional activator ZNF143 is essential for normal development in zebrafish.

    PubMed

    Halbig, Kari M; Lekven, Arne C; Kunkel, Gary R

    2012-01-23

    ZNF143 is a sequence-specific DNA-binding protein that stimulates transcription of both small RNA genes by RNA polymerase II or III, or protein-coding genes by RNA polymerase II, using separable activating domains. We describe phenotypic effects following knockdown of this protein in developing Danio rerio (zebrafish) embryos by injection of morpholino antisense oligonucleotides that target znf143 mRNA. The loss of function phenotype is pleiotropic and includes a broad array of abnormalities including defects in heart, blood, ear and midbrain hindbrain boundary. Defects are rescued by coinjection of synthetic mRNA encoding full-length ZNF143 protein, but not by protein lacking the amino-terminal activation domains. Accordingly, expression of several marker genes is affected following knockdown, including GATA-binding protein 1 (gata1), cardiac myosin light chain 2 (cmlc2) and paired box gene 2a (pax2a). The zebrafish pax2a gene proximal promoter contains two binding sites for ZNF143, and reporter gene transcription driven by this promoter in transfected cells is activated by this protein. Normal development of zebrafish embryos requires ZNF143. Furthermore, the pax2a gene is probably one example of many protein-coding gene targets of ZNF143 during zebrafish development.

  13. The cytokine macrophage migration inhibitory factor (MIF) acts as a neurotrophin in the developing inner ear of the zebrafish, Danio rerio

    PubMed Central

    Shen, Yu-chi; Thompson, Deborah L.; Kuah, Meng-Kiat; Wong, Kah-Loon; Wu, Karen L.; Linn, Stephanie A.; Jewett, Ethan M.; Shu-Chien, Alexander Chong; Barald, Kate F.

    2012-01-01

    Macrophage migration inhibitory factor (MIF) plays versatile roles in the immune system. MIF is also widely expressed during embryonic development, particularly in the nervous system, although its roles in neural development are only beginning to be understood. Evidence from frogs, mice and zebrafish suggests that MIF has a major role as a neurotrophin in the early development of sensory systems, including the auditory system. Here we show that the zebrafish mif pathway is required for both sensory hair cell (HC) and sensory neuronal cell survival in the ear, for HC differentiation, semicircular canal formation, statoacoustic ganglion (SAG) development, and lateral line HC differentiation. This is consistent with our findings that MIF is expressed in the developing mammalian and avian auditory systems and promotes mouse and chick SAG neurite outgrowth and neuronal survival, demonstrating key instructional roles for MIF in vertebrate otic development. PMID:22210003

  14. Abnormal cerebellar development and ataxia in CARP VIII morphant zebrafish.

    PubMed

    Aspatwar, Ashok; Tolvanen, Martti E E; Jokitalo, Eija; Parikka, Mataleena; Ortutay, Csaba; Harjula, Sanna-Kaisa E; Rämet, Mika; Vihinen, Mauno; Parkkila, Seppo

    2013-02-01

    Congenital ataxia and mental retardation are mainly caused by variations in the genes that affect brain development. Recent reports have shown that mutations in the CA8 gene are associated with mental retardation and ataxia in humans and ataxia in mice. The gene product, carbonic anhydrase-related protein VIII (CARP VIII), is predominantly present in cerebellar Purkinje cells, where it interacts with the inositol 1,4,5-trisphosphate receptor type 1, a calcium channel. In this study, we investigated the effects of the loss of function of CARP VIII during embryonic development in zebrafish using antisense morpholino oligonucleotides against the CA8 gene. Knockdown of CA8 in zebrafish larvae resulted in a curved body axis, pericardial edema and abnormal movement patterns. Histologic examination revealed gross morphologic defects in the cerebellar region and in the muscle. Electron microscopy studies showed increased neuronal cell death in developing larvae injected with CA8 antisense morpholinos. These data suggest a pivotal role for CARP VIII during embryonic development. Furthermore, suppression of CA8 expression leads to defects in motor and coordination functions, mimicking the ataxic human phenotype. This work reveals an evolutionarily conserved function of CARP VIII in brain development and introduces a novel zebrafish model in which to investigate the mechanisms of CARP VIII-related ataxia and mental retardation in humans.

  15. Development and automation of a test of impulse control in zebrafish

    PubMed Central

    Parker, Matthew O.; Ife, Dennis; Ma, Jun; Pancholi, Mahesh; Smeraldi, Fabrizio; Straw, Chris; Brennan, Caroline H.

    2013-01-01

    Deficits in impulse control (difficulties in inhibition of a pre-potent response) are fundamental to a number of psychiatric disorders, but the molecular and cellular basis is poorly understood. Zebrafish offer a very useful model for exploring these mechanisms, but there is currently a lack of validated procedures for measuring impulsivity in fish. In mammals, impulsivity can be measured by examining rates of anticipatory responding in the 5-choice serial reaction time task (5-CSRTT), a continuous performance task where the subject is reinforced upon accurate detection of a briefly presented light in one of five distinct spatial locations. This paper describes the development of a fully-integrated automated system for testing impulsivity in adult zebrafish. We outline the development of our image analysis software and its integration with National Instruments drivers and actuators to produce the system. We also describe an initial validation of the system through a one-generation screen of chemically mutagenized zebrafish, where the testing parameters were optimized. PMID:24133417

  16. Zebrafish zic2 controls formation of periocular neural crest and choroid fissure morphogenesis.

    PubMed

    Sedykh, Irina; Yoon, Baul; Roberson, Laura; Moskvin, Oleg; Dewey, Colin N; Grinblat, Yevgenya

    2017-09-01

    The vertebrate retina develops in close proximity to the forebrain and neural crest-derived cartilages of the face and jaw. Coloboma, a congenital eye malformation, is associated with aberrant forebrain development (holoprosencephaly) and with craniofacial defects (frontonasal dysplasia) in humans, suggesting a critical role for cross-lineage interactions during retinal morphogenesis. ZIC2, a zinc-finger transcription factor, is linked to human holoprosencephaly. We have previously used morpholino assays to show zebrafish zic2 functions in the developing forebrain, retina and craniofacial cartilage. We now report that zebrafish with genetic lesions in zebrafish zic2 orthologs, zic2a and zic2b, develop with retinal coloboma and craniofacial anomalies. We demonstrate a requirement for zic2 in restricting pax2a expression and show evidence that zic2 function limits Hh signaling. RNA-seq transcriptome analysis identified an early requirement for zic2 in periocular neural crest as an activator of alx1, a transcription factor with essential roles in craniofacial and ocular morphogenesis in human and zebrafish. Collectively, these data establish zic2 mutant zebrafish as a powerful new genetic model for in-depth dissection of cell interactions and genetic controls during craniofacial complex development. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Embryotoxicity of poorly soluble nanoparticles at various stages of Zebrafish development

    NASA Astrophysics Data System (ADS)

    Morgaleva, Tamara; Morgalev, Yuri; Gosteva, Irina; Morgalev, Sergey; Nesterenya, Daria

    2017-11-01

    The biological effects of the poorly soluble nanoparticles (NPs) of different chemical nature and structural characteristics were evaluated. It was established that the Zebrafish test response to contamination of aqueous medium with nickel NPs (nNi), platinum (nPt), zinc oxide (nZnO) and cerium oxide (nCeO2) depends on the physicochemical properties of the NPs and embryo development stage. The concentrations of NPs not causing disruptions in embryonic development of Zebrafish were determined. The smallest impact on embryogenesis was exerted by nCeO2: coagulation of a small number of embryos was observed only at C = 20.0 mg/L. The same effect was observed when exposed to lower concentrations of nPt (C = 5.0 mg/L) and nNi (C = 0.1 mg/L). The greatest number of coagulated embryos was observed when grown in the DS nZnO: 37.5% of embryos died at the DS concentration of C = 0.1 mg/L. Zebrafish cultivation in the DS with low concentrations (C ≤ LC10) of nNi and nZnO caused distortions in the development of embryos: development of scoliosis, malformation of somites, inhibited mobility.

  18. Developmental social isolation affects adult behavior, social interaction, and dopamine metabolite levels in zebrafish.

    PubMed

    Shams, Soaleha; Amlani, Shahid; Buske, Christine; Chatterjee, Diptendu; Gerlai, Robert

    2018-01-01

    The zebrafish is a social vertebrate and an excellent translational model for a variety of human disorders. Abnormal social behavior is a hallmark of several human brain disorders. Social behavioral problems can arise as a result of adverse early social environment. Little is known about the effects of early social isolation in adult zebrafish. We compared zebrafish that were isolated for either short (7 days) or long duration (180 days) to socially housed zebrafish, testing their behavior across ontogenesis (ages 10, 30, 60, 90, 120, 180 days), and shoal cohesion and whole-brain monoamines and their metabolites in adulthood. Long social isolation increased locomotion and decreased shoal cohesion and anxiety in the open-field in adult. Additionally, both short and long social isolation reduced dopamine metabolite levels in response to social stimuli. Thus, early social isolation has lasting effects in zebrafish, and may be employed to generate zebrafish models of human neuropsychiatric conditions. © 2017 Wiley Periodicals, Inc.

  19. Egr1 gene knockdown affects embryonic ocular development in zebrafish.

    PubMed

    Hu, Chao-Yu; Yang, Chang-Hao; Chen, Wei-Yu; Huang, Chiu-Ju; Huang, Hsing-Yen; Chen, Muh-Shy; Tsai, Huai-Jen

    2006-10-26

    To identify the changes in zebrafish embryonic ocular development after early growth response factor 1 (Egr1) gene knockdown by Egr1-specific translation inhibitor, morpholino oligonucleotides (MO). Two kinds of Egr1-MO were microinjected separately with various dosages into one to four celled zebrafish embryos to find an optimal dose generating an acceptable mortality rate and high frequency of specific phenotype. Chordin-MO served as the positive control; a 5 mismatch MO of Egr1-MO1 and a nonspecific MO served as negative controls. We graded the Egr1 morphants according to their gross abnormalities, and measured their ocular dimensions accordingly. Western blot analysis and synthetic Egr1 mRNA rescue experiments confirmed whether the deformities were caused by Egr1 gene knockdown. Histological examination and three kinds of immunohistochemical staining were applied to identify glutamate receptor one expression in retinal ganglion cells and amacrine cells, to recognize acetylated alpha-tubulin expression which indicated axonogenesis, and to label photoreceptor cells with zpr-1 antibody. After microinjection of 8 ng Egr1-MO1 or 2 ng Egr1-MO2, 81.8% and 97.3% of larvae at 72 h postfertilization had specific defects, respectively. The gross phenotype included string-like heart, flat head, and deformed tail. The more severely deformed larvae had smaller eyes and pupils. Co-injection of 8 ng Egr1-MO1 and supplementary 12 pg synthetic Egr1 mRNA reduced the gross abnormality rate from 84.4% to 29.7%, and decreased the severity of deformities. Egr1 protein appeared in the wildtype and rescued morphants, but was lacking in the Egr1 morphants with specific deformities. Lenses of Egr1 morphants were smaller and had some residual nucleated lens fiber cells. Morphants' retinal cells arranged disorderly and compactly with thin plexiform layers. Immunohistochemical studies showed that morphants had a markedly decreased number of mature retinal ganglion cells, amacrine cells, and

  20. The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development.

    PubMed

    Parker, Matthew O; Annan, Leonette V; Kanellopoulos, Alexandros H; Brock, Alistair J; Combe, Fraser J; Baiamonte, Matteo; Teh, Muy-Teck; Brennan, Caroline H

    2014-12-03

    Exposure to moderate levels of ethanol during brain development has a number of effects on social behavior but the molecular mechanisms that mediate this are not well understood. Gaining a better understanding of these factors may help to develop therapeutic interventions in the future. Zebrafish offer a potentially useful model in this regard. Here, we introduce a zebrafish model of moderate prenatal ethanol exposure. Embryos were exposed to 20mM ethanol for seven days (48hpf-9dpf) and tested as adults for individual social behavior and shoaling. We also tested their basal anxiety with the novel tank diving test. We found that the ethanol-exposed fish displayed reductions in social approach and shoaling, and an increase in anxiety in the novel tank test. These behavioral differences corresponded to differences in hrt1aa, slc6a4 and oxtr expression. Namely, acute ethanol caused a spike in oxtr and ht1aa mRNA expression, which was followed by down-regulation at 7dpf, and an up-regulation in slc6a4 at 72hpf. This study confirms the utility of zebrafish as a model system for studying the molecular basis of developmental ethanol exposure. Furthermore, it proposes a putative developmental mechanism characterized by ethanol-induced OT inhibition leading to suppression of 5-HT and up-regulation of 5-HT1A, which leads, in turn, to possible homeostatic up-regulation of 5-HTT at 72hpf and subsequent imbalance of the 5-HT system. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. ZEBRAFISH AS AN IN VIVO MODEL FOR SUSTAINABLE CHEMICAL DESIGN.

    PubMed

    Noyes, Pamela D; Garcia, Gloria R; Tanguay, Robert L

    2016-12-21

    Heightened public awareness about the many thousands of chemicals in use and present as persistent contaminants in the environment has increased the demand for safer chemicals and more rigorous toxicity testing. There is a growing recognition that the use of traditional test models and empirical approaches is impractical for screening for toxicity the many thousands of chemicals in the environment and the hundreds of new chemistries introduced each year. These realities coupled with the green chemistry movement have prompted efforts to implement more predictive-based approaches to evaluate chemical toxicity early in product development. While used for many years in environmental toxicology and biomedicine, zebrafish use has accelerated more recently in genetic toxicology, high throughput screening (HTS), and behavioral testing. This review describes major advances in these testing methods that have positioned the zebrafish as a highly applicable model in chemical safety evaluations and sustainable chemistry efforts. Many toxic responses have been shown to be shared among fish and mammals owing to their generally well-conserved development, cellular networks, and organ systems. These shared responses have been observed for chemicals that impair endocrine functioning, development, and reproduction, as well as those that elicit cardiotoxicity and carcinogenicity, among other diseases. HTS technologies with zebrafish enable screening large chemical libraries for bioactivity that provide opportunities for testing early in product development. A compelling attribute of the zebrafish centers on being able to characterize toxicity mechanisms across multiple levels of biological organization from the genome to receptor interactions and cellular processes leading to phenotypic changes such as developmental malformations. Finally, there is a growing recognition of the links between human and wildlife health and the need for approaches that allow for assessment of real world

  2. ZEBRAFISH AS AN IN VIVO MODEL FOR SUSTAINABLE CHEMICAL DESIGN

    PubMed Central

    Noyes, Pamela D.; Garcia, Gloria R.; Tanguay, Robert L.

    2016-01-01

    Heightened public awareness about the many thousands of chemicals in use and present as persistent contaminants in the environment has increased the demand for safer chemicals and more rigorous toxicity testing. There is a growing recognition that the use of traditional test models and empirical approaches is impractical for screening for toxicity the many thousands of chemicals in the environment and the hundreds of new chemistries introduced each year. These realities coupled with the green chemistry movement have prompted efforts to implement more predictive-based approaches to evaluate chemical toxicity early in product development. While used for many years in environmental toxicology and biomedicine, zebrafish use has accelerated more recently in genetic toxicology, high throughput screening (HTS), and behavioral testing. This review describes major advances in these testing methods that have positioned the zebrafish as a highly applicable model in chemical safety evaluations and sustainable chemistry efforts. Many toxic responses have been shown to be shared among fish and mammals owing to their generally well-conserved development, cellular networks, and organ systems. These shared responses have been observed for chemicals that impair endocrine functioning, development, and reproduction, as well as those that elicit cardiotoxicity and carcinogenicity, among other diseases. HTS technologies with zebrafish enable screening large chemical libraries for bioactivity that provide opportunities for testing early in product development. A compelling attribute of the zebrafish centers on being able to characterize toxicity mechanisms across multiple levels of biological organization from the genome to receptor interactions and cellular processes leading to phenotypic changes such as developmental malformations. Finally, there is a growing recognition of the links between human and wildlife health and the need for approaches that allow for assessment of real world

  3. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish (Danio rerio) early developmental stage.

    PubMed

    Zhu, Xiaoshan; Zhu, Lin; Duan, Zhenghua; Qi, Ruiqi; Li, Yan; Lang, Yupeng

    2008-02-15

    With the emergence of manufactured nanomaterials, it is urgent to carry out researches on their potential environmental impacts and biological effects. To better understand the potential ecotoxicological impacts of metal oxide nanoparticles released to aquatic environments, the zebrafish 96-h embryo-larval bioassay was used to assess and compare the developmental toxicities of nanoscale zinc oxide (nZnO), titanium dioxide (nTiO(2)) and alumina (nAl(2)O(3)) aqueous suspensions. Toxicological endpoints such as zebrafish embryos or larvae survival, hatching rate and malformation were noted and described within 96 h of exposure. Meanwhile, a comparative experiment with their bulk counterparts (i.e., ZnO/bulk, TiO(2)/bulk and Al(2)O(3)/bulk) was conducted to understand the effect of particle size on their toxicities. The results showed that: (i) both nZnO and ZnO/bulk aqueous suspensions delayed zebrafish embryo and larva development, decreased their survival and hatching rates, and caused tissue damage. The 96-h LC(50) of nZnO and ZnO/bulk aqueous suspensions on the zebrafish survival are 1.793 mg/L and 1.550 mg/L respectively; and the 84-h EC(50) on the zebrafish embryo hatching rate are 2.065 mg/L and 2.066 mg/L respectively. Serious tissue ulceration was found on zebrafish larvae exposed to nZnO and ZnO/bulk aqueous suspensions. (ii) In contrast, neither nTiO(2) and TiO(2)/bulk nor nAl(2)O(3) and Al(2)O(3)/bulk showed any toxicity to zebrafish embryos and larvae under the same experimental condition. It revealed that the metal oxide nanoparticles with different chemical composition have different zebrafish developmental toxicities. (iii) Exposures of nTiO(2), nZnO and nAl(2)O(3) produced toxic effects on zebrafish embryos and larvae, which was not different from the effects caused by exposing to their bulk counterparts. This is the first study about the developmental toxicity of metal oxide nanoparticles, and the results demonstrate that nZnO is very toxic to

  4. Disruption of zebrafish cyclin G-associated kinase (GAK) function impairs the expression of Notch-dependent genes during neurogenesis and causes defects in neuronal development

    PubMed Central

    2010-01-01

    Background The J-domain-containing protein auxilin, a critical regulator in clathrin-mediated transport, has been implicated in Drosophila Notch signaling. To ask if this role of auxilin is conserved and whether auxilin has additional roles in development, we have investigated the functions of auxilin orthologs in zebrafish. Results Like mammals, zebrafish has two distinct auxilin-like molecules, auxilin and cyclin G-associated kinase (GAK), differing in their domain structures and expression patterns. Both zebrafish auxilin and GAK can functionally substitute for the Drosophila auxilin, suggesting that they have overlapping molecular functions. Still, they are not completely redundant, as morpholino-mediated knockdown of the ubiquitously expressed GAK alone can increase the specification of neuronal cells, a known Notch-dependent process, and decrease the expression of Her4, a Notch target gene. Furthermore, inhibition of GAK function caused an elevated level of apoptosis in neural tissues, resulting in severe degeneration of neural structures. Conclusion In support of the notion that endocytosis plays important roles in Notch signaling, inhibition of zebrafish GAK function affects embryonic neuronal cell specification and Her4 expression. In addition, our analysis suggests that zebrafish GAK has at least two functions during the development of neural tissues: an early Notch-dependent role in neuronal patterning and a late role in maintaining the survival of neural cells. PMID:20082716

  5. Inhibition of endogenous MTF-1 signaling in zebrafish embryos identifies novel roles for MTF-1 in development.

    PubMed

    O'Shields, Britton; McArthur, Andrew G; Holowiecki, Andrew; Kamper, Martin; Tapley, Jeffrey; Jenny, Matthew J

    2014-09-01

    The metal responsive element-binding transcription factor-1 (MTF-1) responds to changes in cellular zinc levels caused by zinc exposure or disruption of endogenous zinc homeostasis by heavy metals or oxygen-related stress. Here we report the functional characterization of a complete zebrafish MTF-1 in comparison with the previously identified isoform lacking the highly conserved cysteine-rich motif (Cys-X-Cys-Cys-X-Cys) found in all other vertebrate MTF-1 orthologs. In an effort to develop novel molecular tools, a constitutively nuclear dominant-negative MTF-1 (dnMTF-1) was generated as tool for inhibiting endogenous MTF-1 signaling. The in vivo efficacy of the dnMTF-1 was determined by microinjecting in vitro transcribed dnMTF-1 mRNA into zebrafish embryos (1-2 cell stage) followed by transcriptomic profiling using an Agilent 4x44K array on 28- and 36-hpf embryos. A total of 594 and 560 probes were identified as differentially expressed at 28hpf and 36hpf, respectively, with interesting overlaps between timepoints. The main categories of genes affected by the inhibition of MTF-1 signaling were: nuclear receptors and genes involved in stress signaling, neurogenesis, muscle development and contraction, eye development, and metal homeostasis, including novel observations in iron and heme homeostasis. Finally, we investigate both the transcriptional activator and transcriptional repressor role of MTF-1 in potential novel target genes identified by transcriptomic profiling during early zebrafish development. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Kinase-activating and kinase-impaired cardio-facio-cutaneous syndrome alleles have activity during zebrafish development and are sensitive to small molecule inhibitors.

    PubMed

    Anastasaki, Corina; Estep, Anne L; Marais, Richard; Rauen, Katherine A; Patton, E Elizabeth

    2009-07-15

    The Ras/MAPK pathway is critical for human development and plays a central role in the formation and progression of most cancers. Children born with germ-line mutations in BRAF, MEK1 or MEK2 develop cardio-facio-cutaneous (CFC) syndrome, an autosomal dominant syndrome characterized by a distinctive facial appearance, heart defects, skin and hair abnormalities and mental retardation. CFC syndrome mutations in BRAF promote both kinase-activating and kinase-impaired variants. CFC syndrome has a progressive phenotype, and the availability of clinically active inhibitors of the MAPK pathway prompts the important question as to whether such inhibitors might be therapeutically effective in the treatment of CFC syndrome. To study the developmental effects of CFC mutant alleles in vivo, we have expressed a panel of 28 BRAF and MEK alleles in zebrafish embryos to assess the function of human disease alleles and available chemical inhibitors of this pathway. We find that both kinase-activating and kinase-impaired CFC mutant alleles promote the equivalent developmental outcome when expressed during early development and that treatment of CFC-zebrafish embryos with inhibitors of the FGF-MAPK pathway can restore normal early development. Importantly, we find a developmental window in which treatment with a MEK inhibitor can restore the normal early development of the embryo, without the additional, unwanted developmental effects of the drug.

  7. Assessment of cardiotoxicity and effects of malathion on the early development of zebrafish (Danio rerio) using computer vision for heart rate quantification.

    PubMed

    Simoneschi, Daniele; Simoneschi, Francesco; Todd, Nancy E

    2014-06-01

    Malathion, a common organophosphate insecticide, is a proven acetylcholinesterase inhibitor and is the most applied organophosphate insecticide in the United States. The use of zebrafish as a model to study the effects of pesticides on development is an innovative approach yielding relevant implications for determining the potential toxic effects of these pesticides on humans. In this study, a simple noninvasive technique was developed to investigate the cardiotoxicity of malathion on Danio rerio embryos, and to detect and quantify its effect on heart rate. Videos were recorded under a stereomicroscope and examined with our custom-made software (FishBeat) to determine the heart rate of the embryos. The pixel average intensity frequency (PI) of the videos was computed at its maximum probability to indicate the average number of heartbeats per second. Experimental observations successfully demonstrated that this method was able to detect the heart rate of zebrafish embryos as compared with manual stopwatch counting, with no significant difference. Embryos were treated acutely with increasing malathion concentrations (33.3 and 50 μg/mL malathion) at 52, 76, and 96 hpf. Embryos treated with 33.3 μg/mL malathion had significant bradycardia at 52 and 76 hpf, whereas embryos treated with 50 μg/mL malathion presented bradycardia at all hpf. These novel observations confirmed that malathion, acting as an acetylcholinesterase inhibitor, induced heartbeat irregularity in zebrafish embryos.

  8. Zebrafish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function.

    PubMed

    Sarmah, Swapnalee; Marrs, James A

    2016-12-16

    Environmental pollution is a serious problem of the modern world that possesses a major threat to public health. Exposure to environmental pollutants during embryonic development is particularly risky. Although many pollutants have been verified as potential toxicants, there are new chemicals in the environment that need assessment. Heart development is an extremely sensitive process, which can be affected by environmentally toxic molecule exposure during embryonic development. Congenital heart defects are the most common life-threatening global health problems, and the etiology is mostly unknown. The zebrafish has emerged as an invaluable model to examine substance toxicity on vertebrate development, particularly on cardiac development. The zebrafish offers numerous advantages for toxicology research not found in other model systems. Many laboratories have used the zebrafish to study the effects of widespread chemicals in the environment on heart development, including pesticides, nanoparticles, and various organic pollutants. Here, we review the uses of the zebrafish in examining effects of exposure to external molecules during embryonic development in causing cardiac defects, including chemicals ubiquitous in the environment and illicit drugs. Known or potential mechanisms of toxicity and how zebrafish research can be used to provide mechanistic understanding of cardiac defects are discussed.

  9. Zebrafish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function

    PubMed Central

    Sarmah, Swapnalee; Marrs, James A.

    2016-01-01

    Environmental pollution is a serious problem of the modern world that possesses a major threat to public health. Exposure to environmental pollutants during embryonic development is particularly risky. Although many pollutants have been verified as potential toxicants, there are new chemicals in the environment that need assessment. Heart development is an extremely sensitive process, which can be affected by environmentally toxic molecule exposure during embryonic development. Congenital heart defects are the most common life-threatening global health problems, and the etiology is mostly unknown. The zebrafish has emerged as an invaluable model to examine substance toxicity on vertebrate development, particularly on cardiac development. The zebrafish offers numerous advantages for toxicology research not found in other model systems. Many laboratories have used the zebrafish to study the effects of widespread chemicals in the environment on heart development, including pesticides, nanoparticles, and various organic pollutants. Here, we review the uses of the zebrafish in examining effects of exposure to external molecules during embryonic development in causing cardiac defects, including chemicals ubiquitous in the environment and illicit drugs. Known or potential mechanisms of toxicity and how zebrafish research can be used to provide mechanistic understanding of cardiac defects are discussed. PMID:27999267

  10. Development of an opioid self-administration assay to study drug seeking in zebrafish.

    PubMed

    Bossé, Gabriel D; Peterson, Randall T

    2017-09-29

    The zebrafish (Danio rerio) has become an excellent tool to study mental health disorders, due to its physiological and genetic similarity to humans, ease of genetic manipulation, and feasibility of small molecule screening. Zebrafish have been shown to exhibit characteristics of addiction to drugs of abuse in non-contingent assays, including conditioned place preference, but contingent assays have been limited to a single assay for alcohol consumption. Using inexpensive electronic, mechanical, and optical components, we developed an automated opioid self-administration assay for zebrafish, enabling us to measure drug seeking and gain insight into the underlying biological pathways. Zebrafish trained in the assay for five days exhibited robust self-administration, which was dependent on the function of the μ-opioid receptor. In addition, a progressive ratio protocol was used to test conditioned animals for motivation. Furthermore, conditioned fish continued to seek the drug despite an adverse consequence and showed signs of stress and anxiety upon withdrawal of the drug. Finally, we validated our assay by confirming that self-administration in zebrafish is dependent on several of the same molecular pathways as in other animal models. Given the ease and throughput of this assay, it will enable identification of important biological pathways regulating drug seeking and could lead to the development of new therapeutic molecules to treat addiction. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of nitric oxide on neuromuscular properties of developing zebrafish embryos.

    PubMed

    Jay, Michael; Bradley, Sophie; McDearmid, Jonathan Robert

    2014-01-01

    Nitric oxide is a bioactive signalling molecule that is known to affect a wide range of neurodevelopmental processes. However, its functional relevance to neuromuscular development is not fully understood. Here we have examined developmental roles of nitric oxide during formation and maturation of neuromuscular contacts in zebrafish. Using histochemical approaches we show that elevating nitric oxide levels reduces the number of neuromuscular synapses within the axial swimming muscles whilst inhibition of nitric oxide biosynthesis has the opposite effect. We further show that nitric oxide signalling does not change synapse density, suggesting that the observed effects are a consequence of previously reported changes in motor axon branch formation. Moreover, we have used in vivo patch clamp electrophysiology to examine the effects of nitric oxide on physiological maturation of zebrafish neuromuscular junctions. We show that developmental exposure to nitric oxide affects the kinetics of spontaneous miniature end plate currents and impacts the neuromuscular drive for locomotion. Taken together, our findings implicate nitrergic signalling in the regulation of zebrafish neuromuscular development and locomotor maturation.

  12. Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function

    PubMed Central

    Dubińska-Magiera, Magda; Daczewska, Małgorzata; Lewicka, Anna; Migocka-Patrzałek, Marta; Niedbalska-Tarnowska, Joanna; Jagla, Krzysztof

    2016-01-01

    The rapid progress in medicine, agriculture, and allied sciences has enabled the development of a large amount of potentially useful bioactive compounds, such as drugs and pesticides. However, there is another side of this phenomenon, which includes side effects and environmental pollution. To avoid or minimize the uncontrollable consequences of using the newly developed compounds, researchers seek a quick and effective means of their evaluation. In achieving this goal, the zebrafish (Danio rerio) has proven to be a highly useful tool, mostly because of its fast growth and development, as well as the ability to absorb the molecules diluted in water through its skin and gills. In this review, we focus on the reports concerning the application of zebrafish as a model for assessing the impact of toxicants on skeletal muscles, which share many structural and functional similarities among vertebrates, including zebrafish and humans. PMID:27869769

  13. Making a Difference: Education at the 10th International Conference on Zebrafish Development and Genetics

    PubMed Central

    Liang, Jennifer O.; Pickart, Michael A.; Pierret, Chris; Tomasciewicz, Henry G.

    2012-01-01

    Abstract Scientists, educators, and students met at the 10th International Conference on Zebrafish Development and Genetics during the 2-day Education Workshop, chaired by Dr. Jennifer Liang and supported in part by the Genetics Society of America. The goal of the workshop was to share expertise, to discuss the challenges faced when using zebrafish in the classroom, and to articulate goals for expanding the impact of zebrafish in education. PMID:23244686

  14. Zebrafish Health Conditions in the China Zebrafish Resource Center and 20 Major Chinese Zebrafish Laboratories.

    PubMed

    Liu, Liyue; Pan, Luyuan; Li, Kuoyu; Zhang, Yun; Zhu, Zuoyan; Sun, Yonghua

    2016-07-01

    In China, the use of zebrafish as an experimental animal in the past 15 years has widely expanded. The China Zebrafish Resource Center (CZRC), which was established in 2012, is becoming one of the major resource centers in the global zebrafish community. Large-scale use and regular exchange of zebrafish resources have put forward higher requirements on zebrafish health issues in China. This article reports the current aquatic infrastructure design, animal husbandry, and health-monitoring programs in the CZRC. Meanwhile, through a survey of 20 Chinese zebrafish laboratories, we also describe the current health status of major zebrafish facilities in China. We conclude that it is of great importance to establish a widely accepted health standard and health-monitoring strategy in the Chinese zebrafish research community.

  15. Effects of probiotic administration on zebrafish development and reproduction.

    PubMed

    Carnevali, O; Avella, M A; Gioacchini, G

    2013-07-01

    As the consumption of probiotics increases worldwide, scientists focus on identifying bacterial strains able to improve human life quality and evidence the biological pathways affected by probiotic treatment. In this review, some recent observations on the effects of changes of microbiota on zebrafish metabolism were discussed. In addition, the effects of Lactobacillus rhamnosus - a component of the human gut microflora - as a diet supplement on Danio rerio were presented. When administered chronically, L. rhamnosus may affect larval development and the physiology of reproductive system in the zebrafish model. It was hypothesized exogenous L. rhamnosus accelerates larval growth and backbone development by acting on insulin-like growth factors-I (igfI) and -II (igfII), peroxisome proliferator activated receptors-α and -β, (pparα,β) vitamin D receptor-α (vdrα) and retinoic acid receptor-γ (rarγ). Gonadal differentiation was anticipated at 6weeks together with a higher expression of gnrh3 at the larval stage when L. rhamnosus was administered throughout development. Moreover, brood stock alimented with a L. rhamnosus-supplemented diet showed better reproductive performances as per follicles development, ovulated oocytes quantification and embryos quality. A plausible involvement of factors such as leptin, and kiss1 and 2 in the improvements was concluded. The observations made on the physiology of female reproduction were correlated with the gene expression of a gigantic number of factors as the aromatase cytochrome p 19 (cyp19a), the vitellogenin (vtg) and the α isoform of the E2 receptor (erα), luteinizing hormone receptor (lhr), 20-β hydroxysteroid dehydrogenase (20β-hsd), membrane progesterone receptors α and β, cyclin B, activinβA1, smad2, transforming growth factor β1 (tgfβ1), growth differentiation factor9 (gdf9) and bone morphogenetic protein15 (bmp15.) A model in which the exogenous L. rhamnosus in the digestive tract of zebrafish from the

  16. Apoptosis-related genes induced in response to ketamine during early life stages of zebrafish.

    PubMed

    Félix, Luís M; Serafim, Cindy; Valentim, Ana M; Antunes, Luís M; Matos, Manuela; Coimbra, Ana M

    2017-09-05

    Increasing evidence supports that ketamine, a widely used anaesthetic, potentiates apoptosis during development through the mitochondrial pathway of apoptosis. Defects in the apoptotic machinery can cause or contribute to the developmental abnormalities previously described in ketamine-exposed zebrafish. The involvement of the apoptotic machinery in ketamine-induced teratogenicity was addressed by assessing the apoptotic signals at 8 and 24 hpf following 20min exposure to ketamine at three stages of early zebrafish embryo development (256 cell, 50% epiboly and 1-4 somites stages). Exposure at the 256-cell stage to ketamine induced an up-regulation of casp8 and pcna at 8 hpf while changes in pcna at the mRNA level were observed at 24 hpf. After the 50% epiboly stage exposure, the mRNA levels of casp9 were increased at 8 and 24 hpf while aifm1 was affected at 24 hpf. Both tp53 and pcna expressions were increased at 8 hpf. After exposure during the 1-4 somites stage, no meaningful changes on transcript levels were observed. The distribution of apoptotic cells and the caspase-like enzymatic activities of caspase-3 and -9 were not affected by ketamine exposure. It is proposed that ketamine exposure at the 256-cell stage induced a cooperative mechanism between proliferation and cellular death while following exposure at the 50% epiboly, a p53-dependent and -independent caspase activation may occur. Finally, at the 1-4 somites stage, the defence mechanisms are already fully in place to protect against ketamine-insult. Thus, ketamine teratogenicity seems to be dependent on the functional mechanisms present in each developmental stage. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Development of an Automated Imaging Pipeline for the Analysis of the Zebrafish Larval Kidney

    PubMed Central

    Westhoff, Jens H.; Giselbrecht, Stefan; Schmidts, Miriam; Schindler, Sebastian; Beales, Philip L.; Tönshoff, Burkhard; Liebel, Urban; Gehrig, Jochen

    2013-01-01

    The analysis of kidney malformation caused by environmental influences during nephrogenesis or by hereditary nephropathies requires animal models allowing the in vivo observation of developmental processes. The zebrafish has emerged as a useful model system for the analysis of vertebrate organ development and function, and it is suitable for the identification of organotoxic or disease-modulating compounds on a larger scale. However, to fully exploit its potential in high content screening applications, dedicated protocols are required allowing the consistent visualization of inner organs such as the embryonic kidney. To this end, we developed a high content screening compatible pipeline for the automated imaging of standardized views of the developing pronephros in zebrafish larvae. Using a custom designed tool, cavities were generated in agarose coated microtiter plates allowing for accurate positioning and orientation of zebrafish larvae. This enabled the subsequent automated acquisition of stable and consistent dorsal views of pronephric kidneys. The established pipeline was applied in a pilot screen for the analysis of the impact of potentially nephrotoxic drugs on zebrafish pronephros development in the Tg(wt1b:EGFP) transgenic line in which the developing pronephros is highlighted by GFP expression. The consistent image data that was acquired allowed for quantification of gross morphological pronephric phenotypes, revealing concentration dependent effects of several compounds on nephrogenesis. In addition, applicability of the imaging pipeline was further confirmed in a morpholino based model for cilia-associated human genetic disorders associated with different intraflagellar transport genes. The developed tools and pipeline can be used to study various aspects in zebrafish kidney research, and can be readily adapted for the analysis of other organ systems. PMID:24324758

  18. Development of an automated imaging pipeline for the analysis of the zebrafish larval kidney.

    PubMed

    Westhoff, Jens H; Giselbrecht, Stefan; Schmidts, Miriam; Schindler, Sebastian; Beales, Philip L; Tönshoff, Burkhard; Liebel, Urban; Gehrig, Jochen

    2013-01-01

    The analysis of kidney malformation caused by environmental influences during nephrogenesis or by hereditary nephropathies requires animal models allowing the in vivo observation of developmental processes. The zebrafish has emerged as a useful model system for the analysis of vertebrate organ development and function, and it is suitable for the identification of organotoxic or disease-modulating compounds on a larger scale. However, to fully exploit its potential in high content screening applications, dedicated protocols are required allowing the consistent visualization of inner organs such as the embryonic kidney. To this end, we developed a high content screening compatible pipeline for the automated imaging of standardized views of the developing pronephros in zebrafish larvae. Using a custom designed tool, cavities were generated in agarose coated microtiter plates allowing for accurate positioning and orientation of zebrafish larvae. This enabled the subsequent automated acquisition of stable and consistent dorsal views of pronephric kidneys. The established pipeline was applied in a pilot screen for the analysis of the impact of potentially nephrotoxic drugs on zebrafish pronephros development in the Tg(wt1b:EGFP) transgenic line in which the developing pronephros is highlighted by GFP expression. The consistent image data that was acquired allowed for quantification of gross morphological pronephric phenotypes, revealing concentration dependent effects of several compounds on nephrogenesis. In addition, applicability of the imaging pipeline was further confirmed in a morpholino based model for cilia-associated human genetic disorders associated with different intraflagellar transport genes. The developed tools and pipeline can be used to study various aspects in zebrafish kidney research, and can be readily adapted for the analysis of other organ systems.

  19. MANF regulates dopaminergic neuron development in larval zebrafish.

    PubMed

    Chen, Y-C; Sundvik, M; Rozov, S; Priyadarshini, M; Panula, P

    2012-10-15

    Mesencephalic astrocyte derived neurotrophic factor (MANF) is recognized as a dopaminergic neurotrophic factor, which can protect dopaminergic neurons from neurotoxic damage. However, little is known about the function of MANF during the vertebrate development. Here, we report that MANF expression is widespread during embryonic development and in adult organs analyzed by qPCR and in situ hybridization in zebrafish. Knockdown of MANF expression with antisense splice-blocking morpholino oligonucleotides resulted in no apparent abnormal phenotype. Nevertheless, the dopamine level of MANF morphants was lower than that of the wild type larvae, the expression levels of the two tyrosine hydroxylase gene transcripts were decreased and a decrease in neuron number in certain groups of th1 and th2 cells in the diencephalon region in MANF morphants was observed. These defects were rescued by injection of exogenous manf mRNA. Strikingly, manf mRNA could partly restore the decrease of th1 positive cells in Nr4a2-deficient larvae. These results suggest that MANF is involved in the regulation of the development of dopaminergic system in zebrafish. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Redundant roles of PRDM family members in zebrafish craniofacial development.

    PubMed

    Ding, Hai-Lei; Clouthier, David E; Artinger, Kristin B

    2013-01-01

    PRDM proteins are evolutionary conserved Zn-Finger transcription factors that share a characteristic protein domain organization. Previous studies have shown that prdm1a is required for the specification and differentiation of neural crest cells in the zebrafish. Here we examine other members of this family, specifically prdm3, 5, and 16, in the differentiation of the zebrafish craniofacial skeleton. prdm3 and prdm16 are strongly expressed in the pharyngeal arches, while prdm5 is expressed specifically in the area of the forming neurocranium. Knockdown of prdm3 and prdm16 results in a reduction in the neural crest markers dlx2a and barx1 and defects in both the viscerocranium and the neurocranium. The knockdown of prdm3 and prdm16 in combination is additive in the neurocranium, but not in the viscerocranium. Injection of sub-optimal doses of prdm1a with prdm3 or prdm16 Morpholinos together leads to more severe phenotypes in the viscerocranium and neurocranium. prdm5 mutants have defects in the neurocranium and prdm1a and prdm5 double mutants also show more severe phenotypes. Overall, our data reveal that prdm3, 5, and 16 are involved in the zebrafish craniofacial development and that prdm1a may interact with prdm3, 5, and 16 in the formation of the craniofacial skeleton in zebrafish. Copyright © 2012 Wiley Periodicals, Inc.

  1. Redundant Roles of PRDM Family Members in Zebrafish Craniofacial Development

    PubMed Central

    Ding, Hai-Lei; Clouthier, David E.; Artinger, Kristin B.

    2014-01-01

    Background PRDM proteins are evolutionary conserved Zn-Finger transcription factors that share a characteristic protein domain organization. Previous studies have shown that prdm1a is required for the specification and differentiation of neural crest cells in the zebrafish. Results Here we examine other members of this family, specifically prdm3, 5, and 16, in the differentiation of the zebrafish craniofacial skeleton. prdm3 and prdm16 are strongly expressed in the pharyngeal arches, while prdm5 is expressed specifically in the area of the forming neurocranium. Knockdown of prdm3 and prdm16 results in a reduction in the neural crest markers dlx2a and barx1 and defects in both the viscerocranium and the neurocranium. The knockdown of prdm3 and prdm16 in combination is additive in the neurocranium, but not in the viscerocranium. Injection of sub-optimal doses of prdm1a with prdm3 or prdm16 Morpholinos together leads to more severe phenotypes in the viscerocranium and neurocranium. prdm5 mutants have defects in the neurocranium and prdm1a and prdm5 double mutants also show more severe phenotypes. Conclusions Overall, our data reveal that prdm3, 5, and 16 are involved in the zebrafish craniofacial development and that prdm1a may interact with prdm3, 5, and 16 in the formation of the craniofacial skeleton in zebrafish. PMID:23109401

  2. Vitamin D receptor deficiency impairs inner ear development in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Hye-Joo; Biology Department, Princess Nourah University, Riyadh 11671

    The biological actions of vitamin D are largely mediated through binding to the vitamin D receptor (VDR), a member of the nuclear hormone receptor family, which regulates gene expression in a wide variety of tissues and cells. Mutations in VDR gene have been implicated in ear disorders (hearing loss and balance disorder) but the mechanisms are not well established. In this study, to investigate the role of VDR in inner ear development, morpholino-mediated gene knockdown approaches were used in zebrafish model system. Two paralogs for VDR, vdra and vdrb, have been identified in zebrafish. Knockdown of vdra had no effectmore » on ear development, whereas knockdown of vdrb displayed morphological ear defects including smaller otic vesicles with malformed semicircular canals and abnormal otoliths. Loss-of-vdrb resulted in down-regulation of pre-otic markers, pax8 and pax2a, indicating impairment of otic induction. Furthermore, zebrafish embryos lacking vdrb produced fewer sensory hair cells in the ears and showed disruption of balance and motor coordination. These data reveal that VDR signaling plays an important role in ear development. - Highlights: • VDR signaling is involved in ear development. • Knockdown of vdrb causes inner ear malformations during embryogenesis. • Knockdown of vdrb affects otic placode induction. • Knockdown of vdrb reduces the number of sensory hair cells in the inner ear. • Knockdown of vdrb disrupts balance and motor coordination.« less

  3. Urban stormwater runoff negatively impacts lateral line development in larval zebrafish and salmon embryos.

    PubMed

    Young, Alexander; Kochenkov, Valentin; McIntyre, Jenifer K; Stark, John D; Coffin, Allison B

    2018-02-12

    After a storm, water often runs off of impervious urban surfaces directly into aquatic ecosystems. This stormwater runoff is a cocktail of toxicants that have serious effects on the ecological integrity of aquatic habitats. Zebrafish that develop in stormwater runoff suffer from cardiovascular toxicity and impaired growth, but the effects of stormwater on fish sensory systems are not understood. Our study investigated the effect of stormwater on hair cells of the lateral line in larval zebrafish and coho salmon. Our results showed that although toxicants in stormwater did not kill zebrafish hair cells, these cells did experience damage. Zebrafish developing in stormwater also experienced impaired growth, fewer neuromasts in the lateral line, and fewer hair cells per neuromast. A similar reduction in neuromast number was observed in coho salmon reared in stormwater. Bioretention treatment, intended to filter out harmful constituents of stormwater, rescued the lateral line defects in zebrafish but not in coho salmon, suggesting that not all of the harmful constituents were removed by the filtration media and that salmonids are particularly sensitive to aquatic toxicants. Collectively, these data demonstrate that sub-lethal exposure to stormwater runoff negatively impacts a fish sensory system, which may have consequences for organismal fitness.

  4. Zebrafish bcl2l is a survival factor in thyroid development.

    PubMed

    Porreca, Immacolata; De Felice, Elena; Fagman, Henrik; Di Lauro, Roberto; Sordino, Paolo

    2012-06-15

    Regulated cell death, defined in morphological terms as apoptosis, is crucial for organ morphogenesis. While differentiation of the thyroid gland has been extensively studied, nothing is yet known about the survival mechanisms involved in the development of this endocrine gland. Using the zebrafish model system, we aim to understand whether genes belonging to the Bcl-2 family that control apoptosis are implicated in regulation of cell survival during thyroid development. Evidence of strong Bcl-2 gene expression in mouse thyroid precursors prompted us to investigate the functions played by its zebrafish homologs during thyroid development. We show that the bcl2-like (bcl2l) gene is expressed in the zebrafish thyroid primordium. Morpholino-mediated knockdown and mutant analyses revealed that bcl2l is crucial for thyroid cell survival and that this function is tightly modulated by the transcription factors pax2a, nk2.1a and hhex. Also, the bcl2l gene appears to control a caspase-3-dependent apoptotic mechanism during thyroid development. Thyroid precursor cells require an actively maintained survival mechanism to properly proceed through development. The bcl2l gene operates in the inhibition of cell death under direct regulation of a thyroid specific set of transcription factors. This is the first demonstration of an active mechanism to ensure survival of the thyroid primordium during morphogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. A Versatile Mounting Method for Long Term Imaging of Zebrafish Development.

    PubMed

    Hirsinger, Estelle; Steventon, Ben

    2017-01-26

    Zebrafish embryos offer an ideal experimental system to study complex morphogenetic processes due to their ease of accessibility and optical transparency. In particular, posterior body elongation is an essential process in embryonic development by which multiple tissue deformations act together to direct the formation of a large part of the body axis. In order to observe this process by long-term time-lapse imaging it is necessary to utilize a mounting technique that allows sufficient support to maintain samples in the correct orientation during transfer to the microscope and acquisition. In addition, the mounting must also provide sufficient freedom of movement for the outgrowth of the posterior body region without affecting its normal development. Finally, there must be a certain degree in versatility of the mounting method to allow imaging on diverse imaging set-ups. Here, we present a mounting technique for imaging the development of posterior body elongation in the zebrafish D. rerio. This technique involves mounting embryos such that the head and yolk sac regions are almost entirely included in agarose, while leaving out the posterior body region to elongate and develop normally. We will show how this can be adapted for upright, inverted and vertical light-sheet microscopy set-ups. While this protocol focuses on mounting embryos for imaging for the posterior body, it could easily be adapted for the live imaging of multiple aspects of zebrafish development.

  6. Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus.

    PubMed

    Olsen, Ansgar S; Sarras, Michael P; Intine, Robert V

    2010-01-01

    The zebrafish (Danio rerio) is an established model organism for the study of developmental processes, human disease, and tissue regeneration. We report that limb regeneration is severely impaired in our newly developed adult zebrafish model of type I diabetes mellitus. Intraperitoneal streptozocin injection of adult, wild-type zebrafish results in a sustained hyperglycemic state as determined by elevated fasting blood glucose values and increased glycation of serum protein. Serum insulin levels are also decreased and pancreas immunohistochemisty revealed a decreased amount of insulin signal in hyperglycemic fish. Additionally, the diabetic complications of retinal thinning and glomerular basement membrane thickening (early signs of retinopathy and nephropathy) resulting from the hyperglycemic state were evident in streptozocin-injected fish at 3 weeks. Most significantly, limb regeneration, following caudal fin amputation, is severely impaired in diabetic zebrafish and nonspecific toxic effects outside the pancreas were not found to contribute to impaired limb regeneration. This experimental system using adult zebrafish facilitates a broad spectrum of genetic and molecular approaches to study regeneration in the diabetic background. © 2010 by the Wound Healing Society.

  7. Expression of CALR mutants causes mpl-dependent thrombocytosis in zebrafish.

    PubMed

    Lim, K-H; Chang, Y-C; Chiang, Y-H; Lin, H-C; Chang, C-Y; Lin, C-S; Huang, L; Wang, W-T; Gon-Shen Chen, C; Chou, W-C; Kuo, Y-Y

    2016-10-07

    CALR mutations are identified in about 30% of JAK2/MPL-unmutated myeloproliferative neoplasms (MPNs) including essential thrombocythemia (ET) and primary myelofibrosis. Although the molecular pathogenesis of CALR mutations leading to MPNs has been studied using in vitro cell lines models, how mutant CALR may affect developmental hematopoiesis remains unknown. Here we took advantage of the zebrafish model to examine the effects of mutant CALR on early hematopoiesis and model human CALR-mutated MPNs. We identified three zebrafish genes orthologous to human CALR, referred to as calr, calr3a and calr3b. The expression of CALR-del52 and CALR-ins5 mutants caused an increase in the hematopoietic stem/progenitor cells followed by thrombocytosis without affecting normal angiogenesis. The expression of CALR mutants also perturbed early developmental hematopoiesis in zebrafish. Importantly, morpholino knockdown of mpl but not epor or csf3r could significantly attenuate the effects of mutant CALR. Furthermore, the expression of mutant CALR caused jak-stat signaling activation in zebrafish that could be blocked by JAK inhibitors (ruxolitinib and fedratinib). These findings showed that mutant CALR activates jak-stat signaling through an mpl-dependent mechanism to mediate pathogenic thrombopoiesis in zebrafish, and illustrated that the signaling machinery related to mutant CALR tumorigenesis are conserved between human and zebrafish.

  8. Zebrafish Pronephros Development.

    PubMed

    Naylor, Richard W; Qubisi, Sarah S; Davidson, Alan J

    The pronephros is the first kidney type to form in vertebrate embryos. The first step of pronephrogenesis in the zebrafish is the formation of the intermediate mesoderm during gastrulation, which occurs in response to secreted morphogens such as BMPs and Nodals. Patterning of the intermediate mesoderm into proximal and distal cell fates is induced by retinoic acid signaling with downstream transcription factors including wt1a, pax2a, pax8, hnf1b, sim1a, mecom, and irx3b. In the anterior intermediate mesoderm, progenitors of the glomerular blood filter migrate and fuse at the midline and recruit a blood supply. More posteriorly localized tubule progenitors undergo epithelialization and fuse with the cloaca. The Notch signaling pathway regulates the formation of multi-ciliated cells in the tubules and these cells help propel the filtrate to the cloaca. The lumenal sheer stress caused by flow down the tubule activates anterior collective migration of the proximal tubules and induces stretching and proliferation of the more distal segments. Ultimately these processes create a simple two-nephron kidney that is capable of reabsorbing and secreting solutes and expelling excess water-processes that are critical to the homeostasis of the body fluids. The zebrafish pronephric kidney provides a simple, yet powerful, model system to better understand the conserved molecular and cellular progresses that drive nephron formation, structure, and function.

  9. Developmental stage-specific regulation of the circadian clock by temperature in zebrafish.

    PubMed

    Lahiri, Kajori; Froehlich, Nadine; Heyd, Andreas; Foulkes, Nicholas S; Vallone, Daniela

    2014-01-01

    The circadian clock enables animals to adapt their physiology and behaviour in anticipation of the day-night cycle. Light and temperature represent two key environmental timing cues (zeitgebers) able to reset this mechanism and so maintain its synchronization with the environmental cycle. One key challenge is to unravel how the regulation of the clock by zeitgebers matures during early development. The zebrafish is an ideal model for studying circadian clock ontogeny since the process of development occurs ex utero in an optically transparent chorion and many tools are available for genetic analysis. However, the role played by temperature in regulating the clock during zebrafish development is poorly understood. Here, we have established a clock-regulated luciferase reporter transgenic zebrafish line (Tg (-3.1) per1b::luc) to study the effects of temperature on clock entrainment. We reveal that under complete darkness, from an early developmental stage onwards (48 to 72 hpf), exposure to temperature cycles is a prerequisite for the establishment of self-sustaining rhythms of zfper1b, zfaanat2, and zfirbp expression and also for circadian cell cycle rhythms. Furthermore, we show that following the 5-9 somite stage, the expression of zfper1b is regulated by acute temperature shifts.

  10. Identification and expression analysis of zebrafish polypeptide α-N-acetylgalactosaminyltransferase Y-subfamily genes during embryonic development.

    PubMed

    Nakayama, Yoshiaki; Nakamura, Naosuke; Kawai, Tamiko; Kaneda, Eiichi; Takahashi, Yui; Miyake, Ayumi; Itoh, Nobuyuki; Kurosaka, Akira

    2014-09-01

    Mucin-type glycosylation is one of the most common posttranslational modifications of secretory and membrane proteins and has diverse physiological functions. The initial biosynthesis of mucin-type carbohydrates is catalyzed by UDP-GalNAc: polypeptide α-N-acetylgalactosaminyltransferases (GalNAc-Ts) encoded by GALNT genes. Among these, GalNAc-T8, -T9, -T17, and -T18 form a characteristic subfamily called "Y-subfamily" and have no or very low in vitro transferase activities when assayed with typical mucin peptides as acceptor substrates. Although the Y-subfamily isozymes have been reported to be possibly involved in various diseases, their in vivo functions have not been reported. Here, we isolated zebrafish Y-subfamily galnt genes, and determined their spatial and temporal expressions during the early development of zebrafish. Our study demonstrated that all the Y-subfamily isozymes were well conserved in zebrafish with GalNAc-T18 having two orthologs, galnt18a and galnt18b, and with the other three isozymes each having a corresponding ortholog, galnt8, galnt9, and galnt17. The galnt8 was expressed in the cephalic mesoderm and hatching gland during early developmental stages, and differently expressed in the head, somatic muscles, and liver in the later stages. The other three orthologs also exhibited the characteristic expression patterns, although their expressions were generally strong in the nervous systems. In addition to the expression in the brain, galnt17 and galnt18a were expressed in the somitic muscles, and galnt18a and galnt18b in the notochord. These expression patterns may contribute to the functional analysis of the Y-subfamily, whose physiological roles still remain to be elucidated. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Diving deeper into Zebrafish development of social behavior: analyzing high resolution data.

    PubMed

    Buske, Christine; Gerlai, Robert

    2014-08-30

    Vertebrate model organisms have been utilized in high throughput screening but only with substantial cost and human capital investment. The zebrafish is a vertebrate model species that is a promising and cost effective candidate for efficient high throughput screening. Larval zebrafish have already been successfully employed in this regard (Lessman, 2011), but adult zebrafish also show great promise. High throughput screening requires the use of a large number of subjects and collection of substantial amount of data. Collection of data is only one of the demanding aspects of screening. However, in most screening approaches that involve behavioral data the main bottleneck that slows throughput is the time consuming aspect of analysis of the collected data. Some automated analytical tools do exist, but often they only work for one subject at a time, eliminating the possibility of fully utilizing zebrafish as a screening tool. This is a particularly important limitation for such complex phenotypes as social behavior. Testing multiple fish at a time can reveal complex social interactions but it may also allow the identification of outliers from a group of mutagenized or pharmacologically treated fish. Here, we describe a novel method using a custom software tool developed within our laboratory, which enables tracking multiple fish, in combination with a sophisticated analytical approach for summarizing and analyzing high resolution behavioral data. This paper focuses on the latter, the analytic tool, which we have developed using the R programming language and environment for statistical computing. We argue that combining sophisticated data collection methods with appropriate analytical tools will propel zebrafish into the future of neurobehavioral genetic research. Copyright © 2014. Published by Elsevier B.V.

  12. Zebrafish as tools for drug discovery.

    PubMed

    MacRae, Calum A; Peterson, Randall T

    2015-10-01

    The zebrafish has become a prominent vertebrate model for disease and has already contributed to several examples of successful phenotype-based drug discovery. For the zebrafish to become useful in drug development more broadly, key hurdles must be overcome, including a more comprehensive elucidation of the similarities and differences between human and zebrafish biology. Recent studies have begun to establish the capabilities and limitations of zebrafish for disease modelling, drug screening, target identification, pharmacology, and toxicology. As our understanding increases and as the technologies for manipulating zebrafish improve, it is hoped that the zebrafish will have a key role in accelerating the emergence of precision medicine.

  13. Discovery, characterization and expression of a novel zebrafish gene, znfr, important for notochord formation.

    PubMed

    Xu, Yan; Zou, Peng; Liu, Yao; Deng, Fengjiao

    2010-06-01

    Genes specifically expressed in the notochord may be crucial for proper notochord development. Using the digital differential display program offered by the National Center for Biotechnology Information, we identified a novel EST sequence from a zebrafish ovary library (No. XM_701450). The full-length cDNA of this transcript was cloned by performing 3' and 5'-RACE and was further confirmed by PCR and sequencing. The resulting 614 bp gene was found to encode a novel 94 amino acid protein that did not share significant homology with any other known protein. Characterization of the genomic sequence revealed that the gene spanned 4.9 kb and was composed of four exons and three introns. RT-PCR gene expression analysis revealed that our gene of interest was expressed in ovary, kidney, brain, mature oocytes and during the early stages of embryogenesis. During embryonic development, znfr mRNA was found to be expressed in the embryonic shield, chordamesoderm and the vacuolated notochord cells by in situ hybridization. Based on this information, we hypothesize that this novel gene is an important maternal factor required for zebrafish notochord formation during early embryonic development. We have thus named this gene znfr (zebrafish notochord formation related).

  14. Transcription factor COUP-TFII is indispensable for venous and lymphatic development in zebrafish and Xenopus laevis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranguren, Xabier L., E-mail: xabier.lopezaranguren@med.kuleuven.be; Beerens, Manu, E-mail: manu.beerens@med.kuleuven.be; Vandevelde, Wouter, E-mail: woutervandevelde@gmail.com

    Highlights: {yields} COUP-TFII deficiency in zebrafish affects arterio-venous EC specification. {yields} COUP-TFII is indispensable for lymphatic development in zebrafish. {yields} COUP-TFII knockdown in Xenopus disrupts lymphatic EC differentiation and migration. {yields} COUP-TFII's role in EC fate decisions is evolutionary conserved. -- Abstract: Transcription factors play a central role in cell fate determination. Gene targeting in mice revealed that Chicken Ovalbumin Upstream Promoter-Transcription Factor II (COUP-TFII, also known as Nuclear Receptor 2F2 or NR2F2) induces a venous phenotype in endothelial cells (ECs). More recently, NR2F2 was shown to be required for initiating the expression of Prox1, responsible for lymphatic commitment ofmore » venous ECs. Small animal models like zebrafish embryos and Xenopus laevis tadpoles have been very useful to elucidate mechanisms of (lymph) vascular development. Therefore, the role of NR2F2 in (lymph) vascular development was studied by eliminating its expression in these models. Like in mice, absence of NR2F2 in zebrafish resulted in distinct vascular defects including loss of venous marker expression, major trunk vessel fusion and vascular leakage. Both in zebrafish and Xenopus the development of the main lymphatic structures was severely hampered. NR2F2 knockdown significantly decreased prox1 expression in zebrafish ECs and the same manipulation affected lymphatic (L)EC commitment, migration and function in Xenopus tadpoles. Therefore, the role of NR2F2 in EC fate determination is evolutionary conserved.« less

  15. Myosin-1 inhibition by PClP affects membrane shape, cortical actin distribution and lipid droplet dynamics in early Zebrafish embryos

    PubMed Central

    Gupta, Prabuddha; Martin, René; Knölker, Hans-Joachim; Nihalani, Deepak; Kumar Sinha, Deepak

    2017-01-01

    Myosin-1 (Myo1) represents a mechanical link between the membrane and actin-cytoskeleton in animal cells. We have studied the effect of Myo1 inhibitor PClP in 1–8 cell Zebrafish embryos. Our results indicate a unique involvement of Myo1 in early development of Zebrafish embryos. Inhibition of Myo1 (by PClP) and Myo2 (by Blebbistatin) lead to arrest in cell division. While Myo1 isoforms appears to be important for both the formation and the maintenance of cleavage furrows, Myo2 is required only for the formation of furrows. We found that the blastodisc of the embryo, which contains a thick actin cortex (~13 μm), is loaded with cortical Myo1. Myo1 appears to be crucial for maintaining the blastodisc morphology and the actin cortex thickness. In addition to cell division and furrow formation, inhibition of Myo1 has a drastic effect on the dynamics and distribution of lipid droplets (LDs) in the blastodisc near the cleavage furrow. All these results above are effects of Myo1 inhibition exclusively; Myo2 inhibition by blebbistatin does not show such phenotypes. Therefore, our results demonstrate a potential role for Myo1 in the maintenance and formation of furrow, blastodisc morphology, cell-division and LD organization within the blastodisc during early embryogenesis. PMID:28678859

  16. Interactions between mural cells and endothelial cells stabilize the developing zebrafish dorsal aorta

    PubMed Central

    Stratman, Amber N.; Pezoa, Sofia A.; Farrelly, Olivia M.; Castranova, Daniel; Dye, Louis E.; Butler, Matthew G.; Sidik, Harwin; Talbot, William S.

    2017-01-01

    Mural cells (vascular smooth muscle cells and pericytes) play an essential role in the development of the vasculature, promoting vascular quiescence and long-term vessel stabilization through their interactions with endothelial cells. However, the mechanistic details of how mural cells stabilize vessels are not fully understood. We have examined the emergence and functional role of mural cells investing the dorsal aorta during early development using the zebrafish. Consistent with previous literature, our data suggest that cells ensheathing the dorsal aorta emerge from a sub-population of cells in the adjacent sclerotome. Inhibition of mural cell recruitment to the dorsal aorta through disruption of pdgfr signaling leads to a reduced vascular basement membrane, which in turn results in enhanced dorsal aorta vessel elasticity and failure to restrict aortic diameter. Our results provide direct in vivo evidence for a functional role for mural cells in patterning and stabilization of the early vasculature through production and maintenance of the vascular basement membrane to prevent abnormal aortic expansion and elasticity. PMID:27913637

  17. Advancing epilepsy treatment through personalized genetic zebrafish models.

    PubMed

    Griffin, A; Krasniak, C; Baraban, S C

    2016-01-01

    With an increase in the number of disease causing genetic mutations identified from epilepsy cohorts, zebrafish are proving to be an attractive vertebrate model for functional analysis of these allele variants. Not only do zebrafish have conserved gene functions, but larvae harboring mutations in identified human epileptic genes show spontaneous seizure activity and mimic the convulsive behavioral movements observed in humans. With zebrafish being compatible with medium to high-throughput screening, they are also proving to be a unique and powerful system for early preclinical drug screening, including novel target identification, pharmacology, and toxicology. Additionally, with recent advances in genomic engineering technologies, it is now possible to study the precise pathophysiology of patient-specific gene mutations in zebrafish. The following sections highlight how the unique attributes of zebrafish, in combination with genetic modifications, are continuing to transform our understanding of epilepsy and help identify personalized therapeutics for specific patient cohorts. © 2016 Elsevier B.V. All rights reserved.

  18. Zebrafish larvae require specific strains of bacteria for neurobehavioral development

    EPA Science Inventory

    There is an increasing appreciation of the relationship between gut microbiota and nervous system development and function. We previously showed that axenic (microbe-free) larvae are hyperactive at 10 days post fertilization (dpf) relative to colonized zebrafish larvae. Interesti...

  19. The zebrafish as a model system to study cardiovascular development.

    PubMed

    Stainier, D Y; Fishman, M C

    1994-01-01

    The zebrafish, Brachydanio rerio, is rapidly becoming a system of choice for vertebrate developmental biologists. It presents unique embryological attributes and is amenable to saturation style mutagenesis, a powerful approach that, in invertebrates, has already led to the identification of a large number of key developmental genes. Since fertilization is external, the zebrafish embryo develops in the dish and is thus accessible for continued observation and manipulation at all stages of development. Furthermore, because the embryo is transparent, the developing heart and vessels can be resolved at the single-cell level. A large number of mutations that affect the development of cardiovascular form and function have recently been isolated from large-scale genetic screens for zygotic embryonic lethals. Our further understanding of the development of the cardiovascular system is important not only because of the high incidence, and familial inheritance, of congenital abnormalities, but also because it should lead to novel, differentiation-based strategies for the analysis and therapy of the diseased state. Copyright © 1994. Published by Elsevier Inc.

  20. Identification of tissues and patterning events required for distinct steps in early migration of zebrafish primordial germ cells.

    PubMed

    Weidinger, G; Wolke, U; Köprunner, M; Klinger, M; Raz, E

    1999-12-01

    In many organisms, the primordial germ cells have to migrate from the position where they are specified towards the developing gonad where they generate gametes. Extensive studies of the migration of primordial germ cells in Drosophila, mouse, chick and Xenopus have identified somatic tissues important for this process and demonstrated a role for specific molecules in directing the cells towards their target. In zebrafish, a unique situation is found in that the primordial germ cells, as marked by expression of vasa mRNA, are specified in random positions relative to the future embryonic axis. Hence, the migrating cells have to navigate towards their destination from various starting positions that differ among individual embryos. Here, we present a detailed description of the migration of the primordial germ cells during the first 24 hours of wild-type zebrafish embryonic development. We define six distinct steps of migration bringing the primordial germ cells from their random positions before gastrulation to form two cell clusters on either side of the midline by the end of the first day of development. To obtain information on the origin of the positional cues provided to the germ cells by somatic tissues during their migration, we analyzed the migration pattern in mutants, including spadetail, swirl, chordino, floating head, cloche, knypek and no isthmus. In mutants with defects in axial structures, paraxial mesoderm or dorsoventral patterning, we find that certain steps of the migration process are specifically affected. We show that the paraxial mesoderm is important for providing proper anteroposterior information to the migrating primordial germ cells and that these cells can respond to changes in the global dorsoventral coordinates. In certain mutants, we observe accumulation of ectopic cells in different regions of the embryo. These ectopic cells can retain both morphological and molecular characteristics of primordial germ cells, suggesting that, in

  1. Large-scale mapping of mutations affecting zebrafish development.

    PubMed

    Geisler, Robert; Rauch, Gerd-Jörg; Geiger-Rudolph, Silke; Albrecht, Andrea; van Bebber, Frauke; Berger, Andrea; Busch-Nentwich, Elisabeth; Dahm, Ralf; Dekens, Marcus P S; Dooley, Christopher; Elli, Alexandra F; Gehring, Ines; Geiger, Horst; Geisler, Maria; Glaser, Stefanie; Holley, Scott; Huber, Matthias; Kerr, Andy; Kirn, Anette; Knirsch, Martina; Konantz, Martina; Küchler, Axel M; Maderspacher, Florian; Neuhauss, Stephan C; Nicolson, Teresa; Ober, Elke A; Praeg, Elke; Ray, Russell; Rentzsch, Brit; Rick, Jens M; Rief, Eva; Schauerte, Heike E; Schepp, Carsten P; Schönberger, Ulrike; Schonthaler, Helia B; Seiler, Christoph; Sidi, Samuel; Söllner, Christian; Wehner, Anja; Weiler, Christian; Nüsslein-Volhard, Christiane

    2007-01-09

    Large-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers. We have selected a set of microsatellite markers and developed methods and scoring criteria suitable for efficient, high-throughput genome scanning. We have used these methods to successfully obtain a rough map position for 319 mutant loci from the Tübingen I mutagenesis screen and subsequent screening of the mutant collection. For 277 of these the corresponding gene is not yet identified. Mapping was successful for 80 % of the tested loci. By comparing 21 mutation and gene positions of cloned mutations we have validated the correctness of our linkage group assignments and estimated the standard error of our map positions to be approximately 6 cM. By obtaining rough map positions for over 300 zebrafish loci with developmental phenotypes, we have generated a dataset that will be useful not only for cloning of the affected genes, but also to suggest allelism of mutations with similar phenotypes that will be identified in future screens. Furthermore this work validates the usefulness of our methodology for rapid, systematic and inexpensive microsatellite mapping of zebrafish mutations.

  2. Identification and expression analysis of zebrafish glypicans during embryonic development.

    PubMed

    Gupta, Mansi; Brand, Michael

    2013-01-01

    Heparan sulfate Proteoglycans (HSPG) are ubiquitous molecules with indispensable functions in various biological processes. Glypicans are a family of HSPG's, characterized by a Gpi-anchor which directs them to the cell surface and/or extracellular matrix where they regulate growth factor signaling during development and disease. We report the identification and expression pattern of glypican genes from zebrafish. The zebrafish genome contains 10 glypican homologs, as opposed to six in mammals, which are highly conserved and are phylogenetically related to the mammalian genes. Some of the fish glypicans like Gpc1a, Gpc3, Gpc4, Gpc6a and Gpc6b show conserved synteny with their mammalian cognate genes. Many glypicans are expressed during the gastrulation stage, but their expression becomes more tissue specific and defined during somitogenesis stages, particularly in the developing central nervous system. Existence of multiple glypican orthologs in fish with diverse expression pattern suggests highly specialized and/or redundant function of these genes during embryonic development.

  3. Blocking VEGF signaling delays development of replacement teeth in zebrafish.

    PubMed

    Crucke, J; Huysseune, A

    2015-01-01

    The dentition in zebrafish is extremely and richly vascularized, but the function of the vasculature, in view of the continuous replacement of the teeth, remains elusive. Through application of SU5416, a vascular endothelial growth factor receptor inhibitor, we studied the role of the blood vessels in the dentition of the zebrafish. We were unable to show an effect on the development of first-generation teeth as well as first tooth replacement. However, in juvenile fish, a delay was observed in the developmental state of the replacement tooth compared with what was expected based on the maturation state of the functional tooth. Furthermore, we observed a difference between treated and nontreated fish in the distance between blood vessels and developing replacement teeth. In conclusion, our results provide support for a nutritive, rather than an inductive, function of the vasculature in the process of tooth development and replacement. © International & American Associations for Dental Research 2014.

  4. Developmental exposure to methimazole increases anxiety behavior in zebrafish.

    PubMed

    Reider, Masha; Connaughton, Victoria P

    2015-10-01

    The role of thyroid hormones in vertebrate development has been well documented for several decades. As hypothyroidism during critical periods of development can cause defects to the development of every major organ system, including brain, eye, and general morphology, we hypothesized that hypothyroidism would affect specific behaviors. To assess this, we treated zebrafish with the hypothyroid drug methimazole (MMI) and examined changes in anxiety, shoaling, vision, and locomotion. Following low-dose MMI exposure for the first 10 days of life, a time of rapid and significant development, larvae were removed from treatment and allowed to develop until 1 month of age. Comparisons between treated and controls took place between 10 and 30 days postfertilization to examine times both during and after treatment. Using the novel tank and startle response tests, we found that anxiety behaviors are significantly increased following MMI treatment. These effects persisted for several days following removal from treatment and indicate a prolonged effect of early hypothyroidism. However, permanent MMI effects on anxiety were not observed, as anxiety behaviors of early treated zebrafish recovered to control levels following 10 days out of treatment. In contrast to the strong link between MMI treatment and anxiety, shoaling and visual behaviors were not significantly affected within our experimental parameters. This indicates that disruption of thyroid system functioning early in life can differentially affect behavior by specifically altering anxiety responses without producing indiscriminate changes to overall behavioral development. (c) 2015 APA, all rights reserved).

  5. Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution

    PubMed Central

    McConnell, Sean C.; Hernandez, Kyle M.; Wcisel, Dustin J.; Kettleborough, Ross N.; Stemple, Derek L.; Andrade, Jorge; de Jong, Jill L. O.

    2016-01-01

    Antigen processing and presentation genes found within the MHC are among the most highly polymorphic genes of vertebrate genomes, providing populations with diverse immune responses to a wide array of pathogens. Here, we describe transcriptome, exome, and whole-genome sequencing of clonal zebrafish, uncovering the most extensive diversity within the antigen processing and presentation genes of any species yet examined. Our CG2 clonal zebrafish assembly provides genomic context within a remarkably divergent haplotype of the core MHC region on chromosome 19 for six expressed genes not found in the zebrafish reference genome: mhc1uga, proteasome-β 9b (psmb9b), psmb8f, and previously unknown genes psmb13b, tap2d, and tap2e. We identify ancient lineages for Psmb13 within a proteasome branch previously thought to be monomorphic and provide evidence of substantial lineage diversity within each of three major trifurcations of catalytic-type proteasome subunits in vertebrates: Psmb5/Psmb8/Psmb11, Psmb6/Psmb9/Psmb12, and Psmb7/Psmb10/Psmb13. Strikingly, nearby tap2 and MHC class I genes also retain ancient sequence lineages, indicating that alternative lineages may have been preserved throughout the entire MHC pathway since early diversification of the adaptive immune system ∼500 Mya. Furthermore, polymorphisms within the three MHC pathway steps (antigen cleavage, transport, and presentation) are each predicted to alter peptide specificity. Lastly, comparative analysis shows that antigen processing gene diversity is far more extensive than previously realized (with ancient coelacanth psmb8 lineages, shark psmb13, and tap2t and psmb10 outside the teleost MHC), implying distinct immune functions and conserved roles in shaping MHC pathway evolution throughout vertebrates. PMID:27493218

  6. The autism susceptibility gene met regulates zebrafish cerebellar development and facial motor neuron migration

    PubMed Central

    Elsen, Gina E.; Choi, Louis Y.; Prince, Victoria E.; Ho, Robert K.

    2009-01-01

    During development, Met signaling regulates a range of cellular processes including growth, differentiation, survival and migration. The Met gene encodes a tyrosine kinase receptor, which is activated by Hgf (hepatocyte growth factor) ligand. Altered regulation of human MET expression has been implicated in autism. In mouse, Met signaling has been shown to regulate cerebellum development. Since abnormalities in cerebellar structure have been reported in some autistic patients, we have used the zebrafish to address the role of Met signaling during cerebellar development and thus further our understanding of the molecular basis of autism. We find that zebrafish met is expressed in the cerebellar primordium, later localizing to the ventricular zone (VZ), with the hgf1 and hgf2 ligand genes expressed in surrounding tissues. Morpholino knockdown of either Met or its Hgf ligands leads to a significant reduction in the size of the cerebellum, primarily as a consequence of reduced proliferation. Met signaling knockdown disrupts specification of VZ-derived cell types, and also reduces granule cell numbers, due to an early effect on cerebellar proliferation and/or as an indirect consequence of loss of signals from VZ-derived cells later in development. These patterning defects preclude analysis of cerebellar neuronal migration, but we have found that Met signaling is necessary for migration of hindbrain facial motor neurons. In summary, we have described roles for Met signaling in coordinating growth and cell type specification within the developing cerebellum, and in migration of hindbrain neurons. These functions may underlie the correlation between altered MET regulation and Autism Spectrum Disorders. PMID:19732764

  7. The effect of MRN complex and ATM kinase inhibitors on Zebrafish embryonic development

    NASA Astrophysics Data System (ADS)

    Kumaran, Malina; Fazry, Shazrul

    2018-04-01

    Zebrafish is an ideal animal model to study developmental biology due to its transparent embryos and rapid development stages of embryogenesis. Here we investigate the role of DNA damage proteins, specifically Mre11/Rad50/NBN (MRN) complex and ataxia-telangiectasia mutated (ATM) kinase during embryogenesis by inhibiting its function using specific MRN complex (Mirin) and ATM Kinase inhibitors (Ku60019 and Ku55933). Zebrafish embryos at midblastula transition (MBT) stage are treated with Mirin, Ku60019 and Ku55933. The embryonic development of the embryos was monitored at 24 hours-post fertilisation (hpf), 48 hpf and 72 hpf. We observed that at the lowest concentrations (3 µM of Mirin, 1.5 nM of Ku60019 and 3 nM of Ku55933), the inhibitors treated embryos have 100% survivability. However, with increasing inhibitor concentration, the survivability drops. Control or mock treatment of all embryos shows 100 % survivability rate. This study suggests that DNA damage repair proteins may be crucial for normal zebrafish embryo development and survival.

  8. Histological and Transcriptomic Changes in Male Zebrafish Testes Due to Early Life Exposure to Low Level 2,3,7,8-Tetrachlorodibenzo-p-Dioxin.

    PubMed

    Baker, Bridget B; Yee, Jeremiah S; Meyer, Danielle N; Yang, Doris; Baker, Tracie R

    2016-10-01

    We have shown that zebrafish (Danio rerio) are an excellent model for evaluating the link between early life stage exposure to environmental chemicals and disease in adulthood and subsequent unexposed generations. Previously, we used this model to identify transgenerational effects of dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) on skeletal development, sex ratio, and reproductive capacity. Transgenerational inheritance of TCDD toxicity, notably decreased reproductive capacity, appears to be mediated through the male germ line. Thus, we examine testicular tissue for structural and gene expression changes using histology, microarray, and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Histological analysis revealed decreased spermatozoa with concurrent increase in spermatogonia, and decreased germinal epithelium thickness in TCDD-exposed males compared with controls. We also identified altered expression of genes associated with testis development, steroidogenesis, spermatogenesis, hormone metabolism, and xenobiotic response. Altered genes are in pathways involving lipid metabolism, molecular transport, small molecule biochemistry, cell morphology, and metabolism of vitamins and minerals. These data will inform future investigations to elucidate the mechanism of adult-onset and transgenerational infertility due to TCDD exposure in zebrafish.

  9. Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish.

    PubMed

    Bühler, Anja; Kustermann, Monika; Bummer, Tiziana; Rottbauer, Wolfgang; Sandri, Marco; Just, Steffen

    2016-01-30

    Orchestrated protein synthesis and degradation is fundamental for proper cell function. In muscle, impairment of proteostasis often leads to severe cellular defects finally interfering with contractile function. Here, we analyze for the first time the role of Atrogin-1, a muscle-specific E3 ubiquitin ligase known to be involved in the regulation of protein degradation via the ubiquitin proteasome and the autophagy/lysosome systems, in the in vivo model system zebrafish (Danio rerio). We found that targeted inactivation of zebrafish Atrogin-1 leads to progressive impairment of heart and skeletal muscle function and disruption of muscle structure without affecting early cardiogenesis and skeletal muscle development. Autophagy is severely impaired in Atrogin-1-deficient zebrafish embryos resulting in the disturbance of the cytoarchitecture of cardiomyocytes and skeletal muscle cells. These observations are consistent with molecular and ultrastructural findings in an Atrogin-1 knockout mouse and demonstrate that the zebrafish is a suitable vertebrate model to study the molecular mechanisms of Atrogin-1-mediated autophagic muscle pathologies and to screen for novel therapeutically active substances in high-throughput in vivo small compound screens (SCS).

  10. Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis.

    PubMed

    Araya, Claudio; Ward, Laura C; Girdler, Gemma C; Miranda, Miguel

    2016-03-01

    The development of a vertebrate neural epithelium with well-organized apico-basal polarity and a central lumen is essential for its proper function. However, how this polarity is established during embryonic development and the potential influence of surrounding signals and tissues on such organization has remained less understood. In recent years the combined superior transparency and genetics of the zebrafish embryo has allowed for in vivo visualization and quantification of the cellular and molecular dynamics that govern neural tube structure. Here, we discuss recent studies revealing how co-ordinated cell-cell interactions coupled with adjacent tissue dynamics are critical to regulate final neural tissue architecture. Furthermore, new findings show how the spatial regulation and timing of orientated cell division is key in defining precise lumen formation at the tissue midline. In addition, we compare zebrafish neurulation with that of amniotes and amphibians in an attempt to understand the conserved cellular mechanisms driving neurulation and resolve the apparent differences among animals. Zebrafish neurulation not only offers fundamental insights into early vertebrate brain development but also the opportunity to explore in vivo cell and tissue dynamics during complex three-dimensional animal morphogenesis. © 2015 Wiley Periodicals, Inc.

  11. EFFECT OF METHYLENE BLUE ON DEVELOPING ZEBRAFISH EMBRYOS Danio rerio

    EPA Science Inventory

    EFFECT OF METHYLENE BLUE ON DEVELOPING ZEBRAFISH EMBRYOS Danio rerioJoan M. Hedge*, Erik Sanders, Kimberly A. Jarema, Deborah Hunter, and Stephanie PadillaIntegrated Systems Toxicology Division, NHEERL, US EPA, Research Triangle Park, NC 27709hedge.joan@epa.govOur laboratory rout...

  12. Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish

    EPA Science Inventory

    Developing an Experimental Model of Vascular Toxicity in Embryonic Zebrafish Tamara Tal, Integrated Systems Toxicology Division, U.S. EPA Background: There are tens of thousands of chemicals that have yet to be fully evaluated for their toxicity by validated in vivo testing ...

  13. Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum.

    PubMed

    Kidwell, Chelsea U; Su, Chen-Ying; Hibi, Masahiko; Moens, Cecilia B

    2018-06-01

    A single Atoh1 basic-helix-loop-helix transcription factor specifies multiple neuron types in the mammalian cerebellum and anterior hindbrain. The zebrafish genome encodes three paralagous atoh1 genes whose functions in cerebellum and anterior hindbrain development we explore here. With use of a transgenic reporter, we report that zebrafish atoh1c-expressing cells are organized in two distinct domains that are separated both by space and developmental time. An early isthmic expression domain gives rise to an extracerebellar population in rhombomere 1 and an upper rhombic lip domain gives rise to granule cell progenitors that migrate to populate all four granule cell territories of the fish cerebellum. Using genetic mutants we find that of the three zebrafish atoh1 paralogs, atoh1c and atoh1a are required for the full complement of granule neurons. Surprisingly, the two genes are expressed in non-overlapping granule cell progenitor populations, indicating that fish use duplicate atoh1 genes to generate granule cell diversity that is not detected in mammals. Finally, live imaging of granule cell migration in wildtype and atoh1c mutant embryos reveals that while atoh1c is not required for granule cell specification per se, it is required for granule cells to delaminate and migrate away from the rhombic lip. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Development and Validation of an Automated High-Throughput System for Zebrafish In Vivo Screenings

    PubMed Central

    Virto, Juan M.; Holgado, Olaia; Diez, Maria; Izpisua Belmonte, Juan Carlos; Callol-Massot, Carles

    2012-01-01

    The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound delivery, incubation, imaging and analysis of the results. At present, two different assays to detect cardiotoxic compounds and angiogenesis inhibitors can be automatically run in the platform, showing the versatility of the system. A validation of these two assays with known positive and negative compounds, as well as a screening for the detection of unknown anti-angiogenic compounds, have been successfully carried out in the system developed. We present a totally automated platform that allows for high-throughput screenings in a vertebrate organism. PMID:22615792

  15. Sept7b is essential for pronephric function and development of left-right asymmetry in zebrafish embryogenesis.

    PubMed

    Dash, Surjya Narayan; Lehtonen, Eero; Wasik, Anita A; Schepis, Antonino; Paavola, Jere; Panula, Pertti; Nelson, W James; Lehtonen, Sanna

    2014-04-01

    The conserved septin family of filamentous small GTPases plays important roles in mitosis, cell migration and cell morphogenesis by forming scaffolds and diffusion barriers. Recent studies in cultured cells in vitro indicate that a septin complex of septin 2, 7 and 9 is required for ciliogenesis and cilia function, but septin function in ciliogenesis in vertebrate organs in vivo is not understood. We show that sept7b is expressed in ciliated cells in different tissues during early zebrafish development. Knockdown of sept7b by using morpholino antisense oligonucleotides caused misorientation of basal bodies and cilia, reduction of apical actin and the shortening of motile cilia in Kupffer's vesicle and pronephric tubules. This resulted in pericardial and yolk sac edema, body axis curvature and hydrocephaly. Notably, in sept7b morphants we detected strong left-right asymmetry defects in the heart and lateral plate mesoderm (situs inversus), reduced fluid flow in the kidney, the formation of kidney cysts and loss of glomerular filtration barrier function. Thus, sept7b is essential during zebrafish development for pronephric function and ciliogenesis, and loss of expression of sept7b results in defects that resemble human ciliopathies.

  16. Alkbh4 and Atrn Act Maternally to Regulate Zebrafish Epiboly

    PubMed Central

    Sun, Qingrui; Liu, Xingfeng; Gong, Bo; Wu, Di; Meng, Anming; Jia, Shunji

    2017-01-01

    During embryonic gastrulation, coordinated cell movements occur to bring cells to their correct position. Among them, epiboly produces the first distinct morphological changes, which is essential for the early development of zebrafish. Despite its fundamental importance, little is known to understand the underlying molecular mechanisms. By generating maternal mutant lines with CRISPR/Cas9 technology and using morpholino knockdown strategy, we showed that maternal Alkbh4 depletion leads to severe epiboly defects in zebrafish. Immunofluorescence assays revealed that Alkbh4 promotes zebrafish embryonic epiboly through regulating actomyosin contractile ring formation, which is composed of Actin and non-muscular myosin II (NMII). To further investigate this process, yeast two hybridization assay was performed and Atrn was identified as a binding partner of Alkbh4. Combining with the functional results of Alkbh4, we found that maternal Atrn plays a similar role in zebrafish embryonic morphogenesis by regulating actomyosin formation. On the molecular level, our data revealed that Atrn prefers to interact with the active form of Alkbh4 and functions together with it to regulate the demethylation of Actin, the actomyosin formation, and subsequently the embryonic epiboly. PMID:28924386

  17. Zebrafish pit1 mutants lack three pituitary cell types and develop severe dwarfism.

    PubMed

    Nica, Gabriela; Herzog, Wiebke; Sonntag, Carmen; Hammerschmidt, Matthias

    2004-05-01

    The Pou domain transcription factor Pit-1 is required for lineage determination and cellular commitment processes during mammalian adenohypophysis development. Here we report the cloning and mutational analysis of a pit1 homolog from zebrafish. Compared with mouse, zebrafish pit1 starts to be expressed at a much earlier stage of adenohypophysis development. However, as in the mouse, expression is restricted to a subset of pituitary cell types, excluding proopiomelanocortin (pomc)-expressing cells (corticotropes, melanotropes) and possibly gonadotropes. We could identify two N-ethyl-N-nitrosourea-induced zebrafish pit1 null mutants. Most mutants die during larval stages, whereas survivors develop severe dwarfism. Mutant larvae lack lactotropes, somatotropes, and thyrotropes, although the adenohypophysis is of normal size, without any sign of increased apoptosis rates. Instead, mutant embryos initiate ectopic expression of pomc in pit1-positive cells, leading to an expansion of the Pomc lineage. Similarly, the number of gonadotropes seems increased, as indicated by the expression of gsualpha, a marker for thyrotropes and gonadotropes. In pit1 mutants, the total number of gsualpha-positive cells is normal despite the loss of gsualpha and tshbeta coexpressing cells. Together, these data suggest a transfating of the Pit1 lineage to the Pomc and possibly the gonadotroph lineages in the mutant, and a pomc- and gonadotropin-repressive role of Pit1 during normal zebrafish development. This is different from mouse, for which a repressive role of Pit-1 has only been reported for the gonadotropin Lhbeta, but not for Pomc. In sum, our data point to both conserved and class-specific aspects of Pit1 function during pituitary development in different vertebrate species.

  18. Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes).

    PubMed

    Cuesta, Ines H; Lahiri, Kajori; Lopez-Olmeda, Jose Fernando; Loosli, Felix; Foulkes, Nicholas S; Vallone, Daniela

    2014-05-01

    One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.

  19. Effect of Cefotaxime on the CAT Activities and GSH Contents of Zebrafish

    NASA Astrophysics Data System (ADS)

    Wang, Yaxue; Shen, Hong-Yan

    2018-05-01

    In order to define eco-toxicity effect of cefotaxime on zebrafish, the indoor exposure method was used to study the impact of cefotaxime on zebrafish. In this study, zebrafish was exposed to cefotaxime of 1mg/L, 5mg/L, 25mg/L and 125mg/L for 15 days to study the effect of Catalase (CAT) activities and Glutathione (GSH) contents. According to the experimental data, the CAT activities and GSH contents in zebrafish muscle tissue had changed significantly during the period of exposure. The experimental results show that the activities of CAT in four concentration groups were significantly inhibited (P<0.01). The CAT activities in the 1 mg/L and 5 mg/L groups showed the "Λ" type change, inhibited first and induced later. But in the 25 mg/L and 125 mg/L groups, the CAT activities were inhibited all the time. Cefotaxime had a significant effect on GSH content in the muscle tissue of the zebrafish at the early stage of exposure, rapidly increase to the maximum at the early stage and rapidly decrease to the minimum on the 6th day. During 6th day to 15th day, the contents of GSH in the zebrafish were basically stable at the level of control. The experimental results show that the CAT activities and GSH contents in zebrafish muscle tissue had changed significantly.

  20. Automated processing of zebrafish imaging data: a survey.

    PubMed

    Mikut, Ralf; Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A; Kausler, Bernhard X; Ledesma-Carbayo, María J; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-09-01

    Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines.

  1. Automated Processing of Zebrafish Imaging Data: A Survey

    PubMed Central

    Dickmeis, Thomas; Driever, Wolfgang; Geurts, Pierre; Hamprecht, Fred A.; Kausler, Bernhard X.; Ledesma-Carbayo, María J.; Marée, Raphaël; Mikula, Karol; Pantazis, Periklis; Ronneberger, Olaf; Santos, Andres; Stotzka, Rainer; Strähle, Uwe; Peyriéras, Nadine

    2013-01-01

    Abstract Due to the relative transparency of its embryos and larvae, the zebrafish is an ideal model organism for bioimaging approaches in vertebrates. Novel microscope technologies allow the imaging of developmental processes in unprecedented detail, and they enable the use of complex image-based read-outs for high-throughput/high-content screening. Such applications can easily generate Terabytes of image data, the handling and analysis of which becomes a major bottleneck in extracting the targeted information. Here, we describe the current state of the art in computational image analysis in the zebrafish system. We discuss the challenges encountered when handling high-content image data, especially with regard to data quality, annotation, and storage. We survey methods for preprocessing image data for further analysis, and describe selected examples of automated image analysis, including the tracking of cells during embryogenesis, heartbeat detection, identification of dead embryos, recognition of tissues and anatomical landmarks, and quantification of behavioral patterns of adult fish. We review recent examples for applications using such methods, such as the comprehensive analysis of cell lineages during early development, the generation of a three-dimensional brain atlas of zebrafish larvae, and high-throughput drug screens based on movement patterns. Finally, we identify future challenges for the zebrafish image analysis community, notably those concerning the compatibility of algorithms and data formats for the assembly of modular analysis pipelines. PMID:23758125

  2. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish.

    PubMed

    Blechinger, Scott R; Kusch, Robin C; Haugo, Kristine; Matz, Carlyn; Chivers, Douglas P; Krone, Patrick H

    2007-10-01

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae. Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells.

  3. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blechinger, Scott R.; Toxicology Group, University of Saskatchewan, Saskatoon, Saskatchewan; Kusch, Robin C.

    2007-10-01

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae.more » Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells.« less

  4. Vitamin D receptor signaling is required for heart development in zebrafish embryo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Hye-Joo, E-mail: hjkwon@pnu.edu.sa; Biology Department, Princess Nourah University, Riyadh 11671

    Vitamin D has been found to be associated with cardiovascular diseases. However, the role of vitamin D in heart development during embryonic period is largely unknown. Vitamin D induces its genomic effects through its nuclear receptor, the vitamin D receptor (VDR). The present study investigated the role of VDR on heart development by antisense-mediated knockdown approaches in zebrafish model system. In zebrafish embryos, two distinct VDR genes (vdra and vdrb) have been identified. Knockdown of vdra has little effect on heart development, whereas disrupting vdrb gene causes various cardiac phenotypes, characterized by pericardial edema, slower heart rate and laterality defects.more » Depletion of both vdra and vdrb (vdra/b) produce additive, but not synergistic effects. To determine whether atrioventricular (AV) cardiomyocytes are properly organized in these embryos, the expression of bmp4, which marks the developing AV boundary at 48 h post-fertilization, was examined. Notably, vdra/b-deficient embryos display ectopic expression of bmp4 towards the ventricle or throughout atrial and ventricular chambers. Taken together, these results suggest that VDR signaling plays an essential role in heart development. - Highlights: • VDR signaling is involved in embryonic heart development. • Knockdown of vdrb, but not vdra, causes decreased heart rate in zebrafish embryo. • Loss of vdr results in cardiac laterality defects. • Loss of vdra/b alters atrioventricular boundary formation. • Loss of vdra/b causes abnormal cardiac looping.« less

  5. Zebrafish embryos exposed to alcohol undergo abnormal development of motor neurons and muscle fibers.

    PubMed

    Sylvain, Nicole J; Brewster, Daniel L; Ali, Declan W

    2010-01-01

    Children exposed to alcohol in utero have significantly delayed gross and fine motor skills, as well as deficiencies in reflex development. The reasons that underlie the motor deficits caused by ethanol (EtOH) exposure remain to be fully elucidated. The present study was undertaken to investigate the effects of embryonic alcohol exposure (1.5%, 2% and 2.5% EtOH) on motor neuron and muscle fiber morphology in 3 days post fertilization (dpf) larval zebrafish. EtOH treated fish exhibited morphological deformities and fewer bouts of swimming in response to touch, compared with untreated fish. Immunolabelling with anti-acetylated tubulin indicated that fish exposed to 2.5% EtOH had significantly higher rates of motor neuron axon defects. Immunolabelling of primary and secondary motor neurons, using znp-1 and zn-8, revealed that fish exposed to 2% and 2.5% EtOH exhibited significantly higher rates of primary and secondary motor neuron axon defects compared to controls. Examination of red and white muscle fibers revealed that fish exposed to EtOH had significantly smaller fibers compared with controls. These findings indicate that motor neuron and muscle fiber morphology is affected by early alcohol exposure in zebrafish embryos, and that this may be related to deficits in locomotion. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Zebrafish model systems for developmental neurobehavioral toxicology.

    PubMed

    Bailey, Jordan; Oliveri, Anthony; Levin, Edward D

    2013-03-01

    Zebrafish offer many advantages that complement classic mammalian models for the study of normal development as well as for the teratogenic effects of exposure to hazardous compounds. The clear chorion and embryo of the zebrafish allow for continuous visualization of the anatomical changes associated with development, which, along with short maturation times and the capability of complex behavior, makes this model particularly useful for measuring changes to the developing nervous system. Moreover, the rich array of developmental, behavioral, and molecular benefits offered by the zebrafish have contributed to an increasing demand for the use of zebrafish in behavioral teratology. Essential for this endeavor has been the development of a battery of tests to evaluate a spectrum of behavior in zebrafish. Measures of sensorimotor plasticity, emotional function, cognition and social interaction have been used to characterize the persisting adverse effects of developmental exposure to a variety of chemicals including therapeutic drugs, drugs of abuse and environmental toxicants. In this review, we present and discuss such tests and data from a range of developmental neurobehavioral toxicology studies using zebrafish as a model. Zebrafish provide a key intermediate model between high throughput in vitro screens and the classic mammalian models as they have the accessibility of in vitro models and the complex functional capabilities of mammalian models. Copyright © 2013 Wiley Periodicals, Inc.

  7. Zebrafish Model Systems for Developmental Neurobehavioral Toxicology

    PubMed Central

    Bailey, Jordan; Oliveri, Anthony; Levin, Edward D.

    2014-01-01

    Zebrafish offer many advantages that complement classic mammalian models for the study of normal development as well as for the teratogenic effects of exposure to hazardous compounds. The clear chorion and embryo of the zebrafish allow for continuous visualization of the anatomical changes associated with development, which, along with short maturation times and the capability of complex behavior, makes this model particularly useful for measuring changes to the developing nervous system. Moreover, the rich array of developmental, behavioral, and molecular benefits offered by the zebrafish have contributed to an increasing demand for the use of zebrafish in behavioral teratology. Essential for this endeavor has been the development of a battery of tests to evaluate a spectrum of behavior in zebrafish. Measures of sensorimotor plasticity, emotional function, cognition and social interaction have been used to characterize the persisting adverse effects of developmental exposure to a variety of chemicals including therapeutic drugs, drugs of abuse and environmental toxicants. In this review, we present and discuss such tests and data from a range of developmental neurobehavioral toxicology studies using zebrafish as a model. Zebrafish provide a key intermediate model between high throughput in vitro screens and the classic mammalian models as they have the accessibility of in vitro models and the complex functional capabilities of mammalian models. PMID:23723169

  8. notch3 is essential for oligodendrocyte development and vascular integrity in zebrafish

    PubMed Central

    Zaucker, Andreas; Mercurio, Sara; Sternheim, Nitzan; Talbot, William S.; Marlow, Florence L.

    2013-01-01

    SUMMARY Mutations in the human NOTCH3 gene cause CADASIL syndrome (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy). CADASIL is an inherited small vessel disease characterized by diverse clinical manifestations including vasculopathy, neurodegeneration and dementia. Here we report two mutations in the zebrafish notch3 gene, one identified in a previous screen for mutations with reduced expression of myelin basic protein (mbp) and another caused by a retroviral insertion. Reduced mbp expression in notch3 mutant embryos is associated with fewer oligodendrocyte precursor cells (OPCs). Despite an early neurogenic phenotype, mbp expression recovered at later developmental stages and some notch3 homozygous mutants survived to adulthood. These mutants, as well as adult zebrafish carrying both mutant alleles together, displayed a striking stress-associated accumulation of blood in the head and fins. Histological analysis of mutant vessels revealed vasculopathy, including: an enlargement (dilation) of vessels in the telencephalon and fin, disorganization of the normal stereotyped arrangement of vessels in the fin, and an apparent loss of arterial morphological structure. Expression of hey1, a well-known transcriptional target of Notch signaling, was greatly reduced in notch3 mutant fins, suggesting that Notch3 acts via a canonical Notch signaling pathway to promote normal vessel structure. Ultrastructural analysis confirmed the presence of dilated vessels in notch3 mutant fins and revealed that the vessel walls of presumed arteries showed signs of deterioration. Gaps in the arterial wall and the presence of blood cells outside of vessels in mutants indicated that compromised vessel structure led to hemorrhage. In notch3 heterozygotes, we found elevated expression of both notch3 itself and target genes, indicating that specific alterations in gene expression due to partial loss of Notch3 function might contribute to the

  9. The importance of Zebrafish in biomedical research.

    PubMed

    Tavares, Bárbara; Santos Lopes, Susana

    2013-01-01

    Zebrafish (Danio rerio) is an ideal model organism for the study of vertebrate development. This is due to the large clutches that each couple produces, with up to 200 embryos every 7 days, and to the fact that the embryos and larvae are small, transparent and undergo rapid external development. Using scientific literature research tools available online and the keywords Zebrafish, biomedical research, human disease, and drug screening, we reviewed original studies and reviews indexed in PubMed. In this review we summarized work conducted with this model for the advancement of our knowledge related to several human diseases. We also focused on the biomedical research being performed in Portugal with the zebrafish model. Powerful live imaging and genetic tools are currently available for zebrafish making it a valuable model in biomedical research. The combination of these properties with the optimization of automated systems for drug screening has transformed the zebrafish into "a top model" in biomedical research, drug discovery and toxicity testing. Furthermore, with the optimization of xenografts technology it will be possible to use zebrafish to aide in the choice of the best therapy for each patient. Zebrafish is an excellent model organism in biomedical research, drug development and in clinical therapy.

  10. Dithiocarbamates are teratogenic to developing zebrafish through inhibition of lysyl oxidase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boxtel, Antonius L. van, E-mail: thijs.van.boxtel@ivm.vu.n; Kamstra, Jorke H.; Fluitsma, Donna M.

    2010-04-15

    Dithiocarbamates (DTCs) are a class of compounds that are extensively used in agriculture as pesticides. As such, humans and wildlife are undoubtedly exposed to these chemicals. Although DTCs are thought to be relatively safe due to their short half lives, it is well established that they are teratogenic to vertebrates, especially to fish. In zebrafish, these teratogenic effects are characterized by distorted notochord development and shortened anterior to posterior axis. DTCs are known copper (Cu) chelators but this does not fully explain the observed teratogenic effects. We show here that DTCs cause malformations in zebrafish that highly resemble teratogenic effectsmore » observed by direct inhibition of a group of cuproenzymes termed lysyl oxidases (LOX). Additionally, we demonstrate that partial knockdown of three LOX genes, lox, loxl1 and loxl5b, sensitizes the developing embryo to DTC exposure. Finally, we show that DTCs directly inhibit zebrafish LOX activity in an ex vivo amine oxidase assay. Taken together, these results provide the first evidence that DTC induced teratogenic effects are, at least in part, caused by direct inhibition of LOX activity.« less

  11. R-spondin 3 regulates dorsoventral and anteroposterior patterning by antagonizing Wnt/β-catenin signaling in zebrafish embryos.

    PubMed

    Rong, Xiaozhi; Chen, Chen; Zhou, Pin; Zhou, Yumei; Li, Yun; Lu, Ling; Liu, Yunzhang; Zhou, Jianfeng; Duan, Cunming

    2014-01-01

    The Wnt/β-catenin or canonical Wnt signaling pathway plays fundamental roles in early development and in maintaining adult tissue homeostasis. R-spondin 3 (Rspo3) is a secreted protein that has been implicated in activating the Wnt/β-catenin signaling in amphibians and mammals. Here we report that zebrafish Rspo3 plays a negative role in regulating the zygotic Wnt/β-catenin signaling. Zebrafish Rspo3 has a unique domain structure. It contains a third furin-like (FU3) domain. This FU3 is present in other four ray-finned fish species studied but not in elephant shark. In zebrafish, rspo3 mRNA is maternally deposited and has a ubiquitous expression in early embryonic stages. After 12 hpf, its expression becomes tissue-specific. Forced expression of rspo3 promotes dorsoanterior patterning and increases the expression of dorsal and anterior marker genes. Knockdown of rspo3 increases ventral-posterior development and stimulates ventral and posterior marker genes expression. Forced expression of rspo3 abolishes exogenous Wnt3a action and reduces the endogenous Wnt signaling activity. Knockdown of rspo3 results in increased Wnt/β-catenin signaling activity. Further analyses indicate that Rspo3 does not promote maternal Wnt signaling. Human RSPO3 has similar action when tested in zebrafish embryos. These results suggest that Rspo3 regulates dorsoventral and anteroposterior patterning by negatively regulating the zygotic Wnt/β-catenin signaling in zebrafish embryos.

  12. R-Spondin 3 Regulates Dorsoventral and Anteroposterior Patterning by Antagonizing Wnt/β-Catenin Signaling in Zebrafish Embryos

    PubMed Central

    Zhou, Pin; Zhou, Yumei; Li, Yun; Lu, Ling; Liu, Yunzhang; Zhou, Jianfeng; Duan, Cunming

    2014-01-01

    The Wnt/β-catenin or canonical Wnt signaling pathway plays fundamental roles in early development and in maintaining adult tissue homeostasis. R-spondin 3 (Rspo3) is a secreted protein that has been implicated in activating the Wnt/β-catenin signaling in amphibians and mammals. Here we report that zebrafish Rspo3 plays a negative role in regulating the zygotic Wnt/β-catenin signaling. Zebrafish Rspo3 has a unique domain structure. It contains a third furin-like (FU3) domain. This FU3 is present in other four ray-finned fish species studied but not in elephant shark. In zebrafish, rspo3 mRNA is maternally deposited and has a ubiquitous expression in early embryonic stages. After 12 hpf, its expression becomes tissue-specific. Forced expression of rspo3 promotes dorsoanterior patterning and increases the expression of dorsal and anterior marker genes. Knockdown of rspo3 increases ventral-posterior development and stimulates ventral and posterior marker genes expression. Forced expression of rspo3 abolishes exogenous Wnt3a action and reduces the endogenous Wnt signaling activity. Knockdown of rspo3 results in increased Wnt/β-catenin signaling activity. Further analyses indicate that Rspo3 does not promote maternal Wnt signaling. Human RSPO3 has similar action when tested in zebrafish embryos. These results suggest that Rspo3 regulates dorsoventral and anteroposterior patterning by negatively regulating the zygotic Wnt/β-catenin signaling in zebrafish embryos. PMID:24918770

  13. Development of the zebrafish myoseptum with emphasis on the myotendinous junction.

    PubMed

    Charvet, Benjamin; Malbouyres, Marilyne; Pagnon-Minot, Aurélie; Ruggiero, Florence; Le Guellec, Dominique

    2011-12-01

    Zebrafish myosepta connect two adjacent muscle cells and transmit muscular forces to axial structures during swimming via the myotendinous junction (MTJ). The MTJ establishes transmembrane linkages system consisting of extracellular matrix molecules (ECM) surrounding the basement membrane, cytoskeletal elements anchored to sarcolema, and all intermediate proteins that link ECM to actin filaments. Using a series of zebrafish specimens aged between 24 h post-fertilization and 2 years old, the present paper describes at the transmission electron microscope level the development of extracellular and intracellular elements of the MTJ. The transverse myoseptum development starts during the segmentation period by deposition of sparse and loosely organized collagen fibrils. During the hatching period, a link between actin filaments and sarcolemma is established. The basal lamina underlining sarcolemma is well differentiated. Later, collagen fibrils display an orthogonal orientation and fibroblast-like cells invade the myoseptal stroma. A dense network of collagen fibrils is progressively formed that both anchor myoseptal fibroblasts and sarcolemmal basement membrane. The differentiation of a functional MTJ is achieved when sarcolemma interacts with both cytoskeletal filaments and extracellular components. This solid structural link between contractile apparatus and ECM leads to sarcolemma deformations resulting in the formation of regular invaginations, and allows force transmission during muscle contraction. This paper presents the first ultrastructural atlas of the zebrafish MTJ development, which represents an useful tool to analyse the mechanisms of the myotendinous system formation and their disruption in muscle disorders.

  14. Estrogenic Effects of Several BPA Analogs in the Developing Zebrafish Brain

    PubMed Central

    Cano-Nicolau, Joel; Vaillant, Colette; Pellegrini, Elisabeth; Charlier, Thierry D.; Kah, Olivier; Coumailleau, Pascal

    2016-01-01

    Important set of studies have demonstrated the endocrine disrupting activity of Bisphenol A (BPA). The present work aimed at defining estrogenic-like activity of several BPA structural analogs, including BPS, BPF, BPAF, and BPAP, on 4- or 7-day post-fertilization (dpf) zebrafish larva as an in vivo model. We measured the induction level of the estrogen-sensitive marker cyp19a1b gene (Aromatase B), expressed in the brain, using three different in situ/in vivo strategies: (1) Quantification of cyp19a1b transcripts using RT-qPCR in wild type 7-dpf larva brains exposed to bisphenols; (2) Detection and distribution of cyp19a1b transcripts using in situ hybridization on 7-dpf brain sections (hypothalamus); and (3) Quantification of the cyp19a1b promoter activity in live cyp19a1b-GFP transgenic zebrafish (EASZY assay) at 4-dpf larval stage. These three different experimental approaches demonstrated that BPS, BPF, or BPAF exposure, similarly to BPA, significantly activates the expression of the estrogenic marker in the brain of developing zebrafish. In vitro experiments using both reporter gene assay in a glial cell context and competitive ligand binding assays strongly suggested that up-regulation of cyp19a1b is largely mediated by the zebrafish estrogen nuclear receptor alpha (zfERα). Importantly, and in contrast to other tested bisphenol A analogs, the bisphenol AP (BPAP) did not show estrogenic activity in our model. PMID:27047331

  15. 2,3,7,8-Tetrachlorodibenzo-p-dioxin toxicity in the zebrafish embryo: altered regional blood flow and impaired lower jaw development.

    PubMed

    Teraoka, Hiroki; Dong, Wu; Ogawa, Shuji; Tsukiyama, Shusaku; Okuhara, Yuji; Niiyama, Masayoshi; Ueno, Naoto; Peterson, Richard E; Hiraga, Takeo

    2002-02-01

    The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure on regional red blood cell (RBC) perfusion rate, as an index of blood flow, and lower jaw development were investigated quantitatively in zebrafish embryos (Danio rerio) during early development. As revealed by observation of live embryos and alcian-blue staining, TCDD retarded lower jaw development in a concentration-dependent manner with only a minor inhibitory effect on total body length. Both inhibitory effects were significant as early as 60 h postfertilization (hpf), at which time the area of goosecoid (gsc) mRNA expression was clearly reduced in the lower jaw. To examine effects of TCDD on RBC perfusion rate, time-lapse recording was performed using a digital video camera attached to a light microscope. TCDD did not show marked effects on RBC perfusion rate until 72 hpf, when vessel-specific effects emerged. TCDD severely inhibited RBC perfusion rate in intersegmental arteries of the trunk, but only modestly and slightly inhibited RBC perfusion rate in certain vessels of the head such as the central arteries and optic vein. Conversely, at both 72 and 84 hpf, TCDD significantly increased RBC perfusion rate in the hypobranchial artery branching to the lower jaw primordia, and then reduced it at 96 hpf. RBC perfusion rate in all vessels examined in TCDD-exposed embryos was inhibited at 96 hpf. The zebrafish aryl hydrocarbon receptor 2 (zfAhR2) mRNA was strongly expressed in the lower jaw primordia at 48 hpf, and expression of this transcript was augmented by TCDD treatment. Thus, TCDD exposure of the zebrafish embryo has a disruptive effect on local circulation and lower jaw cartilage growth. Initially, TCDD may act directly on the lower jaw primordia to impair lower jaw development. Reductions in hypobranchial RBC perfusion rate occurred well after the initial retardation in lower jaw development had become apparent, and may contribute further to the effect.

  16. Proteomics Identification of Potential Candidates Involved in Cell Proliferation for Early Stage of Brain Regeneration in the Adult Zebrafish.

    PubMed

    Lim, Fei Tieng; Ogawa, Satoshi; Smith, A Ian; Parhar, Ishwar S

    2017-02-01

    The central nervous system (CNS) of the non-mammalian vertebrates has better neuroregenerative capability as compared with the mammalian CNS. Regeneration of habenula was observed 40 days after damage in zebrafish. During the early stage of regeneration, we found a significant increase of apoptotic cells on day-1 post-damage and of proliferative cells on day-3 post-damage. To identify the molecular factor(s) involved in the early stages of neuroregeneration, differentially expressed proteins during sham, 20- and 40-h post-habenula damage were investigated by proteomic approach by using two-dimensional differential gel electrophoresis (2D-DIGE) coupled with Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight (MALDI-ToF) and tandem mass spectrometry. Protein profiles revealed 17 differentially (>1.5-fold) expressed proteins: 10 upregulated, 4 downregulated, 2 proteins were found to be downregulated at the early stage but upregulated at a later stage, and 1 protein was found to be upregulated at 2 different time points. All proteins identified can be summarized under few molecular processes involved in the early stages of neuroregeneration in zebrafish CNS: apoptosis regulation (Wnt inhibitory factor 1 [WIF1]), neuroprotection (metallothionein), cell proliferation (Spred2, ependymin, Lhx1, and Wnts), differentiation (Spred2, Lhx9, and Wnts), and morphogenesis (cytoplasmic actins and draculin). These protein profiling results suggest that drastic molecular changes occur in the neuroregenerative process during this period, which includes cell proliferation, differentiation, and protection.

  17. Early embryonic androgen exposure induces transgenerational epigenetic and metabolic changes.

    PubMed

    Xu, Ning; Chua, Angela K; Jiang, Hong; Liu, Ning-Ai; Goodarzi, Mark O

    2014-08-01

    Androgen excess is a central feature of polycystic ovary syndrome (PCOS), which affects 6% to 10% of young women. Mammals exposed to elevated androgens in utero develop PCOS-like phenotypes in adulthood, suggesting fetal origins of PCOS. We hypothesize that excess androgen exposure during early embryonic development may disturb the epigenome and disrupt metabolism in exposed and unexposed subsequent generations. Zebrafish were used to study the underlying mechanism of fetal origins. Embryos were exposed to androgens (testosterone and dihydrotestosterone) early at 26 to 56 hours post fertilization or late at 21 to 28 days post fertilization. Exposed zebrafish (F0) were grown to adults and crossed to generate unexposed offspring (F1). For both generations, global DNA methylation levels were examined in ovaries using a luminometric methylation assay, and fasting and postprandial blood glucose levels were measured. We found that early but not late androgen exposure induced changes in global methylation and glucose homeostasis in both generations. In general, F0 adult zebrafish exhibited altered global methylation levels in the ovary; F1 zebrafish had global hypomethylation. Fasting blood glucose levels were decreased in F0 but increased in F1; postprandial glucose levels were elevated in both F0 and F1. This androgenized zebrafish study suggests that transient excess androgen exposure during early development can result in transgenerational alterations in the ovarian epigenome and glucose homeostasis. Current data cannot establish a causal relationship between epigenetic changes and altered glucose homeostasis. Whether transgenerational epigenetic alteration induced by prenatal androgen exposure plays a role in the development of PCOS in humans deserves study.

  18. Analyses of pancreas development by generation of gfp transgenic zebrafish using an exocrine pancreas-specific elastaseA gene promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan Haiyan; Korzh, Svitlana; Li Zhen

    2006-05-15

    In contrast to what we know on development of endocrine pancreas, the formation of exocrine pancreas remains poorly understood. To create an animal model that allows observation of exocrine cell differentiation, proliferation, and morphogenesis in living animals, we used the zebrafish elastaseA (elaA) regulatory sequence to develop transgenic zebrafish that display highly specific exocrine pancreas expression of GFP in both larvae and adult. By following GFP expression, we found that the pancreas in early development was a relatively compact organ and later extended posterior along the intestine. By transferring the elaA:gfp transgene into slow muscle omitted mutant that is deficientmore » in receiving Hedgehog signals, we further showed that Hedgehog signaling is required for exocrine morphogenesis but not for cell differentiation. We also applied the morpholino knockdown and toxin-mediated cell ablation approaches to this transgenic line. We showed that the development of exocrine pancreas is Islet-1 dependent. Injection of the diphtheria toxin A (DTA) construct under the elastaseA promoter resulted in selective ablation of exocrine cells while the endocrine cells and other endodermal derivatives (liver and intestine) were not affected. Thus, our works demonstrated the new transgenic line provided a useful experimental tool in analyzing exocrine pancreas development.« less

  19. A Zebrafish Heart Failure Model for Assessing Therapeutic Agents.

    PubMed

    Zhu, Xiao-Yu; Wu, Si-Qi; Guo, Sheng-Ya; Yang, Hua; Xia, Bo; Li, Ping; Li, Chun-Qi

    2018-03-20

    Heart failure is a leading cause of death and the development of effective and safe therapeutic agents for heart failure has been proven challenging. In this study, taking advantage of larval zebrafish, we developed a zebrafish heart failure model for drug screening and efficacy assessment. Zebrafish at 2 dpf (days postfertilization) were treated with verapamil at a concentration of 200 μM for 30 min, which were determined as optimum conditions for model development. Tested drugs were administered into zebrafish either by direct soaking or circulation microinjection. After treatment, zebrafish were randomly selected and subjected to either visual observation and image acquisition or record videos under a Zebralab Blood Flow System. The therapeutic effects of drugs on zebrafish heart failure were quantified by calculating the efficiency of heart dilatation, venous congestion, cardiac output, and blood flow dynamics. All 8 human heart failure therapeutic drugs (LCZ696, digoxin, irbesartan, metoprolol, qiliqiangxin capsule, enalapril, shenmai injection, and hydrochlorothiazide) showed significant preventive and therapeutic effects on zebrafish heart failure (p < 0.05, p < 0.01, and p < 0.001) in the zebrafish model. The larval zebrafish heart failure model developed and validated in this study could be used for in vivo heart failure studies and for rapid screening and efficacy assessment of preventive and therapeutic drugs.

  20. Molecular and Chemical Genetic Approaches to Developmental Origins of Aging and Disease in Zebrafish

    PubMed Central

    Sasaki, Tomoyuki; Kishi, Shuji

    2013-01-01

    The incidence of diseases increases rapidly with age, accompanied by progressive deteriorations of physiological functions in organisms. Aging-associated diseases are sporadic but mostly inevitable complications arising from senescence. Senescence is often considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena over the dynamic process of aging. The association between early development and late-onset disease with advancing age is thought to come from a consequence of developmental plasticity, the phenomenon by which one genotype can give rise to a range of physiologically and/or morphologically adaptive states in response to different environmental or genetic perturbations. On the one hand, we hypothesized that the future aging process can be predictive based on adaptivity during the early developmental period. Modulating the thresholds of adaptive plasticity by chemical genetic approaches, we have been investigating whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We have successfully conducted experiments to isolate zebrafish mutants expressing apparently altered senescence phenotypes during embryogenesis (“embryonic senescence”), subsequently showing shortened lifespan in adulthoods. We anticipate that previously uncharacterized developmental genes may mediate the aging process and play a pivotal role in senescence. On the other hand, unexpected senescence-related genes might also be involved in the early developmental process and regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes and small molecular compounds that can be linked to the senescence phenotype, and thereby facilitates searching for the evolutionary and developmental origins

  1. Development of Cre-loxP technology in zebrafish to study the regulation of fish reproduction.

    PubMed

    Lin, Heng-Ju; Lee, Shu-Hua; Wu, Jen-Leih; Duann, Yeh-Fang; Chen, Jyh-Yih

    2013-12-01

    One cannot seek permission to market transgenic fish mainly because there is no field test or any basic research on technological developments for evaluating their biosafety. Infertility is a necessary adjunct to exploiting transgenic fish unless completely secure land-locked facilities are available. In this study, we report the generation of a Cre transgenic zebrafish line using a cytomegalovirus promoter. We also produced fish carrying the Bax1 and Bax2 plasmids; these genes were separated by two loxP sites under a zona pellucida C promoter or were driven by an anti-Müllerian hormone promoter. We inserted a red fluorescent protein gene between the two loxP sites. After obtaining transgenic lines with the two transgenic fish crossed with each other (Cre transgenic zebrafish x loxP transgenic zebrafish), the floxed DNA was found to be specifically eliminated from the female or male zebrafish, and apoptosis gene expressions caused ovarian and testicular growth cessation and degeneration. Overexpression of the Bax1 and Bax2 genes caused various expression levels of apoptosis-related genes. Accordingly, this transgenic zebrafish model system provides a method to produce infertile fish and may be useful for application to genetically modified fish.

  2. Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish: a tool for examining OH-BDE toxicity to early life stages.

    PubMed

    Dong, Wu; Macaulay, Laura J; Kwok, Kevin W H; Hinton, David E; Stapleton, Heather M

    2013-05-15

    Polybrominated diphenyl ethers (PBDEs) and their oxidative metabolites (hydroxylated PBDEs; OH-BDEs) are known endocrine disrupting contaminants that have been shown to disrupt thyroid hormone regulation both in mammals and in fish. The purpose of this study was to determine the precise organ and tissue locations that express genes critical to thyroid hormone regulation in developing zebrafish (Danio rerio), and to determine the effects of an OH-BDE on their expression. While RT-PCR can provide quantitative data on gene expression, it lacks spatial sensitivity to examine localized gene expression; and, isolation of organs from zebrafish embryos is technically difficult, if not impossible. For this reason, the present study used whole mount in situ hybridization to simultaneously localize and quantify gene expression in vivo. While PBDEs and OH-BDEs have been shown to inhibit the activity and expression of deiodionases, a family of enzymes that regulate thyroid hormone concentrations intracellularly, it is unclear whether or not they can affect regional expression of the different isoforms during early development. In this study we investigated deiodinase 1 (Dio1), deiodinase 2 (Dio2), and deiodinase 3 (Dio3) mRNA expression at the following life stages (2, 8, and 1k-cells; 50%-epiboly, 6 and 18-somites, 22, 24, 48, 72 hpf and/or 10 dpf) in zebrafish and found life stage specific expression of these genes that were highly localized. To demonstrate the use of this technique for investigating potential endocrine disrupting effects, zebrafish embryos were exposed to 1, 10 and 100nM 6-OH-BDE-47. Significant increases in mean intensity of Dio1 and Dio3 expression in the periventricular zone of brain and pronephric duct, respectively (quantified by measuring intensity of coloration using ImageJ analysis software) were observed, suggesting localized response at the HPT axis with the possibility of impacting neurodevelopment. Our results demonstrate effects of OH-BDEs on

  3. Using Whole mount In Situ Hybridization to Examine Thyroid Hormone Deiodinase Expression in Embryonic and Larval Zebrafish: a Tool for examining OH-BDE toxicity to early life stages

    PubMed Central

    Dong, Wu; Macaulay, Laura; Kwok, Kevin WH; Hinton, David E; Stapleton, Heather M.

    2013-01-01

    Polybrominated diphenyl ethers (PBDEs) and their oxidative metabolites (hydroxylated PBDEs; OH-BDEs) are known endocrine disrupting contaminants that have been shown to disrupt thyroid hormone regulation both in mammals and in fish. The purpose of this study was to determine the precise organ and tissue locations that express genes critical to thyroid hormone regulation in developing zebrafish (Danio rerio), and to determine the effects of an OH-BDE on their expression. While RT-PCR can provide quantitative data on gene expression, it lacks spatial sensitivity to examine localized gene expression; and, isolation of organs from zebrafish embryos is technically difficult, if not impossible. For this reason, the present study used whole mount in situ hybridization to simultaneously localize and quantify gene expression in vivo. While PBDEs and OH-BDEs have been shown to inhibit the activity and expression of deiodionases, a family of enzymes that regulate thyroid hormone concentrations intracellularly, it is unclear whether or not they can affect regional expression of the different isoforms during early development. In this study we investigated deiodinase 1 (Dio1), deiodinase 2 (Dio2), and deiodinase 3 (Dio3) mRNA expression at the following life stages (2, 8, and 1k-cells; 50%-epiboly, 6 and 18-somites, 22, 24, 48, 72 hpf and/or 10 dpf) in zebrafish and found life stage specific expression of these genes that were highly localized. To demonstrate the use of this technique for investigating potential endocrine disrupting effects, zebrafish embryos were exposed to 1, 10 and 100 nM 6-OH-BDE-47. Significant increases in mean intensity of Dio1 and Dio3 expression in the periventricular zone of brain and pronephric duct, respectively (quantified by measuring intensity of coloration using ImageJ analysis software) were observed, suggesting localized response at the HPT axis with the possibility of impacting neurodevelopment. Our results demonstrate effects of OH-BDEs on

  4. Macrophage–Microbe Interactions: Lessons from the Zebrafish Model

    PubMed Central

    Yoshida, Nagisa; Frickel, Eva-Maria; Mostowy, Serge

    2017-01-01

    Macrophages provide front line defense against infections. The study of macrophage–microbe interplay is thus crucial for understanding pathogenesis and infection control. Zebrafish (Danio rerio) larvae provide a unique platform to study macrophage–microbe interactions in vivo, from the level of the single cell to the whole organism. Studies using zebrafish allow non-invasive, real-time visualization of macrophage recruitment and phagocytosis. Furthermore, the chemical and genetic tractability of zebrafish has been central to decipher the complex role of macrophages during infection. Here, we discuss the latest developments using zebrafish models of bacterial and fungal infection. We also review novel aspects of macrophage biology revealed by zebrafish, which can potentiate development of new therapeutic strategies for humans. PMID:29250076

  5. PAX3-FOXO1 transgenic zebrafish models identify HES3 as a mediator of rhabdomyosarcoma tumorigenesis.

    PubMed

    Kendall, Genevieve C; Watson, Sarah; Xu, Lin; LaVigne, Collette A; Murchison, Whitney; Rakheja, Dinesh; Skapek, Stephen X; Tirode, Franck; Delattre, Olivier; Amatruda, James F

    2018-06-05

    Alveolar rhabdomyosarcoma is a pediatric soft-tissue sarcoma caused by PAX3/7-FOXO1 fusion oncogenes and is characterized by impaired skeletal muscle development. We developed human PAX3-FOXO1 -driven zebrafish models of tumorigenesis and found that PAX3-FOXO1 exhibits discrete cell lineage susceptibility and transformation. Tumors developed by 1.6-19 months and were primitive neuroectodermal tumors or rhabdomyosarcoma. We applied this PAX3-FOXO1 transgenic zebrafish model to study how PAX3-FOXO1 leverages early developmental pathways for oncogenesis and found that her3 is a unique target. Ectopic expression of the her3 human ortholog, HES3 , inhibits myogenesis in zebrafish and mammalian cells, recapitulating the arrested muscle development characteristic of rhabdomyosarcoma. In patients, HES3 is overexpressed in fusion-positive versus fusion-negative tumors. Finally, HES3 overexpression is associated with reduced survival in patients in the context of the fusion. Our novel zebrafish rhabdomyosarcoma model identifies a new PAX3-FOXO1 target, her3 / HES3 , that contributes to impaired myogenic differentiation and has prognostic significance in human disease. © 2018, Kendall et al.

  6. Zebrafish cardiac development requires a conserved secondary heart field

    PubMed Central

    Hami, Danyal; Grimes, Adrian C.; Tsai, Huai-Jen; Kirby, Margaret L.

    2011-01-01

    The secondary heart field is a conserved developmental domain in avian and mammalian embryos that contributes myocardium and smooth muscle to the definitive cardiac arterial pole. This field is part of the overall heart field and its myocardial component has been fate mapped from the epiblast to the heart in both mammals and birds. In this study we show that the population that gives rise to the arterial pole of the zebrafish can be traced from the epiblast, is a discrete part of the mesodermal heart field, and contributes myocardium after initial heart tube formation, giving rise to both smooth muscle and myocardium. We also show that Isl1, a transcription factor associated with undifferentiated cells in the secondary heart field in other species, is active in this field. Furthermore, Bmp signaling promotes myocardial differentiation from the arterial pole progenitor population, whereas inhibiting Smad1/5/8 phosphorylation leads to reduced myocardial differentiation with subsequent increased smooth muscle differentiation. Molecular pathways required for secondary heart field development are conserved in teleosts, as we demonstrate that the transcription factor Tbx1 and the Sonic hedgehog pathway are necessary for normal development of the zebrafish arterial pole. PMID:21558385

  7. Embryonic exposure to sodium arsenite perturbs vascular development in zebrafish.

    PubMed

    McCollum, Catherine W; Hans, Charu; Shah, Shishir; Merchant, Fatima A; Gustafsson, Jan-Åke; Bondesson, Maria

    2014-07-01

    Exposure to arsenic in its inorganic form, arsenite, causes adverse effects to many different organs and tissues. Here, we have investigated arsenite-induced adverse effects on vascular tissues in the model organism zebrafish, Danio rerio. Zebrafish embryos were exposed to arsenite at different exposure windows and the susceptibility to vascular tissue damage was recorded at 72hours post fertilization (hpf). Intersegmental vessel sprouting and growth was most perturbed by exposure to arsenite during the 24-48hpf window, while disruption in the condensation of the caudal vein plexus was more often observed at the 48-72hpf exposure window, reflecting when these structures develop during normal embryogenesis. The vascular growth rate was decreased by arsenite exposure, and deviated from that of control embryos at around 24-26.5hpf. We further mapped changes in expression of key regulators of angiogenesis and vasculogenesis. Downregulation of vascular endothelial growth factor receptor 1/fms-related tyrosine kinase 1 (vegfr1/flt1) expression was evident already at 24hpf, coinciding with the decreased vascular growth rate. At later time points, matrix metalloproteinase 9 (mmp9) expression was upregulated, suggesting that arsenite affects the composition of the extracellular matrix. In total, the expression of eight key factors involved in different aspects of vascularization was significantly altered by arsenic exposure. In conclusion, our results show that arsenite is a potent vascular disruptor in the developing zebrafish embryo, a finding that calls for an evaluation of arsenite as a developmental vascular toxicant in mammalian model systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Evolution of complexity in the zebrafish synapse proteome

    PubMed Central

    Bayés, Àlex; Collins, Mark O.; Reig-Viader, Rita; Gou, Gemma; Goulding, David; Izquierdo, Abril; Choudhary, Jyoti S.; Emes, Richard D.; Grant, Seth G. N.

    2017-01-01

    The proteome of human brain synapses is highly complex and is mutated in over 130 diseases. This complexity arose from two whole-genome duplications early in the vertebrate lineage. Zebrafish are used in modelling human diseases; however, its synapse proteome is uncharacterized, and whether the teleost-specific genome duplication (TSGD) influenced complexity is unknown. We report the characterization of the proteomes and ultrastructure of central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD increases overall synapse proteome complexity, the postsynaptic density (PSD) proteome of zebrafish has lower complexity than mammals. A highly conserved set of ∼1,000 proteins is shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific proteome differences indicate that vertebrate species evolved distinct synapse types and functions. The data sets are a resource for a wide range of studies and have important implications for the use of zebrafish in modelling human synaptic diseases. PMID:28252024

  9. Neurodevelopmental Low-dose Bisphenol A Exposure Leads to Early Life-stage Hyperactivity and Learning Deficits in Adult Zebrafish

    PubMed Central

    Saili, Katerine S.; Corvi, Margaret M.; Weber, Daniel N.; Patel, Ami U.; Das, Siba R.; Przybyla, Jennifer; Anderson, Kim A.; Tanguay, Robert L.

    2011-01-01

    Developmental bisphenol A (BPA) exposure has been implicated in adverse behavior and learning deficits. The mode of action underlying these effects is unclear. The zebrafish model was employed to investigate the neurobehavioral effects of developmental bisphenol A (BPA) exposure. The objectives of this study were to identify whether low-dose, developmental BPA exposure affects larval zebrafish locomotor behavior and whether learning deficits occur in adults exposed during development. Two control compounds, 17β-estradiol (an estrogen receptor ligand) and GSK4716 (a synthetic estrogen related receptor gamma ligand), were included. Larval toxicity assays were used to determine appropriate BPA, 17β-estradiol, and GSK4716 concentrations for behavior testing. BPA tissue uptake was analyzed using HPLC and lower doses were extrapolated using a linear regression analysis. Larval behavior tests were conducted using a ViewPoint Zebrabox. Adult learning tests were conducted using a custom-built T-maze. BPA exposure to ≤30 μM was nonteratogenic in zebrafish. Neurodevelopmental BPA exposure to 0.01, 0.1, or 1 μM led to larval hyperactivity or learning deficits in adult zebrafish. Exposure to 0.1 μM 17β-estradiol or GSK4716 also led to larval hyperactivity. This study demonstrates the efficacy of using the larval zebrafish model for studying the neurobehavioral effects of low-dose developmental BPA exposure. PMID:22108044

  10. Morphologic analysis of the zebrafish digestive system.

    PubMed

    Trotter, Andrew J; Parslow, Adam C; Heath, Joan K

    2009-01-01

    The zebrafish provides an ideal model for the study of vertebrate organogenesis, including the formation of the digestive tract and its associated organs. Despite optical transparency of embryos, the internal position of the developing digestive system and its close juxtaposition with the yolk initially made morphological analysis relatively challenging, particularly during the first 3 d of development. However, methodologies have been successfully developed to address these problems and comprehensive morphologic analysis of the developing digestive system has now been achieved using a combination of light and fluorescence microscope approaches-including confocal analysis-to visualize wholemount and histological preparations of zebrafish embryos. Furthermore, the expanding number of antibodies that cross-react with zebrafish proteins and the generation of tissue-specific transgenic green fluorescent protein reporter lines that mark specific cell and tissue compartments have greatly enhanced our ability to successfully image the developing zebrafish digestive system.

  11. A new mode of pancreatic islet innervation revealed by live imaging in zebrafish.

    PubMed

    Yang, Yu Hsuan Carol; Kawakami, Koichi; Stainier, Didier Yr

    2018-06-19

    Pancreatic islets are innervated by autonomic and sensory nerves that influence their function. Analyzing the innervation process should provide insight into the nerve-endocrine interactions and their roles in development and disease. Here, using in vivo time-lapse imaging and genetic analyses in zebrafish, we determined the events leading to islet innervation. Comparable neural density in the absence of vasculature indicates that it is dispensable for early pancreatic innervation. Neural crest cells are in close contact with endocrine cells early in development. We find these cells give rise to neurons that extend axons towards the islet as they surprisingly migrate away. Specific ablation of these neurons partly prevents other neurons from migrating away from the islet resulting in diminished innervation. Thus, our studies establish the zebrafish as a model to interrogate mechanisms of organ innervation, and reveal a novel mode of innervation whereby neurons establish connections with their targets before migrating away. © 2018, Yang et al.

  12. Reprogramming the Maternal Zebrafish Genome after Fertilization to Match the Paternal Methylation Pattern

    PubMed Central

    Potok, Magdalena E.; Nix, David A.; Parnell, Timothy J.; Cairns, Bradley R.

    2014-01-01

    SUMMARY Early vertebrate embryos must achieve totipotency and prepare for zygotic genome activation (ZGA). To understand this process, we determined the DNA methylation (DNAme) profiles of zebrafish gametes, embryos at different stages, and somatic muscle and compared them to gene activity and histone modifications. Sperm chromatin patterns are virtually identical to those at ZGA. Unexpectedly, the DNA of many oocyte genes important for germ-line functions (i.e., piwil1) or early development (i.e., hox genes) is methylated, but the loci are demethylated during zygotic cleavage stages to precisely the state observed in sperm, even in parthenogenetic embryos lacking a replicating paternal genome. Furthermore, this cohort constitutes the genes and loci that acquire DNAme during development (i.e., ZGA to muscle). Finally, DNA methyltransferase inhibition experiments suggest that DNAme silences particular gene and chromatin cohorts at ZGA, preventing their precocious expression. Thus, zebrafish achieve a totipotent chromatin state at ZGA through paternal genome competency and maternal genome DNAme reprogramming. PMID:23663776

  13. Cortisol elevation post-hatch affects behavioural performance in zebrafish larvae.

    PubMed

    Best, Carol; Vijayan, Mathilakath M

    2018-02-01

    Maternal cortisol is essential for cortisol stress axis development and de novo production of this steroid commences only after hatch in zebrafish (Danio rerio). However, very little is known about the effect of elevated cortisol levels, during the critical period of stress axis activation, on larval performance. We tested the hypothesis that elevated cortisol levels post-hatch affect behavioural performance and this is mediated by glucocorticoid receptor (GR) activation in zebrafish larvae. The behavioural response included measuring larval activity in response to alternating light and dark cycles, as well as thigmotaxis. Zebrafish larvae at 3days post-fertilization were exposed to waterborne cortisol for 24h to mimic a steroid response to an early-life stressor exposure. Also, larvae were exposed to waterborne RU-486 (a GR antagonist) either in the presence or absence of cortisol to confirm GR activation. Co-treatment with RU-486 completely abolished the upregulation of cortisol-induced 11β-hydroxysteroid dehydrogenase type 2 transcript abundance, confirming GR signalling. Cortisol-exposed larvae displayed increased locomotor activity irrespective of light condition, but showed no changes in thigmotaxis. This cortisol-mediated behavioural response was not affected by co-treatment with RU-486. Cortisol exposure also did not modify the transcript abundances of GR and mineralocorticoid receptor (MR) in zebrafish larvae. Altogether, cortisol stress axis activation post-hatch increases locomotor activity in zebrafish larvae. Our results suggest that GR signalling may not be involved in this behavioural response, leading to the proposal that cortisol action via MR signalling may influence locomotor activity in zebrafish larvae. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Zebrafish scarb2a insertional mutant reveals a novel function for the Scarb2/Limp2 receptor in notochord development.

    PubMed

    Diaz-Tellez, Abigail; Zampedri, Cecilia; Ramos-Balderas, Jose L; García-Hernández, Fernando; Maldonado, Ernesto

    2016-04-01

    Scarb2 or Limp2 belong to a subfamily of Scavenger receptors described as lysosomal transmembrane glycosylated receptors, that are mutated in the human syndrome AMRF (action myoclonus-renal failure). The zebrafish insertional mutant scarb2a(hi1463Tg) has notochord defects, the notochord is a defining feature of chordates running along the center of the longitudinal axis and it is essential for forming the spinal column in all vertebrates. There are three paralogous scarb2 genes in zebrafish; scarb2a, scarb2b, and scarb2c. Both Scarb2a and Scarb2b proteins lack the classical di-leucine motif. We found that scarb2a(hi1463Tg) homozygous zebrafish embryos have a null mutation impairing vacuole formation in the notochord and simultaneously disrupting proper formation of the basement membrane resulting in its thickening at the ventral side of the notochord, which may be the cause for the anomalous upward bending observed in the trunk. Through whole-mount in situ hybridization, we detected scarb2a mRNA expression in the notochord and in the brain early in development. However, it is puzzling that scarb2a notochord mRNA expression is short-lived in the presumptive notochord and precedes the complete differentiation of the notochord. This work describes a novel function for the Scarb2 receptor as an essential glycoprotein for notochord development. © 2016 Wiley Periodicals, Inc.

  15. Acute exposure to tris (2-butoxyethyl) phosphate (TBOEP) affects growth and development of embryo-larval zebrafish.

    PubMed

    Liu, Yiran; Wu, Ding; Xu, Qinglong; Yu, Liqin; Liu, Chunsheng; Wang, Jianghua

    2017-10-01

    Tris (2-butoxyethyl) phosphate (TBOEP), is used as a flame retardant worldwide. It is an additive in materials and can be easily discharged into the surrounding environment. There is evidence linking TBOEP exposure to abnormal development and growth in zebrafish embryos/larvae. Here, using zebrafish embryo as a model, we investigated toxicological effects on developing zebrafish (Danio rerio) caused by TBOEP at concentrations of 0, 20, 200, 1000, 2000μg/L starting from 2h post-fertilization (hpf). Our findings revealed that TBOEP exposure caused developmental toxicity, such as malformation, growth delay and decreased heart rate in zebrafish larvae. Correlation analysis indicated that inhibition of growth was possibly due to down-regulation of expression of genes related to the growth hormone/insulin-like growth factor (GH/IGF) axis. Furthermore, exposure to TBOEP significantly increased thyroxine (T4) and 3,5,3'-triiodothyronine (T3) in whole larvae. In addition, changed expression of genes involved in the hypothalamic-pituitary-thyroid (HPT) axis was observed, indicating that perturbation of HPT axis might be responsible for the developmental damage and growth delay induced by TBOEP. The present study provides a new set of evidence that exposure of embryo-larval zebrafish to TBOEP can cause perturbation of GH/IGF axis and HPT axis, which could result in developmental impairment and growth inhibition. Copyright © 2017. Published by Elsevier B.V.

  16. N-cadherin is required for cytodifferentiation during zebrafish odontogenesis.

    PubMed

    Verstraeten, B; van Hengel, J; Sanders, E; Van Roy, F; Huysseune, A

    2013-04-01

    N-cadherin is a well-studied classic cadherin involved in multiple developmental processes and is also known to have a signaling function. Using the zebrafish (Danio rerio) as a model, we tested the hypothesis that tooth morphogenesis is accompanied by dynamic changes in N-cadherin distribution and that absence of N-cadherin disturbs tooth development. N-cadherin, encoded by the gene cdh2, is absent during the initiation and morphogenesis stages of both primary (first-generation) and replacement teeth, as demonstrated by immunohistochemistry. However, N-cadherin is up-regulated at the onset of differentiation of cells of the inner dental epithelium and the dental papilla, i.e., the ameloblasts and odontoblasts, respectively. In the inner dental epithelium, N-cadherin is co-expressed with E-cadherin, excluding the occurrence of cadherin switching such as observed during human tooth development. While early lethality of N-cadherin knockout mice prevents any functional study of N-cadherin in mouse odontogenesis, zebrafish parachute (pac) mutants, deficient for N-cadherin, survive beyond the age when primary teeth normally start to form. In these mutants, the first tooth forms, but its development stops at the early cytodifferentiation stage. N-cadherin deficiency also completely inhibits the development of the other first-generation teeth, possibly due to the absence of N-cadherin signaling once the first tooth has differentiated.

  17. Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay

    PubMed Central

    Bhandiwad, Ashwin A.; Zeddies, David G.; Raible, David W.; Rubel, Edwin W.; Sisneros, Joseph A.

    2013-01-01

    SUMMARY Zebrafish (Danio rerio) have become a valuable model for investigating the molecular genetics and development of the inner ear in vertebrates. In this study, we employed a prepulse inhibition (PPI) paradigm to assess hearing in larval wild-type (AB) zebrafish during early development at 5–6 days post-fertilization (d.p.f.). We measured the PPI of the acoustic startle response in zebrafish using a 1-dimensional shaker that simulated the particle motion component of sound along the fish's dorsoventral axis. The thresholds to startle-inducing stimuli were determined in 5–6 d.p.f. zebrafish, and their hearing sensitivity was then characterized using the thresholds of prepulse tone stimuli (90–1200 Hz) that inhibited the acoustic startle response to a reliable startle stimulus (820 Hz at 20 dB re. 1 m s−2). Hearing thresholds were defined as the minimum prepulse tone level required to significantly reduce the startle response probability compared with the baseline (no-prepulse) condition. Larval zebrafish showed greatest auditory sensitivity from 90 to 310 Hz with corresponding mean thresholds of −19 to −10 dB re. 1 m s−2, respectively. Hearing thresholds of prepulse tones were considerably lower than previously predicted by startle response assays. The PPI assay was also used to investigate the relative contribution of the lateral line to the detection of acoustic stimuli. After aminoglycoside-induced neuromast hair-cell ablation, we found no difference in PPI thresholds between treated and control fish. We propose that this PPI assay can be used to screen for novel zebrafish hearing mutants and to investigate the ontogeny of hearing in zebrafish and other fishes. PMID:23966590

  18. Novel Insights into the Genetic Controls of Primitive and Definitive Hematopoiesis from Zebrafish Models

    PubMed Central

    Sood, Raman; Liu, Paul

    2012-01-01

    Hematopoiesis is a dynamic process where initiation and maintenance of hematopoietic stem cells, as well as their differentiation into erythroid, myeloid and lymphoid lineages, are tightly regulated by a network of transcription factors. Understanding the genetic controls of hematopoiesis is crucial as perturbations in hematopoiesis lead to diseases such as anemia, thrombocytopenia, or cancers, including leukemias and lymphomas. Animal models, particularly conventional and conditional knockout mice, have played major roles in our understanding of the genetic controls of hematopoiesis. However, knockout mice for most of the hematopoietic transcription factors are embryonic lethal, thus precluding the analysis of their roles during the transition from embryonic to adult hematopoiesis. Zebrafish are an ideal model organism to determine the function of a gene during embryonic-to-adult transition of hematopoiesis since bloodless zebrafish embryos can develop normally into early larval stage by obtaining oxygen through diffusion. In this review, we discuss the current status of the ontogeny and regulation of hematopoiesis in zebrafish. By providing specific examples of zebrafish morphants and mutants, we have highlighted the contributions of the zebrafish model to our overall understanding of the roles of transcription factors in regulation of primitive and definitive hematopoiesis. PMID:22888355

  19. Zebrafish Melanoma.

    PubMed

    Kaufman, Charles K

    2016-01-01

    Melanoma skin cancer is a potentially deadly disease in humans and has remained extremely difficult to treat once it has metastasized. In just the last 10 years, a number of models of melanoma have been developed in the zebrafish that are biologically faithful to the human disease and have already yielded important insights into the fundamental biology of melanoma and offered new potential avenues for treatment. With the diversity and breadth of the molecular genetic tools available in the zebrafish, these melanoma models will continue to be refined and expanded upon to keep pace with the rapidly evolving field of melanoma biology.

  20. Zebrafish and Streptococcal Infections.

    PubMed

    Saralahti, A; Rämet, M

    2015-09-01

    Streptococcal bacteria are a versatile group of gram-positive bacteria capable of infecting several host organisms, including humans and fish. Streptococcal species are common colonizers of the human respiratory and gastrointestinal tract, but they also cause some of the most common life-threatening, invasive infections in humans and aquaculture. With its unique characteristics and efficient tools for genetic and imaging applications, the zebrafish (Danio rerio) has emerged as a powerful vertebrate model for infectious diseases. Several zebrafish models introduced so far have shown that zebrafish are suitable models for both zoonotic and human-specific infections. Recently, several zebrafish models mimicking human streptococcal infections have also been developed. These models show great potential in providing novel information about the pathogenic mechanisms and host responses associated with human streptococcal infections. Here, we review the zebrafish infection models for the most relevant streptococcal species: the human-specific Streptococcus pneumoniae and Streptococcus pyogenes, and the zoonotic Streptococcus iniae and Streptococcus agalactiae. The recent success and the future potential of these models for the study of host-pathogen interactions in streptococcal infections are also discussed. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  1. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome.

    PubMed

    Garrity, Deborah M; Childs, Sarah; Fishman, Mark C

    2002-10-01

    Holt-Oram syndrome is one of the autosomal dominant human "heart-hand" disorders, with a combination of upper limb malformations and cardiac defects. Holt-Oram syndrome is caused by mutations in the TBX5 gene, a member of a large family of T-box transcription factors that play important roles in cell-type specification and morphogenesis. In a screen for mutations affecting zebrafish cardiac function, we isolated the recessive lethal mutant heartstrings, which lacks pectoral fins and exhibits severe cardiac dysfunction, beginning with a slow heart rate and progressing to a stretched, non-functional heart. We mapped and cloned the heartstrings mutation and find it to encode the zebrafish ortholog of the TBX5 gene. The heartstrings mutation causes premature termination at amino acid 316. Homozygous mutant embryos never develop pectoral fin buds and do not express several markers of early fin differentiation. The total absence of any fin bud differentiation distinguishes heartstrings from most other mutations that affect zebrafish fin development, suggesting that Tbx5 functions very early in the pectoral fin induction pathway. Moderate reduction of Tbx5 by morpholino causes fin malformations, revealing an additional early requirement for Tbx5 in coordinating the axes of fin outgrowth. The heart of heartstrings mutant embryos appears to form and function normally through the early heart tube stage, manifesting only a slight bradycardia compared with wild-type siblings. However, the heart fails to loop and then progressively deteriorates, a process affecting the ventricle as well as the atrium. Relative to mammals, fish require lower levels of Tbx5 to produce malformed appendages and display whole-heart rather than atrial-predominant cardiac defects. However, the syndromic deficiencies of tbx5 mutation are remarkably well retained between fish and mammals.

  2. Developing a Novel Embryo-Larval Zebrafish Xenograft Assay to Prioritize Human Glioblastoma Therapeutics.

    PubMed

    Wehmas, Leah Christine; Tanguay, Robert L; Punnoose, Alex; Greenwood, Juliet A

    2016-08-01

    Glioblastoma is an aggressive brain cancer requiring improved treatments. Existing methods of drug discovery and development require years before new therapeutics become available to patients. Zebrafish xenograft models hold promise for prioritizing drug development. We have developed an embryo-larval zebrafish xenograft assay in which cancer cells are implanted in a brain microenvironment to discover and prioritize compounds that impact glioblastoma proliferation, migration, and invasion. We illustrate the utility of our assay by evaluating the well-studied, phosphatidylinositide 3-kinase inhibitor LY294002 and zinc oxide nanoparticles (ZnO NPs), which demonstrate selective cancer cytotoxicity in cell culture, but the in vivo effectiveness has not been established. Exposures of 3.125-6.25 μM LY294002 significantly decreased proliferation up to 34% with concentration-dependent trends. Exposure to 6.25 μM LY294002 significantly inhibited migration/invasion by ∼27% within the glioblastoma cell mass (0-80 μm) and by ∼32% in the next distance region (81-160 μm). Unexpectedly, ZnO enhanced glioblastoma proliferation by ∼19% and migration/invasion by ∼35% at the periphery of the cell mass (161+ μm); however, dissolution of these NPs make it difficult to discern whether this was a nano or ionic effect. These results demonstrate that we have a short, relevant, and sensitive zebrafish-based assay to aid glioblastoma therapeutic development.

  3. Transient Exposure to Ethanol during Zebrafish Embryogenesis Results in Defects in Neuronal Differentiation: An Alternative Model System to Study FASD

    PubMed Central

    Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

    2014-01-01

    Background The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. Methodology/Principal Findings In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Conclusion Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development. PMID:25383948

  4. What is the Thalamus in Zebrafish?

    PubMed Central

    Mueller, Thomas

    2012-01-01

    Current research on the thalamus and related structures in the zebrafish diencephalon identifies an increasing number of both neurological structures and ontogenetic processes as evolutionary conserved between teleosts and mammals. The patterning processes, for example, which during the embryonic development of zebrafish form the thalamus proper appear largely conserved. Yet also striking differences between zebrafish and other vertebrates have been observed, particularly when we look at mature and histologically differentiated brains. A case in point is the migrated preglomerular complex of zebrafish which evolved only within the lineage of ray-finned fish and has no counterpart in mammals or tetrapod vertebrates. Based on its function as a sensory relay station with projections to pallial zones, the preglomerular complex has been compared to specific thalamic nuclei in mammals. However, no thalamic projections to the zebrafish dorsal pallium, which corresponds topologically to the mammalian isocortex, have been identified. Merely one teleostean thalamic nucleus proper, the auditory nucleus, projects to a part of the dorsal telencephalon, the pallial amygdala. Studies on patterning mechanisms identify a rostral and caudal domain in the embryonic thalamus proper. In both, teleosts and mammals, the rostral domain gives rise to GABAergic neurons, whereas glutamatergic neurons originate in the caudal domain of the zebrafish thalamus. The distribution of GABAergic derivatives in the adult zebrafish brain, furthermore, revealed previously overlooked thalamic nuclei and redefined already established ones. These findings require some reconsideration regarding the topological origin of these adult structures. In what follows, I discuss how evolutionary conserved and newly acquired features of the developing and adult zebrafish thalamus can be compared to the mammalian situation. PMID:22586363

  5. Mixtures, Metabolites, and Mechanisms: Understanding Toxicology Using Zebrafish.

    PubMed

    Gamse, Joshua T; Gorelick, Daniel A

    2016-10-01

    For more than 60 years, zebrafish have been used in toxicological studies. Due to their transparency, genetic tractability, and compatibility with high-throughput screens, zebrafish embryos are uniquely suited to study the effects of pharmaceuticals and environmental insults on embryonic development, organ formation and function, and reproductive success. This special issue of Zebrafish highlights the ways zebrafish are used to investigate the toxic effects of endocrine disruptors, pesticides, and heavy metals.

  6. Early Embryonic Androgen Exposure Induces Transgenerational Epigenetic and Metabolic Changes

    PubMed Central

    Xu, Ning; Chua, Angela K.; Jiang, Hong; Liu, Ning-Ai

    2014-01-01

    Androgen excess is a central feature of polycystic ovary syndrome (PCOS), which affects 6% to 10% of young women. Mammals exposed to elevated androgens in utero develop PCOS-like phenotypes in adulthood, suggesting fetal origins of PCOS. We hypothesize that excess androgen exposure during early embryonic development may disturb the epigenome and disrupt metabolism in exposed and unexposed subsequent generations. Zebrafish were used to study the underlying mechanism of fetal origins. Embryos were exposed to androgens (testosterone and dihydrotestosterone) early at 26 to 56 hours post fertilization or late at 21 to 28 days post fertilization. Exposed zebrafish (F0) were grown to adults and crossed to generate unexposed offspring (F1). For both generations, global DNA methylation levels were examined in ovaries using a luminometric methylation assay, and fasting and postprandial blood glucose levels were measured. We found that early but not late androgen exposure induced changes in global methylation and glucose homeostasis in both generations. In general, F0 adult zebrafish exhibited altered global methylation levels in the ovary; F1 zebrafish had global hypomethylation. Fasting blood glucose levels were decreased in F0 but increased in F1; postprandial glucose levels were elevated in both F0 and F1. This androgenized zebrafish study suggests that transient excess androgen exposure during early development can result in transgenerational alterations in the ovarian epigenome and glucose homeostasis. Current data cannot establish a causal relationship between epigenetic changes and altered glucose homeostasis. Whether transgenerational epigenetic alteration induced by prenatal androgen exposure plays a role in the development of PCOS in humans deserves study. PMID:24992182

  7. The ventralizing activity of Radar, a maternally expressed bone morphogenetic protein, reveals complex bone morphogenetic protein interactions controlling dorso-ventral patterning in zebrafish.

    PubMed

    Goutel, C; Kishimoto, Y; Schulte-Merker, S; Rosa, F

    2000-12-01

    In Xenopus and zebrafish, BMP2, 4 and 7 have been implicated, after the onset of zygotic expression, in inducing and maintaining ventro-lateral cell fate during early development. We provide evidence here that a maternally expressed bone morphogenetic protein (BMP), Radar, may control early ventral specification in zebrafish. We show that Radar ventralizes zebrafish embryos and induces the early expression of bmp2b and bmp4. The analysis of Radar overexpression in both swirl/bmp2b mutants and embryos expressing truncated BMP receptors shows that Radar-induced ventralization is dependent on functional BMP2/4 pathways, and may initially rely on an Alk6-related signaling pathway. Finally, we show that while radar-injected swirl embryos still exhibit a strongly dorsalized phenotype, the overexpression of Radar into swirl/bmp2b mutant embryos restores ventral marker expression, including bmp4 expression. Our results suggest that a complex regulation of different BMP pathways controls dorso-ventral (DV) patterning from early cleavage stages until somitogenesis.

  8. There and Back Again: Development and Regeneration of the Zebrafish Lateral Line System

    PubMed Central

    Thomas, Eric D.; Cruz, Ivan A.; Hailey, Dale W.; Raible, David W.

    2014-01-01

    The zebrafish lateral line is a sensory system used to detect changes in water flow. It is comprised of clusters of mechanosensory hair cells called neuromasts. The lateral line is initially established by a migratory group of cells, called a primordium, that deposits neuromasts at stereotyped locations along the surface of the fish. Wnt, FGF, and Notch signaling are all important regulators of various aspects of lateral line development, from primordium migration to hair cell specification. As zebrafish age, the organization of the lateral line becomes more complex in order to accommodate the fish’s increased size. This expansion is regulated by many of the same factors involved in the initial development. Furthermore, unlike mammalian hair cells, lateral line hair cells have the capacity to regenerate after damage. New hair cells arise from the proliferation and differentiation of surrounding support cells, and the molecular and cellular pathways regulating this are beginning to be elucidated. All in all, the zebrafish lateral line has proven to be an excellent model in which to study a diverse array of processes, including collective cell migration, cell polarity, cell fate, and regeneration. PMID:25330982

  9. Microcystin-LR affects the hypothalamic-pituitary-inter-renal (HPI) axis in early life stages (embryos and larvae) of zebrafish.

    PubMed

    Chen, Liang; Wang, Yeke; Giesy, John P; Chen, Feng; Shi, Ting; Chen, Jun; Xie, Ping

    2018-05-22

    Frequencies and durations of blooms of cyanobacteria are increasing. Some cyanobacteria can produce cyanotoxins including microcystins (MCs). MCs are the most common toxic products of hazardous algal blooms (HABs), with the greatest potential for exposure and to cause toxicity. Recently, MCs have been shown to disrupt endocrine functions. In this study, for the first time, effects of MC-LR on the hypothalamic-pituitary-inter-renal (HPI) axis during early embryonic development (embryos/larvae) of zebrafish (Danio rerio), were investigated. Embryos/larvae of zebrafish were exposed to 1, 10, 100, or 300 μg MC-LR/L during the period of 4-168 h post-fertilization (hpf). Exposure to 300 μg MC-LR/L resulted in significantly greater concentrations of whole-body cortisol than those in controls. Expressions of genes along the HPI axis and mineralocorticoid receptor (MR-) and glucocorticoid receptor (GR-) centered gene networks were evaluated by use of quantitative real-time PCR. Expression of mRNA for crh was significantly down-regulated by exposure to 300 μg MC-LR/L, while expressions of crhbp, crhr1, and crhr2 were significantly up-regulated, relative to controls. MC-LR caused significantly lesser levels of mRNA for steroidogenic genes including hmgra, star, and cyp17, but expression of mRNA for hsd20b was significantly greater than that of controls. Treatment with MC-LR also altered profiles of transcription of MR- and GR-centered gene networks, which might result in multiple responses. Taken together, these results demonstrated that MC-LR affected the corticosteroid-endocrine system of larvae of zebrafish. This study provided valuable insights into molecular mechanisms behind potential toxicity and endocrine disruption of MCs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Important role of endocannabinoid signaling in the development of functional vision and locomotion in zebrafish.

    PubMed

    Martella, Andrea; Sepe, Rosa M; Silvestri, Cristoforo; Zang, Jingjing; Fasano, Giulia; Carnevali, Oliana; De Girolamo, Paolo; Neuhauss, Stephan C F; Sordino, Paolo; Di Marzo, Vincenzo

    2016-12-01

    The developmental role of the endocannabinoid system still remains to be fully understood. Here, we report the presence of a complete endocannabinoid system during zebrafish development and show that the genes that code for enzymes that catalyze the anabolism and catabolism (mgll and dagla) of the endocannabinoid, 2-AG (2-arachidonoylglycerol), as well as 2-AG main receptor in the brain, cannabinoid receptor type 1, are coexpressed in defined regions of axonal growth. By using morpholino-induced transient knockdown of the zebrafish Daglα homolog and its pharmacologic rescue, we suggest that synthesis of 2-AG is implicated in the control of axon formation in the midbrain-hindbrain region and that animals that lack Daglα display abnormal physiological behaviors in tests that measure stereotyped movement and motion perception. Our results suggest that the well-established role for 2-AG in axonal outgrowth has implications for the control of vision and movement in zebrafish and, thus, is likely common to all vertebrates.-Martella, A., Sepe, R. M., Silvestri, C., Zang, J., Fasano, G., Carnevali, O., De Girolamo, P., Neuhauss, S. C. F., Sordino, P., Di Marzo, V. Important role of endocannabinoid signaling in the development of functional vision and locomotion in zebrafish. © FASEB.

  11. Editor's Highlight: Transgenic Zebrafish Reporter Lines as Alternative In Vivo Organ Toxicity Models.

    PubMed

    Poon, Kar Lai; Wang, Xingang; Lee, Serene G P; Ng, Ashley S; Goh, Wei Huang; Zhao, Zhonghua; Al-Haddawi, Muthafar; Wang, Haishan; Mathavan, Sinnakaruppan; Ingham, Philip W; McGinnis, Claudia; Carney, Tom J

    2017-03-01

    Organ toxicity, particularly liver toxicity, remains one of the major reasons for the termination of drug candidates in the development pipeline as well as withdrawal or restrictions of marketed drugs. A screening-amenable alternative in vivo model such as zebrafish would, therefore, find immediate application in the early prediction of unacceptable organ toxicity. To identify highly upregulated genes as biomarkers of toxic responses in the zebrafish model, a set of well-characterized reference drugs that cause drug-induced liver injury (DILI) in the clinic were applied to zebrafish larvae and adults. Transcriptome microarray analysis was performed on whole larvae or dissected adult livers. Integration of data sets from different drug treatments at different stages identified common upregulated detoxification pathways. Within these were candidate biomarkers which recurred in multiple treatments. We prioritized 4 highly upregulated genes encoding enzymes acting in distinct phases of the drug metabolism pathway. Through promoter isolation and fosmid recombineering, eGFP reporter transgenic zebrafish lines were generated and evaluated for their response to DILI drugs. Three of the 4 generated reporter lines showed a dose and time-dependent induction in endodermal organs to reference drugs and an expanded drug set. In conclusion, through integrated transcriptomics and transgenic approaches, we have developed parallel independent zebrafish in vivo screening platforms able to predict organ toxicities of preclinical drugs. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Uncoupling nicotine mediated motoneuron axonal pathfinding errors and muscle degeneration in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welsh, Lillian; Tanguay, Robert L.; Svoboda, Kurt R.

    Zebrafish embryos offer a unique opportunity to investigate the mechanisms by which nicotine exposure impacts early vertebrate development. Embryos exposed to nicotine become functionally paralyzed by 42 hpf suggesting that the neuromuscular system is compromised in exposed embryos. We previously demonstrated that secondary spinal motoneurons in nicotine-exposed embryos were delayed in development and that their axons made pathfinding errors (Svoboda, K.R., Vijayaraghaven, S., Tanguay, R.L., 2002. Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J. Neurosci. 22, 10731-10741). In that study, we did not consider the potential role that altered skeletalmore » muscle development caused by nicotine exposure could play in contributing to the errors in spinal motoneuron axon pathfinding. In this study, we show that an alteration in skeletal muscle development occurs in tandem with alterations in spinal motoneuron development upon exposure to nicotine. The alteration in the muscle involves the binding of nicotine to the muscle-specific AChRs. The nicotine-induced alteration in muscle development does not occur in the zebrafish mutant (sofa potato, [sop]), which lacks muscle-specific AChRs. Even though muscle development is unaffected by nicotine exposure in sop mutants, motoneuron axonal pathfinding errors still occur in these mutants, indicating a direct effect of nicotine exposure on nervous system development.« less

  13. Optogenetics: a new enlightenment age for zebrafish neurobiology.

    PubMed

    Del Bene, Filippo; Wyart, Claire

    2012-03-01

    Zebrafish became a model of choice for neurobiology because of the transparency of its brain and because of its amenability to genetic manipulation. In particular, at early stages of development the intact larva is an ideal system to apply optical techniques for deep imaging in the nervous system, as well as genetically encoded tools for targeting subsets of neurons and monitoring and manipulating their activity. For these applications,new genetically encoded optical tools, fluorescent sensors, and light-gated channels have been generated,creating the field of "optogenetics." It is now possible to monitor and control neuronal activity with minimal perturbation and unprecedented spatio-temporal resolution.We describe here the main achievements that have occurred in the last decade in imaging and manipulating neuronal activity in intact zebrafish larvae. We provide also examples of functional dissection of neuronal circuits achieved with the applications of these techniques in the visual and locomotor systems.

  14. Mixtures, Metabolites, and Mechanisms: Understanding Toxicology Using Zebrafish

    PubMed Central

    Gamse, Joshua T.

    2016-01-01

    Abstract For more than 60 years, zebrafish have been used in toxicological studies. Due to their transparency, genetic tractability, and compatibility with high-throughput screens, zebrafish embryos are uniquely suited to study the effects of pharmaceuticals and environmental insults on embryonic development, organ formation and function, and reproductive success. This special issue of Zebrafish highlights the ways zebrafish are used to investigate the toxic effects of endocrine disruptors, pesticides, and heavy metals. PMID:27618129

  15. Extraocular muscle regeneration in zebrafish requires late signals from Insulin-like growth factors.

    PubMed

    Saera-Vila, Alfonso; Louie, Ke'ale W; Sha, Cuilee; Kelly, Ryan M; Kish, Phillip E; Kahana, Alon

    2018-01-01

    Insulin-like growth factors (Igfs) are key regulators of key biological processes such as embryonic development, growth, and tissue repair and regeneration. The role of Igf in myogenesis is well documented and, in zebrafish, promotes fin and heart regeneration. However, the mechanism of action of Igf in muscle repair and regeneration is not well understood. Using adult zebrafish extraocular muscle (EOM) regeneration as an experimental model, we show that Igf1 receptor blockage using either chemical inhibitors (BMS754807 and NVP-AEW541) or translation-blocking morpholino oligonucleotides (MOs) reduced EOM regeneration. Zebrafish EOMs regeneration depends on myocyte dedifferentiation, which is driven by early epigenetic reprogramming and requires autophagy activation and cell cycle reentry. Inhibition of Igf signaling had no effect on either autophagy activation or cell proliferation, indicating that Igf signaling was not involved in the early reprogramming steps of regeneration. Instead, blocking Igf signaling produced hypercellularity of regenerating EOMs and diminished myosin expression, resulting in lack of mature differentiated muscle fibers even many days after injury, indicating that Igf was involved in late re-differentiation steps. Although it is considered the main mediator of myogenic Igf actions, Akt activation decreased in regenerating EOMs, suggesting that alternative signaling pathways mediate Igf activity in muscle regeneration. In conclusion, Igf signaling is critical for re-differentiation of reprogrammed myoblasts during late steps of zebrafish EOM regeneration, suggesting a regulatory mechanism for determining regenerated muscle size and timing of differentiation, and a potential target for regenerative therapy.

  16. Label-free imaging of developing vasculature in zebrafish with phase variance optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Fingler, Jeff; Trinh, Le A.; Fraser, Scott E.

    2016-03-01

    A phase variance optical coherence microscope (pvOCM) has been created to visualize blood flow in the vasculature of zebrafish embryos, without using exogenous labels. The pvOCM imaging system has axial and lateral resolutions of 2 μm in tissue, and imaging depth of more than 100 μm. Imaging of 2-5 days post-fertilization zebrafish embryos identified the detailed structures of somites, spinal cord, gut and notochord based on intensity contrast. Visualization of the blood flow in the aorta, veins and intersegmental vessels was achieved with phase variance contrast. The pvOCM vasculature images were confirmed with corresponding fluorescence microscopy of a zebrafish transgene that labels the vasculature with green fluorescent protein. The pvOCM images also revealed functional information of the blood flow activities that is crucial for the study of vascular development.

  17. Zebrafish as an early stage screening tool to study the systemic circulation of nanoparticulate drug delivery systems in vivo.

    PubMed

    Sieber, Sandro; Grossen, Philip; Detampel, Pascal; Siegfried, Salome; Witzigmann, Dominik; Huwyler, Jörg

    2017-10-28

    Nanomedicines have gained much attention for the delivery of small molecules or nucleic acids as treatment options for many diseases. However, the transfer from experimental systems to in vivo applications remains a challenge since it is difficult to assess their circulation behavior in the body at an early stage of drug discovery. Thus, innovative and improved concepts are urgently needed to overcome this issue and to close the gap between empiric nanoparticle design, in vitro assessment, and first in vivo experiments using rodent animal models. This study was focused on the zebrafish as a vertebrate screening model to assess the circulation in blood and extravasation behavior of nanoparticulate drug delivery systems in vivo. To validate this novel approach, monodisperse preparations of fluorescently labeled liposomes with similar size and zeta potential were injected into transgenic zebrafish lines expressing green fluorescent protein in their vasculature. Phosphatidylcholine-based lipids differed by fatty acid chain length and saturation. Circulation behavior and vascular distribution pattern were evaluated qualitatively and semi-quantitatively using image analysis. Liposomes composed of lipids with lower transition temperature (<28°C) as well as PEGylated liposomes showed longer circulation times and extravasation. In contrast, liposomes composed of lipids with transition temperatures>28°C bound to venous parts of the vasculature. This circulation patterns in the zebrafish model did correlate with published and experimental pharmacokinetic data from mice and rats. Our findings indicate that the zebrafish model is a useful vertebrate screening tool for nanoparticulate drug delivery systems to predict their in vivo circulation behavior with respect to systemic circulation time and exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Usherin defects lead to early-onset retinal dysfunction in zebrafish.

    PubMed

    Dona, Margo; Slijkerman, Ralph; Lerner, Kimberly; Broekman, Sanne; Wegner, Jeremy; Howat, Taylor; Peters, Theo; Hetterschijt, Lisette; Boon, Nanda; de Vrieze, Erik; Sorusch, Nasrin; Wolfrum, Uwe; Kremer, Hannie; Neuhauss, Stephan; Zang, Jingjing; Kamermans, Maarten; Westerfield, Monte; Phillips, Jennifer; van Wijk, Erwin

    2018-05-16

    Mutations in USH2A are the most frequent cause of Usher syndrome and autosomal recessive nonsyndromic retinitis pigmentosa. To unravel the pathogenic mechanisms underlying USH2A-associated retinal degeneration and to evaluate future therapeutic strategies that could potentially halt the progression of this devastating disorder, an animal model is needed. The available Ush2a knock-out mouse model does not mimic the human phenotype, because it presents with only a mild and late-onset retinal degeneration. Using CRISPR/Cas9-technology, we introduced protein-truncating germline lesions into the zebrafish ush2a gene (ush2a rmc1 : c.2337_2342delinsAC; p.Cys780GlnfsTer32 and ush2a b1245 : c.15520_15523delinsTG; p.Ala5174fsTer). Homozygous mutants were viable and displayed no obvious morphological or developmental defects. Immunohistochemical analyses with antibodies recognizing the N- or C-terminal region of the ush2a-encoded protein, usherin, demonstrated complete absence of usherin in photoreceptors of ush2a rmc1 , but presence of the ectodomain of usherin at the periciliary membrane of ush2a b1245 -derived photoreceptors. Furthermore, defects of usherin led to a reduction in localization of USH2 complex members, whirlin and Adgrv1, at the photoreceptor periciliary membrane of both mutants. Significantly elevated levels of apoptotic photoreceptors could be observed in both mutants when kept under constant bright illumination for three days. Electroretinogram (ERG) recordings revealed a significant and similar decrease in both a- and b-wave amplitudes in ush2a rmc1 as well as ush2a b1245 larvae as compared to strain- and age-matched wild-type larvae. In conclusion, this study shows that mutant ush2a zebrafish models present with early-onset retinal dysfunction that is exacerbated by light exposure. These models provide a better understanding of the pathophysiology underlying USH2A-associated RP and a unique opportunity to evaluate future therapeutic strategies. Copyright

  19. Treatment with sodium benzoate leads to malformation of zebrafish larvae.

    PubMed

    Tsay, Huey-Jen; Wang, Yun-Hsin; Chen, Wei-Li; Huang, Mei-Yun; Chen, Yau-Hung

    2007-01-01

    Sodium benzoate (SB) is a commonly used food preservative and anti-microbial agent in many foods from soup to cereals. However, little is known about the SB-induced toxicity and teratogenicity during early embryonic development. Here, we used zebrafish as a model to test the toxicity and teratogenicity because of their transparent eggs; therefore, the organogenesis of zebrafish embryos is easy to observe. After low dosages of SB (1-1000 ppm) treatment, the zebrafish embryos exhibited a 100% survival rate. As the exposure dosages increased, the survival rates decreased. No embryos survived after treatment with 2000 ppm SB. The 50% lethal dose (LD(50)) of zebrafish is found to be in the range of 1400-1500 ppm. Gut abnormalities, malformation of pronephros, defective hatching gland and edema in pericardial sac were observed after treatment with SB. Compared to untreated littermates (vehicle-treated control), SB-treated embryos exhibited significantly reduced tactile sensitivity frequencies of touch-induced movement (vehicle-treated control: 27.60+/-1.98 v.s. 1000 ppm SB: 7.89+/-5.28; N=30). Subtle changes are easily observed by staining with specific monoclonal antibodies F59, Znp1 and alpha6F to detect morphology changes in muscle fibers, motor axons and pronephros, respectively. Our data showed that the treatment of SB led to misalignment of muscle fibers, motor neuron innervations, excess acetyl-choline receptor cluster and defective pronephric tubes. On the basis of these observations, we suggest that sodium benzoate is able to induce neurotoxicity and nephrotoxicity of zebrafish larvae.

  20. Teratological Effects of a Panel of Sixty Water-Soluble Toxicants on Zebrafish Development

    PubMed Central

    Ali, Shaukat; Aalders, Jeffrey

    2014-01-01

    Abstract The zebrafish larva is a promising whole-animal model for safety pharmacology, environmental risk assessment, and developmental toxicity. This model has been used for the high-throughput toxicity screening of various compounds. Our aim here is to identify possible phenotypic markers of teratogenicity in zebrafish embryos that could be used for the assaying compounds for reproductive toxicity. We have screened a panel of 60 water-soluble toxicants to examine their effects on zebrafish development. A total of 22,080 wild-type zebrafish larvae were raised in 250 μL defined buffer in 96-well plates at a plating density of one embryo per well. They were exposed for a 96-h period starting at 24 h post-fertilization. A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for developmental toxicity assessment. A total of 9017 survivors were analyzed at 5 days post-fertilization for nine phenotypes, namely, (1) normal, (2) pericardial oedema, (3) yolk sac oedema, (4) melanophores dispersed, (5) bent tail tip, (6) bent body axis, (7) abnormal Meckel's cartilage, (8) abnormal branchial arches, and (9) uninflated swim bladder. For each toxicant, the EC50 (concentration required to produce one or more of these abnormalities in 50% of embryos) was also calculated. For the majority of toxicants (55/60) there was, at the population level, a statistically significant, concentration-dependent increase in the incidence of abnormal phenotypes among survivors. The commonest abnormalities were pericardial oedema, yolk sac oedema, dispersed melanophores, and uninflated swim bladder. It is possible therefore that these could prove to be general indicators of reproductive toxicity in the zebrafish embryo assay. PMID:24650241

  1. Histone deacetylase 1 is required for the development of the zebrafish inner ear

    PubMed Central

    He, Yingzi; Tang, Dongmei; Li, Wenyan; Chai, Renjie; Li, Huawei

    2016-01-01

    Histone deacetylase 1 (HDAC1) has been reported to be important for multiple aspects of normal embryonic development, but little is known about its function in the development of mechanosensory organs. Here, we first confirmed that HDAC1 is expressed in the developing otic vesicles of zebrafish by whole-mount in situ hybridization. Knockdown of HDAC1 using antisense morpholino oligonucleotides in zebrafish embryos induced smaller otic vesicles, abnormal otoliths, malformed or absent semicircular canals, and fewer sensory hair cells. HDAC1 loss of function also caused attenuated expression of a subset of key genes required for otic vesicle formation during development. Morpholino-mediated knockdown of HDAC1 resulted in decreased expression of members of the Fgf family in the otic vesicles, suggesting that HDAC1 is involved in the development of the inner ear through regulation of Fgf signaling pathways. Taken together, our results indicate that HDAC1 plays an important role in otic vesicle formation. PMID:26832938

  2. Development without germ cells: the role of the germ line in zebrafish sex differentiation.

    PubMed

    Slanchev, Krasimir; Stebler, Jürg; de la Cueva-Méndez, Guillermo; Raz, Erez

    2005-03-15

    The progenitors of the gametes, the primordial germ cells (PGCs) are typically specified early in the development in positions, which are distinct from the gonad. These cells then migrate toward the gonad where they differentiate into sperms and eggs. Here, we study the role of the germ cells in somatic development and particularly the role of the germ line in the sex differentiation in zebrafish. To this end, we ablated the germ cells using two independent methods and followed the development of the experimental fish. First, PGCs were ablated by knocking down the function of dead end, a gene important for the survival of this lineage. Second, a method to eliminate the PGCs using the toxin-antitoxin components of the parD bacterial genetic system was used. Specifically, we expressed a bacterial toxin Kid preferentially in the PGCs and at the same time protected somatic cells by uniformly expressing the specific antidote Kis. Our results demonstrate an unexpected role for the germ line in promoting female development because PGC-ablated fish invariably developed as males.

  3. Development without germ cells: The role of the germ line in zebrafish sex differentiation

    PubMed Central

    Slanchev, Krasimir; Stebler, Jürg; de la Cueva-Méndez, Guillermo; Raz, Erez

    2005-01-01

    The progenitors of the gametes, the primordial germ cells (PGCs) are typically specified early in the development in positions, which are distinct from the gonad. These cells then migrate toward the gonad where they differentiate into sperms and eggs. Here, we study the role of the germ cells in somatic development and particularly the role of the germ line in the sex differentiation in zebrafish. To this end, we ablated the germ cells using two independent methods and followed the development of the experimental fish. First, PGCs were ablated by knocking down the function of dead end, a gene important for the survival of this lineage. Second, a method to eliminate the PGCs using the toxin–antitoxin components of the parD bacterial genetic system was used. Specifically, we expressed a bacterial toxin Kid preferentially in the PGCs and at the same time protected somatic cells by uniformly expressing the specific antidote Kis. Our results demonstrate an unexpected role for the germ line in promoting female development because PGC-ablated fish invariably developed as males. PMID:15728735

  4. Developing a Novel Embryo–Larval Zebrafish Xenograft Assay to Prioritize Human Glioblastoma Therapeutics

    PubMed Central

    Wehmas, Leah Christine; Tanguay, Robert L.; Punnoose, Alex

    2016-01-01

    Abstract Glioblastoma is an aggressive brain cancer requiring improved treatments. Existing methods of drug discovery and development require years before new therapeutics become available to patients. Zebrafish xenograft models hold promise for prioritizing drug development. We have developed an embryo–larval zebrafish xenograft assay in which cancer cells are implanted in a brain microenvironment to discover and prioritize compounds that impact glioblastoma proliferation, migration, and invasion. We illustrate the utility of our assay by evaluating the well-studied, phosphatidylinositide 3-kinase inhibitor LY294002 and zinc oxide nanoparticles (ZnO NPs), which demonstrate selective cancer cytotoxicity in cell culture, but the in vivo effectiveness has not been established. Exposures of 3.125–6.25 μM LY294002 significantly decreased proliferation up to 34% with concentration-dependent trends. Exposure to 6.25 μM LY294002 significantly inhibited migration/invasion by ∼27% within the glioblastoma cell mass (0–80 μm) and by ∼32% in the next distance region (81–160 μm). Unexpectedly, ZnO enhanced glioblastoma proliferation by ∼19% and migration/invasion by ∼35% at the periphery of the cell mass (161+ μm); however, dissolution of these NPs make it difficult to discern whether this was a nano or ionic effect. These results demonstrate that we have a short, relevant, and sensitive zebrafish-based assay to aid glioblastoma therapeutic development. PMID:27158859

  5. The search for evolutionary developmental origins of aging in zebrafish: a novel intersection of developmental and senescence biology in the zebrafish model system.

    PubMed

    Kishi, Shuji

    2011-09-01

    Senescence may be considered the antithesis of early development, but yet there may be factors and mechanisms in common between these two phenomena during the process of aging. We investigated whether any relationship exists between the regulatory mechanisms that function in early development and in senescence using the zebrafish (Danio rerio), a small freshwater fish and a useful model animal for genetic studies. We conducted experiments to isolate zebrafish mutants expressing an apparent senescence phenotype during embryogenesis (embryonic senescence). Some of the genes we thereby identified had already been associated with cellular senescence and chronological aging in other organisms, but many had not yet been linked to these processes. Complete loss-of-function of developmentally essential genes induce embryonic (or larval) lethality, whereas it seems like their partial loss-of-function (i.e., decrease-of-function by heterozygote or hypomorphic mutations) still remains sufficient to go through the early developmental process because of its adaptive plasticity or rather heterozygote advantage. However, in some cases, such partial loss-of-function of genes compromise normal homeostasis due to haploinsufficiency later in adult life having many environmental stress challenges. By contrast, any heterozygote-advantageous genes might gain a certain benefit(s) (much more fitness) by such partial loss-of-function later in life. Physiological senescence may evolutionarily arise from both genetic and epigenetic drifts as well as from losing adaptive developmental plasticity in face of stress signals from the external environment that interacts with functions of multiple genes rather than effects of only a single gene mutation or defect. Previously uncharacterized developmental genes may thus mediate the aging process and play a pivotal role in senescence. Moreover, unexpected senescence-related genes might also be involved in the early developmental process and

  6. Normal anatomy and histology of the adult zebrafish.

    PubMed

    Menke, Aswin L; Spitsbergen, Jan M; Wolterbeek, Andre P M; Woutersen, Ruud A

    2011-08-01

    The zebrafish has been shown to be an excellent vertebrate model for studying the roles of specific genes and signaling pathways. The sequencing of its genome and the relative ease with which gene modifications can be performed have led to the creation of numerous human disease models that can be used for testing the potential and the toxicity of new pharmaceutical compounds. Many pharmaceutical companies already use the zebrafish for prescreening purposes. So far, the focus has been on ecotoxicity and the effects on embryonic development, but there is a trend to expand the use of the zebrafish with acute, subchronic, and chronic toxicity studies that are currently still carried out with the more conventional test animals such as rodents. However, before we can fully realize the potential of the zebrafish as an animal model for understanding human development, disease, and toxicology, we must first greatly advance our knowledge of normal zebrafish physiology, anatomy, and histology. To further this knowledge, we describe, in the present article, location and histology of the major zebrafish organ systems with a brief description of their function.

  7. Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development

    EPA Science Inventory

    Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development Little is known about the vertebrate developmental toxicity of chlorinated or chloraminated drinking water (DW), iodinated X-ray contrast media (ICM, a common contaminate of DW) or how the c...

  8. Alterations in zebrafish development induced by simvastatin: Comprehensive morphological and physiological study, focusing on muscle

    PubMed Central

    Campos, Laise M; Rios, Eduardo A; Guapyassu, Livia; Midlej, Victor; Atella, Georgia C; Herculano-Houzel, Suzana; Benchimol, Marlene; Mermelstein, Claudia

    2016-01-01

    The cholesterol synthesis inhibitor simvastatin, which is used to treat cardiovascular diseases, has severe collateral effects. We decided to comprehensively study the effects of simvastatin in zebrafish development and in myogenesis, because zebrafish has been used as a model to human diseases, due to its handling easiness, the optical clarity of its embryos, and the availability of physiological and structural methodologies. Furthermore, muscle is an important target of the drug. We used several simvastatin concentrations at different zebrafish developmental stages and studied survival rate, morphology, and physiology of the embryos. Our results show that high levels of simvastatin induce structural damage whereas low doses induce minor structural changes, impaired movements, and reduced heart beating. Morphological alterations include changes in embryo and somite size and septa shape. Physiological changes include movement reduction and slower heartbeat. These effects could be reversed by the addition of exogenous cholesterol. Moreover, we quantified the total cell number during zebrafish development and demonstrated a large reduction in cell number after statin treatment. Since we could classify the alterations induced by simvastatin in three distinct phenotypes, we speculate that simvastatin acts through more than one mechanism and could affect both cell replication and/or cell death and muscle function. Our data can contribute to the understanding of the molecular and cellular basis of the mechanisms of action of simvastatin. PMID:27444151

  9. Breaking symmetry: the zebrafish as a model for understanding left-right asymmetry in the developing brain.

    PubMed

    Roussigne, Myriam; Blader, Patrick; Wilson, Stephen W

    2012-03-01

    How does left-right asymmetry develop in the brain and how does the resultant asymmetric circuitry impact on brain function and lateralized behaviors? By enabling scientists to address these questions at the levels of genes, neurons, circuitry and behavior,the zebrafish model system provides a route to resolve the complexity of brain lateralization. In this review, we present the progress made towards characterizing the nature of the gene networks and the sequence of morphogenetic events involved in the asymmetric development of zebrafish epithalamus. In an attempt to integrate the recent extensive knowledge into a working model and to identify the future challenges,we discuss how insights gained at a cellular/developmental level can be linked to the data obtained at a molecular/genetic level. Finally, we present some evolutionary thoughts and discuss how significant discoveries made in zebrafish should provide entry points to better understand the evolutionary origins of brain lateralization.

  10. Zebrafish as model organisms for studying drug-induced liver injury

    PubMed Central

    Vliegenthart, A D Bastiaan; Tucker, Carl S; Del Pozo, Jorge; Dear, James W

    2014-01-01

    Drug-induced liver injury (DILI) is a major challenge in clinical medicine and drug development. New models are needed for predicting which potential therapeutic compounds will cause DILI in humans, and new markers and mediators of DILI still need to be identified. This review highlights the strengths and weaknesses of using zebrafish as a high-throughput in vivo model for studying DILI. Although the zebrafish liver architecture is different from that of the mammalian liver, the main physiological processes remain similar. Zebrafish metabolize drugs using similar pathways to those in humans; they possess a wide range of cytochrome P450 enzymes that enable metabolic reactions including hydroxylation, conjugation, oxidation, demethylation and de-ethylation. Following exposure to a range of hepatotoxic drugs, the zebrafish liver develops histological patterns of injury comparable to those of mammalian liver, and biomarkers for liver injury can be quantified in the zebrafish circulation. The zebrafish immune system is similar to that of mammals, but the zebrafish inflammatory response to DILI is not yet defined. In order to quantify DILI in zebrafish, a wide variety of methods can be used, including visual assessment, quantification of serum enzymes and experimental serum biomarkers and scoring of histopathology. With further development, the zebrafish may be a model that complements rodents and may have value for the discovery of new disease pathways and translational biomarkers. PMID:24773296

  11. Requirement for Pdx1 in specification of latent endocrine progenitors in zebrafish

    PubMed Central

    2011-01-01

    Background Insulin-producing beta cells emerge during pancreas development in two sequential waves. Recently described later-forming beta cells in zebrafish show high similarity to second wave mammalian beta cells in developmental capacity. Loss-of-function studies in mouse and zebrafish demonstrated that the homeobox transcription factors Pdx1 and Hb9 are both critical for pancreas and beta cell development and discrete stage-specific requirements for these genes have been uncovered. Previously, exocrine and endocrine cell recovery was shown to follow loss of pdx1 in zebrafish, but the progenitor cells and molecular mechanisms responsible have not been clearly defined. In addition, interactions of pdx1 and hb9 in beta cell formation have not been addressed. Results To learn more about endocrine progenitor specification, we examined beta cell formation following morpholino-mediated depletion of pdx1 and hb9. We find that after early beta cell reduction, recovery occurs following loss of either pdx1 or hb9 function. Unexpectedly, simultaneous knockdown of both hb9 and pdx1 leads to virtually complete and persistent beta cell deficiency. We used a NeuroD:EGFP transgenic line to examine endocrine cell behavior in vivo and developed a novel live-imaging technique to document emergence and migration of late-forming endocrine precursors in real time. Our data show that Notch-responsive progenitors for late-arising endocrine cells are predominantly post mitotic and depend on pdx1. By contrast, early-arising endocrine cells are specified and differentiate independent of pdx1. Conclusions The nearly complete beta cell deficiency after combined loss of hb9 and pdx1 suggests functional cooperation, which we clarify as distinct roles in early and late endocrine cell formation. A novel imaging approach permitted visualization of the emergence of late endocrine cells within developing embryos for the first time. We demonstrate a pdx1-dependent progenitor population essential for

  12. An assay for lateral line regeneration in adult zebrafish.

    PubMed

    Pisano, Gina C; Mason, Samantha M; Dhliwayo, Nyembezi; Intine, Robert V; Sarras, Michael P

    2014-04-08

    Due to the clinical importance of hearing and balance disorders in man, model organisms such as the zebrafish have been used to study lateral line development and regeneration. The zebrafish is particularly attractive for such studies because of its rapid development time and its high regenerative capacity. To date, zebrafish studies of lateral line regeneration have mainly utilized fish of the embryonic and larval stages because of the lower number of neuromasts at these stages. This has made quantitative analysis of lateral line regeneration/and or development easier in the earlier developmental stages. Because many zebrafish models of neurological and non-neurological diseases are studied in the adult fish and not in the embryo/larvae, we focused on developing a quantitative lateral line regenerative assay in adult zebrafish so that an assay was available that could be applied to current adult zebrafish disease models. Building on previous studies by Van Trump et al. that described procedures for ablation of hair cells in adult Mexican blind cave fish and zebrafish (Danio rerio), our assay was designed to allow quantitative comparison between control and experimental groups. This was accomplished by developing a regenerative neuromast standard curve based on the percent of neuromast reappearance over a 24 hr time period following gentamicin-induced necrosis of hair cells in a defined region of the lateral line. The assay was also designed to allow extension of the analysis to the individual hair cell level when a higher level of resolution is required.

  13. Isthmin 1 (ism1) is required for normal hematopoiesis in developing zebrafish.

    PubMed

    Berrun, Arturo; Harris, Elena; Stachura, David L

    2018-01-01

    Hematopoiesis is an essential and highly regulated biological process that begins with hematopoietic stem cells (HSCs). In healthy organisms, HSCs are responsible for generating a multitude of mature blood cells every day, yet the molecular pathways that instruct HSCs to self-renew and differentiate into post-mitotic blood cells are not fully known. To understand these molecular pathways, we investigated novel genes expressed in hematopoietic-supportive cell lines from the zebrafish (Danio rerio), a model system increasingly utilized to uncover molecular pathways important in the development of other vertebrate species. We performed RNA sequencing of the transcriptome of three stromal cell lines derived from different stages of embryonic and adult zebrafish and identified hundreds of highly expressed transcripts. For our studies, we focused on isthmin 1 (ism1) due to its shared synteny with its human gene ortholog and because it is a secreted protein. To characterize ism1, we performed loss-of-function experiments to identify if mature blood cell production was disrupted. Myeloid and erythroid lineages were visualized and scored with transgenic zebrafish expressing lineage-specific markers. ism1 knockdown led to reduced numbers of neutrophils, macrophages, and erythrocytes. Analysis of clonal methylcellulose assays from ism1 morphants also showed a reduction in total hematopoietic stem and progenitor cells (HSPCs). Overall, we demonstrate that ism1 is required for normal generation of HSPCs and their downstream progeny during zebrafish hematopoiesis. Further investigation into ism1 and its importance in hematopoiesis may elucidate evolutionarily conserved processes in blood formation that can be further investigated for potential clinical utility.

  14. Isthmin 1 (ism1) is required for normal hematopoiesis in developing zebrafish

    PubMed Central

    Berrun, Arturo; Harris, Elena

    2018-01-01

    Hematopoiesis is an essential and highly regulated biological process that begins with hematopoietic stem cells (HSCs). In healthy organisms, HSCs are responsible for generating a multitude of mature blood cells every day, yet the molecular pathways that instruct HSCs to self-renew and differentiate into post-mitotic blood cells are not fully known. To understand these molecular pathways, we investigated novel genes expressed in hematopoietic-supportive cell lines from the zebrafish (Danio rerio), a model system increasingly utilized to uncover molecular pathways important in the development of other vertebrate species. We performed RNA sequencing of the transcriptome of three stromal cell lines derived from different stages of embryonic and adult zebrafish and identified hundreds of highly expressed transcripts. For our studies, we focused on isthmin 1 (ism1) due to its shared synteny with its human gene ortholog and because it is a secreted protein. To characterize ism1, we performed loss-of-function experiments to identify if mature blood cell production was disrupted. Myeloid and erythroid lineages were visualized and scored with transgenic zebrafish expressing lineage-specific markers. ism1 knockdown led to reduced numbers of neutrophils, macrophages, and erythrocytes. Analysis of clonal methylcellulose assays from ism1 morphants also showed a reduction in total hematopoietic stem and progenitor cells (HSPCs). Overall, we demonstrate that ism1 is required for normal generation of HSPCs and their downstream progeny during zebrafish hematopoiesis. Further investigation into ism1 and its importance in hematopoiesis may elucidate evolutionarily conserved processes in blood formation that can be further investigated for potential clinical utility. PMID:29758043

  15. Zebrafish atoh1 genes: classic proneural activity in the inner ear and regulation by Fgf and Notch.

    PubMed

    Millimaki, Bonny B; Sweet, Elly M; Dhason, Mary S; Riley, Bruce B

    2007-01-01

    Hair cells of the inner ear develop from an equivalence group marked by expression of the proneural gene Atoh1. In mouse, Atoh1 is necessary for hair cell differentiation, but its role in specifying the equivalence group (proneural function) has been questioned and little is known about its upstream activators. We have addressed these issues in zebrafish. Two zebrafish homologs, atoh1a and atoh1b, are together necessary for hair cell development. These genes crossregulate each other but are differentially required during distinct developmental periods, first in the preotic placode and later in the otic vesicle. Interactions with the Notch pathway confirm that atoh1 genes have early proneural function. Fgf3 and Fgf8 are upstream activators of atoh1 genes during both phases, and foxi1, pax8 and dlx genes regulate atoh1b in the preplacode. A model is presented in which zebrafish atoh1 genes operate in a complex network leading to hair cell development.

  16. Expression pattern of zebrafish rxfp2 homologue genes during embryonic development.

    PubMed

    Donizetti, Aldo; Fiengo, Marcella; Del Gaudio, Rosanna; Iazzetti, Giovanni; Pariante, Paolo; Minucci, Sergio; Aniello, Francesco

    2015-11-01

    RXFP2 is one of the 4 receptors for relaxin insulin-like peptides, in particular it binds with high affinity the INSL3 peptide. INSL3/RXFP2 pair is essential for testicular descent during placental mammalian development. The evolutionary history of this ligand/receptor pair has received much attention, since its function in vertebrate species lacking testicular descent, such as the fishes, remains elusive. Herein, we analyzed the expression pattern of three rxfp2 homologue genes in zebrafish embryonic development. For all the three rxfp2 genes (rxfp2a, rxfp2b, and rxfp2-like) we showed the presence of maternally derived transcripts. Later in the development, rxfp2a is only expressed at larval stage, whereas rxfp2b is expressed in all the analyzed stage with highest level in the larvae. The rxfp2-like gene is expressed in all the analyzed stage with a transcript level that increased starting at early pharyngula stage. The spatial localization analysis of rxfp2-like gene showed that it is expressed in many cell clusters in the developing brain. In addition, other rxfp2-like-expressing cells were identified in the retina and oral epithelium. This analysis provides new insights to elucidate the evolution of rxfp2 genes in vertebrate lineage and lays the foundations to study their role in vertebrate embryonic development. © 2015 Wiley Periodicals, Inc.

  17. Viral Diseases in Zebrafish: What Is Known and Unknown

    PubMed Central

    Crim, Marcus J.; Riley, Lela K.

    2013-01-01

    Naturally occurring viral infections have the potential to introduce confounding variability that leads to invalid and misinterpreted data. Whereas the viral diseases of research rodents are well characterized and closely monitored, no naturally occurring viral infections have been characterized for the laboratory zebrafish (Danio rerio), an increasingly important biomedical research model. Despite the ignorance about naturally occurring zebrafish viruses, zebrafish models are rapidly expanding in areas of biomedical research where the confounding effects of unknown infectious agents present a serious concern. In addition, many zebrafish research colonies remain linked to the ornamental (pet) zebrafish trade, which can contribute to the introduction of new pathogens into research colonies, whereas mice used for research are purpose bred, with no introduction of new mice from the pet industry. Identification, characterization, and monitoring of naturally occurring viruses in zebrafish are crucial to the improvement of zebrafish health, the reduction of unwanted variability, and the continued development of the zebrafish as a model organism. This article addresses the importance of identifying and characterizing the viral diseases of zebrafish as the scope of zebrafish models expands into new research areas and also briefly addresses zebrafish susceptibility to experimental viral infection and the utility of the zebrafish as an infection and immunology model. PMID:23382345

  18. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish.

    PubMed

    Mishra, Shikha; Guan, Jian; Plovie, Eva; Seldin, David C; Connors, Lawreen H; Merlini, Giampaolo; Falk, Rodney H; MacRae, Calum A; Liao, Ronglih

    2013-07-01

    Systemic amyloid light-chain (AL) amyloidosis is associated with rapidly progressive and fatal cardiomyopathy resulting from the direct cardiotoxic effects of circulating AL light chain (AL-LC) proteins and the indirect effects of AL fibril tissue infiltration. Cardiac amyloidosis is resistant to standard heart failure therapies, and, to date, there are limited treatment options for these patients. The mechanisms underlying the development of cardiac amyloidosis and AL-LC cardiotoxicity are largely unknown, and their study has been limited by the lack of a suitable in vivo model system. Here, we establish an in vivo zebrafish model of human AL-LC-induced cardiotoxicity. AL-LC isolated from AL cardiomyopathy patients or control nonamyloidogenic LC protein isolated from multiple myeloma patients (Con-LC) was directly injected into the circulation of zebrafish at 48 h postfertilization. AL-LC injection resulted in impaired cardiac function, pericardial edema, and increased cell death relative to Con-LC, culminating in compromised survival with 100% mortality within 2 wk, independent of AL fibril deposition. Prior work has implicated noncanonical p38 MAPK activation in the pathogenesis of AL-LC-induced cardiotoxicity, and p38 MAPK inhibition via SB-203580 rescued AL-LC-induced cardiac dysfunction and cell death and attenuated mortality in zebrafish. This in vivo zebrafish model of AL-LC cardiotoxicity demonstrates that antagonism of p38 MAPK within the AL-LC cardiotoxic signaling response may serve to improve cardiac function and mortality in AL cardiomyopathy. Furthermore, this in vivo model system will allow for further study of the molecular underpinnings of AL cardiotoxicity and identification of novel therapeutic strategies.

  19. Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope.

    PubMed

    Kaufmann, Anna; Mickoleit, Michaela; Weber, Michael; Huisken, Jan

    2012-09-01

    Light sheet microscopy techniques, such as selective plane illumination microscopy (SPIM), are ideally suited for time-lapse imaging of developmental processes lasting several hours to a few days. The success of this promising technology has mainly been limited by the lack of suitable techniques for mounting fragile samples. Embedding zebrafish embryos in agarose, which is common in conventional confocal microscopy, has resulted in severe growth defects and unreliable results. In this study, we systematically quantified the viability and mobility of zebrafish embryos mounted under more suitable conditions. We found that tubes made of fluorinated ethylene propylene (FEP) filled with low concentrations of agarose or methylcellulose provided an optimal balance between sufficient confinement of the living embryo in a physiological environment over 3 days and optical clarity suitable for fluorescence imaging. We also compared the effect of different concentrations of Tricaine on the development of zebrafish and provide guidelines for its optimal use depending on the application. Our results will make light sheet microscopy techniques applicable to more fields of developmental biology, in particular the multiview long-term imaging of zebrafish embryos and other small organisms. Furthermore, the refinement of sample preparation for in toto and in vivo imaging will promote other emerging optical imaging techniques, such as optical projection tomography (OPT).

  20. A conserved role of αA-crystallin in the development of the zebrafish embryonic lens.

    PubMed

    Zou, Ping; Wu, Shu-Yu; Koteiche, Hanane A; Mishra, Sanjay; Levic, Daniel S; Knapik, Ela; Chen, Wenbiao; Mchaourab, Hassane S

    2015-09-01

    αA- and αB-crystallins are small heat shock proteins that bind thermodynamically destabilized proteins thereby inhibiting their aggregation. Highly expressed in the mammalian lens, the α-crystallins have been postulated to play a critical role in the maintenance of lens optical properties by sequestering age-damaged proteins prone to aggregation as well as through a multitude of roles in lens epithelial cells. Here, we have examined the role of α-crystallins in the development of the vertebrate zebrafish lens. For this purpose, we have carried out morpholino-mediated knockdown of αA-, αBa- and αBb-crystallin and characterized the gross morphology of the lens. We observed lens abnormalities, including increased reflectance intensity, as a consequence of the interference with expression of these proteins. These abnormalities were less frequent in transgenic zebrafish embryos expressing rat αA-crystallin suggesting a specific role of α-crystallins in embryonic lens development. To extend and confirm these findings, we generated an αA-crystallin knockout zebrafish line. A more consistent and severe lens phenotype was evident in maternal/zygotic αA-crystallin mutants compared to those observed by morpholino knockdown. The penetrance of the lens phenotype was reduced by transgenic expression of rat αA-crystallin and its severity was attenuated by maternal αA-crystallin expression. These findings demonstrate that the role of α-crystallins in lens development is conserved from mammals to zebrafish and set the stage for using the embryonic lens as a model system to test mechanistic aspects of α-crystallin chaperone activity and to develop strategies to fine-tune protein-protein interactions in aging and cataracts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. High-Resolution Tissue Doppler Imaging of the Zebrafish Heart During Its Regeneration

    PubMed Central

    Su, Ta-Han; Shih, Cho-Chiang

    2015-01-01

    Abstract The human heart cannot regenerate after injury, whereas the adult zebrafish can fully regenerate its heart even after 20% of the ventricle is amputated. Many studies have begun to reveal the cellular and molecular mechanisms underlying this regenerative process, which have exciting implications for human cardiac diseases. However, the dynamic functions of the zebrafish heart during regeneration are not yet understood. This study established a high-resolution echocardiography for tissue Doppler imaging (TDI) of the zebrafish heart to explore the cardiac functions during different regeneration phases. Experiments were performed on AB-line adult zebrafish (n=40) in which 15% of the ventricle was surgically removed. An 80-MHz ultrasound TDI based on color M-mode imaging technology was employed. The cardiac flow velocities and patterns from both the ventricular chamber and myocardium were measured at different regeneration phases relative to the day of amputation. The peak velocities of early diastolic inflow, early diastolic myocardial motion, late diastolic myocardial motion, early diastolic deceleration slope, and heart rate were increased at 3 days after the myocardium amputation, but these parameters gradually returned to close to their baseline values for the normal heart at 7 days after amputation. The peak velocities of late diastolic inflow, ventricular systolic outflow, and systolic myocardial motion did not significantly differ during the heart regeneration. PMID:25517185

  2. Subacute developmental exposure of zebrafish to the organophosphate pesticide metabolite, chlorpyrifos-oxon, results in defects in Rohon-Beard sensory neuron development

    PubMed Central

    Jacobson, Saskia M.; Birkholz, Denise A.; McNamara, Marcy L.; Bharate, Sandip B.; George, Kathleen M.

    2010-01-01

    Organophosphate pesticides (OPs) are environmental toxicants known to inhibit the catalytic activity of acetylcholinesterase (AChE) resulting in hypercholinergic toxicity symptoms. In developing embryos, OPs have been hypothesized to affect both cholinergic and non-cholinergic pathways. In order to understand the neurological pathways affected by OP exposure during embryogenesis, we developed a subacute model of OP developmental exposure in zebrafish by exposing embryos to a dose of the OP metabolite chlorpyrifos oxon (CPO) that is non-lethal and significantly inhibited AChE enzymatic activity compared to control embryos (43% at 1 day post-fertilization (dpf) and 11% at 2 dpf). Phenotypic analysis of CPO-exposed embryos demonstrated that embryonic growth, as analyzed by gross morphology, was normal in 85% of treated embryos. Muscle fiber formation was similar to control embryos as analyzed by birefringence, and nicotinic acetylcholine receptor (nAChR) cluster formation was quantitatively similar to control embryos as analyzed by α-bungarotoxin staining. These results indicate that partial AChE activity during the early days of zebrafish development is sufficient for general development, muscle fiber, and nAChR development. Rohon-Beard (RB) sensory neurons exhibited aberrant peripheral axon extension and gene expression profiling suggests that several genes responsible for RB neurogenesis are down-regulated. Stability of CPO in egg water at 28.5 °C was determined by HPLC-UV-MS analysis which revealed that the CPO concentration used in our studies hydrolyzes in egg water with a half-life of one day. The result that developmental CPO exposure affected RB neurogenesis without affecting muscle fiber or nAChR cluster formation demonstrates that zebrafish are a strong model system for characterizing subtle neurological pathologies resulting from environmental toxicants. PMID:20701988

  3. The Zebrafish Ortholog of TRPV1 Is Required for Heat-Induced Locomotion

    PubMed Central

    Gau, Philia; Poon, Jason; Ufret-Vincenty, Carmen; Snelson, Corey D.; Gordon, Sharona E.; Raible, David W.

    2013-01-01

    The ability to detect hot temperatures is critical to maintaining body temperature and avoiding injury in diverse animals from insects to mammals. Zebrafish embryos, when given a choice, actively avoid hot temperatures and display an increase in locomotion similar to that seen when they are exposed to noxious compounds such as mustard oil. Phylogenetic analysis suggests that the single zebrafish ortholog of TRPV1/2 may have arisen from an evolutionary precursor of the mammalian TRPV1 and TRPV2. As opposed to TRPV2, mammalian TRPV1 is essential for environmentally relevant heat sensation. In the present study, we provide evidence that the zebrafish TRPV1 ion channel is also required for the sensation of heat. Contrary to development in mammals, zebrafish TRPV1+ neurons arise during the first wave of somatosensory neuron development, suggesting a vital importance of thermal sensation in early larval survival. In vitro analysis showed that zebrafish TRPV1 acts as a molecular sensor of environmental heat (≥25°C) that is distinctly lower than the sensitivity of the mammalian form (≥42°C) but consistent with thresholds measured in behavioral assays. Using in vivo calcium imaging with the genetically encoded calcium sensor GCaMP3, we show that TRPV1-expressing trigeminal neurons are activated by heat at behaviorally relevant temperatures. Using knock-down studies, we also show that TRPV1 is required for normal heat-induced locomotion. Our results demonstrate for the first time an ancient role for TRPV1 in the direct sensation of environmental heat and show that heat sensation is adapted to reflect species-dependent requirements in response to environmental stimuli. PMID:23516290

  4. Structural requirements for PACSIN/Syndapin operation during zebrafish embryonic notochord development.

    PubMed

    Edeling, Melissa A; Sanker, Subramaniam; Shima, Takaki; Umasankar, P K; Höning, Stefan; Kim, Hye Y; Davidson, Lance A; Watkins, Simon C; Tsang, Michael; Owen, David J; Traub, Linton M

    2009-12-03

    PACSIN/Syndapin proteins are membrane-active scaffolds that participate in endocytosis. The structure of the Drosophila Syndapin N-terminal EFC domain reveals a crescent shaped antiparallel dimer with a high affinity for phosphoinositides and a unique membrane-inserting prong upon the concave surface. Combined structural, biochemical and reverse genetic approaches in zebrafish define an important role for Syndapin orthologue, Pacsin3, in the early formation of the notochord during embryonic development. In pacsin3-morphant embryos, midline convergence of notochord precursors is defective as axial mesodermal cells fail to polarize, migrate and differentiate properly. The pacsin3 morphant phenotype of a stunted body axis and contorted trunk is rescued by ectopic expression of Drosophila Syndapin, and depends critically on both the prong that protrudes from the surface of the bowed Syndapin EFC domain and the ability of the antiparallel dimer to bind tightly to phosphoinositides. Our data confirm linkage between directional migration, endocytosis and cell specification during embryonic morphogenesis and highlight a key role for Pacsin3 in this coupling in the notochord.

  5. In silico predicted reproductive endocrine transcriptional regulatory networks during zebrafish (Danio rerio) development.

    PubMed

    Hala, D

    2017-03-21

    The interconnected topology of transcriptional regulatory networks (TRNs) readily lends to mathematical (or in silico) representation and analysis as a stoichiometric matrix. Such a matrix can be 'solved' using the mathematical method of extreme pathway (ExPa) analysis, which identifies uniquely activated genes subject to transcription factor (TF) availability. In this manuscript, in silico multi-tissue TRN models of brain, liver and gonad were used to study reproductive endocrine developmental programming in zebrafish (Danio rerio) from 0.25h post fertilization (hpf; zygote) to 90 days post fertilization (dpf; adult life stage). First, properties of TRN models were studied by sequentially activating all genes in multi-tissue models. This analysis showed the brain to exhibit lowest proportion of co-regulated genes (19%) relative to liver (23%) and gonad (32%). This was surprising given that the brain comprised 75% and 25% more TFs than liver and gonad respectively. Such 'hierarchy' of co-regulatory capability (brainzebrafish development. Normalized numbers of genes active during development showed concomitant activations between brain and gonad from 10 to 12 hpf (embryonic life stage) up to 30-90 dpf (adult life stage). This indicated a putative 'syncing' between the brain and gonad, and initiation of an early reproductive endocrine developmental program. Finally, comparison of in vivo active genes with those predicted in silico showed relatively good agreement for brain (49%), liver (27%) and gonad (32%). The multi-tissue TRN models presented can lend diagnostic insights into the effects of changing environmental and/or genetic constraints on reproductive endocrine function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A transgenic zebrafish model for monitoring xbp1 splicing and endoplasmic reticulum stress in vivo.

    PubMed

    Li, Junling; Chen, Zhiliang; Gao, Lian-Yong; Colorni, Angelo; Ucko, Michal; Fang, Shengyun; Du, Shao Jun

    2015-08-01

    Accumulation of misfolded or unfolded proteins in the endoplasmic reticulum (ER) triggers ER stress that initiates unfolded protein response (UPR). XBP1 is a transcription factor that mediates one of the key signaling pathways of UPR to cope with ER stress through regulating gene expression. Activation of XBP1 involves an unconventional mRNA splicing catalyzed by IRE1 endonuclease that removes an internal 26 nucleotides from xbp1 mRNA transcripts in the cytoplasm. Researchers have taken advantage of this unique activation mechanism to monitor XBP1 activation, thereby UPR, in cell culture and transgenic models. Here we report a Tg(ef1α:xbp1δ-gfp) transgenic zebrafish line to monitor XBP1 activation using GFP as a reporter especially in zebrafish oocytes and developing embryos. The Tg(ef1α:xbp1δ-gfp) transgene was constructed using part of the zebrafish xbp1 cDNA containing the splicing element. ER stress induced splicing results in the cDNA encoding a GFP-tagged partial XBP1 without the transactivation activation domain (XBP1Δ-GFP). The results showed that xbp1 transcripts mainly exist as the spliced active isoform in unfertilized oocytes and zebrafish embryos prior to zygotic gene activation at 3 hours post fertilization. A strong GFP expression was observed in unfertilized oocytes, eyes, brain and skeletal muscle in addition to a weak expression in the hatching gland. Incubation of transgenic zebrafish embryos with (dithiothreitol) DTT significantly induced XBP1Δ-GFP expression. Collectively, these studies unveil the presence of maternal xbp1 splicing in zebrafish oocytes, fertilized eggs and early stage embryos. The Tg(ef1α:xbp1δ-gfp) transgenic zebrafish provides a useful model for in vivo monitoring xbp1 splicing during development and under ER stress conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. The Zebrafish Xenograft Platform: Evolution of a Novel Cancer Model and Preclinical Screening Tool.

    PubMed

    Wertman, Jaime; Veinotte, Chansey J; Dellaire, Graham; Berman, Jason N

    2016-01-01

    Animal xenografts of human cancers represent a key preclinical tool in the field of cancer research. While mouse xenografts have long been the gold standard, investigators have begun to use zebrafish (Danio rerio) xenotransplantation as a relatively rapid, robust and cost-effective in vivo model of human cancers. There are several important methodological considerations in the design of an informative and efficient zebrafish xenotransplantation experiment. Various transgenic fish strains have been created that facilitate microscopic observation, ranging from the completely transparent casper fish to the Tg(fli1:eGFP) fish that expresses fluorescent GFP protein in its vascular tissue. While human cancer cell lines have been used extensively in zebrafish xenotransplantation studies, several reports have also used primary patient samples as the donor material. The zebrafish is ideally suited for transplanting primary patient material by virtue of the relatively low number of cells required for each embryo (between 50 and 300 cells), the absence of an adaptive immune system in the early zebrafish embryo, and the short experimental timeframe (5-7 days). Following xenotransplantation into the fish, cells can be tracked using in vivo or ex vivo measures of cell proliferation and migration, facilitated by fluorescence or human-specific protein expression. Importantly, assays have been developed that allow for the reliable detection of in vivo human cancer cell growth or inhibition following administration of drugs of interest. The zebrafish xenotransplantation model is a unique and effective tool for the study of cancer cell biology.

  8. The Nordic countries meeting on the zebrafish as a model for development and disease 2012.

    PubMed

    Andersson Lendahl, Monika; Zetterberg, Henrik

    2013-03-01

    The first Nordic Countries Meeting on the Zebrafish as a Model for Development and Disease took place at Karolinska Institutet in Stockholm, November 21-23, 2012. The meeting gathered 130 scientists, students, and company representatives from Iceland, Finland, Norway, Denmark, and Sweden, as well as invited guests and keynote speakers from England, Scotland, Germany, Poland, The Netherlands, Singapore, Japan, and the United States. Presentations covered a wide range of topics, including developmental biology, genetics, evolutionary biology, toxicology, behavioral studies, and disease mechanisms. The need for formal guidance and training in zebrafish housing, husbandry, and health monitoring was recognized, and the meeting expressed its support for the joint working group of the FELASA/COST action BM0804 EuFishBioMed. The decision was made to turn the Nordic meeting into an annual event and create a Nordic network of zebrafish researchers.

  9. Grouper tshβ Promoter-Driven Transgenic Zebrafish Marks Proximal Kidney Tubule Development

    PubMed Central

    Wang, Yang; Sun, Zhi-Hui; Zhou, Li; Li, Zhi; Gui, Jian-Fang

    2014-01-01

    Kidney tubule plays a critical role in recovering or secreting solutes, but the detailed morphogenesis remains unclear. Our previous studies have found that grouper tshβ (gtshβ) is also expressed in kidney, however, the distribution significance is still unknown. To understand the gtshβ role and kidney tubule morphogenesis, here, we have generated a transgenic zebrafish line Tg(gtshβ:GFP) with green fluorescent protein driven by the gtshβ promoter. Similar to the endogenous tshβ in zebrafish or in grouper, the gtshβ promoter-driven GFP is expressed in pituitary and kidney, and the developing details of proximal kidney tubule are marked in the transgenic zebrafish line. The gfp initially transcribes at 16 hours post fertilization (hpf) above the dorsal mesentery, and partially co-localizes with pronephric tubular markers slc20a1a and cdh17. Significantly, the GFP specifically localizes in proximal pronephric segments during embryogenesis and resides at kidney duct epithelium in adult fish. To test whether the gtshβ promoter-driven GFP may serve as a readout signal of the tubular development, we have treated the embryos with retinoic acid signaing (RA) reagents, in which exogenous RA addition results in a distal extension of the proximal segments, while RA inhibition induces a weakness and shortness of the proximal segments. Therefore, this transgenic line provides a useful tool for genetic or chemical analysis of kidney tubule. PMID:24905828

  10. Comparison of toxicity values across zebrafish early life stages and mammalian studies: Implications for chemical testing.

    PubMed

    Ducharme, Nicole A; Reif, David M; Gustafsson, Jan-Ake; Bondesson, Maria

    2015-08-01

    With the high cost and slow pace of toxicity testing in mammals, the vertebrate zebrafish has become a tractable model organism for high throughput toxicity testing. We present here a meta-analysis of 600 chemicals tested for toxicity in zebrafish embryos and larvae. Nineteen aggregated and 57 individual toxicity endpoints were recorded from published studies yielding 2695 unique data points. These data points were compared to lethality and reproductive toxicology endpoints analyzed in rodents and rabbits and to exposure values for humans. We show that although many zebrafish endpoints did not correlate to rodent or rabbit acute toxicity data, zebrafish could be used to accurately predict relative acute toxicity through the rat inhalation, rabbit dermal, and rat oral exposure routes. Ranking of the chemicals based on toxicity and teratogenicity in zebrafish, as well as human exposure levels, revealed that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo(a)pyrene, and chlorpyrifos ranked in the top nine of all chemicals for these three categories, and as such should be considered high priority chemicals for testing in higher vertebrates. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Differential expression of neuroligin genes in the nervous system of zebrafish.

    PubMed

    Davey, Crystal; Tallafuss, Alexandra; Washbourne, Philip

    2010-02-01

    The establishment and maturation of appropriate synaptic connections is crucial in the development of neuronal circuits. Cellular adhesion is believed to play a central role in this process. Neuroligins are neuronal cell adhesion molecules that are hypothesized to act in the initial formation and maturation of synaptic connections. In order to establish the zebrafish as a model to investigate the in vivo role of Neuroligin proteins in nervous system development, we identified the zebrafish orthologs of neuroligin family members and characterized their expression. Zebrafish possess seven neuroligin genes. Synteny analysis and sequence comparisons show that NLGN2, NLGN3, and NLGN4X are duplicated in zebrafish, but NLGN1 has a single zebrafish ortholog. All seven zebrafish neuroligins are expressed in complex patterns in the developing nervous system and in the adult brain. The spatial and temporal expression patterns of these genes suggest that they occupy a role in nervous system development and maintenance.

  12. Computerized image analysis for quantitative neuronal phenotyping in zebrafish.

    PubMed

    Liu, Tianming; Lu, Jianfeng; Wang, Ye; Campbell, William A; Huang, Ling; Zhu, Jinmin; Xia, Weiming; Wong, Stephen T C

    2006-06-15

    An integrated microscope image analysis pipeline is developed for automatic analysis and quantification of phenotypes in zebrafish with altered expression of Alzheimer's disease (AD)-linked genes. We hypothesize that a slight impairment of neuronal integrity in a large number of zebrafish carrying the mutant genotype can be detected through the computerized image analysis method. Key functionalities of our zebrafish image processing pipeline include quantification of neuron loss in zebrafish embryos due to knockdown of AD-linked genes, automatic detection of defective somites, and quantitative measurement of gene expression levels in zebrafish with altered expression of AD-linked genes or treatment with a chemical compound. These quantitative measurements enable the archival of analyzed results and relevant meta-data. The structured database is organized for statistical analysis and data modeling to better understand neuronal integrity and phenotypic changes of zebrafish under different perturbations. Our results show that the computerized analysis is comparable to manual counting with equivalent accuracy and improved efficacy and consistency. Development of such an automated data analysis pipeline represents a significant step forward to achieve accurate and reproducible quantification of neuronal phenotypes in large scale or high-throughput zebrafish imaging studies.

  13. Long-lasting effects of dexamethasone on immune cells and wound healing in the zebrafish.

    PubMed

    Sharif, Faiza; Steenbergen, Peter J; Metz, Juriaan R; Champagne, Danielle L

    2015-01-01

    This study assessed the lasting impact of dexamethasone (DEX) exposure during early development on tissue repair capacity at later life stages (5, 14, and 24 days post fertilization [dpf]) in zebrafish larvae. Using the caudal fin amputation model, we show that prior exposure to DEX significantly delays but does not prevent wound healing at all life stages studied. DEX-induced impairments on wound healing were fully restored to normal levels with longer post amputation recovery time. Further analyses revealed that DEX mainly exerted its detrimental effects in the early phase (0-5 hours) of wound-healing process. Specifically, we observed the following events: (1) massive amount of cell death both by necrosis and apoptosis; (2) significant reduction in the number as well as misplacement of macrophages at the wound site; (3) aberrant migration and misplacement of neutrophils and macrophages at the wound site. These events were accompanied by significant (likely compensatory) changes in the expression of genes involved in tissue patterning, including up-regulation of FKBP5 6 hours post DEX exposure and that of Wnt3a and RARγ at 24 hours post amputation. Taken together, this study provides evidence that DEX exposure during early sensitive periods of development appears to cause permanent alterations in the cellular/molecular immune processes that are involved in the early phase of wound healing in zebrafish. These findings are consistent with previous studies showing that antenatal course of DEX is associated with immediate and lasting alterations of the immune system in rodent models and humans. Therefore, the current findings support the use of the larval zebrafish model to study the impact of stress and stress hormone exposure in immature organisms on health risks in later life. © 2015 by the Wound Healing Society.

  14. G-protein-coupled estrogen receptor 1 is involved in brain development during zebrafish (Danio rerio) embryogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yanan; Liu, Xiaochun; Zhu, Pei

    Highlights: •The Gper expression was detected in the developing brain of zebrafish. •Gper morpholino knockdown induced apoptosis of brain cells. •Gper morpholino knockdown reduced expression in neuron markers. •Zebrafish Gper may be involved in neuronal development. -- Abstract: G-protein-coupled estrogen receptor 1 (Gper, formerly known as GPR30) is found to be a trophic and protective factor in mediating action of estrogen in adult brain, while its role in developing brain remains to be elucidated. Here we present the expression pattern of Gper and its functions during embryogenesis in zebrafish. Both the mRNA and protein of Gper were detected throughout embryogenesis.more » Whole mount in situ hybridization (WISH) revealed a wide distribution of gper mRNAs in various regions of the developing brain. Gper knockdown by specific morpholinos resulted in growth retardation in embryos and morphological defects in the developing brain. In addition, induced apoptosis, decreased proliferation of the brain cells and maldevelopment of sensory and motor neurons were also found in the morphants. Our results provide novel insights into Gper functions in the developing brain, revealing that Gper can maintain the survival of the brain cells, and formation and/or differentiation of the sensory and motor neurons.« less

  15. Non-invasive imaging of zebrafish with spinal deformities using optical coherence tomography: a preliminary study

    NASA Astrophysics Data System (ADS)

    Bernstein, Liane; Beaudette, Kathy; Patten, Kessen; Beaulieu-Ouellet, Émilie; Strupler, Mathias; Moldovan, Florina; Boudoux, Caroline

    2013-03-01

    A zebrafish model has recently been introduced to study various genetic mutations that could lead to spinal deformities such as scoliosis. However, current imaging techniques make it difficult to perform longitudinal studies of this condition in zebrafish, especially in the early stages of development. The goal of this project is to determine whether optical coherence tomography (OCT) is a viable non-invasive method to image zebrafish exhibiting spinal deformities. Images of both live and fixed malformed zebrafish (5 to 21 days postfertilization) as well as wild-type fish (5 to 29 days postfertilization) were acquired non-invasively using a commercial SD-OCT system, with a laser source centered at 930nm (λ=100nm), permitting axial and lateral resolutions of 7 and 8μm respectively. Using two-dimensional images and three-dimensional reconstructions, it was possible to identify the malformed notochord as well as deformities in other major organs at different stages of formation. Visualization of the notochord was facilitated with the development of a segmentation algorithm. OCT images were compared to HE histological sections and images obtained by calcein staining. Because of the possibility of performing longitudinal studies on a same fish and reducing image processing time as compared with staining techniques and histology, the use of OCT could facilitate phenotypic characterization in studying genetic factors leading to spinal deformities in zebrafish and could eventually contribute to the identification of the genetic causes of spinal deformities such as scoliosis.

  16. Alterations in zebrafish development induced by simvastatin: Comprehensive morphological and physiological study, focusing on muscle.

    PubMed

    Campos, Laise M; Rios, Eduardo A; Guapyassu, Livia; Midlej, Victor; Atella, Georgia C; Herculano-Houzel, Suzana; Benchimol, Marlene; Mermelstein, Claudia; Costa, Manoel L

    2016-11-01

    The cholesterol synthesis inhibitor simvastatin, which is used to treat cardiovascular diseases, has severe collateral effects. We decided to comprehensively study the effects of simvastatin in zebrafish development and in myogenesis, because zebrafish has been used as a model to human diseases, due to its handling easiness, the optical clarity of its embryos, and the availability of physiological and structural methodologies. Furthermore, muscle is an important target of the drug. We used several simvastatin concentrations at different zebrafish developmental stages and studied survival rate, morphology, and physiology of the embryos. Our results show that high levels of simvastatin induce structural damage whereas low doses induce minor structural changes, impaired movements, and reduced heart beating. Morphological alterations include changes in embryo and somite size and septa shape. Physiological changes include movement reduction and slower heartbeat. These effects could be reversed by the addition of exogenous cholesterol. Moreover, we quantified the total cell number during zebrafish development and demonstrated a large reduction in cell number after statin treatment. Since we could classify the alterations induced by simvastatin in three distinct phenotypes, we speculate that simvastatin acts through more than one mechanism and could affect both cell replication and/or cell death and muscle function. Our data can contribute to the understanding of the molecular and cellular basis of the mechanisms of action of simvastatin. © 2016 by the Society for Experimental Biology and Medicine.

  17. Botulinum Toxin Induces Muscle Paralysis and Inhibits Bone Regeneration in Zebrafish

    PubMed Central

    Recidoro, Anthony M.; Roof, Amanda C.; Schmitt, Michael; Worton, Leah E.; Petrie, Timothy; Strand, Nicholas; Ausk, Brandon J.; Srinivasan, Sundar; Moon, Randall T.; Gardiner, Edith M.; Kaminsky, Werner; Bain, Steven D.; Allan, Christopher H.; Gross, Ted S.; Kwon, Ronald Y.

    2016-01-01

    Intramuscular administration of Botulinum toxin (BTx) has been associated with impaired osteogenesis in diverse conditions of bone formation (e.g., development, growth, and healing), yet the mechanisms of neuromuscular-bone crosstalk underlying these deficits have yet to be identified. Motivated by the emerging utility of zebrafish (Danio rerio) as a rapid, genetically tractable, and optically transparent model for human pathologies (as well as the potential to interrogate neuromuscular-mediated bone disorders in a simple model that bridges in vitro and more complex in vivo model systems), in this study we developed a model of BTx-induced muscle paralysis in adult zebrafish, and examined its effects on intramembranous ossification during tail fin regeneration. BTx administration induced rapid muscle paralysis in adult zebrafish in a manner that was dose-dependent, transient, and focal, mirroring the paralytic phenotype observed in animal and human studies. During fin regeneration, BTx impaired continued bone ray outgrowth, morphology, and patterning, indicating defects in early osteogenesis. Further, BTx significantly decreased mineralizing activity and crystalline mineral accumulation, suggesting delayed late-stage osteoblast differentiation and/or altered secondary bone apposition. Bone ray transection proximal to the amputation site focally inhibited bone outgrowth in the affected ray, implicating intra- and/or inter-ray nerves in this process. Taken together, these studies demonstrate the potential to interrogate pathological features of BTx-induced osteoanabolic dysfunction in the regenerating zebrafish fin, define the technological toolbox for detecting bone growth and mineralization deficits in this process, and suggest that pathways mediating neuromuscular regulation of osteogenesis may be conserved beyond established mammalian models of bone anabolic disorders. PMID:24806738

  18. Developmental Toxicity of the Organic Fraction from Hydraulic Fracturing Flowback and Produced Waters to Early Life Stages of Zebrafish ( Danio rerio).

    PubMed

    He, Yuhe; Sun, Chenxing; Zhang, Yifeng; Folkerts, Erik J; Martin, Jonathan W; Goss, Greg G

    2018-03-20

    Hydraulic fracturing (HF) has emerged as a major recovery method of unconventional oil and gas reservoirs and concerns have been raised regarding the environmental impact of releases of Flowback and Produced Water (FPW) to aquatic ecosystems. To investigate potential effects of HF-FPW on fish embryo development, HF-FPW samples were collected from two different wells and the organic fractions were isolated from both aqueous and particle phases to eliminate the confounding effects of high salinity. Each organic extract was characterized by non-target analysis with HPLC-Orbitrap-MS, with targeted analysis for polycyclic aromatic hydrocarbons provided as markers of petroleum-affected water. The organic profiles differed between samples, including PAHs and alkyl PAHs, and major substances identified by non-target analysis included polyethylene glycols, alkyl ethoxylates, octylphenol ethoxylates, and other high molecular weight (C 49-79 ) ethylene oxide polymeric material. Zebrafish embryos were exposed to various concentrations of FPW organic extracts to investigate acute (7-day) and developmental toxicity in early life stages. The acute toxicity (LD 50 ) of the extracted FPW fractions ranged from 2.8× to 26× the original organic content. Each extracted FPW fraction significantly increased spinal malformation, pericardial edema, and delayed hatch in exposed embryos and altered the expression of a suite of target genes related to biotransformation, oxidative stress, and endocrine-mediation in developing zebrafish embryos. These results provide novel information on the variation of organic profiles and developmental toxicity among different sources and fractions of HF-FPWs.

  19. Sprouting Buds of Zebrafish Research in Malaysia: First Malaysia Zebrafish Disease Model Workshop.

    PubMed

    Okuda, Kazuhide Shaun; Tan, Pei Jean; Patel, Vyomesh

    2016-04-01

    Zebrafish is gaining prominence as an important vertebrate model for investigating various human diseases. Zebrafish provides unique advantages such as optical clarity of embryos, high fecundity rate, and low cost of maintenance, making it a perfect complement to the murine model equivalent in biomedical research. Due to these advantages, researchers in Malaysia are starting to take notice and incorporate the zebrafish model into their research activities. However, zebrafish research in Malaysia is still in its infancy stage and many researchers still remain unaware of the full potential of the zebrafish model or have limited access to related tools and techniques that are widely utilized in many zebrafish laboratories worldwide. To overcome this, we organized the First Malaysia Zebrafish Disease Model Workshop in Malaysia that took place on 11th and 12th of November 2015. In this workshop, we showcased how the zebrafish model is being utilized in the biomedical field in international settings as well as in Malaysia. For this, notable international speakers and those from local universities known to be carrying out impactful research using zebrafish were invited to share some of the cutting edge techniques that are used in their laboratories that may one day be incorporated in the Malaysian scientific community.

  20. Chlorpyrifos-Oxon Disrupts Zebrafish Axonal Growth and Motor Behavior

    PubMed Central

    Yang, Dongren; Lauridsen, Holly; Buels, Kalmia; Chi, Lai-Har; La Du, Jane; Bruun, Donald A.; Olson, James R.; Tanguay, Robert L.; Lein, Pamela J.

    2011-01-01

    Axonal morphology is a critical determinant of neuronal connectivity, and perturbation of the rate or extent of axonal growth during development has been linked to neurobehavioral deficits in animal models and humans. We previously demonstrated that the organophosphorus pesticide (OP) chlorpyrifos (CPF) inhibits axonal growth in cultured neurons. In this study, we used a zebrafish model to determine whether CPF, its oxon metabolite (CPFO), or the excreted metabolite trichloro-2-pyridinol (TCPy) alter spatiotemporal patterns of axonal growth in vivo. Static waterborne exposure to CPFO, but not CPF or TCPy, at concentrations ≥ 0.03μM from 24- to 72-h post fertilization significantly inhibited acetylcholinesterase, and high-performance liquid chromatography detected significantly more TCPy in zebrafish exposed to 0.1μM CPFO versus 1.0μM CPF. These data suggest that zebrafish lack the metabolic enzymes to activate CPF during these early developmental stages. Consistent with this, CPFO, but not CPF, significantly inhibited axonal growth of sensory neurons, primary motoneurons, and secondary motoneurons at concentrations ≥ 0.1μM. Secondary motoneurons were the most sensitive to axonal growth inhibition by CPFO, which was observed at concentrations that did not cause mortality, gross developmental defects, or aberrant somatic muscle differentiation. CPFO effects on axonal growth correlated with adverse effects on touch-induced swimming behavior, suggesting the functional relevance of these structural changes. These data suggest that altered patterns of neuronal connectivity contribute to the developmental neurotoxicity of CPF and demonstrate the relevance of zebrafish as a model for studying OP developmental neurotoxicity. PMID:21346248

  1. BISPHENOL A EXPOSURE DURING EARLY DEVELOPMENT INDUCES SEX-SPECIFIC CHANGES IN ADULT ZEBRAFISH SOCIAL INTERACTIONS

    PubMed Central

    Weber, Daniel N.; Hoffmann, Raymond G.; Hoke, Elizabeth S.; Tanguay, Robert L.

    2014-01-01

    Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1 or 1 μM) or one of two control compounds (0.1μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into 3, computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1–3 (= AM) and 5–8 (= PM) hr postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, % time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced non-monotonic effects (response curve changes direction within range of concentrations examined) on male % time at mirror only in AM. All treatments produced increased % time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions and time-of-day of observation affected results. PMID:25424546

  2. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    PubMed

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  3. The Nordic Countries Meeting on the Zebrafish as a Model for Development and Disease 2012

    PubMed Central

    Zetterberg, Henrik

    2013-01-01

    Abstract The first Nordic Countries Meeting on the Zebrafish as a Model for Development and Disease took place at Karolinska Institutet in Stockholm, November 21–23, 2012. The meeting gathered 130 scientists, students, and company representatives from Iceland, Finland, Norway, Denmark, and Sweden, as well as invited guests and keynote speakers from England, Scotland, Germany, Poland, The Netherlands, Singapore, Japan, and the United States. Presentations covered a wide range of topics, including developmental biology, genetics, evolutionary biology, toxicology, behavioral studies, and disease mechanisms. The need for formal guidance and training in zebrafish housing, husbandry, and health monitoring was recognized, and the meeting expressed its support for the joint working group of the FELASA/COST action BM0804 EuFishBioMed. The decision was made to turn the Nordic meeting into an annual event and create a Nordic network of zebrafish researchers. PMID:23590403

  4. Molecular cloning and developmental expression of Tlx (Hox11) genes in zebrafish (Danio rerio).

    PubMed

    Langenau, D M; Palomero, T; Kanki, J P; Ferrando, A A; Zhou, Y; Zon, L I; Look, A T

    2002-09-01

    Tlx (Hox11) genes are orphan homeobox genes that play critical roles in the regulation of early developmental processes in vertebrates. Here, we report the identification and expression patterns of three members of the zebrafish Tlx family. These genes share similar, but not identical, expression patterns with other vertebrate Tlx-1 and Tlx-3 genes. Tlx-1 is expressed early in the developing hindbrain and pharyngeal arches, and later in the putative splenic primordium. However, unlike its orthologues, zebrafish Tlx-1 is not expressed in the cranial sensory ganglia or spinal cord. Two homologues of Tlx-3 were identified: Tlx-3a and Tlx-3b, which are both expressed in discrete regions of the developing nervous system, including the cranial sensory ganglia and Rohon-Beard neurons. However, only Tlx-3a is expressed in the statoacoustic cranial ganglia, enteric neurons and non-neural tissues such as the fin bud and pharyngeal arches and Tlx-3b is only expressed in the dorsal root ganglia. Copyright 2002 Elsevier Science Ireland Ltd.

  5. Homologs of the Xenopus developmental gene DG42 are present in zebrafish and mouse and are involved in the synthesis of Nod-like chitin oligosaccharides during early embryogenesis.

    PubMed

    Semino, C E; Specht, C A; Raimondi, A; Robbins, P W

    1996-05-14

    The Xenopus developmental gene DG42 is expressed during early embryonic development, between the midblastula and neurulation stages. The deduced protein sequence of Xenopus DG42 shows similarity to Rhizobium Nod C, Streptococcus Has A, and fungal chitin synthases. Previously, we found that the DG42 protein made in an in vitro transcription/translation system catalyzed synthesis of an array of chitin oligosaccharides. Here we show that cell extracts from early Xenopus and zebrafish embryos also synthesize chitooligosaccharides. cDNA fragments homologous to DG42 from zebrafish and mouse were also cloned and sequenced. Expression of these homologs was similar to that described for Xenopus based on Northern and Western blot analysis. The Xenopus anti-DG42 antibody recognized a 63-kDa protein in extracts from zebrafish embryos that followed a similar developmental expression pattern to that previously described for Xenopus. The chitin oligosaccharide synthase activity found in extracts was inactivated by a specific DG42 antibody; synthesis of hyaluronic acid (HA) was not affected under the conditions tested. Other experiments demonstrate that expression of DG42 under plasmid control in mouse 3T3 cells gives rise to chitooligosaccharide synthase activity without an increase in HA synthase level. A possible relationship between our results and those of other investigators, which show stimulation of HA synthesis by DG42 in mammalian cell culture systems, is provided by structural analyses to be published elsewhere that suggest that chitin oligosaccharides are present at the reducing ends of HA chains. Since in at least one vertebrate system hyaluronic acid formation can be inhibited by a pure chitinase, it seems possible that chitin oligosaccharides serve as primers for hyaluronic acid synthesis.

  6. Exploring cytoplasmic dynamics in zebrafish yolk cells by single particle tracking of fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Chang, Cheng-Chun; Zhang, Bailin; Li, Che-Yu; Hsieh, Chih-Chien; Duclos, Guillaume; Treussart, François; Chang, Huan-Cheng

    2012-02-01

    Fluorescent nanodiamonds (FNDs) have recently developed into an exciting new tool for bioimaging applications. The material possesses several unique features including high biocompatibility, easy bioconjugation, and perfect photostability, making it a promising optical nanoprobe in vitro as well as in vivo. This work explores the potential application of this novel nanomaterial as a photostable, nontoxic tracer in vivo using zebrafish as a model organism. We introduced FNDs into the yolk of a zebrafish embryo by microinjection at the 1-cell stage. Movements of the injected particles were investigated by using single particle tracking techniques. We observed unidirectional and stop-and-go traffic as part of the intricate cytoplasmic movements in the yolk cell. We determined a velocity in the range of 0.19 - 0.40 μm/s for 40 particles moving along with the axial streaming in the early developmental stage (1 to 2 hours post fertilization) of the zebrafish embryos.

  7. Movement maintains forebrain neurogenesis via peripheral neural feedback in larval zebrafish

    PubMed Central

    Hall, Zachary Jonas

    2018-01-01

    The postembryonic brain exhibits experience-dependent development, in which sensory experience guides normal brain growth. This neuroplasticity is thought to occur primarily through structural and functional changes in pre-existing neurons. Whether neurogenesis also mediates the effects of experience on brain growth is unclear. Here, we characterized the importance of motor experience on postembryonic neurogenesis in larval zebrafish. We found that movement maintains an expanded pool of forebrain neural precursors by promoting progenitor self-renewal over the production of neurons. Physical cues associated with swimming (bodily movement) increase neurogenesis and these cues appear to be conveyed by dorsal root ganglia (DRG) in the zebrafish body: DRG-deficient larvae exhibit attenuated neurogenic responses to movement and targeted photoactivation of DRG in immobilized larvae expands the pallial pool of proliferative cells. Our results demonstrate the importance of movement in neurogenic brain growth and reveal a fundamental sensorimotor association that may couple early motor and brain development. PMID:29528285

  8. Characterization of zebrafish dysferlin by morpholino knockdown

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawahara, Genri; Serafini, Peter R.; Myers, Jennifer A.

    2011-09-23

    Highlights: {yields} cDNAs of zebrafish dysferlin were cloned (6.3 kb). {yields} The dysferlin expression was detected in skeletal muscle, heart and eye. {yields} Injection of antisense morpholinos to dysferlin caused marked muscle disorganization. {yields} Zebrafish dysferlin expression may be involved in stabilizing muscle structures. -- Abstract: Mutations in the gene encoding dysferlin cause two distinct muscular dystrophy phenotypes: limb-girdle muscular dystrophy type 2B (LGMD-2B) and Miyoshi myopathy (MM). Dysferlin is a large transmembrane protein involved in myoblast fusion and membrane resealing. Zebrafish represent an ideal animal model to use for studying muscle disease including abnormalities of dysferlin. cDNAs of zebrafishmore » dysferlin were cloned (6.3 kb) and the predicted amino acid sequences, showed 68% similarity to predicted amino acid sequences of mammalian dysferlin. The expression of dysferlin was mainly in skeletal muscle, heart and eye, and the expression could be detected as early as 11 h post fertilization (hpf). Three different antisense oligonucleotide morpholinos were targeted to inhibit translation of this dysferlin mRNA and the morpholino-injected fish showed marked muscle disorganization which could be detected by birefringence assay. Western blot analysis using dysferlin antibodies showed that the expression of dysferlin was reduced in each of the three morphants. Dysferlin expression was shown to be reduced at the myosepta of zebrafish muscle using immunohistochemistry, although the expression of other muscle membrane components, dystrophin, laminin, {beta}-dystroglycan were detected normally. Our data suggest that zebrafish dysferlin expression is involved in stabilizing muscle structures and its downregulation causes muscle disorganization.« less

  9. Zebrafish skeleton development: High resolution micro-CT and FIB-SEM block surface serial imaging for phenotype identification

    PubMed Central

    Silvent, Jeremie; Akiva, Anat; Brumfeld, Vlad; Reznikov, Natalie; Rechav, Katya; Yaniv, Karina; Addadi, Lia; Weiner, Steve

    2017-01-01

    Although bone is one of the most studied living materials, many questions about the manner in which bones form remain unresolved, including fine details of the skeletal structure during development. In this study, we monitored skeleton development of zebrafish larvae, using calcein fluorescence, high-resolution micro-CT 3D images and FIB-SEM in the block surface serial imaging mode. We compared calcein staining of the skeletons of the wild type and nacre mutants, which are transparent zebrafish, with micro-CT for the first 30 days post fertilization embryos, and identified significant differences. We quantified the bone volumes and mineral contents of bones, including otoliths, during development, and showed that such developmental differences, including otolith development, could be helpful in identifying phenotypes. In addition, high-resolution imaging revealed the presence of mineralized aggregates in the notochord, before the formation of the first bone in the axial skeleton. These structures might play a role in the storage of the mineral. Our results highlight the potential of these high-resolution 3D approaches to characterize the zebrafish skeleton, which in turn could prove invaluable information for better understanding the development and the characterization of skeletal phenotypes. PMID:29220379

  10. Tissue factor pathway inhibitor-2: a novel gene involved in zebrafish central nervous system development.

    PubMed

    Zhang, Yanli; Wang, Lina; Zhou, Wenhao; Wang, Huijun; Zhang, Jin; Deng, Shanshan; Li, Weihua; Li, Huawei; Mao, Zuohua; Ma, Duan

    2013-09-01

    Tissue factor pathway inhibitor-2 (Tfpi-2) is an important serine protease inhibitor in the extracellular matrix (ECM), but its precise physiological significance remains unknown. This work is part of a series of studies intended to investigate functional roles of Tfpi-2 and explore the underlying molecular mechanisms. First, we cloned and identified zebrafish Tfpi-2 (zTfpi-2) as an evolutionarily conserved protein essential for zebrafish development. We also demonstrated that ztfpi-2 is mainly expressed in the central nervous system (CNS) of zebrafish, and embryonic depletion of ztfpi-2 caused severe CNS defects. In addition, changes of neural markers, including pax2a, egr2b, huC, ngn1, gfap and olig2, confirmed the presence of developmental abnormalities in the relevant regions of ztfpi-2 morphants. Using microarray analysis, we found that members of the Notch pathway, especially her4 and mib, which mediate lateral inhibition in CNS development, were also downregulated. Intriguingly, both her4 and mib were able to partially rescue the ztfpi-2 morphant phenotype. Furthermore, Morpholino knockdown of ztfpi-2 resulted in upregulation of neuronal markers while downregulation of glial markers, providing evidence that the Notch pathway is probably involved in ztfpi-2-mediated CNS development. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. DEVELOPMENT OF AN OBJECTIVE AND QUANTIFIABLE TERATOLOGICAL SCREEN FOR USE IN ZEBRAFISH LARVAE.

    EPA Science Inventory

    To address EPA’s need to prioritize large numbers of chemicals for testing, a rapid, cost-effective in vivo screen for potential developmental toxicity using an alternative vertebrate species (zebrafish;Danio rerio) has been developed. A component of that screen is the observatio...

  12. Temporal and Spatial Expression of CCN Genes in Zebrafish

    PubMed Central

    Fernando, Carol A; Conrad, Patricia A; Bartels, Cynthia F; Marques, Tomas; To, Michael; Balow, Stephanie A; Nakamura, Yukio; Warman, Matthew L

    2010-01-01

    The six mammalian CCN genes (Cyr61, CTGF, Nov, WISP1, WISP2, WISP3) encode a family of secreted, cysteine-rich, multimodular proteins having roles in cell proliferation, adhesion, migration, and differentiation during embryogenesis, wound healing, and angiogenesis. We used bioinformatics to identify 9 CCN genes in zebrafish (zCCNs), 6 of which have not been previously described. When compared with mammalian CCN family members, 3 were paralogs of Cyr61, 2 of CTGF, 2 of WISP1, 1 of WISP2, and 1 of WISP3. No paralog of Nov was found. In situ hybridization was performed to characterize the sites of expression of the zCCNs during early zebrafish development. zCCNs demonstrated both unique and overlapping patterns of expression, suggesting potential division of labor between orthologous genes and providing an alternate approach to gene function studies that will complement studies in mammalian models. Developmental Dynamics 239:1755–1767, 2010. © 2010 Wiley-Liss, Inc. PMID:20503371

  13. cDNA nucleotide sequence coding for stearoyl-CoA desaturase and its expression in the zebrafish (Danio rerio) embryo.

    PubMed

    Hsieh, S L; Liu, R W; Wu, C H; Cheng, W T; Kuo, Ching-Ming

    2003-12-01

    A cDNA sequence of stearoyl-CoA desaturase (SCD) was determined from zebrafish (Danio rerio) and compared to the corresponding genes in several teleosts. Zebrafish SCD cDNA has a size of 1,061 bp, encodes a polypeptide of 325 amino acids, and shares 88, 85, 84, and 83% similarities with tilapia (Oreochromis mossambicus), grass carp (Ctenopharyngodon idella), common carp (Cyprinus carpio), and milkfish (Chanos chanos), respectively. This 1,061 bp sequence specifies a protein that, in common with other fatty acid desaturases, contains three histidine boxes, believed to be involved in catalysis. These observations suggested that SCD genes are highly conserved. In addition, an oligonucleotide probe complementary to zebrafish SCD mRNA was hybridized to mRNA of approximately 396 bases with Northern blot analysis. The Northern blot and RT-PCR analyses showed that the SCD mRNA was expressed predominantly in the liver, intestine, gill, and muscle, while a lower level was found in the brain. Furthermore, we utilized whole-mount in situ hybridization and real-time quantitative RT-PCR to identify expression of the zebrafish SCD gene at five different stages of development. This revealed that very high levels of transcripts were found in zebrafish at all stages during embryogenesis and early development. Copyright 2003 Wiley-Liss, Inc.

  14. The effect of silver nanoparticles on zebrafish embryonic development and toxicology.

    PubMed

    Xia, Guangqing; Liu, Tiantian; Wang, Zhenwei; Hou, Yi; Dong, Lihong; Zhu, Junyi; Qi, Jie

    2016-06-01

    The unique physical and chemical characteristics of nanomaterials, such as the effects of their small size, surface effects, very high rates of reaction, and quantum tunnel effect, have aroused great interest among scholars. However, improper usage has led to an increasing number of nanomaterials entering the environment through various channels, greatly threatening the security of the ecological environment and human health. The urgent need for a scientific assessment of their biosafety can enable nanomaterials to truly benefit humanity. However, the current research in this field is extremely limited with regard to safety standards and waste disposal. In this study, we used silver nanoparticles (nano-Ag) and zebrafish embryos as experimental subjects, and we have reported the deleterious effect on zebrafish embryos treated with different concentrations of nano-Ag, with respect to morphological features (mortality, deformity rate, and heartbeat) and the analysis of expression of relevant genes (sox17, gsc, ntl, otx2); we found a dose-dependent increase in mortality and hatching delay. The results of in situ hybridization indicated that nano-Ag causes a dose-dependent toxicity in embryonic development, and would affect their development and lead to deformity, delayed development, and even death. The safety limit for the concentration of nano-Ag was found to be less than 5 mg/L.

  15. Exposure to a PBDE/OH-BDE mixture alters juvenile zebrafish (Danio rerio) development

    PubMed Central

    Macaulay, Laura J.; Chernick, Melissa; Chen, Albert; Hinton, David E.; Bailey, Jordan M.; Kullman, Seth W.; Levin, Edward D.; Stapleton, Heather M.

    2017-01-01

    Polybrominated diphenyl ethers (PBDEs) and halogenated phenolic compounds (e.g., hydroxylated BDEs (OH-BDEs)) arecontaminants detected together frequently in human tissues, and are structurally similar to thyroid hormones (TH). THs partially mediate metamorphic transitions between life stages in zebrafish, making this a critical developmental window which may be uniquely vulnerable to chemicals disrupting thyroid signaling. In this study, zebrafish were exposed to 6-OH-BDE-47 (30 nM) alone or to a low (30 μg/L) or high dose (600 μg/L) mixture of PentaBDEs, 6-OH-BDE-47 (0.5–6 μg/L), & 2,4,6 tribromophenol (TBP) (5–100 μg/L) during juvenile development (9–23 days post fertilization; dpf) and evaluated for developmental endpoints mediated by TH signaling. Fish were sampled at three time points and examined for developmental and skeletal morphology, apical thyroid and skeletal gene markers, and modifications in swimming behavior (as adults). Exposure to the high mixture resulted in > 85% mortality within one week of exposure, despite being below reported acute toxicity thresholds for individual congeners. The low mixture and 6-OH-BDE-47 groups exhibited reductions in body length and delayed maturation, specifically relating to swim bladder,?, fin, and pigmentation development. Reduced skeletal ossification was also observed in 6-OH-BDE-47 treated fish. Assessment of thyroid and osteochondral gene regulatory networks demonstrated significantly increased expression of genes that regulate skeletal development and THs. Overall, these results indicate that exposures to PBDEs/OH-BDEs mixtures adversely impact zebrafish maturation during metamorphosis. PMID:27329031

  16. Ethanol affects the development of sensory hair cells in larval zebrafish (Danio rerio).

    PubMed

    Uribe, Phillip M; Asuncion, James D; Matsui, Jonathan I

    2013-01-01

    Children born to mothers with substantial alcohol consumption during pregnancy can present a number of morphological, cognitive, and sensory abnormalities, including hearing deficits, collectively known as fetal alcohol syndrome (FAS). The goal of this study was to determine if the zebrafish lateral line could be used to study sensory hair cell abnormalities caused by exposure to ethanol during embryogenesis. Some lateral line sensory hair cells are present at 2 days post-fertilization (dpf) and are functional by 5 dpf. Zebrafish embryos were raised in fish water supplemented with varying concentrations of ethanol (0.75%-1.75% by volume) from 2 dpf through 5 dpf. Ethanol treatment during development resulted in many physical abnormalities characteristic of FAS in humans. Also, the number of sensory hair cells decreased as the concentration of ethanol increased in a dose-dependent manner. The dye FM 1-43FX was used to detect the presence of functional mechanotransduction channels. The percentage of FM 1-43-labeled hair cells decreased as the concentration of ethanol increased. Methanol treatment did not affect the development of hair cells. The cell cycle markers proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU) demonstrated that ethanol reduced the number of sensory hair cells, as a consequence of decreased cellular proliferation. There was also a significant increase in the rate of apoptosis, as determined by TUNEL-labeling, in neuromasts following ethanol treatment during larval development. Therefore, zebrafish are a useful animal model to study the effects of hair cell developmental disorders associated with FAS.

  17. Zebrafish: an animal model for research in veterinary medicine.

    PubMed

    Nowik, N; Podlasz, P; Jakimiuk, A; Kasica, N; Sienkiewicz, W; Kaleczyc, J

    2015-01-01

    The zebrafish (Danio rerio) has become known as an excellent model organism for studies of vertebrate biology, vertebrate genetics, embryonal development, diseases and drug screening. Nevertheless, there is still lack of detailed reports about usage of the zebrafish as a model in veterinary medicine. Comparing to other vertebrates, they can lay hundreds of eggs at weekly intervals, externally fertilized zebrafish embryos are accessible to observation and manipulation at all stages of their development, which makes possible to simplify the research techniques such as fate mapping, fluorescent tracer time-lapse lineage analysis and single cell transplantation. Although zebrafish are only 2.5 cm long, they are easy to maintain. Intraperitoneal and intracerebroventricular injections, blood sampling and measurement of food intake are possible to be carry out in adult zebrafish. Danio rerio is a useful animal model for neurobiology, developmental biology, drug research, virology, microbiology and genetics. A lot of diseases, for which the zebrafish is a perfect model organism, affect aquatic animals. For a part of them, like those caused by Mycobacterium marinum or Pseudoloma neutrophila, Danio rerio is a natural host, but the zebrafish is also susceptible to the most of fish diseases including Itch, Spring viraemia of carp and Infectious spleen and kidney necrosis. The zebrafish is commonly used in research of bacterial virulence. The zebrafish embryo allows for rapid, non-invasive and real time analysis of bacterial infections in a vertebrate host. Plenty of common pathogens can be examined using zebrafish model: Streptococcus iniae, Vibrio anguillarum or Listeria monocytogenes. The steps are taken to use the zebrafish also in fungal research, especially that dealing with Candida albicans and Cryptococcus neoformans. Although, the zebrafish is used commonly as an animal model to study diseases caused by external agents, it is also useful in studies of metabolic

  18. Zic1 and Zic4 regulate zebrafish roof plate specification and hindbrain ventricle morphogenesis

    PubMed Central

    Elsen, Gina E.; Choi, Louis; Millen, Kathleen; Grinblat, Yevgenya; Prince, Victoria E.

    2008-01-01

    During development, the lumen of the neural tube develops into a system of brain cavities or ventricles, which play important roles in normal CNS function. We have established that the formation of the hindbrain (4th) ventricle in zebrafish is dependent upon the pleiotropic functions of the genes implicated in human Dandy Walker Malformation, Zic1 and Zic4. Using morpholino knockdown we show that zebrafish Zic1 and Zic4 are required for normal morphogenesis of the 4th ventricle. In Zic1 and/or Zic4 morphants the ventricle does not open properly, but remains completely or partially fused from the level of rhombomere (r) 2 towards the posterior. In the absence of Zic function early hindbrain regionalization and neural crest development remain unaffected, but dorsal hindbrain progenitor cell proliferation is significantly reduced. Importantly, we find that Zic1 and Zic4 are required for development of the dorsal roof plate. In Zic morphants expression of roof plate markers, including lmx1b.1 and lmx1b.2, is disrupted. We further demonstrate that zebrafish Lmx1b function is required for both hindbrain roof plate development and 4th ventricle morphogenesis, confirming that roof plate formation is a critical component of ventricle development. Finally, we show that dorsal rhombomere boundary signaling centers depend on Zic1 and Zic4 function and on roof plate signals, and provide evidence that these boundary signals are also required for ventricle morphogenesis. In summary, we conclude that Zic1 and Zic4 control zebrafish 4th ventricle morphogenesis by regulating multiple mechanisms including cell proliferation and fate specification in the dorsal hindbrain. PMID:18191121

  19. Critical early roles for col27a1a and col27a1b in zebrafish notochord morphogenesis, vertebral mineralization and post-embryonic axial growth.

    PubMed

    Christiansen, Helena E; Lang, Michael R; Pace, James M; Parichy, David M

    2009-12-29

    Fibrillar collagens are well known for their links to human diseases, with which all have been associated except for the two most recently identified fibrillar collagens, type XXIV collagen and type XXVII collagen. To assess functions and potential disease phenotypes of type XXVII collagen, we examined its roles in zebrafish embryonic and post-embryonic development. We identified two type XXVII collagen genes in zebrafish, col27a1a and col27a1b. Both col27a1a and col27a1b were expressed in notochord and cartilage in the embryo and early larva. To determine sites of type XXVII collagen function, col27a1a and col27a1b were knocked down using morpholino antisense oligonucleotides. Knockdown of col27a1a singly or in conjunction with col27a1b resulted in curvature of the notochord at early stages and formation of scoliotic curves as well as dysmorphic vertebrae at later stages. These defects were accompanied by abnormal distributions of cells and protein localization in the notochord, as visualized by transmission electron microscopy, as well as delayed vertebral mineralization as detected histologically. Together, our findings indicate a key role for type XXVII collagen in notochord morphogenesis and axial skeletogenesis and suggest a possible human disease phenotype.

  20. Automatic zebrafish heartbeat detection and analysis for zebrafish embryos.

    PubMed

    Pylatiuk, Christian; Sanchez, Daniela; Mikut, Ralf; Alshut, Rüdiger; Reischl, Markus; Hirth, Sofia; Rottbauer, Wolfgang; Just, Steffen

    2014-08-01

    A fully automatic detection and analysis method of heartbeats in videos of nonfixed and nonanesthetized zebrafish embryos is presented. This method reduces the manual workload and time needed for preparation and imaging of the zebrafish embryos, as well as for evaluating heartbeat parameters such as frequency, beat-to-beat intervals, and arrhythmicity. The method is validated by a comparison of the results from automatic and manual detection of the heart rates of wild-type zebrafish embryos 36-120 h postfertilization and of embryonic hearts with bradycardia and pauses in the cardiac contraction.

  1. rbm47, a novel RNA binding protein, regulates zebrafish head development.

    PubMed

    Guan, Rui; El-Rass, Suzan; Spillane, David; Lam, Simon; Wang, Yuodong; Wu, Jing; Chen, Zhuchu; Wang, Anan; Jia, Zhengping; Keating, Armand; Hu, Jim; Wen, Xiao-Yan

    2013-12-01

    Vertebrate trunk induction requires inhibition of bone morphogenetic protein (BMP) signaling, whereas vertebrate head induction requires concerted inhibition of both Wnt and BMP signaling. RNA binding proteins play diverse roles in embryonic development and their roles in vertebrate head development remain to be elucidated. We first characterized the human RBM47 as an RNA binding protein that specifically binds RNA but not single-stranded DNA. Next, we knocked down rbm47 gene function in zebrafish using morpholinos targeting the start codon and exon-1/intron-1 splice junction. Down-regulation of rbm47 resulted in headless and small head phenotypes, which can be rescued by a wnt8a blocking morpholino. To further reveal the mechanism of rbm47's role in head development, microarrays were performed to screen genes differentially expressed in normal and knockdown embryos. epcam and a2ml were identified as the most significantly up- and down-regulated genes, respectively. The microarrays also confirmed up-regulation of several genes involved in head development, including gsk3a, otx2, and chordin, which are important regulators of Wnt signaling. Altogether, our findings reveal that Rbm47 is a novel RNA-binding protein critical for head formation and embryonic patterning during zebrafish embryogenesis which may act through a Wnt8a signaling pathway. Copyright © 2013 Wiley Periodicals, Inc.

  2. Differential Toxicity of mDia Formin-Directed Functional Agonists and Antagonists in Developing Zebrafish.

    PubMed

    LeCorgne, Hunter; Tudosie, Andrew M; Lavik, Kari; Su, Robin; Becker, Kathryn N; Moore, Sara; Walia, Yashna; Wisner, Alexander; Koehler, Daniel; Alberts, Arthur S; Williams, Frederick E; Eisenmann, Kathryn M

    2018-01-01

    The mammalian Diaphanous-related (mDia) formins are cytoskeletal regulators that assemble and, in some cases, bundle filamentous actin (F-actin), as well as stabilize microtubules. The development of small molecule antagonists and agonists that interrogate mDia formin function has allowed us to investigate the roles of formins in disease states. A small molecule inhibitor of FH2 domain (SMIFH2) inhibits mDia-dependent actin dynamics and abrogates tumor cell migration and cell division in vitro and ex vivo tissue explants. mDia formin activation with small molecule intramimics IMM01/02 and mDia2-DAD peptides inhibited glioblastoma motility and invasion in vitro and ex vivo rat brain slices. However, SMIFH2, IMMs, and mDia2 DAD efficacy in vivo remains largely unexplored and potential toxicity across a range of developmental phenotypes has not been thoroughly characterized. In this study, we performed an in vivo screen of early life-stage toxicity in Danio rerio zebrafish embryos 2 days post-fertilization (dpf) in response to SMIFH2, IMM01/02, and mDia2 DAD. SMIFH2 at concentrations ≥5-10 μM induced significant defects in developing zebrafish, including shorter body lengths, tail curvature and defective tail cellularity, craniofacial malformations, pericardial edema, absent and/or compromised vasculature function and flow, depressed heart rates and increased mortality. Conversely, IMM and mDia2 DAD peptides were minimally toxic at concentrations up to 10-20 and 50 μM, respectively. SMIFH2's therapeutic potential may therefore be limited by its substantial in vivo toxicity at functional concentrations. mDia formin agonism with IMMs and mDia2 DADs may therefore be a more effective and less toxic anti-invasive therapeutic approach.

  3. Differential Toxicity of mDia Formin-Directed Functional Agonists and Antagonists in Developing Zebrafish

    PubMed Central

    LeCorgne, Hunter; Tudosie, Andrew M.; Lavik, Kari; Su, Robin; Becker, Kathryn N.; Moore, Sara; Walia, Yashna; Wisner, Alexander; Koehler, Daniel; Alberts, Arthur S.; Williams, Frederick E.; Eisenmann, Kathryn M.

    2018-01-01

    The mammalian Diaphanous-related (mDia) formins are cytoskeletal regulators that assemble and, in some cases, bundle filamentous actin (F-actin), as well as stabilize microtubules. The development of small molecule antagonists and agonists that interrogate mDia formin function has allowed us to investigate the roles of formins in disease states. A small molecule inhibitor of FH2 domain (SMIFH2) inhibits mDia-dependent actin dynamics and abrogates tumor cell migration and cell division in vitro and ex vivo tissue explants. mDia formin activation with small molecule intramimics IMM01/02 and mDia2-DAD peptides inhibited glioblastoma motility and invasion in vitro and ex vivo rat brain slices. However, SMIFH2, IMMs, and mDia2 DAD efficacy in vivo remains largely unexplored and potential toxicity across a range of developmental phenotypes has not been thoroughly characterized. In this study, we performed an in vivo screen of early life-stage toxicity in Danio rerio zebrafish embryos 2 days post-fertilization (dpf) in response to SMIFH2, IMM01/02, and mDia2 DAD. SMIFH2 at concentrations ≥5–10 μM induced significant defects in developing zebrafish, including shorter body lengths, tail curvature and defective tail cellularity, craniofacial malformations, pericardial edema, absent and/or compromised vasculature function and flow, depressed heart rates and increased mortality. Conversely, IMM and mDia2 DAD peptides were minimally toxic at concentrations up to 10–20 and 50 μM, respectively. SMIFH2's therapeutic potential may therefore be limited by its substantial in vivo toxicity at functional concentrations. mDia formin agonism with IMMs and mDia2 DADs may therefore be a more effective and less toxic anti-invasive therapeutic approach. PMID:29692731

  4. Systematic approaches to toxicology in the zebrafish.

    PubMed

    Peterson, Randall T; Macrae, Calum A

    2012-01-01

    As the current paradigms of drug discovery evolve, it has become clear that a more comprehensive understanding of the interactions between small molecules and organismal biology will be vital. The zebrafish is emerging as a complement to existing in vitro technologies and established preclinical in vivo models that can be scaled for high-throughput. In this review, we highlight the current status of zebrafish toxicology studies, identify potential future niches for the model in the drug development pipeline, and define the hurdles that must be overcome as zebrafish technologies are refined for systematic toxicology.

  5. Effect of acetochlor on transcription of genes associated with oxidative stress, apoptosis, immunotoxicity and endocrine disruption in the early life stage of zebrafish.

    PubMed

    Jiang, Jinhua; Wu, Shenggan; Liu, Xinju; Wang, Yanhua; An, Xuehua; Cai, Leiming; Zhao, Xueping

    2015-09-01

    The study presented here aimed to characterize the effects of acetochlor on expression of genes related to endocrine disruption, oxidative stress, apoptosis and immune system in zebrafish during its embryo development. Different trends in gene expression were observed after exposure to 50, 100, 200μg/L acetochlor for 96h. Results demonstrated that the transcription patterns of many key genes involved in the hypothalamic-pituitary-gonadal/thyroid (HPG/HPT) axis (e.g., VTG1, ERβ1, CYP19a and TRα), cell apoptosis pathway (e.g., Bcl2, Bax, P53 and Cas8), as well as innate immunity (e.g., CXCL-C1C, IL-1β and TNFα) were affected in newly hatched zebrafish after exposure to acetochlor. In addition, the up-regulation of CAT, GPX, GPX1a, Cu/Zn-SOD and Ogg1 suggested acetochlor might trigger oxidative stress in zebrafish. These finding indicated that acetochlor could simultaneously induce multiple responses during zebrafish embryonic development, and bidirectional interactions among oxidative stress, apoptosis pathway, immune and endocrine systems might be present. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. spadetail-dependent cell compaction of the dorsal zebrafish blastula.

    PubMed

    Warga, R M; Nüsslein-volhard, C

    1998-11-01

    The dorsal marginal zone of the zebrafish blastula, equivalent to the amphibian Spemann organizer, is destined to become the tissues of the notochord and prechordal plate. Preceding gastrulation in the zebrafish, we find that these future mesendodermal cells acquire a cohesive cell behavior characterized by flattening and maximization of intercellular contacts, somewhat resembling cell compaction in mouse blastocysts. This behavior may suppress cell intermingling. Surprisingly, this blastula cell compaction requires normal function of spadetail, a gene known to be necessary for the dorsal convergent cell movement of paraxial mesoderm later in the gastrula. We propose that spadetail-dependent cell compaction subtly controls the early mixing and dispersal of dorsal cells that coalesce into the prospective organizer region. This early process may be necessary for the correct location of the boundary separating axial and paraxial cells. Copyright 1998 Academic Press.

  7. Zebrafish: an important tool for liver disease research.

    PubMed

    Goessling, Wolfram; Sadler, Kirsten C

    2015-11-01

    As the incidence of hepatobiliary diseases increases, we must improve our understanding of the molecular, cellular, and physiological factors that contribute to the pathogenesis of liver disease. Animal models help us identify disease mechanisms that might be targeted therapeutically. Zebrafish (Danio rerio) have traditionally been used to study embryonic development but are also important to the study of liver disease. Zebrafish embryos develop rapidly; all of their digestive organs are mature in larvae by 5 days of age. At this stage, they can develop hepatobiliary diseases caused by developmental defects or toxin- or ethanol-induced injury and manifest premalignant changes within weeks. Zebrafish are similar to humans in hepatic cellular composition, function, signaling, and response to injury as well as the cellular processes that mediate liver diseases. Genes are highly conserved between humans and zebrafish, making them a useful system to study the basic mechanisms of liver disease. We can perform genetic screens to identify novel genes involved in specific disease processes and chemical screens to identify pathways and compounds that act on specific processes. We review how studies of zebrafish have advanced our understanding of inherited and acquired liver diseases as well as liver cancer and regeneration. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Zebrafish: An Important Tool for Liver Disease Research

    PubMed Central

    Goessling, Wolfram; Sadler, Kirsten C.

    2016-01-01

    As the incidence of hepatobiliary diseases increases, we must improve our understanding of the molecular, cellular, and physiological factors that contribute to the pathogenesis of liver disease. Animal models help us identify disease mechanisms that might be targeted therapeutically. Zebrafish (Danio rerio) have traditionally been used to study embryonic development but are also important to the study of liver disease. Zebrafish embryos develop rapidly; all of their digestive organs are mature in larvae by 5 days of age. At this stage, they can develop hepatobiliary diseases caused by developmental defects or toxin- or ethanol-induced injury and manifest premalignant changes within weeks. Zebrafish are similar to humans in hepatic cellular composition, function, signaling, and response to injury as well as the cellular processes that mediate liver diseases. Genes are highly conserved between humans and zebrafish, making them a useful system to study the basic mechanisms of liver disease. We can perform genetic screens to identify novel genes involved in specific disease processes and chemical screens to identify pathways and compounds that act on specific processes. We review how studies of zebrafish have advanced our understanding of inherited and acquired liver diseases as well as liver cancer and regeneration. PMID:26319012

  9. Generation and characterization of Kctd15 mutations in zebrafish

    PubMed Central

    Heffer, Alison; Marquart, Gregory D.; Aquilina-Beck, Allisan; Saleem, Nabil; Burgess, Harold A.

    2017-01-01

    Potassium channel tetramerization domain containing 15 (Kctd15) was previously found to have a role in early neural crest (NC) patterning, specifically delimiting the region where NC markers are expressed via repression of transcription factor AP-2a and inhibition of Wnt signaling. We used transcription activator-like effector nucleases (TALENs) to generate null mutations in zebrafish kctd15a and kctd15b paralogs to study the in vivo role of Kctd15. We found that while deletions producing frame-shift mutations in each paralog showed no apparent phenotype, kctd15a/b double mutant zebrafish are smaller in size and show several phenotypes including some affecting the NC, such as expansion of the early NC domain, increased pigmentation, and craniofacial defects. Both melanophore and xanthophore pigment cell numbers and early markers are up-regulated in the double mutants. While we find no embryonic craniofacial defects, adult mutants have a deformed maxillary segment and missing barbels. By confocal imaging of mutant larval brains we found that the torus lateralis (TLa), a region implicated in gustatory networks in other fish, is absent. Ablation of this brain tissue in wild type larvae mimics some aspects of the mutant growth phenotype. Thus kctd15 mutants show deficits in the development of both neural crest derivatives, and specific regions within the central nervous system, leading to a strong reduction in normal growth rates. PMID:29216270

  10. Retinoic Acid Signaling Is Essential for Valvulogenesis by Affecting Endocardial Cushions Formation in Zebrafish Embryos.

    PubMed

    Li, Junbo; Yue, Yunyun; Zhao, Qingshun

    2016-02-01

    Retinoic acid (RA) plays important roles in many stages of heart morphogenesis. Zebrafish embryos treated with exogenous RA display defective atrio-ventricular canal (AVC) specification. However, whether endogenous RA signaling takes part in cardiac valve formation remains unknown. Herein, we investigated the role of RA signaling in cardiac valve development by knocking down aldh1a2, the gene encoding an enzyme that is mainly responsible for RA synthesis during early development, in zebrafish embryos. The results showed that partially knocking down aldh1a2 caused defective formation of primitive cardiac valve leaflets at 108 hpf (hour post-fertilization). Inhibiting endogenous RA signaling by 4-diethylaminobenzal-dehyde revealed that 16-26 hpf was a key time window when RA signaling affects the valvulogenesis. The aldh1a2 morphants had defective formation of endocardial cushion (EC) at 76 hpf though they had almost normal hemodynamics and cardiac chamber specification at early development. Examining the expression patterns of AVC marker genes including bmp4, bmp2b, nppa, notch1b, and has2, we found the morphants displayed abnormal development of endocardial AVC but almost normal development of myocardial AVC at 50 hpf. Being consistent with the reduced expression of notch1b in endocardial AVC, the VE-cadherin gene cdh5, the downstream gene of Notch signaling, was ectopically expressed in AVC of aldh1a2 morphants at 50 hpf, and overexpression of cdh5 greatly affected the formation of EC in the embryos at 76 hpf. Taken together, our results suggest that RA signaling plays essential roles in zebrafish cardiac valvulogenesis.

  11. Mycobacteriosis in zebrafish colonies.

    PubMed

    Whipps, Christopher M; Lieggi, Christine; Wagner, Robert

    2012-01-01

    Mycobacteriosis, a chronic bacterial infection, has been associated with severe losses in some zebrafish facilities and low-level mortalities and unknown impacts in others. The occurrence of at least six different described species (Mycobacterium abscessus, M. chelonae, M. fortuitum, M. haemophilum, M. marinum, M. peregrinum) from zebrafish complicates diagnosis and control because each species is unique. As a generalization, mycobacteria are often considered opportunists, but M. haemophilum and M. marinum appear to be more virulent. Background genetics of zebrafish and environmental conditions influence the susceptibility of fish and progression of disease, emphasizing the importance of regular monitoring and good husbandry practices. A combined approach to diagnostics is ultimately the most informative, with histology as a first-level screen, polymerase chain reaction for rapid detection and species identification, and culture for strain differentiation. Occurrence of identical strains of Mycobacterium in both fish and biofilms in zebrafish systems suggests transmission can occur when fish feed on infected tissues or tank detritus containing mycobacteria. Within a facility, good husbandry practices and sentinel programs are essential for minimizing the impacts of mycobacteria. In addition, quarantine and screening of animals coming into a facility is important for eliminating the introduction of the more severe pathogens. Elimination of mycobacteria from an aquatic system is likely not feasible because these species readily establish biofilms on surfaces even in extremely low nutrient conditions. Risks associated with each commonly encountered species need to be identified and informed management plans developed. Basic research on the growth characteristics, disinfection, and pathogenesis of zebrafish mycobacteria is critical moving forward.

  12. Tritiated water exposure disrupts myofibril structure and induces mis-regulation of eye opacity and DNA repair genes in zebrafish early life stages.

    PubMed

    Arcanjo, Caroline; Armant, Olivier; Floriani, Magali; Cavalie, Isabelle; Camilleri, Virginie; Simon, Olivier; Orjollet, Daniel; Adam-Guillermin, Christelle; Gagnaire, Béatrice

    2018-04-27

    Tritium ( 3 H) is a radioactive isotope of hydrogen. In the environment, the most common form of tritium is tritiated water (HTO). The present study aimed to identify early biomarkers of HTO contamination through the use of an aquatic model, the zebrafish (Danio rerio). We used the zebrafish embryo-larvae model to investigate the modes of action of HTO exposure at dose rates of 0.4 and 4 mGy/h, dose rates expected to induce deleterious effects on fish. Zebrafish were exposed to HTO from 3 hpf (hours post fertilization) to 96 hpf. The transcriptomic effects were investigated 24 h and 96 h after the beginning of the contamination, using mRNAseq. Results suggested an impact of HTO contamination, regardless of the dose rate, on genes involved in muscle contraction (tnnt2d, tnni2a.4, slc6a1a or atp2a1l) and eye opacity (crygm2d9, crygmxl1, mipb or lim2.3) after 24 h of contamination. Interestingly, an opposite differential expression was highlighted in genes playing a role in muscle contraction and eye opacity in 24 hpf embryos when comparing dose rates, suggesting an onset of DNA protective mechanisms. The expression of h2afx and ddb2 involved in DNA repair was enhanced in response to HTO exposure. The entrainment of circadian clock and the response to H 2 O 2 signalling pathways were enriched at 96 hpf at 0.4 mGy/h and in both stages after 4 mGy/h. Genes involved in ROS scavenging were differentially expressed only after 24 h of exposure for the lowest dose rate, suggesting the onset of early protective mechanisms against oxidative stress. Effects highlighted on muscle at the molecular scale were confirmed at a higher biological scale, as electron microscopy observations revealed sarcomere impairments in 96 hpf larvae for both dose rates. Together with other studies, the present work provides useful data to better understand modes of action of tritium on zebrafish embryos-larvae. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Identification and characterization of the zebrafish glutathione S-transferase Pi-1.

    PubMed

    Abunnaja, Maryam S; Kurogi, Katsuhisa; Mohammed, Yasir I; Sakakibara, Yoichi; Suiko, Masahito; Hassoun, Ezdihar A; Liu, Ming-Cheh

    2017-10-01

    Zebrafish has in recent years emerged as a popular vertebrate model for use in pharmacological and toxicological studies. While there have been sporadic studies on the zebrafish glutathione S-transferases (GSTs), the zebrafish GST gene superfamily still awaits to be fully elucidated. We report here the identification of 15 zebrafish cytosolic GST genes in NCBI GenBank database and the expression, purification, and enzymatic characterization of the zebrafish cytosolic GST Pi-1 (GSTP1). The cDNA encoding the zebrafish GSTP1 was cloned from a 3-month-old female zebrafish, expressed in Eschelichia coli host cells, and purified. Purified GSTP1 displayed glutathione-conjugating activity toward 1-chloro-2,4-dinitrobenzene as a representative substrate. The enzymatic characteristics of the zebrafish GSTP1, including pH-dependency, effects of metal cations, and kinetic parameters, were studied. Moreover, the expression of zebrafish GSTP1 at different developmental stages during embryogenesis, throughout larval development, onto maturity was examined. © 2017 Wiley Periodicals, Inc.

  14. Development of an In Vitro Assay to Quantitate Hematopoietic Stem and Progenitor Cells (HSPCs) in Developing Zebrafish Embryos.

    PubMed

    Berrun, A C; Stachura, D L

    2017-11-30

    Hematopoiesis is an essential cellular process in which hematopoietic stem and progenitor cells (HSPCs) differentiate into the multitude of different cell lineages that comprise mature blood. Isolation and identification of these HSPCs is difficult because they are defined ex post facto; they can only be defined after their differentiation into specific cell lineages. Over the past few decades, the zebrafish (Danio rerio) has become a model organism to study hematopoiesis. Zebrafish embryos develop ex utero, and by 48 h post-fertilization (hpf) have generated definitive HSPCs. Assays to assess HSPC differentiation and proliferation capabilities have been developed, utilizing transplantation and subsequent reconstitution of the hematopoietic system in addition to visualizing specialized transgenic lines with confocal microscopy. However, these assays are cost prohibitive, technically difficult, and time consuming for many laboratories. Development of an in vitro model to assess HSPCs would be cost effective, quicker, and present fewer difficulties compared to previously described methods, allowing laboratories to quickly assess mutagenesis and drug screens that affect HSPC biology. This novel in vitro assay to assess HSPCs is performed by plating dissociated whole zebrafish embryos and adding exogenous factors that promote only HSPC differentiation and proliferation. Embryos are dissociated into single cells and plated with HSPC-supportive colony stimulating factors that cause them to generate colony forming units (CFUs) that arise from a single progenitor cell. These assays should allow more careful examination of the molecular pathways responsible for HSPC proliferation, differentiation, and regulation, which will allow researchers to understand the underpinnings of vertebrate hematopoiesis and its dysregulation during disease.

  15. Generation and characterization of gsuα:EGFP transgenic zebrafish for evaluating endocrine-disrupting effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Xiaoxia; University of Chinese Academy of Sciences, Beijing; Chen, Xiaowen

    The glycoprotein subunit α (gsuα) gene encodes the shared α subunit of the three pituitary heterodimeric glycoprotein hormones: follicle-stimulating hormone β (Fshβ), luteinizing hormone β (Lhβ) and thyroid stimulating hormone β (Tshβ). In our current study, we identified and characterized the promoter region of zebrafish gsuα and generated a stable gsuα:EGFP transgenic line, which recapitulated the endogenous gsuα expression in the early developing pituitary gland. A relatively conserved regulatory element set is presented in the promoter regions of zebrafish and three other known mammalian gsuα promoters. Our results also demonstrated that the expression patterns of the gsuα:EGFP transgene were allmore » identical to those expression patterns of the endogenous gsuα expression in the pituitary tissue when our transgenic fish were treated with various endocrine chemicals, including forskolin (FSK), SP600125, trichostatin A (TSA), KClO{sub 4}, dexamethasone (Dex), β-estradiol and progesterone. Thus, this gsuα:EGFP transgenic fish reporter line provides another valuable tool for investigating the lineage development of gsuα-expressing gonadotrophins and the coordinated regulation of various glycoprotein hormone subunit genes. These reporter fish can serve as a novel platform to perform screenings of endocrine-disrupting chemicals (EDCs) in vivo as well. - Highlights: • Identification of the promoter of zebrafish glycoprotein subunit α (gsuα) gene • Generation of stable transmission gsuα:EGFP transgenic zebrafish reporter • Demonstration of the recapitulation of the gsuα:EGFP and endogenous gsuα expression • Suggestion of the gsuα:EGFP transgenic zebrafish as a novel platform for EDC study.« less

  16. FOREBRAIN AND HINDBRAIN DEVELOPMENT IN ZEBRAFISH IS SENSITIVE TO ETHANOL EXPOSURE INVOLVING AGRIN, FGF AND SONIC HEDGEHOG FUNCTION

    PubMed Central

    Zhang, Chengjin; Ojiaku, Princess; Cole, Gregory J.

    2014-01-01

    BACKGROUND Ethanol is a teratogen that affects numerous developmental processes in the nervous system, which includes development and survival of GABAergic and glutamatergic neurons. Possible molecular mechanisms accounting for ethanol’s effects on nervous system development include perturbed fibroblast growth factor (Fgf) and Sonic hedgehog (Shh) signaling. In zebrafish, forebrain GABAergic neuron development is dependent on Fgf19 and Shh signaling. The present study was conducted to test the hypothesis that ethanol affects GABAergic and glutamatergic neuron development by disrupting Fgf, Shh, and agrin function. METHODS Zebrafish embryos were exposed to varying concentrations of ethanol during a range of developmental stages, in the absence or presence of morpholino oligonucleotides (MOs) that disrupt agrin or Shh function. In situ hybridization was employed to analyze glutamic acid decarboxylase (GAD1) gene expression, as well as markers of glutamatergic neurons. RESULTS Acute ethanol exposure results in marked reduction in GAD1 gene expression in forebrain and hindbrain, and reduction of glutamatergic neuronal markers in hindbrain. Subthreshold ethanol exposure, combined with agrin or Shh MO treatment, produces a similar diminution in expression of markers for GABAergic and glutamatergic neurons. Consistent with the ethanol effects on Fgf and Shh pathways, Fgf19, Fgf8 or Shh mRNA overexpression rescues ethanol-induced decreases in GAD1 and atonal1a gene expression. CONCLUSIONS These studies demonstrate that GABAergic and glutamatergic neuron development in zebrafish forebrain or cerebellum is sensitive to ethanol exposure, and provides additional evidence that a signaling pathway involving agrin, Fgfs and Shh may be a critical target of ethanol exposure during zebrafish embryogenesis. PMID:23184466

  17. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish

    DOE PAGES

    Shiau, Celia E.; Kaufman, Zoe; Meireles, Ana M.; ...

    2015-01-23

    Interferon regulatory factor 8 (Irf8) is critical for mammalian macrophage development and innate immunity, but its role in teleost myelopoiesis remains incompletely understood. Specifically, genetic tools to analyze the role of irf8 in zebrafish macrophage development at larval and adult stages are lacking. In this study, we generated irf8 null mutants in zebrafish using TALEN-mediated targeting. Our analysis defines different requirements for irf8 at different stages. irf8 is required for formation of all macrophages during primitive and transient definitive hematopoiesis, but not during adult-phase definitive hematopoiesis starting at 5-6 days postfertilization. At early stages, irf8 mutants have excess neutrophils andmore » excess cell death in pu.1-expressing myeloid cells. Macrophage fates were recovered in irf8 mutants after wildtype irf8 expression in neutrophil and macrophage lineages, suggesting that irf8 regulates macrophage specification and survival. In juvenile irf8 mutant fish, mature macrophages are present, but at numbers significantly reduced compared to wildtype, indicating an ongoing requirement for irf8 after embryogenesis. As development progresses, tissue macrophages become apparent in zebrafish irf8 mutants, with the possible exception of microglia. Our study defines distinct requirement for irf8 in myelopoiesis before and after transition to the adult hematopoietic system.« less

  18. Combinatorial Wnt control of zebrafish midbrain-hindbrain boundary formation.

    PubMed

    Buckles, Gerri R; Thorpe, Christopher J; Ramel, Marie-Christine; Lekven, Arne C

    2004-05-01

    Wnt signaling is known to be required for the normal development of the vertebrate midbrain and hindbrain, but genetic loss of function analyses in the mouse and zebrafish yield differing results regarding the relative importance of specific Wnt loci. In the zebrafish, Wnt1 and Wnt10b functionally overlap in their control of gene expression in the ventral midbrain-hindbrain boundary (MHB), but they are not required for the formation of the MHB constriction. Whether other wnt loci are involved in zebrafish MHB development is unclear, although the expression of at least two wnts, wnt3a and wnt8b, is maintained in wnt1/wnt10b mutants. In order to address the role of wnt3a in zebrafish, we have isolated a full length cDNA and examined its expression and function via knockdown by morpholino antisense oligonucleotide (MO)-mediated knockdown. The expression pattern of wnt3a appears to be evolutionarily conserved between zebrafish and mouse, and MO knockdown shows that Wnt3a, while not uniquely required for MHB development, is required in the absence of Wnt1 and Wnt10b for the formation of the MHB constriction. In zebrafish embryos lacking Wnt3a, Wnt1 and Wnt10b, the expression of engrailed orthologs, pax2a and fgf8 is not maintained after mid-somitogenesis. In contrast to acerebellar and no isthmus mutants, in which midbrain and hindbrain cells acquire new fates but cell number is not significantly affected until late in embryogenesis, zebrafish embryos lacking Wnt3a, Wnt1 and Wnt10b undergo extensive apoptosis in the midbrain and cerebellum anlagen beginning in mid-somitogenesis, which results in the absence of a significant portion of the midbrain and cerebellum. Thus, the requirement for Wnt signaling in forming the MHB constriction is evolutionarily conserved in vertebrates and it is possible in zebrafish to dissect the relative impact of multiple Wnt loci in midbrain and hindbrain development.

  19. BMP signaling modulates hepcidin expression in zebrafish embryos independent of hemojuvelin.

    PubMed

    Gibert, Yann; Lattanzi, Victoria J; Zhen, Aileen W; Vedder, Lea; Brunet, Frédéric; Faasse, Sarah A; Babitt, Jodie L; Lin, Herbert Y; Hammerschmidt, Matthias; Fraenkel, Paula G

    2011-01-21

    Hemojuvelin (Hjv), a member of the repulsive-guidance molecule (RGM) family, upregulates transcription of the iron regulatory hormone hepcidin by activating the bone morphogenetic protein (BMP) signaling pathway in mammalian cells. Mammalian models have identified furin, neogenin, and matriptase-2 as modifiers of Hjv's function. Using the zebrafish model, we evaluated the effects of hjv and its interacting proteins on hepcidin expression during embryonic development. We found that hjv is strongly expressed in the notochord and somites of the zebrafish embryo and that morpholino knockdown of hjv impaired the development of these structures. Knockdown of hjv or other hjv-related genes, including zebrafish orthologs of furin or neogenin, however, failed to decrease hepcidin expression relative to liver size. In contrast, overexpression of bmp2b or knockdown of matriptase-2 enhanced the intensity and extent of hepcidin expression in zebrafish embryos, but this occurred in an hjv-independent manner. Furthermore, we demonstrated that zebrafish hjv can activate the human hepcidin promoter and enhance BMP responsive gene expression in vitro, but is expressed at low levels in the zebrafish embryonic liver. Taken together, these data support an alternative mechanism for hepcidin regulation during zebrafish embryonic development, which is independent of hjv.

  20. Zebrafish models in neuropsychopharmacology and CNS drug discovery.

    PubMed

    Khan, Kanza M; Collier, Adam D; Meshalkina, Darya A; Kysil, Elana V; Khatsko, Sergey L; Kolesnikova, Tatyana; Morzherin, Yury Yu; Warnick, Jason E; Kalueff, Allan V; Echevarria, David J

    2017-07-01

    Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets. © 2017 The British Pharmacological Society.

  1. Sox-2 in taste bud and lateral line system of zebrafish during development.

    PubMed

    Germanà, A; Montalbano, G; Guerrera, M C; Laura, R; Levanti, M; Abbate, F; de Carlos, F; Vega, J A; Ciriaco, E

    2009-12-18

    The Sox-2 is a transcription factor involved in adult neurogenesis in different vertebrate species, including fishes. Sox-2 also participates in growth and renewal on sensory cells in neuromasts of the fish lateral line system, and it is essential for development of taste buds in mammals. Using immunohistochemistry and Western blot we have investigated the occurrence and localization of Sox-2 taste buds and neuromast of zebrafish from 10 days post-fertilization to adult stage (1 year). The antibody used identifies two protein bands with estimated molecular weights of 34 and 37kDa which are consistent with those predicted for Sox-2. Sensory cells in taste buds displayed Sox-2 immunoreactivity at all the ages sampled, whereas in the neuromasts Sox-2 expression was restricted to the basal non-sensory cells. Interestingly Sox-2 immunoreactivity was observed in epithelial cells associated with both taste buds and neuromasts. Present results demonstrate that Sox-2 expressed in taste buds and neuromasts of zebrafish during the whole lifespan. Nevertheless, whereas the role of Sox-2 in taste buds of zebrafish remains to be established, the results in neuromast suggest that Sox-2 could participate in cell renewal of the mechanosensory cells.

  2. Zebrafish (Danio rerio): A Potential Model for Toxinological Studies.

    PubMed

    Vargas, Rafael Antonio; Sarmiento, Karen; Vásquez, Isabel Cristina

    2015-10-01

    Zebrafish are an emerging basic biomedical research model that has multiple advantages compared with other research models. Given that biotoxins, such as toxins, poisons, and venoms, represent health hazards to animals and humans, a low-cost biological model that is highly sensitive to biotoxins is useful to understand the damage caused by such agents and to develop biological tests to prevent and reduce the risk of poisoning in potential cases of bioterrorism or food contamination. In this article, a narrative review of the general aspects of zebrafish as a model in basic biomedical research and various studies in the field of toxinology that have used zebrafish as a biological model are presented. This information will provide useful material to beginner students and researchers who are interested in developing toxinological studies with the zebrafish model.

  3. In vivo wall shear measurements within the developing zebrafish heart.

    PubMed

    Jamison, R Aidan; Samarage, Chaminda R; Bryson-Richardson, Robert J; Fouras, Andreas

    2013-01-01

    Physical forces can influence the embryonic development of many tissues. Within the cardiovascular system shear forces resulting from blood flow are known to be one of the regulatory signals that shape the developing heart. A key challenge in investigating the role of shear forces in cardiac development is the ability to obtain shear force measurements in vivo. Utilising the zebrafish model system we have developed a methodology that allows the shear force within the developing embryonic heart to be determined. Accurate wall shear measurement requires two essential pieces of information; high-resolution velocity measurements near the heart wall and the location and orientation of the heart wall itself. We have applied high-speed brightfield imaging to capture time-lapse series of blood flow within the beating heart between 3 and 6 days post-fertilization. Cardiac-phase filtering is applied to these time-lapse images to remove the heart wall and other slow moving structures leaving only the red blood cell movement. Using particle image velocimetry to calculate the velocity of red blood cells in different regions within the heart, and using the signal-to-noise ratio of the cardiac-phase filtered images to determine the boundary of blood flow, and therefore the position of the heart wall, we have been able to generate the necessary information to measure wall shear in vivo. We describe the methodology required to measure shear in vivo and the application of this technique to the developing zebrafish heart. We identify a reduction in shear at the ventricular-bulbar valve between 3 and 6 days post-fertilization and demonstrate that the shear environment of the ventricle during systole is constantly developing towards a more uniform level.

  4. Lactobacillus rhamnosus Accelerates Zebrafish Backbone Calcification and Gonadal Differentiation through Effects on the GnRH and IGF Systems

    PubMed Central

    Avella, Matteo A.; Place, Allen; Du, Shao-Jun; Williams, Ernest; Silvi, Stefania; Zohar, Yonathan; Carnevali, Oliana

    2012-01-01

    Endogenous microbiota play essential roles in the host’s immune system, physiology, reproduction and nutrient metabolism. We hypothesized that a continuous administration of an exogenous probiotic might also influence the host’s development. Thus, we treated zebrafish from birth to sexual maturation (2-months treatment) with Lactobacillus rhamnosus, a probiotic species intended for human use. We monitored for the presence of L. rhamnosus during the entire treatment. Zebrafish at 6 days post fertilization (dpf) exhibited elevated gene expression levels for Insulin-like growth factors -I and -II, Peroxisome proliferator activated receptors -α and -β, VDR-α and RAR-γ when compared to untreated-10 days old zebrafish. Using a gonadotropin-releasing hormone 3 GFP transgenic zebrafish (GnRH3-GFP), higher GnRH3 expression was found at 6, 8 and 10 dpf upon L. rhamnosus treatment. The same larvae exhibited earlier backbone calcification and gonad maturation. Noteworthy in the gonad development was the presence of first testes differentiation at 3 weeks post fertilization in the treated zebrafish population -which normally occurs at 8 weeks- and a dramatic sex ratio modulation (93% females, 7% males in control vs. 55% females, 45% males in the treated group). We infer that administration of L. rhamnosus stimulated the IGF system, leading to a faster backbone calcification. Moreover we hypothesize a role for administration of L. rhamnosus on GnRH3 modulation during early larval development, which in turn affects gonadal development and sex differentiation. These findings suggest a significant role of the microbiota composition on the host organism development profile and open new perspectives in the study of probiotics usage and application. PMID:23029107

  5. Caudal migration and proliferation of renal progenitors regulates early nephron segment size in zebrafish.

    PubMed

    Naylor, Richard W; Dodd, Rachel C; Davidson, Alan J

    2016-10-19

    The nephron is the functional unit of the kidney and is divided into distinct proximal and distal segments. The factors determining nephron segment size are not fully understood. In zebrafish, the embryonic kidney has long been thought to differentiate in situ into two proximal tubule segments and two distal tubule segments (distal early; DE, and distal late; DL) with little involvement of cell movement. Here, we overturn this notion by performing lineage-labelling experiments that reveal extensive caudal movement of the proximal and DE segments and a concomitant compaction of the DL segment as it fuses with the cloaca. Laser-mediated severing of the tubule, such that the DE and DL are disconnected or that the DL and cloaca do not fuse, results in a reduction in tubule cell proliferation and significantly shortens the DE segment while the caudal movement of the DL is unaffected. These results suggest that the DL mechanically pulls the more proximal segments, thereby driving both their caudal extension and their proliferation. Together, these data provide new insights into early nephron morphogenesis and demonstrate the importance of cell movement and proliferation in determining initial nephron segment size.

  6. Effectiveness of recommended euthanasia methods in larval zebrafish (Danio rerio).

    PubMed

    Strykowski, Jennifer L; Schech, Joseph M

    2015-01-01

    The popularity of zebrafish and its use as a model organism in biomedical research including genetics, development, and toxicology, has increased over the past 20 y and continues to grow. However, guidelines for euthanasia remain vague, and the responsibility of creating appropriate euthanasia protocols essentially falls on individual facilities. To reduce variation in experimental results among labs, a standard method of euthanasia for zebrafish would be useful. Although various euthanasia methods have been compared, few studies focus on the effectiveness of euthanasia methods for larval zebrafish. In this study, we exposed larval zebrafish to each of 3 euthanasia agents (MS222, eugenol, and hypothermic shock) and assessed the recovery rate. Hypothermic shock appeared to be the most effective method for euthanizing zebrafish at 14 d after fertilization; however, this method may not be considered an efficient method for large numbers of larval zebrafish. Exposure to chemicals, such as MS222 and eugenol, were ineffective methods for euthanasia at this stage of development. When these agents are used, secondary measures should be taken to ensure death. Choosing a euthanasia method that is effective, efficient, and humane can be challenging. Determining a method of euthanasia that is suitable for fish of all stages will bring the zebrafish community closer to meeting this challenge.

  7. Effectiveness of Recommended Euthanasia Methods in Larval Zebrafish (Danio rerio)

    PubMed Central

    Strykowski, Jennifer L; Schech, Joseph M

    2015-01-01

    The popularity of zebrafish and its use as a model organism in biomedical research including genetics, development, and toxicology, has increased over the past 20 y and continues to grow. However, guidelines for euthanasia remain vague, and the responsibility of creating appropriate euthanasia protocols essentially falls on individual facilities. To reduce variation in experimental results among labs, a standard method of euthanasia for zebrafish would be useful. Although various euthanasia methods have been compared, few studies focus on the effectiveness of euthanasia methods for larval zebrafish. In this study, we exposed larval zebrafish to each of 3 euthanasia agents (MS222, eugenol, and hypothermic shock) and assessed the recovery rate. Hypothermic shock appeared to be the most effective method for euthanizing zebrafish at 14 d after fertilization; however, this method may not be considered an efficient method for large numbers of larval zebrafish. Exposure to chemicals, such as MS222 and eugenol, were ineffective methods for euthanasia at this stage of development. When these agents are used, secondary measures should be taken to ensure death. Choosing a euthanasia method that is effective, efficient, and humane can be challenging. Determining a method of euthanasia that is suitable for fish of all stages will bring the zebrafish community closer to meeting this challenge. PMID:25651096

  8. Zebrafish: A Versatile Animal Model for Fertility Research.

    PubMed

    Hoo, Jing Ying; Kumari, Yatinesh; Shaikh, Mohd Farooq; Hue, Seow Mun; Goh, Bey Hing

    2016-01-01

    The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.

  9. Zebrafish: A Versatile Animal Model for Fertility Research

    PubMed Central

    Hoo, Jing Ying; Kumari, Yatinesh; Shaikh, Mohd Farooq; Hue, Seow Mun

    2016-01-01

    The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research. PMID:27556045

  10. Angiopoietin-like 3 regulates hepatocyte proliferation and lipid metabolism in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, So-Hyun; Department of Biology, Chungnam National University, Daejeon; So, Ju-Hoon

    2014-04-18

    Highlights: • angptl3 is specifically expressed in the liver of developing zebrafish. • Knockdown of Angptl3 decreases liver size in developing zebrafish. • Knockdown of zebrafish Angptl3 elicits a hypocholesterolemia phenotype. - Abstract: Loss-of-function mutations in angiopoietin-like 3 (ANGPTL3) cause familial hypobetalipoproteinemia type 2 (FHBL2) in humans. ANGPTL3 belongs to the angiopoietin-like family, the vascular endothelial growth factor family that is structurally similar to angiopoietins and is known for a regulator of lipid and glucose metabolism, although it is unclear how mutations in ANGPTL3 lead to defect in liver development in the vertebrates. We report here that angptl3 is primarilymore » expressed in the zebrafish developing liver and that morpholino (MO) knockdown of Angptl3 reduces the size of the developing liver, which is caused by suppression of cell proliferation, but not by enhancement of apoptosis. However, MO knockdown of Angptl3 did not alter angiogenesis in the developing liver. Additionally, disruption of zebrafish Angptl3 elicits the hypocholesterolemia phenotype that is characteristic of FHBL2 in humans. Together, our findings propose a novel role for Angptl3 in liver cell proliferation and maintenance during zebrafish embryogenesis. Finally, angptl3 morphants will serve as a good model for understanding the pathophysiology of FHBL2.« less

  11. Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish.

    PubMed

    Crosby, Emily B; Bailey, Jordan M; Oliveri, Anthony N; Levin, Edward D

    2015-01-01

    Neonicotinoid insecticides are becoming more widely applied as organophosphate (OP) insecticides are decreasing in use. Because of their relative specificity to insect nicotinic receptors, they are thought to have reduced risk of neurotoxicity in vertebrates. However, there is scant published literature concerning the neurobehavioral effects of developmental exposure of vertebrates to neonicotinoids. Using zebrafish, we investigated the neurobehavioral effects of developmental exposure to imidacloprid, a prototypic neonicotinoid pesticide. Nicotine was also administered for comparison. Zebrafish were exposed via immersion in aqueous solutions containing 45 μM or 60 μM of imidacloprid or nicotine (or vehicle control) from 4h to 5d post fertilization. The functional effects of developmental exposure to both imidacloprid and nicotine were assessed in larvae using an activity assay and during adolescence and adulthood using a battery of neurobehavioral assays, including assessment of sensorimotor response and habituation in a tactile startle test, novel tank swimming, and shoaling behavior. In larvae, developmental imidacloprid exposure at both doses significantly decreased swimming activity. The 5D strains of zebrafish were more sensitive to both nicotine and imidacloprid than the AB* strain. In adolescent and adult fish, developmental exposure to imidacloprid significantly decreased novel tank exploration and increased sensorimotor response to startle stimuli. While nicotine did not affect novel tank swimming, it increased sensorimotor response to startle stimuli at the low dose. No effects of either compound were found on shoaling behavior or habituation to a startling stimulus. Early developmental exposure to imidacloprid has both early-life and persisting effects on neurobehavioral function in zebrafish. Its developmental neurotoxicity should be further investigated. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Neurobehavioral Impairments Caused by Developmental Imidacloprid Exposure in Zebrafish

    PubMed Central

    Crosby, Emily B.; Bailey, Jordan M.; Oliveri, Anthony N.; Levin, Edward D.

    2015-01-01

    BACKGROUND Neonicotinoid insecticides are becoming more widely applied as organophosphate (OP) insecticides are decreasing in use. Because of their relative specificity to insect nicotinic receptors, they are thought to have reduced risk of neurotoxicity in vertebrates. However, there is scant published literature concerning the neurobehavioral effects of developmental exposure of vertebrates to neonicotinoids. METHODS Using zebrafish, we investigated the neurobehavioral effects of developmental exposure to imidacloprid, a prototypic neonicotinoid pesticide. Nicotine was also administered for comparison. Zebrafish were exposed via immersion in aqueous solutions containing 45 μM or 60 μM of imidacloprid or nicotine (or vehicle control) from 4 h to 5 d post fertilization. The functional effects of developmental exposure to both imidacloprid and nicotine were assessed in larvae using an activity assay and during adolescence and adulthood using a battery of neurobehavioral assays, including assessment of sensorimotor response and habituation in a tactile startle test, novel tank swimming, and shoaling behavior. RESULTS In larvae, developmental imidacloprid exposure at both doses significantly decreased swimming activity. The 5D strain of zebrafish were more sensitive to both nicotine and imidacloprid than the AB* strain. In adolescent and adult fish, developmental exposure to imidacloprid significantly decreased novel tank exploration and increased sensorimotor response to startle stimuli. While nicotine did not affect novel tank swimming, it increased sensorimotor response to startle stimuli at the low dose. No effects of either compound were found on shoaling behavior or habituation to a startling stimulus. DISCUSSION Early developmental exposure to imidacloprid has both early-life and persisting effects on neurobehavioral function in zebrafish. Its developmental neurotoxicity should be further investigated. PMID:25944383

  13. Effects of ibuprofen, diclofenac and paracetamol on hatch and motor behavior in developing zebrafish (Danio rerio).

    PubMed

    Xia, Liang; Zheng, Liang; Zhou, Jun Liang

    2017-09-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) which are widely used as pain relief medicines are causing increasing environmental concern due to their incomplete removal in wastewater treatment plant and potential toxicity on endocrine, kidney and reproduction in teleost fish. This study focused on the effects of widely used ibuprofen, diclofenac and paracetamol on the hatch and motor ability of early-stage zebrafish, by exposing embryos to the target chemicals at 5, 50 and 500 μg/L starting from 6 h postfertilization (hpf). A significant reduction in hatch rate at 55 hpf was caused by both ibuprofen (-63%) and diclofenac (-58%) at 500 μg/L. Exposure to high concentration of ibuprofen significantly decreased the spontaneous movement by 25%, and reduced the free swimming distance, duration and speed under dark condition by 41%, 29% and 30%, respectively. High concentration of diclofenac also caused 23% decrease in spontaneous movement, and reduced the swimming distance as well as active duration by 17% and 13% under light stimulation. In comparison, the exposure to paracetamol did not cause any notable effect. Among neuron related genes tested, the expression of neurog1 was down-regulated from ibuprofen and diclofenac exposure by 19% and 26%, while the expression of neurod1 was up-regulated only by ibuprofen (31%). These findings indicated that ibuprofen and diclofenac significantly affected embryo locomotivity and were potentially neurotoxic, thus posing threats to zebrafish development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Automated image-based phenotypic analysis in zebrafish embryos

    PubMed Central

    Vogt, Andreas; Cholewinski, Andrzej; Shen, Xiaoqiang; Nelson, Scott; Lazo, John S.; Tsang, Michael; Hukriede, Neil A.

    2009-01-01

    Presently, the zebrafish is the only vertebrate model compatible with contemporary paradigms of drug discovery. Zebrafish embryos are amenable to automation necessary for high-throughput chemical screens, and optical transparency makes them potentially suited for image-based screening. However, the lack of tools for automated analysis of complex images presents an obstacle to utilizing the zebrafish as a high-throughput screening model. We have developed an automated system for imaging and analyzing zebrafish embryos in multi-well plates regardless of embryo orientation and without user intervention. Images of fluorescent embryos were acquired on a high-content reader and analyzed using an artificial intelligence-based image analysis method termed Cognition Network Technology (CNT). CNT reliably detected transgenic fluorescent embryos (Tg(fli1:EGFP)y1) arrayed in 96-well plates and quantified intersegmental blood vessel development in embryos treated with small molecule inhibitors of anigiogenesis. The results demonstrate it is feasible to adapt image-based high-content screening methodology to measure complex whole organism phenotypes. PMID:19235725

  15. Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio).

    PubMed

    Ge, Weili; Yan, Saihong; Wang, Jinhua; Zhu, Lusheng; Chen, Aimei; Wang, Jun

    2015-02-18

    Imidacloprid is a neonicotinoid insecticide that can have negative effects on nontarget animals. The present study was conducted to assess the toxicity of various imidacloprid doses (0.3, 1.25, and 5 mg/mL) on zebrafish sampled after 7, 14, 21, and 28 days of exposure. The levels of catalase (CAT), superoxide dismutase (SOD), reactive oxygen species (ROS), glutathione-S-transferase (GST), and malondialdehyde (MDA) and the extent of DNA damage were measured to evaluate the toxicity of imidacloprid on zebrafish. SOD and GST activities were noticeably increased during early exposure but were inhibited toward the end of the exposure period. In addition, the CAT levels decreased to the control level following their elevation during early exposure. High concentrations of imidacloprid (1.25 and 5 mg/L) induced excessive ROS production and markedly increased MDA content on the 21st day of exposure. DNA damage was dose- and time-dependent. In conclusion, the present study showed that imidacloprid can induce oxidative stress and DNA damage in zebrafish.

  16. Contextual fear conditioning in zebrafish.

    PubMed

    Kenney, Justin W; Scott, Ian C; Josselyn, Sheena A; Frankland, Paul W

    2017-10-01

    Zebrafish are a genetically tractable vertebrate that hold considerable promise for elucidating the molecular basis of behavior. Although numerous recent advances have been made in the ability to precisely manipulate the zebrafish genome, much less is known about many aspects of learning and memory in adult fish. Here, we describe the development of a contextual fear conditioning paradigm using an electric shock as the aversive stimulus. We find that contextual fear conditioning is modulated by shock intensity, prevented by an established amnestic agent (MK-801), lasts at least 14 d, and exhibits extinction. Furthermore, fish of various background strains (AB, Tu, and TL) are able to acquire fear conditioning, but differ in fear extinction rates. Taken together, we find that contextual fear conditioning in zebrafish shares many similarities with the widely used contextual fear conditioning paradigm in rodents. Combined with the amenability of genetic manipulation in zebrafish, we anticipate that our paradigm will prove to be a useful complementary system in which to examine the molecular basis of vertebrate learning and memory. © 2017 Kenney et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Molecular aspect of silver nanoparticles regulated embryonic development in Zebrafish (Danio rerio) by Oct-4 expression.

    PubMed

    Sarkar, Biplab; Verma, Suresh K; Akhtar, Javed; Netam, Surya Prakash; Gupta, Sanjay Kr; Panda, Pritam Kumar; Mukherjee, Koel

    2018-09-01

    With the enhancement of commercial manifestation of silver nanoparticles, concerned has risen on their accumulation in aquatic system and consequent effects on fish development and metabolism. In this study, experiments were conducted to assess the impacts of silver nanoparticles on early life cycles of fish considering Zebrafish (Danio rerio) as experimental model. Silver nanoparticles were synthesized through chemical reduction method and characterized through UV-visible spectroscopy, dynamic light scattering (DLS), and HR-TEM. Different sub lethal doses of nanosilver were applied (13.6, 21.6, 42.4, 64, and 128 μgL -1 ) to post-fertilization phases of Zebrafish embryos and their interaction effects were monitored up to six days period. No significant morphological variations were observed at 13.6, 21.6, 42.4 μgL -1 dose of silver nanoparticles, whereas 64 and 128 μgL -1 exposure dose exhibited bending in myotome, deformity in tail region, somites, notochord and swelling in anterior and posterior region of embryos and larva. Hatching performances analysis elicited highest hatching success in 13.6 and 21.6 μgL -1 doses of silver nanoparticles followed by positive and negative control, whereas exposure dose of 64 and 128 μgL -1 exhibited comparatively lower success. Western blot analysis were conducted on developing hatchlings with Oct4 antibody and at 13.6 and 21.6 μgL -1 dose,it showed over expression elucidating stimulatory role of nanosilver in these mentioned doses. In silico analysis depicted a firm interaction of nanosilver with Oct4 revealing their key role in growth stimulation of developing embryos. The study demonstrates the function of nanosilver as a growth promoter rather only as a toxicant in fish metabolic system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Effects of two strobilurins (azoxystrobin and picoxystrobin) on embryonic development and enzyme activities in juveniles and adult fish livers of zebrafish (Danio rerio).

    PubMed

    Jia, Wei; Mao, Liangang; Zhang, Lan; Zhang, Yanning; Jiang, Hongyun

    2018-09-01

    Azoxystrobin and picoxystrobin are two primary strobilurin fungicides used worldwide. This study was conducted to test their effects on embryonic development and the activity of several enzyme in the zebrafish (Danio rerio). After fish eggs were separately exposed to azoxystrobin and picoxystrobin from 24 to 144 h post fertilization (hpf), the mortality, hatching, and teratogenetic rates were measured. Additionally, effects of azoxystrobin and picoxystrobin on activities of three important antioxidant enzymes [catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD)] and two primary detoxification enzymes [carboxylesterase (CarE) and glutathione S-transferase (GST)] and malondialdehyde (MDA) content in zebrafish larvae (96 h) and livers of adult zebrafish of both sexes were also assessed for potential toxicity mechanisms. Based on the embryonic development test results, the mortality, hatching, and teratogenetic rates of eggs treated with azoxystrobin and picoxystrobin all showed significant dose- and time-dependent effects, and the 144-h LC 50 values of azoxystrobin and picoxystrobin were 1174.9 and 213.8 μg L -1 , respectively. In the larval zebrafish (96 h) test, activities of CAT, POD, CarE, and GST and MDA content in azoxystrobin and picoxystrobin-treated zebrafish larvae increased significantly with concentrations of the pesticides compared with those in the control. We further revealed that azoxystrobin and picoxystrobin exposure both caused significant oxidative stress in adult fish livers and the changes differed between the sexes. Our results indicated that picoxystrobin led to higher embryonic development toxicity and oxidative stress than azoxystrobin in zebrafish and the male zebrafish liver had stronger ability to detoxify than that of the females. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Production of Androgenetic Zebrafish (Danio Rerio)

    PubMed Central

    Corley-Smith, G. E.; Lim, C. J.; Brandhorst, B. P.

    1996-01-01

    To help investigate the evolutionary origin of the imprinting (parent-of-origin mono-allelic expression) of paternal genes observed in mammals, we constructed haploid and diploid androgenetic zebrafish (Danio rerio). Haploid androgenotes were produced by fertilizing eggs that had been X-ray irradiated to eliminate the maternal genome. Subsequent inhibition of the first mitotic division of haploid androgenotes by heat shock produced diploid androgenotes. The lack of inheritance of maternal-specific DNA markers (RAPD and SSR) by putative diploid and haploid androgenotes confirmed the androgenetic origin of their genomes. Marker analysis was performed on 18 putative androgenotes (five diploids and 13 haploids) from six families. None of 157 maternal-specific RAPD markers analyzed, some of which were apparently homozygous, were passed on to any of these putative androgenotes. A mean of 7.7 maternal-specific markers were assessed per family. The survival of androgenetic zebrafish suggests that if paternal imprinting occurs in zebrafish, it does not result in essential genes being inactivated when their expression is required for development. Production of haploid androgenotes can be used to determine the meiotic recombination rate in male zebrafish. Androgenesis may also provide useful information about the mechanism of sex determination in zebrafish. PMID:8846903

  20. Effects of prolonged exposure to perchlorate on thyroid and reproductive function in zebrafish

    USGS Publications Warehouse

    Mukhi, S.; Patino, R.

    2007-01-01

    The objectives of this study were to determine the effects of prolonged exposure to perchlorate on (1) thyroid status and reproductive performance of adult zebrafish (Danio rerio) and (2) F1 embryo survival and early larval development. Using a static-renewal procedure, mixed sex populations of adult zebrafish were exposed to 0, 10, and 100 mg/l nominal concentrations of waterborne perchlorate for 10 weeks. Thyroid histology was qualitatively assessed, and females and males were separated and further exposed to their respective treatments for six additional weeks. Eight females in each tank replicate (n = 3) were paired weekly with four males from the same respective treatment, and packed-egg (spawn) volume (PEV) was measured each of the last five weeks. At least once during weeks 14-16 of exposure, other end points measured included fertilization rate, fertilized egg diameter, hatching rate, standard length, and craniofacial development of 4-day-postfertilization larvae and thyroid hormone content of 3.5-h embryos and of exposed mothers. At 10 weeks of exposure, perchlorate at both concentrations caused thyroidal hypertrophy and colloid depletion. A marked reduction in PEV was observed toward the end of the 6-week spawning period, but fertilization and embryo hatching rates were unaffected. Fertilized egg diameter and larval length were increased by parental exposure to perchlorate. Larval head depth was unaffected but the forward protrusion of the lower jaw-associated cartilage complexes, Meckel's and ceratohyal, was decreased. Exposure to both concentrations of perchlorate inhibited whole-body thyroxine content in mothers and embryos, but triiodothyronine content was unchanged. In conclusion, prolonged exposure of adult zebrafish to perchlorate not only disrupts their thyroid endocrine system but also impairs reproduction and influences early F1 development. ?? 2007 Oxford University Press.

  1. The Vital Relationship Between Nutrition and Health in Zebrafish.

    PubMed

    Watts, Stephen A; Lawrence, Christian; Powell, Mickie; D'Abramo, Louis R

    2016-07-01

    In the relatively short span of four decades, the zebrafish (Danio rerio) has emerged as an increasingly important model organism for biomedicine and other scientific disciplines. As the scale and sophistication of zebrafish research expands, so too does the need to develop standards that promote the production and maintenance of healthy animals for experiments. A major, but long overlooked, contributor to fish health is nutrition. Historically, feeding practices for laboratory zebrafish have been designed to promote growth and reproductive function. However, as the field matures, it is becoming increasingly clear that the nutritional goals for these animals should evolve beyond basic production to the maintenance of clinically healthy research subjects. This review outlines weaknesses and limitations of current approaches and provides a justification for the development of defined standardized diets that will strengthen and facilitate the continued growth of the zebrafish model system.

  2. Examination of a Palatogenic Gene Program in Zebrafish

    PubMed Central

    Swartz, Mary E.; Sheehan-Rooney, Kelly; Dixon, Michael J.; Eberhart, Johann K.

    2011-01-01

    Human palatal clefting is debilitating and difficult to rectify surgically. Animal models enhance our understanding of palatogenesis and are essential in strategies designed to ameliorate palatal malformations in humans. Recent studies have shown that the zebrafish palate, or anterior neurocranium, is under similar genetic control to the amniote palatal skeleton. We extensively analyzed palatogenesis in zebrafish to determine the similarity of gene expression and function across vertebrates. By 36 hpf palatogenic cranial neural crest cells reside in homologous regions of the developing face compared to amniote species. Transcription factors and signaling molecules regulating mouse palatogenesis are expressed in similar domains during palatogenesis in zebrafish. Functional investigation of a subset of these genes, fgf10a, tgfb2, pax9 and smad5 revealed their necessity in zebrafish palatogenesis. Collectively, these results suggest that the gene regulatory networks regulating palatogenesis may be conserved across vertebrate species, demonstrating the utility of zebrafish as a model for palatogenesis. PMID:22016187

  3. Oceans of Opportunity: Exploring Vertebrate Hematopoiesis in Zebrafish

    PubMed Central

    Carroll, Kelli J.; North, Trista E.

    2015-01-01

    Exploitation of the zebrafish model in hematology research has surged in recent years, becoming one of the most useful and tractable systems for understanding regulation of hematopoietic development, homeostasis, and malignancy. Despite the evolutionary distance between zebrafish and humans, remarkable genetic and phenotypic conservation in the hematopoietic system has enabled significant advancements in our understanding of blood stem and progenitor cell (HSPC) biology. The strengths of zebrafish in hematology research lie in the ability to perform real-time in vivo observations of hematopoietic stem, progenitor and effector cell emergence, expansion and function, as well as the ease with which novel genetic and chemical modifiers of specific hematopoietic processes or cell-types can be identified and characterized. Further, a myriad of transgenic lines have been developed including fluorescent reporter systems to aid in the visualization and quantification of specified cell types of interest and cell-lineage relationships, as well as effector lines that can be used to implement a wide range of experimental manipulations. As our understanding of the complex nature of HSPC biology during development, in response to infection or injury, or in the setting of hematological malignancy, continues to deepen, zebrafish will remain essential for exploring the spatio-temporal organization and integration of these fundamental processes, as well as the identification of efficacious small molecule modifiers of hematopoietic activity. In this review, we discuss the biology of the zebrafish hematopoietic system, including similarities and differences from mammals, and highlight important tools currently utilized in zebrafish embryos and adults to enhance our understanding of vertebrate hematology, with emphasis on findings that have impacted our understanding of the onset or treatment of human hematologic disorders and disease. PMID:24816275

  4. A shifted repertoire of endocannabinoid genes in the zebrafish (Danio rerio).

    PubMed

    McPartland, J M; Glass, Michelle; Matias, Isabel; Norris, Ryan W; Kilpatrick, C William

    2007-05-01

    The zebrafish has served as a model organism for developmental biology. Sequencing its genome has expanded zebrafish research into physiology and drug-development testing. Several cannabinoid pharmaceuticals are in development, but expression of endocannabinoid receptors and enzymes remains unknown in this species. We conducted a bioinformatics analysis of the zebrafish genome using 17 human endocannabinoid genes as a reference set. Putative zebrafish orthologs were identified in filtered BLAST searches as reciprocal best hits. Orthology was confirmed by three in silico methods: phylogenetic testing, synteny analysis, and functional mapping. Zebrafish expressed orthologs of cannabinoid receptor 1, transient receptor potential channel vanilloid receptor 4, GPR55 receptor, fatty acid amide hydrolase 1, monoacylglycerol lipase, NAPE-selective phospholipase D, abhydrolase domain-containing protein 4, and diacylglycerol lipase alpha and beta; and paired paralogs of cannabinoid receptor 2, fatty acid amide hydrolase 2, peroxisome proliferator-activated receptor alpha, prostaglandin-endoperoxide synthase 2, and transient receptor potential cation channel subtype A1. Functional mapping suggested the orthologs of transient receptor potential vanilloid receptor 1 and peroxisome proliferator-activated receptor gamma lack specific amino acids critical for cannabinoid ligand binding. No orthologs of N-acylethanolamine acid amidase or protein tyrosine phosphatase, non-receptor type 22 were identified. In conclusion, the zebrafish genome expresses a shifted repertoire of endocannabinoid genes. In vitro analyses are warranted before using zebrafish for cannabinoid development testing.

  5. Methods for studying the zebrafish brain: past, present and future.

    PubMed

    Wyatt, Cameron; Bartoszek, Ewelina M; Yaksi, Emre

    2015-07-01

    The zebrafish (Danio rerio) is one of the most promising new model organisms. The increasing popularity of this amazing small vertebrate is evident from the exponentially growing numbers of research articles, funded projects and new discoveries associated with the use of zebrafish for studying development, brain function, human diseases and screening for new drugs. Thanks to the development of novel technologies, the range of zebrafish research is constantly expanding with new tools synergistically enhancing traditional techniques. In this review we will highlight the past and present techniques which have made, and continue to make, zebrafish an attractive model organism for various fields of biology, with a specific focus on neuroscience. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Automatic multiple zebrafish larvae tracking in unconstrained microscopic video conditions.

    PubMed

    Wang, Xiaoying; Cheng, Eva; Burnett, Ian S; Huang, Yushi; Wlodkowic, Donald

    2017-12-14

    The accurate tracking of zebrafish larvae movement is fundamental to research in many biomedical, pharmaceutical, and behavioral science applications. However, the locomotive characteristics of zebrafish larvae are significantly different from adult zebrafish, where existing adult zebrafish tracking systems cannot reliably track zebrafish larvae. Further, the far smaller size differentiation between larvae and the container render the detection of water impurities inevitable, which further affects the tracking of zebrafish larvae or require very strict video imaging conditions that typically result in unreliable tracking results for realistic experimental conditions. This paper investigates the adaptation of advanced computer vision segmentation techniques and multiple object tracking algorithms to develop an accurate, efficient and reliable multiple zebrafish larvae tracking system. The proposed system has been tested on a set of single and multiple adult and larvae zebrafish videos in a wide variety of (complex) video conditions, including shadowing, labels, water bubbles and background artifacts. Compared with existing state-of-the-art and commercial multiple organism tracking systems, the proposed system improves the tracking accuracy by up to 31.57% in unconstrained video imaging conditions. To facilitate the evaluation on zebrafish segmentation and tracking research, a dataset with annotated ground truth is also presented. The software is also publicly accessible.

  7. In vivo visualization and attenuation of oxidized lipid accumulation in hypercholesterolemic zebrafish

    PubMed Central

    Fang, Longhou; Green, Simone R.; Baek, Ji Sun; Lee, Sang-Hak; Ellett, Felix; Deer, Elena; Lieschke, Graham J.; Witztum, Joseph L.; Tsimikas, Sotirios; Miller, Yury I.

    2011-01-01

    Oxidative modification of LDL is an early pathological event in the development of atherosclerosis. Oxidation events such as malondialdehyde (MDA) formation may produce specific, immunogenic epitopes. Indeed, antibodies to MDA-derived epitopes are widely used in atherosclerosis research and have been demonstrated to enable cardiovascular imaging. In this study, we engineered a transgenic zebrafish with temperature-inducible expression of an EGFP-labeled single-chain human monoclonal antibody, IK17, which binds to MDA-LDL, and used optically transparent zebrafish larvae for imaging studies. Feeding a high-cholesterol diet (HCD) supplemented with a red fluorescent lipid marker to the transgenic zebrafish resulted in vascular lipid accumulation, quantified in live animals using confocal microscopy. After heat shock–induced expression of IK17-EGFP, we measured the time course of vascular accumulation of IK17-specific MDA epitopes. Treatment with either an antioxidant or a regression diet resulted in reduced IK17 binding to vascular lesions. Interestingly, homogenates of IK17-EGFP–expressing larvae bound to MDA-LDL and inhibited MDA-LDL binding to macrophages. Moreover, sustained expression of IK17-EGFP effectively prevented HCD-induced lipid accumulation in the vascular wall, suggesting that the antibody itself may have therapeutic effects. Thus, we conclude that HCD-fed zebrafish larvae with conditional expression of EGFP-labeled oxidation-specific antibodies afford an efficient method of testing dietary and/or other therapeutic antioxidant strategies that may ultimately be applied to humans. PMID:22105168

  8. Biotransformation of ginsenosides F4 and Rg6 in zebrafish.

    PubMed

    Shen, Wen-Wen; Zhang, Hai-Xia; Qiu, Shou-Bei; Wei, Ying-Jie; Zhu, Fen-Xia; Wang, Jing; Wang, Dan-Dan; Jia, Xiao-Bin; Tang, Dao-Quan; Chen, Bin

    2017-03-28

    Ginsenosides F 4 and Rg 6 (GF 4 and GRg 6 ), two main active components of steamed notoginseng or red ginseng, are dehydrated disaccharide saponins. In this work, biotransformation of ginsenosides F 4 and Rg 6 in zebrafish was investigated by qualitatively identifying their metabolites and then proposing their possible metabolic pathways. The prediction of possible metabolism of ginsenosides F 4 and Rg 6 using zebrafish model which can effectively simulate existing mammals model was early and quickly performed. Metabolites of ginsenosides F 4 and Rg 6 after exposing to zebrafish for 24 h were identified by Ultraperformance Liquid Chromatography/Quadrupole-Time-of-Flight Mass Spectrometry. A total of 8 and 6 metabolites of ginsenosides F 4 and Rg 6 were identified in zebrafish, respectively. Of these, 7 and 5, including M1, M3-M5, M7-M9 and N1 (N5), N2, N4 (N9), N7-N8 were reported for the first time as far as we know. The mechanisms of their biotransformation involved were further deduced to be desugarization, glucuronidation, sulfation, dehydroxylation, loss of C-17 and/or C-23 residue pathways. It was concluded that loss of rhamnose at position C-6 and glucuronidation at position C-3 in zebrafish were considered as the main physiologic and metabolic processes of ginsenosides F 4 and ginsenosides Rg 6 , respectively.

  9. Early development of circadian rhythmicity in the suprachiamatic nuclei and pineal gland of teleost, flounder (Paralichthys olivaeus), embryos.

    PubMed

    Mogi, Makoto; Uji, Susumu; Yokoi, Hayato; Suzuki, Tohru

    2015-08-01

    Circadian rhythms enable organisms to coordinate multiple physiological processes and behaviors with the earth's rotation. In mammals, the suprachiasmatic nuclei (SCN), the sole master circadian pacemaker, has entrainment mechanisms that set the circadian rhythm to a 24-h cycle with photic signals from retina. In contrast, the zebrafish SCN is not a circadian pacemaker, instead the pineal gland (PG) houses the major circadian oscillator. The SCN of flounder larvae, unlike that of zebrafish, however, expresses per2 with a rhythmicity of daytime/ON and nighttime/OFF. Here, we examined whether the rhythm of per2 expression in the flounder SCN represents the molecular clock. We also examined early development of the circadian rhythmicity in the SCN and PG. Our three major findings were as follows. First, rhythmic per2 expression in the SCN was maintained under 24 h dark (DD) conditions, indicating that a molecular clock exists in the flounder SCN. Second, onset of circadian rhythmicity in the SCN preceded that in the PG. Third, both 24 h light (LL) and DD conditions deeply affected the development of circadian rhythmicity in the SCN and PG. This is the first report dealing with the early development of circadian rhythmicity in the SCN in fish. © 2015 Japanese Society of Developmental Biologists.

  10. Calcium at fertilization and in early development

    PubMed Central

    Whitaker, Michael

    2012-01-01

    Fertilization calcium waves are introduced and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypothesis put forward to explain the generation of the fertilization calcium wave are set out and it is concluded that initiation of the fertilization calcium wave can be most generally explained in inverterbrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signalling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signalling during resumption of meiosis. Changes to the calcium signalling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signalling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed

  11. Lnx2 ubiquitin ligase is essential for exocrine cell differentiation in the early zebrafish pancreas

    PubMed Central

    Won, Minho; Ro, Hyunju; Dawid, Igor B.

    2015-01-01

    The gene encoding the E3 ubiquitin ligase Ligand of Numb protein-X (Lnx)2a is expressed in the ventral-anterior pancreatic bud of zebrafish embryos in addition to its expression in the brain. Knockdown of Lnx2a by using an exon 2/intron 2 splice morpholino resulted in specific inhibition of the differentiation of ventral bud derived exocrine cell types, with little effect on endocrine cell types. A frame shifting null mutation in lnx2a did not mimic this phenotype, but a mutation that removed the exon 2 splice donor site did. We found that Lnx2b functions in a redundant manner with its paralog Lnx2a. Inhibition of lnx2a exon 2/3 splicing causes exon 2 skipping and leads to the production of an N-truncated protein that acts as an interfering molecule. Thus, the phenotype characterized by inhibition of exocrine cell differentiation requires inactivation of both Lnx2a and Lnx2b. Human LNX1 is known to destabilize Numb, and we show that inhibition of Numb expression rescues the Lnx2a/b-deficient phenotype. Further, Lnx2a/b inhibition leads to a reduction in the number of Notch active cells in the pancreas. We suggest that Lnx2a/b function to fine tune the regulation of Notch through Numb in the differentiation of cell types in the early zebrafish pancreas. Further, the complex relationships among genotype, phenotype, and morpholino effect in this case may be instructive in the ongoing consideration of morpholino use. PMID:26392552

  12. Lnx2 ubiquitin ligase is essential for exocrine cell differentiation in the early zebrafish pancreas.

    PubMed

    Won, Minho; Ro, Hyunju; Dawid, Igor B

    2015-10-06

    The gene encoding the E3 ubiquitin ligase Ligand of Numb protein-X (Lnx)2a is expressed in the ventral-anterior pancreatic bud of zebrafish embryos in addition to its expression in the brain. Knockdown of Lnx2a by using an exon 2/intron 2 splice morpholino resulted in specific inhibition of the differentiation of ventral bud derived exocrine cell types, with little effect on endocrine cell types. A frame shifting null mutation in lnx2a did not mimic this phenotype, but a mutation that removed the exon 2 splice donor site did. We found that Lnx2b functions in a redundant manner with its paralog Lnx2a. Inhibition of lnx2a exon 2/3 splicing causes exon 2 skipping and leads to the production of an N-truncated protein that acts as an interfering molecule. Thus, the phenotype characterized by inhibition of exocrine cell differentiation requires inactivation of both Lnx2a and Lnx2b. Human LNX1 is known to destabilize Numb, and we show that inhibition of Numb expression rescues the Lnx2a/b-deficient phenotype. Further, Lnx2a/b inhibition leads to a reduction in the number of Notch active cells in the pancreas. We suggest that Lnx2a/b function to fine tune the regulation of Notch through Numb in the differentiation of cell types in the early zebrafish pancreas. Further, the complex relationships among genotype, phenotype, and morpholino effect in this case may be instructive in the ongoing consideration of morpholino use.

  13. Sex Reversal in Zebrafish fancl Mutants Is Caused by Tp53-Mediated Germ Cell Apoptosis

    PubMed Central

    Rodríguez-Marí, Adriana; Cañestro, Cristian; BreMiller, Ruth A.; Nguyen-Johnson, Alexandria; Asakawa, Kazuhide; Kawakami, Koichi; Postlethwait, John H.

    2010-01-01

    The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA–repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination. PMID:20661450

  14. Nestin is essential for zebrafish brain and eye development through control of progenitor cell apoptosis.

    PubMed

    Chen, Hua-Ling; Yuh, Chiou-Hwa; Wu, Kenneth K

    2010-02-19

    Nestin is expressed in neural progenitor cells (NPC) of developing brain. Despite its wide use as an NPC marker, the function of nestin in embryo development is unclear. As nestin is conserved in zebrafish and its predicted sequence is clustered with the mammalian nestin orthologue, we used zebrafish as a model to investigate its role in embryogenesis. Injection of nestin morpholino (MO) into fertilized eggs induced time- and dose-dependent brain and eye developmental defects. Nestin morphants exhibited characteristic morphological changes including small head, small eyes and hydrocephalus. Histological examinations show reduced hind- and mid-brain size, dilated ventricle, poorly organized retina and underdeveloped lens. Injection of control nestin MO did not induce brain or eye changes. Nestin MO injection reduced expression of ascl1b (achaete-scute complex-like 1b), a marker of NPCs, without affecting its distribution. Nestin MO did not influence Elavl3/4 (Embryonic lethal, abnormal vision, Drosophila-like 3/4) (a neuronal marker), or otx2 (a midbrain neuronal marker), but severely perturbed cranial motor nerve development and axon distribution. To determine whether the developmental defects are due to excessive NPC apoptosis and/or reduced NPC proliferation, we analyzed apoptosis by TUNEL assay and acridine orange staining and proliferation by BrdU incorporation, pcna and mcm5 expressions. Excessive apoptosis was noted in hindbrain and midbrain cells. Apoptotic signals were colocalized with ascl1b. Proliferation markers were not significantly altered by nestin MO. These results suggest that nestin is essential for zebrafish brain and eye development probably through control of progenitor cell apoptosis.

  15. Development and implementation of a three-choice serial reaction time task for zebrafish (Danio rerio).

    PubMed

    Parker, Matthew O; Millington, Mollie E; Combe, Fraser J; Brennan, Caroline H

    2012-02-01

    Zebrafish are an established and widely utilized developmental genetic model system, but limitations in developed behavioral assays have meant that their potential as a model in behavioral neuroscience has yet to be fully realized. Here, we describe the development of a novel operant behavioral assay to examine a variety of aspects of stimulus control in zebrafish using a 3 choice serial reaction time task (3 CSRTT). Fish were briefly exposed to three spatially distinct, but perceptually identical stimuli, presented in a random order after a fixed-time inter-trial interval (ITI). Entries to the correct response aperture either during the stimulus presentation, or within a brief limited hold period following presentation, were reinforced with illumination of the magazine light and delivery of a small food reward. Following training, premature responding was probed with a long-ITI session three times; once at baseline, once following a saline injection and once following an injection of a low dose of amphetamine (AMPH; 0.025 mg/kg). We predicted that if premature responding was related to impulsivity (as in rodents) it would be reduced following the AMPH injection. Results confirmed that zebrafish could learn to perform a complex operant task similar to tasks developed for rodents which are used to probe sustained attention and impulsivity, but the results from the AMPH trials were inconclusive. This study provides the foundations for development and further validation of this species as a model for some aspects of human attentional and impulse control disorders, such as substance abuse disorder. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. ApoA-II directs morphogenetic movements of zebrafish embryo by preventing chromosome fusion during nuclear division in yolk syncytial layer.

    PubMed

    Zhang, Ting; Yao, Shaohua; Wang, Ping; Yin, Chaoran; Xiao, Chun; Qian, Meilin; Liu, Donghui; Zheng, Lemin; Meng, Wentong; Zhu, Hongyan; Liu, Jin; Xu, Hong; Mo, Xianming

    2011-03-18

    The high density lipoprotein (HDL) represents a class of lipid- and protein-containing particles and consists of two major apolipoproteins apoA-I and apoA-II. ApoA-II has been shown to be involved in the pathogenesis of insulin resistance, adiposity, diabetes, and metabolic syndrome. In embryo, apoa2 mRNAs are abundant in the liver, brain, lung, placenta, and in fish yolk syncytial layer (YSL), suggesting that apoa2 may perform a function during embryonic development. Here we find out that apoa2 modulates zebrafish embryonic development by regulating the organization of YSL. Disruption of apoa2 function in zebrafish caused chromosome fusing, which strongly blocked YSL nuclear division, inducing disorders in YSL organization and finally disturbing the embryonic epiboly. Purified native human apoA-II was able specifically to rescue the defects and induced nuclear division in zebrafish embryos and in human HeLa cells. The C terminus of apoA-II was required for the proper chromosome separation during nuclear division of YSL in zebrafish embryos and in human HeLa cells. Our data indicate that organization of YSL is required for blastoderm patterning and morphogenesis and suggest that apolipoprotein apoA-II is a novel factor of nuclear division in YSL involved in the regulation of early zebrafish embryonic morphogenesis and in mammalian cells for proliferation.

  17. ApoA-II Directs Morphogenetic Movements of Zebrafish Embryo by Preventing Chromosome Fusion during Nuclear Division in Yolk Syncytial Layer*

    PubMed Central

    Zhang, Ting; Yao, Shaohua; Wang, Ping; Yin, Chaoran; Xiao, Chun; Qian, Meilin; Liu, Donghui; Zheng, Lemin; Meng, Wentong; Zhu, Hongyan; Liu, Jin; Xu, Hong; Mo, Xianming

    2011-01-01

    The high density lipoprotein (HDL) represents a class of lipid- and protein-containing particles and consists of two major apolipoproteins apoA-I and apoA-II. ApoA-II has been shown to be involved in the pathogenesis of insulin resistance, adiposity, diabetes, and metabolic syndrome. In embryo, apoa2 mRNAs are abundant in the liver, brain, lung, placenta, and in fish yolk syncytial layer (YSL), suggesting that apoa2 may perform a function during embryonic development. Here we find out that apoa2 modulates zebrafish embryonic development by regulating the organization of YSL. Disruption of apoa2 function in zebrafish caused chromosome fusing, which strongly blocked YSL nuclear division, inducing disorders in YSL organization and finally disturbing the embryonic epiboly. Purified native human apoA-II was able specifically to rescue the defects and induced nuclear division in zebrafish embryos and in human HeLa cells. The C terminus of apoA-II was required for the proper chromosome separation during nuclear division of YSL in zebrafish embryos and in human HeLa cells. Our data indicate that organization of YSL is required for blastoderm patterning and morphogenesis and suggest that apolipoprotein apoA-II is a novel factor of nuclear division in YSL involved in the regulation of early zebrafish embryonic morphogenesis and in mammalian cells for proliferation. PMID:21212265

  18. Assessment of Toxicological Perturbations and Variants of Pancreatic Islet Development in the Zebrafish Model

    PubMed Central

    Sant, Karilyn E.; Jacobs, Haydee M.; Xu, Jiali; Borofski, Katrina A.; Moss, Larry G.; Moss, Jennifer B.; Timme-Laragy, Alicia R.

    2016-01-01

    The pancreatic islets, largely comprised of insulin-producing beta cells, play a critical role in endocrine signaling and glucose homeostasis. Because they have low levels of antioxidant defenses and a high perfusion rate, the endocrine islets may be a highly susceptible target tissue of chemical exposures. However, this endpoint, as well as the integrity of the surrounding exocrine pancreas, is often overlooked in studies of developmental toxicology. Disruption of development by toxicants can alter cell fate and migration, resulting in structural alterations that are difficult to detect in mammalian embryo systems, but that are easily observed in the zebrafish embryo model (Danio rerio). Using endogenously expressed fluorescent protein markers for developing zebrafish beta cells and exocrine pancreas tissue, we documented differences in islet area and incidence rates of islet morphological variants in zebrafish embryos between 48 and 96 h post fertilization (hpf), raised under control conditions commonly used in embryotoxicity assays. We identified critical windows for chemical exposures during which increased incidences of endocrine pancreas abnormalities were observed following exposure to cyclopamine (2–12 hpf), Mono-2-ethylhexyl phthalate (MEHP) (3–48 hpf), and Perfluorooctanesulfonic acid (PFOS) (3–48 hpf). Both islet area and length of the exocrine pancreas were sensitive to oxidative stress from exposure to the oxidant tert-butyl hydroperoxide during a highly proliferative critical window (72 hpf). Finally, pancreatic dysmorphogenesis following developmental exposures is discussed with respect to human disease. PMID:28393070

  19. Electrochemical quantification of serotonin in the live embryonic zebrafish intestine

    PubMed Central

    Njagi, John; Ball, Michael; Best, Marc; Wallace, Kenneth N.; Andreescu, Silvana

    2010-01-01

    We monitored real-time in vivo levels of serotonin release in the digestive system of intact zebrafish embryos during early development (5 dpf) using differential pulse voltammetry with implanted carbon fiber microelectrodes modified with carbon nanotubes dispersed in nafion. A detection limit of 1 nM, a linear range between 5 to 200 nM and a sensitivity of 83.65 nA·μM−1 were recorded. The microelectrodes were implanted at various locations in the intestine of zebrafish embryos. Serotonin levels of up to 29.9(±1.13) nM were measured in vivo in normal physiological conditions. Measurements were performed in intact live embryos without additional perturbation beyond electrode insertion. The sensor was able to quantify pharmacological alterations in serotonin release and provide the longitudinal distribution of this neurotransmitter along the intestine with high spatial resolution. In the presence of fluvoxamine, a selective serotonin reuptake inhibitor (SSRI), concentrations of 54.1(±1.05) nM were recorded while in the presence of p-chloro-phenylalanine (PCPA), a tryptophan hydroxylase inhibitor, the serotonin levels decreased to 7.2(±0.45) nM. The variation of serotonin levels was correlated with immunohistochemical analysis. We have demonstrated the first use of electrochemical microsensors for in vivo monitoring of intestinal serotonin levels in intact zebrafish embryos. PMID:20148518

  20. Developmental and Persistent Toxicities of Maternally Deposited Selenomethionine in Zebrafish (Danio rerio).

    PubMed

    Thomas, Jith K; Janz, David M

    2015-08-18

    The objectives of this study were (1) to establish egg selenium (Se) toxicity thresholds for mortality and deformities in early life stages of zebrafish (Danio rerio) after exposure to excess selenomethionine (SeMet, the dominant chemical species of Se in diets) via in ovo maternal transfer and (2) to investigate the persistent effects of developmental exposure to excess SeMet on swim performance and metabolic capacities in F1-generation adult zebrafish. Adult zebrafish were fed either control food (1.3 μg Se/g, dry mass or d.m.) or food spiked with increasing measured concentrations of Se (3.4, 9.8, or 27.5 μg Se/g, d.m.) in the form of SeMet for 90 d. In ovo exposure to SeMet increased mortality and deformities in larval zebrafish in a concentration-dependent fashion with threshold egg Se concentrations (EC10s) of 7.5 and 7.0 μg Se/g d.m., respectively. Impaired swim performance and greater respiration and metabolic rates were observed in F1-generation zebrafish exposed in ovo to 6.8 and 12.7 μg Se/g d.m and raised to adulthood in clean water. A species sensitivity distribution (SSD) based on egg Se developmental toxicity thresholds suggests that zebrafish are the most sensitive fish species studied to date.

  1. Expression and activity profiling of the steroidogenic enzymes of glucocorticoid biosynthesis and the fdx1 co-factors in zebrafish.

    PubMed

    Weger, M; Diotel, N; Weger, B D; Beil, T; Zaucker, A; Eachus, H L; Oakes, J A; do Rego, J L; Storbeck, K-H; Gut, P; Strähle, U; Rastegar, S; Müller, F; Krone, N

    2018-04-01

    The spatial and temporal expression of steroidogenic genes in zebrafish has not been fully characterised. Because zebrafish are increasingly employed in endocrine and stress research, a better characterisation of steroidogenic pathways is required to target specific steps in the biosynthetic pathways. In the present study, we have systematically defined the temporal and spatial expression of steroidogenic enzymes involved in glucocorticoid biosynthesis (cyp21a2, cyp11c1, cyp11a1, cyp11a2, cyp17a1, cyp17a2, hsd3b1, hsd3b2), as well as the mitochondrial electron-providing ferredoxin co-factors (fdx1, fdx1b), during zebrafish development. Our studies showed an early expression of all these genes during embryogenesis. In larvae, expression of cyp11a2, cyp11c1, cyp17a2, cyp21a2, hsd3b1 and fdx1b can be detected in the interrenal gland, which is the zebrafish counterpart of the mammalian adrenal gland, whereas the fdx1 transcript is mainly found in the digestive system. Gene expression studies using quantitative reverse transcriptase-PCR and whole-mount in situ hybridisation in the adult zebrafish brain revealed a wide expression of these genes throughout the encephalon, including neurogenic regions. Using ultra-high-performance liquid chromatography tandem mass spectrometry, we were able to demonstrate the presence of the glucocorticoid cortisol in the adult zebrafish brain. Moreover, we demonstrate de novo biosynthesis of cortisol and the neurosteroid tetrahydrodeoxycorticosterone in the adult zebrafish brain from radiolabelled pregnenolone. Taken together, the present study comprises a comprehensive characterisation of the steroidogenic genes and the fdx co-factors facilitating glucocorticoid biosynthesis in zebrafish. Furthermore, we provide additional evidence of de novo neurosteroid biosynthesising in the brain of adult zebrafish facilitated by enzymes involved in glucocorticoid biosynthesis. Our study provides a valuable source for establishing the zebrafish as a

  2. Neurochemical measurements in the zebrafish brain

    PubMed Central

    Jones, Lauren J.; McCutcheon, James E.; Young, Andrew M. J.; Norton, William H. J.

    2015-01-01

    The zebrafish is an ideal model organism for behavioral genetics and neuroscience. The high conservation of genes and neurotransmitter pathways between zebrafish and other vertebrates permits the translation of research between species. Zebrafish behavior can be studied at both larval and adult stages and recent research has begun to establish zebrafish models for human disease. Fast scan cyclic voltammetry (FSCV) is an electrochemical technique that permits the detection of neurotransmitter release and reuptake. In this study we have used in vitro FSCV to measure the release of analytes in the adult zebrafish telencephalon. We compare different stimulation methods and present a characterization of neurochemical changes in the wild-type zebrafish brain. This study represents the first FSCV recordings in zebrafish, thus paving the way for neurochemical analysis of the fish brain. PMID:26441575

  3. Macondo crude oil from the Deepwater Horizon oil spill disrupts specific developmental processes during zebrafish embryogenesis

    PubMed Central

    2012-01-01

    Background The Deepwater Horizon disaster was the largest marine oil spill in history, and total vertical exposure of oil to the water column suggests it could impact an enormous diversity of ecosystems. The most vulnerable organisms are those encountering these pollutants during their early life stages. Water-soluble components of crude oil and specific polycyclic aromatic hydrocarbons have been shown to cause defects in cardiovascular and craniofacial development in a variety of teleost species, but the developmental origins of these defects have yet to be determined. We have adopted zebrafish, Danio rerio, as a model to test whether water accumulated fractions (WAF) of the Deepwater Horizon oil could impact specific embryonic developmental processes. While not a native species to the Gulf waters, the developmental biology of zebrafish has been well characterized and makes it a powerful model system to reveal the cellular and molecular mechanisms behind Macondo crude toxicity. Results WAF of Macondo crude oil sampled during the oil spill was used to treat zebrafish throughout embryonic and larval development. Our results indicate that the Macondo crude oil causes a variety of significant defects in zebrafish embryogenesis, but these defects have specific developmental origins. WAF treatments caused defects in craniofacial development and circulatory function similar to previous reports, but we extend these results to show they are likely derived from an earlier defect in neural crest cell development. Moreover, we demonstrate that exposure to WAFs causes a variety of novel deformations in specific developmental processes, including programmed cell death, locomotor behavior, sensory and motor axon pathfinding, somitogenesis and muscle patterning. Interestingly, the severity of cell death and muscle phenotypes decreased over several months of repeated analysis, which was correlated with a rapid drop-off in the aromatic and alkane hydrocarbon components of the oil

  4. Zebrafish as a model system to study toxicology.

    PubMed

    Dai, Yu-Jie; Jia, Yong-Fang; Chen, Na; Bian, Wan-Ping; Li, Qin-Kai; Ma, Yan-Bo; Chen, Yan-Ling; Pei, De-Sheng

    2014-01-01

    Monitoring and assessing the effects of contaminants in the aquatic eco-environment is critical in protecting human health and the environment. The zebrafish has been widely used as a prominent model organism in different fields because of its small size, low cost, diverse adaptability, short breeding cycle, high fecundity, and transparent embryos. Recent studies have demonstrated that zebrafish sensitivity can aid in monitoring environmental contaminants, especially with the application of transgenic technology in this area. The present review provides a brief overview of recent studies on wild-type and transgenic zebrafish as a model system to monitor toxic heavy metals, endocrine disruptors, and organic pollutants for toxicology. The authors address the new direction of developing high-throughput detection of genetically modified transparent zebrafish to open a new window for monitoring environmental pollutants. © 2013 SETAC.

  5. Oceans of opportunity: exploring vertebrate hematopoiesis in zebrafish.

    PubMed

    Carroll, Kelli J; North, Trista E

    2014-08-01

    Exploitation of the zebrafish model in hematology research has surged in recent years, becoming one of the most useful and tractable systems for understanding regulation of hematopoietic development, homeostasis, and malignancy. Despite the evolutionary distance between zebrafish and humans, remarkable genetic and phenotypic conservation in the hematopoietic system has enabled significant advancements in our understanding of blood stem and progenitor cell biology. The strengths of zebrafish in hematology research lie in the ability to perform real-time in vivo observations of hematopoietic stem, progenitor, and effector cell emergence, expansion, and function, as well as the ease with which novel genetic and chemical modifiers of specific hematopoietic processes or cell types can be identified and characterized. Further, myriad transgenic lines have been developed including fluorescent reporter systems to aid in the visualization and quantification of specified cell types of interest and cell-lineage relationships, as well as effector lines that can be used to implement a wide range of experimental manipulations. As our understanding of the complex nature of blood stem and progenitor cell biology during development, in response to infection or injury, or in the setting of hematologic malignancy continues to deepen, zebrafish will remain essential for exploring the spatiotemporal organization and integration of these fundamental processes, as well as the identification of efficacious small molecule modifiers of hematopoietic activity. In this review, we discuss the biology of the zebrafish hematopoietic system, including similarities and differences from mammals, and highlight important tools currently utilized in zebrafish embryos and adults to enhance our understanding of vertebrate hematology, with emphasis on findings that have impacted our understanding of the onset or treatment of human hematologic disorders and disease. Copyright © 2014 ISEH - International

  6. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish.

    PubMed

    Akimenko, M A; Johnson, S L; Westerfield, M; Ekker, M

    1995-02-01

    To study the genetic regulation of growth control and pattern formation during fin development and regeneration, we have analysed the expression of four homeobox genes, msxA, msxB, msxC and msxD in zebrafish fins. The median fin fold, which gives rise to the unpaired fins, expresses these four msx genes during development. Transcripts of the genes are also present in cells of the presumptive pectoral fin buds. The most distal cells, the apical ectodermal ridge of the paired fins and the cleft and flanking cells of the median fin fold express all these msx genes with the exception of msxC. Mesenchymal cells underlying the most distal cells express all four genes. Expression of the msx genes in the fin fold and fin buds is transient and, by 3 days after fertilization, msx expression in the median fin fold falls below levels detectable by in situ hybridization. Although the fins of adult zebrafish normally have levels of msx transcripts undetectable by in situ hybridization, expression of all four genes is strongly reinduced during regeneration of both paired and unpaired fins. Induction of msx gene expression in regenerating caudal fins occurs as early as 30 hours postamputation. As the blastema forms, the levels of expression increase and reach a maximum between the third and fifth days. Then, msx expression progressively declines and disappears by day 12 when the caudal fin has grown back to its normal size. In the regenerating fin, the blastema cells that develop at the tip of each fin ray express msxB and msxC. Cells of the overlying epithelium express msxA and msxD, but do not express msxB or msxC. Amputations at various levels along the proximodistal axis of the fin suggest that msxB expression depends upon the position of the blastema, with cells of the rapidly proliferating proximal blastema expressing higher levels than the cells of the less rapidly proliferating distal blastema. Expression of msxC and msxD is independent of the position of the blastema cell

  7. Zebrafish Models for Human Acute Organophosphorus Poisoning.

    PubMed

    Faria, Melissa; Garcia-Reyero, Natàlia; Padrós, Francesc; Babin, Patrick J; Sebastián, David; Cachot, Jérôme; Prats, Eva; Arick Ii, Mark; Rial, Eduardo; Knoll-Gellida, Anja; Mathieu, Guilaine; Le Bihanic, Florane; Escalon, B Lynn; Zorzano, Antonio; Soares, Amadeu M V M; Raldúa, Demetrio

    2015-10-22

    Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning.

  8. Live imaging of apoptotic cells in zebrafish

    PubMed Central

    van Ham, Tjakko J.; Mapes, James; Kokel, David; Peterson, Randall T.

    2010-01-01

    Many debilitating diseases, including neurodegenerative diseases, involve apoptosis. Several methods have been developed for visualizing apoptotic cells in vitro or in fixed tissues, but few tools are available for visualizing apoptotic cells in live animals. Here we describe a genetically encoded fluorescent reporter protein that labels apoptotic cells in live zebrafish embryos. During apoptosis, the phospholipid phosphatidylserine (PS) is exposed on the outer leaflet of the plasma membrane. The calcium-dependent protein Annexin V (A5) binds PS with high affinity, and biochemically purified, fluorescently labeled A5 probes have been widely used to detect apoptosis in vitro. Here we show that secreted A5 fused to yellow fluorescent protein specifically labels apoptotic cells in living zebrafish. We use this fluorescent probe to characterize patterns of apoptosis in living zebrafish larvae and to visualize neuronal cell death at single-cell resolution in vivo.—Van Ham, T. J., Mapes, J., Kokel, D., Peterson, R. T. Live imaging of apoptotic cells in zebrafish. PMID:20601526

  9. Zebrafish in Toxicology and Environmental Health.

    PubMed

    Bambino, Kathryn; Chu, Jaime

    2017-01-01

    As manufacturing processes and development of new synthetic compounds increase to keep pace with the expanding global demand, environmental health, and the effects of toxicant exposure are emerging as critical public health concerns. Additionally, chemicals that naturally occur in the environment, such as metals, have profound effects on human and animal health. Many of these compounds are in the news: lead, arsenic, and endocrine disruptors such as bisphenol A have all been widely publicized as causing disease or damage to humans and wildlife in recent years. Despite the widespread appreciation that environmental toxins can be harmful, there is limited understanding of how many toxins cause disease. Zebrafish are at the forefront of toxicology research; this system has been widely used as a tool to detect toxins in water samples and to investigate the mechanisms of action of environmental toxins and their related diseases. The benefits of zebrafish for studying vertebrate development are equally useful for studying teratogens. Here, we review how zebrafish are being used both to detect the presence of some toxins as well as to identify how environmental exposures affect human health and disease. We focus on areas where zebrafish have been most effectively used in ecotoxicology and in environmental health, including investigation of exposures to endocrine disruptors, industrial waste byproducts, and arsenic. © 2017 Elsevier Inc. All rights reserved.

  10. Zebrafish in Toxicology and Environmental Health

    PubMed Central

    Bambino, Kathryn; Chu, Jaime

    2018-01-01

    As manufacturing processes and development of new synthetic compounds increase to keep pace with the expanding global demand, environmental health, and the effects of toxicant exposure are emerging as critical public health concerns. Additionally, chemicals that naturally occur in the environment, such as metals, have profound effects on human and animal health. Many of these compounds are in the news: lead, arsenic, and endocrine disruptors such as bisphenol A have all been widely publicized as causing disease or damage to humans and wildlife in recent years. Despite the widespread appreciation that environmental toxins can be harmful, there is limited understanding of how many toxins cause disease. Zebrafish are at the forefront of toxicology research; this system has been widely used as a tool to detect toxins in water samples and to investigate the mechanisms of action of environmental toxins and their related diseases. The benefits of zebrafish for studying vertebrate development are equally useful for studying teratogens. Here, we review how zebrafish are being used both to detect the presence of some toxins as well as to identify how environmental exposures affect human health and disease. We focus on areas where zebrafish have been most effectively used in ecotoxicology and in environmental health, including investigation of exposures to endocrine disruptors, industrial waste byproducts, and arsenic. PMID:28335863

  11. In vivo and in vitro biophysical properties of hair cells from the lateral line and inner ear of developing and adult zebrafish.

    PubMed

    Olt, Jennifer; Johnson, Stuart L; Marcotti, Walter

    2014-05-15

    Hair cells detect and process sound and movement information, and transmit this with remarkable precision and efficiency to afferent neurons via specialized ribbon synapses. The zebrafish is emerging as a powerful model for genetic analysis of hair cell development and function both in vitro and in vivo. However, the full exploitation of the zebrafish is currently limited by the difficulty in obtaining systematic electrophysiological recordings from hair cells under physiological recording conditions. Thus, the biophysical properties of developing and adult zebrafish hair cells are largely unknown. We investigated potassium and calcium currents, voltage responses and synaptic activity in hair cells from the lateral line and inner ear in vivo and using near-physiological in vitro recordings. We found that the basolateral current profile of hair cells from the lateral line becomes more segregated with age, and that cells positioned in the centre of the neuromast show more mature characteristics and those towards the edge retain a more immature phenotype. The proportion of mature-like hair cells within a given neuromast increased with zebrafish development. Hair cells from the inner ear showed a developmental change in current profile between the juvenile and adult stages. In lateral line hair cells from juvenile zebrafish, exocytosis also became more efficient and required less calcium for vesicle fusion. In hair cells from mature zebrafish, the biophysical characteristics of ion channels and exocytosis resembled those of hair cells from other lower vertebrates and, to some extent, those in the immature mammalian vestibular and auditory systems. We show that although the zebrafish provides a suitable animal model for studies on hair cell physiology, it is advisable to consider that the age at which the majority of hair cells acquire a mature-type configuration is reached only in the juvenile lateral line and in the inner ear from >2 months after hatching. © 2014 The

  12. Hcfc1b, a zebrafish ortholog of HCFC1, regulates craniofacial development by modulating mmachc expression.

    PubMed

    Quintana, Anita M; Geiger, Elizabeth A; Achilly, Nate; Rosenblatt, David S; Maclean, Kenneth N; Stabler, Sally P; Artinger, Kristin B; Appel, Bruce; Shaikh, Tamim H

    2014-12-01

    Mutations in HCFC1 (MIM300019), have been recently associated with cblX (MIM309541), an X-linked, recessive disorder characterized by multiple congenital anomalies including craniofacial abnormalities. HCFC1 is a transcriptional co-regulator that modulates the expression of numerous downstream target genes including MMACHC, but it is not clear how these HCFC1 targets play a role in the clinical manifestations of cblX. To begin to elucidate the mechanism by which HCFC1 modulates disease phenotypes, we have carried out loss of function analyses in the developing zebrafish. Of the two HCFC1 orthologs in zebrafish, hcfc1a and hcfc1b, the loss of hcfc1b specifically results in defects in craniofacial development. Subsequent analysis revealed that hcfc1b regulates cranial neural crest cell differentiation and proliferation within the posterior pharyngeal arches. Further, the hcfc1b-mediated craniofacial abnormalities were rescued by expression of human MMACHC, a downstream target of HCFC1 that is aberrantly expressed in cblX. Furthermore, we tested distinct human HCFC1 mutations for their role in craniofacial development and demonstrated variable effects on MMACHC expression in humans and craniofacial development in zebrafish. Notably, several individuals with mutations in either HCFC1 or MMACHC have been reported to have mild to moderate facial dysmorphia. Thus, our data demonstrates that HCFC1 plays a role in craniofacial development, which is in part mediated through the regulation of MMACHC expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. A review of monoaminergic neuropsychopharmacology in zebrafish.

    PubMed

    Maximino, Caio; Herculano, Anderson Manoel

    2010-12-01

    Monoamine neurotransmitters are the major regulatory mechanisms in the vertebrate brain, involved in the adjustment of motivation, emotion, and cognition. The chemical anatomy of these systems is thought to be highly conserved in the brain of all vertebrates, including zebrafish. Recently, the development of behavioral assays in zebrafish allowed the neuropsychopharmacological investigation of these circuits and its functions. Here we review neuroanatomical, genetic, neurochemical, and psychopharmacological evidence regarding the roles of histaminergic, dopaminergic, noradrenergic, serotonergic, and melatonergic systems in this species. We conclude that, in spite of species differences, zebrafish are suitable for the investigation of neuropsychopharmacology of drugs that affect theses systems; nonetheless, more thorough validation of behavioral methods is still needed.

  14. Zebrafish Models of Prader-Willi Syndrome: Fast Track to Pharmacotherapeutics

    PubMed Central

    Spikol, Emma D.; Laverriere, Caroline E.; Robnett, Maya; Carter, Gabriela; Wolfe, Erin; Glasgow, Eric

    2016-01-01

    Prader-Willi syndrome (PWS) is a rare genetic neurodevelopmental disorder characterized by an insatiable appetite, leading to chronic overeating and obesity. Additional features include short stature, intellectual disability, behavioral problems and incomplete sexual development. Although significant progress has been made in understanding the genetic basis of PWS, the mechanisms underlying the pathogenesis of the disorder remain poorly understood. Treatment for PWS consists mainly of palliative therapies; curative therapies are sorely needed. Zebrafish, Danio rerio, represent a promising way forward for elucidating physiological problems such as obesity and identifying new pharmacotherapeutic options for PWS. Over the last decade, an increased appreciation for the highly conserved biology among vertebrates and the ability to perform high-throughput drug screening has seen an explosion in the use of zebrafish for disease modeling and drug discovery. Here, we review recent advances in developing zebrafish models of human disease. Aspects of zebrafish genetics and physiology that are relevant to PWS will be discussed, and the advantages and disadvantages of zebrafish models will be contrasted with current animal models for this syndrome. Finally, we will present a paradigm for drug screening in zebrafish that is potentially the fastest route for identifying and delivering curative pharmacotherapies to PWS patients. PMID:27857842

  15. ZDHHC16 modulates FGF/ERK dependent proliferation of neural stem/progenitor cells in the zebrafish telencephalon.

    PubMed

    Shi, Wei; Chen, Xueran; Wang, Fen; Gao, Ming; Yang, Yang; Du, Zhaoxia; Wang, Chen; Yao, Yao; He, Kun; Hao, Aijun

    2016-09-01

    In vertebrates, neural stem/progenitor cells (NSPCs) maintenance is critical for nervous system development and homeostasis. However, the molecular mechanisms underlying the maintenance of NSPCs have not been fully elucidated. Here, we demonstrated that zebrafish ZDHHC16, a DHHC encoding protein, which was related to protein palmitoylation after translation, was expressed in the developing forebrain, and especially in the telencephalon. Loss- and gain-of-function studies showed that ZDHHC16 played a crucial role in the regualtion of NSPCs proliferation during zebrafish telencephalic development, via a mechanism dependent on its palmitoyltransferase activity. Further analyses showed that the inhibition of ZDHHC16 led to inactivation of the FGF/ERK signaling pathway during telencephalic NSPCs proliferation and maintenance. Taken together, our results suggest that ZDHHC16 activity is essential for early NSPCs proliferation where it acts to activate the FGF/ERK network, allowing for the initiation of proliferation -regulated gene expression programs. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1014-1028, 2016. © 2016 Wiley Periodicals, Inc.

  16. DRUG EFFECTS ON THE LOCOMOTOR ACTIVITY OF LARVAL ZEBRAFISH.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae and the effects of prototype drugs. Zebrafish larvae (6-7 days post-fertilization) were indiv...

  17. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis.

    PubMed

    Zimmermann, Fernanda Francine; Gaspary, Karina Vidarte; Leite, Carlos Eduardo; De Paula Cognato, Giana; Bonan, Carla Denise

    2015-01-01

    Changes in social behavior are associated with brain disorders, including mood disorders, stress, schizophrenia, Alzheimer's disease, and autism spectrum disorders (ASD). Autism is a complex neurodevelopmental disorder characterized by deficits in social interaction, impaired communication, anxiety, hyperactivity, and the presence of restricted interests. Zebrafish is one of the most social vertebrates used as a model in biomedical research, contributing to an understanding of the mechanisms that underlie social behavior. Valproic acid (VPA) is used as an anti-epileptic drug and mood stabilizer; however, prenatal VPA exposure in humans has been associated with an increased incidence of autism and it can also affect fetal brain development. Therefore, we conducted a behavioral screening at different periods of zebrafish development at 6, 30, 70, and 120dpf (days postfertilization) after VPA exposure in the early development stage to investigate social behavior, locomotion, aggression, and anxiety. VPA (48μM) exposure during the first 48hpf (hours postfertilization) did not promote changes on survival, morphology, and hatching rate at 24hpf, 48hpf, and 72hpf. The behavioral patterns suggest that VPA exposure induces changes in locomotor activity and anxiety at different developmental periods in zebrafish. Furthermore, a social interaction deficit is present at 70dpf and 120dpf. VPA exposure did not affect aggression in the adult stage at 70dpf and 120dpf. This is the first study that demonstrated zebrafish exposed to VPA during the first 48h of development exhibit deficits in social interaction, anxiety, and hyperactivity at different developmental periods. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. New frontiers for zebrafish management.

    PubMed

    Lawrence, C

    2016-01-01

    The zebrafish (Danio rerio) is a preeminent model organism with a wide and expanding utility for numerous scientific disciplines. The same features that once endeared this small freshwater minnow to developmental biologists combined with its relatively high genetic similarity to mammals and the advent of new, more efficient methods for genome editing are now helping to spur expanded growth in its usage in various fields, including toxicology, drug discovery, transplant biology, disease modeling, and even aquaculture. Continued maturation and adoption of the zebrafish model system in these and other fields of science will require that methods and approaches for husbandry and management of these fish in controlled settings be refined and improved to the extent that, ultimately, zebrafish research becomes more reproducible, defined, cost-effective, and accessible to the masses. Knowledge and technology transfer from laboratory animal science and commercial aquaculture will be a necessary part of this development. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Mayo Clinic Zebrafish Facility Overview.

    PubMed

    Leveque, Ryan E; Clark, Karl J; Ekker, Stephen C

    2016-07-01

    The zebrafish (Danio rerio) is a premier nonmammalian vertebrate model organism. This small aquatic fish is utilized in multiple disciplines in the Mayo Clinic community and by many laboratories around the world because of its biological similarity to humans, its advanced molecular genetics, the elucidation of its genome sequence, and the ever-expanding and outstanding new biological tools now available to the zebrafish researcher. The Mayo Clinic Zebrafish Facility (MCZF) houses ∼2,000 tanks annotated using an in-house, Internet cloud-based bar-coding system tied to our established zfishbook.org web infrastructure. Paramecia are the primary food source for larval fish rearing, using a simplified culture protocol described herein. The MCZF supports the specific ongoing research in a variety of laboratories, while also serving as a local hub for new scientists as they learn to tap into the potential of this model system for understanding normal development, disease, and as models of health.

  20. Primary Spinal OPC Culture System from Adult Zebrafish to Study Oligodendrocyte Differentiation In Vitro.

    PubMed

    Kroehne, Volker; Tsata, Vasiliki; Marrone, Lara; Froeb, Claudia; Reinhardt, Susanne; Gompf, Anne; Dahl, Andreas; Sterneckert, Jared; Reimer, Michell M

    2017-01-01

    Endogenous oligodendrocyte progenitor cells (OPCs) are a promising target to improve functional recovery after spinal cord injury (SCI) by remyelinating denuded, and therefore vulnerable, axons. Demyelination is the result of a primary insult and secondary injury, leading to conduction blocks and long-term degeneration of the axons, which subsequently can lead to the loss of their neurons. In response to SCI, dormant OPCs can be activated and subsequently start to proliferate and differentiate into mature myelinating oligodendrocytes (OLs). Therefore, researchers strive to control OPC responses, and utilize small molecule screening approaches in order to identify mechanisms of OPC activation, proliferation, migration and differentiation. In zebrafish, OPCs remyelinate axons of the optic tract after lysophosphatidylcholine (LPC)-induced demyelination back to full thickness myelin sheaths. In contrast to zebrafish, mammalian OPCs are highly vulnerable to excitotoxic stress, a cause of secondary injury, and remyelination remains insufficient. Generally, injury induced remyelination leads to shorter internodes and thinner myelin sheaths in mammals. In this study, we show that myelin sheaths are lost early after a complete spinal transection injury, but are re-established within 14 days after lesion. We introduce a novel, easy-to-use, inexpensive and highly reproducible OPC culture system based on dormant spinal OPCs from adult zebrafish that enables in vitro analysis. Zebrafish OPCs are robust, can easily be purified with high viability and taken into cell culture. This method enables to examine why zebrafish OPCs remyelinate better than their mammalian counterparts, identify cell intrinsic responses, which could lead to pro-proliferating or pro-differentiating strategies, and to test small molecule approaches. In this methodology paper, we show efficient isolation of OPCs from adult zebrafish spinal cord and describe culture conditions that enable analysis up to 10

  1. Toxic effects of brominated indoles and phenols on zebrafish embryos.

    PubMed

    Kammann, U; Vobach, M; Wosniok, W

    2006-07-01

    Organobromine compounds in the marine environment have been the focus of growing attention in past years. In contrast to anthropogenic brominated flame retardants, other brominated compounds are produced naturally, e.g., by common polychaete worms and algae. Brominated phenols and indoles assumed to be of biogenic origin have been detected in water and sediment extracts from the German Bight. These substances as well as some of their isomers have been tested with the zebrafish embryo test and were found to cause lethal as well as nonlethal malformations. The zebrafish test was able to detect a log K(OW)-related toxicity for bromophenols, suggesting nonpolar narcosis as a major mode of action. Different effect patterns could be observed for brominated indoles and bromophenols. The comparison of effective concentrations in the zebrafish embryo test with the concentrations determined in water samples suggests the possibility that brominated indoles may affect early life stages of marine fish species in the North Sea.

  2. In vivo physiological recording from the lateral line of juvenile zebrafish

    PubMed Central

    Olt, Jennifer; Allen, Claire E.

    2016-01-01

    Key points Zebrafish provide a unique opportunity to investigate in vivo sensory transduction in mature hair cells.We have developed a method for studying the biophysical properties of mature hair cells from the lateral line of juvenile zebrafish.The method involves application of the anaesthetic benzocaine and intubation to maintain ventilation and oxygenation through the gills.The same approach could be used for in vivo functional studies in other sensory and non‐sensory systems from juvenile and adult zebrafish. Abstract Hair cells are sensory receptors responsible for transducing auditory and vestibular information into electrical signals, which are then transmitted with remarkable precision to afferent neurons. The zebrafish lateral line is emerging as an excellent in vivo model for genetic and physiological analysis of hair cells and neurons. However, research has been limited to larval stages because zebrafish become protected from the time of independent feeding under European law (from 5.2 days post‐fertilization (dpf) at 28.5°C). In larval zebrafish, the functional properties of most of hair cells, as well as those of other excitable cells, are still immature. We have developed an experimental protocol to record electrophysiological properties from hair cells of the lateral line in juvenile zebrafish. We found that the anaesthetic benzocaine at 50 mg l−1 was an effective and safe anaesthetic to use on juvenile zebrafish. Concentrations up to 300 mg l−1 did not affect the electrical properties or synaptic vesicle release of juvenile hair cells, unlike the commonly used anaesthetic MS‐222, which reduces the size of basolateral membrane K+ currents. Additionally, we implemented a method to maintain gill movement, and as such respiration and blood oxygenation, via the intubation of > 21 dpf zebrafish. The combination of benzocaine and intubation provides an experimental platform to investigate the physiology of mature hair cells from live

  3. Biologically inspired robots elicit a robust fear response in zebrafish

    NASA Astrophysics Data System (ADS)

    Ladu, Fabrizio; Bartolini, Tiziana; Panitz, Sarah G.; Butail, Sachit; Macrı, Simone; Porfiri, Maurizio

    2015-03-01

    We investigate the behavioral response of zebrafish to three fear-evoking stimuli. In a binary choice test, zebrafish are exposed to a live allopatric predator, a biologically-inspired robot, and a computer-animated image of the live predator. A target tracking algorithm is developed to score zebrafish behavior. Unlike computer-animated images, the robotic and live predator elicit a robust avoidance response. Importantly, the robotic stimulus elicits more consistent inter-individual responses than the live predator. Results from this effort are expected to aid in hypothesis-driven studies on zebrafish fear response, by offering a valuable approach to maximize data-throughput and minimize animal subjects.

  4. Impacts of 17beta-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-larval-, juvenile- and adult-life stages in zebrafish (Danio rerio).

    PubMed

    Brion, F; Tyler, C R; Palazzi, X; Laillet, B; Porcher, J M; Garric, J; Flammarion, P

    2004-06-24

    Zebrafish (Danio rerio) were exposed for 3 weeks to low concentrations of estradiol including environmentally relevant concentrations (5, 25 and 100 ng/l), encompassing either their embryo-larvae (from fertilization to 21 day post-fertilization (dpf)), juvenile (from 21 to 42 dpf) or adult life stages (>200 dpf) with a view to investigating the most sensitive life stage of the zebrafish to 17beta-estradiol (E2). At all sampling points, whole-body vitellogenin concentrations and gonadal development were analyzed in order to investigate the effects of estrogen exposure on these endpoint in the zebrafish. In the adult stage, additional endpoints were measured including secondary sexual characteristics (manifestation of the uro-genital papillae (UGP) in males), gonadal growth (the gonado-somatic index (GSI)) and sex ratio. For all the different life stage exposures, reproductive performance of the F0 generation was assessed (egg production) and survival and development of the F1 embryo-larvae. Exposure to low concentrations of E2 resulted in vitellogenin induction whatever the life stage exposed but these effects were reversible after depuration. The effective concentration for vitellogenin induction in zebrafish early life stages was 100 ng E2/l, and in adult male zebrafish the effective concentration for vitellogenin induction (between 5 and 25 ng/l) was lower than for the early life stage fish. Exposure to E2 prior to (from fertilization to 21 dpf) and during the time of sex differentiation (from 21 to 42 dpf) also caused disruptions in the process of sexual differentiation (resulting in formation of a retrogonadal cavity in presumptive male, germ cell development and leading to a significant change of the sex ratio towards the female sex at the dose of 100 ng E2/l for the fish exposure as embryo-larvae) and altered patterns of egg production in the subsequent adults. Exposure of adult fish to E2 resulted in a modification of the secondary sexual characteristic in

  5. The DVR-1 (Vg1) transcript of zebrafish is maternally supplied and distributed throughout the embryo.

    PubMed

    Helde, K A; Grunwald, D J

    1993-10-01

    It is not known how region- or tissue-specific differences are generated in the zebrafish embryo. To look at the potential role of maternal transcripts in generating cell diversity, we have isolated and characterized the zebrafish homologue of Xenopus DVR-1 (Vg1), a maternally supplied RNA that encodes a member of the transforming growth factor-beta superfamily. The zebrafish DVR-1 RNA is maternally supplied and its protein product shares a high degree of sequence identity with Xenopus DVR-1. These conserved features indicate that DVR-1 is likely to have an essential function in early embryogenesis. However, unlike the frog transcript, which is restricted to vegetal cells, DVR-1 RNA is distributed equally among all zebrafish blastomeres. We suggest that the ubiquitous distribution of DVR-1 RNA reflects a significant aspect of the developmental strategy of the zebrafish in which each blastomere retains an equivalent developmental potential throughout the cleavage period.

  6. Smad4 is required for the development of cardiac and skeletal muscle in zebrafish.

    PubMed

    Yang, Jie; Wang, Junnai; Zeng, Zhen; Qiao, Long; Zhuang, Liang; Jiang, Lijun; Wei, Juncheng; Ma, Quanfu; Wu, Mingfu; Ye, Shuangmei; Gao, Qinglei; Ma, Ding; Huang, Xiaoyuan

    Transforming growth factor-beta (TGF-beta) regulates cellular functions and plays key roles in development and carcinogenesis. Smad4 is the central intracellular mediator of TGF-beta signaling and plays crucial roles in tissue regeneration, cell differentiation, embryonic development, regulation of the immune system and tumor progression. To clarify the role of smad4 in development, we examined both the pattern of smad4 expression in zebrafish embryos and the effect of smad4 suppression on embryonic development using smad4-specific antisense morpholino-oligonucleotides. We show that smad4 is expressed in zebrafish embryos at all developmental stages examined and that embryonic knockdown of smad4 results in pericardial edema, decreased heartbeat and defects in the trunk structure. Additionally, these phenotypes were associated with abnormal expression of the two heart-chamber markers, cmlc2 and vmhc, as well as abnormal expression of three makers of myogenic terminal differentiation, mylz2, smyhc1 and mck. Furthermore, a notable increase in apoptosis was apparent in the smad4 knockdown embryos, while no obvious reduction in cell proliferation was observed. Collectively, these data suggest that smad4 plays an important role in heart and skeletal muscle development. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  7. Essential role for fibrillin-2 in zebrafish notochord and vascular morphogenesis.

    PubMed

    Gansner, John M; Madsen, Erik C; Mecham, Robert P; Gitlin, Jonathan D

    2008-10-01

    Recent studies demonstrate that lysyl oxidase cuproenzymes are critical for zebrafish notochord formation, but the molecular mechanisms of copper-dependent notochord morphogenesis are incompletely understood. We, therefore, conducted a forward genetic screen for zebrafish mutants that exhibit notochord sensitivity to lysyl oxidase inhibition, yielding a mutant with defects in notochord and vascular morphogenesis, puff daddygw1 (pfdgw1). Meiotic mapping and cloning reveal that the pfdgw1 phenotype results from disruption of the gene encoding the extracellular matrix protein fibrillin-2, and the spatiotemporal expression of fibrillin-2 is consistent with the pfdgw1 phenotype. Furthermore, each aspect of the pfdgw1 phenotype is recapitulated by morpholino knockdown of fibrillin-2. Taken together, the data reveal a genetic interaction between fibrillin-2 and the lysyl oxidases in notochord formation and demonstrate the importance of fibrillin-2 in specific early developmental processes in zebrafish. Copyright (c) 2008 Wiley-Liss, Inc.

  8. Retinoic Acid Metabolic Genes, Meiosis, and Gonadal Sex Differentiation in Zebrafish

    PubMed Central

    Rodríguez-Marí, Adriana; Cañestro, Cristian; BreMiller, Ruth A.; Catchen, Julian M.; Yan, Yi-Lin; Postlethwait, John H.

    2013-01-01

    To help understand the elusive mechanisms of zebrafish sex determination, we studied the genetic machinery regulating production and breakdown of retinoic acid (RA) during the onset of meiosis in gonadogenesis. Results uncovered unexpected mechanistic differences between zebrafish and mammals. Conserved synteny and expression analyses revealed that cyp26a1 in zebrafish and its paralog Cyp26b1 in tetrapods independently became the primary genes encoding enzymes available for gonadal RA-degradation, showing lineage-specific subfunctionalization of vertebrate genome duplication (VGD) paralogs. Experiments showed that zebrafish express aldh1a2, which encodes an RA-synthesizing enzyme, in the gonad rather than in the mesonephros as in mouse. Germ cells in bipotential gonads of all zebrafish analyzed were labeled by the early meiotic marker sycp3, suggesting that in zebrafish, the onset of meiosis is not sexually dimorphic as it is in mouse and is independent of Stra8, which is required in mouse but was lost in teleosts. Analysis of dead-end knockdown zebrafish depleted of germ cells revealed the germ cell-independent onset and maintenance of gonadal aldh1a2 and cyp26a1 expression. After meiosis initiated, somatic cell expression of cyp26a1 became sexually dimorphic: up-regulated in testes but not ovaries. Meiotic germ cells expressing the synaptonemal complex gene sycp3 occupied islands of somatic cells that lacked cyp26a1 expression, as predicted by the hypothesis that Cyp26a1 acts as a meiosis-inhibiting factor. Consistent with this hypothesis, females up-regulated cyp26a1 in oocytes that entered prophase-I meiotic arrest, and down-regulated cyp26a1 in oocytes resuming meiosis. Co-expression of cyp26a1 and the pluripotent germ cell stem cell marker pou5f1(oct4) in meiotically arrested oocytes was consistent with roles in mouse to promote germ cell survival and to prevent apoptosis, mechanisms that are central for tipping the sexual fate of gonads towards the female

  9. A bioenergetic model for zebrafish Danio rerio (Hamilton)

    USGS Publications Warehouse

    Chizinski, C.J.; Sharma, Bibek; Pope, K.L.; Patino, R.

    2008-01-01

    A bioenergetics model was developed from observed consumption, respiration and growth rates for zebrafish Danio rerio across a range (18-32?? C) of water temperatures, and evaluated with a 50 day laboratory trial at 28?? C. No significant bias in variable estimates was found during the validation trial; namely, predicted zebrafish mass generally agreed with observed mass. ?? 2008 The Authors.

  10. The neurogenetic frontier--lessons from misbehaving zebrafish.

    PubMed

    Burgess, Harold A; Granato, Michael

    2008-11-01

    One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish.

  11. Rapid quantification of neutral lipids and triglycerides during zebrafish embryogenesis.

    PubMed

    Yoganantharjah, Prusothman; Byreddy, Avinesh R; Fraher, Daniel; Puri, Munish; Gibert, Yann

    2017-01-01

    The zebrafish is a useful vertebrate model to study lipid metabolism. Oil Red-O (ORO) staining of zebrafish embryos, though sufficient for visualizing the localization of triglycerides, was previously inadequate to quantify neutral lipid abundance. For metabolic studies, it is crucial to be able to quantify lipids during embryogenesis. Currently no cost effective, rapid and reliable method exists to quantify the deposition of neutral lipids and triglycerides. Thin layer chromatography (TLC), gas chromatography and mass spectrometry can be used to accurately measure lipid levels, but are time consuming and costly in their use. Hence, we developed a rapid and reliable method to quantify neutral lipids and triglycerides. Zebrafish embryos were exposed to Rimonabant (Rimo) or WIN 55,212-2 mesylate (WIN), compounds previously shown to modify lipid content during zebrafish embryogenesis. Following this, ORO stain was extracted out of both the zebrafish body and yolk sac and optical density was measured to give an indication of neutral lipid and triglyceride accumulation. Embryos treated with 0.3 microM WIN resulted in increased lipid accumulation, whereas 3 microM Rimo caused a decrease in lipid accumulation during embryogenesis. TLC was performed on zebrafish bodies to validate the developed method. In addition, BODIPY free fatty acids were injected into zebrafish embryos to confirm quantification of changes in lipid content in the embryo. Previously, ORO was limited to qualitative assessment; now ORO can be used as a quantitative tool to directly determine changes in the levels of neutral lipids and triglycerides.

  12. The physiological role of CTGF/CCN2 in zebrafish notochond development and biological analysis of the proximal promoter region.

    PubMed

    Chiou, Ming-Jyun; Chao, Tsung-Tai; Wu, Jen-Leih; Kuo, Ching-Ming; Chen, Jyh-Yih

    2006-10-20

    During mouse embryogenesis, CTGF/CCN2 is expressed in zones containing hypertrophic chondroctyes and calcifying cartilage such as long bones, ribs, vertebral column, and phalanges. But in fish, its expression is yet unclear. Development of the vertebrae is morphologically similar among vertebrates, indicating that the underlying mechanism regulating the process is highly conserved during evolution. Analysis of 3.2kb of the CTGF/CCN2 proximal promoter sequence revealed a consensus TATAA box, putative AP1, Brn-2, CdxA, C/EBP alpha, C/EBP beta, C-Ets-, delta E, HFH-2, and HSF2 binding sites. Transient expression experiments with a 5'-deletion revealed at least 4 regulatory regions in the zebrafish CTGF/CCN2 gene, 2 with a stimulatory effect on transcription and 2 with an apparent inhibitory effect after IGF-I treatment in the ZFL cell line. To study the promoter-specific expression, we constructed a series of CTGF/CCN2 (3.0-, 2.5-, 2.0-, 1.5-, 1.0-, and 0.4-kb) promoter-driven green fluorescent protein (GFP) fragments encoding the GFP cDNA transgene which was microinjected into zebrafish embryos. Morphological studies of transgenic zebrafish indicated that the CTGF/CCN2 promoter-driven GFP transcripts appeared in the notochord. Targeted knockdown of the CTGF/CCN2 gene by two antisense morpholino oligonucleotides resulted in disruptions to notochord development. From a comparative point of view, this study of the CTGF/CCN2 gene in zebrafish may correlate well with those previously published on the mouse. These molecular results suggest that CTGF/CCN2 plays an important role in notochord development and is required for general embryonic development.

  13. High-Content Screening in Zebrafish Embryos Identifies Butafenacil as a Potent Inducer of Anemia

    PubMed Central

    Leet, Jessica K.; Lindberg, Casey D.; Bassett, Luke A.; Isales, Gregory M.; Yozzo, Krystle L.; Raftery, Tara D.; Volz, David C.

    2014-01-01

    Using transgenic zebrafish (fli1:egfp) that stably express enhanced green fluorescent protein (eGFP) within vascular endothelial cells, we recently developed and optimized a 384-well high-content screening (HCS) assay that enables us to screen and identify chemicals affecting cardiovascular development and function at non-teratogenic concentrations. Within this assay, automated image acquisition procedures and custom image analysis protocols are used to quantify body length, heart rate, circulation, pericardial area, and intersegmental vessel area within individual live embryos exposed from 5 to 72 hours post-fertilization. After ranking developmental toxicity data generated from the U.S. Environmental Protection Agency's (EPA's) zebrafish teratogenesis assay, we screened 26 of the most acutely toxic chemicals within EPA's ToxCast Phase-I library in concentration-response format (0.05–50 µM) using this HCS assay. Based on this screen, we identified butafenacil as a potent inducer of anemia, as exposure from 0.39 to 3.125 µM butafenacil completely abolished arterial circulation in the absence of effects on all other endpoints evaluated. Butafenacil is an herbicide that inhibits protoporphyrinogen oxidase (PPO) – an enzyme necessary for heme production in vertebrates. Using o-dianisidine staining, we then revealed that severe butafenacil-induced anemia in zebrafish was due to a complete loss of hemoglobin following exposure during early development. Therefore, six additional PPO inhibitors within the ToxCast Phase-I library were screened to determine whether anemia represents a common adverse outcome for these herbicides. Embryonic exposure to only one of these PPO inhibitors – flumioxazin – resulted in a similar phenotype as butafenacil, albeit not as severe as butafenacil. Overall, this study highlights the potential utility of this assay for (1) screening chemicals for cardiovascular toxicity and (2) prioritizing chemicals for future hypothesis

  14. Disease modeling in genetic kidney diseases: zebrafish.

    PubMed

    Schenk, Heiko; Müller-Deile, Janina; Kinast, Mark; Schiffer, Mario

    2017-07-01

    Growing numbers of translational genomics studies are based on the highly efficient and versatile zebrafish (Danio rerio) vertebrate model. The increasing types of zebrafish models have improved our understanding of inherited kidney diseases, since they not only display pathophysiological changes but also give us the opportunity to develop and test novel treatment options in a high-throughput manner. New paradigms in inherited kidney diseases have been developed on the basis of the distinct genome conservation of approximately 70 % between zebrafish and humans in terms of existing gene orthologs. Several options are available to determine the functional role of a specific gene or gene sets. Permanent genome editing can be induced via complete gene knockout by using the CRISPR/Cas-system, among others, or via transient modification by using various morpholino techniques. Cross-species rescues succeeding knockdown techniques are employed to determine the functional significance of a target gene or a specific mutation. This article summarizes the current techniques and discusses their perspectives.

  15. TNF signaling and macrophages govern fin regeneration in zebrafish larvae.

    PubMed

    Nguyen-Chi, Mai; Laplace-Builhé, Béryl; Travnickova, Jana; Luz-Crawford, Patricia; Tejedor, Gautier; Lutfalla, Georges; Kissa, Karima; Jorgensen, Christian; Djouad, Farida

    2017-08-10

    Macrophages are essential for appendage regeneration after amputation in regenerative species. The molecular mechanisms through which macrophages orchestrate blastema formation and regeneration are still unclear. Here, we use the genetically tractable and transparent zebrafish larvae to study the functions of polarized macrophage subsets during caudal fin regeneration. After caudal fin amputation, we show an early and transient accumulation of pro-inflammatory macrophages concomitant with the accumulation of non-inflammatory macrophages which, in contrast to pro-inflammatory macrophages, remain associated to the fin until the end of the regeneration. Chemical and genetic depletion of macrophages suggested that early recruited macrophages that express TNFα are critical for blastema formation. Combining parabiosis and morpholino knockdown strategies, we show that TNFα/TNFR1 signaling pathway is required for the fin regeneration. Our study reveals that TNFR1 has a necessary and direct role in blastema cell activation suggesting that macrophage subset balance provides the accurate TNFα signal to prime regeneration in zebrafish.

  16. In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy.

    PubMed

    Weber, Michael; Huisken, Jan

    2015-01-01

    Detailed studies of heart development and function are crucial for our understanding of cardiac failures and pave the way for better diagnostics and treatment. However, the constant motion and close incorporation into the cardiovascular system prevent in vivo studies of the living, unperturbed heart. The complementary strengths of the zebrafish model and light sheet microscopy provide a useful platform to fill this gap. High-resolution images of the embryonic vertebrate heart are now recorded from within the living animal: deep inside the unperturbed heart we can follow cardiac contractions and measure action potentials and calcium transients. Three-dimensional reconstructions of the entire beating heart with cellular resolution give new insights into its ever-changing morphology and facilitate studies into how individual cells form the complex cardiac network. In addition, cardiac dynamics and robustness are now examined with targeted optical manipulation. Overall, the combination of zebrafish and light sheet microscopy represents a promising addition for cardiac research and opens the door to a better understanding of heart function and development.

  17. Elucidation of possible molecular mechanisms underlying the estrogen-induced disruption of cartilage development in zebrafish larvae.

    PubMed

    He, Hanliang; Wang, Chunqing; Tang, Qifeng; Yang, Fan; Xu, Youjia

    2018-06-01

    Estrogen can affect the cartilage development of zebrafish; however, the mechanism underlying its effects is not completely understood. Four-day-old zebrafish larvae were treated with 0.8 μM estrogen, the 5 days post fertilization (dpf) zebrafish larvae did not demonstrate obvious abnormalities during development; however, the 6 dpf and 7 dpf larvae exhibited abnormal craniofacial bone development along with craniofacial bone degradation. RNA deep sequencing was performed to elucidate the mechanism involved. Gene Ontology functional and KEGG pathway enrichment analysis of differentially expressed genes (DEGs) showed that the extracellular matrix (ECM), extracellular region, ECM-interaction receptor, focal adhesion, cell cycle, apoptosis, and bone-related signaling pathways were disrupted. In these signaling pathways, the expressions of key genes, such as collagen encoded (col19a1a, col7a1, col7al, col18a1, and col9a3), MAPK signaling pathway (fgf19, fgf6a), TGF-beta signaling pathway (tgfbr1), and cell cycle (cdnk1a) genes were altered. The qRT-PCR results showed that after treatment with 0.8 μM 17-β estradiol (E2), col19a1a, col7a1, col7al, col18a1, col9a3, fgf6a, cdkn1a were downregulated, and fgf19, tgfr1 were upregulated, which were consistent with deep sequencing analysis. Therefore, the effect of estrogen on cartilage development might occur via multiple mechanisms. The study results demonstrate the mechanism underlying the effect of estrogen on cartilage development. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Nrf2 and Nrf2-related proteins in development and developmental toxicity: Insights from studies in zebrafish (Danio rerio).

    PubMed

    Hahn, Mark E; Timme-Laragy, Alicia R; Karchner, Sibel I; Stegeman, John J

    2015-11-01

    Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap'n'collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects. Copyright © 2015. Published by Elsevier Inc.

  19. Nrf2 and Nrf2-Related Proteins in Development and Developmental Toxicity: Insights from studies in Zebrafish (Danio rerio)

    PubMed Central

    Hahn, Mark E.; Timme-Laragy, Alicia R.; Karchner, Sibel I.; Stegeman, John J.

    2015-01-01

    Oxidative stress is an important mechanism of chemical toxicity, contributing to developmental toxicity and teratogenesis as well as to cardiovascular and neurodegenerative diseases and diabetic embryopathy. Developing animals are especially sensitive to effects of chemicals that disrupt the balance of processes generating reactive species and oxidative stress, and those anti-oxidant defenses that protect against oxidative stress. The expression and inducibility of anti-oxidant defenses through activation of NFE2-related factor 2 (Nrf2) and related proteins is an essential process affecting the susceptibility to oxidants, but the complex interactions of Nrf2 in determining embryonic response to oxidants and oxidative stress are only beginning to be understood. The zebrafish (Danio rerio) is an established model in developmental biology and now also in developmental toxicology and redox signaling. Here we review the regulation of genes involved in protection against oxidative stress in developing vertebrates, with a focus on Nrf2 and related cap’n’collar (CNC)-basic-leucine zipper (bZIP) transcription factors. Vertebrate animals including zebrafish share Nfe2, Nrf1, Nrf2, and Nrf3 as well as a core set of genes that respond to oxidative stress, contributing to the value of zebrafish as a model system with which to investigate the mechanisms involved in regulation of redox signaling and the response to oxidative stress during embryolarval development. Moreover, studies in zebrafish have revealed nrf and keap1 gene duplications that provide an opportunity to dissect multiple functions of vertebrate NRF genes, including multiple sensing mechanisms involved in chemical-specific effects. PMID:26130508

  20. Expression of Glycosaminoglycan Epitopes During Zebrafish Skeletogenesis

    PubMed Central

    Hayes, Anthony J; Mitchell, Ruth E; Bashford, Andrew; Reynolds, Scott; Caterson, Bruce; Hammond, Chrissy L

    2013-01-01

    Background: The zebrafish is an important developmental model. Surprisingly, there are few studies that describe the glycosaminoglycan composition of its extracellular matrix during skeletogenesis. Glycosaminoglycans on proteoglycans contribute to the material properties of musculo skeletal connective tissues, and are important in regulating signalling events during morphogenesis. Sulfation motifs within the chain structure of glycosaminoglycans on cell-associated and extracellular matrix proteoglycans allow them to bind and regulate the sequestration/presentation of bioactive signalling molecules important in musculo-skeletal development. Results: We describe the spatio-temporal expression of different glycosaminoglycan moieties during zebrafish skeletogenesis with antibodies recognising (1) native sulfation motifs within chondroitin and keratan sulfate chains, and (2) enzyme-generated neoepitope sequences within the chain structure of chondroitin sulfate (i.e., 0-, 4-, and 6-sulfated isoforms) and heparan sulfate glycosaminoglycans. We show that all the glycosaminoglycan moieties investigated are expressed within the developing skeletal tissues of larval zebrafish. However, subtle changes in their patterns of spatio-temporal expression over the period examined suggest that their expression is tightly and dynamically controlled during development. Conclusions: The subtle differences observed in the domains of expression between different glycosaminoglycan moieties suggest differences in their functional roles during establishment of the primitive analogues of the skeleton. Developmental Dynamics 242:778–789, 2013. © 2013 Wiley Periodicals, Inc. Key Findings The developing zebrafish skeleton expresses many different glycosaminoglycan modifications. Multiple different glycosaminoglycan epitopes are dynamically expressed in the craniofacial skeleton. Expression of chondroitin sulfate moieties are dynamically expressed in the vertebral column and precede

  1. Zebrafish, a Novel Model System to Study Uremic Toxins: The Case for the Sulfur Amino Acid Lanthionine.

    PubMed

    Perna, Alessandra F; Anishchenko, Evgeniya; Vigorito, Carmela; Zacchia, Miriam; Trepiccione, Francesco; D'Aniello, Salvatore; Ingrosso, Diego

    2018-04-29

    The non-proteinogenic amino acid lanthionine is a byproduct of hydrogen sulfide biosynthesis: the third endogenous vasodilator gas, after nitric oxide and carbon monoxide. While hydrogen sulfide is decreased in uremic patients on hemodialysis, lanthionine is increased and has been proposed as a new uremic toxin, since it is able to impair hydrogen sulfide production in hepatoma cells. To characterize lanthionine as a uremic toxin, we explored its effects during the early development of the zebrafish ( Danio rerio ), a widely used model to study the organ and tissue alterations induced by xenobiotics. Lanthionine was employed at concentrations reproducing those previously detected in uremia. Light-induced visual motor response was also studied by means of the DanioVision system. Treatment of zebrafish embryos with lanthionine determined acute phenotypical alterations, on heart organogenesis (disproportion in cardiac chambers), increased heart beating, and arrhythmia. Lanthionine also induced locomotor alterations in zebrafish embryos. Some of these effects could be counteracted by glutathione. Lanthionine exerted acute effects on transsulfuration enzymes and the expression of genes involved in inflammation and metabolic regulation, and modified microRNA expression in a way comparable with some alterations detected in uremia. Lanthionine meets the criteria for classification as a uremic toxin. Zebrafish can be successfully used to explore uremic toxin effects.

  2. Dynamic Assembly of Brambleberry Mediates Nuclear Envelope Fusion during Early Development

    PubMed Central

    Abrams, Elliott W.; Zhang, Hong; Marlow, Florence L.; Kapp, Lee; Lu, Sumei; Mullins, Mary C.

    2012-01-01

    Summary To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, a mitotic intermediate wherein individual chromatin masses are surrounded by nuclear envelope, which then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion resulting in formation of multiple micronuclei. brambleberry is a previously unannotated gene homologous to Kar5p, which participates in nuclear fusion in yeast. We demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. As karyomeres form, Brambleberry localizes to the nuclear envelope with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. Our studies identify the first factor acting in karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres. PMID:22863006

  3. Phylogeny of zebrafish, a "model species," within Danio, a "model genus".

    PubMed

    McCluskey, Braedan M; Postlethwait, John H

    2015-03-01

    Zebrafish (Danio rerio) is an important model for vertebrate development, genomics, physiology, behavior, toxicology, and disease. Additionally, work on numerous Danio species is elucidating evolutionary mechanisms for morphological development. Yet, the relationships of zebrafish and its closest relatives remain unclear possibly due to incomplete lineage sorting, speciation with gene flow, and interspecies hybridization. To clarify these relationships, we first constructed phylogenomic data sets from 30,801 restriction-associated DNA (RAD)-tag loci (483,026 variable positions) with clear orthology to a single location in the sequenced zebrafish genome. We then inferred a well-supported species tree for Danio and tested for gene flow during the diversification of the genus. An approach independent of the sequenced zebrafish genome verified all inferred relationships. Although identification of the sister taxon to zebrafish has been contentious, multiple RAD-tag data sets and several analytical methods provided strong evidence for Danio aesculapii as the most closely related extant zebrafish relative studied to date. Data also displayed patterns consistent with gene flow during speciation and postspeciation introgression in the lineage leading to zebrafish. The incorporation of biogeographic data with phylogenomic analyses put these relationships in a phylogeographic context and supplied additional support for D. aesculapii as the sister species to D. rerio. The clear resolution of this study establishes a framework for investigating the evolutionary biology of Danio and the heterogeneity of genome evolution in the recent history of a model organism within an emerging model genus for genetics, development, and evolution. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Chemokine guided angiogenesis directs coronary vasculature formation in zebrafish

    PubMed Central

    Harrison, Michael R.M.; Bussmann, Jeroen; Huang, Ying; Zhao, Long; Osorio, Arthela; Burns, C. Geoffrey; Burns, Caroline E.; Sucov, Henry M.; Siekmann, Arndt F.; Lien, Ching-Ling

    2015-01-01

    SUMMARY Interruption of coronary blood supply severely impairs heart function with often-fatal consequences for heart disease patients. However the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine-signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults. PMID:26017769

  5. Can zebrafish be used as animal model to study Alzheimer's disease?

    PubMed Central

    Santana, Soraya; Rico, Eduardo P; Burgos, Javier S

    2012-01-01

    Zebrafish is rapidly emerging as a promising model organism to study various central nervous system (CNS) disorders, including Alzheimer’s disease (AD). AD is the main cause of dementia in the human population and there is an urgency to understand the causes of this neurodegenerative disease. In this respect, the development of new animal models to study the underlying neurodegenerative mechanisms of AD is an urgent need. In this review we analyze the current situation in the use of zebrafish as a model for AD, discussing the reasons to use this experimental paradigm in CNS investigation and analyzing the several strategies adopted to induce an AD-like pathology in zebrafish. We discuss the strategies of performing interventions to cause damage in the zebrafish brain by altering the major neurotransmitter systems (such as cholinergic, glutamatergic or GABAergic circuits). We also analyze the several transgenic zebrafish constructed for the AD study, discussing both the familial-AD models based on APP processing pathway (APP and presenilins) and in the TAU hyperphosphorylation, together with the genes involved in sporadic-AD, as apolipoprotein E. We conclude that zebrafish is in a preliminary stage of development in the AD field, and that the transgenic animals must be improved to use this fish as an optimal model for AD research. Furthermore, a deeper knowledge of the zebrafish brain and a better characterization of the injury caused by alterations in the major neurotransmitter systems are needed. PMID:23383380

  6. In vivo physiological recording from the lateral line of juvenile zebrafish.

    PubMed

    Olt, Jennifer; Allen, Claire E; Marcotti, Walter

    2016-10-01

    Zebrafish provide a unique opportunity to investigate in vivo sensory transduction in mature hair cells. We have developed a method for studying the biophysical properties of mature hair cells from the lateral line of juvenile zebrafish. The method involves application of the anaesthetic benzocaine and intubation to maintain ventilation and oxygenation through the gills. The same approach could be used for in vivo functional studies in other sensory and non-sensory systems from juvenile and adult zebrafish. Hair cells are sensory receptors responsible for transducing auditory and vestibular information into electrical signals, which are then transmitted with remarkable precision to afferent neurons. The zebrafish lateral line is emerging as an excellent in vivo model for genetic and physiological analysis of hair cells and neurons. However, research has been limited to larval stages because zebrafish become protected from the time of independent feeding under European law (from 5.2 days post-fertilization (dpf) at 28.5°C). In larval zebrafish, the functional properties of most of hair cells, as well as those of other excitable cells, are still immature. We have developed an experimental protocol to record electrophysiological properties from hair cells of the lateral line in juvenile zebrafish. We found that the anaesthetic benzocaine at 50 mg l(-1) was an effective and safe anaesthetic to use on juvenile zebrafish. Concentrations up to 300 mg l(-1) did not affect the electrical properties or synaptic vesicle release of juvenile hair cells, unlike the commonly used anaesthetic MS-222, which reduces the size of basolateral membrane K(+) currents. Additionally, we implemented a method to maintain gill movement, and as such respiration and blood oxygenation, via the intubation of > 21 dpf zebrafish. The combination of benzocaine and intubation provides an experimental platform to investigate the physiology of mature hair cells from live zebrafish. More

  7. Measuring zebrafish turning rate.

    PubMed

    Mwaffo, Violet; Butail, Sachit; di Bernardo, Mario; Porfiri, Maurizio

    2015-06-01

    Zebrafish is becoming a popular animal model in preclinical research, and zebrafish turning rate has been proposed for the analysis of activity in several domains. The turning rate is often estimated from the trajectory of the fish centroid that is output by commercial or custom-made target tracking software run on overhead videos of fish swimming. However, the accuracy of such indirect methods with respect to the turning rate associated with changes in heading during zebrafish locomotion is largely untested. Here, we compare two indirect methods for the turning rate estimation using the centroid velocity or position data, with full shape tracking for three different video sampling rates. We use tracking data from the overhead video recorded at 60, 30, and 15 frames per second of zebrafish swimming in a shallow water tank. Statistical comparisons of absolute turning rate across methods and sampling rates indicate that, while indirect methods are indistinguishable from full shape tracking, the video sampling rate significantly influences the turning rate measurement. The results of this study can aid in the selection of the video capture frame rate, an experimental design parameter in zebrafish behavioral experiments where activity is an important measure.

  8. Swim-Training Changes the Spatio-Temporal Dynamics of Skeletogenesis in Zebrafish Larvae (Danio rerio)

    PubMed Central

    Fiaz, Ansa W.; Léon-Kloosterziel, Karen M.; Gort, Gerrit; Schulte-Merker, Stefan; van Leeuwen, Johan L.; Kranenbarg, Sander

    2012-01-01

    Fish larvae experience many environmental challenges during development such as variation in water velocity, food availability and predation. The rapid development of structures involved in feeding, respiration and swimming increases the chance of survival. It has been hypothesized that mechanical loading induced by muscle forces plays a role in prioritizing the development of these structures. Mechanical loading by muscle forces has been shown to affect larval and embryonic bone development in vertebrates, but these investigations were limited to the appendicular skeleton. To explore the role of mechanical load during chondrogenesis and osteogenesis of the cranial, axial and appendicular skeleton, we subjected zebrafish larvae to swim-training, which increases physical exercise levels and presumably also mechanical loads, from 5 until 14 days post fertilization. Here we show that an increased swimming activity accelerated growth, chondrogenesis and osteogenesis during larval development in zebrafish. Interestingly, swim-training accelerated both perichondral and intramembranous ossification. Furthermore, swim-training prioritized the formation of cartilage and bone structures in the head and tail region as well as the formation of elements in the anal and dorsal fins. This suggests that an increased swimming activity prioritized the development of structures which play an important role in swimming and thereby increasing the chance of survival in an environment where water velocity increases. Our study is the first to show that already during early zebrafish larval development, skeletal tissue in the cranial, axial and appendicular skeleton is competent to respond to swim-training due to increased water velocities. It demonstrates that changes in water flow conditions can result into significant spatio-temporal changes in skeletogenesis. PMID:22529905

  9. INDUCED AND SPONTANEOUS NEOPLASIA IN ZEBRAFISH.

    EPA Science Inventory

    To address the potential of zebrafish as a cancer model, it is important to determine the susceptibility of zebrafish to tumors, and to compare zebrafish tumors with human tumors. To determine whether the commonly-used germ line mutagen, ethylnitrosourea (ENU) induces tumors, we ...

  10. The ADAMTS5 Metzincin Regulates Zebrafish Somite Differentiation

    PubMed Central

    Dancevic, Carolyn M.; Gibert, Yann; Smith, Adam D.; Ward, Alister C.; McCulloch, Daniel R.

    2018-01-01

    The ADAMTS5 metzincin, a secreted zinc-dependent metalloproteinase, modulates the extracellular matrix (ECM) during limb morphogenesis and other developmental processes. Here, the role of ADAMTS5 was investigated by knockdown of zebrafish adamts5 during embryogenesis. This revealed impaired Sonic Hedgehog (Shh) signaling during somite patterning and early myogenesis. Notably, synergistic regulation of myod expression by ADAMTS5 and Shh during somite differentiation was observed. These roles were not dependent upon the catalytic activity of ADAMTS5. These data identify a non-enzymatic function for ADAMTS5 in regulating an important cell signaling pathway that impacts on muscle development, with implications for musculoskeletal diseases in which ADAMTS5 and Shh have been associated. PMID:29518972

  11. Anxiogenic-like effects of chronic nicotine exposure in zebrafish.

    PubMed

    Stewart, Adam Michael; Grossman, Leah; Collier, Adam D; Echevarria, David J; Kalueff, Allan V

    2015-12-01

    Nicotine is one of the most widely used and abused legal drugs. Although its pharmacological profile has been extensively investigated in humans and rodents, nicotine CNS action remains poorly understood. The importance of finding evolutionarily conserved signaling pathways, and the need to apply high-throughput in vivo screens for CNS drug discovery, necessitate novel efficient experimental models for nicotine research. Zebrafish (Danio rerio) are rapidly emerging as an excellent organism for studying drug abuse, neuropharmacology and toxicology and have recently been applied to testing nicotine. Anxiolytic, rewarding and memory-modulating effects of acute nicotine treatment in zebrafish are consistently reported in the literature. However, while nicotine abuse is more relevant to long-term exposure models, little is known about chronic effects of nicotine on zebrafish behavior. In the present study, chronic 4-day exposure to 1-2mg/L nicotine mildly increased adult zebrafish shoaling but did not alter baseline cortisol levels. We also found that chronic exposure to nicotine evokes robust anxiogenic behavioral responses in zebrafish tested in the novel tank test paradigm. Generally paralleling clinical and rodent data on anxiogenic effects of chronic nicotine, our study supports the developing utility of zebrafish for nicotine research. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Myomaker mediates fusion of fast myocytes in zebrafish embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landemaine, Aurélie; Rescan, Pierre-Yves; Gabillard, Jean-Charles, E-mail: Jean-charles.gabillard@rennes.inra.fr

    2014-09-05

    Highlights: • Myomaker is transiently expressed in fast myocytes during embryonic myogenesis. • Myomaker is essential for fast myocyte fusion in zebrafish. • The function of myomaker is conserved among Teleostomi. - Abstract: Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they weremore » unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.« less

  13. Zebrafish heart failure models: opportunities and challenges.

    PubMed

    Shi, Xingjuan; Chen, Ru; Zhang, Yu; Yun, Junghwa; Brand-Arzamendi, Koroboshka; Liu, Xiangdong; Wen, Xiao-Yan

    2018-05-03

    Heart failure is a complex pathophysiological syndrome of pumping functional failure that results from injury, infection or toxin-induced damage on the myocardium, as well as genetic influence. Gene mutations associated with cardiomyopathies can lead to various pathologies of heart failure. In recent years, zebrafish, Danio rerio, has emerged as an excellent model to study human cardiovascular diseases such as congenital heart defects, cardiomyopathy, and preclinical development of drugs targeting these diseases. In this review, we will first summarize zebrafish genetic models of heart failure arose from cardiomyopathy, which is caused by mutations in sarcomere, calcium or mitochondrial-associated genes. Moreover, we outline zebrafish heart failure models triggered by chemical compounds. Elucidation of these models will improve the understanding of the mechanism of pathogenesis and provide potential targets for novel therapies.

  14. The neurogenetic frontier—lessons from misbehaving zebrafish

    PubMed Central

    Granato, Michael

    2008-01-01

    One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish. PMID:18836206

  15. Growth differentiation factor 9 and its spatiotemporal expression and regulation in the zebrafish ovary.

    PubMed

    Liu, Lin; Ge, Wei

    2007-02-01

    Growth differentiation factor 9 (GDF9) is a member of the transforming growth factor beta (TGFB) superfamily. As an oocyte-specific growth factor, GDF9 plays critical roles in controlling folliculogenesis in mammals. In the present study, we cloned a 2.1-kb cDNA of the zebrafish GDF9 homolog (Gdf9, gdf9), which shares approximately 60% homology with that of mammals in the mature region. RT-PCR analysis showed that zebrafish gdf9 expression was present only in the gonads and Northern blot analysis revealed a single transcript of about 2.0 kb in the ovary. Real-time RT-PCR analysis revealed that gdf9 expression was highest in primary growth (PG, stage I) follicles and gradually decreased during follicular development, with the lowest level being found in fully grown (FG) follicles. The expression of gdf9 was maintained through fertilization and early embryonic development until gastrulation, at which point the expression level dramatically decreased. Expression was barely detectable after the late gastrula stage. Within the follicle, gdf9 mRNA was localized exclusively in the oocytes, as demonstrated by RT-PCR of denuded oocytes and freshly isolated follicle layers as well as by in situ hybridization. Interestingly, when amplified for high numbers of cycles, the expression of gdf9 was detected in cultured zebrafish follicular cells that were free of oocytes. The expression of gdf9 was downregulated by hCG in both ovarian fragments and isolated follicles in dose- and time-dependent manners, and this inhibition appeared to be stage-dependent, with the strongest inhibition observed for the FG follicles and no effect seen for the PG follicles. This correlates well with the expression profile of the LH receptor (lhcgr) in zebrafish follicles. In conclusion, as an oocyte-derived growth factor, GDF9 is highly conserved across vertebrates. With its biological advantages, zebrafish provides an alternative model for studying gene function and regulation.

  16. High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope

    PubMed Central

    Blackburn, Jessica S; Liu, Sali; Raimondi, Aubrey R; Ignatius, Myron S; Salthouse, Christopher D; Langenau, David M

    2011-01-01

    Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis. PMID:21293462

  17. Specification of posterior midbrain region in zebrafish neuroepithelium.

    PubMed

    Miyagawa, T; Amanuma, H; Kuroiwa, A; Takeda, H

    1996-04-01

    The developing vertebrate nervous system displays a pronounced anterior-posterior (A-P) pattern, but the mechanism that generates this pattern is poorly understood. We examined through cell-transplantation experiments, when and how the cells in the zebrafish posterior midbrain acquire regional specificity along the A-P axis as shown by pax[b] gene expression. Labelled donor cells from the presumptive midbrain region at various stages were transplanted into more anterior part of unlabelled host embryos of the same developmental stage, and the expression of pax[b] in the donor cells were examined by in situ hybridization. The results indicated that, in the cells from the presumptive midbrain region, expression of pax[b] was determined as early as the 55%-epiboly (6.5 h, early gastrulation) when the underlying hypoblastic layer reached the presumptive midbrain region. We also found that when transplanted heterotopically, anterior, but not posterior, hypoblast cells induced expression of pax[b] in the overlying ectoderm. Expression of a midbrain specific gene is determined during early gastrulation and the hypoblastic layer plays an important role in this determination process.

  18. Development of a quantitative morphological assessment of toxicant-treated zebrafish larvae using brightfield imaging and high-content analysis.

    PubMed

    Deal, Samantha; Wambaugh, John; Judson, Richard; Mosher, Shad; Radio, Nick; Houck, Keith; Padilla, Stephanie

    2016-09-01

    One of the rate-limiting procedures in a developmental zebrafish screen is the morphological assessment of each larva. Most researchers opt for a time-consuming, structured visual assessment by trained human observer(s). The present studies were designed to develop a more objective, accurate and rapid method for screening zebrafish for dysmorphology. Instead of the very detailed human assessment, we have developed the computational malformation index, which combines the use of high-content imaging with a very brief human visual assessment. Each larva was quickly assessed by a human observer (basic visual assessment), killed, fixed and assessed for dysmorphology with the Zebratox V4 BioApplication using the Cellomics® ArrayScan® V(TI) high-content image analysis platform. The basic visual assessment adds in-life parameters, and the high-content analysis assesses each individual larva for various features (total area, width, spine length, head-tail length, length-width ratio, perimeter-area ratio). In developing the computational malformation index, a training set of hundreds of embryos treated with hundreds of chemicals were visually assessed using the basic or detailed method. In the second phase, we assessed both the stability of these high-content measurements and its performance using a test set of zebrafish treated with a dose range of two reference chemicals (trans-retinoic acid or cadmium). We found the measures were stable for at least 1 week and comparison of these automated measures to detailed visual inspection of the larvae showed excellent congruence. Our computational malformation index provides an objective manner for rapid phenotypic brightfield assessment of individual larva in a developmental zebrafish assay. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Flat mount preparation for observation and analysis of zebrafish embryo specimens stained by whole mount in situ hybridization.

    PubMed

    Cheng, Christina N; Li, Yue; Marra, Amanda N; Verdun, Valerie; Wingert, Rebecca A

    2014-07-17

    The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples.

  20. Flat Mount Preparation for Observation and Analysis of Zebrafish Embryo Specimens Stained by Whole Mount In situ Hybridization

    PubMed Central

    Cheng, Christina N.; Li, Yue; Marra, Amanda N.; Verdun, Valerie; Wingert, Rebecca A.

    2014-01-01

    The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples. PMID:25078510

  1. An individual-based model of zebrafish population dynamics accounting for energy dynamics.

    PubMed

    Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R R

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level.

  2. Ethanol Exposure Causes Muscle Degeneration in Zebrafish

    PubMed Central

    Coffey, Elizabeth C.; Pasquarella, Maggie E.; Goody, Michelle F.

    2018-01-01

    Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA), which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle. PMID:29615556

  3. Anesthesia and euthanasia in zebrafish.

    PubMed

    Matthews, Monte; Varga, Zoltán M

    2012-01-01

    Because of the relative ease of embryonic manipulation and observation, the ability to produce a great number of genetic mutations, efficient screening methods, and the continued advance of molecular genetic tools, such as the progress in sequencing and mapping of the zebrafish genome, the use of zebrafish (Danio rerio) as a biomedical model organism continues to expand. However, studies involving zebrafish husbandry and veterinary care struggle to keep pace with scientific progress. This article outlines some of the current, acceptable methods for providing anesthesia and euthanasia and provides some examples of how performance-based approaches can be used to advance the relatively limited number of anesthetic and euthanizing techniques available for zebrafish.

  4. Blockade of lipid accumulation by silibinin in adipocytes and zebrafish.

    PubMed

    Suh, Hyung Joo; Cho, So Young; Kim, Eun Young; Choi, Hyeon-Son

    2015-02-05

    Silibinin is a compound present mainly in milk thistle. In this study, we investigated the mechanism by which silibinin suppresses adipogenesis of 3T3-L1 cells, and evaluated the anti-adipogenic effect of silibinin in zebrafish. Silibinin reduced lipid accumulation by downregulating adipogenic factors, such as, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer binding protein α (C/EBPα), and fatty acid-binding protein 4 (FABP4). The reduction of these adipogenic protein levels was associated with the regulation of early adipogenic factors, such as, C/EBPβ and Krüppel-like factor 2 (KLF2), and was reflected in downregulation of lipid synthetic enzymes. Silibinin arrested cells in the G0/G1 phase of the cell cycle, accompanied by downregulation of cyclins and upregulation of p27, a cell cycle inhibitor. These results correlated with the finding of deactivation of extracellular signal-regulated kinase (ERK) and AKT, a serine/threonine-specific kinase. In addition, silibinin activated AMP-activated protein kinase α (AMPKα) to inhibit fatty acid synthesis. As observed in 3T3-L1 cells, silibinin inhibited lipid accumulation in zebrafish with the reduction of adipogenic factors and triglyceride levels. Our data revealed that silibinin inhibited lipid accumulation in 3T3-L1 cells and zebrafish, and this inhibitory effect was associated with abrogation of early adipogenesis via regulation of cell cycle and AMPKα signaling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Involvement of Lypge in the formation of eye and pineal gland in zebrafish.

    PubMed

    Ji, Dongrui; Wang, Su; Li, Mingyue; Zhang, Shicui; Li, Hongyan

    2018-02-05

    The proteins of Ly-6 (lymphocyte antigen-6) family are involved in the regulation of immunoreaction, cell migration and adhesion, and neuronal excitability. However, little is known about the function of Ly-6 proteins in embryogenesis. Herein, we identified a GPI anchored Ly-6 member named ly6 expressed in pineal gland and eye (lypge). Dynamic expression pattern of lypge was revealed by whole mount in situ hybridization. It was strikingly expressed in the pineal gland and cone photoreceptor, and its expression was regulated by orthodenticle homolog 5 (otx5) which has been shown to control the expression of many pineal genes. In addition, we demonstrated that lypge was rhythmically expressed in larvae from 4dpf on. Moreover, knockdown of lypge resulted in small head and small eye formed in zebrafish embryos. These suggest that Lypge is involved in the formation of the eye and pineal gland in early development of zebrafish. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A temperature-sensitive mutation in the nodal-related gene cyclops reveals that the floor plate is induced during gastrulation in zebrafish.

    PubMed

    Tian, Jing; Yam, Caleb; Balasundaram, Gayathri; Wang, Hui; Gore, Aniket; Sampath, Karuna

    2003-07-01

    The floor plate, a specialized group of cells in the ventral midline of the neural tube of vertebrates, plays crucial roles in patterning the central nervous system. Recent work from zebrafish, chick, chick-quail chimeras and mice to investigate the development of the floor plate have led to several models of floor-plate induction. One model suggests that the floor plate is formed by inductive signalling from the notochord to the overlying neural tube. The induction is thought to be mediated by notochord-derived Sonic hedgehog (Shh), a secreted protein, and requires direct cellular contact between the notochord and the neural tube. Another model proposes a role for the organizer in generating midline precursor cells that produce floor plate cells independent of notochord specification, and proposes that floor plate specification occurs early, during gastrulation. We describe a temperature-sensitive mutation that affects the zebrafish Nodal-related secreted signalling factor, Cyclops, and use it to address the issue of when the floor plate is induced in zebrafish. Zebrafish cyclops regulates the expression of shh in the ventral neural tube. Although null mutations in cyclops result in the lack of the medial floor plate, embryos homozygous for the temperature-sensitive mutation have floor plate cells at the permissive temperature and lack floor plate cells at the restrictive temperature. We use this mutant allele in temperature shift-up and shift-down experiments to answer a central question pertaining to the timing of vertebrate floor plate induction. Abrogation of Cyc/Nodal signalling in the temperature-sensitive mutant embryos at various stages indicates that the floor plate in zebrafish is induced early in development, during gastrulation. In addition, continuous Cyclops signalling is required through gastrulation for a complete ventral neural tube throughout the length of the neuraxis. Finally, by modulation of Nodal signalling levels in mutants and in ectopic

  7. Expression of sall4 in taste buds of zebrafish.

    PubMed

    Jackson, Robyn; Braubach, Oliver R; Bilkey, Jessica; Zhang, Jing; Akimenko, Marie-Andrée; Fine, Alan; Croll, Roger P; Jonz, Michael G

    2013-07-01

    We characterized the expression of sall4, a gene encoding a zinc finger transcription factor involved in the maintenance of embryonic stem cells, in taste buds of zebrafish (Danio rerio). Using an enhancer trap line (ET5), we detected enhanced green fluorescent protein (EGFP) in developing and adult transgenic zebrafish in regions containing taste buds: the lips, branchial arches, and the nasal and maxillary barbels. Localization of EGFP to taste cells of the branchial arches and lips was confirmed by co-immunolabeling with antibodies against calretinin and serotonin, and a zebrafish-derived neuronal marker (zn-12). Transgenic insertion of the ET construct into the zebrafish genome was evaluated and mapped to chromosome 23 in proximity (i.e. 23 kb) to the sall4 gene. In situ hybridization and expression analysis between 24 and 96 h post-fertilization (hpf) demonstrated that transgenic egfp expression in ET5 zebrafish was correlated with the spatial and temporal pattern of expression of sall4 in the wild-type. Expression was first observed in the central nervous system and branchial arches at 24 hpf. At 48 hpf, sall4 and egfp expression was observed in taste bud primordia surrounding the mouth and branchial arches. At 72 and 96 hpf, expression was detected in the upper and lower lips and branchial arches. Double fluorescence in situ hybridization at 3 and 10 dpf confirmed colocalization of sall4 and egfp in the lips and branchial arches. These studies reveal sall4 expression in chemosensory cells and implicate this transcription factor in the development and renewal of taste epithelia in zebrafish. Copyright © 2013 Wiley Periodicals, Inc.

  8. An automated device for appetitive conditioning in zebrafish (Danio rerio).

    PubMed

    Manabe, Kazuchika; Dooling, R J; Takaku, Shinichi

    2013-12-01

    An automated device and a procedure for the operant conditioning individual zebrafish were developed. The key feature of this procedure was the construction of a simple, inexpensive feeder that can deliver extremely small amounts of food, thus preventing rapid satiation. This allows the experimenter to run multiple trails in a single test session and multiple sessions in one day. In addition, small response keys made from acryl rods and fiber sensors were developed that were sufficiently sensitive to detect fish contact. To illustrate the efficiency and utility of the device for traditional learning paradigms, we trained zebrafish in a fixed ratio schedule where subjects were reinforced with food after 10 responses. Zebrafish reliably responded on the response key for sessions that lasted as long 80-reinforcements. They also showed the traditional "break and run" response pattern that has been found in many species. These results show that this system will be valuable for behavioral studies with zebrafish, especially for experiments that need many repeated trials using food reinforcer in a session. The present system can be used for sensory and learning investigations, as well applications in behavioral pharmacology, behavioral genetics, and toxicology where the zebrafish is becoming the vertebrate model of choice.

  9. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish.

    PubMed

    Egan, Rupert J; Bergner, Carisa L; Hart, Peter C; Cachat, Jonathan M; Canavello, Peter R; Elegante, Marco F; Elkhayat, Salem I; Bartels, Brett K; Tien, Anna K; Tien, David H; Mohnot, Sopan; Beeson, Esther; Glasgow, Eric; Amri, Hakima; Zukowska, Zofia; Kalueff, Allan V

    2009-12-14

    The zebrafish (Danio rerio) is emerging as a promising model organism for experimental studies of stress and anxiety. Here we further validate zebrafish models of stress by analyzing how environmental and pharmacological manipulations affect their behavioral and physiological phenotypes. Experimental manipulations included exposure to alarm pheromone, chronic exposure to fluoxetine, acute exposure to caffeine, as well as acute and chronic exposure to ethanol. Acute (but not chronic) alarm pheromone and acute caffeine produced robust anxiogenic effects, including reduced exploration, increased erratic movements and freezing behavior in zebrafish tested in the novel tank diving test. In contrast, ethanol and fluoxetine had robust anxiolytic effects, including increased exploration and reduced erratic movements. The behavior of several zebrafish strains was also quantified to ascertain differences in their behavioral profiles, revealing high-anxiety (leopard, albino) and low-anxiety (wild type) strains. We also used LocoScan (CleverSys Inc.) video-tracking tool to quantify anxiety-related behaviors in zebrafish, and dissect anxiety-related phenotypes from locomotor activity. Finally, we developed a simple and effective method of measuring zebrafish physiological stress responses (based on a human salivary cortisol assay), and showed that alterations in whole-body cortisol levels in zebrafish parallel behavioral indices of anxiety. Collectively, our results confirm zebrafish as a valid, reliable, and high-throughput model of stress and affective disorders.

  10. Maintenance of Zebrafish Lines at the European Zebrafish Resource Center.

    PubMed

    Geisler, Robert; Borel, Nadine; Ferg, Marco; Maier, Jana Viktoria; Strähle, Uwe

    2016-07-01

    We have established a European Zebrafish Resource Center (EZRC) at the KIT. This center not only maintains and distributes a large number of existing mutant and transgenic zebrafish lines but also gives zebrafish researchers access to screening services and technologies such as imaging and high-throughput sequencing, provided by the Institute of Toxicology and Genetics (ITG). The EZRC maintains and distributes the stock collection of the Nüsslein-Volhard laboratory, comprising over 2000 publicly released mutations, as frozen sperm samples. Within the framework of the ZF-HEALTH EU project, the EZRC distributes over 10,000 knockout mutations from the Sanger Institute (United Kingdom), as well as over 100 mutant and transgenic lines from other sources. In this article, we detail the measures we have taken to ensure the health of our fish, including hygiene, quarantine, and veterinary inspections.

  11. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Lifeng; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029; Zhou, Yong

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes andmore » nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.« less

  12. Behavioral and Molecular Analysis of Nicotine-Conditioned Place Preference in Zebrafish

    PubMed Central

    Kedikian, Ximena; Faillace, Maria Paula; Bernabeu, Ramón

    2013-01-01

    Studies using mice and rats have demonstrated that nicotine induces a conditioned place preference (CPP), with more effective results obtained by using biased procedures. Zebrafish have also been used as a model system to identify factors influencing nicotine-associated reward by using an unbiased design. Here, we report that zebrafish exhibited putative nicotine biased CPP to an initially aversive compartment (nicotine-paired group). A counterbalanced nicotine-exposed control group did not show a significant preference shift, providing evidence that the preference shift in the nicotine-paired group was not due to a reduction of aversion for this compartment. Zebrafish preference was corroborated by behavioral analysis of several indicators of drug preference, such as time spent in the drug-paired side, number of entries to the drug-paired side, and distance traveled. These results provided strong evidence that zebrafish may actually develop a preference for nicotine, although the drug was administrated in an aversive place for the fish, which was further supported by molecular studies. Reverse transcription-quantitative real-time PCR analysis depicted a significant increase in the expression of α7 and α6 but not α4 and β2 subunits of the nicotinic receptor in nicotine-paired zebrafish brains. In contrast, zebrafish brains from the counterbalanced nicotine group showed no significant changes. Moreover, CREB phosphorylation, an indicator of neural activity, accompanied the acquisition of nicotine-CPP. Our studies offered an incremental value to the drug addiction field, because they further describe behavioral features of CPP to nicotine in zebrafish. The results suggested that zebrafish exposed to nicotine in an unfriendly environment can develop a preference for that initially aversive place, which is likely due to the rewarding effect of nicotine. Therefore, this model can be used to screen exogenous and endogenous molecules involved in nicotine

  13. HCV IRES-Mediated Core Expression in Zebrafish

    PubMed Central

    Zhang, Jing-Pu; Hu, Zhan-Ying; Tong, Jun-Wei; Ding, Cun-Bao; Peng, Zong-Gen; Zhao, Li-Xun; Song, Dan-Qing; Jiang, Jian-Dong

    2013-01-01

    The lack of small animal models for hepatitis C virus has impeded the discovery and development of anti-HCV drugs. HCV-IRES plays an important role in HCV gene expression, and is an attractive target for antiviral therapy. In this study, we report a zebrafish model with a biscistron expression construct that can co-transcribe GFP and HCV-core genes by human hepatic lipase promoter and zebrafish liver fatty acid binding protein enhancer. HCV core translation was designed mediated by HCV-IRES sequence and gfp was by a canonical cap-dependent mechanism. Results of fluorescence image and in situ hybridization indicate that expression of HCV core and GFP is liver-specific; RT-PCR and Western blotting show that both core and gfp expression are elevated in a time-dependent manner for both transcription and translation. It means that the HCV-IRES exerted its role in this zebrafish model. Furthermore, the liver-pathological impact associated with HCV-infection was detected by examination of gene markers and some of them were elevated, such as adiponectin receptor, heparanase, TGF-β, PDGF-α, etc. The model was used to evaluate three clinical drugs, ribavirin, IFNα-2b and vitamin B12. The results show that vitamin B12 inhibited core expression in mRNA and protein levels in dose-dependent manner, but failed to impact gfp expression. Also VB12 down-regulated some gene transcriptions involved in fat liver, liver fibrosis and HCV-associated pathological process in the larvae. It reveals that HCV-IRES responds to vitamin B12 sensitively in the zebrafish model. Ribavirin did not disturb core expression, hinting that HCV-IRES is not a target site of ribavirin. IFNα-2b was not active, which maybe resulted from its degradation in vivo for the long time. These findings demonstrate the feasibility of the zebrafish model for screening of anti-HCV drugs targeting to HCV-IRES. The zebrafish system provides a novel evidence of using zebrafish as a HCV model organism. PMID:23469178

  14. Female reproductive impacts of dietary methylmercury in yellow perch (Perca flavescens) and zebrafish (Danio rerio).

    PubMed

    DeBofsky, Abigail R; Klingler, Rebekah H; Mora-Zamorano, Francisco X; Walz, Marcus; Shepherd, Brian; Larson, Jeremy K; Anderson, David; Yang, Luobin; Goetz, Frederick; Basu, Niladri; Head, Jessica; Tonellato, Peter; Armstrong, Brandon M; Murphy, Cheryl; Carvan, Michael J

    2018-03-01

    The purpose of this study was to evaluate the effects of environmentally relevant dietary MeHg exposures on adult female yellow perch (Perca flavescens) and female zebrafish (Danio rerio) ovarian development and reproduction. Yellow perch were used in the study for their socioeconomic and ecological importance within the Great Lakes basin, and the use of zebrafish allowed for a detailed analysis of the molecular effects of MeHg following a whole life-cycle exposure. Chronic whole life dietary exposure of F 1 zebrafish to MeHg mimics realistic wildlife exposure scenarios, and the twenty-week adult yellow perch exposure (where whole life-cycle exposures are difficult) captures early seasonal ovarian development. For both species, target dietary accumulation values were achieved prior to analyses. In zebrafish, several genes involved in reproductive processes were shown to be dysregulated by RNA-sequencing and quantitative real-time polymerase chain reaction (QPCR), but no significant phenotypic changes were observed regarding ovarian staging, fecundity, or embryo mortality. Yellow perch were exposed to dietary MeHg for 12, 16, or 20 weeks. In this species, a set of eight genes were assessed by QPCR in the pituitary, liver, and ovary, and no exposure-related changes were observed. The lack of genomic resources in yellow perch hinders the characterization of subtle molecular impacts. The ovarian somatic index, circulating estradiol and testosterone, and ovarian staging were not significantly altered by MeHg exposure in yellow perch. These results suggest that environmentally relevant MeHg exposures do not drastically reduce the reproductively important endpoints in these fish, but to capture realistic exposure scenarios, whole life-cycle yellow perch exposures are needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Gonad development and vitellogenin production in zebrafish (Danio rerio) exposed to ethinylestradiol and methyltestosterone.

    PubMed

    Orn, Stefan; Holbech, Henrik; Madsen, Trine H; Norrgren, Leif; Petersen, Gitte I

    2003-12-10

    In a partial life-cycle test, the impact of 17alpha-ethinylestradiol (EE2) and 17alpha-methyltestosterone (MT) on juvenile zebrafish was evaluated by use of vitellogenin measurements and gonadal development. Exposure to EE2 (1-25 ng/l) resulted in a dose-dependent increase in vitellogenin production starting at 2 ng/l. Significant changes in sex ratios in female direction were detected at 1 ng/l, with complete sex reversal taking place after exposure to 2 ng/l. No intersex fish were observed after exposure to EE2. Exposure to MT resulted in decreased vitellogenin concentrations. Complete sex reversal was detected in all MT concentrations used (26-1000 ng/l). A large proportion of intersex fish was observed after exposure to 1000 ng MT/l. The period of gonadal sex reversal in non-exposed zebrafish was also studied. The main morphological features of the transformation of ovaries into testis were observed 4-5 weeks after hatching.

  16. Dynamic assembly of brambleberry mediates nuclear envelope fusion during early development.

    PubMed

    Abrams, Elliott W; Zhang, Hong; Marlow, Florence L; Kapp, Lee; Lu, Sumei; Mullins, Mary C

    2012-08-03

    To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, mitotic intermediates wherein individual chromatin masses are surrounded by nuclear envelope; the karyomeres then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion, resulting in formation of multiple micronuclei. As karyomeres form, Brambleberry protein localizes to the nuclear envelope, with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. brambleberry corresponds to an unannotated gene with similarity to Kar5p, a protein that participates in nuclear fusion in yeast. We also demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. Our studies provide insight into the machinery required for karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Midline signals regulate retinal neurogenesis in zebrafish.

    PubMed

    Masai, I; Stemple, D L; Okamoto, H; Wilson, S W

    2000-08-01

    In zebrafish, neuronal differentiation progresses across the retina in a pattern that is reminiscent of the neurogenic wave that sweeps across the developing eye in Drosophila. We show that expression of a zebrafish homolog of Drosophila atonal, ath5, sweeps across the eye predicting the wave of neuronal differentiation. By analyzing the regulation of ath5 expression, we have elucidated the mechanisms that regulate initiation and spread of neurogenesis in the retina. ath5 expression is lost in Nodal pathway mutant embryos lacking axial tissues that include the prechordal plate. A likely role for axial tissue is to induce optic stalk cells that subsequently regulate ath5 expression. Our results suggest that a series of inductive events, initiated from the prechordal plate and progressing from the optic stalks, regulates the spread of neuronal differentiation across the zebrafish retina.

  18. Random Walk of Single Gold Nanoparticles in Zebrafish Embryos Leading to Stochastic Toxic Effects on Embryonic Developments

    PubMed Central

    Browning, Lauren M.; Lee, Kerry J.; Huang, Tao; Nallathamby, Prakash D.; Lowman, Jill E.; Xu, Xiao-Hong Nancy

    2010-01-01

    We have synthesized and characterized stable (non-aggregation, non-photobleaching and non-blinking), nearly monodisperse and highly-purified Au nanoparticles, and used them to probe transport of cleavage-stage zebrafish embryos and to study their effects on embryonic development in real time. We found that single Au nanoparticles (11.6 ± 0.9 nm in diameter) passively diffused into chorionic space of the embryos via their chorionic-pore-canals and continued their random-walk through chorionic space and into inner mass of embryos. Diffusion coefficients of single nanoparticles vary dramatically (2.8×10-11 to 1.3×10-8 cm2/s) as nanoparticles diffuse through various parts of embryos, suggesting highly diverse transport barriers and viscosity gradients of embryos. The amount of Au nanoparticles accumulated in embryos increase with its concentration. Interestingly, their effects on embryonic development are not proportionally related to the concentration. Majority of embryos (74% on average) incubated chronically with 0.025-1.2 nM Au nanoparticles for 120 h developed to normal zebrafish, with some (24%) being dead and few (2%) deformed. We developed a new approach to image and characterize individual Au nanoparticles embedded in tissues using histology sample preparation methods and LSRP spectra of single nanoparticles. We found that Au nanoparticles in various parts of normally developed and deformed zebrafish, suggesting that random-walk of nanoparticles in embryos during their development might have led to stochastic effects on embryonic development. These results show that Au nanoparticles are much more biocompatible (less toxic) to the embryos than Ag nanoparticles that we reported previously, suggesting that they are better suited as biocompatible probes for imaging embryos in vivo. The results provide powerful evidences that biocompatibility and toxicity of nanoparticles highly depend on their chemical properties, and the embryos can serve as effective in

  19. Behavioral and biochemical adjustments of the zebrafish Danio rerio exposed to the β-blocker propranolol.

    PubMed

    Mitchell, Kimberly M; Moon, Thomas W

    2016-09-01

    Propranolol (PROP) is a β-blocker prescribed mainly to treat human cardiovascular diseases and as a result of its wide usage and persistence, it is reported in aquatic environments. This study examined whether PROP alters developmental patterns and catecholamine (CA)-regulated processes in the zebrafish (Danio rerio) and if exposure during early life alters the stress response and behaviors of adults. The calculated 48h larva LC50 was 21.6mg/L, well above reported environmental levels (0.01-0.59μg/L). Stressed and PROP-exposed adult zebrafish had reduced testosterone and estradiol levels and exhibited behaviors indicating less anxiety than control fish. Furthermore, adults previously PROP-exposed as embryos/larvae had decreased growth in terms of body length and mass. Finally, these adults showed increased cholesterol and a dose-dependent decrease in testosterone levels compared with unexposed zebrafish. Thus PROP-exposure of zebrafish embryos/larvae alters developmental patterns and CA-regulated processes that may affect normal behaviors and responses to stressors, and at least some of these changes persist in the adult zebrafish. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Moderate alcohol exposure during early brain development increases stimulus-response habits in adulthood.

    PubMed

    Parker, Matthew O; Evans, Alexandra M-D; Brock, Alistair J; Combe, Fraser J; Teh, Muy-Teck; Brennan, Caroline H

    2016-01-01

    Exposure to alcohol during early central nervous system development has been shown variously to affect aspects of physiological and behavioural development. In extreme cases, this can extend to craniofacial defects, severe developmental delay and mental retardation. At more moderate levels, subtle differences in brain morphology and behaviour have been observed. One clear effect of developmental alcohol exposure is an increase in the propensity to develop alcoholism and other addictions. The mechanisms by which this occurs, however, are not currently understood. In this study, we tested the hypothesis that adult zebrafish chronically exposed to moderate levels of ethanol during early brain ontogenesis would show an increase in conditioned place preference for alcohol and an increased propensity towards habit formation, a key component of drug addiction in humans. We found support for both of these hypotheses and found that the exposed fish had changes in mRNA expression patterns for dopamine receptor, nicotinic acetylcholine receptor and μ-opioid receptor encoding genes. Collectively, these data show an explicit link between the increased proclivity for addiction and addiction-related behaviour following exposure to ethanol during early brain development and alterations in the neural circuits underlying habit learning. © 2014 Society for the Study of Addiction.

  1. Determining Zebrafish Epitope Reactivity to Commercially Available Antibodies.

    PubMed

    Villarreal, Michael A; Biediger, Nicole M; Bonner, Natalie A; Miller, Jennifer N; Zepeda, Samantha K; Ricard, Benjamin J; García, Dana M; Lewis, Karen A

    2017-08-01

    Antibodies raised against mammalian proteins may exhibit cross-reactivity with zebrafish proteins, making these antibodies useful for fish studies. However, zebrafish may express multiple paralogues of similar sequence and size, making them difficult to distinguish by traditional Western blot analysis. To identify the zebrafish proteins that are recognized by an antimammalian antibody, we developed a system to screen putative epitopes by cloning the sequences between the yeast SUMO protein and a C-terminal 6xHis tag. The recombinant fusion protein was expressed in Escherichia coli and analyzed by Western blot to conclusively identify epitopes that exhibit cross-reactivity with the antibodies of interest. This approach can be used to determine the species cross-reactivity and epitope specificity of a wide variety of peptide antigen-derived antibodies.

  2. GLUT2-mediated glucose uptake and availability are required for embryonic brain development in zebrafish.

    PubMed

    Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V

    2015-01-01

    Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing.

  3. Electroretinogram analysis of the visual response in zebrafish larvae.

    PubMed

    Chrispell, Jared D; Rebrik, Tatiana I; Weiss, Ellen R

    2015-03-16

    The electroretinogram (ERG) is a noninvasive electrophysiological method for determining retinal function. Through the placement of an electrode on the surface of the cornea, electrical activity generated in response to light can be measured and used to assess the activity of retinal cells in vivo. This manuscript describes the use of the ERG to measure visual function in zebrafish. Zebrafish have long been utilized as a model for vertebrate development due to the ease of gene suppression by morpholino oligonucleotides and pharmacological manipulation. At 5-10 dpf, only cones are functional in the larval retina. Therefore, the zebrafish, unlike other animals, is a powerful model system for the study of cone visual function in vivo. This protocol uses standard anesthesia, micromanipulation and stereomicroscopy protocols that are common in laboratories that perform zebrafish research. The outlined methods make use of standard electrophysiology equipment and a low light camera to guide the placement of the recording microelectrode onto the larval cornea. Finally, we demonstrate how a commercially available ERG stimulator/recorder originally designed for use with mice can easily be adapted for use with zebrafish. ERG of larval zebrafish provides an excellent method of assaying cone visual function in animals that have been modified by morpholino oligonucleotide injection as well as newer genome engineering techniques such as Zinc Finger Nucleases (ZFNs), Transcription Activator-Like Effector Nucleases (TALENs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9, all of which have greatly increased the efficiency and efficacy of gene targeting in zebrafish. In addition, we take advantage of the ability of pharmacological agents to penetrate zebrafish larvae to evaluate the molecular components that contribute to the photoresponse. This protocol outlines a setup that can be modified and used by researchers with various experimental goals.

  4. Whole-body and multispectral photoacoustic imaging of adult zebrafish

    NASA Astrophysics Data System (ADS)

    Huang, Na; Xi, Lei

    2016-10-01

    Zebrafish is a top vertebrate model to study developmental biology and genetics, and it is becoming increasingly popular for studying human diseases due to its high genome similarity to that of humans and the optical transparency in embryonic stages. However, it becomes difficult for pure optical imaging techniques to volumetric visualize the internal organs and structures of wild-type zebrafish in juvenile and adult stages with excellent resolution and penetration depth. Even with the establishment of mutant lines which remain transparent over the life cycle, it is still a challenge for pure optical imaging modalities to image the whole body of adult zebrafish with micro-scale resolution. However, the method called photoacoustic imaging that combines all the advantages of the optical imaging and ultrasonic imaging provides a new way to image the whole body of the zebrafish. In this work, we developed a non-invasive photoacoustic imaging system with optimized near-infrared illumination and cylindrical scanning to image the zebrafish. The lateral and axial resolution yield to 80 μm and 600 μm, respectively. Multispectral strategy with wavelengths from 690 nm to 930 nm was employed to image various organs inside the zebrafish. From the reconstructed images, most major organs and structures inside the body can be precisely imaged. Quantitative and statistical analysis of absorption for organs under illumination with different wavelengths were carried out.

  5. Investigating the Flow and Biomechanics of the Embryonic Zebrafish Heart

    NASA Astrophysics Data System (ADS)

    Johnson, Brennan; Garrity, Deborah; Dasi, Lakshmi

    2010-11-01

    Understanding flow and kinematic characteristics of the embryonic heart is a prerequisite to devise early intervention or detection methods in the context of congenital heart defects. In this study, the kinematics and fluid dynamics of the embryonic zebrafish heart were analyzed through the early stages of cardiac development (24-48 hours post-fertilization) in vivo using optical microscopy and high-speed video. Endocardial walls and individual blood cells were segmented from raw images and were tracked through the cardiac cycle. Particle tracking velocimetry analysis yielded quantitative blood cell velocity field, chamber volume, and flow rate information. It was seen that the pumping mechanism starts as a combined peristaltic and suction pump while the heart is in the tube configuration and transforms into a positive displacement pump after cardiac looping. Strong two-phase nature of the fluid is evident. This work provides us new understanding of the spatio-temporal characteristics of kinematics and blood cell velocity field inside the developing heart.

  6. Nom1 Mediates Pancreas Development by Regulating Ribosome Biogenesis in Zebrafish

    PubMed Central

    Qin, Wei; Chen, Zelin; Zhang, Yihan; Yan, Ruibin; Yan, Guanrong; Li, Song; Zhong, Hanbing; Lin, Shuo

    2014-01-01

    Ribosome biogenesis is an important biological process for proper cellular function and development. Defects leading to improper ribosome biogenesis can cause diseases such as Diamond-Blackfan anemia and Shwachman-Bodian-Diamond syndrome. Nucleolar proteins are a large family of proteins and are involved in many cellular processes, including the regulation of ribosome biogenesis. Through a forward genetic screen and positional cloning, we identified and characterized a zebrafish line carrying mutation in nucleolar protein with MIF4G domain 1 (nom1), which encodes a conserved nulceolar protein with a role in pre-rRNA processing. Zebrafish nom1 mutants exhibit major defects in endoderm development, especially in exocrine pancreas. Further studies revealed that impaired proliferation of ptf1a-expressing pancreatic progenitor cells mainly contributed to the phenotype. RNA-seq and molecular analysis showed that ribosome biogenesis and pre-mRNA splicing were both affected in the mutant embryos. Several defects of ribosome assembly have been shown to have a p53-dependent mechanism. In the nom1 mutant, loss of p53 did not rescue the pancreatic defect, suggesting a p53-independent role. Further studies indicate that protein phosphatase 1 alpha, an interacting protein to Nom1, could partially rescue the pancreatic defect in nom1 morphants if a human nucleolar localization signal sequence was artificially added. This suggests that targeting Pp1α into the nucleolus by Nom1 is important for pancreatic proliferation. Altogether, our studies revealed a new mechanism involving Nom1 in controlling vertebrate exocrine pancreas formation. PMID:24967912

  7. Stimulus-triggered enhancement of chilling tolerance in zebrafish embryos

    PubMed Central

    Szabó, Katalin; Budai, Csilla; Losonczi, Eszter; Bernáth, Gergely; Csenki-Bakos, Zsolt; Urbányi, Béla; Pribenszky, Csaba; Horváth, Ákos; Cserepes, Judit

    2017-01-01

    Background Cryopreservation of zebrafish embryos is still an unsolved problem despite market demand and massive efforts to preserve genetic variation among numerous existing lines. Chilled storage of embryos might be a step towards developing successful cryopreservation, but no methods to date have worked. Methods In the present study, we applied a novel strategy to improve the chilling tolerance of zebrafish embryos by introducing a preconditioning hydrostatic pressure treatment to the embryos. In our experiments, 26-somites and Prim-5 stage zebrafish embryos were chilled at 0°C for 24 hours after preconditioning. Embryo survival rate, ability to reach maturation and fertilizing capacity were tested. Results Our results indicate that applied preconditioning technology made it possible for the chilled embryos to develop normally until maturity, and to produce healthy offspring as normal, thus passing on their genetic material successfully. Treated embryos had a significantly higher survival and better developmental rate, moreover the treated group had a higher ratio of normal morphology during continued development. While all controls from chilled embryos died by 30 day-post-fertilization, the treated group reached maturity (~90–120 days) and were able to reproduce, resulting in offspring in expected quantity and quality. Conclusions Based on our results, we conclude that the preconditioning technology represents a significant improvement in zebrafish embryo chilling tolerance, thus enabling a long-time survival. Furthermore, as embryonic development is arrested during chilled storage this technology also provides a solution to synchronize or delay the development. PMID:28166301

  8. An Individual-Based Model of Zebrafish Population Dynamics Accounting for Energy Dynamics

    PubMed Central

    Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R. R.

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level. PMID:25938409

  9. Mesodermal Fgf10b cooperates with other Fgfs during induction of otic and epibranchial placodes in zebrafish.

    PubMed Central

    Maulding, Kirstin; Padanad, Mahesh S.; Dong, Jennifer; Riley, Bruce B.

    2015-01-01

    Background Vertebrate otic and epibranchial placodes develop in close proximity in response to localized Fgf signaling. Although less is known about epibranchial induction, the process of otic induction in highly conserved, with important roles for Fgf3 and Fgf8 reported in all species examined. Fgf10 is also critical for otic induction in mouse, but the only zebrafish ortholog examined to date, fgf10a, is not expressed early enough to play such a role. A second zebrafish ortholog, fgf10b, has not been previously examined. Results We find that zebrafish fgf10b is expressed at tailbud stage in paraxial cephalic mesoderm beneath prospective epibranchial tissue, lateral to the developing otic placode. Knockdown of fgf10b does not affect initial otic induction but impairs subsequent accumulation of otic cells. Formation of epibranchial placodes and ganglia are also moderately impaired. Combinatorial disruption of fgf10b and fgf3 exacerbates the deficiency of otic cells and eliminates epibranchial induction entirely. Disruption of fgf10b and fgf24 also strongly reduces, but does not eliminate, epibranchial induction. Conclusions fgf10b participates in a late phase of otic induction and, in combination with fgf3, is especially critical for epibranchial induction. PMID:24677486

  10. The Visual System of Zebrafish and its Use to Model Human Ocular Diseases

    PubMed Central

    Gestri, Gaia; Link, Brian A; Neuhauss, Stephan CF

    2011-01-01

    Free swimming zebrafish larvae depend mainly on their sense of vision to evade predation and to catch prey. Hence there is strong selective pressure on the fast maturation of visual function and indeed the visual system already supports a number of visually-driven behaviors in the newly hatched larvae. The ability to exploit the genetic and embryonic accessibility of the zebrafish in combination with a behavioral assessment of visual system function has made the zebrafish a popular model to study vision and its diseases. Here, we review the anatomy, physiology and development of the zebrafish eye as the basis to relate the contributions of the zebrafish to our understanding of human ocular diseases. PMID:21595048

  11. Two-photon-based photoactivation in live zebrafish embryos.

    PubMed

    Russek-Blum, Niva; Nabel-Rosen, Helit; Levkowitz, Gil

    2010-12-24

    Photoactivation of target compounds in a living organism has proven a valuable approach to investigate various biological processes such as embryonic development, cellular signaling and adult physiology. In this respect, the use of multi-photon microscopy enables quantitative photoactivation of a given light responsive agent in deep tissues at a single cell resolution. As zebrafish embryos are optically transparent, their development can be monitored in vivo. These traits make the zebrafish a perfect model organism for controlling the activity of a variety of chemical agents and proteins by focused light. Here we describe the use of two-photon microscopy to induce the activation of chemically caged fluorescein, which in turn allows us to follow cell's destiny in live zebrafish embryos. We use embryos expressing a live genetic landmark (GFP) to locate and precisely target any cells of interest. This procedure can be similarly used for precise light induced activation of proteins, hormones, small molecules and other caged compounds.

  12. Culturable Gut Microbiota Diversity in Zebrafish

    PubMed Central

    Sørby, Jan Roger Torp; Aleström, Peter; Sørum, Henning

    2012-01-01

    Abstract The zebrafish (Danio rerio) is an increasingly used laboratory animal model in basic biology and biomedicine, novel drug development, and toxicology. The wide use has increased the demand for optimized husbandry protocols to ensure animal health care and welfare. The knowledge about the correlation between culturable zebrafish intestinal microbiota and health in relation to environmental factors and management procedures is very limited. A semi-quantitative level of growth of individual types of bacteria was determined and associated with sampling points. A total of 72 TAB line zebrafish from four laboratories (Labs A–D) in the Zebrafish Network Norway were used. Diagnostic was based on traditional bacterial culture methods and biochemical characterization using commercial kits, followed by 16S rDNA gene sequencing from pure subcultures. Also selected Gram-negative isolates were analyzed for antibiotic susceptibility to 8 different antibiotics. A total of 13 morphologically different bacterial species were the most prevalent: Aeromonas hydrophila, Aeromonas sobria, Vibrio parahaemolyticus, Photobacterium damselae, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas luteola, Comamonas testosteroni, Ochrobactrum anthropi, Staphylococcus cohnii, Staphylococcus epidermidis, Staphylococcus capitis, and Staphylococcus warneri. Only Lab B had significantly higher levels of total bacterial growth (OR=2.03), whereas numbers from Lab C (OR=1.01) and Lab D (OR=1.12) were found to be similar to the baseline Lab A. Sexually immature individuals had a significantly higher level of harvested total bacterial growth than mature fish (OR=0.82), no statistically significant differences were found between male and female fish (OR=1.01), and the posterior intestinal segment demonstrated a higher degree of culturable bacteria than the anterior segment (OR=4.1). Multiple antibiotic (>3) resistance was observed in 17% of the strains. We propose that a rapid

  13. Culturable gut microbiota diversity in zebrafish.

    PubMed

    Cantas, Leon; Sørby, Jan Roger Torp; Aleström, Peter; Sørum, Henning

    2012-03-01

    The zebrafish (Danio rerio) is an increasingly used laboratory animal model in basic biology and biomedicine, novel drug development, and toxicology. The wide use has increased the demand for optimized husbandry protocols to ensure animal health care and welfare. The knowledge about the correlation between culturable zebrafish intestinal microbiota and health in relation to environmental factors and management procedures is very limited. A semi-quantitative level of growth of individual types of bacteria was determined and associated with sampling points. A total of 72 TAB line zebrafish from four laboratories (Labs A-D) in the Zebrafish Network Norway were used. Diagnostic was based on traditional bacterial culture methods and biochemical characterization using commercial kits, followed by 16S rDNA gene sequencing from pure subcultures. Also selected Gram-negative isolates were analyzed for antibiotic susceptibility to 8 different antibiotics. A total of 13 morphologically different bacterial species were the most prevalent: Aeromonas hydrophila, Aeromonas sobria, Vibrio parahaemolyticus, Photobacterium damselae, Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas luteola, Comamonas testosteroni, Ochrobactrum anthropi, Staphylococcus cohnii, Staphylococcus epidermidis, Staphylococcus capitis, and Staphylococcus warneri. Only Lab B had significantly higher levels of total bacterial growth (OR=2.03), whereas numbers from Lab C (OR=1.01) and Lab D (OR=1.12) were found to be similar to the baseline Lab A. Sexually immature individuals had a significantly higher level of harvested total bacterial growth than mature fish (OR=0.82), no statistically significant differences were found between male and female fish (OR=1.01), and the posterior intestinal segment demonstrated a higher degree of culturable bacteria than the anterior segment (OR=4.1). Multiple antibiotic (>3) resistance was observed in 17% of the strains. We propose that a rapid conventional

  14. Strategies for Analyzing Cardiac Phenotypes in the Zebrafish Embryo

    PubMed Central

    Houk, Andrew R.; Yelon, Deborah

    2017-01-01

    The molecular mechanisms underlying cardiogenesis are of critical biomedical importance due to the high prevalence of cardiac birth defects. Over the past two decades, the zebrafish has served as a powerful model organism for investigating heart development, facilitated by its powerful combination of optical access to the embryonic heart and plentiful opportunities for genetic analysis. Work in zebrafish has identified numerous factors that are required for various aspects of heart formation, including the specification and differentiation of cardiac progenitor cells, the morphogenesis of the heart tube, cardiac chambers, and atrioventricular canal, and the establishment of proper cardiac function. However, our current roster of regulators of cardiogenesis is by no means complete. It is therefore valuable for ongoing studies to continue pursuit of additional genes and pathways that control the size, shape, and function of the zebrafish heart. An extensive arsenal of techniques is available to distinguish whether particular mutations, morpholinos, or small molecules disrupt specific processes during heart development. In this chapter, we provide a guide to the experimental strategies that are especially effective for the characterization of cardiac phenotypes in the zebrafish embryo. PMID:27312497

  15. Comprehensive analysis of coding-lncRNA gene co-expression network uncovers conserved functional lncRNAs in zebrafish.

    PubMed

    Chen, Wen; Zhang, Xuan; Li, Jing; Huang, Shulan; Xiang, Shuanglin; Hu, Xiang; Liu, Changning

    2018-05-09

    Zebrafish is a full-developed model system for studying development processes and human disease. Recent studies of deep sequencing had discovered a large number of long non-coding RNAs (lncRNAs) in zebrafish. However, only few of them had been functionally characterized. Therefore, how to take advantage of the mature zebrafish system to deeply investigate the lncRNAs' function and conservation is really intriguing. We systematically collected and analyzed a series of zebrafish RNA-seq data, then combined them with resources from known database and literatures. As a result, we obtained by far the most complete dataset of zebrafish lncRNAs, containing 13,604 lncRNA genes (21,128 transcripts) in total. Based on that, a co-expression network upon zebrafish coding and lncRNA genes was constructed and analyzed, and used to predict the Gene Ontology (GO) and the KEGG annotation of lncRNA. Meanwhile, we made a conservation analysis on zebrafish lncRNA, identifying 1828 conserved zebrafish lncRNA genes (1890 transcripts) that have their putative mammalian orthologs. We also found that zebrafish lncRNAs play important roles in regulation of the development and function of nervous system; these conserved lncRNAs present a significant sequential and functional conservation, with their mammalian counterparts. By integrative data analysis and construction of coding-lncRNA gene co-expression network, we gained the most comprehensive dataset of zebrafish lncRNAs up to present, as well as their systematic annotations and comprehensive analyses on function and conservation. Our study provides a reliable zebrafish-based platform to deeply explore lncRNA function and mechanism, as well as the lncRNA commonality between zebrafish and human.

  16. Zebrafish models of cardiovascular diseases and their applications in herbal medicine research.

    PubMed

    Seto, Sai-Wang; Kiat, Hosen; Lee, Simon M Y; Bensoussan, Alan; Sun, Yu-Ting; Hoi, Maggie P M; Chang, Dennis

    2015-12-05

    The zebrafish (Danio rerio) has recently become a powerful animal model for cardiovascular research and drug discovery due to its ease of maintenance, genetic manipulability and ability for high-throughput screening. Recent advances in imaging techniques and generation of transgenic zebrafish have greatly facilitated in vivo analysis of cellular events of cardiovascular development and pathogenesis. More importantly, recent studies have demonstrated the functional similarity of drug metabolism systems between zebrafish and humans, highlighting the clinical relevance of employing zebrafish in identifying lead compounds in Chinese herbal medicine with potential beneficial cardiovascular effects. This paper seeks to summarise the scope of zebrafish models employed in cardiovascular studies and the application of these research models in Chinese herbal medicine to date. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  17. Thyroid endocrine disruption and external body morphology of Zebrafish

    USGS Publications Warehouse

    Sharma, Prakash; Grabowski, Timothy B.; Patino, Reynaldo

    2016-01-01

    This study examined the effects thyroid-active compounds during early development on body morphology of Zebrafish (Danio rerio). Three-day postfertilization (dpf) larvae were exposed to goitrogen [methimazole (MZ, 0.15 mM)], combination of MZ (0.15 mM) and thyroxine (T4, 2 nM), T4 (2 nM), or control (reconstituted water) treatments until 33 dpf and subsequently maintained in reconstituted water until 45 dpf. Samples were taken at 33 and 45 dpf for multivariate analysis of geometric distances between selected homologous landmarks placed on digital images of fish, and for histological assessment of thyrocytes. Body mass, standard length, and pectoral fin length were separately measured on remaining fish at 45 dpf. Histological analysis confirmed the hypothyroid effect (increased thyrocyte height) of MZ and rescue effect of T4 co-administration. Geometric distance analysis showed that pectoral and pelvic fins shifted backward along the rostrocaudal axis under hypothyroid conditions at 45 dpf and that T4 co-treatment prevented this shift. Pectoral fin length at 45 dpf was reduced by exposure to MZ and rescued by co-administration of T4, but it was not associated with standard length. Methimazole caused a reduction in body mass and length at 45 dpf that could not be rescued by T4 co-administration, and non-thyroidal effects of MZ on body shape were also recognized at 33 and 45 dpf. Alterations in the length and position of paired fins caused by exposure to thyroid-disrupting chemicals during early development, as shown here for Zebrafish, could affect physical aspects of locomotion and consequently other important organismal functions such as foraging, predator avoidance, and ultimately survival and recruitment into the adult population. Results of this study also suggest the need to include rescue treatments in endocrine disruption studies that rely on goitrogens as reference for thyroid-mediated effects.

  18. Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research.

    PubMed

    Cachat, Jonathan; Kyzar, Evan J; Collins, Christopher; Gaikwad, Siddharth; Green, Jeremy; Roth, Andrew; El-Ounsi, Mohamed; Davis, Ari; Pham, Mimi; Landsman, Samuel; Stewart, Adam Michael; Kalueff, Allan V

    2013-01-01

    An indole alkaloid, ibogaine is the principal psychoactive component of the iboga plant, used by indigenous peoples in West Africa for centuries. Modulating multiple neurotransmitter systems, the drug is a potent hallucinogen in humans, although its psychotropic effects remain poorly understood. Expanding the range of model species is an important strategy for translational neuroscience research. Here we exposed adult zebrafish (Danio rerio) to 10 and 20mg/L of ibogaine, testing them in the novel tank, light-dark box, open field, mirror stimulation, social preference and shoaling tests. In the novel tank test, the zebrafish natural diving response (geotaxis) was reversed by ibogaine, inducing initial top swimming followed by bottom dwelling. Ibogaine also attenuated the innate preference for dark environments (scototaxis) in the light-dark box test. While it did not exert overt locomotor or thigmotaxic responses in the open field test, the drug altered spatiotemporal exploration of novel environment, inducing clear preference of some areas over others. Ibogaine also promoted 'mirror' exploration in the mirror stimulation test, disrupted group cohesion in the shoaling test, and evoked strong coloration responses due to melanophore aggregation, but did not alter brain c-fos expression or whole-body cortisol levels. Overall, our results support the complex pharmacological profile of ibogaine and its high sensitivity in zebrafish models, dose-dependently affecting multiple behavioral domains. While future investigations in zebrafish may help elucidate the mechanisms underlying these unique behavioral effects, our study strongly supports the developing utility of aquatic models in hallucinogenic drug research. High sensitivity of three-dimensional phenotyping approaches applied here to behavioral effects of ibogaine in zebrafish provides further evidence of how 3D reconstructions of zebrafish swimming paths may be useful for high-throughput pharmacological screening

  19. MiR-144 regulates hematopoiesis and vascular development by targeting meis1 during zebrafish development.

    PubMed

    Su, Zhenhong; Si, Wenxia; Li, Lei; Zhou, Bisheng; Li, Xiuchun; Xu, Yan; Xu, Chengqi; Jia, Haibo; Wang, Qing K

    2014-04-01

    Hematopoiesis is a dynamic process by which peripheral blood lineages are developed. It is a process tightly regulated by many intrinsic and extrinsic factors, including transcriptional factors and signaling molecules. However, the epigenetic regulation of hematopoiesis, for example, regulation via microRNAs (miRNAs), remains incompletely understood. Here we show that miR-144 regulates hematopoiesis and vascular development in zebrafish. Overexpression of miR-144 inhibited primitive hematopoiesis as demonstrated by a reduced number of circulating blood cells, reduced o-dianisidine staining of hemoglobin, and reduced expression of hbαe1, hbβe1, gata1 and pu.1. Overexpression of miR-144 also inhibited definitive hematopoiesis as shown by reduced expression of runx1 and c-myb. Mechanistically, miR-144 regulates hematopoiesis by repressing expression of meis1 involved in hematopoiesis. Both real-time RT-PCR and Western blot analyses showed that overexpression of miR-144 repressed expression of meis1. Bioinformatic analysis predicts a target binding sequence for miR-144 at the 3'-UTR of meis1. Deletion of the miR-144 target sequence eliminated the repression of meis1 expression mediated by miR-144. The miR-144-mediated abnormal phenotypes were partially rescued by co-injection of meis1 mRNA and could be almost completely rescued by injection of both meis1 and gata1 mRNA. Finally, because meis1 is involved in vascular development, we tested the effect of miR-144 on vascular development. Overexpression of miR-144 resulted in abnormal vascular development of intersegmental vessels in transgenic zebrafish with Flk1p-EGFP, and the defect was rescued by co-injection of meis1 mRNA. These findings establish miR-144 as a novel miRNA that regulates hematopoiesis and vascular development by repressing expression of meis1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Zebrafish embryos as a screen for DNA methylation modifications after compound exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouwmeester, Manon C.; Ruiter, Sander; Lommelaars, Tobias

    Modified epigenetic programming early in life is proposed to underlie the development of an adverse adult phenotype, known as the Developmental Origins of Health and Disease (DOHaD) concept. Several environmental contaminants have been implicated as modifying factors of the developing epigenome. This underlines the need to investigate this newly recognized toxicological risk and systematically screen for the epigenome modifying potential of compounds. In this study, we examined the applicability of the zebrafish embryo as a screening model for DNA methylation modifications. Embryos were exposed from 0 to 72 h post fertilization (hpf) to bisphenol-A (BPA), diethylstilbestrol, 17α-ethynylestradiol, nickel, cadmium, tributyltin,more » arsenite, perfluoroctanoic acid, valproic acid, flusilazole, 5-azacytidine (5AC) in subtoxic concentrations. Both global and site-specific methylation was examined. Global methylation was only affected by 5AC. Genome wide locus-specific analysis was performed for BPA exposed embryos using Digital Restriction Enzyme Analysis of Methylation (DREAM), which showed minimal wide scale effects on the genome, whereas potential informative markers were not confirmed by pyrosequencing. Site-specific methylation was examined in the promoter regions of three selected genes vasa, vtg1 and cyp19a2, of which vasa (ddx4) was the most responsive. This analysis distinguished estrogenic compounds from metals by direction and sensitivity of the effect compared to embryotoxicity. In conclusion, the zebrafish embryo is a potential screening tool to examine DNA methylation modifications after xenobiotic exposure. The next step is to examine the adult phenotype of exposed embryos and to analyze molecular mechanisms that potentially link epigenetic effects and altered phenotypes, to support the DOHaD hypothesis. - Highlights: • Compound induced effects on DNA methylation in zebrafish embryos • Global methylation not an informative biomarker • Minimal