Science.gov

Sample records for early-age acoustic emission

  1. Acoustic emission descriptors

    NASA Astrophysics Data System (ADS)

    Witos, Franciszek; Malecki, Ignacy

    The authors present selected problems associated with acoustic emission interpreted as a physical phenomenon and as a measurement technique. The authors examine point sources of acoustic emission in isotropic, homogeneous linearly elastic media of different shapes. In the case of an unbounded medium the authors give the analytical form of the stress field and the wave shift field of the acoustic emission. In the case of a medium which is unbounded plate the authors give a form for the equations which is suitable for numerical calculation of the changes over time of selected acoustic emission values. For acoustic emission as a measurement technique, the authors represent the output signal as the resultant of a mechanical input value which describes the source, the transient function of the medium, and the transient function of specific components of the measurement loop. As an effect of this notation, the authors introduce the distinction between an acoustic measurement signal and an acoustic measurement impulse. The authors define the basic parameters of an arbitrary impulse. The authors extensively discuss the signal functions of acoustic emission impulses and acoustic emission signals defined in this article as acoustic emission descriptors (or signal functions of acoustic emission impulses) and advanced acoustic emission descriptors (which are either descriptors associated with acoustic emission applications or the signal functions of acoustic emission signals). The article also contains the results of experimental research on three different problems in which acoustic emission descriptors associated with acoustic emission pulses, acoustic emission applications, and acoustic emission signals are used. These problems are respectively: a problem of the amplitude-load characteristics of acoustic emission pulses in carbon samples subjected to compound uniaxial compression, the use of acoustic emission to predict the durability characteristics of conveyor belts, and

  2. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  3. Introduction to acoustic emission

    NASA Technical Reports Server (NTRS)

    Possa, G.

    1983-01-01

    Typical acoustic emission signal characteristics are described and techniques which localize the signal source by processing the acoustic delay data from multiple sensors are discussed. The instrumentation, which includes sensors, amplifiers, pulse counters, a minicomputer and output devices is examined. Applications are reviewed.

  4. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  5. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  6. Acoustic Emissions Reveal Combustion Conditions

    NASA Technical Reports Server (NTRS)

    Ramohalli, D. N. R.; Seshan, P. K.

    1983-01-01

    Turbulent-flame acoustic emissions change with air/fuel ratio variations. Acoustic emissions sensed and processed to detect inefficient operation; control system responds by adjusting fuel/air mixture for greater efficiency. Useful for diagnosis of combustion processes and fuel/air control.

  7. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  8. Study Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James; Workman,Gary

    1998-01-01

    The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.

  9. Sonification of acoustic emission data

    NASA Astrophysics Data System (ADS)

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  10. Study Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1997-01-01

    The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires, light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.

  11. Method and means for measuring acoustic emissions

    DOEpatents

    Renken, Jr., Claus J.

    1976-01-06

    The detection of acoustic emissions emanating from an object is achieved with a capacitive transducer coupled to the object. The capacitive transducer is charged and then allowed to discharge with the rate of discharge being monitored. Oscillations in the rate of discharge about the normally exponential discharge curve for the capacitive transducer indicate the presence of acoustic emissions.

  12. An introduction to acoustic emission

    NASA Astrophysics Data System (ADS)

    Scruby, C. B.

    1987-08-01

    The technique of acoustic emission (AE) uses one or more sensors to 'listen' to a wide range of events that may take place inside a solid material. Depending on the source of this high frequency sound, there are broadly three application areas: structural testing and surveillance, process monitoring and control, and materials characterization. In the first case the source is probably a defect which radiates elastic waves as it grows. Provided these waves are detectable, AE can be used in conjunction with other NDT techniques to assess structural integrity. Advances in deterministic and statistical analysis methods now enable data to be interpreted in greater detail and with more confidence than before. In the second area the acoustic signature of processes is monitored, ranging from for instance the machining of metallic components to the mixing of foodstuffs, and changes correlated with variations in the process, with the potential for feedback and process control. In the third area, AE is used as an additional diagnostic technique for the study of, for instance, fracture, because it gives unique dynamic information on defect growth.

  13. One sensor acoustic emission localization in plates.

    PubMed

    Ernst, R; Zwimpfer, F; Dual, J

    2016-01-01

    Acoustic emissions are elastic waves accompanying damage processes and are therefore used for monitoring the health state of structures. Most of the traditional acoustic emission techniques use a trilateration approach requiring at least three sensors on a 2D domain in order to localize sources of acoustic emission events. In this paper, we present a new approach which requires only a single sensor to identify and localize the source of acoustic emissions in a finite plate. The method proposed makes use of the time reversal principle and the dispersive nature of the flexural wave mode in a suitable frequency band. The signal shape of the transverse velocity response contains information about the propagated paths of the incoming elastic waves. This information is made accessible by a numerical time reversal simulation. The effect of dispersion is reversed and the original shape of the flexural wave is restored at the origin of the acoustic emission. The time reversal process is analyzed first for an infinite Mindlin plate, then by a 3D FEM simulation which in combination results in a novel acoustic emission localization process. The process is experimentally verified for different aluminum plates for artificially generated acoustic emissions (Hsu-Nielsen source). Good and reliable localization was achieved for a homogeneous quadratic aluminum plate with only one measurement. PMID:26372509

  14. Acoustic-emission linear-pulse holography

    SciTech Connect

    Collins, H.D.; Lemon, D.K.; Busse, L.J.

    1982-06-01

    This paper describes Acoustic Emission Linear Pulse Holography which combines the advantages of linear imaging and acoustic emission into a single NDE inspection system. This unique system produces a chronological linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. Conventional linear holographic imaging uses an ultrasonic transducer to transmit energy into the volume being imaged. When the crack or defect reflects that energy, the crack acts as a new source of acoustic waves. To formulate an image of that source, a receiving transducer is scanned over the volume of interest and the phase of the received signals is measured at successive points on the scan. The innovation proposed here is the utilization of the crack generated acoustic emission as the acoustic source and generation of a line image of the crack as it grows. A thirty-two point sampling array is used to construct phase-only linear holograms of simulated acoustic emission sources on large metal plates. The phases are calculated using the pulse time-of-flight (TOF) times from the reference transducer to the array of receivers. Computer reconstruction of the image is accomplished using a one-dimensional FFT algorithm (i.e., backward wave). Experimental results are shown which graphically illustrate the unique acoustic emission images of a single point and a linear crack in a 100 mm x 1220 mm x 1220 mm aluminum plate.

  15. Fault monitoring using acoustic emissions

    NASA Astrophysics Data System (ADS)

    Zhang, Danlu; Venkatesan, Gopal; Kaveh, Mostafa; Tewfik, Ahmed H.; Buckley, Kevin M.

    1999-05-01

    Automatic monitoring techniques are a means to safely relax and simplify preventive maintenance and inspection procedures that are expensive and necessitate substantial down time. Acoustic emissions (AEs), that are ultrasonic waves emanating from the formation or propagation of a crack in a material, provide a possible avenue for nondestructive evaluation. Though the characteristics of AEs have been extensively studied, most of the work has been done under controlled laboratory conditions at very low noise levels. In practice, however, the AEs are buried under a wide variety of strong interference and noise. These arise due to a number of factors that, other than vibration, may include fretting, hydraulic noise and electromagnetic interference. Most of these noise events are transient and not unlike AE signals. In consequence, the detection and isolation of AE events from the measured data is not a trivial problem. In this paper we present some signal processing techniques that we have proposed and evaluated for the above problem. We treat the AE problem as the detection of an unknown transient in additive noise followed by a robust classification of the detected transients. We address the problem of transient detection using the residual error in fitting a special linear model to the data. Our group is currently working on the transient classification using neural networks.

  16. Acoustic emission from composite materials. [nondestructive tests

    NASA Technical Reports Server (NTRS)

    Visconti, I. C.; Teti, R.

    1979-01-01

    The two basic areas where the acoustic emission (AE) technique can be applied are materials research and the evaluation of structural reliability. This experimental method leads to a better understanding of fracture mechanisms and is an NDT technique particularly well suited for the study of propagating cracks. Experiments are described in which acoustic emissions were unambiguously correlated with microstructural fracture mechanisms. The advantages and limitations of the AE technique are noted.

  17. Acoustic emission monitoring of polymer composite materials

    NASA Technical Reports Server (NTRS)

    Bardenheier, R.

    1981-01-01

    The techniques of acoustic emission monitoring of polymer composite materials is described. It is highly sensitive, quasi-nondestructive testing method that indicates the origin and behavior of flaws in such materials when submitted to different load exposures. With the use of sophisticated signal analysis methods it is possible the distinguish between different types of failure mechanisms, such as fiber fracture delamination or fiber pull-out. Imperfections can be detected while monitoring complex composite structures by acoustic emission measurements.

  18. Acoustic emission beamforming for enhanced damage detection

    NASA Astrophysics Data System (ADS)

    McLaskey, Gregory C.; Glaser, Steven D.; Grosse, Christian U.

    2008-03-01

    As civil infrastructure ages, the early detection of damage in a structure becomes increasingly important for both life safety and economic reasons. This paper describes the analysis procedures used for beamforming acoustic emission techniques as well as the promising results of preliminary experimental tests on a concrete bridge deck. The method of acoustic emission offers a tool for detecting damage, such as cracking, as it occurs on or in a structure. In order to gain meaningful information from acoustic emission analyses, the damage must be localized. Current acoustic emission systems with localization capabilities are very costly and difficult to install. Sensors must be placed throughout the structure to ensure that the damage is encompassed by the array. Beamforming offers a promising solution to these problems and permits the use of wireless sensor networks for acoustic emission analyses. Using the beamforming technique, the azmuthal direction of the location of the damage may be estimated by the stress waves impinging upon a small diameter array (e.g. 30mm) of acoustic emission sensors. Additional signal discrimination may be gained via array processing techniques such as the VESPA process. The beamforming approach requires no arrival time information and is based on very simple delay and sum beamforming algorithms which can be easily implemented on a wireless sensor or mote.

  19. Acoustic emission and the plasticity of crystals

    NASA Astrophysics Data System (ADS)

    Pawelek, Andrzej; Malecki, Ignacy

    This treatise is mainly devoted to a discussion of the application of acoustic emission in basic research on the plastic deformation mechanisms of metal and alloy single crystals. The acoustic emission method also provides the possibility of obtaining additional information on the nature of these mechanisms. Knowledge of the basic relationships between acoustic emission and deformation mechanisms will also facilitate the use of acoustic emission in industrial conditions (for industrial process control and for early problem detection). The material contained in this article is divided into three sections. The first section discusses the basic types of plastic deformation mechanisms in metal single crystals with simple crystal structures. The rest of this section is devoted to the problem of locating deformations, which is currently one of the most important problems in plastic deformation mechanics. The next section is based on extant literature and presents experiment data on measurements of acoustic emission during the plastic deformation of single crystals. The authors also use the results of their own research in a discussion of the most frequently encountered models and theoretical concepts concerning the causes of acoustic emission during the plastic deformation of crystals. The final section describes the basic mathematics behind these concepts and a brief attempt to assess the consistency of theoretical results and extant experimental results.

  20. Acoustic emission linear pulse holography

    SciTech Connect

    Collins, H. D.; Busse, L. J.; Lemon, D. K.

    1985-07-30

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  1. Acoustic emission linear pulse holography

    SciTech Connect

    Collins, H. Dale; Busse, Lawrence J.; Lemon, Douglas K.

    1985-01-01

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  2. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  3. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  4. Sliding wear studies using acoustic emission

    NASA Astrophysics Data System (ADS)

    Lingard, S.; Yu, C. W.; Yau, C. F.

    1993-04-01

    Deformation processes in solids, such as dislocation movements under plastic flow, crack propagation and void crushing, produce stress waves at ultrasonic frequencies, usually described as acoustic emission (AE), which can be detected by sensitive instruments and which are related to the severity and nature of the deformations. The paper discusses the characteristics of the stress waves and their variation with wear rates, wear regimes, and friction forces, as determined during laboratory experiments on metallic specimens in relative sliding motion, both unlubricated and with elastohydrodynamic lubrication. It is shown that there are systematic relationships between the acoustic emissions, the wear rates, the frictional work inputs and established tribological contact variables. The predominant frequencies of the emissions are also evaluated and considered in relation to the materials and wear conditions.

  5. Acoustic emission monitoring of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Van Dam, Jeremy; Bond, Leonard J.

    2015-03-01

    Damage to wind turbine blades can, if left uncorrected, evolve into catastrophic failures resulting in high costs and significant losses for the operator. Detection of damage, especially in real time, has the potential to mitigate the losses associated with such catastrophic failure. To address this need various forms of online monitoring are being investigated, including acoustic emission detection. In this paper, pencil lead breaks are used as a standard reference source and tests are performed on unidirectional glass-fiber-reinforced-polymer plates. The mechanical pencil break is used to simulate an acoustic emission (AE) that generates elastic waves in the plate. Piezoelectric sensors and a data acquisition system are used to detect and record the signals. The expected dispersion curves generated for Lamb waves in plates are calculated, and the Gabor wavelet transform is used to provide dispersion curves based on experimental data. AE sources using an aluminum plate are used as a reference case for the experimental system and data processing validation. The analysis of the composite material provides information concerning the wave speed, modes, and attenuation of the waveform, which can be used to estimate maximum AE event - receiver separation, in a particular geometry and materials combination. The foundational data provided in this paper help to guide improvements in online structural health monitoring of wind turbine blades using acoustic emission.

  6. Acoustic Emission Analysis Applet (AEAA) Software

    NASA Technical Reports Server (NTRS)

    Nichols, Charles T.; Roth, Don J.

    2013-01-01

    NASA Glenn Research and NASA White Sands Test Facility have developed software supporting an automated pressure vessel structural health monitoring (SHM) system based on acoustic emissions (AE). The software, referred to as the Acoustic Emission Analysis Applet (AEAA), provides analysts with a tool that can interrogate data collected on Digital Wave Corp. and Physical Acoustics Corp. software using a wide spectrum of powerful filters and charts. This software can be made to work with any data once the data format is known. The applet will compute basic AE statistics, and statistics as a function of time and pressure (see figure). AEAA provides value added beyond the analysis provided by the respective vendors' analysis software. The software can handle data sets of unlimited size. A wide variety of government and commercial applications could benefit from this technology, notably requalification and usage tests for compressed gas and hydrogen-fueled vehicles. Future enhancements will add features similar to a "check engine" light on a vehicle. Once installed, the system will ultimately be used to alert International Space Station crewmembers to critical structural instabilities, but will have little impact to missions otherwise. Diagnostic information could then be transmitted to experienced technicians on the ground in a timely manner to determine whether pressure vessels have been impacted, are structurally unsound, or can be safely used to complete the mission.

  7. Measuring acoustic emissions in an avalanche slope

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  8. Lead-free acoustic emission sensors

    SciTech Connect

    Lam, K. H.; Lin, D. M.; Chan, H. L. W.

    2007-11-15

    Acoustic emission (AE) sensors have been fabricated using both soft- and hard-type lead-free (Na{sub 0.5}K{sub 0.5})NbO{sub 3}-based ceramics. The acoustic and electromechanical properties of the ceramics have been determined using the resonance technique. The lead-free AE sensors were calibrated using a laser source and compared to a commercial sensor. A lead zirconate titanate (PZT) 5H ceramics AE sensor has also been fabricated and calibrated for comparison. It was found that the sensitivity of lead-free AE sensors is comparable to that of the lead-based PZT sensor. To evaluate the sensors for potential application, they have been used in the detection of AE in an impact test. The lead-free sensors can reproduce AE signals accurately without giving artifacts and have potential use in commercial AE systems.

  9. Lead-free acoustic emission sensors.

    PubMed

    Lam, K H; Lin, D M; Chan, H L W

    2007-11-01

    Acoustic emission (AE) sensors have been fabricated using both soft- and hard-type lead-free (Na0.5K0.5)NbO3-based ceramics. The acoustic and electromechanical properties of the ceramics have been determined using the resonance technique. The lead-free AE sensors were calibrated using a laser source and compared to a commercial sensor. A lead zirconate titanate (PZT) 5H ceramics AE sensor has also been fabricated and calibrated for comparison. It was found that the sensitivity of lead-free AE sensors is comparable to that of the lead-based PZT sensor. To evaluate the sensors for potential application, they have been used in the detection of AE in an impact test. The lead-free sensors can reproduce AE signals accurately without giving artifacts and have potential use in commercial AE systems.

  10. Study of Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1997-01-01

    The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures.

  11. Acoustic-emission monitoring of steam turbines

    NASA Astrophysics Data System (ADS)

    Graham, L. J.; Randall, R. L.; Hong, C.

    1982-04-01

    A method for the on-line detection of crack growth in steam turbine rotors based on acoustic emission (AE) monitoring is discussed. A systematic study involving a number of tasks was performed to evaluate the potential for the detection and correct identification of crack growth AE signals during various turbine operating conditions. These included acoustic wave propagation and attenuation measurements, background noise characterization, laboratory rotor material tests, monitoring equipment optimization, dynamic stress analysis of the rotor under transient operation and on-line source location and signal characterization. No crack growth was detected during the monitoring periods but there was sufficient information from the combined tasks to estimate the flaw growth detectability during different operating conditions if it occurs. The experience also suggests that AE monitoring can be useful for diagnosis of other turbine problems such as blade rubbing, out-of-balance condition, bearing deterioration, lubricating oil contamination and perhaps boiler exfoliation and blade erosion.

  12. Acoustic emission: The first half century

    SciTech Connect

    Drouillard, T.F.

    1994-08-01

    The technology of acoustic emission (AE) is approaching the half century mark, having had its beginning in 1950 with the work of Joseph Kaiser. During the 1950s and 1960s researchers delved into the fundamentals of acoustic emission, developed instrumentation specifically for AE, and characterized the AE behavior of many materials. AE was starting to be recognized for its unique capabilities as an NDT method for monitoring dynamic processes. In the decade of the 1970s research activities became more coordinated and directed with the formation of the working groups, and its use as an NDT method continued to increase for industrial applications. In the 1980s the computer became a basic component for both instrumentation and data analysis, and today it has sparked a resurgence of opportunities for research and development. Today we are seeing a transition to waveform-based AE analysis and a shift in AE activities with more emphasis on applications than on research. From the beginning, we have been fortunate to have had so many dedicated savants with different fields of expertise contribute in a collective way to bring AE to a mature, fully developed technology and leave a legacy of knowledge recorded in its literature. AE literature has been a key indicator of the amount of activity, the proportion of research to application, the emphasis on what was of current interest, and the direction AE has taken. The following is a brief survey of the history of acoustic emission with emphasis on development of the infrastructure over the past half century.

  13. Acoustic emission from composite-reinforced metals

    NASA Technical Reports Server (NTRS)

    Henneke, E. G., II; Herakovich, C. T.; Jones, G. L.; Renieri, M. P.

    1975-01-01

    Acoustic-emission (AE) count rates are presented for tensile loading of unidirectional boron-epoxy and for aluminum sheets reinforced with unidirectional boron-epoxy. It is shown that different prepreg materials have different characteristic AE patterns. Results from composite-reinforced metal specimens show that early failures are accompanied by a sharp increase in AE count rate at the knee of the bilinear stress-strain diagram. It is further shown that the count rates are a function of specimen fabrication and that higher total counts do not necessarily correspond to early failures.

  14. Acoustic emission characterization using AE (parameter) delay

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lee, S. S.

    1983-01-01

    The acoustic emission (AE) parameter delay concept is defined as that particular measured value of a parameter at which a specified baseline level of cumulative AE activity is reached. The parameter can be from any of a broad range of elastic, plastic, viscoelastic, and fracture mechanics parameters, as well as their combinations. Such parameters include stress, load, strain, displacement, time, temperature, loading cycle, unloading stress, stress intensity factor, strain energy release rate, and crack tip plasticity zone size, while the AE activity may be AE event counts, ringdown counts, energy, event duration, etc., as well as their combinations. Attention is given to examples for the AE parameter delay concept, together with various correlations.

  15. Magneto acoustic emission apparatus for testing materials for embrittlement

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Min, Namkung (Inventor); Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1990-01-01

    A method and apparatus for testing steel components for temper embrittlement uses magneto-acoustic emission to nondestructively evaluate the component. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an ac current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a dc current to the electromagnets, then turning the magnets off and observing the residual magnetic induction.

  16. An acoustic emission study of plastic deformation in polycrystalline aluminium

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Frederick, J. R.; Felbeck, D. K.

    1979-01-01

    Acoustic emission experiments were performed on polycrystalline and single crystal 99.99% aluminum while undergoing tensile deformation. It was found that acoustic emission counts as a function of grain size showed a maximum value at a particular grain size. Furthermore, the slip area associated with this particular grain size corresponded to the threshold level of detectability of single dislocation slip events. The rate of decline in acoustic emission activity as grain size is increased beyond the peak value suggests that grain boundary associated dislocation sources are giving rise to the bulk of the detected acoustic emissions.

  17. Acoustic emission monitoring of HFIR vessel during hydrostatic testing

    SciTech Connect

    Friesel, M.A.; Dawson, J.F.

    1992-08-01

    This report discusses the results and conclusions reached from applying acoustic emission monitoring to surveillance of the High Flux Isotope Reactor vessel during pressure testing. The objective of the monitoring was to detect crack growth and/or fluid leakage should it occur during the pressure test. The report addresses the approach, acoustic emission instrumentation, installation, calibration, and test results.

  18. Acoustic Emission from Breaking a Bamboo Chopstick.

    PubMed

    Tsai, Sun-Ting; Wang, Li-Min; Huang, Panpan; Yang, Zhengning; Chang, Chin-De; Hong, Tzay-Ming

    2016-01-22

    The acoustic emission from breaking a bamboo chopstick or a bundle of spaghetti is found to exhibit similar behavior as the famous seismic laws of Gutenberg and Richter, Omori, and Båth. By the use of a force-sensing detector, we establish a positive correlation between the statistics of sound intensity and the magnitude of a tremor. We also manage to derive these laws analytically without invoking the concept of a phase transition, self-organized criticality, or fractal. Our model is deterministic and relies on the existence of a structured cross section, either fibrous or layered. This success at explaining the power-law behavior supports the proposal that geometry is sometimes more important than mechanics. PMID:26849601

  19. Acoustic Emission from Breaking a Bamboo Chopstick

    NASA Astrophysics Data System (ADS)

    Tsai, Sun-Ting; Wang, Li-Min; Huang, Panpan; Yang, Zhengning; Chang, Chin-De; Hong, Tzay-Ming

    2016-01-01

    The acoustic emission from breaking a bamboo chopstick or a bundle of spaghetti is found to exhibit similar behavior as the famous seismic laws of Gutenberg and Richter, Omori, and Båth. By the use of a force-sensing detector, we establish a positive correlation between the statistics of sound intensity and the magnitude of a tremor. We also manage to derive these laws analytically without invoking the concept of a phase transition, self-organized criticality, or fractal. Our model is deterministic and relies on the existence of a structured cross section, either fibrous or layered. This success at explaining the power-law behavior supports the proposal that geometry is sometimes more important than mechanics.

  20. Acoustic emission technology for space applications

    SciTech Connect

    Friesel, M.A.; Lemon, D.K.; Skorpik, J.R.; Hutton, P.H.

    1989-05-01

    Clearly the structural and functional integrity of space station components is a primary requirement. The combinations of advanced materials, new designs, and an unusual environment increase the need for inservice monitoring to help assure component integrity. Continuous monitoring of the components using acoustic emission (AE) methods can provide early indication of structural or functional distress, thus allowing time to plan remedial action. The term ''AE'' refers to energy impulses propagated from a growing crack in a solid material or from a leak in a pressurized pipe or tube. In addition to detecting a crack or leak, AE methods can provide information on the location of the defect and an estimate of crack growth rate and leak rate. 8 figs.

  1. Using the Acoustic Emission Technique for Estimating Body Composition

    NASA Astrophysics Data System (ADS)

    González-Solís, J. L.; Sanchis-Sabater, A.; Sosa-Aquino, M.; Gutiérrez-Juárez, G.; Vargas-Luna, M.; Bernal-Alvarado, J.; Huerta-Franco, R.

    2003-09-01

    This work proposes a new technique for estimation of body composition by using acoustic emission. A simple apparatus for the acoustic emission is proposed.The estimation of the body composition is made by analyzing the correlation between a set of acoustic resonance and skinfold measurements. One device was designed to measure the position and width of the acoustic resonances and a caliper was used to measure the skinfolds. The results show the plausibility of application of the method to measurement the human body fat.

  2. Regularities of Acoustic Emission in the Freight Car Solebar Materials

    NASA Astrophysics Data System (ADS)

    Bekher, S.

    2016-01-01

    Acoustic emission results which were obtained during tests of the samples, which were made from foundry solebars with the developing fatigue crack, are presented. The dependences of the acoustic emission event count, the force critical value during the stationary acoustic emission process, and the growth rate of the event count from the cycles number are determined. The amplitude signal distributions relating to the crack growth were received. It is offered to use the force critical value and the amplitude threshold in the rejection criteria.

  3. General framework for acoustic emission during plastic deformation

    NASA Astrophysics Data System (ADS)

    Kumar, Jagadish; Sarmah, Ritupan; Ananthakrishna, G.

    2015-10-01

    Despite the long history, so far there is no general theoretical framework for calculating the acoustic emission spectrum accompanying any plastic deformation. We set up a discrete wave equation with plastic strain rate as a source term and include the Rayleigh-dissipation function to represent dissipation accompanying acoustic emission. We devise a method of bridging the widely separated time scales of plastic deformation and elastic degrees of freedom. While this equation is applicable to any type of plastic deformation, it should be supplemented by evolution equations for the dislocation microstructure for calculating the plastic strain rate. The efficacy of the framework is illustrated by considering three distinct cases of plastic deformation. The first one is the acoustic emission during a typical continuous yield exhibiting a smooth stress-strain curve. We first construct an appropriate set of evolution equations for two types of dislocation densities and then show that the shape of the model stress-strain curve and accompanying acoustic emission spectrum match very well with experimental results. The second and the third are the more complex cases of the Portevin-Le Chatelier bands and the Lüders band. These two cases are dealt with in the context of the Ananthakrishna model since the model predicts the three types of the Portevin-Le Chatelier bands and also Lüders-like bands. Our results show that for the type-C bands where the serration amplitude is large, the acoustic emission spectrum consists of well-separated bursts of acoustic emission. At higher strain rates of hopping type-B bands, the burst-type acoustic emission spectrum tends to overlap, forming a nearly continuous background with some sharp acoustic emission bursts. The latter can be identified with the nucleation of new bands. The acoustic emission spectrum associated with the continuously propagating type-A band is continuous. These predictions are consistent with experimental results. More

  4. Acoustic Emission Analysis of Prestressed Concrete Structures

    NASA Astrophysics Data System (ADS)

    Elfergani, H. A.; Pullin, R.; Holford, K. M.

    2011-07-01

    Corrosion is a substantial problem in numerous structures and in particular corrosion is very serious in reinforced and prestressed concrete and must, in certain applications, be given special consideration because failure may result in loss of life and high financial cost. Furthermore corrosion cannot only be considered a long term problem with many studies reporting failure of bridges and concrete pipes due to corrosion within a short period after they were constructed. The concrete pipes which transport water are examples of structures that have suffered from corrosion; for example, the pipes of The Great Man-Made River Project of Libya. Five pipe failures due to corrosion have occurred since their installation. The main reason for the damage is corrosion of prestressed wires in the pipes due to the attack of chloride ions from the surrounding soil. Detection of the corrosion in initial stages has been very important to avoid other failures and the interruption of water flow. Even though most non-destructive methods which are used in the project are able to detect wire breaks, they cannot detect the presence of corrosion. Hence in areas where no excavation has been completed, areas of serious damage can go undetected. Therefore, the major problem which faces engineers is to find the best way to detect the corrosion and prevent the pipes from deteriorating. This paper reports on the use of the Acoustic Emission (AE) technique to detect the early stages of corrosion prior to deterioration of concrete structures.

  5. Acoustic emission spectral analysis of fiber composite failure mechanisms

    NASA Technical Reports Server (NTRS)

    Egan, D. M.; Williams, J. H., Jr.

    1978-01-01

    The acoustic emission of graphite fiber polyimide composite failure mechanisms was investigated with emphasis on frequency spectrum analysis. Although visual examination of spectral densities could not distinguish among fracture sources, a paired-sample t statistical analysis of mean normalized spectral densities did provide quantitative discrimination among acoustic emissions from 10 deg, 90 deg, and plus or minus 45 deg, plus or minus 45 deg sub s specimens. Comparable discrimination was not obtained for 0 deg specimens.

  6. Laboratory Hydraulic Fracture Characterization Using Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Gutierrez, M.

    2013-05-01

    For many years Acoustic Emission (AE) testing has aided in the understanding of fracture initiation and propagation in geologic materials. AEs occur when a material emits elastic waves caused by the sudden occurrence of fractures or frictional sliding along discontinuous surfaces and grain boundaries. One important application of AE is the monitoring of hydraulic fracturing of underground formations to create functional reservoirs at sites where the permeability of the rock is too limited to allow for cost effective fluid extraction. However, several challenges remain in the use of AE to locate and characterize fractures that are created hydraulically. Chief among these challenges is the often large scatter of the AE data that are generated during the fracturing process and the difficulty of interpreting the AE data so that hydraulic fractures can be reliably characterized. To improve the understanding of the link between AE and hydraulic fracturing, laboratory scale model testing of hydraulic fracturing were performed using a cubical true triaxial device. This device consist of a loading frame capable of loading a 30x30x30 cm3 rock sample with three independent principal stresses up to 13 MPa while simultaneously providing heating up to 180 degrees C. Several laboratory scale hydraulic fracture stimulation treatments were performed on granite and rock analogue fabricated using medium strength concrete. A six sensor acoustic emission (AE) array, using wideband piezoelectric transducers, is employed to monitor the fracturing process. AE monitoring of laboratory hydraulic fracturing experiments showed multiple phenomena including winged fracture growth from a borehole, cross-field well communication, fracture reorientation, borehole casing failure and much more. AE data analysis consisted of event source location determination, fracture surface generation and validation, source mechanism determination, and determining the overall effectiveness of the induced fracture

  7. Application of acoustic emission to flaw detection in engineering materials

    NASA Technical Reports Server (NTRS)

    Moslehy, F. A.

    1990-01-01

    Monitoring of structures under operating loads to provide an early warning of possible failure to locate flaws in test specimens subjected to uniaxial tensile loading is presented. Test specimens used are mild steel prismatic bars with small holes at different locations. When the test specimen is loaded, acoustic emission data are automatically collected by two acoustic transducers located at opposite sides of the hole and processed by an acoustic emission analyzer. The processed information yields the difference in arrival times at the transducers, which uniquely determines the flaw location. By using this technique, flaws were located to within 8 percent of their true location. The use of acoustic emission in linear location to locate a flaw in a material is demonstrated. It is concluded that this one-dimensional application could be extended to the general flaw location problem through triangulation.

  8. Acoustic emission measurement of fatigue crack closure

    SciTech Connect

    Lee, C.S.; Rhyim, Y.M. . Center for Advanced Aerospace Materials); Kwon, D. . Dept. of Metallurgical Engineering); Ono, K. . Dept. of Materials Science and Engineering)

    1995-03-01

    In this study the acoustic emission (AE) technique has been applied to measure the crack closure loads precisely and the results have been compared with those measured by the conventional techniques such as the crack opening displacement (COD) method, back face strain gage (BFS) method, and surface strain gage method. In addition, fatigue tests at high stress ratio (R=0.8) have also been conducted to compared the results with those of the above methods at R=0.1 and to verify the accuracy of each method. The material used in the present investigation was an Al-Li 8090 alloy which was supplied as a 44.5mm thick rolled plate in the solution heat treated, 6% stretched and naturally aged condition. The COD and BFS methods show relatively good agreement with each other and measure the through-thickness mean value of crack closure loads. In the plane strain condition, the crack closure levels obtained by the COD and BFS methods were lower than those by the AE and surface train gage methods. The data obtained by the surface strain gage method must be interpreted carefully, because the shape of the compliance curves is affected by the location relative to the crack tip. The intrinsic fatigue life curve (da/dN vs. [Delta]K[sub eff]) obtained by the AE technique fitted well with the curve of high stress ratio (R=0.8) test at high [Delta]K, suggesting that the AE technique is sensitive to local crack-tip behavior on a microscopic scale and can be considered as a reliable measurement method for crack closure phenomena under repetitive loads.

  9. Analysis of the development and possibilities of the acoustic emission method

    NASA Astrophysics Data System (ADS)

    Malecki, Ignacy

    The phenomenon of acoustic emission has been known for ages, but its practical use only dates back to the early 1960's to 'microseismic observations,' or farther back to the analysis of the acoustic emission generated by metals under stress. Discussed is the expansion of the measurement range by the detection of high frequency acoustic emission signals, the generation of acoustic emission by dislocation movements in metals and the brittle fracture of ceramics, the effect of material fatigue on acoustic emission activity, promising new applications in mining and construction, and efforts to improve acoustic emission transducers. A comparative analysis of trends in the development of acoustic emission techniques over the last 25 years and conclusions concerning the directions of future research are given. A description of ways to improve acoustic emission techniques which primarily focuses on electronic acoustic emission signal processing, extraction, and separation is presented. Phases of acoustic emission activity under conditions of rising stress, the 'life span' and fatigue of a material determined by means of acoustic emission, classification of acoustic emission sources, and analysis of the possibilities of acoustic emission for raw materials, processed materials, mechanical engineering, electronics, power generation, construction, and chemicals and for diagnosing motor vehicles and engineering systems are discussed. The authors also discuss the possibility of using acoustic emission in biology and medicine and the possible applications of acoustic emissions for basic research in physics and chemistry.

  10. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    NASA Astrophysics Data System (ADS)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  11. Acoustic emission structural health management systems (AE-SHMS)

    NASA Astrophysics Data System (ADS)

    Finlayson, Richard D.; Friesel, Mark A.; Carlos, Mark F.; Miller, Ronnie K.; Godinez, Valery

    2000-05-01

    Many of today's methods of inspecting structures are very time consuming, labor intensive and in many cases (due to limited access), impractical. In addition, long shutdown times are required to perform the inspections, thus creating tremendous expenses associated with manpower, materials and lost production. With continuing advances in signal processing and communications a significant interest has been shown in developing new diagnostic technologies for monitoring the integrity of structures with known defects, or for detecting new defects, in real time with minimum human involvement. The continued use of aging structures, especially in regard to the airworthiness of aging aircraft, is a major area of concern. Recent developments in both active and passive Acoustic Emission monitoring as an advanced tool for 'Structural Health Management Systems (SHMS),' are illustrated by using two recently developed acoustic emission systems; the Acoustic Emission-Health and Usage Monitoring System (AE-HUMS) helicopter drivetrain health monitoring system, and the Acoustic Emission Flight Instrument System (AEFIS) composite health monitoring system. The data collected with these types of systems is processed with advanced data screening and classification techniques, which are employed to take full advantage of parametric and waveform-based acoustic emission.

  12. Thermally induced acoustic emissions in thermal barrier coatings

    SciTech Connect

    Voyer, J.; Gitzhofer, F.; Boulos, M.I.; Durham, S.

    1995-12-31

    In this study, acoustic emission signals are used to monitor the degradation of plasma sprayed Thermal Barrier Coatings (TBC) under thermal cycling conditions. Signal analysis both in time and frequency domains is carried out in order to identify the key parameters which can be used to classify the acoustic emission signals as a function of the damage mechanisms. This classification offers a means of prediction of the long-term behavior of the thermal barrier coating based on the acoustic emission signal signature at the early stages of bench testing. The tests were carried out using an experimental rig that was developed to reproduce thermal conditions encountered inside a combustion chamber. Twelve infrared lamps, each with a power rating of 1,200 W, are used as a heat source. The samples consist of an alloy blade coated with a duplex TBC made of a 150 {micro}m thick bond coat covered with a 300 {micro}m thick partially-stabilized zirconia coating. The maximum surface temperature of the sample was measured to be around 1,000 C. Two broadband transducers are used for acquisition of acoustic emission signals. Measuring the time between signal detection by each of the two transducers provides a means of determination of the location of the source of the acoustic signals. A classification of the signals based on their energy and their maximum peak frequency is presented.

  13. Phonon Emission from Acoustic Black Hole

    NASA Astrophysics Data System (ADS)

    Fang, Hengzhong; Zhou, Kaihu; Song, Yuming

    2012-08-01

    We study the phonon tunneling through the horizon of an acoustic black hole by solving the Hamilton-Jacobi equation. We also make use of the closed-path integral to calculate the tunneling probability, and an improved way to determine the temporal contribution is used. Both the results from the two methods agree with Hawking's initial analysis.

  14. Acoustic emissions applications on the NASA Space Station

    SciTech Connect

    Friesel, M.A.; Dawson, J.F.; Kurtz, R.J.; Barga, R.S.; Hutton, P.H.; Lemon, D.K.

    1991-08-01

    Acoustic emission is being investigated as a way to continuously monitor the space station Freedom for damage caused by space debris impact and seal failure. Experiments run to date focused on detecting and locating simulated and real impacts and leakage. These were performed both in the laboratory on a section of material similar to a space station shell panel and also on the full-scale common module prototype at Boeing's Huntsville facility. A neural network approach supplemented standard acoustic emission detection and analysis techniques. 4 refs., 5 figs., 1 tab.

  15. Acoustic emission of coal in the postlimiting deformation state

    SciTech Connect

    Voznesenskii, A.S.; Tavostin, M.N.

    2005-08-01

    The features of acoustic emission in coal samples in the state of pre- and postlimiting deformation are considered. It is shown that in the postlimiting deformation stages and in the transient period, a contrary change is observed in a correlation coefficient of the acoustic emission activity N{Sigma} recorded in the upper and lower portions of a sample; whereas in the prelimiting deformation stages, this change is consistent. It is proposed to recognize the stages of deformation by the correlation coefficient of N{Sigma} recorded in different zones: a positive coefficient corresponds to the prelimiting stage of deformation, and a negative one corresponds to the postlimiting stage.

  16. Locating groundwater flow in karst by acoustic emission surveys

    SciTech Connect

    Stokowski, S.J. Jr.; Clark, D.A.

    1985-01-01

    An acoustic emission survey of Newala Fm. (primarily dolomite) karst has helped to locate subsurface water flow. This survey was performed on the Rock Quarry Dome, Sevier County, Tennessee. A Dresser RS-4 recording seismograph, adjusted to provide a gain of 1000, collected acoustic emission data using Mark Products CN368 vertical geophones with 3-inch spikes. Data was collected for 5-15 second intervals. The geophones were laid out along traverses with 10, 20, or 30-ft spacing and covered with sand bags in locations of high ambient noise. Traverses were laid out: along and across lineaments known to correspond with groundwater flow in natural subsurface channels; across and along a joint-controlled sink suspected of directing groundwater flow; and across a shallow sinkhole located tangentially to the Little Pigeon River and suspected of capturing river water for the groundwater system. Acoustic emissions of channelized flowing groundwater have a characteristic erratic spiked spectral signature. These acoustic emission signatures increase in amplitude and number in the immediate vicinity of the vertical projection of channelized groundwater flow if it occurs within approximately 30 feet of the surface. If the groundwater flow occurs at greater depths the emissions may be offset from the projection of the actual flow, due to propagation of the signal along rock pinnacles or attenuation by residual soils.

  17. Assessing corrosion damage in reinforced concrete beams using acoustic emission

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Jin; Weiss, W. Jason; Prine, David W.; Shah, Surendra P.

    1999-02-01

    The acoustic emission (AE) behavior of reinforced concrete beams tested under flexural loading was investigated to characterize and identify the source of damage. This research was aimed at identifying the characteristic AE response associated with micro-crack development, localized crack propagation, corrosion, and debonding of the reinforcing steel.

  18. Regularities of acoustic emission in coal samples under triaxial compression

    SciTech Connect

    Shkuratnik, V.L.; Filimonov, Y.L.; Kuchurin, S.V.

    2005-02-01

    The results are cited for the experimental study of acoustoemission processes in anthracite samples under triaxial compression by the Karman scheme at the constant rate of axial strain. From a comparison of the stress-strain and acoustoemission curves, the features of acoustic emission parameters in various deformation stages are revealed and the physicomechanical properties of coal are estimated.

  19. Laser-induced acoustic emissions in experimental dental composites.

    PubMed

    Lee, S Y; Lin, C T; Keh, E S; Pan, L C; Huang, H M; Shih, Y H; Cheng, H C

    2000-07-01

    A laser thermoacoustic technique was innovated to evaluate laser-induced acoustic emissions (AEs) in experimental dental composites aged with 75% ethanol solution. Experimental composite systems of 75/25 BisGMA/TEGDMA resin filled with 0, 12.6, 30.0, and 56.5 vol% of 8-microm silanized and unsilanized BaSiO6 were analyzed. The sample size was 4.65 mm (diameter) x 0.5 mm (thick). Aging effects of immersing in 75% ethanol for up to 14 h on AEs were then evaluated. A continuous-wave CO2 laser was used to heat the samples. Acoustic emissions were collected as a function of filler fraction, laser power, silanization, and immersion time. Onset of burst-pattern acoustic signals characteristic of fracturing occurred at different laser powers for different tested groups. Acoustic emissions generally increased with laser power, in which lower laser powers produced low-amplitude (45-50 dB) signals; the amplitude distribution (50-85 dB) became more extensive as laser powers increased. After immersion, the lower laser powers could produce the same phenomenon. The higher the filler fraction, the fewer AEs generated. A large percentage AE reduction due to silanization was noted as a function of filler fraction. Unsilanized specimens showed more thermal damages than did silanized ones.

  20. Acoustic emission location on aluminum alloy structure by using FBG sensors and PSO method

    NASA Astrophysics Data System (ADS)

    Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Dong, Huijun; Sai, Yaozhang; Jia, Lei

    2016-04-01

    Acoustic emission location is important for finding the structural crack and ensuring the structural safety. In this paper, an acoustic emission location method by using fiber Bragg grating (FBG) sensors and particle swarm optimization (PSO) algorithm were investigated. Four FBG sensors were used to form a sensing network to detect the acoustic emission signals. According to the signals, the quadrilateral array location equations were established. By analyzing the acoustic emission signal propagation characteristics, the solution of location equations was converted to an optimization problem. Thus, acoustic emission location can be achieved by using an improved PSO algorithm, which was realized by using the information fusion of multiple standards PSO, to solve the optimization problem. Finally, acoustic emission location system was established and verified on an aluminum alloy plate. The experimental results showed that the average location error was 0.010 m. This paper provided a reliable method for aluminum alloy structural acoustic emission location.

  1. Wavelet-based acoustic emission detection method with adaptive thresholding

    NASA Astrophysics Data System (ADS)

    Menon, Sunil; Schoess, Jeffrey N.; Hamza, Rida; Busch, Darryl

    2000-06-01

    Reductions in Navy maintenance budgets and available personnel have dictated the need to transition from time-based to 'condition-based' maintenance. Achieving this will require new enabling diagnostic technologies. One such technology, the use of acoustic emission for the early detection of helicopter rotor head dynamic component faults, has been investigated by Honeywell Technology Center for its rotor acoustic monitoring system (RAMS). This ambitious, 38-month, proof-of-concept effort, which was a part of the Naval Surface Warfare Center Air Vehicle Diagnostics System program, culminated in a successful three-week flight test of the RAMS system at Patuxent River Flight Test Center in September 1997. The flight test results demonstrated that stress-wave acoustic emission technology can detect signals equivalent to small fatigue cracks in rotor head components and can do so across the rotating articulated rotor head joints and in the presence of other background acoustic noise generated during flight operation. This paper presents the results of stress wave data analysis of the flight-test dataset using wavelet-based techniques to assess background operational noise vs. machinery failure detection results.

  2. Acoustic emission source mechanisms for steel bridge material

    NASA Astrophysics Data System (ADS)

    Hossain, M.; Yu, J.; Ziehl, P.; Caicedo, J.; Matta, F.; Guo, S.; Sutton, M.

    2013-01-01

    Over the past twenty years acoustic emission (AE) has been studied for applications to the structural health monitoring (SHM) of metallic structures. The success of AE for prognosis of in-service steel bridges depends on the reliability of the received AE signals. The emphasis of this paper is on the characterization of acoustic emission source mechanisms for ASTM A572 grade 50 steel. The source characterization was aided by Digital Imaging Correlation (DIC) and Scanning Electronic Microscopy (SEM). The results indicate that both ductile and brittle mechanisms can produce AE during fatigue crack growth in the steel. However, the fracture mechanisms are predominately ductile. A key preliminary finding is that fatigue crack extension does not generally produce AE events in the early stage of fatigue crack growth for the steel bridge material investigated.

  3. Pulse analysis of acoustic emission signals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.

    1976-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio are examined in the frequency domain analysis, and pulse shape deconvolution is developed for use in the time domain analysis. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings.

  4. Monitoring of acoustic emission activity using thin wafer piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Trujillo, Blaine; Zagrai, Andrei; Meisner, Daniel; Momeni, Sepand

    2014-03-01

    Acoustic emission (AE) is a well-known technique for monitoring onset and propagation of material damage. The technique has demonstrated utility in assessment of metallic and composite materials in applications ranging from civil structures to aerospace vehicles. While over the course of few decades AE hardware has changed dramatically with the sensors experiencing little changes. A traditional acoustic emission sensor solution utilizes a thickness resonance of the internal piezoelectric element which, coupled with internal amplification circuit, results in relatively large sensor footprint. Thin wafer piezoelectric sensors are small and unobtrusive, but they have seen limited AE applications due to low signal-to-noise ratio and other operation difficulties. In this contribution, issues and possible solutions pertaining to the utility of thin wafer piezoelectrics as AE sensors are discussed. Results of AE monitoring of fatigue damage using thin wafer piezoelectric and conventional AE sensors are presented.

  5. Results of acoustic emission tests on Halon fire bottles

    SciTech Connect

    Beattie, A.G.; Shurtleff, W.W.

    1996-10-01

    An acoustic emission tester for aircraft Halon bottles has been developed. The necessary load is applied by heating the bottles. Acoustic emission is monitored during the heating by six sensors held in position by a special fixture. This fixture was designed to fit spheres with diameters between 5 and 16 inches. A prototype has been undergoing testing in two commercial Halon bottle repair and test facilities. Results to date indicate that about 97 percent of the bottles tested show no indications of any flaws. The other three percent have had indications of flaws in non-critical areas of the bottles. All bottles tested to date have passed the hydrostatic test required by the Department of Transportation (DOT).

  6. Fault growth and acoustic emissions in confined granite

    USGS Publications Warehouse

    Lockner, David A.; Byerlee, James D.

    1992-01-01

    The failure process in a brittle granite was studied by using acoustic emission techniques to obtain three dimensional locations of the microfracturing events. During a creep experiment the nucleation of faulting coincided with the onset of tertiary creep, but the development of the fault could not be followed because the failure occurred catastrophically. A technique has been developed that enables the failure process to be stabilized by controlling the axial stress to maintain a constant acoustic emission rate. As a result the post-failure stress-strain curve has been followed quasi-statically, extending to hours the fault growth process that normally would occur violently in a fraction of a second. The results from the rate-controlled experiments show that the fault plane nucleated at a point on the sample surface after the stress-strain curve reached its peak. Before nucleation, the microcrack growth was distributed throughout the sample. The fault plane then grew outward from the nucleation site and was accompanied by a gradual drop in stress. Acoustic emission locations showed that the fault propagated as a fracture front (process zone) with dimensions of 1 to 3 cm. As the fracture front passed by a given fixed point on the fault plane, the subsequent acoustic emission would drop. When growth was allowed to progress until the fault bisected the sample, the stress dropped to the frictional strength. These observations are in accord with the behavior predicted by Rudnicki and Rice's bifurcation analysis but conflict with experiments used to infer that shear localization would occur in brittle rock while the material is still hardening.

  7. Acoustic emission monitoring for assessment of steel bridge details

    SciTech Connect

    Kosnik, D. E.; Corr, D. J.; Hopwood, T.

    2011-06-23

    Acoustic emission (AE) testing was deployed on details of two large steel Interstate Highway bridges: one cantilever through-truss and one trapezoidal box girder bridge. Quantitative measurements of activity levels at known and suspected crack locations were made by monitoring AE under normal service loads (e.g., live traffic and wind). AE indications were used to direct application of radiography, resulting in identification of a previously unknown flaw, and to inform selection of a retrofit detail.

  8. Acoustic emission and shape memory effect in the martensitic transformation.

    PubMed

    Sreekala, S; Ananthakrishna, G

    2003-04-01

    Acoustic emission signals are known to exhibit a high degree of reproducibility in time and show correlations with the growth and shrinkage of martensite domains when athermal martensites are subjected to repeated thermal cycling in a restricted temperature range. We show that a recently introduced two dimensional model for the martensitic transformation mimics these features. We also show that these features are related to the shape memory effect where near full reversal of morphological features are seen under these thermal cycling conditions.

  9. Crack propagation testing using a YCOB acoustic emission sensor

    NASA Astrophysics Data System (ADS)

    Johnson, Joseph A.; Kim, Kyungrim; Zhang, Shujun; Jiang, Xiaoning

    2014-03-01

    Piezoelectric crystals are popular for passive sensors, such as accelerometers and acoustic emission sensors, due to their robustness and high sensitivity. These sensors are widespread in structural health monitoring among civil and industrial structures, but there is little application in high temperature environments (e.g. > 1000°C) due to the few materials that are capable of operating at elevated temperatures. Most piezoelectric materials suffer from a loss of electric properties above temperatures in the 500-700°C range, but rare earth oxyborate crystals, such as Yttrium calcium oxyborate (YCOB), retain their piezoelectric properties above 1000 °C. Our previous research demonstrated that YCOB can be used to detect transient lamb waves via Hsu-Nielsen tests, which replicate acoustic emission waves, up to 1000°C. In this paper, YCOB piezoelectric acoustic emission sensors were tested for their ability to detect crack progression at elevated temperatures. The sensor was fabricated using a YCOB single crystal and Inconel electrodes and wires. The sensor was mounted onto a stainless steel bar substrate, which was machined to include a pre-crack notch. A dynamic load was induced on the bar with a shaker in order to force the crack to advance along the thickness of the substrate. The obtained raw data was processed and analyzed in the frequency domain and compared to the Lamb wave modes that were evaluated in previous Hsu-Nielsen testing for the substrate.

  10. Emission Enhancement of Sound Emitters using an Acoustic Metamaterial Cavity

    PubMed Central

    Song, Kyungjun; Lee, Seong-Hyun; Kim, Kiwon; Hur, Shin; Kim, Jedo

    2014-01-01

    The emission enhancement of sound without electronic components has wide applications in a variety of remote systems, especially when highly miniaturized (smaller than wavelength) structures can be used. The recent advent of acoustic metamaterials has made it possible to realize this. In this study, we propose, design, and demonstrate a new class of acoustic cavity using a double-walled metamaterial structure operating at an extremely low frequency. Periodic zigzag elements which exhibit Fabry-Perot resonant behavior below the phononic band-gap are used to yield strong sound localization within the subwavelength gap, thus providing highly effective emission enhancement. We show, both theoretically and experimentally, 10 dB sound emission enhancement near 1060 Hz that corresponds to a wavelength approximately 30 times that of the periodicity. We also provide a general guideline for the independent tuning of the quality factor and effective volume of acoustic metamaterials. This approach shows the flexibility of our design in the efficient control of the enhancement rate. PMID:24584552

  11. Concurrent Ultrasonic Tomography and Acoustic Emission in Solid Materials

    NASA Astrophysics Data System (ADS)

    Chow, Thomas M.

    A series of experiments were performed to detect stress induced changes in the elastic properties of various solid materials. A technique was developed where these changes were monitored concurrently by two methods, ultrasonic tomography and acoustic emission monitoring. This thesis discusses some experiments in which acoustic emission (AE) and ultrasonic tomography were performed on various samples of solid materials including rocks, concrete, metals, and fibre reinforced composites. Three separate techniques were used to induce stress in these samples. Disk shaped samples were subject to stress via diametral loading using an indirect tensile test geometry. Cylindrical samples of rocks and concrete were subject to hydraulic fracture tests, and rectangular samples of fibre reinforced composite were subject to direct tensile loading. The majority of the samples were elastically anisotropic. Full waveform acoustic emission and tomographic data were collected while these samples were under load to give information concerning changes in the structure of the material as it was undergoing stress change and/or failure. Analysis of this data indicates that AE and tomographic techniques mutually compliment each other to give a view of the stress induced elastic changes in the tested samples.

  12. Damage Detection and Analysis in CFRPs Using Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    Whitlow, Travis Laron

    Real time monitoring of damage is an important aspect of life management of critical structures. Acoustic emission (AE) techniques allow for measurement and assessment of damage in real time. Acoustic emission parameters such as signal amplitude and duration were monitored during the loading sequences. Criteria that can indicate the onset of critical damage to the structure were developed. Tracking the damage as it happens gives a better analysis of the failure evolution that will allow for a more accurate determination of structural life. The main challenge is distinguishing between legitimate damage signals and "false positives" which are unrelated to damage growth. Such false positives can be related to electrical noise, friction, or mechanical vibrations. This research focuses on monitoring signals of damage growth in carbon fiber reinforced polymers (CFRPs) and separating the relevant signals from the false ones. In this Dissertation, acoustic emission signals from CFRP specimens were experimentally recorded and analyzed. The objectives of this work are: (1) perform static and fatigue loading of CFRP composite specimens and measure the associated AE signals, (2) accurately determine the AE parameters (energy, frequency, duration, etc.) of signals generated during failure of such specimens, (3) use fiber optic sensors to monitor the strain distribution of the damage zone and relate these changes in strain measurements to AE data.

  13. Modeling of Acoustic Emission Signal Propagation in Waveguides

    PubMed Central

    Zelenyak, Andreea-Manuela; Hamstad, Marvin A.; Sause, Markus G. R.

    2015-01-01

    Acoustic emission (AE) testing is a widely used nondestructive testing (NDT) method to investigate material failure. When environmental conditions are harmful for the operation of the sensors, waveguides are typically mounted in between the inspected structure and the sensor. Such waveguides can be built from different materials or have different designs in accordance with the experimental needs. All these variations can cause changes in the acoustic emission signals in terms of modal conversion, additional attenuation or shift in frequency content. A finite element method (FEM) was used to model acoustic emission signal propagation in an aluminum plate with an attached waveguide and was validated against experimental data. The geometry of the waveguide is systematically changed by varying the radius and height to investigate the influence on the detected signals. Different waveguide materials were implemented and change of material properties as function of temperature were taken into account. Development of the option of modeling different waveguide options replaces the time consuming and expensive trial and error alternative of experiments. Thus, the aim of this research has important implications for those who use waveguides for AE testing. PMID:26007731

  14. Acoustic emission signatures of damage modes in concrete

    NASA Astrophysics Data System (ADS)

    Aggelis, D. G.; Mpalaskas, A. C.; Matikas, T. E.; Van Hemelrijck, D.

    2014-03-01

    The characterization of the dominant fracture mode may assist in the prediction of the remaining life of a concrete structure due to the sequence between successive tensile and shear mechanisms. Acoustic emission sensors record the elastic responses after any fracture event converting them into electric waveforms. The characteristics of the waveforms vary according to the movement of the crack tips, enabling characterization of the original mode. In this study fracture experiments on concrete beams are conducted. The aim is to examine the typical acoustic signals emitted by different fracture modes (namely tension due to bending and shear) in a concrete matrix. This is an advancement of a recent study focusing on smaller scale mortar and marble specimens. The dominant stress field and ultimate fracture mode is controlled by modification of the four-point bending setup while acoustic emission is monitored by six sensors at fixed locations. Conclusions about how to distinguish the sources based on waveform parameters of time domain (duration, rise time) and frequency are drawn. Specifically, emissions during the shear loading exhibit lower frequencies and longer duration than tensile. Results show that, combination of AE features may help to characterize the shift between dominant fracture modes and contribute to the structural health monitoring of concrete. This offers the basis for in-situ application provided that the distortion of the signal due to heterogeneous wave path is accounted for.

  15. Pen-chant: Acoustic emissions of handwriting and drawing

    NASA Astrophysics Data System (ADS)

    Seniuk, Andrew G.

    The sounds generated by a writing instrument ('pen-chant') provide a rich and underutilized source of information for pattern recognition. We examine the feasibility of recognition of handwritten cursive text, exclusively through an analysis of acoustic emissions. We design and implement a family of recognizers using a template matching approach, with templates and similarity measures derived variously from: smoothed amplitude signal with fixed resolution, discrete sequence of magnitudes obtained from peaks in the smoothed amplitude signal, and ordered tree obtained from a scale space signal representation. Test results are presented for recognition of isolated lowercase cursive characters and for whole words. We also present qualitative results for recognizing gestures such as circling, scratch-out, check-marks, and hatching. Our first set of results, using samples provided by the author, yield recognition rates of over 70% (alphabet) and 90% (26 words), with a confidence of +/-8%, based solely on acoustic emissions. Our second set of results uses data gathered from nine writers. These results demonstrate that acoustic emissions are a rich source of information, usable---on their own or in conjunction with image-based features---to solve pattern recognition problems. In future work, this approach can be applied to writer identification, handwriting and gesture-based computer input technology, emotion recognition, and temporal analysis of sketches.

  16. Acoustic emission studies of large advanced composite rocket motor cases.

    NASA Technical Reports Server (NTRS)

    Robinson, E. Y.

    1973-01-01

    Acoustic emission (AE) patterns were measured during pressure testing of advanced composite rocket motor cases made of boron/epoxy and graphite/epoxy. Both accelerometers and high frequency AE transducers were used, and both frequency spectrum and amplitude distribution were studied. The AE patterns suggest that precursor emission might be used in certain cases to anticipate failure. The technique of hold-cycle AE monitoring was also evaluated and could become a valuable decision gate for test continuation/termination. Data presented show similarity of accelerometers and AE transducer responses despite the different frequency response, and suggest that structural AE phenomena are broadband.

  17. Simple discrimination method between False Acoustic Emission and Acoustic Emission revealed by piezoelectric sensors, in Gran Sasso mountain measurements (L)

    NASA Astrophysics Data System (ADS)

    Diodati, Paolo; Piazza, Stefano

    2004-07-01

    Recently it was shown, studying data acquired with in-situ measurements on the Gran Sasso mountain (Italy), for about ten years, by means of a high sensitivity transducer coupled to the free-end section of a stainless steel rod fixed by cement in a rock-drill hole 10 m high, about 2500 m above sea level, that Acoustic Emission (AE) can be affected by more than 90% False Acoustic Emission (FAE) of an electromagnetic origin. A very simple method to solve the problem of the discrimination between AE events due to elastic waves, from FAE signals, due to electromagnetic noise, both coming from the same ``reception-point,'' is presented. The reliability of the obtained separation is confirmed also by the reported amplitude and time distribution of AE events, typical of fracture dynamics and those of FAE events, similar to those of noise.

  18. Predicting failure: acoustic emission of berlinite under compression.

    PubMed

    Nataf, Guillaume F; Castillo-Villa, Pedro O; Sellappan, Pathikumar; Kriven, Waltraud M; Vives, Eduard; Planes, Antoni; Salje, Ekhard K H

    2014-07-01

    Acoustic emission has been measured and statistical characteristics analyzed during the stress-induced collapse of porous berlinite, AlPO4, containing up to 50 vol% porosity. Stress collapse occurs in a series of individual events (avalanches), and each avalanche leads to a jerk in sample compression with corresponding acoustic emission (AE) signals. The distribution of AE avalanche energies can be approximately described by a power law p(E)dE = E(-ε)dE (ε ~ 1.8) over a large stress interval. We observed several collapse mechanisms whereby less porous minerals show the superposition of independent jerks, which were not related to the major collapse at the failure stress. In highly porous berlinite (40% and 50%) an increase of energy emission occurred near the failure point. In contrast, the less porous samples did not show such an increase in energy emission. Instead, in the near vicinity of the main failure point they showed a reduction in the energy exponent to ~ 1.4, which is consistent with the value reported for compressed porous systems displaying critical behavior. This suggests that a critical avalanche regime with a lack of precursor events occurs. In this case, all preceding large events were 'false alarms' and unrelated to the main failure event. Our results identify a method to use pico-seismicity detection of foreshocks to warn of mine collapse before the main failure (the collapse) occurs, which can be applied to highly porous materials only.

  19. Fiber-optic acoustic-emission sensors and detection

    NASA Astrophysics Data System (ADS)

    Borinski, Jason W.; Clark, Richard L., Jr.; Furrow, A. Paige C.; Duke, John C., Jr.; Horne, Michael R.

    2000-05-01

    Optical fiber sensors are rapidly emerging as viable alternatives to piezoelectric devices as effective means of detecting and quantifying acoustic emission (AE). Compared to traditional piezoelectric-based sensors, optical fiber sensors offer much smaller size, reduced weight, ability to operate at temperatures up to 2000 degrees Celsius, immunity to electromagnetic interference, resistance to corrosive environments, inherent safety within flammable environments, and the ability to multiplex multiple sensors on a single fiber. The authors have investigated low-profile fiber optic- based AE sensors for non-destructive evaluation (NDE) systems. In particular, broadband optical fiber sensors were developed for monitoring acoustic emission for NDE of pressurized composite vessels. The authors conducted experiments by surface attaching sensors to aluminum compact tension specimens using a piezoelectric transducer as a reference sensor. Both the fiber optic and piezoelectric sensors accurately measured a representative acoustic event. The response of the fiber optic AE sensors were also compared to existing piezoelectric sensors during pencil lead break tests on an aluminum panel. The results indicate that optical fiber AE sensors can be used as highly sensitive transducers in many applications where conventional piezoelectric transducers are not suited.

  20. Acoustic emission testing of composite vessels under sustained loading

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Moorhead, P. E.

    1978-01-01

    Acoustic emissions (AE) generated from Kevlar 49/epoxy composite pressure vessels subjected to sustained load-to-failure tests were studied. Data from two different transducer locations on the vessels were compared. It was found that AE from vessel wall-mounted transducers showed a wide variance from those for identical vessels subjected to the same pressure loading. Emissions from boss-mounted transducers did, however, yield values that were relatively consistent. It appears that the signals from the boss-mounted transducers represent an integrated average of the emissions generated by fibers fracturing during the vessel tests. The AE from boss-mounted transducers were also independent of time for vessel failure. This suggests that a similar number of fiber fractures must occur prior to initiation of vessel failure. These studies indicate a potential for developing an AE test procedure for predicting the residual service life or integrity of composite vessels.

  1. Acoustic Emission Beamforming for Detection and Localization of Damage

    NASA Astrophysics Data System (ADS)

    Rivey, Joshua Callen

    The aerospace industry is a constantly evolving field with corporate manufacturers continually utilizing innovative processes and materials. These materials include advanced metallics and composite systems. The exploration and implementation of new materials and structures has prompted the development of numerous structural health monitoring and nondestructive evaluation techniques for quality assurance purposes and pre- and in-service damage detection. Exploitation of acoustic emission sensors coupled with a beamforming technique provides the potential for creating an effective non-contact and non-invasive monitoring capability for assessing structural integrity. This investigation used an acoustic emission detection device that employs helical arrays of MEMS-based microphones around a high-definition optical camera to provide real-time non-contact monitoring of inspection specimens during testing. The study assessed the feasibility of the sound camera for use in structural health monitoring of composite specimens during tensile testing for detecting onset of damage in addition to nondestructive evaluation of aluminum inspection plates for visualizing stress wave propagation in structures. During composite material monitoring, the sound camera was able to accurately identify the onset and location of damage resulting from large amplitude acoustic feedback mechanisms such as fiber breakage. Damage resulting from smaller acoustic feedback events such as matrix failure was detected but not localized to the degree of accuracy of larger feedback events. Findings suggest that beamforming technology can provide effective non-contact and non-invasive inspection of composite materials, characterizing the onset and the location of damage in an efficient manner. With regards to the nondestructive evaluation of metallic plates, this remote sensing system allows us to record wave propagation events in situ via a single-shot measurement. This is a significant improvement over

  2. Variation of solar acoustic emission and its relation to phase of the solar cycle

    NASA Astrophysics Data System (ADS)

    Chen, Ruizhu; Zhao, Junwei

    2016-05-01

    Solar acoustic emission is closely related to solar convection and photospheric magnetic field. Variation of acoustic emission and its relation to the phase of solar cycles are important to understand dynamics of solar cycles and excitation of acoustic waves. In this work we use 6 years of SDO/HMI Dopplergram data to study acoustic emissions of the whole sun and of the quiet-sun regions, respectively, in multiple acoustic frequency bands. We show the variation of acoustic emission from May 2010 to April 2016, covering half of the solar cycle 24, and analyze its correlation with the solar activity level indexed by daily sunspot number and total magnetic flux. Results show that the correlation between the whole-Sun acoustic emission and the solar activity level is strongly negative for low frequencies between 2.5 and 4.5 mHz, but strongly positive for high frequencies between 4.5 and 6.0 mHz. For high frequencies, the acoustic emission excess in sunspot halos overwhelms the emission deficiency in sunspot umbrae and penumbrae. The correlation between the acoustic emission in quiet regions and the solar activity level is negative for 2.5-4.0 mHz and positive for 4.0-5.5 mHz. This shows that the solar background acoustic power, with active regions excluded, also varies during a solar cycle, implying the excitation frequencies or depths are highly related to the solar magnetic field.

  3. Acoustic emissions correlated with hydration of Saguaro Cactus

    NASA Astrophysics Data System (ADS)

    Wardell, L. J.; Rowe, C. A.

    2013-12-01

    For some years it has been demonstrated that hardwood trees produce acoustic emissions during periods of drought, which arise from cavitation in the xylem as water is withdrawn. These emissions not only provide insights into the fluid transport behavior within these trees, but also the degree to which cavitation can proceed before inevitable tree mortality. Such studies can have significant impact on our understanding of forest die-off in the face of climate change. Plant mortality is not limited to woody trees, however, and it is not only the coniferous and deciduous forests whose response to climate and rainfall changes are important. In the desert Southwest we observe changes to survival rates of numerous species of flora. One of the most conspicuous of these plants is the iconic Saguaro Cactus (Carnegiea gigantean). These behemoths of the Sonoran Desert are very sensitive to small perturbations in their environment. Specifically, during the summer monsoon season when the cacti become well-hydrated, they can absorb hundreds of gallons of water within a very short time frame. We have obtained a juvenile saguaro on which we are conducting experiments to monitor acoustic emissions during hydration and dessication cycles. We will report on our observations obtained using piezoelectric ceramic accelerometers whose signals are digitized up to 44 Khz and recorded during hydration.

  4. Acoustic emissions correlated with hydration of Saguaro Cactus

    NASA Astrophysics Data System (ADS)

    Wardell, L. J.; Rowe, C. A.

    2012-12-01

    For some years it has been demonstrated that hardwood trees produce acoustic emissions during periods of drought, which arise from cavitation in the xylem as water is withdrawn. These emissions not only provide insights into the fluid transport behavior within these trees, but also the degree to which cavitation can proceed before inevitable tree mortality. Such studies can have significant impact on our understanding of forest die-off in the face of climate change. Plant mortality is not limited to woody trees, however, and it is not only the coniferous and deciduous forests whose response to climate and rainfall changes are important. In the desert Southwest we observe changes to survival rates of numerous species of flora. One of the most conspicuous of these plants is the iconic Saguaro Cactus (Carnegiea gigantean). These behemoths of the Sonoran Desert are very sensitive to small perturbations in their environment. Specifically, during the summer monsoon season when the cacti become well-hydrated, they can absorb hundreds of gallons of water within a very short time frame. We have obtained a juvenile saguaro on which we are conducting experiments to monitor acoustic emissions during hydration and dessication cycles. We will report on our observations obtained using piezoelectric ceramic accelerometers whose signals are digitized up to 44 Khz and recorded during hydration.

  5. Magneto acoustical emission in nanocrystalline Mn–Zn ferrites

    SciTech Connect

    Praveena, K.; Murthty, S.R.

    2013-11-15

    Graphical abstract: Mn{sub 0.4}Zn{sub 0.6}Fe{sub 2}O{sub 4} powders were prepared by microwave hydrothermal method. The powders were characterized by X-ray diffraction, transmission electron microscope. The powders were sintered at different temperatures 400, 500, 600, 700, 800 and 900 °C/30 min using microwave sintering method. The grain size was estimated by scanning electron microscope. The room temperature dielectric and magnetic properties were studied in the frequency range (100 kHz–1.8 GHz). The magnetization properties were measured upto 1.5 T. The acoustic emission has been measured along the hysteresis loops from 80 K to Curie temperature. It is found that the magneto-acoustic emission (MAE) activity along hysteresis loop is proportional to the hysteresis losses during the same loop. This law has been verified on series of polycrystalline ferrites and found that the law is valid whatever the composition, the grain size and temperature. It is also found that the domain wall creation/or annihilation processes are the origin of the MAE. - Highlights: • The AE been measured along the hysteresis loops from 80 K to Curie temperature. • The MAE activity along hysteresis loop is proportional to P{sub h} during the same loop. • It is found that the domain wall creation/or annihilation processes are the origin of the MAE. - Abstract: Mn{sub 0.4}Zn{sub 0.6}Fe{sub 2}O{sub 4} powders were prepared by microwave hydrothermal method. The powders were characterized by X-ray diffraction, transmission electron microscope. The powders were sintered at different temperatures 400, 500, 600, 700, 800 and 900 °C/30 min using microwave sintering method. The grain size was estimated by scanning electron microscope. The room temperature dielectric and magnetic properties were studied in the frequency range (100 kHz–1.8 GHz). The magnetization properties were measured upto 1.5 T. The acoustic emission has been measured along the hysteresis loops from 80 K to Curie

  6. Deformation and failure information from composite materials via acoustic emission

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.

    1978-01-01

    The paper reviews some principles of applying acoustic emission (AE) to the study of fiber-composite materials and structures. This review covers the basics of using AE to monitor the deformation and fracture processes that occur when fiber-composite materials are stressed. Also, new results in some areas of current research interest are presented. The following areas are emphasized: study of couplants for AE testing of composites, evaluation of a special immersion-type AE transducer, and wave propagation complications and the development of techniques for locating AE sources in Kevlar 49/epoxy composite pre

  7. Signature analysis of acoustic emission from graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Russell, S. S.; Henneke, E. G., II

    1977-01-01

    Acoustic emissions were monitored for crack extension across and parallel to the fibers in a single ply and multiply laminates of graphite epoxy composites. Spectrum analysis was performed on the transient signal to ascertain if the fracture mode can be characterized by a particular spectral pattern. The specimens were loaded to failure quasistatically in a tensile machine. Visual observations were made via either an optical microscope or a television camera. The results indicate that several types of characteristics in the time and frequency domain correspond to different types of failure.

  8. Acoustic emission study of deformation behavior of nacre

    NASA Astrophysics Data System (ADS)

    Luo, Shunfei; Luo, Hongyun; Han, Zhiyuan

    2016-02-01

    A study on the acoustic emission (AE) characteristics during deformation of nacre material was performed. We found that intermittent AE events are generated during nacre deformation. These avalanches may be attributed to microfracture events of the aragonite (CaCO3) nano-asperities and bridges during tablet sliding. These events show several critical features, such as the power-law distributions of the avalanche sizes and interval. These results suggest that the underlying fracture dynamics during nacre deformation display a self-organized criticality (SOC). The results also imply that the disorder and long-range correlation between local microfracture events may play important roles in nacre deformation.

  9. The acoustic emissions of cavitation bubbles in stretched vortices.

    PubMed

    Chang, Natasha A; Ceccio, Steven L

    2011-11-01

    Pairs of unequal strength, counter-rotating vortices were produced in order to examine the inception, dynamics, and acoustic emission of cavitation bubbles in rapidly stretching vortices. The acoustic signatures of these cavitation bubbles were characterized during their inception, growth, and collapse. Growing and collapsing bubbles often produced a sharp, broadband, pop sound. The spectrum of these bubbles, and the peak resonant frequency can generally be related to quiescent flow bubble dynamics and corresponding resonant frequencies. However, some elongated cavitation bubbles produced a short tonal burst, or chirp, with frequencies on the order of a few kilohertz. Theses frequencies are too low to be related to resonant frequencies of a bubble in a quiescent flow. Instead, the frequency content of the acoustic signal during bubble inception and growth is related to the volumetric oscillations of the bubble while it interacted with vortical flow that surrounds the bubble (i.e., the resonant frequency of the vortex-bubble system). A relationship was determined between the observed peak frequency of the oscillations, the highly stretched vortex properties, and the water nuclei content. It was found that different cavitation spectra could relate to different flow and fluid properties and therefore would not scale in the same manner.

  10. Acoustic Emission Detection of Impact Damage on Space Shuttle Structures

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Gorman, Michael R.; Madaras, Eric I.

    2004-01-01

    The loss of the Space Shuttle Columbia as a result of impact damage from foam debris during ascent has led NASA to investigate the feasibility of on-board impact detection technologies. AE sensing has been utilized to monitor a wide variety of impact conditions on Space Shuttle components ranging from insulating foam and ablator materials, and ice at ascent velocities to simulated hypervelocity micrometeoroid and orbital debris impacts. Impact testing has been performed on both reinforced carbon composite leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. Results of these impact tests will be presented with a focus on the acoustic emission sensor responses to these impact conditions. These tests have demonstrated the potential of employing an on-board Shuttle impact detection system. We will describe the present plans for implementation of an initial, very low frequency acoustic impact sensing system using pre-existing flight qualified hardware. The details of an accompanying flight measurement system to assess the Shuttle s acoustic background noise environment as a function of frequency will be described. The background noise assessment is being performed to optimize the frequency range of sensing for a planned future upgrade to the initial impact sensing system.

  11. Quality control of thermal barrier coatings using acoustic emission

    NASA Astrophysics Data System (ADS)

    Andrews, David J.; Taylor, Jenifer A. T.

    2000-06-01

    Thermal barrier coatings (TBCs) are used to protect underlying metal from heat generated during combustion of fuel, especially in truck engines and jet turbines. These coatings are thin, partially stabilized zirconia, separated from the substrate metal by an interface layer, which serves to enhance bonding and reduce the thermal expansion mismatch between the metal and the ceramic. The reliability of these coatings is currently not predictable. The work described in this paper focused on the use of acoustic emission (AE) as a quality control test for TBCs. The test specimens were commercially sprayed straps. The data show that differences in spraying parameters and microstructure are clearly visible in the emissions during thermal cycling. This work indicates that the failure mechanism can be predicted from the AEs during the first thermal cycle.

  12. Simultaneous multipoint acoustic emission sensing using fibre acoustic wave grating sensors with identical spectrum

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Ryul; Lee, Seung-Seok; Yoon, Dong-Jin

    2008-08-01

    This paper introduces the development of a simultaneous multipoint acoustic emission (AE) sensing system using a narrowband tuneable laser with high power and fibre acoustic wave grating sensors (FAWGSs). The demodulation technique is the same as that used in existing methods where the narrowband laser peak is tuned to one mid-reflection point in the main lobe of a fibre Bragg grating (FBG) spectrum. However, the sensor head is changed to an FAWGS for which a FBG is installed in a strain-free configuration so that it can detect AE waves in a structure not directly but in the form of a fibre-guided acoustic wave. Therefore since the structural strain cannot make the Bragg wavelength change, multiple FBGs with identical spectrum can be connected with multiple optical paths realized by equal light intensity dividers. The possible temperature difference between the multiple FAWGSs is passively resolved by using short FBGs which provide a wider operating temperature region. Consequently, we can resolve the problem that the FBG spectrum is easily deviated from the lasing wavelength because of the strain. In addition, the simultaneous multipoint sensing capability based on a single laser improves the cost-performance ratio of the optical system as well as reducing the structural inspection time, and enabling in situ health monitoring of real structures exposed to large and dynamic strains. The feasibility of the system is demonstrated in typical applications of in situ structural health monitoring based on AE techniques.

  13. Oscillating load-induced acoustic emission in laboratory experiment

    USGS Publications Warehouse

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, V.

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  14. Characterization of corrosion damage in prestressed concrete using acoustic emission

    NASA Astrophysics Data System (ADS)

    Mangual, Jesé; ElBatanouny, Mohamed K.; Vélez, William; Ziehl, Paul; Matta, Fabio; González, Miguel

    2012-04-01

    The corrosion of reinforced concrete structures is a major issue from both a structural safety and maintenance management point of view. Early detection of the internal degradation process provides the owner with sufficient options to develop a plan of action. An accelerated corrosion test was conducted in a small scale concrete specimen reinforced with a 0.5 inch (13 mm) diameter prestressing strand to investigate the correlation between corrosion rate and acoustic emission (AE). Corrosion was accelerated in the laboratory by supplying anodic current via a rectifier while continuously monitoring acoustic emission activity. Results were correlated with traditional electrochemical techniques such as half-cell potential and linear polarization. The location of the active corrosion activity was found through a location algorithm based on time of flight of the stress waves. Intensity analysis was used to plot the relative significance of the damage states present in the specimen and a preliminary grading chart is presented. Results indicate that AE may be a useful non-intrusive technique for the detection and quantification of corrosion damage.

  15. FRP/steel composite damage acoustic emission monitoring and analysis

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Chen, Zhi

    2015-04-01

    FRP is a new material with good mechanical properties, such as high strength of extension, low density, good corrosion resistance and anti-fatigue. FRP and steel composite has gotten a wide range of applications in civil engineering because of its good performance. As the FRP/steel composite get more and more widely used, the monitor of its damage is also getting more important. To monitor this composite, acoustic emission (AE) is a good choice. In this study, we prepare four identical specimens to conduct our test. During the testing process, the AE character parameters and mechanics properties were obtained. Damaged properties of FRP/steel composite were analyzed through acoustic emission (AE) signals. By the growing trend of AE accumulated energy, the severity of the damage made on FRP/steel composite was estimated. The AE sentry function has been successfully used to study damage progression and fracture emerge release rate of composite laminates. This technique combines the cumulative AE energy with strain energy of the material rather than analyzes the AE information and mechanical separately.

  16. The application of acoustic emission technique to fatigue crack measurement. [in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Davis, W. T.; Crews, J. H., Jr.

    1974-01-01

    The applicability of acoustic emission technique to measure fatigue cracks in aluminum alloy specimens was investigated. There are several variables, such as the metallurgical and the physical treatment of the specimen, that can affect the level of acoustic activity of a fatigue specimen. It is therefore recommended that the acoustic emission technique be supplemented by other nondestructive evaluation methods to obtain quantitative data on crack growth.

  17. Acoustic emission monitoring of HFIR vessel during hydrostatic testing. Final report

    SciTech Connect

    Friesel, M.A.; Dawson, J.F.

    1992-08-01

    This report discusses the results and conclusions reached from applying acoustic emission monitoring to surveillance of the High Flux Isotope Reactor vessel during pressure testing. The objective of the monitoring was to detect crack growth and/or fluid leakage should it occur during the pressure test. The report addresses the approach, acoustic emission instrumentation, installation, calibration, and test results.

  18. Embedded and conventional ultrasonic sensors for monitoring acoustic emission during thermal fatigue

    NASA Astrophysics Data System (ADS)

    Trujillo, Blaine; Zagrai, Andrei

    2016-04-01

    Acoustic emission is widely used for monitoring pressure vessels, pipes, critical infrastructure, as well as land, sea and air vehicles. It is one of dominant approaches to explore material degradation under fatigue and events leading to material fracture. Addressing a recent interest in structural health monitoring of space vehicles, a need has emerged to evaluate material deterioration due to thermal fatigue during spacecraft atmospheric reentry. Thermal fatigue experiments were conducted, in which aluminum plates were subjected to localized heating and acoustic emission was monitoring by embedded and conventional acoustic emission sensors positioned at various distances from a heat source. At the same time, surface temperature of aluminum plates was monitored using an IR camera. Acoustic emission counts collected by embedded sensors were compared to counts measured with conventional acoustic emission sensors. Both types of sensors show noticeable increase of acoustic emission activity as localized heating source was applied to aluminum plates. Experimental data demonstrate correlation between temperature increase on the surface of the plates and increase in measured acoustic emission activity. It is concluded that under particular conditions, embedded piezoelectric wafer active sensors can be used for acoustic emission monitoring of thermally-induced structural degradation.

  19. Considerations for acoustic emission monitoring of spherical Kevlar/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Hamstad, M. A.; Patterson, R. G.

    1977-01-01

    We are continuing to research the applications of acoustic emission testing for predicting burst pressure of filament-wound Kevlar 49/epoxy pressure vessels. This study has focused on three specific areas. The first area involves development of an experimental technique and the proper instrumentation to measure the energy given off by the acoustic emission transducer per acoustic emission burst. The second area concerns the design of a test fixture in which to mount the composite vessel so that the acoustic emission transducers are held against the outer surface of the composite. Included in this study area is the calibration of the entire test setup including couplant, transducer, electronics, and the instrument measuring the energy per burst. In the third and final area of this study, we consider the number, location, and sensitivity of the acoustic emission transducers used for proof testing composite pressure vessels.

  20. Acoustic Emission Analysis of Shuttle Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Lane, John; Hooker, Jeffery; Immer, Christopher; Walker, James

    2004-01-01

    Acoustic emission (AE) signals generated from projectile impacts on reinforced and advanced carbon/carbon (RCC and ACC) panels, fired from a compressed-gas gun, identify the type and severity of damage sustained by the target. This type of testing is vital in providing the required "return to flight" (RTF) data needed to ensure continued and safe operation of NASA's Space Shuttle fleet. The gas gun at Kennedy Space Center is capable of propelling 12-inch by 3-inch cylinders of external tank (ET) foam at exit velocities exceeding 1,000 feet per second. Conventional AE analysis techniques require time domain processing of impulse data, along with amplitude distribution analysis. It is well known that identical source excitations can produce a wide range of AE signals amplitudes. In order to satisfy RTF goals, it is necessary to identify impact energy levels above and below damage thresholds. Spectral analysis techniques involving joint time frequency analysis (JTFA) are used to reinforce time domain AE analysis. JTFA analysis of the AE signals consists of short-time Fourier transforms (STFT) and the Huang-Hilbert transform (HHT). The HHT provides a very good measure of the instantaneous frequency of impulse events dominated by a single component. Identifying failure modes and cracking of fibers from flexural and/or extensional mode acoustic signals will help support in-flight as well as postflight impact analysis.

  1. Fracture of fiber-reinforced composites analyzed via acoustic emission.

    PubMed

    Ereifej, Nadia S; Oweis, Yara G; Altarawneh, Sandra K

    2015-01-01

    This study investigated the fracture resistance of composite resins using a three-point bending test and acoustic emission (AE) analysis. Three groups of specimens (n=15) were prepared: non-reinforced BelleGlass HP composite (NRC), unidirectional (UFRC) and multidirectional (MFRC) fiber-reinforced groups which respectively incorporated unidirectional Stick and multidirectional StickNet fibers. Specimens were loaded to failure in a universal testing machine while an AE system was used to detect audible signals. Initial fracture strengths and AE amplitudes were significantly lower than those at final fracture in all groups (p<0.05). Initial fracture strength of UFRC (170.0 MPa) was significantly higher than MFRC (124.6 MPa) and NRC (87.9 MPa). Final fracture strength of UFRC (198.1 MPa) was also significantly higher than MFRC (151.0 MPa) and NRC (109.2 MPa). Initial and final fracture strengths were significantly correlated (r=0.971). It was concluded that fiber reinforcement improved the fracture resistance of composite resin materials and the monitoring of acoustic signals revealed significant information regarding the fracture process. PMID:25904176

  2. Fracture of fiber-reinforced composites analyzed via acoustic emission.

    PubMed

    Ereifej, Nadia S; Oweis, Yara G; Altarawneh, Sandra K

    2015-01-01

    This study investigated the fracture resistance of composite resins using a three-point bending test and acoustic emission (AE) analysis. Three groups of specimens (n=15) were prepared: non-reinforced BelleGlass HP composite (NRC), unidirectional (UFRC) and multidirectional (MFRC) fiber-reinforced groups which respectively incorporated unidirectional Stick and multidirectional StickNet fibers. Specimens were loaded to failure in a universal testing machine while an AE system was used to detect audible signals. Initial fracture strengths and AE amplitudes were significantly lower than those at final fracture in all groups (p<0.05). Initial fracture strength of UFRC (170.0 MPa) was significantly higher than MFRC (124.6 MPa) and NRC (87.9 MPa). Final fracture strength of UFRC (198.1 MPa) was also significantly higher than MFRC (151.0 MPa) and NRC (109.2 MPa). Initial and final fracture strengths were significantly correlated (r=0.971). It was concluded that fiber reinforcement improved the fracture resistance of composite resin materials and the monitoring of acoustic signals revealed significant information regarding the fracture process.

  3. Nuclear Emissions During Self-Nucleated Acoustic Cavitation

    SciTech Connect

    Taleyarkhan, R.P.; Xu, Y.; West, C.D.; Lahey, R.T. Jr.; Block, R.C.; Nigmatulin, R.I.

    2006-01-27

    A unique, new stand-alone acoustic inertial confinement nuclear fusion test device was successfully tested. Experiments using four different liquid types were conducted in which bubbles were self-nucleated without the use of external neutrons. Four independent detection systems were used (i.e., a neutron track plastic detector to provide unambiguous visible records for fast neutrons, a BF{sub 3} detector, a NE-113-type liquid scintillation detector, and a NaI {gamma} ray detector). Statistically significant nuclear emissions were observed for deuterated benzene and acetone mixtures but not for heavy water. The measured neutron energy was {<=}2.45 MeV, which is indicative of deuterium-deuterium (D-D) fusion. Neutron emission rates were in the range {approx}5x10{sup 3} n/s to {approx}10{sup 4} n/s and followed the inverse law dependence with distance. Control experiments did not result in statistically significant neutron or {gamma} ray emissions.

  4. Acoustic emission evaluation of plasma-sprayed thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Berndt, C. C.

    1984-01-01

    Acoustic emission techniques have recently been used in a number of studies to investigate the performance and failure behavior of plasma-sprayed thermal barrier coatings. Failure of the coating is a complex phenomena, especially when the composite nature of the coating is considered in the light of possible failure mechanisms. Thus it can be expected that both the metal and ceramic components (i.e., the bond coat and ceramic overlay) of a composite thermal protection system influence the macroscopic behavior and performance of the coating. The aim of the present work is to summarize the 'state-of-the-art' in terms of this initial work and indicate where future progress may be made.

  5. Fracture of human femur tissue monitored by acoustic emission sensors.

    PubMed

    Aggelis, Dimitrios G; Strantza, Maria; Louis, Olivia; Boulpaep, Frans; Polyzos, Demosthenes; van Hemelrijck, Danny

    2015-01-01

    The study describes the acoustic emission (AE) activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load. Furthermore, waveform frequency content and rise time are related to the different modes of fracture (bending of femur neck or torsion of diaphysis). The importance of the study lies mainly in two disciplines. One is that, although femurs are typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE will enrich the understanding of the process in ways that cannot be achieved using only the mechanical data. Additionally, from the point of view of monitoring techniques, applying sensors used for engineering materials and interpreting the obtained data pose additional difficulties due to the uniqueness of the bone structure.

  6. Acoustic emission classification for failure prediction due to mechanical fatigue

    NASA Astrophysics Data System (ADS)

    Emamian, Vahid; Kaveh, Mostafa; Tewfik, Ahmed H.

    2000-06-01

    Acoustic Emission signals (AE), generated by the formation and growth of micro-cracks in metal components, have the potential for use in mechanical fault detection in monitoring complex- shaped components in machinery including helicopters and aircraft. A major challenge for an AE-based fault detection algorithm is to distinguish crack-related AE signals from other interfering transient signals, such as fretting-related AE signals and electromagnetic transients. Although under a controlled laboratory environment we have fewer interference sources, there are other undesired sources which have to be considered. In this paper, we present some methods, which make their decision based on the features extracted from time-delay and joint time-frequency components by means of a Self- Organizing Map (SOM) neural network using experimental data collected in a laboratory by colleagues at the Georgia Institute of Technology.

  7. Fracture of Human Femur Tissue Monitored by Acoustic Emission Sensors

    PubMed Central

    Aggelis, Dimitrios. G.; Strantza, Maria; Louis, Olivia; Boulpaep, Frans; Polyzos, Demosthenes; van Hemelrijck, Danny

    2015-01-01

    The study describes the acoustic emission (AE) activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load. Furthermore, waveform frequency content and rise time are related to the different modes of fracture (bending of femur neck or torsion of diaphysis). The importance of the study lies mainly in two disciplines. One is that, although femurs are typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE will enrich the understanding of the process in ways that cannot be achieved using only the mechanical data. Additionally, from the point of view of monitoring techniques, applying sensors used for engineering materials and interpreting the obtained data pose additional difficulties due to the uniqueness of the bone structure. PMID:25763648

  8. Monitoring damage growth in titanium matrix composites using acoustic emission

    NASA Technical Reports Server (NTRS)

    Bakuckas, J. G., Jr.; Prosser, W. H.; Johnson, W. S.

    1993-01-01

    The application of the acoustic emission (AE) technique to locate and monitor damage growth in titanium matrix composites (TMC) was investigated. Damage growth was studied using several optical techniques including a long focal length, high magnification microscope system with image acquisition capabilities. Fracture surface examinations were conducted using a scanning electron microscope (SEM). The AE technique was used to locate damage based on the arrival times of AE events between two sensors. Using model specimens exhibiting a dominant failure mechanism, correlations were established between the observed damage growth mechanisms and the AE results in terms of the events amplitude. These correlations were used to monitor the damage growth process in laminates exhibiting multiple modes of damage. Results revealed that the AE technique is a viable and effective tool to monitor damage growth in TMC.

  9. Acoustic emission assessment of interface cracking in thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Yang, Li; Zhong, Zhi-Chun; Zhou, Yi-Chun; Zhu, Wang; Zhang, Zhi-Biao; Cai, Can-Ying; Lu, Chun-Sheng

    2016-04-01

    In this paper, acoustic emission (AE) and digital image correlation methods were applied to monitor interface cracking in thermal barrier coatings under compression. The interface failure process can be identified via its AE features, including buckling, delamination incubation and spallation. According to the Fourier transformation of AE signals, there are four different failure modes: surface vertical cracks, opening and sliding interface cracks, and substrate deformation. The characteristic frequency of AE signals from surface vertical cracks is 0.21 MHz, whilst that of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. The energy released of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. Based on the energy released from cracking and the AE signals, a relationship is established between the interface crack length and AE parameters, which is in good agreement with experimental results.

  10. Acoustic emission monitoring of recycled aggregate concrete under bending

    NASA Astrophysics Data System (ADS)

    Tsoumani, A. A.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    The amount of construction and demolition waste has increased considerably over the last few years, making desirable the reuse of this waste in the concrete industry. In the present study concrete specimens are subjected at the age of 28 days to four-point bending with concurrent monitoring of their acoustic emission (AE) activity. Several concrete mixtures prepared using recycled aggregates at various percentages of the total coarse aggregate and also a reference mix using natural aggregates, were included to investigate their influence of the recycled aggregates on the load bearing capacity, as well as on the fracture mechanisms. The results reveal that for low levels of substitution the influence of using recycled aggregates on the flexural strength is negligible while higher levels of substitution lead into its deterioration. The total AE activity, as well as the AE signals emitted during failure, was related to flexural strength. The results obtained during test processing were found to be in agreement with visual observation.

  11. Fracture of human femur tissue monitored by acoustic emission sensors.

    PubMed

    Aggelis, Dimitrios G; Strantza, Maria; Louis, Olivia; Boulpaep, Frans; Polyzos, Demosthenes; van Hemelrijck, Danny

    2015-01-01

    The study describes the acoustic emission (AE) activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load. Furthermore, waveform frequency content and rise time are related to the different modes of fracture (bending of femur neck or torsion of diaphysis). The importance of the study lies mainly in two disciplines. One is that, although femurs are typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE will enrich the understanding of the process in ways that cannot be achieved using only the mechanical data. Additionally, from the point of view of monitoring techniques, applying sensors used for engineering materials and interpreting the obtained data pose additional difficulties due to the uniqueness of the bone structure. PMID:25763648

  12. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  13. Use of Acoustic Emission During Scratch Testing for Understanding Adhesion Behavior of Aluminum Nitride Coatings

    NASA Astrophysics Data System (ADS)

    Choudhary, R. K.; Mishra, P.

    2016-06-01

    In this work, acoustic emission during scratch testing of the aluminum nitride coatings formed on stainless steel substrate by reactive magnetron sputtering was analyzed to assess the coating failure. The AlN coatings were formed under the variation of substrate temperature, substrate bias potential, and discharge power. The coatings deposited in the temperature range of 100 to 400 °C showed peak acoustic emission less than 1.5%, indicating ductile nature of the coating. However, for coatings formed with substrate negative bias potential of 20 to 50 V, numerous sharp acoustic bursts with maximum emission approaching 80% were observed, indicating brittle nature of the coatings with large number of defects present. The shift in the intensity of the first major acoustic peak toward higher load, with the increasing bias potential, confirmed improved adhesion of the coating. Also, the higher discharge power resulted in increased acoustic emission.

  14. Constitutive acoustic-emission elastic-stress behavior of magnesium alloy

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Emerson, G. P.

    1977-01-01

    Repeated laoding and unloading of a magnesium alloy below the macroscopic yield stress result in continuous acoustic emissions which are generally repeatable for a given specimen and which are reproducible between different specimens having the same load history. An acoustic emission Bauschinger strain model is proposed to describe the unloading emission behavior. For the limited range of stress examined, loading and unloading stress delays of the order of 50 MN/sq m are observed, and they appear to be dependent upon the direction of loading, the stress rate, and the stress history. The stress delay is hypothesized to be the manifestation of an effective friction stress. The existence of acoustic emission elastic stress constitutive relations is concluded, which provides support for a previously proposed concept for the monitoring of elastic stresses by acoustic emission.

  15. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Young, Judith A.

    2004-01-01

    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  16. Electron emission and acoustic emission from the fracture of graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Dickinson, J. T.; Jahan-Latibari, A.; Jensen, L. C.

    1985-01-01

    In past studies it has been shown that the fracture of materials leads to the emission of a variety of species, including electrons, ions, neutral molecules, and photons, all encompassed by the term 'fractoemission' (FE). In this paper, electron emission (EE) from the fracture of single graphite fibers and neat epoxy resin is examined. Measurements of EE are also combined with the detection of acoustic emission (AE) during the testing of graphite-epoxy composite specimens with various fiber orientation. The characteristics of these signals are related to known failure mechanisms in fiber-reinforced plastics. This study suggests that by comparing data from AE and FE measurements, one can detect and distinguish the onset of internal and external failure in composites. EE measurements are also shown to be sensitive to the locus of fracture in a composite material.

  17. Acoustic Emission Monitoring of the Syracuse Athena Temple: Scale Invariance in the Timing of Ruptures

    SciTech Connect

    Niccolini, G.; Carpinteri, A.; Lacidogna, G.; Manuello, A.

    2011-03-11

    We perform a comparative statistical analysis between the acoustic-emission time series from the ancient Greek Athena temple in Syracuse and the sequence of nearby earthquakes. We find an apparent association between acoustic-emission bursts and the earthquake occurrence. The waiting-time distributions for acoustic-emission and earthquake time series are described by a unique scaling law indicating self-similarity over a wide range of magnitude scales. This evidence suggests a correlation between the aging process of the temple and the local seismic activity.

  18. A study of the possibility of using acoustic emission to diagnose the cracking of dried materials

    NASA Astrophysics Data System (ADS)

    Kowalski, Stefan J.; Musielak, Grzegorz

    The purpose of this article is to demonstrate the possibility of using an acoustic emission method to diagnose the cracking of materials in the process of drying them. Among other things, the article contains information on the course of the drying process, dryer stresses, acoustic emission as a phenomenon, and the research method as well as its engineering applications. The authors discuss the development of acoustic emission analysis of cracking during drying and also demonstrate how this method should be used to optimize the drying process.

  19. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    SciTech Connect

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui; Liang Zhichao; Sun, M.-T.

    2009-11-20

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 where the emissivity reduction coefficient is too weak and lost among the noise.

  20. Acoustic emission analysis as a non-destructive test procedure for fiber compound structures

    NASA Technical Reports Server (NTRS)

    Block, J.

    1983-01-01

    The concept of acoustic emission analysis is explained in scientific terms. The detection of acoustic events, their localization, damage discrimination, and event summation curves are discussed. A block diagram of the concept of damage-free testing of fiber-reinforced synthetic materials is depicted. Prospects for application of the concept are assessed.

  1. Continuous acoustic emission monitoring of reinforced concrete under accelerated corrosion

    NASA Astrophysics Data System (ADS)

    Di Benedetti, M.; Loreto, G.; Nanni, A.; Matta, F.; Gonzalez-Nunez, M. A.

    2011-04-01

    The development of techniques capable of evaluating deterioration of reinforced concrete (RC) structures is instrumental to the advancement of techniques for the structural health monitoring (SHM) and service life estimate for constructed facilities. One of the main causes leading to degradation of RC is the corrosion of the steel reinforcement. This process can be modeled phenomenologically, while laboratory tests aimed at studying durability responses are typically accelerated in order to provide useful results within a realistic period of time. To assess the condition of damage in RC, a number of nondestructive methods have been recently studied. Acoustic emission (AE) is emerging as a nondestructive tool to detect the onset and progression of deterioration mechanisms. In this paper, the development of accelerated corrosion and continuous AE monitoring test set-up for RC specimens are presented. Relevant information are provided with regard to the characteristics of the corrosion circuit, continuous measurement and acquisition of corrosion potential, selection of AE sensors and AE parameter setting. The effectiveness of the setup in detecting and characterizing the initiation and progression of the corrosion phenomenon is discussed on the basis of preliminary results from small-scale, pre-cracked RC specimens, which are representative of areas near the clear cover in typical RC bridge members.

  2. CORROSION PROCESS IN REINFORCED CONCRETE IDENTIFIED BY ACOUSTIC EMISSION

    NASA Astrophysics Data System (ADS)

    Kawasaki, Yuma; Kitaura, Misuzu; Tomoda, Yuichi; Ohtsu, Masayasu

    Deterioration of Reinforced Concrete (RC) due to salt attack is known as one of serious problems. Thus, development of non-destructive evaluation (NDE) techniques is important to assess the corrosion process. Reinforcement in concrete normally does not corrode because of a passive film on the surface of reinforcement. When chloride concentration at reinfo rcement exceeds the threshold level, the passive film is destroyed. Thus maintenance is desirable at an early stage. In this study, to identify the onset of corrosion and the nucleation of corrosion-induced cracking in concrete due to expansion of corrosion products, continuous acoustic emission (AE) monitoring is applied. Accelerated corrosion and cyclic wet and dry tests are performed in a laboratory. The SiGMA (Simplified Green's functions for Moment tensor Analysis) proce dure is applied to AE waveforms to clarify source kinematics of micro-cracks locations, types and orientations. Results show that the onset of corrosion and the nu cleation of corrosion-induced cracking in concrete are successfully identified. Additionally, cross-sections inside the reinforcement are observed by a scanning electron microscope (SEM). From these results, a great promise for AE techniques to monitor salt damage at an early stage in RC structures is demonstrated.

  3. Transient cavitation and acoustic emission produced by different laser lithotripters.

    PubMed

    Zhong, P; Tong, H L; Cocks, F H; Pearle, M S; Preminger, G M

    1998-08-01

    Transient cavitation and shockwave generation produced by pulsed-dye and holmium:YAG laser lithotripters were studied using high-speed photography and acoustic emission measurements. In addition, stone phantoms were used to compare the fragmentation efficiency of various laser and electrohydraulic lithotripters. The pulsed-dye laser, with a wavelength (504 nm) strongly absorbed by most stone materials but not by water, and a short pulse duration of approximately 1 microsec, induces plasma formation on the surface of the target calculi. Subsequently, the rapid expansion of the plasma forms a cavitation bubble, which expands spherically to a maximum size and then collapses violently, leading to strong shockwave generation and microjet impingement, which comprises the primary mechanism for stone fragmentation with short-pulse lasers. In contrast, the holmium laser, with a wavelength (2100 nm) most strongly absorbed by water as well as by all stone materials and a long pulse duration of 250 to 350 microsec, produces an elongated, pear-shaped cavitation bubble at the tip of the optical fiber that forms a vapor channel to conduct the ensuing laser energy to the target stone (Moss effect). The expansion and subsequent collapse of the elongated bubble is asymmetric, resulting in weak shockwave generation and microjet impingement. Thus, stone fragmentation in holmium laser lithotripsy is caused primarily by thermal ablation (drilling effect).

  4. Acoustic emission of fire damaged fiber reinforced concrete

    NASA Astrophysics Data System (ADS)

    Mpalaskas, A. C.; Matikas, T. E.; Aggelis, D. G.

    2016-04-01

    The mechanical behavior of a fiber-reinforced concrete after extensive thermal damage is studied in this paper. Undulated steel fibers have been used for reinforcement. After being exposed to direct fire action at the temperature of 850°C, specimens were subjected to bending and compression in order to determine the loss of strength and stiffness in comparison to intact specimens and between the two types. The fire damage was assessed using nondestructive evaluation techniques, specifically ultrasonic pulse velocity (UPV) and acoustic emission (AE). Apart from the strong, well known, correlation of UPV to strength (both bending and compressive), AE parameters based mainly on the frequency and duration of the emitted signals after cracking events showed a similar or, in certain cases, better correlation with the mechanical parameters and temperature. This demonstrates the sensitivity of AE to the fracture incidents which eventually lead to failure of the material and it is encouraging for potential in-situ use of the technique, where it could provide indices with additional characterization capability concerning the mechanical performance of concrete after it subjected to fire.

  5. Acoustic emission intensity analysis of corrosion in prestressed concrete piles

    NASA Astrophysics Data System (ADS)

    Vélez, William; Matta, Fabio; Ziehl, Paul

    2014-02-01

    Corrosion of steel strands in prestressed concrete (PC) bridges may lead to substantial damage or collapse well before the end of the design life. Acoustic Emission (AE) is a suitable nondestructive technique to detect and locate corrosion in reinforced and prestressed concrete, which is key to prioritize inspection and maintenance. An effective tool to analyze damage-related AE data is intensity analysis (IA), which is based on two data trends, namely Severity (average signal strength of high amplitude hits) and Historic Index (ratio of the average signal strength of the most recent hits to the average of all hits). IA criteria for corrosion assessment in PC were recently proposed based on empirical evidence from accelerated corrosion tests. In this paper, AE data from prestressed and non-prestressed concrete pile specimens exposed to salt water wet-dry cycling for over 600 days are used to analyze the relation between Severity and Historic Index and actual corrosion. Evidence of corrosion is gained from the inspection of decommissioned specimens. The selection of suitable J and K parameters for IA is discussed, and an IA chart with updated corrosion criteria for PC piles is presented.

  6. Early corrosion monitoring of prestressed concrete piles using acoustic emission

    NASA Astrophysics Data System (ADS)

    Vélez, William; Matta, Fabio; Ziehl, Paul H.

    2013-04-01

    The depassivation and corrosion of bonded prestressing steel strands in concrete bridge members may lead to major damage or collapse before visual inspections uncover evident signs of damage, and well before the end of the design life. Recognizing corrosion in its early stage is desirable to plan and prioritize remediation strategies. The Acoustic Emission (AE) technique is a rational means to develop structural health monitoring and prognosis systems for the early detection and location of corrosion in concrete. Compelling features are the sensitivity to events related to micro- and macrodamage, non-intrusiveness, and suitability for remote and wireless applications. There is little understanding of the correlation between AE and the morphology and extent of early damage on the steel surface. In this paper, the evidence collected from prestressed concrete (PC) specimens that are exposed to salt water is discussed vis-à-vis AE data from continuous monitoring. The specimens consist of PC strips that are subjected to wet/dry salt water cycles, representing portions of bridge piles that are exposed to tidal action. Evidence collected from the specimens includes: (a) values of half-cell potential and linear polarization resistance to recognize active corrosion in its early stage; and (b) scanning electron microscopy micrographs of steel areas from two specimens that were decommissioned once the electrochemical measurements indicated a high probability of active corrosion. These results are used to evaluate the AE activity resulting from early corrosion.

  7. Acoustic emission source localization based on distance domain signal representation

    NASA Astrophysics Data System (ADS)

    Gawronski, M.; Grabowski, K.; Russek, P.; Staszewski, W. J.; Uhl, T.; Packo, P.

    2016-04-01

    Acoustic emission is a vital non-destructive testing technique and is widely used in industry for damage detection, localisation and characterization. The latter two aspects are particularly challenging, as AE data are typically noisy. What is more, elastic waves generated by an AE event, propagate through a structural path and are significantly distorted. This effect is particularly prominent for thin elastic plates. In these media the dispersion phenomenon results in severe localisation and characterization issues. Traditional Time Difference of Arrival methods for localisation techniques typically fail when signals are highly dispersive. Hence, algorithms capable of dispersion compensation are sought. This paper presents a method based on the Time - Distance Domain Transform for an accurate AE event localisation. The source localisation is found through a minimization problem. The proposed technique focuses on transforming the time signal to the distance domain response, which would be recorded at the source. Only, basic elastic material properties and plate thickness are used in the approach, avoiding arbitrary parameters tuning.

  8. Assessment of corrosion rate in prestressed concrete with acoustic emission

    NASA Astrophysics Data System (ADS)

    Mangual, Jesé; ElBatanouny, Mohamed K.; Vélez, William; Ziehl, Paul; Matta, Fabio; González, Miguel

    2011-04-01

    Acoustic Emission (AE) sensing was employed to assess the rate of corrosion of steel strands in small scale concrete block specimens. The corrosion process was accelerated in a laboratory environment using a potentiostat to supply a constant potential difference with a 3% NaCl solution as the electrolyte. The embedded prestressing steel strand served as the anode, and a copper plate served as the cathode. Corrosion rate, half-cell potential measurements, and AE activity were recorded continuously throughout each test and examined to assess the development of corrosion and its rate. At the end of each test the steel strands were cleaned and re-weighed to determine the mass loss and evaluate it vis-á-vis the AE data. The initiation and propagation phases of corrosion were correlated with the percentage mass loss of steel and the acquired AE signals. Results indicate that AE monitoring may be a useful aid in the detection and differentiation of the steel deterioration phases, and estimation of the locations of corroded areas.

  9. Transmission of acoustic emission in bones, implants and dental materials.

    PubMed

    Ossi, Zannar; Abdou, Wael; Reuben, Robert L; Ibbetson, Richard J

    2013-11-01

    There is considerable interest in using acoustic emission (AE) and ultrasound to assess the quality of implant-bone interfaces and to monitor for micro-damage leading to loosening. However, remarkably little work has been done on the transmission of ultrasonic waves though the physical and biological structures involved. The aim of this in vitro study is to assess any differences in transmission between various dental materials and bovine rib bones with various degrees of hydration. Two types of tests have been carried out using pencil lead breaks as a standard AE source. The first set of tests was configured to assess the surface propagation of AE on various synthetic materials compared with fresh bovine rib bone. The second is a set of transmission tests on fresh, dried and hydrated bones each fitted with dental implants with various degrees of fixity, which includes components due to bone and interface transmission. The results indicate that transmission through glass ionomer cement is closest to the bone. This would suggest that complete osseointegration could potentially be simulated using such cement. The transmission of AE energy through bone was found to be dependent on its degree of hydration. It was also found that perfusing samples of fresh bone with water led to an increase in transmitted energy, but this appeared to affect transmission across the interface more than transmission through the bone. These findings have implications not only for implant interface inspection but also for passive AE monitoring of implants.

  10. DETECTION OF DRUGSTORE BEETLES IN 9975 PACKAGES USING ACOUSTIC EMISSIONS

    SciTech Connect

    Shull, D.

    2013-03-04

    This report documents the initial feasibility tests performed using a commercial acoustic emission instrument for the purpose of detecting beetles in Department of Energy 9975 shipping packages. The device selected for this testing was a commercial handheld instrument and probe developed for the detection of termites, weevils, beetles and other insect infestations in wooden structures, trees, plants and soil. The results of two rounds of testing are presented. The first tests were performed by the vendor using only the hand-held instrument’s indications and real-time operator analysis of the audio signal content. The second tests included hands-free positioning of the instrument probe and post-collection analysis of the recorded audio signal content including audio background comparisons. The test results indicate that the system is promising for detecting the presence of drugstore beetles, however, additional work would be needed to improve the ease of detection and to automate the signal processing to eliminate the need for human interpretation. Mechanisms for hands-free positioning of the probe and audio background discrimination are also necessary for reliable detection and to reduce potential operator dose in radiation environments.

  11. Hydraulic Fracturing of Heterogeneous Rock Monitored by Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Stanchits, Sergey; Burghardt, Jeffrey; Surdi, Aniket

    2015-11-01

    In this paper, the results of laboratory studies of hydraulic fracture in homogeneous sandstone blocks with man-made interfaces and heterogeneous shale blocks with weak natural interfaces are reported. Tests were conducted under similar stress conditions, with fluids of different viscosity and at different injection rates. The measurements and analysis allows the identification of fracture initiation and behavior. Fracturing with high-viscosity fluids resulted in stable fracture propagation initiated before breakdown, while fracturing with low-viscosity fluids resulted in unstable fracture propagation initiated almost simultaneously with breakdown. Analysis also allows us to measure the fluid volume entering the fracture and the fracture volume. Monitoring of acoustic emission hypocenter localizations, indicates the development of created fractured area including the intersection with interfaces, fluid propagation along interfaces, crossing interfaces, and approaching the boundaries of the block. We observe strong differences in hydraulic fracture behavior, fracture geometry and fracture propagation speed, when fracturing with water and high-viscosity fluids. We also observed distinct differences between sandstone blocks and shale blocks, when a certain P-wave velocity ray path is intersected by the hydraulic fracture. The velocity increases in sandstones and decreases in shale.

  12. Acoustic emissions (AE) during failure of granular media

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Or, Dani

    2014-05-01

    The release of shallow landslides and other geological mass movements is the result of progressive failure accumulation. Mechanical failure in disordered geologic materials occurs in intermittent breakage episodes marking the disintegration or rearrangement of load-bearing elements. Abrupt strain energy release in such breakage episodes is associated with generation of elastic waves measurable as high-frequency (kHz range) acoustic emissions (AE). The close association of AE with progressive failure events hold a promise for using such noninvasive methods to assess the mechanical state of granular Earth materials or for the development early warning methods for shallow landslides. We present numerical simulations that incorporate damage accumulation and associated stress redistribution using a fiber-bundle model. The stress released from element failure (fibers) is redistributed to the surrounding elements and eventually triggers larger failure avalanches. AE signals generated from such events and eventually hitting a virtual sensor are modeled using visco-elastic wave propagation laws. The model captures the characteristic saw-tooth shape of the observed stress-strain curves obtained from strain-controlled experiments with glass beads, including large intermittent stress release events that stem from cascading failure avalanches. The model also reproduces characteristics of AE signatures and yield a good agreement between simulation results and experimental data. Linking mechanical and AE information in the proposed modeling framework offer a solid basis for interpretation of measured field data.

  13. Acoustic Emission, b-values and Foliation Plane Anisotropy

    NASA Astrophysics Data System (ADS)

    Sehizadeh, Mahdi; Nasseri, Mohammad H.; Ye, Sheng; Young, R. Paul

    2016-04-01

    The b-value and D-value are two parameters related to size and distance distribution of earthquakes. There are many different factors affecting b-value such as stress state, thermal gradients, focal mechanism and heterogeneity. For example, the literature shows that the b-value changes systematically with respect to the focal mechanism. In laboratory experiments, foliation planes introduce a weakness in samples and can be considered as a potential for rupture or pre-existing faults, so they may exhibit similar relationships. The D-value defines the degree of clustering of earthquakes and would be expected to have a defined relationship with respect to the anisotropy. Using a unique facility in the Rock Fracture Dynamics laboratory at the University of Toronto, three sets of polyaxial experiments have been performed on cubic samples with foliation planes systematically oriented at different angles to the principal stress direction. During these tests, samples were loaded under controlled true-triaxial stress conditions until they failed or had severe damage and acoustic emission events were recorded using 18 sensors around the samples. The paper describes how the combination of stress state and foliation planes affects the b-value and D-value under laboratory conditions.

  14. Acoustic emission analysis of tooth-composite interfacial debonding.

    PubMed

    Cho, N Y; Ferracane, J L; Lee, I B

    2013-01-01

    This study detected tooth-composite interfacial debonding during composite restoration by means of acoustic emission (AE) analysis and investigated the effects of composite properties and adhesives on AE characteristics. The polymerization shrinkage, peak shrinkage rate, flexural modulus, and shrinkage stress of a methacrylate-based universal hybrid, a flowable, and a silorane-based composite were measured. Class I cavities on 49 extracted premolars were restored with 1 of the 3 composites and 1 of the following adhesives: 2 etch-and-rinse adhesives, 2 self-etch adhesives, and an adhesive for the silorane-based composite. AE analysis was done for 2,000 sec during light-curing. The silorane-based composite exhibited the lowest shrinkage (rate), the longest time to peak shrinkage rate, the lowest shrinkage stress, and the fewest AE events. AE events were detected immediately after the beginning of light-curing in most composite-adhesive combinations, but not until 40 sec after light-curing began for the silorane-based composite. AE events were concentrated at the initial stage of curing in self-etch adhesives compared with etch-and-rinse adhesives. Reducing the shrinkage (rate) of composites resulted in reduced shrinkage stress and less debonding, as evidenced by fewer AE events. AE is an effective technique for monitoring, in real time, the debonding kinetics at the tooth-composite interface. PMID:23100273

  15. Acoustic emission analysis of tooth-composite interfacial debonding.

    PubMed

    Cho, N Y; Ferracane, J L; Lee, I B

    2013-01-01

    This study detected tooth-composite interfacial debonding during composite restoration by means of acoustic emission (AE) analysis and investigated the effects of composite properties and adhesives on AE characteristics. The polymerization shrinkage, peak shrinkage rate, flexural modulus, and shrinkage stress of a methacrylate-based universal hybrid, a flowable, and a silorane-based composite were measured. Class I cavities on 49 extracted premolars were restored with 1 of the 3 composites and 1 of the following adhesives: 2 etch-and-rinse adhesives, 2 self-etch adhesives, and an adhesive for the silorane-based composite. AE analysis was done for 2,000 sec during light-curing. The silorane-based composite exhibited the lowest shrinkage (rate), the longest time to peak shrinkage rate, the lowest shrinkage stress, and the fewest AE events. AE events were detected immediately after the beginning of light-curing in most composite-adhesive combinations, but not until 40 sec after light-curing began for the silorane-based composite. AE events were concentrated at the initial stage of curing in self-etch adhesives compared with etch-and-rinse adhesives. Reducing the shrinkage (rate) of composites resulted in reduced shrinkage stress and less debonding, as evidenced by fewer AE events. AE is an effective technique for monitoring, in real time, the debonding kinetics at the tooth-composite interface.

  16. Acoustic emission during quench training of superconducting accelerator magnets

    NASA Astrophysics Data System (ADS)

    Marchevsky, M.; Sabbi, G.; Bajas, H.; Gourlay, S.

    2015-07-01

    Acoustic emission (AE) sensing is a viable tool for superconducting magnet diagnostics. Using in-house developed cryogenic amplified piezoelectric sensors, we conducted AE studies during quench training of the US LARP's high-field quadrupole HQ02 and the LBNL's high-field dipole HD3. For both magnets, AE bursts were observed, with spike amplitude and frequency increasing toward the quench current during current up-ramps. In the HQ02, the AE onset upon current ramping is distinct and exhibits a clear memory of the previously-reached quench current (Kaiser effect). On the other hand, in the HD3 magnet the AE amplitude begins to increase well before the previously-reached quench current (felicity effect), suggesting an ongoing progressive mechanical motion in the coils. A clear difference in the AE signature exists between the untrained and trained mechanical states in HD3. Time intervals between the AE signals detected at the opposite ends of HD3 coils were processed using a combination of narrow-band pass filtering; threshold crossing and correlation algorithms, and the spatial distributions of AE sources and the mechanical energy release were calculated. Both distributions appear to be consistent with the quench location distribution. Energy statistics of the AE spikes exhibits a power-law scaling typical for the self-organized critical state.

  17. Acoustic Emission Measurement with Fiber Bragg Gratings for Structure Health Monitoring

    NASA Technical Reports Server (NTRS)

    Banks, Curtis E.; Walker, James L.; Russell, Sam; Roth, Don; Mabry, Nehemiah; Wilson, Melissa

    2010-01-01

    Structural Health monitoring (SHM) is a way of detecting and assessing damage to large scale structures. Sensors used in SHM for aerospace structures provide real time data on new and propagating damage. One type of sensor that is typically used is an acoustic emission (AE) sensor that detects the acoustic emissions given off from a material cracking or breaking. The use of fiber Bragg grating (FBG) sensors to provide acoustic emission data for damage detection is studied. In this research, FBG sensors are used to detect acoustic emissions of a material during a tensile test. FBG sensors were placed as a strain sensor (oriented parallel to applied force) and as an AE sensor (oriented perpendicular to applied force). A traditional AE transducer was used to collect AE data to compare with the FBG data. Preliminary results show that AE with FBGs can be a viable alternative to traditional AE sensors.

  18. Acoustic Emission Technique for Characterizing Deformation and Fatigue Crack Growth in Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Raj, Baldev; Mukhopadhyay, C. K.; Jayakumar, T.

    2003-03-01

    Acoustic emission (AE) during tensile deformation and fatigue crack growth (FCG) of austenitic stainless steels has been studied. In AISI type 316 stainless steel (SS), AE has been used to detect micro plastic yielding occurring during macroscopic plastic deformation. In AISI type 304 SS, relation of AE with stress intensity factor and plastic zone size has been studied. In AISI type 316 SS, fatigue crack growth has been characterised using acoustic emission.

  19. Estimation of the Tool Condition by Applying the Wavelet Transform to Acoustic Emission Signals

    SciTech Connect

    Gomez, M. P.; Piotrkowski, R.; Ruzzante, J. E.; D'Attellis, C. E.

    2007-03-21

    This work follows the search of parameters to evaluate the tool condition in machining processes. The selected sensing technique is acoustic emission and it is applied to a turning process of steel samples. The obtained signals are studied using the wavelet transformation. The tool wear level is quantified as a percentage of the final wear specified by the Standard ISO 3685. The amplitude and relevant scale obtained of acoustic emission signals could be related with the wear level.

  20. Acoustic emission feedback control for control of boiling in a microwave oven

    DOEpatents

    White, Terry L.

    1991-01-01

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  1. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach.

    PubMed

    Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y

    2014-04-25

    A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range.

  2. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach.

    PubMed

    Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y

    2014-04-25

    A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range. PMID:24491527

  3. Multiplexing Technology for Acoustic Emission Monitoring of Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Prosser, William; Percy, Daniel

    2003-01-01

    The initiation and propagation of damage mechanisms such as cracks and delaminations generate acoustic waves, which propagate through a structure. These waves can be detected and analyzed to provide the location and severity of damage as part of a structural health monitoring (SHM) system. This methodology of damage detection is commonly known as acoustic emission (AE) monitoring, and is widely used on a variety of applications on civil structures. AE has been widely considered for SHM of aerospace vehicles. Numerous successful ground and flight test demonstrations have been performed, which show the viability of the technology for damage monitoring in aerospace structures. However, one significant current limitation for application of AE techniques on aerospace vehicles is the large size, mass, and power requirements for the necessary monitoring instrumentation. To address this issue, a prototype multiplexing approach has been developed and demonstrated in this study, which reduces the amount of AE monitoring instrumentation required. Typical time division multiplexing techniques that are commonly used to monitor strain, pressure and temperature sensors are not applicable to AE monitoring because of the asynchronous and widely varying rates of AE signal occurrence. Thus, an event based multiplexing technique was developed. In the initial prototype circuit, inputs from eight sensors in a linear array were multiplexed into two data acquisition channels. The multiplexer rapidly switches, in less than one microsecond, allowing the signals from two sensors to be acquired by a digitizer. The two acquired signals are from the sensors on either side of the trigger sensor. This enables the capture of the first arrival of the waves, which cannot be accomplished with the signal from the trigger sensor. The propagation delay to the slightly more distant neighboring sensors makes this possible. The arrival time from this first arrival provides a more accurate source location

  4. Correlation of infrared thermographic patterns and acoustic emission signals with tensile deformation and fracture processes

    NASA Astrophysics Data System (ADS)

    Venkataraman, B.; Raj, Baldev; Mukhopadhyay, C. K.; Jayakumar, T.

    2001-04-01

    During tensile deformation, part of the mechanical work done on the specimen is transformed into heat and acoustic activity. The amount of acoustic activity and the thermal emissions depend on the test conditions and the deformation behavior of the specimen during loading. Authors have used thermography and acoustic emission (AE) simultaneously for monitoring tensile deformation in AISI type 316 SS. Tensile testing was carried out at 298 K at three different strain rates. It has been shown that the simultaneous use of these techniques can provide complementary information for characterizing the tensile deformation and fracture processes.

  5. Acoustic Emission Signals in Thin Plates Produced by Impact Damage

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Gorman, Michael R.; Humes, Donald H.

    1999-01-01

    Acoustic emission (AE) signals created by impact sources in thin aluminum and graphite/epoxy composite plates were analyzed. Two different impact velocity regimes were studied. Low-velocity (less than 0.21 km/s) impacts were created with an airgun firing spherical steel projectiles (4.5 mm diameter). High-velocity (1.8 to 7 km/s) impacts were generated with a two-stage light-gas gun firing small cylindrical nylon projectiles (1.5 mm diameter). Both the impact velocity and impact angle were varied. The impacts did not penetrate the aluminum plates at either low or high velocities. For high-velocity impacts in composites, there were both impacts that fully penetrated the plate as well as impacts that did not. All impacts generated very large amplitude AE signals (1-5 V at the sensor), which propagated as plate (extensional and/or flexural) modes. In the low-velocity impact studies, the signal was dominated by a large flexural mode with only a small extensional mode component detected. As the impact velocity was increased within the low velocity regime, the overall amplitudes of both the extensional and flexural modes increased. In addition, a relative increase in the amplitude of high-frequency components of the flexural mode was also observed. Signals caused by high-velocity impacts that did not penetrate the plate contained both a large extensional and flexural mode component of comparable amplitudes. The signals also contained components of much higher frequency and were easily differentiated from those caused by low-velocity impacts. An interesting phenomenon was observed in that the large flexural mode component, seen in every other case, was absent from the signal when the impact particle fully penetrated through the composite plates.

  6. Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Hamstad, M. A.; Gary, J.; OGallagher, A.

    1998-01-01

    A comparison was made between two approaches to predict acoustic emission waveforms in thin plates. A normal mode solution method for Mindlin plate theory was used to predict the response of the flexural plate mode to a point source, step-function load, applied on the plate surface. The second approach used a dynamic finite element method to model the problem using equations of motion based on exact linear elasticity. Calculations were made using properties for both isotropic (aluminum) and anisotropic (unidirectional graphite/epoxy composite) materials. For simulations of anisotropic plates, propagation along multiple directions was evaluated. In general, agreement between the two theoretical approaches was good. Discrepancies in the waveforms at longer times were caused by differences in reflections from the lateral plate boundaries. These differences resulted from the fact that the two methods used different boundary conditions. At shorter times in the signals, before reflections, the slight discrepancies in the waveforms were attributed to limitations of Mindlin plate theory, which is an approximate plate theory. The advantages of the finite element method are that it used the exact linear elasticity solutions, and that it can be used to model real source conditions and complicated, finite specimen geometries as well as thick plates. These advantages come at a cost of increased computational difficulty, requiring lengthy calculations on workstations or supercomputers. The Mindlin plate theory solutions, meanwhile, can be quickly generated on personal computers. Specimens with finite geometry can also be modeled. However, only limited simple geometries such as circular or rectangular plates can easily be accommodated with the normal mode solution technique. Likewise, very limited source configurations can be modeled and plate theory is applicable only to thin plates.

  7. Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy.

    PubMed

    Coleman, A J; Choi, M J; Saunders, J E

    1996-01-01

    A 1-MHz focused hydrophone has been used to search for acoustic emission expected to arise from cavitation occurring in tissue during clinical extracorporeal shock-wave lithotripsy (ESWL). The hydrophone is acoustically coupled to the patient's skin and the focus directed at depth in tissue under ultrasound guidance. The measured amplitude-time variation of the acoustic emission from tissue near the shock-wave focus of the Storz Modulith SL20 lithotripter has been examined in four patients. There is evidence of increased amplitude acoustic emission at 1 MHz from regions within tissue that also appear hyperechoic in simultaneously acquired ultrasound images. The acoustic emission from these regions decays from an initial peak to the noise level in about 500 microseconds following each shock-wave pulse. Within this period, a second peak, often of higher amplitude than the first, is typically observed about 100 microseconds after the shockwave. The time between the initial and second peaks is found to increase with increasing shock-wave amplitude. The results are similar to those previously observed from cavitation induced by shock-wave exposure in water and indicate that the 1-MHz acoustic emission arises from inertial cavitation in tissue during clinical ESWL.

  8. Mobile Learning and Early Age Mathematics

    ERIC Educational Resources Information Center

    Peled, Shir; Schocken, Shimon

    2014-01-01

    The ability to develop engaging simulations and constructive learning experiences using mobile devices is unprecedented, presenting a disruption in educational practices of historical proportions. In this paper we describe some of the unique virtues that mobile learning hold for early age mathematics education. In particular, we describe how…

  9. Study of acoustic emission signals during fracture shear deformation

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A. A.; Pavlov, D. V.; Markov, V. K.; Krasheninnikov, A. V.

    2016-07-01

    We study acoustic manifestations of different regimes of shear deformation of a fracture filled with a thin layer of granular material. It is established that the observed acoustic portrait is determined by the structure of the fracture at the mesolevel. Joint analysis of the activity of acoustic pulses and their spectral characteristics makes it possible to construct the pattern of internal evolutionary processes occurring in the thin layer of the interblock contact and consider the fracture deformation process as the evolution of a self-organizing system.

  10. Can acoustic emission detect the initiation of fatigue cracks: Application to high-strength light alloys used in aeronautics

    NASA Technical Reports Server (NTRS)

    Bathias, C.; Brinet, B.; Sertour, G.

    1978-01-01

    Acoustic emission was used for the detection of fatigue cracking in a number of high-strength light alloys used in aeronautical structures. Among the features studied were: the influence of emission frequency, the effect of surface oxidation, and the influence of grains. It was concluded that acoustic emission is an effective nondestructive technique for evaluating the initiation of fatigue cracking in such materials.

  11. Regularities of acoustic emission and thermoemission memory effect in coal specimens under varying thermal conditions

    SciTech Connect

    Shkuratnik, V.L.; Kuchurin, S.V.; Vinnikov, V.A.

    2007-07-15

    The experimental data on acoustic emission regularities are presented for specimens of different genetic coal types exposed to a wide range of cyclic heating modes. Peculiarities of formation and manifestation of thermal-emission memory effect depending on amplitude and duration of the thermal-field action are revealed.

  12. In situ high temperature oxidation analysis of Zircaloy-4 using acoustic emission coupled with thermogravimetry

    NASA Astrophysics Data System (ADS)

    Omar, Al Haj; Véronique, Peres; Eric, Serris; François, Grosjean; Jean, Kittel; François, Ropital; Michel, Cournil

    2015-06-01

    Zircaloy-4 oxidation behavior at high temperature (900 °C), which can be reached in case of severe accidental situations in nuclear pressurised water reactor, was studied using acoustic emission analysis coupled with thermogravimetry. Two different atmospheres were used to study the oxidation of Zircaloy-4: (a) helium and pure oxygen, (b) helium and oxygen combined with slight addition of air. The experiments with 20% of oxygen confirm the dependence on oxygen anions diffusion in the oxide scale. Under a mixture of oxygen and air in helium, an acceleration of the corrosion was observed due to the detrimental effect of nitrogen. The kinetic rate increased significantly after a kinetic transition (breakaway). This acceleration was accompanied by an acoustic emission activity. Most of the acoustic emission bursts were recorded after the kinetic transition (post-transition) or during the cooling of the sample. The characteristic features of the acoustic emission signals appear to be correlated with the different populations of cracks and their occurrence in the ZrO2 layer or in the α-Zr(O) layer. Acoustic events were recorded during the isothermal dwell time at high temperature under air. They were associated with large cracks in the zirconia porous layer. Acoustic events were also recorded during cooling after oxidation tests both under air or oxygen. For the latter, cracks were observed in the oxygen enriched zirconium metal phase and not in the dense zirconia layer after 5 h of oxidation.

  13. A potential means of using acoustic emission for crack detection under cyclic-load conditions

    NASA Technical Reports Server (NTRS)

    Vary, A.; Klima, S. J.

    1973-01-01

    A preliminary investigation was conducted to assess the feasibility of monitoring acoustic emission signals from fatigue cracks during cyclic bend tests. Plate specimens of 6A1-4V titanium, 2219-T87 aluminum, and 18-Ni maraging steel were tested with and without crack starter notches. It was found that significant acoustic emission signals could be detected in the frequency range from 100 kHz to 400 kHz. Cracks emanating from starter notches were monitored by the ultrasonic pulse-echo technique and periodically measured by micro-optical examination. Methods used to reduce the effects of extraneous noises (i.e., machine noises, fretting) are described. A frequency spectrum analyzer was used to characterize the emissions and to evaluate methods used to acquire the signals (i.e., transducer location, bandwidth selection). The investigation indicated that it was possible to extract meaningful acoustic emission signals in a cyclic bend machine environment.

  14. Acoustic emissions in rock deformation experiments under micro-CT

    NASA Astrophysics Data System (ADS)

    Tisato, Nicola; Goodfellow, Sebastian D.; Moulas, Evangelos; Di Toro, Giulio; Young, Paul; Grasselli, Giovanni

    2016-04-01

    The study of acoustic emissions (AE) generated by rocks undergoing deformation has become, in the last decades, one of the most powerful tools for boosting our understanding of the mechanisms which are responsible for rock failures. AE are elastic waves emitted by the local failure of micro- or milli-metric portions of the tested specimen. At the same time, X-ray micro computed tomography (micro-CT) has become an affordable, reliable and powerful tool for imaging the internal structure of rock samples. In particular, micro-CT coupled with a deformation apparatus offers the unique opportunity for observing, without perturbing, the sample while the deformation and the formation of internal structures, such as shear bands, is ongoing. Here we present some preliminary results gathered with an innovative apparatus formed by the X-ray transparent pressure vessel called ERDμ equipped with AE sensors, an AE acquisition system and a micro-CT apparatus available at the University of Toronto. The experiment was performed on a 12 mm diameter 36 mm long porous glass sample which was cut on a 60 deg inclined plane (i.e. saw-cut sample). Etna basaltic sand with size ~1 mm was placed between the two inclined faces forming an inclined fault zone with ~2 mm thickness. The sample assembly was jacketed with a polyefin shrink tube and two AE sensors were glued onto the glass samples above and below the fault zone. The sample was then enclosed in the pressure vessel and confined with compressed air up to 3 MPa. A third AE sensor was placed outside the vessel. The sample was saturated with water and AE were generated by varying the fluid and confining pressure or the vertical force, causing deformations concentrated in the fault zone. Mechanical data and AE traces were collected throughout the entire experiment which lasted ~24 hours. At the same time multiple micro-CT 3D datasets and 2D movie-radiographies were collected, allowing the 3D reconstruction of the deformed sample at

  15. Acoustic emission signal classification for gearbox failure detection

    NASA Astrophysics Data System (ADS)

    Shishino, Jun

    The purpose of this research is to develop a methodology and technique to determine the optimal number of clusters in acoustic emission (AE) data obtained from a ground test stand of a rotating H-60 helicopter tail gearbox by using mathematical algorithms and visual inspection. Signs of fatigue crack growth were observed from the AE signals acquired from the result of the optimal number of clusters in a data set. Previous researches have determined the number of clusters by visually inspecting the AE plots from number of iterations. This research is focused on finding the optimal number of clusters in the data set by using mathematical algorithms then using visual verification to confirm it. The AE data were acquired from the ground test stand that simulates the tail end of an H-60 Seahawk at Naval Air Station in Patuxant River, Maryland. The data acquired were filtered to eliminate durations that were greater than 100,000 is and 0 energy hit data to investigate the failure mechanisms occurring on the output bevel gear. From the filtered data, different AE signal parameters were chosen to perform iterations to see which clustering algorithms and number of outputs is the best. The clustering algorithms utilized are the Kohonen Self-organizing Map (SOM), k-mean and Gaussian Mixture Model (GMM). From the clustering iterations, the three cluster criterion algorithms were performed to observe the suggested optimal number of cluster by the criterions. The three criterion algorithms utilized are the Davies-Bouldin, Silhouette and Tou Criterions. After the criterions had suggested the optimal number of cluster for each data set, visual verification by observing the AE plots and statistical analysis of each cluster were performed. By observing the AE plots and the statistical analysis, the optimal number of cluster in the data set and effective clustering algorithms were determined. Along with the optimal number of clusters and effective clustering algorithm, the mechanisms

  16. Combining Passive Thermography and Acoustic Emission for Large Area Fatigue Damage Growth Assessment of a Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-01-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography

  17. The acoustic emission of a distributed mode loudspeaker near a porous layer.

    PubMed

    Prokofieva, E Yu; Horoshenkov, Kirill V; Harris, N

    2002-06-01

    Experimental and theoretical modeling of the vibro-acoustic performance of a distributed mode loudspeaker (DML) suggest that their acoustic emission can be significantly affected by the presence of a porous layer. The amplitude of the surface velocity of the panel and the acoustic pressure on the porous surface are reduced largely in the vicinity of structural resonances due to the additional radiation damping and visco-thermal absorption phenomenon in the porous layer. The experimental results suggest that a porous layer between a rigid base and a DML panel can considerably alter its acoustic emission in the near field and in the far field. This is illustrated by a reduction in the level of fluctuations in the emitted acoustic pressure spectra. These fluctuations are normally associated with the interference between the sound emitted by the front surface of the speaker and that emitted from the back. Another contribution comes from the pronounced structural resonances in the surface velocity spectrum. The results of this work suggest that the acoustic boundary conditions near a DML can be modified by the porous layer so that a desired acoustic output can be attained.

  18. Initiation of acoustic emission in fluid-saturated sandstone samples

    NASA Astrophysics Data System (ADS)

    Lapshin, V. B.; Patonin, A. V.; Ponomarev, A. V.; Potanina, M. G.; Smirnov, V. B.; Stroganova, S. M.

    2016-07-01

    A rock behavior experiment with uniaxial compression revealed the effect of acoustic activity in loaded fluid-saturated Berea sandstone samples in response to an electric current. It is established that it is substantially intensified in periods of the current impact and decreases after its cut-off. The current impact also results in a growth of radial deformation indicating an increase in the sample volume. The effect of acoustic activation increases in response to increased heat emitted by the electric current during its flow through the sample, which allows the discovered effect to be explained by initiation of its destruction due to thermal expansion of the fluid in rock interstices and fissures.

  19. Surface Roughness Evaluation Based on Acoustic Emission Signals in Robot Assisted Polishing

    PubMed Central

    de Agustina, Beatriz; Marín, Marta María; Teti, Roberto; Rubio, Eva María

    2014-01-01

    The polishing process is the most common technology used in applications where a high level of surface quality is demanded. The automation of polishing processes is especially difficult due to the high level of skill and dexterity that is required. Much of this difficulty arises because of the lack of reliable data on the effect of the polishing parameters on the resulting surface roughness. An experimental study was developed to evaluate the surface roughness obtained during Robot Assisted Polishing processes by the analysis of acoustic emission signals in the frequency domain. The aim is to find out a trend of a feature or features calculated from the acoustic emission signals detected along the process. Such an evaluation was made with the objective of collecting valuable information for the establishment of the end point detection of polishing process. As a main conclusion, it can be affirmed that acoustic emission (AE) signals can be considered useful to monitor the polishing process state. PMID:25405509

  20. Surface roughness evaluation based on acoustic emission signals in robot assisted polishing.

    PubMed

    de Agustina, Beatriz; Marín, Marta María; Teti, Roberto; Rubio, Eva María

    2014-11-14

    The polishing process is the most common technology used in applications where a high level of surface quality is demanded. The automation of polishing processes is especially difficult due to the high level of skill and dexterity that is required. Much of this difficulty arises because of the lack of reliable data on the effect of the polishing parameters on the resulting surface roughness. An experimental study was developed to evaluate the surface roughness obtained during Robot Assisted Polishing processes by the analysis of acoustic emission signals in the frequency domain. The aim is to find out a trend of a feature or features calculated from the acoustic emission signals detected along the process. Such an evaluation was made with the objective of collecting valuable information for the establishment of the end point detection of polishing process. As a main conclusion, it can be affirmed that acoustic emission (AE) signals can be considered useful to monitor the polishing process state.

  1. A nondestructive test for aircraft Halon bottles, the development of an acoustic emission application

    SciTech Connect

    Beattie, A.G.

    1996-12-01

    An acoustic emission test for aircraft Halon bottles has been developed in response to a need expressed by the US Airline Industry. During this development many choices had to be made about test methods, procedures and analysis techniques. This paper discusses these choices and how successful they were. The test itself was designed to replace the currently required hydrostatic test for these bottles. The necessary load is applied by heating the sealed bottles. Acoustic emission is monitored, during the heating, by six sensors held in position by a special fixture. A prototype of the test apparatus was constructed and used in two commercial Halon bottle repair and test facilities. Results to date indicate that about 97% of the bottles tested show no indications of flaws. The other 3% have had indications of possible flaws in non-critical areas of the bottles. All bottles tested to date have passed the hydrostatic test subsequent to the acoustic emission test.

  2. The application of Shuffled Frog Leaping Algorithm to Wavelet Neural Networks for acoustic emission source location

    NASA Astrophysics Data System (ADS)

    Cheng, Xinmin; Zhang, Xiaodan; Zhao, Li; Deng, Aideng; Bao, Yongqiang; Liu, Yong; Jiang, Yunliang

    2014-04-01

    When using acoustic emission to locate the friction fault source of rotating machinery, the effects of strong noise and waveform distortion make accurate locating difficult. Applying neural network for acoustic emission source location could be helpful. In the BP Wavelet Neural Network, BP is a local search algorithm, which falls into local minimum easily. The probability of successful search is low. We used Shuffled Frog Leaping Algorithm (SFLA) to optimize the parameters of the Wavelet Neural Network, and the optimized Wavelet Neural Network to locate the source. After having performed the experiments of friction acoustic emission's source location on the rotor friction test machine, the results show that the calculation of SFLA is simple and effective, and that locating is accurate with proper structure of the network and input parameters.

  3. The pattern of acoustic emission under fluid initiation of failure: Laboratory modeling

    NASA Astrophysics Data System (ADS)

    Potanina, M. G.; Smirnov, V. B.; Ponomarev, A. V.; Bernard, P.; Lyubushin, A. A.; Shoziyoev, Sh. P.

    2015-03-01

    The results of the laboratory experiment on the initiation of acoustic emission in a loaded specimen by wetting a part of its surface without a material increase in the pore pressure are analyzed. The experiment was conducted on the lever press at the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences (Sobolev and Ponomarev, 2011). Infusion of water into the surface of the specimen initiated the swarm acoustic emission, which, after having migrated to the area with higher stresses, culminated in the formation of a macrofracture. The analysis revealed the regularities in the excitation and relaxation of the acoustic activity in response to different types of initiation: the forced excitation by stepwise increasing the load at the initial stage of the experiment; excitation resulting from fluid diffusion, which can be associated with the reduction in the material strength due to wetting; excitation that reflects the preparation for the emergence of a macrofracture in the area with the highest Coulomb stresses; and spontaneous excitation of swarm activity at the stage of relaxation of the acoustic emission after the formation of a macrofracture. The features revealed in the acoustic time series at the stages of excitation and decay of the emission are qualitatively similar to the trends identified in the variations of seismic parameters during the natural swarms, preparation of the sources of the strong earthquakes, and relaxation of the aftershocks. In particular, the obtained results support the hypothesis of fluid initiation of nonvolcanic seismic swarms.

  4. Quantitative Analysis Of Acoustic Emission From Rock Fracture Experiments

    NASA Astrophysics Data System (ADS)

    Goodfellow, Sebastian David

    This thesis aims to advance the methods of quantitative acoustic emission (AE) analysis by calibrating sensors, characterizing sources, and applying the results to solve engi- neering problems. In the first part of this thesis, we built a calibration apparatus and successfully calibrated two commercial AE sensors. The ErgoTech sensor was found to have broadband velocity sensitivity and the Panametrics V103 was sensitive to surface normal displacement. These calibration results were applied to two AE data sets from rock fracture experiments in order to characterize the sources of AE events. The first data set was from an in situ rock fracture experiment conducted at the Underground Research Laboratory (URL). The Mine-By experiment was a large scale excavation response test where both AE (10 kHz - 1 MHz) and microseismicity (MS) (1 Hz - 10 kHz) were monitored. Using the calibration information, magnitude, stress drop, dimension and energy were successfully estimated for 21 AE events recorded in the tensile region of the tunnel wall. Magnitudes were in the range -7.5 < Mw < -6.8, which is consistent with other laboratory AE results, and stress drops were within the range commonly observed for induced seismicity in the field (0.1 - 10 MPa). The second data set was AE collected during a true-triaxial deformation experiment, where the objectives were to characterize laboratory AE sources and identify issues related to moving the analysis from ideal in situ conditions to more complex laboratory conditions in terms of the ability to conduct quantitative AE analysis. We found AE magnitudes in the range -7.8 < Mw < -6.7 and as with the in situ data, stress release was within the expected range of 0.1 - 10 MPa. We identified four major challenges to quantitative analysis in the laboratory, which in- hibited our ability to study parameter scaling (M0 ∝ fc -3 scaling). These challenges were 0c (1) limited knowledge of attenuation which we proved was continuously evolving, (2

  5. Thick-film acoustic emission sensors for use in structurally integrated condition-monitoring applications.

    PubMed

    Pickwell, Andrew J; Dorey, Robert A; Mba, David

    2011-09-01

    Monitoring the condition of complex engineering structures is an important aspect of modern engineering, eliminating unnecessary work and enabling planned maintenance, preventing failure. Acoustic emissions (AE) testing is one method of implementing continuous nondestructive structural health monitoring. A novel thick-film (17.6 μm) AE sensor is presented. Lead zirconate titanate thick films were fabricated using a powder/sol composite ink deposition technique and mechanically patterned to form a discrete thick-film piezoelectric AE sensor. The thick-film sensor was benchmarked against a commercial AE device and was found to exhibit comparable responses to simulated acoustic emissions.

  6. Acoustic emission analysis: A test method for metal joints bonded by adhesives

    NASA Technical Reports Server (NTRS)

    Brockmann, W.; Fischer, T.

    1978-01-01

    Acoustic emission analysis is applied to study adhesive joints which had been subjected to mechanical and climatic stresses, taking into account conditions which make results applicable to adhesive joints used in aerospace technology. Specimens consisting of the alloy AlMgSi0.5 were used together with a phenolic resin adhesive, an epoxy resin modified with a polyamide, and an epoxy resin modified with a nitrile. Results show that the acoustic emission analysis provides valuable information concerning the behavior of adhesive joints under load and climatic stresses.

  7. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    SciTech Connect

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen; Vander Stappen, François; Janssens, Guillaume; Prieels, Damien; Bawiec, Christopher R.; Lewin, Peter A.; Sehgal, Chandra M.

    2015-12-15

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  8. Acoustic emission from magnetic flux tubes in the solar network

    NASA Astrophysics Data System (ADS)

    Vigeesh, G.; Hasan, S. S.

    2013-06-01

    We present the results of three-dimensional numerical simulations to investigate the excitation of waves in the magnetic network of the Sun due to footpoint motions of a magnetic flux tube. We consider motions that typically mimic granular buffeting and vortex flows and implement them as driving motions at the base of the flux tube. The driving motions generates various MHD modes within the flux tube and acoustic waves in the ambient medium. The response of the upper atmosphere to the underlying photospheric motion and the role of the flux tube in channeling the waves is investigated. We compute the acoustic energy flux in the various wave modes across different boundary layers defined by the plasma and magnetic field parameters and examine the observational implications for chromospheric and coronal heating.

  9. Property evaluation of thermal sprayed metallic coating by acoustic emission analysis

    SciTech Connect

    Ishida, Asako; Mizutani, Yoshihiro; Takemoto, Mikio; Ono, Kanji

    2000-03-01

    The authors analyzed acoustic emission signals from plasma sprayed sheets by first obtaining the Young's modulus, Poisson's ratio, and density. The sheets of a high Cr-Ni alloy (55Cr-41Ni-Mo, Si, B) were made by low pressure plasma spraying (LPPS) and heat treated. Utilizing laser induced surface acoustic waves (SAWs), the group velocity dispersion data of Rayleigh waves was obtained and matched to that computed by Adler's matrix transfer method. They monitored the acoustic emissions (Lamb waves) produced by microfractures in free standing as sprayed coating subjected to bending. Fast cleavage type microfracture with source rise time of around 2 {micro}s occurred as precursors to the final brittle fracture. The velocity and time-frequency amplitude spectrograms (wavelet contour maps) of the Lamb waves were utilized for the source location and fracture kinetic analyses.

  10. Xylem cavitation resistance can be estimated based on time-dependent rate of acoustic emissions.

    PubMed

    Nolf, Markus; Beikircher, Barbara; Rosner, Sabine; Nolf, Anton; Mayr, Stefan

    2015-10-01

    Acoustic emission (AE) analysis allows nondestructive monitoring of embolism formation in plant xylem, but signal interpretation and agreement of acoustically measured hydraulic vulnerability with reference hydraulic techniques remain under debate. We compared the hydraulic vulnerability of 16 species and three crop tree cultivars using hydraulic flow measurements and acoustic emission monitoring, proposing the use of time-dependent AE rates as a novel parameter for AE analysis. There was a linear correlation between the water potential (Ψ) at 50% loss of hydraulic conductivity (P50 ) and the Ψ at maximum AE activity (Pmaxrate ), where species with lower P50 also had lower Pmaxrate (P < 0.001, R(2)  = 0.76). Using AE rates instead of cumulative counts for AE analysis allows more efficient estimation of P50 , while excluding problematic AE at late stages of dehydration.

  11. Acoustic emission non-destructive testing of structures using source location techniques.

    SciTech Connect

    Beattie, Alan G.

    2013-09-01

    The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one on aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.

  12. Based on optical fiber Michelson interferometer for acoustic emission detection experimental research

    NASA Astrophysics Data System (ADS)

    Liang, Yijun; Qu, Dandan; Deng, Hu

    2013-08-01

    A type of Michelson interferometer with two optical fiber loop reflectors acoustic emission sensor is proposed in the article to detect the vibrations produced by ultrasonic waves propagating in a solid body. Two optical fiber loop reflectors are equivalent to the sensing arm and the reference arm instead of traditional Michelson interferometer end reflecter Theoretical analyses indicate that the sensitivity of the system has been remarkably increased because of the decrease of the losses of light energy. The best operating point of optical fiber sensor is fixed by theoretical derivation and simulation of computer, and the signal frequency which is detected by the sensor is the frequency of input signal. PZT (Piezoelectric Ceramic) is powered by signal generator as known ultrasonic source, The Polarization controller is used to make the reflected light interference,The fiber length is changed by adjusting the DC voltage on the PZT with the fiber loop to make the sensor system response that ΔΦ is closed to π/2. the signal basis frequency detected by the sensor is the frequency of the input signal. Then impacts the surface of the marble slab with home-made mechanical acoustic emission source. And detect it. and then the frequency characteristic of acoustic emission signal is obtained by Fourier technique. The experimental results indicate that the system can identify the frequency characteristic of acoustic emission signal, and it can be also used to detect the surface feeble vibration which is generated by ultrasonic waves propagating in material structure.

  13. Acoustic emission during tensile deformation of M250 grade maraging steel

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Chandan Kumar; Rajkumar, Kesavan Vadivelu; Chandra Rao, Bhaghi Purna; Jayakumar, Tamanna

    2012-05-01

    Acoustic emission (AE) generated during room temperature tensile deformation of varyingly heat treated (solution annealed and thermally aged) M250 grade maraging steel specimens have been studied. Deformation of microstructure corresponding to different heat treated conditions in this steel could be distinctly characterized using the AE parameters such as RMS voltage, counts and peak amplitude of AE hits (events).

  14. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    DOE PAGESBeta

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN).more » Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.« less

  15. Advanced Computing Methods for Knowledge Discovery and Prognosis in Acoustic Emission Monitoring

    ERIC Educational Resources Information Center

    Mejia, Felipe

    2012-01-01

    Structural health monitoring (SHM) has gained significant popularity in the last decade. This growing interest, coupled with new sensing technologies, has resulted in an overwhelming amount of data in need of management and useful interpretation. Acoustic emission (AE) testing has been particularly fraught by the problem of growing data and is…

  16. Data quality enhancement and knowledge discovery from relevant signals in acoustic emission

    NASA Astrophysics Data System (ADS)

    Mejia, Felipe; Shyu, Mei-Ling; Nanni, Antonio

    2015-10-01

    The increasing popularity of structural health monitoring has brought with it a growing need for automated data management and data analysis tools. Of great importance are filters that can systematically detect unwanted signals in acoustic emission datasets. This study presents a semi-supervised data mining scheme that detects data belonging to unfamiliar distributions. This type of outlier detection scheme is useful detecting the presence of new acoustic emission sources, given a training dataset of unwanted signals. In addition to classifying new observations (herein referred to as "outliers") within a dataset, the scheme generates a decision tree that classifies sub-clusters within the outlier context set. The obtained tree can be interpreted as a series of characterization rules for newly-observed data, and they can potentially describe the basic structure of different modes within the outlier distribution. The data mining scheme is first validated on a synthetic dataset, and an attempt is made to confirm the algorithms' ability to discriminate outlier acoustic emission sources from a controlled pencil-lead-break experiment. Finally, the scheme is applied to data from two fatigue crack-growth steel specimens, where it is shown that extracted rules can adequately describe crack-growth related acoustic emission sources while filtering out background "noise." Results show promising performance in filter generation, thereby allowing analysts to extract, characterize, and focus only on meaningful signals.

  17. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    PubMed Central

    Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  18. Investigation of hydrogen embrittlement in 4130 steel using acoustic emission techniques

    SciTech Connect

    Susetka, S.L.

    1986-01-01

    Hydrogen embrittlement has long been a problem in certain quenched and tempered steel weldments since it reduces fracture strength and ductility. Although the phenomenon has been studied extensively, controversy still exists over the interaction between hydrogen and the lattice. For this investigation the acoustic emission response from fracture roughness tests on a variety of microstructures of AISI 4130 steel was used to gain insight into the micromechanism of the fracture process. The data indicate the acoustic emission represents the onset of brittle crack extension and, further, that the summation of the square of the acoustic emission amplitude, ..sigma..g/sup 2/, represents the elastic energy released during the fracture process. A comparison of the acoustic emission response from hydrogen charged and uncharged samples reveals that hydrogen increases the elastic energy released for the same crack extension. The 20% increase in the brittle fracture are in hydrogen charged samples is insufficient to explain the two fold increase in ..sigma..g/sup 2/. The data also support the view that hydrogen can act to alter the relationship between the surface energy, ..gamma../sub s/, and the plastic work term, ..gamma../sub p/, as Thomson, McMahon, and Gilman have proposed.

  19. Crack propagation analysis using acoustic emission sensors for structural health monitoring systems.

    PubMed

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  20. Investigation of acoustic emission and surface treatment to improve tool materials and metal forming process

    NASA Astrophysics Data System (ADS)

    Cao, Deming

    Silicon nitride and WC-Co cermet tools are used for metal forming processes including extrusion and drawing. These materials are used to make tool dies which are exposed to deformation caused by friction and wear. Surface treatments such as ion implantation, laser blazing and coating have been found to improve surface properties, to optimize tribological behavior between the metal and die, as well as to extend service life of the tool dies. Early detection and continuous monitoring processes by non destructive testing (NDT) methods are needed in order to ensure the functionality of the wear process and extend the tool service life. Acoustic emission is one of the promising NDT methods for this application. The surface treatment chosen for this investigation was ion implantation. Three types of wear resistant materials with and without surface treatment were selected for this project; silicon nitride and two tungsten carbides (6% Cobalt and 10% Cobalt). This investigation was conducted using a pin-on-disk device for wear/friction tests of the selected materials with lubrication and/or without lubrication against both a stainless steel disk and an aluminum disk. The acoustic emissions generated during the experiments were recorded and analyzed. The results of this investigation showed that the ion implantation improved the tribological properties of the materials and reduced acoustic emission and coefficient of friction. A linear relationship between the average amplitude of the acoustic emission and the coefficient of friction of the tested materials was found. The investigation demonstrated that the acoustic emission method could be used to monitor the wear/friction processes.

  1. Acoustic emission testing on an F/A-18 E/F titanium bulkhead

    NASA Astrophysics Data System (ADS)

    Martin, Christopher A.; Van Way, Craig B.; Lockyer, Allen J.; Kudva, Jayanth N.; Ziola, Steve M.

    1995-04-01

    An important opportunity recently transpired at Northrop Grumman Corporation to instrument an F/A - 18 E/F titanium bulkhead with broad band acoustic emission sensors during a scheduled structural fatigue test. The overall intention of this effort was to investigate the potential for detecting crack propagation using acoustic transmission signals for a large structural component. Key areas of experimentation and experience included (1) acoustic noise characterization, (2) separation of crack signals from extraneous noise, (3) source location accuracy, and (4) methods of acoustic transducer attachment. Fatigue cracking was observed and monitored by strategically placed acoustic emission sensors. The outcome of the testing indicated that accurate source location still remains enigmatic for non-specialist engineering personnel especially at this level of structural complexity. However, contrary to preconceived expectations, crack events could be readily separated from extraneous noise. A further dividend from the investigation materialized in the form of close correspondence between frequency domain waveforms of the bulkhead test specimen tested and earlier work with thick plates.

  2. Combining passive thermography and acoustic emission for large area fatigue damage growth assessment of a composite structure

    NASA Astrophysics Data System (ADS)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-05-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.

  3. Proton beam characterization by proton-induced acoustic emission: simulation studies.

    PubMed

    Jones, K C; Witztum, A; Sehgal, C M; Avery, S

    2014-11-01

    Due to their Bragg peak, proton beams are capable of delivering a targeted dose of radiation to a narrow volume, but range uncertainties currently limit their accuracy. One promising beam characterization technique, protoacoustic range verification, measures the acoustic emission generated by the proton beam. We simulated the pressure waves generated by proton radiation passing through water. We observed that the proton-induced acoustic signal consists of two peaks, labeled α and γ, with two originating sources. The α acoustic peak is generated by the pre-Bragg peak heated region whereas the source of the γ acoustic peak is the proton Bragg peak. The arrival time of the α and γ peaks at a transducer reveals the distance from the beam propagation axis and Bragg peak center, respectively. The maximum pressure is not observed directly above the Bragg peak due to interference of the acoustic signals. Range verification based on the arrival times is shown to be more effective than determining the Bragg peak position based on pressure amplitudes. The temporal width of the α and γ peaks are linearly proportional to the beam diameter and Bragg peak width, respectively. The temporal separation between compression and rarefaction peaks is proportional to the spill time width. The pressure wave expected from a spread out Bragg peak dose is characterized. The simulations also show that acoustic monitoring can verify the proton beam dose distribution and range by characterizing the Bragg peak position to within ~1 mm.

  4. Effects of contralateral white noise stimulation on transitory evoked otoacoustic emissions in patients with acoustic neuroma.

    PubMed

    Maurer, J; Hinni, M; Beck, A; Mann, W

    1995-03-01

    Transitory evoked otoacoustic emissions are normal phenomena observed in most persons with hearing levels greater than 35 dB. Further, masking of the contralateral ear produces amplitude reductions in the transitory evoked otoacoustic emissions. We have undertaken a study of transitory evoked otoacoustic emissions in 20 patients with acoustic neuroma. All patients were assessed for transitory evoked otoacoustic emissions bilaterally, with and without contralateral masking with white band noise at 40, 50, and 60 dB. We found that transitory evoked otoacoustic emissions were present in 30% of ears with tumor and that the presence of transitory evoked otoacoustic emissions is associated with improved preoperative hearing levels, but that tumor size is not associated with the presence or absence of transitory evoked otoacoustic emissions. The amplitude of transitory evoked otoacoustic emissions from ears with tumor, when present, is decreased when compared with normal ears of normal patients. Further, with contralateral masking little of the amplitude reduction observed in normal patients is observed in the ears with acoustic neuroma. However, with masking of the contralateral ear, the ear without tumor demonstrated significantly greater amplitude reductions than normal ears from normal patients (p = 0.0006). Pertinent anatomy and possible explanations for these findings are discussed. PMID:7870435

  5. Controlled Ultrasound-Induced Blood-Brain Barrier Disruption Using Passive Acoustic Emissions Monitoring

    PubMed Central

    Arvanitis, Costas D.; Livingstone, Margaret S.; Vykhodtseva, Natalia; McDannold, Nathan

    2012-01-01

    The ability of ultrasonically-induced oscillations of circulating microbubbles to permeabilize vascular barriers such as the blood-brain barrier (BBB) holds great promise for noninvasive targeted drug delivery. A major issue has been a lack of control over the procedure to ensure both safe and effective treatment. Here, we evaluated the use of passively-recorded acoustic emissions as a means to achieve this control. An acoustic emissions monitoring system was constructed and integrated into a clinical transcranial MRI-guided focused ultrasound system. Recordings were analyzed using a spectroscopic method that isolates the acoustic emissions caused by the microbubbles during sonication. This analysis characterized and quantified harmonic oscillations that occur when the BBB is disrupted, and broadband emissions that occur when tissue damage occurs. After validating the system's performance in pilot studies that explored a wide range of exposure levels, the measurements were used to control the ultrasound exposure level during transcranial sonications at 104 volumes over 22 weekly sessions in four macaques. We found that increasing the exposure level until a large harmonic emissions signal was observed was an effective means to ensure BBB disruption without broadband emissions. We had a success rate of 96% in inducing BBB disruption as measured by in contrast-enhanced MRI, and we detected broadband emissions in less than 0.2% of the applied bursts. The magnitude of the harmonic emissions signals was significantly (P<0.001) larger for sonications where BBB disruption was detected, and it correlated with BBB permeabilization as indicated by the magnitude of the MRI signal enhancement after MRI contrast administration (R2 = 0.78). Overall, the results indicate that harmonic emissions can be a used to control focused ultrasound-induced BBB disruption. These results are promising for clinical translation of this technology. PMID:23029240

  6. Acoustic emissions of digital data video projectors- Investigating noise sources and their change during product aging

    NASA Astrophysics Data System (ADS)

    White, Michael Shane

    2005-09-01

    Acoustic emission testing continues to be a growing part of IT and telecommunication product design, as product noise is increasingly becoming a differentiator in the marketplace. This is especially true for digital/video display companies, such as InFocus Corporation, considering the market shift of these products to the home entertainment consumer as retail prices drop and performance factors increase. Projectors and displays using Digital Light Processing(tm) [DLP(tm)] technology incorporate a device known as a ColorWheel(tm) to generate the colors displayed at each pixel in the image. These ColorWheel(tm) devices spin at very high speeds and can generate high-frequency tones not typically heard in liquid crystal displays and other display technologies. Also, acoustic emission testing typically occurs at the beginning of product life and is a measure of acoustic energy emitted at this point in the lifecycle. Since the product is designed to be used over a long period of time, there is concern as to whether the acoustic emissions change over the lifecycle of the product, whether these changes will result in a level of nuisance to the average customer, and does this nuisance begin to develop prior to the intended lifetime of the product.

  7. Neural network/acoustic emission burst pressure prediction for impact damaged composite pressure vessels

    SciTech Connect

    Walker, J.L.; Workman, G.L.; Russell, S.S.; Hill, E.V.K.

    1997-08-01

    Acoustic emission signal analysis has been used to measure the effect impact damage has on the burst pressure of 146 mm (5.75 in.) diameter graphite/epoxy and the organic polymer, Kevlar/epoxy filament wound pressure vessels. Burst pressure prediction models were developed by correlating the differential acoustic emission amplitude distribution collected during low level hydroproof tests to known burst pressures using backpropagation artificial neural networks. Impact damage conditions ranging from barely visible to obvious fiber breakage, matrix cracking, and delamination were included in this work. A simulated (inert) propellant was also cast into a series of the vessels from each material class, before impact loading, to provide boundary conditions during impact that would simulate those found on solid rocket motors. The results of this research effort demonstrate that a quantitative assessment of the effects that impact damage has on burst pressure can be made for both organic polymer/epoxy and graphite/epoxy pressure vessels. Here, an artificial neural network analysis of the acoustic emission parametric data recorded during low pressure hydroproof testing is used to relate burst pressure to the vessel`s acoustic signature. Burst pressure predictions within 6.0% of the actual failure pressure are demonstrated for a series of vessels.

  8. An echolocation model for the restoration of an acoustic image from a single-emission echo

    NASA Astrophysics Data System (ADS)

    Matsuo, Ikuo; Yano, Masafumi

    2004-12-01

    Bats can form a fine acoustic image of an object using frequency-modulated echolocation sound. The acoustic image is an impulse response, known as a reflected-intensity distribution, which is composed of amplitude and phase spectra over a range of frequencies. However, bats detect only the amplitude spectrum due to the low-time resolution of their peripheral auditory system, and the frequency range of emission is restricted. It is therefore necessary to restore the acoustic image from limited information. The amplitude spectrum varies with the changes in the configuration of the reflected-intensity distribution, while the phase spectrum varies with the changes in its configuration and location. Here, by introducing some reasonable constraints, a method is proposed for restoring an acoustic image from the echo. The configuration is extrapolated from the amplitude spectrum of the restricted frequency range by using the continuity condition of the amplitude spectrum at the minimum frequency of the emission and the minimum phase condition. The determination of the location requires extracting the amplitude spectra, which vary with its location. For this purpose, the Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates were used. The location is estimated from the temporal changes of the amplitude spectra. .

  9. Shear-induced force fluctuations and acoustic emissions in granular material

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Cohen, Denis; Or, Dani

    2013-12-01

    We conducted a series of strain-controlled experiments to study the characteristics of a shear zone forming in dense flow of confined dry granular media. The primary objective was to link force fluctuations due to jamming and force network reformation with episodic release of elastic energy as passively monitored by acoustic emission sensors. Under constant deformation rate, the shear stress exhibits a characteristic sawtooth behavior reflecting the strong influence of micromechanical processes on the macroscopic stress-strain behavior. Measured shear stress jumps were highly correlated with low-frequency (< 20 kHz) acoustic emission events. High-frequency (30 kHz-80 kHz) acoustic signals that were measured with different sensors appear to be directly linked to continual grain-scale interactions (e.g., friction, rolling). A conceptual mechanical fiber bundle model (FBM) was used to represent dynamics at the shear zone of large granular assemblies. The model was capable of reproducing the dynamics of stress jumps and associated elastic energy release events. The combination of acoustic emission (AE) measurements and FBM framework offers new insights into the behavior of shear failure and enhances capabilities for resolving grain-scale mechanical processes and for predicting rapid mass movement such as shallow landslides and debris flows.

  10. Characterization of granular collapse onto hard substrates by acoustic emissions

    NASA Astrophysics Data System (ADS)

    Farin, Maxime; Mangeney, Anne; Toussaint, Renaud; De Rosny, Julien

    2013-04-01

    Brittle deformation in granular porous media can generate gravitational instabilities such as debris flows and rock avalanches. These phenomena constitute a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and rock blocks. The elastic energy emitted by a single bouncing steel bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, two types of acoustic sensors were used to record the signals in a wide frequency range: accelerometers (1 Hz to 56 kHz) and piezoelectric sensors (100 kHz to 1 MHz). The experiments were also monitored optically using fast cameras. We developed a technique to use quantitatively both types of sensors to evaluate the elastic energy emitted by the sources. Eventually, we looked at what

  11. Frequency Characteristics of Acoustic Emission Signals from Cementitious Waste-forms with Encapsulated Al

    SciTech Connect

    Spasova, Lyubka M.; Ojovan, Michael I.

    2007-07-01

    Acoustic emission (AE) signals were continuously recorded and their intrinsic frequency characteristics examined in order to evaluate the mechanical performance of cementitious wasteform samples with encapsulated Al waste. The primary frequency in the power spectrum and its range of intensity for the detected acoustic waves were potentially related with appearance of different micro-mechanical events caused by Al corrosion within the encapsulating cement system. In addition the process of cement matrix hardening has been shown as a source of AE signals characterized with essentially higher primary frequency (above 2 MHz) compared with those due to Al corrosion development (below 40 kHz) and cement cracking (above 100 kHz). (authors)

  12. Experimental Research Into Generation of Acoustic Emission Signals in the Process of Friction of Hadfield Steel Single Crystals

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Filippov, A. V.; Novitskaia, O. S.; Kolubaev, E. A.; Sizova, O. V.

    2016-08-01

    The results of experimental research into dry sliding friction of Hadfield steel single crystals involving registration of acoustic emission are presented in the paper. The images of friction surfaces of Hadfield steel single crystals and wear grooves of the counterbody surface made after completion of three serial experiments conducted under similar conditions and friction regimes are given. The relation of the acoustic emission waveform envelope to the changing friction factor is revealed. Amplitude-frequency characteristics of acoustic emission signal frames are determined on the base of Fast Fourier Transform and Short Time Fourier Transform during the run-in stage of tribounits and in the process of stable friction.

  13. An acoustic emission and acousto-ultrasonic analysis of impact damaged composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Workman, Gary L. (Principal Investigator); Walker, James L.

    1996-01-01

    The use of acoustic emission to characterize impact damage in composite structures is being performed on composite bottles wrapped with graphite epoxy and kevlar bottles. Further development of the acoustic emission methodology will include neural net analysis and/or other multivariate techniques to enhance the capability of the technique to identify dominant failure mechanisms during fracture. The acousto-ultrasonics technique will also continue to be investigated to determine its ability to predict regions prone to failure prior to the burst tests. Characterization of the stress wave factor before, and after impact damage will be useful for inspection purposes in manufacturing processes. The combination of the two methods will also allow for simple nondestructive tests capable of predicting the performance of a composite structure prior to its being placed in service and during service.

  14. Multi-scale morphology analysis of acoustic emission signal and quantitative diagnosis for bearing fault

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Jing; Cui, Ling-Li; Chen, Dao-Yun

    2016-04-01

    Monitoring of potential bearing faults in operation is of critical importance to safe operation of high speed trains. One of the major challenges is how to differentiate relevant signals to operational conditions of bearings from noises emitted from the surrounding environment. In this work, we report a procedure for analyzing acoustic emission signals collected from rolling bearings for diagnosis of bearing health conditions by examining their morphological pattern spectrum (MPS) through a multi-scale morphology analysis procedure. The results show that acoustic emission signals resulted from a given type of bearing faults share rather similar MPS curves. Further examinations in terms of sample entropy and Lempel-Ziv complexity of MPS curves suggest that these two parameters can be utilized to determine damage modes.

  15. Band-limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.

    2013-01-01

    A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.

  16. Evaluation of Fracture in Concrete with Recycled Aggregate by Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Nishibata, Sayaka; Watanabe, Takeshi; Hashimoro, Chikanori; Kohno, Kiyoshi

    This research revealed fracture behavior of concrete in using recycled aggregates by Acoustic Emission as one of the Non-destructive Inspection. The phenomenon of acoustic emission (AE) is the propagation of elastic waves generated from a source, known as a micro-crack in an elastic material. There were taken to use low-treated recycled aggregate, crushed returned ready mixed concrete for aggregate and normal aggregate. Examination measured AE under the uniaxial compression test. The condition of load is repeated loading. As a result, fracture behavior due to low treated recycled aggregate was detected by AE. It is clarified that AE of concrete with low treated recycled aggregate appeared in low stress level. It has been understood that difference of aggregates becomes clear from Kaiser effect in repeated loading. In relation between RA value and average frequency, it has been understood the adhesion properties of the cement paste in recycled aggregate are appreciable.

  17. Codetection of acoustic emissions during failure of heterogeneous media: New perspectives for natural hazard early warning

    NASA Astrophysics Data System (ADS)

    Faillettaz, Jerome; Or, Dani; Reiweger, Ingrid

    2016-02-01

    A simple method for real-time early warning of gravity-driven rupture that considers both the heterogeneity of natural media and characteristics of acoustic emissions attenuation is proposed. The method capitalizes on codetection of elastic waves emanating from microcracks by multiple and spatially separated sensors. Event codetection is considered as surrogate for large event size with more frequent codetected events marking imminence of catastrophic failure. Using a spatially explicit fiber bundle numerical model with spatially correlated mechanical strength and two load redistribution rules, we constructed a range of mechanical failure scenarios and associated failure events (mapped into acoustic emission) in space and time. Analysis considering hypothetical arrays of sensors and consideration of signal attenuation demonstrate the potential of the codetection principles even for insensitive sensors to provide early warning for imminent global failure.

  18. Evaluation of Acoustic Emission NDE of Kevlar Composite Over Wrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Madaras, Eric I.

    2008-01-01

    Pressurization and failure tests of small Kevlar/epoxy COPV bottles were conducted during 2006 and 2007 by Texas Research Institute Austin, Inc., at TRI facilities. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. Results of some of the tests indicate a possibility that AE can be used to track the stress-rupture degradation of COPV vessels.

  19. Multipoint dynamically reconfigure adaptive distributed fiber optic acoustic emission sensor (FAESense) system for condition based maintenance

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar

    2010-09-01

    This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.

  20. Initial Evaluation of Acoustic Emission SHM of PRSEUS Multi-bay Box Tests

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Madaras, Eric I.

    2016-01-01

    A series of tests of the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) HWB Multi-Bay Test Article were conducted during the second quarter of 2015 at NASA Langley Research Center (LaRC) in the Combined Loads Test facility (COLTS). This report documents the Acoustic Emission (AE) data collected during those tests along with an initial analysis of the data. A more detailed analysis will be presented in future publications.

  1. Acoustic Emission Monitoring of the DC-XA Composite Liquid Hydrogen Tank During Structural Testing

    NASA Technical Reports Server (NTRS)

    Wilkerson, C.

    1996-01-01

    The results of acoustic emission (AE) monitoring of the DC-XA composite liquid hydrogen tank are presented in this report. The tank was subjected to pressurization, tensile, and compressive loads at ambient temperatures and also while full of liquid nitrogen. The tank was also pressurized with liquid hydrogen. AE was used to monitor the tank for signs of structural defects developing during the test.

  2. New approaches for automatic threedimensional source localization of acoustic emissions--Applications to concrete specimens.

    PubMed

    Kurz, Jochen H

    2015-12-01

    The task of locating a source in space by measuring travel time differences of elastic or electromagnetic waves from the source to several sensors is evident in varying fields. The new concepts of automatic acoustic emission localization presented in this article are based on developments from geodesy and seismology. A detailed description of source location determination in space is given with the focus on acoustic emission data from concrete specimens. Direct and iterative solvers are compared. A concept based on direct solvers from geodesy extended by a statistical approach is described which allows a stable source location determination even for partly erroneous onset times. The developed approach is validated with acoustic emission data from a large specimen leading to travel paths up to 1m and therefore to noisy data with errors in the determined onsets. The adaption of the algorithms from geodesy to the localization procedure of sources of elastic waves offers new possibilities concerning stability, automation and performance of localization results. Fracture processes can be assessed more accurately.

  3. New approaches for automatic threedimensional source localization of acoustic emissions--Applications to concrete specimens.

    PubMed

    Kurz, Jochen H

    2015-12-01

    The task of locating a source in space by measuring travel time differences of elastic or electromagnetic waves from the source to several sensors is evident in varying fields. The new concepts of automatic acoustic emission localization presented in this article are based on developments from geodesy and seismology. A detailed description of source location determination in space is given with the focus on acoustic emission data from concrete specimens. Direct and iterative solvers are compared. A concept based on direct solvers from geodesy extended by a statistical approach is described which allows a stable source location determination even for partly erroneous onset times. The developed approach is validated with acoustic emission data from a large specimen leading to travel paths up to 1m and therefore to noisy data with errors in the determined onsets. The adaption of the algorithms from geodesy to the localization procedure of sources of elastic waves offers new possibilities concerning stability, automation and performance of localization results. Fracture processes can be assessed more accurately. PMID:26233938

  4. Nonlinear ball chain waveguides for acoustic emission and ultrasound sensing of ablation

    NASA Astrophysics Data System (ADS)

    Pearson, Stephen H.; Huston, Dryver

    2014-03-01

    Harsh-environment acoustic emission and ultrasonic wave sensing applications often benefit from placing the sensor in a remote and more benign physical location, using waveguides to transmit elastic waves between the structural location under test and the transducer. Waveguides are normally designed with linear properties to have high fidelity over broad frequency ranges to minimize distortion - often difficult to achieve in practice. This paper reports on an examination of using nonlinear ball chain waveguides for the transmission of acoustic emission and ultrasonic waves for the monitoring of thermal protection systems undergoing severe heat loading, such as ablation and similar processes. Experiments test the nonlinear propagation of solitary, harmonic and mixed harmonic elastic waves through a copper tube filled with steel and elastomer balls. Mechanical pulses of varying time widths and amplitudes are launched into one end of the ball chain waveguide and observed at the other end in both time and frequency domains. A nonlinear mechanical model describes the motion of the ball chains. Based on the results of these studies it is anticipated that a nonlinear waveguide will be designed, built and tested as a possible replacement for the high-fidelity waveguides presently being using in an Inductively Coupled Plasma Torch facility for high heat flux thermal protection system testing. The design is intended to accentuate acoustic emission signals of interest, while suppressing other forms elastic wave noise.

  5. MEASUREMENTS OF ABSORPTION, EMISSIVITY REDUCTION, AND LOCAL SUPPRESSION OF SOLAR ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Chou, D.-Y.; Liang, Z.-C.; Yang, M.-H.; Zhao Hui; Sun, M.-T.

    2009-05-01

    The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions. We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3 {+-} 1.3%, emissivity reduction 8.2 {+-} 1.4%, and local suppression 68.5 {+-} 1.5%, for a wave packet corresponding to a phase velocity of 6.98 x 10{sup -5} rad s{sup -1}.

  6. Acoustic Emission and Guided Wave Monitoring of Fatigue Crack Growth on a Full Pipe Specimen

    SciTech Connect

    Meyer, Ryan M.; Cumblidge, Stephen E.; Ramuhalli, Pradeep; Watson, Bruce E.; Doctor, Steven R.; Bond, Leonard J.

    2011-05-06

    Continuous on-line monitoring of active and passive systems, structures and components in nuclear power plants will be critical to extending the lifetimes of nuclear power plants in the US beyond 60 years. Acoustic emission and guided ultrasonic waves are two tools for continuously monitoring passive systems, structures and components within nuclear power plants and are the focus of this study. These tools are used to monitor fatigue damage induced in a SA 312 TP304 stainless steel pipe specimen. The results of acoustic emission monitoring indicate that crack propagation signals were not directly detected. However, acoustic emission monitoring exposed crack formation prior to visual confirmation through the detection of signals caused by crack closure friction. The results of guided ultrasonic wave monitoring indicate that this technology is sensitive to the presence and size of cracks. The sensitivity and complexity of GUW signals is observed to vary with respect to signal frequency and path traveled by the guided ultrasonic wave relative to the crack orientation.

  7. Delayed Alumina Scale Spallation on Rene'n5+y: Moisture Effects and Acoustic Emission

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Morscher, Gregory N.

    2001-01-01

    The single crystal superalloy Rene'N5 (with or without Y-doping and hydrogen annealing) was cyclically oxidized at 1150 C for 1000 hours. After considerable scale growth (>= 500 hours), even the adherent alumina scales formed on Y-doped samples exhibited delayed interfacial spallation during subsequent water immersion tests, performed up to one year after oxidation. Spallation was characterized by weight loss, the amount of spalled area, and acoustic emission response. Hydrogen annealing (prior to oxidation) reduced spallation both before and after immersion, but without measurably reducing the bulk sulfur content of the Y-doped alloys. The duration and frequency of sequential, co-located acoustic emission events implied an interfacial crack growth rate at least 10(exp -3) m/s, but possibly higher than 10(exp 2) m/s. This is much greater than classic moisture-assisted slow crack growth rates in bulk alumina (10(exp -6) to 10(exp -3) m/s), which may still have occurred undetected by acoustic emission. An alternative failure sequence is proposed: an incubation process for preferential moisture ingress leads to a local decrease in interfacial toughness, thus allowing fast fracture driven by stored strain energy.

  8. [study of acoustic trauma in hunters using otoacoustic emission recording].

    PubMed

    Santaolalla Montoya, F; Martínez Ibargüen, A; Sánchez del Rey, A

    1998-03-01

    Transitory otoacoustic emissions (TOAE) were analyzed in 48 ears of male hunters (age range: 30-45 years: mean age: 37 years) and in a population with normal hearing. All the ears had TOAE. The incidence of TOAE for the 1, 2, 3, 4, 5 and 6 KHz frequential bands was significantly lower in hunters than in the normal subjects (p < 0.001). The mean amplitude of TOAE was significantly lower in hunters (9.2 dB SPL) than in the control group (16 dB SPL; p < 0.001). The amplitude of the TOAE for the frequencies 1, 2, 3, 4, 5 and 6 KHz was significantly lower in hunters than in controls (p < 0.001). PMID:9650309

  9. Correlation of acoustic emissions associated with effects from diagnostic and therapeutic ultrasound

    NASA Astrophysics Data System (ADS)

    Samuel, Stanley

    2007-12-01

    This research has investigated the correlation of acoustic emissions with associated contrast-mediated ultrasound bio-effects. The hypothesis that motivated this study was that during exposure with ultrasound, the cavitation occurring in tissue emits acoustical signals, which if correlated with specific bio-effects, could provide a way to monitor the potential bio-effects of exposure. A good bio-effects indicator would find immediate use in research on drug and gene delivery, and could have clinical application in avoiding bio-effects in diagnosis. Studies conducted to test the hypothesis involved investigation of (i) the influence of pulse repetition frequency (PRF) and number of exposures on cell damage, (ii) the effect of total exposure duration and pulse-to-pulse bubble distribution on acoustic emissions and corresponding cell damage, and (iii) the translation of in vitro effects to an in situ environment. Exposures were primarily conducted at a peak rarefactional pressure of 2 MPa, 2.25 MHz insonating frequency and pulse length of 46 cycles. PRFs of 1-, 10-, 100-, 500-, and 1000 Hz were compared. High speed photography (2000 fps) was employed for the investigation of pulse-to-pulse bubble distribution while intravital microscopy was used for in situ studies. A strong correlation was observed between acoustic emissions and bio-effects with the availability of bubbles of resonant size serving as a key link between the two. It was observed that total exposure duration may play an important role in cell damage. Damage increased with increasing total exposure duration from 0 ms to 100 ms with a plateau at above 100 ms. These results were consistent for all studies. There is, therefore, an implication that manipulating these parameters may allow for measurement and control of the extent of bioeffects. Moreover, the correlation of acoustic emission and extravasation observed in in situ studies reveals that cumulative function of the relative integrated power spectrum

  10. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.

    PubMed

    Zhong, P; Cioanta, I; Cocks, F H; Preminger, G M

    1997-05-01

    The inertial cavitation and associated acoustic emission generated during electrohydraulic shock wave lithotripsy were studied using high-speed photography and acoustic pressure measurements. The dynamics of cavitation bubble clusters, induced in vitro by an experimental laboratory lithotripter, were recorded using a high-speed rotating drum camera at 20,000 frames/s. The acoustic emission, generated by the rapid initial expansion and subsequent violent collapse of the cavitation bubbles, was measured simultaneously using a 1-MHz focused hydrophone, The expansion duration of the cavitation bubble cluster was found to correlate closely with the time delay between the first two groups of pressure spikes in the acoustic emission signal. This correlation provides an essential physical basis to assess the inertial cavitation produced by a clinical Dornier HM-3 shock wave lithotripter, both in water and in renal parenchyma of a swine model. In the clinical output voltage range (16-24 kV), the expansion duration of the primary cavitation bubble cluster generated by the HM-3 lithotripter in water increases from 158 to 254 microseconds, whereas the corresponding values in renal parenchyma are much smaller and remain almost unchanged (from 71 to 72 microseconds). In contrast, subsequent oscillation of the bubble following its primary collapse is significantly prolonged (from 158-235 microseconds in water to 1364-1373 microseconds in renal parenchyma). These distinctive differences between lithotripsy-induced inertial cavitation in vitro and that in vivo are presumably due to the constraining effect of renal tissue on bubble expansion. PMID:9165740

  11. Characteristics of acoustic emissions from fluid front displacement in porous media

    NASA Astrophysics Data System (ADS)

    Möbius, F.; Canone, D.; Or, D.

    2009-12-01

    Fluid displacement in porous media is of interest for environmental, petroleum and chemical engineering. Percolation theory and pore-scale models are useful in describing filling and emptying of pores and throats but fail to capture characteristics of the fast interfacial jumps and reconfigurations occurring during fluid displacement processes such as imbibitions and drainage. Energy release caused by these rapid events generates acoustic waves which propagate through the porous medium and can be detected at its surface using acoustic emission (AE) sensors. Through a series of experiment displacing various fluids through Hele-Shaw cells filled with glass beads of different sizes we investigate correlation between acoustic emission signals, fluid and pore space properties, and energy dissipation. Acoustic emission signals were quantified by considering number of hits (events) and amplitudes. The exponent of power law relating these characteristic values varied with the displacement process and pore size. The number of AE events and amplitudes dropped with decreasing liquid surface tension for displacement within the same porous medium (water, ethanol, silicon oil). Similar trends were observed with increasing liquid viscosity, only a few hits are recorded for silicon oil with 10 mPas. The results are interpreted considering air or liquid entry pressures into the pore spaces, with increasing pressure entries for small pores and liquid with higher surface tension. The viscosity plays an important role in restraining AE-producing jump events and dumping interfacial oscillations as could be shown theoretically for simple capillaries. The study establishes direct relationships between measured AE fluid and pore properties and offer potential for quantifying energy dissipation during fluid displacement in porous media as well as other transient flow characteristics using non invasive AE signals.

  12. Acoustic emission and magnification of atomic lines resolution for laser breakdown of salt water in ultrasound field

    SciTech Connect

    Bulanov, Alexey V.; Nagorny, Ivan G.

    2015-10-28

    Researches of the acoustic effects accompanying optical breakdown in a water, generated by the focused laser radiation with power ultrasound have been carried out. Experiments were performed by using 532 nm pulses from Brilliant B Nd:YAG laser. Acoustic radiation was produced by acoustic focusing systems in the form hemisphere and ring by various resonance frequencies of 10.7 kHz and 60 kHz. The experimental results are obtained, that show the sharply strengthens effects of acoustic emission from a breakdown zone by the joint influence of a laser and ultrasonic irradiation. Essentially various thresholds of breakdown and character of acoustic emission in fresh and sea water are found out. The experimental result is established, testifying that acoustic emission of optical breakdown of sea water at presence and at absence of ultrasound essentially exceeds acoustic emission in fresh water. Atomic lines of some chemical elements like a Sodium, Magnesium and so on were investigated for laser breakdown of water with ultrasound field. The effect of magnification of this lines resolution for salt water in ultrasound field was obtained.

  13. Secondary emission and acoustic-phonon scattering induced by strong magnetic fields in multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Sapega, V. F.; Belitsky, V. I.; Ruf, T.; Fuchs, H. D.; Cardona, M.; Ploog, K.

    1992-12-01

    A strong increase of low-frequency Raman scattering has been observed in GaAs/AlxGa1-xAs multiple quantum wells in magnetic fields up to 14 T. The spectra, consisting of background scattering, folded acoustic phonons, and additional features, show resonant behavior with respect to the laser frequency and the strength of the magnetic field. The broad background, usually related to geminate recombination, has its origin in a continuum of Raman processes with the emission of longitudinal-acoustic phonons where crystal momentum is not conserved. Such processes can become dominant when interface fluctuations allow for resonant scattering in individual quantum wells only. Thus phonons with all possible energies contribute to the background scattering efficiency. The observed folded longitudinal-acoustic phonons are in good agreement with calculated frequencies. Additional features, detected in all samples measured, are attributed to local vibrational modes tied to the gaps at the folded Brillouin-zone center and edge. Other peculiarities observed correspond to modes localized at crossings of the folded longitudinal- and transverse-acoustic branches inside the Brillouin zone. The appearance of these local modes is attributed to fluctuations in the well and barrier thicknesses of the quantum wells.

  14. High-temperature acoustic emission sensing tests using a yttrium calcium oxyborate sensor.

    PubMed

    Johnson, Joseph A; Kim, Kyungrim; Zhang, Shujun; Wu, Di; Jiang, Xiaoning

    2014-05-01

    Piezoelectric materials have been broadly utilized in acoustic emission sensors, but are often hindered by the loss of piezoelectric properties at temperatures in the 500°C to 700°C range or higher. In this paper, a piezoelectric acoustic emission sensor was designed and fabricated using yttrium calcium oxyborate (YCOB) single crystals, followed by Hsu-Nielsen tests for high-temperature (>700°C) applications. The sensitivity of the YCOB sensor was found to have minimal degradation with increasing temperature up to 1000°C. During Hsu-Nielsen tests with a steel bar, this YCOB acoustic sensor showed the ability to detect zero-order symmetric and antisymmetric modes at 30 and 120 kHz, respectively, as well as distinguish a first-order antisymmetric mode at 240 kHz at elevated temperatures up to 1000°C. The frequency characteristics of the signal were verified using a finite-element model and wavelet transformation analysis.

  15. Extruded Bread Classification on the Basis of Acoustic Emission Signal With Application of Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata

    2015-04-01

    The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.

  16. Evidence of high-frequency acoustic emissions from the white-beaked dolphin (Lagenorhynchus albirostris).

    PubMed

    Mitson, R B; Morris, R J

    1988-02-01

    Recordings of the signals from a school of white-beaked dolphins show that the frequency of their acoustic emissions extends to at least 305 kHz. These signals were detected by a sector scanning sonar used as a passive listening device of high bearing and time resolution. The records contain three types of signal, one of high intensity, one of a variable high repetition rate, and another showing a time-varying effect. Acoustic signals radiated by dolphins have been recorded and studied over a long period of time by many investigators. The purpose of this letter is to report evidence that acoustic emissions from white-beaked dolphins have significant energy at frequencies around 305 kHz, about one octave higher than previously observed. The observations discussed here were made aboard the fisheries research vessel CLIONE in the Wellbank flat area of the southern North Sea on 13 June 1970 between 1040 and 1110 h. When the dolphin signals were observed, the transmitter of the sector-scanning sonar in use was turned off, and the system was utilized as a passive listening device of high bearing and time resolution.

  17. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  18. Acoustic emission: Towards a real-time diagnosis technique for Proton Exchange Membrane Fuel Cell operation

    NASA Astrophysics Data System (ADS)

    Legros, B.; Thivel, P.-X.; Bultel, Y.; Boinet, M.; Nogueira, R. P.

    This paper deals with one of the needs for PEMFC to be economically reliable: diagnosis tool for water management. This issue is actually a key parameter for both performance and durability improvement. Acoustic emission (AE) technique was employed to survey PEM single cell under various operating conditions. AE events coming from different sources have thus been identified, classified and finally ascribed to different phenomena induced by MEA water uptake and/or biphasic flow in the gas channel thanks to a statistical post-treatment of the acoustic data. Results, although qualitative, seems trusty enough to unravel hidden correlations between AE hits and physicochemical phenomena taking place during the cell operation and open up the way for an innovative and non-invasive online diagnosis tool.

  19. Separating medial olivocochlear from acoustic reflex effects on transient evoked otoacoustic emissions in unanesthetized mice

    NASA Astrophysics Data System (ADS)

    Xu, Yingyue; Cheatham, Mary Ann; Siegel, Jonathan

    2015-12-01

    Descending neural pathways in the mammalian auditory system are believed to modulate the function of the peripheral auditory system [3, 8, 10]. These pathways include the medial olivocochlear (MOC) efferent innervation to the cochlear outer hair cells (OHCs) and the acoustic reflex pathways mediating middle ear muscle (MEM) contractions. The MOC effects can be monitored noninvasively using otoacoustic emissions (OAEs) [5, 6], which are acoustic byproducts of cochlear function [7]. In this study, we applied a sensitive method to determine when and to what degree contralateral MEM suppression contaminated MOC efferent effects on TEOAEs in unanesthetized mice. The lowest contralateral broadband noise evoking MEM contractions varied across animals. Examples of potential MOC-mediated TEOAE suppression with contralateral noise below MEM contraction thresholds were seen, but this behavior did not occur in the majority of cases.

  20. Acoustic monitoring of gas emissions from the seafloor. Part I: quantifying the volumetric flow of bubbles

    NASA Astrophysics Data System (ADS)

    Leblond, Isabelle; Scalabrin, Carla; Berger, Laurent

    2014-09-01

    Three decades of continuous ocean exploration have led us to identify subsurface fluid related processes as a key phenomenon in marine earth science research. The number of seep areas located on the seafloor has been constantly increasing with the use of multi-scale imagery techniques. Due to recent advances in transducer technology and computer processing, multibeam echosounders are now commonly used to detect submarine gas seeps escaping from the seafloor into the water column. A growing number of en- route surveys shows that sites of gas emissions escaping from the seafloor are much more numerous than previously thought. Estimating the temporal variability of the gas flow rate and volumes escaping from the seafloor has thus become a challenge of relevant interest which could be addressed by sea-floor continuous acoustic monitoring. Here, we investigate the feasibility of estimating the volumetric flow rates of gas emissions from horizontal backscattered acoustic signals. Different models based on the acoustic backscattering theory of bubbles are presented. The forward volume backscattering strength and the inversion volumetric flow rate solutions were validated with acoustic measurements from artificial gas flow rates generated in controlled sea-water tank experiments. A sensitivity analysis was carried out to investigate the behavior of the 120-kHz forward solution with respect to model input parameters (horizontal distance between transducer and bubble stream, bubble size distribution and ascent rate). The most sensitive parameter was found to be the distance of the bubble stream which can affect the volume backscattering strength by 20 dB within the horizontal range of 0-200 m. Results were used to derive the detection probability of a bubble stream for a given volume backscattering strength threshold according to different bubble flow rates and horizontal distance.

  1. Granular Shear Zone Formation: Acoustic Emission Measurements and Fiber-bundle Models

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Or, Dani

    2013-04-01

    We couple the acoustic emissions method with conceptual models of granular material behavior for investigation of granular shear zone formation and to assess eminence of landslide hazard. When granular materials are mechanically loaded or sheared, they tend to produce discrete events of force network restructuring, and frictional interaction at grain contacts. Such abrupt perturbations within the granular lattice release part of the elastic energy stored in the strained material. Elastic waves generated by such events can be measured as acoustic emissions (AE) and may be used as surrogates for intermittent structural transitions associated with shear zone formation. To experimentally investigate the connection between granular shearing and acoustic signals we performed an array of strain-controlled shear-frame tests using glass beads. AE were measured with two different systems operating at two frequency ranges. High temporal resolution measurements of the shear stresses revealed the presence of small fluctuations typically associated with low-frequency (< 20 kHz) acoustic bursts. Shear stress jumps and linked acoustic signals give account of discrete events of grain network rearrangements and obey characteristic exponential frequency-size distributions. We found that statistical features of force jumps and AE events depend on mechanical boundary conditions and evolve during the straining process. Activity characteristics of high-frequency (> 30 kHz) AE events is linked to friction between grains. To interpret failure associated AE signals, we adapted a conceptual fiber-bundle model (FBM) that describes some of the salient statistical features of failure and associated energy production. Using FBMs for the abrupt mechanical response of the granular medium and an associated grain and force chain AE generation model provides us with a full description of the mechanical-acoustical granular shearing process. Highly resolved AE may serve as a diagnostic tool not only

  2. Phenomenological Description of Acoustic Emission Processes Occurring During High-Pressure Sand Compaction

    NASA Astrophysics Data System (ADS)

    Delgado-Martín, Jordi; Muñoz-Ibáñez, Andrea; Grande-García, Elisa; Rodríguez-Cedrún, Borja

    2016-04-01

    Compaction, pore collapse and grain crushing have a significant impact over the hydrodynamic properties of sand formations. The assessment of the crushing stress threshold constitutes valuable information in order to assess the behavior of these formations provided that it can be conveniently identified. Because of the inherent complexities of the direct observation of sand crushing, different authors have developed several indirect methods, being acoustic emission a promising one. However, previous researches have evidenced that there are different processes triggering acoustic emissions which need to be carefully accounted. Worth mentioning among them are grain bearing, grain to container friction, intergranular friction and crushing. The work presented here addresses this purpose. A broadband acoustic emission sensor (PA MicroHF200) connected to a high-speed data acquisition system and control software (AeWIN for PCI1 2.10) has been attached to a steel ram and used to monitor the different processes occurring during the oedometric compaction of uniform quartz sand up to an axial load of about 110 MPa and constant temperature. Load was stepwise applied using a servocontrolled hydraulic press acting at a constant load rate. Axial strain was simultaneously measured with the aid of a LDT device. Counts, energy, event duration, rise time and amplitude were recorded along each experiment and after completion selected waveforms were transformed from the time to the frequency domain via FFT transform. Additional simplified tests were performed in order to isolate the frequency characteristics of the dominant processes occurring during sand compaction. Our results show that, from simple tests, it is possible to determine process-dependent frequency components. When considering more complex experiments, many of the studied processes overlap but it is still possible to identify when a particular one dominates as well as the likely onset of crushing.

  3. Distance-domain based localization techniques for acoustic emission sources: a comparative study

    NASA Astrophysics Data System (ADS)

    Grabowski, Krzysztof; Gawronski, Mateusz; Nakatani, Hayato; Packo, Pawel; Baran, Ireneusz; Spychalski, Wojciech; Staszewski, Wieslaw; Uhl, Tadeusz; Kundu, Tribikram

    2015-04-01

    Acoustic Emission phenomenon is of great importance for analyzing and monitoring health status of critical structural components. In acoustic emission, elastic waves generated by sources propagate through the structure and are acquired by networks of sensors. Ability to accurately locate the event strongly depends on the type of medium (e.g. geometrical features) and material properties, that result in wave signals distortion. These effects manifest themselves particularly in plate structures due to intrinsic dispersive nature of Lamb waves. In this paper two techniques for acoustic emission source localization in elastic plates are compared: one based on a time-domain distance transform and the second one is a two-step hybrid technique. A time-distance domain transform approach, transforms the time-domain waveforms into the distance domain by using wavenumber-frequency mapping. The transform reconstructs the source signal removing distortions resulting from dispersion effects. The method requires input of approximate material properties and geometrical features of the structure that are relatively easy to estimate prior to measurement. Hence, the method is of high practical interest. Subsequently, a two-step hybrid technique, which does not require apriori knowledge of material parameters, is employed. The method requires a setup of two predefined clusters of three sensors in each. The Lamb wave source is localized from the intersection point of the predicted wave propagation directions for the two clusters. The second step of the two-step hybrid technique improves the prediction by minimizing an objective function. The two methods are compared for analytic, simulated and experimental signals.

  4. Quantitative evaluation of rejuvenators to restore embrittlement temperatures in oxidized asphalt mixtures using acoustic emission

    NASA Astrophysics Data System (ADS)

    Sun, Zhe; Farace, Nicholas; Arnold, Jacob; Behnia, Behzad; Buttlar, William G.; Reis, Henrique

    2015-03-01

    Towards developing a method capable to assess the efficiency of rejuvenators to restore embrittlement temperatures of oxidized asphalt binders towards their original, i.e., unaged values, three gyratory compacted specimens were manufactured with mixtures oven-aged for 36 hours at 135 °C. In addition, one gyratory compacted specimen manufactured using a short-term oven-aged mixture for two hours at 155 °C was used for control to simulate aging during plant production. Each of these four gyratory compacted specimens was then cut into two cylindrical specimen 5 cm thick for a total of six 36-hour oven-aged specimens and two short term aging specimens. Two specimens aged for 36 hours and the two short-term specimens were then tested using an acoustic emission approach to obtain base acoustic emission response of short-term and severely-aged specimens. The remaining four specimens oven-aged for 36 hours were then treated by spreading their top surface with rejuvenator in the amount of 10% of the binder by weight. These four specimens were then tested using the same acoustic emission approach after two, four, six, and eight weeks of dwell time. It was observed that the embrittlement temperatures of the short-term aged and severely oven-aged specimens were -25 °C and - 15 °C, respectively. It was also observed that after four weeks of dwell time, the rejuvenator-treated samples had recuperated the original embrittlement temperatures. In addition, it was also observed that the rejuvenator kept acting upon the binder after four weeks of dwell time; at eight weeks of dwell time, the specimens had an embrittlement temperature about one grade cooler than the embrittlement temperature corresponding to the short-term aged specimen.

  5. Monitoring of Temperature Fatigue Failure Mechanism for Polyvinyl Alcohol Fiber Concrete Using Acoustic Emission Sensors

    PubMed Central

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed. PMID:23012555

  6. Study of fracture mechanisms of short fiber reinforced AS composite by acoustic emission technique

    SciTech Connect

    Kida, Sotoaki; Suzuki, Megumu

    1995-11-01

    The fracture mechanisms of short fiber reinforced AS composites are studied by acoustic emission technique for examining the effects of fiber contents. The loads P{sub b} and P{sub c} which the damage mechanisms change are obtained at the inflection points of the total AE energy curve the energy gradient method. The damages are generated by fiber breaking at the load point of P{sub b} and P{sub c} in B material, and by the fiber breaking and the debonding between resin and fiber at the load points of P{sub b} and P{sub c} in C material.

  7. Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system

    NASA Astrophysics Data System (ADS)

    Weiß, M.; Kapfinger, S.; Reichert, T.; Finley, J. J.; Wixforth, A.; Kaniber, M.; Krenner, H. J.

    2016-07-01

    A coupled quantum dot-nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a fSAW ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g(2). All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g(2), demonstrating high fidelity regulation of the stream of single photons emitted by the system.

  8. Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    PubMed Central

    Aggelis, D. G.; Dassios, K. G.; Kordatos, E. Z.; Matikas, T. E.

    2013-01-01

    Barium osumilite (BMAS) ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE) sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism. PMID:24381524

  9. An information processing method for acoustic emission signal inspired from musical staff

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wu, Chunxian

    2016-01-01

    This study proposes a musical-staff-inspired signal processing method for standard description expressions for discrete signals and describing the integrated characteristics of acoustic emission (AE) signals. The method maps various AE signals with complex environments into the normalized musical space. Four new indexes are proposed to comprehensively describe the signal. Several key features, such as contour, amplitude, and signal changing rate, are quantitatively expressed in a normalized musical space. The processed information requires only a small storage space to maintain high fidelity. The method is illustrated by using experiments on sandstones and computed tomography (CT) scanning to determine its validity for AE signal processing.

  10. Amplification and directional emission of surface acoustic waves by a two-dimensional electron gas

    SciTech Connect

    Shao, Lei; Pipe, Kevin P.

    2015-01-12

    Amplification of surface acoustic waves (SAWs) by electron drift in a two-dimensional electron gas (2DEG) is analyzed analytically and confirmed experimentally. Calculations suggest that peak power gain per SAW radian occurs at a more practical carrier density for a 2DEG than for a bulk material. It is also shown that SAW emission with tunable directionality can be achieved by modulating a 2DEG's carrier density (to effect SAW generation) in the presence of an applied DC field that amplifies SAWs propagating in a particular direction while attenuating those propagating in the opposite direction.

  11. Evaluation of Acoustic Emission SHM of PRSEUS Composite Pressure Cube Tests

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Madaras, Eric I.

    2013-01-01

    A series of tests of the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) pressure cube were conducted during third quarter 2011 at NASA Langley Research Center (LaRC) in the Combined Loads Test facility (COLTS). This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. The AE signals of the later tests are consistent with the final failure progression through two of the pressure cube panels. Calibration tests and damage precursor AE indications, from preliminary checkout pressurizations, indicated areas of concern that eventually failed. Hence those tests have potential for vehicle health monitoring.

  12. Characterization of delamination and transverse cracking in graphite/epoxy laminates by acoustic emission

    NASA Technical Reports Server (NTRS)

    Garg, A.; Ishaei, O.

    1983-01-01

    Efforts to characterize and differentiate between two major failure processes in graphite/epoxy composites - transverse cracking and Mode I delamination are described. Representative laminates were tested in uniaxial tension and flexure. The failure processes were monitored and identified by acoustic emission (AE). The effect of moisture on AE was also investigated. Each damage process was found to have a distinctive AE output that is significantly affected by moisture conditions. It is concluded that AE can serve as a useful tool for detecting and identifying failure modes in composite structures in laboratory and in service environments.

  13. Acoustic Emission as a Tool for Exploring Deformation Mechanisms in Magnesium and Its Alloys In Situ

    NASA Astrophysics Data System (ADS)

    Vinogradov, Alexei; Máthis, Kristian

    2016-06-01

    Structural performance of magnesium alloys depends strongly on specific deformation mechanisms operating during mechanical loading. Therefore, in situ monitoring of the acting mechanisms is a key to performance tailoring. We review the capacity of the advanced acoustic emission (AE) technique to understand the interplay between two primary deformation mechanisms—dislocation slip and twinning—in real time scale. Details of relative contributions of dislocation slip and deformation twinning to the mechanical response of pure Mg and Mg-Al alloy are discussed in view of AE results obtained with the aid of recently proposed spectral and signal categorization algorithms in conjunction with with neutron diffraction data.

  14. Characterization of delamination and transverse cracking in graphite/epoxy laminates by acoustic emission

    NASA Technical Reports Server (NTRS)

    Garg, A.; Ishai, O.

    1983-01-01

    Efforts to characterize and differentiate between two major failure processes in graphite/epoxy composites - transverse cracking and Mode I delamination - are described. Representative laminates were tested in uniaxial tension and flexure. The failure processes were monitored and identified by acoustic emission (AE). The effect of moisture on AE was also investigated. Each damage process was found to have a distinctive AE output that is significantly affected by moisture conditions. It is concluded that AE can serve as a useful tool for detecting and identifying failure modes in composite structures in laboratory and in service environments.

  15. Detection of acoustic emission from composite laminates using PVF2 transducers

    NASA Technical Reports Server (NTRS)

    Stiffler, R.; Henneke, E. G., II; Herakovich, C. T.

    1983-01-01

    Polyvinylidene fluoride (PVF2), a semicrystalline polymer exhibiting piezoelectricity, is presently used as a sensing transducer in acoustic emission (AE) monitoring of several different composite laminate materials in order to obtain both quasi-static and fatigue loading results. AE signals obtained from PVF2 transducers are compared with those obtained by standard AE sensors. It is noted that PVF2 transducers may, through the application of spectral signal analysis, be able to distinguish between two distinct failure modes which have been observed in two composite laminates of the same material, but employing different lamina stacking sequences.

  16. Mechanical degradation of cross-ply laminates monitored by acoustic emission

    NASA Astrophysics Data System (ADS)

    Paipetis, A.; Xyrafa, M.; Barkoula, N. M.; Matikas, T. E.; Aggelis, D. G.

    2011-04-01

    This study deals with the investigation of cross ply composites failure by acoustic emission (AE). Broadband AE sensors monitor the different sources of failure in coupons of this material during a tensile loading-unloading test. The cumulative number of AE activity, and other qualitative indices based on the shape of the waves, were well correlated to the sustained load. AE parameters indicate the shift of failure mechanisms within the composite as the load increases. The ultimate goal is a methodology based on NDT techniques for real time characterization of the degradation and identification of the fracture stage of advanced composite materials.

  17. Damage Source Identification of Reinforced Concrete Structure Using Acoustic Emission Technique

    PubMed Central

    Panjsetooni, Alireza; Bunnori, Norazura Muhamad; Vakili, Amir Hossein

    2013-01-01

    Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures. PMID:23997681

  18. Integrated acoustic emission/vibration sensor for detecting damage in aircraft drive train components

    NASA Astrophysics Data System (ADS)

    Godínez-Azcuaga, Valery F.; Ozevin, Didem; Finlayson, Richard D.; Anastasopoulos, Athanasios; Tsimogiannis, Apostolos

    2007-04-01

    Diaphragm-type couplings are high misalignment torque and speed transfer components used in aircrafts. Crack development in such couplings, or in the drive train in general, can lead to component failure that can bring down an aircraft. Real time detection of crack formation and growth is important to prevent such catastrophic failures. However, there is no single Nondestructive Monitoring method available that is capable of assessing the early stages of crack growth in such components. While vibration based damage identification techniques are used, they cannot detect cracks until they reach a considerable size, which makes detection of the onset of cracking extremely difficult. Acoustic Emission (AE) can detect and monitor early stage crack growth, however excessive background noise can mask acoustic emissions produced by crack initiation. Fusion of the two mentioned techniques can increase the accuracy of measurement and minimize false alarms. However, a monitoring system combining both techniques could prove too large and heavy for the already restricted space available in aircrafts. In the present work, we will present a newly developed integrated Acoustic Emission/Vibration (AE/VIB) combined sensor which can operate in the temperature range of -55°F to 257°F and in high EMI environment. This robust AE/VIB sensor has a frequency range of 5 Hz-2 kHz for the vibration component and a range of 200-400 kHz for the acoustic emission component. The sensor weight is comparable to accelerometers currently used in flying aircraft. Traditional signal processing approaches are not effective due to high signal attenuation and strong background noise conditions, commonly found in aircraft drive train systems. As an alternative, we will introduce a new Supervised Pattern Recognition (SPR) methodology that allows for simultaneous processing of the signals detected by the AE/VIB sensor and their classification in near-real time, even in these adverse conditions. Finally, we

  19. Time reverse modeling of acoustic emissions in a reinforced concrete beam.

    PubMed

    Kocur, Georg Karl; Saenger, Erik H; Grosse, Christian U; Vogel, Thomas

    2016-02-01

    The time reverse modeling (TRM) is applied for signal-based acoustic emission (AE) analysis of reinforced concrete (RC) specimens. TRM uses signals obtained from physical experiments as input. The signals are re-emitted numerically into a structure in a time-reversed manner, where the wavefronts interfere and appear as dominant concentrations of energy at the origin of the AE. The experimental and numerical results presented for selected AE signals confirm that TRM is capable of localizing AE activity in RC caused by concrete cracking. The accuracy of the TRM results is corroborated by three-dimensional crack distributions obtained from X-ray computed tomography images.

  20. Time reverse modeling of acoustic emissions in a reinforced concrete beam.

    PubMed

    Kocur, Georg Karl; Saenger, Erik H; Grosse, Christian U; Vogel, Thomas

    2016-02-01

    The time reverse modeling (TRM) is applied for signal-based acoustic emission (AE) analysis of reinforced concrete (RC) specimens. TRM uses signals obtained from physical experiments as input. The signals are re-emitted numerically into a structure in a time-reversed manner, where the wavefronts interfere and appear as dominant concentrations of energy at the origin of the AE. The experimental and numerical results presented for selected AE signals confirm that TRM is capable of localizing AE activity in RC caused by concrete cracking. The accuracy of the TRM results is corroborated by three-dimensional crack distributions obtained from X-ray computed tomography images. PMID:26518525

  1. Characteristics of acoustic emissions generated by drying front displacement in porous media

    NASA Astrophysics Data System (ADS)

    Grapsas, N. K.; Shokri, N.; Or, D.

    2011-12-01

    Fluid displacement fronts in porous media may produce acoustic emissions (AE) primarily due to rapid interfacial jumps at pore scale. We investigated acoustical signatures of propagating drying fronts in porous media during evaporation from Hele-Shaw cells packed with four types of sand, initially water saturated, with average particle sizes of 0.16 mm, 0.48 mm, 0.61 mm, and 1.76 mm. Evaporation rates were deduced from mass loss measured using digital balances. Evaporation experiments were conducted in an environmental chamber set to 35° C and 40% RH. An AE sensor was fixed to each glass column to monitor AEs associated with Haines jumps from a receding drying front. The characteristics of measured AEs such as amplitude, frequency, absolute energy, number of hits, and wave forms were recorded using an AE acquisition system. Preliminary results indicate a strong relationship between the cumulative number of AE hits and the columns' evaporative mass loss. Our results reveal that particle size significantly impacts the characteristics of the emitted acoustic waves. Larger particle sizes increase AE amplitudes, energies, and durations. Conversely, average hit frequency and the total number of hits are inversely related to particle size-- i.e. the smaller the particle size, the higher the frequency and total number of hits. These results suggest that AE techniques can be used to non-invasively characterize the texture of porous media and bring insights into their drying patterns.

  2. Noninvasive determination of in situ heating rate using KHz acoustic emissions and focused ultrasound

    PubMed Central

    Anand, Ajay; Kaczkowski, Peter J.

    2009-01-01

    For High Intensity Focused Ultrasound (HIFU) to be widely applicable in the clinic, robust methods of treatment planning, guidance and delivery need to be developed. These technologies would greatly benefit if patient specific tissue parameters could be provided as inputs so that the treatment planning and monitoring schemes are customized and tailored on a case by case basis. A noninvasive method of estimating the local in situ acoustic heating rate using the Heat Transfer Equation (HTE) and applying novel signal processing techniques is presented in this paper. The heating rate is obtained by experimentally measuring the time required to raise the temperature of the therapeutic focus from a baseline temperature to boiling (here assumed to be 100ºC for aqueous media) and then solving the heat transfer equation iteratively to find the heating rate that results in the onset of boiling. The onset of boiling is noninvasively detected by measuring the time instant of onset of acoustic emissions in the audible frequency range due to violent collapse of bubbles. In vitro experiments performed in a tissue mimicking alginate phantom and excised turkey breast muscle tissue demonstrate that the noninvasive estimates of heating rate are in good agreement with those obtained independently using established methods. The results show potential for the applicability of these techniques in therapy planning and monitoring for therapeutic dose optimization using real-time acoustic feedback. PMID:19699575

  3. Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission.

    PubMed

    Wasantha, P L P; Ranjith, P G; Shao, S S

    2014-01-01

    This paper investigates the mechanical behaviour and energy releasing characteristics of bedded-sandstone with bedding layers in different orientations, under uniaxial compression. Cylindrical sandstone specimens (54 mm diameter and 108 mm height) with bedding layers inclined at angles of 10°, 20°, 35°, 55°, and 83° to the minor principal stress direction, were produced to perform a series of Uniaxial Compressive Strength (UCS) tests. One of the two identical sample sets was fully-saturated with water before testing and the other set was tested under dry conditions. An acoustic emission system was employed in all the testing to monitor the acoustic energy release during the whole deformation process of specimens. From the test results, the critical joint orientation was observed as 55° for both dry and saturated samples and the peak-strength losses due to water were 15.56%, 20.06%, 13.5%, 13.2%, and 13.52% for the bedding orientations 10°, 20°, 35°, 55°, and 83°, respectively. The failure mechanisms for the specimens with bedding layers in 10°, 20° orientations showed splitting type failure, while the specimens with bedding layers in 55°, 83° orientations were failed by sliding along a weaker bedding layer. The failure mechanism for the specimens with bedding layers in 35° orientation showed a mixed failure mode of both splitting and sliding types. Analysis of the acoustic energy, captured from the acoustic emission detection system, revealed that the acoustic energy release is considerably higher in dry specimens than that of the saturated specimens at any bedding orientation. In addition, higher energy release was observed for specimens with bedding layers oriented in shallow angles (which were undergoing splitting type failures), whereas specimens with steeply oriented bedding layers (which were undergoing sliding type failures) showed a comparatively less energy release under both dry and saturated conditions. Moreover, a considerable amount of

  4. Energy monitoring and analysis during deformation of bedded-sandstone: use of acoustic emission.

    PubMed

    Wasantha, P L P; Ranjith, P G; Shao, S S

    2014-01-01

    This paper investigates the mechanical behaviour and energy releasing characteristics of bedded-sandstone with bedding layers in different orientations, under uniaxial compression. Cylindrical sandstone specimens (54 mm diameter and 108 mm height) with bedding layers inclined at angles of 10°, 20°, 35°, 55°, and 83° to the minor principal stress direction, were produced to perform a series of Uniaxial Compressive Strength (UCS) tests. One of the two identical sample sets was fully-saturated with water before testing and the other set was tested under dry conditions. An acoustic emission system was employed in all the testing to monitor the acoustic energy release during the whole deformation process of specimens. From the test results, the critical joint orientation was observed as 55° for both dry and saturated samples and the peak-strength losses due to water were 15.56%, 20.06%, 13.5%, 13.2%, and 13.52% for the bedding orientations 10°, 20°, 35°, 55°, and 83°, respectively. The failure mechanisms for the specimens with bedding layers in 10°, 20° orientations showed splitting type failure, while the specimens with bedding layers in 55°, 83° orientations were failed by sliding along a weaker bedding layer. The failure mechanism for the specimens with bedding layers in 35° orientation showed a mixed failure mode of both splitting and sliding types. Analysis of the acoustic energy, captured from the acoustic emission detection system, revealed that the acoustic energy release is considerably higher in dry specimens than that of the saturated specimens at any bedding orientation. In addition, higher energy release was observed for specimens with bedding layers oriented in shallow angles (which were undergoing splitting type failures), whereas specimens with steeply oriented bedding layers (which were undergoing sliding type failures) showed a comparatively less energy release under both dry and saturated conditions. Moreover, a considerable amount of

  5. An acoustic emission study of cutting bauxite refractory ceramics by abrasive water jets

    NASA Astrophysics Data System (ADS)

    Momber, A. W.; Mohan, R. S.; Kovacevic, R.

    1999-08-01

    This article discusses the material removal process in bauxite refractory ceramics cut by abrasive water jets. Several parameters of the process were changed during the experiments. The experiments were monitored online by the acoustic emission (AE) technique. It was found that AE signals are able to sense the material removal process as well as the machining performances very reliably. Unsteady material removal mode consisting of matrix removal and intergranular fracture was very well represented in the AE signals by an unsteady time dependent signal type characterized by burst emissions and a frequency domain signal associated with a twin-peak shape. The particular characteristics of the signal depend on the energy involved in the process.

  6. Acoustic Emission Weld Monitoring in the 2195 Aluminum-Lithium Alloy

    NASA Technical Reports Server (NTRS)

    Walker, James L.

    2005-01-01

    Due to its low density, the 2195 aluminum-lithium alloy was developed as a replacement for alloy 2219 in the Space Shuttle External Tank (ET). The external tank is the single largest component of the space shuttle system. It is 154 feet long and 27.6 feet in diameter, and serves as the structural backbone for the shuttle during launch, absorbing most of the 7 million plus pounds of thrust produced. The almost 4% decrease in density between the two materials provides an extra 7500 pounds of payload capacity necessary to put the International Space Station components into orbit. The ET is an all-welded structure; hence, the requirement is for up to five rewelds without hot cracking. Unfortunately, hot cracking during re-welding or repair operations was occurring and had to be dealt with before the new super lightweight tank could be used. Weld metal porosity formation was also of concern because it leads to hot cracking during weld repairs. Accordingly, acoustic emission (AE) nondestructive testing was employed to monitor the formation of porosity and hot cracks in order to select the best filler metal and optimize the weld schedule. The purpose of this work is to determine the feasibility of detecting hot cracking in welded aluminum-lithium (Al-Li) structures through the analysis of acoustic emission data. By acoustically characterizing the effects of reheating during a repair operation, the potential for hidden flaws coalescing and becoming "unstable" as the panel is repaired could be reduced. Identification of regions where microcrack growth is likely to occur and the location of active flaw growth in the repair weld will provide the welder with direct feedback as to the current weld quality enabling adjustments to the repair process be made in the field. An acoustic emission analysis of the source mechanisms present during welding has been conducted with the goals of locating regions in the weld line that are susceptible to damage from a repair operation

  7. Early-age volume changes of extrudable reactive powder concrete

    NASA Astrophysics Data System (ADS)

    Cherkaoui, K.; Courtial, M.; Dunstetter, F.; Khelidj, A.; Mounanga, P.; de Noirfontaine, M. N.

    2010-06-01

    This article presents a study on the early-age autogenous deformations of Extrudable Reactive Powder Concretes (ERPCs), especially designed for the making of concrete pipes by extrusion. Different ERPC mixtures, with variable amounts of polycarboxylate superplasticizer (SP), have been investigated. Results on 28-day mechanical properties, early-age hydration rate, autogenous shrinkage and premature cracking risk are analyzed and discussed in relation with the ERPC mix parameters.

  8. A combined complex electrical impedance and acoustic emission study in limestone samples under uniaxial loading

    NASA Astrophysics Data System (ADS)

    Saltas, V.; Fitilis, I.; Vallianatos, F.

    2014-12-01

    In the present work, complex electrical impedance measurements in the frequency range of 10 mHz to 1 MHz were carried out in conjunction with acoustic emission monitoring in limestone samples subjected to linear and stepped-like uniaxial loading, up to ultimate failure. Cole-Cole plots of the complex impedance during the stepped loading of limestone have been used to discriminate the contributions of grains interior, grain boundaries and electrode polarization effects to the overall electrical behavior. The latter is well-described with an equivalent-circuit model which comprises components of constant phase elements and resistances in parallel connection. Electrical conductivity increases upon uniaxial loading giving rise to negative values of effective activation volume. This is a strong experimental evidence for the generation of transient electric signals recorded prior to seismic events and may be attributed to charge transfer (proton conduction) due to cracks generation and propagation as a result of the applied stress. The time-series of ac-conductivity at two distinct frequencies (10 kHz, 200 kHz) during linear loading of limestone samples exhibits a strong correlation with the acoustic emission activity obeying the same general self-similar law for critical phenomena that has been reported for the energy release before materials fracture.

  9. Can acoustic emissions patterns signal imminence of avalanche events in a growing sand pile?

    NASA Astrophysics Data System (ADS)

    Vögtli, Melanie; Lehmann, Peter; Breitenstein, Daniel; Or, Dani

    2014-05-01

    Gravity driven mass release is often triggered abruptly with limited precursory cues to indicate imminent failure and thus limiting early warning. Evidence suggests that with increased mechanical loading of a slope, numerous local damage events marking friction between rearranged particles or breakage of roots release strain energy as elastic waves measurable as acoustic emissions. We examined the potential predictability of mass release events from preceding acoustic emission (AE) signatures in a well-known and simple model system of a growing sand pile. We installed four AE-sensors within the core of a 30 cm (diameter) sand pile fed by a constant input of grains and mounted on a balance. Subsequent to the convergence of the slope to dynamic angle of repose, sand avalanche across the bottom boundary were monitored by abrupt mass change and by the amplitudes and number of AE events (recorded at high frequency and averaged to 0.2 s). We detected a systematic change of AE-patterns characterized by systematically decreasing AE standard deviation prior to each mass release. Although the lead time following minimum AE standard deviation was relatively short (10s of seconds), the AE signature already started to change minutes before the mass release. Accordingly the information embedded in AE signal dynamics could potentially offer larger lead times for systems of practical interest.

  10. Damage Modes Recognition and Hilbert-Huang Transform Analyses of CFRP Laminates Utilizing Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    WenQin, Han; Ying, Luo; AiJun, Gu; Yuan, Fuh-Gwo

    2016-04-01

    Discrimination of acoustic emission (AE) signals related to different damage modes is of great importance in carbon fiber-reinforced plastic (CFRP) composite materials. To gain a deeper understanding of the initiation, growth and evolution of the different types of damage, four types of specimens for different lay-ups and orientations and three types of specimens for interlaminar toughness tests are subjected to tensile test along with acoustic emission monitoring. AE signals have been collected and post-processed, the statistical results show that the peak frequency of AE signal can distinguish various damage modes effectively. After a AE signal were decomposed by Empirical Mode Decomposition (EMD) method, it may separate and extract all damage modes included in this AE signal apart from damage mode corresponding to the peak frequency. Hilbert-Huang Transform (HHT) of AE signals can clearly illustrate the frequency distribution of Intrinsic Mode Functions (IMF) components in time-scale in different damage stages, and can calculate accurate instantaneous frequency for damage modes recognition to help understanding the damage process.

  11. Amplitude-Frequency Analysis of Signals of Acoustic Emission from Granite Fractured at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Shcherbakov, I. P.; Chmel‧, A. E.

    2015-05-01

    The problem of stability of underground structures serving to store radioactive waste, to gasify carbon, and to utilize geothermal energy is associated with the action of elevated temperatures and pressures. The acoustic-emission method makes it possible to monitor the accumulation of microcracks arising in stress fields of both thermal and mechanical origin. In this report, the authors give results of a laboratory investigation into the acoustic emission from granite subjected to impact fracture at temperatures of up to 600°C. An amplitude-frequency analysis of acousticemission signals has enabled the authors to evaluate the dimension of the arising microcracks and to determine their character (intergranular or intragranular). It has been shown that intergranular faults on the boundaries between identical minerals predominate at room temperature (purely mechanical action); at a temperature of 300°C (impact plus thermoelastic stresses), there also appear cracks on the quartz-feldspar boundaries; finally, at temperatures of 500-600°C, it is intragranular faults that predominate in feldspar. The dimensions of the above three types of microcracks are approximately 2, 0.8, and 0.3 mm respectively.

  12. Periodic shock-emission from acoustically driven cavitation clouds: a source of the subharmonic signal.

    PubMed

    Johnston, Keith; Tapia-Siles, Cecilia; Gerold, Bjoern; Postema, Michiel; Cochran, Sandy; Cuschieri, Alfred; Prentice, Paul

    2014-12-01

    Single clouds of cavitation bubbles, driven by 254kHz focused ultrasound at pressure amplitudes in the range of 0.48-1.22MPa, have been observed via high-speed shadowgraphic imaging at 1×10(6) frames per second. Clouds underwent repetitive growth, oscillation and collapse (GOC) cycles, with shock-waves emitted periodically at the instant of collapse during each cycle. The frequency of cloud collapse, and coincident shock-emission, was primarily dependent on the intensity of the focused ultrasound driving the activity. The lowest peak-to-peak pressure amplitude of 0.48MPa generated shock-waves with an average period of 7.9±0.5μs, corresponding to a frequency of f0/2, half-harmonic to the fundamental driving. Increasing the intensity gave rise to GOC cycles and shock-emission periods of 11.8±0.3, 15.8±0.3, 19.8±0.2μs, at pressure amplitudes of 0.64, 0.92 and 1.22MPa, corresponding to the higher-order subharmonics of f0/3, f0/4 and f0/5, respectively. Parallel passive acoustic detection, filtered for the fundamental driving, revealed features that correlated temporally to the shock-emissions observed via high-speed imaging, p(two-tailed) < 0.01 (r=0.996, taken over all data). Subtracting the isolated acoustic shock profiles from the raw signal collected from the detector, demonstrated the removal of subharmonic spectral peaks, in the frequency domain. The larger cavitation clouds (>200μm diameter, at maximum inflation), that developed under insonations of peak-to-peak pressure amplitudes >1.0MPa, emitted shock-waves with two or more fronts suggesting non-uniform collapse of the cloud. The observations indicate that periodic shock-emissions from acoustically driven cavitation clouds provide a source for the cavitation subharmonic signal, and that shock structure may be used to study intra-cloud dynamics at sub-microsecond timescales.

  13. Acoustic Emission Patterns and the Transition to Ductility in Sub-Micron Scale Laboratory Earthquakes

    NASA Astrophysics Data System (ADS)

    Ghaffari, H.; Xia, K.; Young, R.

    2013-12-01

    We report observation of a transition from the brittle to ductile regime in precursor events from different rock materials (Granite, Sandstone, Basalt, and Gypsum) and Polymers (PMMA, PTFE and CR-39). Acoustic emission patterns associated with sub-micron scale laboratory earthquakes are mapped into network parameter spaces (functional damage networks). The sub-classes hold nearly constant timescales, indicating dependency of the sub-phases on the mechanism governing the previous evolutionary phase, i.e., deformation and failure of asperities. Based on our findings, we propose that the signature of the non-linear elastic zone around a crack tip is mapped into the details of the evolutionary phases, supporting the formation of a strongly weak zone in the vicinity of crack tips. Moreover, we recognize sub-micron to micron ruptures with signatures of 'stiffening' in the deformation phase of acoustic-waveforms. We propose that the latter rupture fronts carry critical rupture extensions, including possible dislocations faster than the shear wave speed. Using 'template super-shear waveforms' and their network characteristics, we show that the acoustic emission signals are possible super-shear or intersonic events. Ref. [1] Ghaffari, H. O., and R. P. Young. "Acoustic-Friction Networks and the Evolution of Precursor Rupture Fronts in Laboratory Earthquakes." Nature Scientific reports 3 (2013). [2] Xia, Kaiwen, Ares J. Rosakis, and Hiroo Kanamori. "Laboratory earthquakes: The sub-Rayleigh-to-supershear rupture transition." Science 303.5665 (2004): 1859-1861. [3] Mello, M., et al. "Identifying the unique ground motion signatures of supershear earthquakes: Theory and experiments." Tectonophysics 493.3 (2010): 297-326. [4] Gumbsch, Peter, and Huajian Gao. "Dislocations faster than the speed of sound." Science 283.5404 (1999): 965-968. [5] Livne, Ariel, et al. "The near-tip fields of fast cracks." Science 327.5971 (2010): 1359-1363. [6] Rycroft, Chris H., and Eran Bouchbinder

  14. Nonlinear ball chain waveguides for acoustic emission and ultrasound sensing of ablation

    NASA Astrophysics Data System (ADS)

    Pearson, Stephen H.

    Harsh environment acoustic emission and ultrasonic wave sensing applications often benefit from placing the sensor in a remote and more benign physical location by using waveguides to transmit elastic waves between the structural location under test and the transducer. Waveguides are normally designed to have high fidelity over broad frequency ranges to minimize distortion -- often difficult to achieve in practice. This thesis reports on an examination of using nonlinear ball chain waveguides for the transmission of acoustic emission and ultrasonic waves for the monitoring of thermal protection systems undergoing severe heat loading, leading to ablation and similar processes. Experiments test the nonlinear propagation of solitary, harmonic and mixed harmonic elastic waves through a copper tube filled with steel and elastomer balls and various other waveguides. Triangulation of pencil lead breaks occurs on a steel plate. Data are collected concerning the usage of linear waveguides and a water-cooled linear waveguide. Data are collected from a second water-cooled waveguide monitoring Atmospheric Reentry Materials in UVM's Inductively-Coupled Plasma Torch Facility. The motion of the particles in the dimer waveguides is linearly modeled with a three ball and spring chain model and the results are compared per particle. A theoretical nonlinear model is presented which is capable of exactly modeling the motion of the dimer chains. The shape of the waveform propagating through the dimer chain is modeled in a sonic vacuum. Mechanical pulses of varying time widths and amplitudes are launched into one end of the ball chain waveguide and observed at the other end in both time and frequency domains. Similarly, harmonic and mixed harmonic mechanical loads are applied to one end of the waveguide. Balls of different materials are analyzed and discriminated into categories. A copper tube packed with six steel particles, nine steel or marble particles and a longer copper tube

  15. Spectral Characteristics of Continuous Acoustic Emission (AE) Data from Laboratory Rock Deformation Experiments

    NASA Astrophysics Data System (ADS)

    Flynn, J. William; Goodfellow, Sebastian; Reyes-Montes, Juan; Nasseri, Farzine; Young, R. Paul

    2016-04-01

    Continuous acoustic emission (AE) data recorded during rock deformation tests facilitates the monitoring of fracture initiation and propagation due to applied stress changes. Changes in the frequency and energy content of AE waveforms have been previously observed and were associated with microcrack coalescence and the induction or mobilisation of large fractures which are naturally associated with larger amplitude AE events and lower-frequency components. The shift from high to low dominant frequency components during the late stages of the deformation experiment, as the rate of AE events increases and the sample approaches failure, indicates a transition from the micro-cracking to macro-cracking regime, where large cracks generated result in material failure. The objective of this study is to extract information on the fracturing process from the acoustic records around sample failure, where the fast occurrence of AE events does not allow for identification of individual AE events and phase arrivals. Standard AE event processing techniques are not suitable for extracting this information at these stages. Instead the observed changes in the frequency content of the continuous record can be used to characterise and investigate the fracture process at the stage of microcrack coalescence and sample failure. To analyse and characterise these changes, a detailed non-linear and non-stationary time-frequency analysis of the continuous waveform data is required. Empirical Mode Decomposition (EMD) and Hilbert Spectral Analysis (HSA) are two of the techniques used in this paper to analyse the acoustic records which provide a high-resolution temporal frequency distribution of the data. In this paper we present the results from our analysis of continuous AE data recorded during a laboratory triaxial deformation experiment using the combined EMD and HSA method.

  16. C-Coupon Studies of SiC/SiC Composites. Part 1; Acoustic Emission Monitoring

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Hurwitz, Frances I.; Calomino, Anthony M.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Modal acoustic emission (AE) was used to monitor the acoustic activity during room temperature and elevated temperature c-coupon tests for a variety of SiC/SiC systems including composites containing Sylramic (trademark), ZMI (trademark), or Hi-Nicalon (trademark) fibers with melt-infiltrated or polymer-infiltrated SiC matrices. Modal AE proved excellent at monitoring matrix cracking in the curved portion of the C-coupon specimen with increasing load. This included the load at which the first AE event occurred and the location of AE events during the test that were, presumably, caused by the formation and growth of interlaminar cracks and, at higher loads, transverse cracks. Graphical techniques were employed to estimate the load for first AE. It was determined that for this test with these material systems, the first AE could be estimated within the load range bounded by the load at which initial deviation from linearity of the load-displacement curve occurs and the load where the 98% offset of the linear regression fit intercepted the load-displacement curve. The calculation of interlaminar tensile (ILT) stress from the load for first AE was determined for all the systems. Ultimate ILT strength usually corresponded to ILT stress determined from the ultimate load to failure of the C-coupon test, which was considerably higher than the first cracking stress.

  17. Monitoring Thermal Fatigue Damage In Nuclear Power Plant Materials Using Acoustic Emission

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Watson, Bruce E.; Pitman, Stan G.; Roosendaal, Timothy J.; Bond, Leonard J.

    2012-04-26

    Proactive aging management of nuclear power plant passive components requires technologies to enable monitoring and accurate quantification of material condition at early stages of degradation (i.e., pre-macrocrack). Acoustic emission (AE) is well-suited to continuous monitoring of component degradation and is proposed as a method to monitor degradation during accelerated thermal fatigue tests. A key consideration is the ability to separate degradation responses from external sources such as water spray induced during thermal fatigue testing. Water spray provides a significant background of acoustic signals, which can overwhelm AE signals caused by degradation. Analysis of AE signal frequency and energy is proposed in this work as a means for separating degradation signals from background sources. Encouraging results were obtained by applying both frequency and energy filters to preliminary data. The analysis of signals filtered using frequency and energy provides signatures exhibiting several characteristics that are consistent with degradation accumulation in materials. Future work is planned to enable verification of the efficacy of AE for thermal fatigue crack initiation detection. While the emphasis has been placed on the use of AE for crack initiation detection during accelerated aging tests, this work also has implications with respect to the use of AE as a primary tool for early degradation monitoring in nuclear power plant materials. The development of NDE tools for characterization of aging in materials can also benefit from the use of a technology such as AE which can continuously monitor and detect crack initiation during accelerated aging tests.

  18. Fatigue and fracture assessment of cracks in steel elements using acoustic emission

    NASA Astrophysics Data System (ADS)

    Nemati, Navid; Metrovich, Brian; Nanni, Antonio

    2011-04-01

    Single edge notches provide a very well defined load and fatigue crack size and shape environment for estimation of the stress intensity factor K, which is not found in welded elements. ASTM SE(T) specimens do not appear to provide ideal boundary conditions for proper recording of acoustic wave propagation and crack growth behavior observed in steel bridges, but do provide standard fatigue crack growth rate data. A modified versions of the SE(T) specimen has been examined to provide small scale specimens with improved acoustic emission(AE) characteristics while still maintaining accuracy of fatigue crack growth rate (da/dN) versus stress intensity factor (ΔK). The specimens intend to represent a steel beam flange subjected to pure tension, with a surface crack growing transverse to a uniform stress field. Fatigue test is conducted at low R ratio. Analytical and numerical studies of stress intensity factor are developed for single edge notch test specimens consistent with the experimental program. ABAQUS finite element software is utilized for stress analysis of crack tips. Analytical, experimental and numerical analysis were compared to assess the abilities of AE to capture a growing crack.

  19. Remote monitoring and prognosis of fatigue cracking in steel bridges with acoustic emission

    NASA Astrophysics Data System (ADS)

    Yu, Jianguo Peter; Ziehl, Paul; Pollock, Adrian

    2011-04-01

    Acoustic emission (AE) monitoring is desirable to nondestructively detect fatigue damage in steel bridges. Investigations of the relationship between AE signals and crack growth behavior are of paramount importance prior to the widespread application of passive piezoelectric sensing for monitoring of fatigue crack propagation in steel bridges. Tests have been performed to detect AE from fatigue cracks in A572G50 steel. Noise induced AE signals were filtered based on friction emission tests, loading pattern, and a combined approach involving Swansong II filters and investigation of waveforms. The filtering methods based on friction emission tests and load pattern are of interest to the field evaluation using sparse datasets. The combined approach is suitable for data filtering and interpretation of actual field tests. The pattern recognition program NOESIS (Envirocoustics) was utilized for the evaluation of AE data quality. AE parameters are associated with crack length, crack growth rate, maximum stress intensity and stress intensity range. It is shown that AE hits, counts, absolute energy, and signal strength are able to provide warnings at the critical cracking level where cracking progresses from stage II (stable propagation) to stage III (unstable propagation which may result in failure). Absolute energy rate and signal strength rate may be better than count rate to assess the remaining fatigue life of inservice steel bridges.

  20. Fatigue crack growth monitoring of idealized gearbox spline component using acoustic emission

    NASA Astrophysics Data System (ADS)

    Zhang, Lu; Ozevin, Didem; Hardman, William; Kessler, Seth; Timmons, Alan

    2016-04-01

    The spline component of gearbox structure is a non-redundant element that requires early detection of flaws for preventing catastrophic failures. The acoustic emission (AE) method is a direct way of detecting active flaws; however, the method suffers from the influence of background noise and location/sensor based pattern recognition method. It is important to identify the source mechanism and adapt it to different test conditions and sensors. In this paper, the fatigue crack growth of a notched and flattened gearbox spline component is monitored using the AE method in a laboratory environment. The test sample has the major details of the spline component on a flattened geometry. The AE data is continuously collected together with strain gauges strategically positions on the structure. The fatigue test characteristics are 4 Hz frequency and 0.1 as the ratio of minimum to maximum loading in tensile regime. It is observed that there are significant amount of continuous emissions released from the notch tip due to the formation of plastic deformation and slow crack growth. The frequency spectra of continuous emissions and burst emissions are compared to understand the difference of sudden crack growth and gradual crack growth. The predicted crack growth rate is compared with the AE data using the cumulative AE events at the notch tip. The source mechanism of sudden crack growth is obtained solving the inverse mathematical problem from output signal to input signal. The spline component of gearbox structure is a non-redundant element that requires early detection of flaws for preventing catastrophic failures. In this paper, the fatigue crack growth of a notched and flattened gearbox spline component is monitored using the AE method The AE data is continuously collected together with strain gauges. There are significant amount of continuous emissions released from the notch tip due to the formation of plastic deformation and slow crack growth. The source mechanism of

  1. Accumulated damage process of thermal sprayed coating under rolling contact by acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Xu, Jia; Zhou, Zhen-yu; Piao, Zhong-yu

    2016-09-01

    The accumulated damage process of rolling contact fatigue (RCF) of plasma-sprayed coatings was investigated. The influences of surface roughness, loading condition, and stress cycle frequency on the accumulated damage status of the coatings were discussed. A ball-ondisc machine was employed to conduct RCF experiments. Acoustic emission (AE) technique was introduced to monitor the RCF process of the coatings. AE signal characteristics were investigated to reveal the accumulated damage process. Result showed that the polished coating would resist the asperity contact and remit accumulated damage. The RCF lifetime would then extend. Heavy load would aggravate the accumulated damage status and induce surface fracture. Wear became the main failure mode that reduced the RCF lifetime. Frequent stress cycle would aggravate the accumulated damage status and induce interface fracture. Fatigue then became the main failure mode that also reduced the RCF lifetime.

  2. Use of Modal Acoustic Emission to Monitor Damage Progression in Carbon Fiber/epoxy Composites

    NASA Astrophysics Data System (ADS)

    Waller, J. M.; Nichols, C. T.; Wentzel, D. J.; Saulsberry, R. L.

    2011-06-01

    Broad-band modal acoustic emission (AE) was used to characterize micromechanical damage progression in uniaxial IM7 and T1000 carbon fiber-epoxy (C/Ep) tows, and a helical and hoop-wrapped IM7 composite overwrapped pressure vessel (COPV). To expedite analysis, tows and the COPV were subjected to an intermittent load hold tensile stress profile. Damage progression in tow specimens was followed by analyzing the Fast Fourier Transforms (FFTs) associated with AE events. FFT analysis showed that damage was usually cooperative, consisting of several failure modes occurring at once, and was dominated by fiber breakage throughout the duration of the stress profile. Evidence was found for the existence of a universal damage parameter, referred to here as the critical Felicity ratio, or Felicity ratio at rupture (FR*), which had a value close to 0.96 for the tows and the COPV tested. The use of FR* to predict the burst pressure of the COPV is demonstrated.

  3. Neural Network Prediction of Aluminum-Lithium Weld Strengths from Acoustic Emission Amplitude Data

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Israel, Peggy L.; Knotts, Gregory L.

    1993-01-01

    Acoustic Emission (AE) flaw growth activity was monitored in aluminum-lithium weld specimens from the onset tensile loading to failure. Data on actual ultimate strengths together with AE data from the beginning of loading up to 25 percent of the expected ultimate strength were used to train a backpropagation neural network to predict ultimate strengths. Architecturally, the fully interconnected network consisted of an input layer for the AE amplitude data, a hidden layer to accommodate failure mechanism mapping, and an output layer for ultimate strength prediction. The trained network was the applied to the prediction of ultimate strengths in the remaining six specimens. The worst case prediction error was found to be +2.6 percent.

  4. Extensive characterization of seismic laws in acoustic emissions of crumpled plastic sheets

    NASA Astrophysics Data System (ADS)

    Costa, Leandro S.; Lenzi, Ervin K.; Mendes, Renio S.; Ribeiro, Haroldo V.

    2016-06-01

    Statistical similarities between earthquakes and other systems that emit cracking noises have been explored in diverse contexts, ranging from materials science to financial and social systems. Such analogies give promise of a unified and universal theory for describing the complex responses of those systems. There are, however, very few attempts to simultaneously characterize the most fundamental seismic laws in such systems. Here we present a complete description of the Gutenberg-Richter law, the recurrence times, Omori's law, the productivity law, and Båth's law for the acoustic emissions that occur in the relaxation process of uncrumpling thin plastic sheets. Our results show that these laws also appear in this phenomenon, but (for most cases) with different parameters from those reported for earthquakes and fracture experiments. This study thus contributes to elucidate the parallel between seismic laws and cracking noises in uncrumpling processes, revealing striking qualitative similarities but also showing that these processes display unique features.

  5. Ultrasound-Stimulated Acoustic Emission in Thermal Image-Guided HIFU Therapy: A Phantom Study

    SciTech Connect

    Jiang, C. P.; Lin, W. T.; Chen, W. S.

    2006-05-08

    Magnetic resonance image (MRI) is a promising monitoring tool for non-invasive real-time thermal guidance in high intensity focused ultrasound (HIFU) during thermal ablation surgery. However, this approach has two main drawbacks: 1) majority of components need to be redesigned to be MR compatible in order to avoid effecting MR images, and 2) the cost of operating MRI facilities is high. Alternately, ultrasound-stimulated acoustic emission (USAE) method has been applied for detecting thermal variations in tissues. An optical transparent phantom, made from polyacrylamide, containing thermal sensitive indicator protein (Bovine Serum Albumin), was prepared for observing the HIFU-induced denaturalization. A thermal-couple was set up for validation of temperature distribution. Experimental results show that thermal image can be captured clearly under stationary conditions.

  6. Implementation of an acoustic emission proximity detector for use in generating glass optics

    SciTech Connect

    Blaedel, K.L.; Piscotty, M.A.; Taylor, J.S.

    1996-11-11

    We are using the approach acoustic emission (AE) signal during a grinding operation to detect the proximity of the grinding wheel relative to a brittle material workpiece and are using this detection as a feed- back control signal in our CNC. The repeatability of the AE signal during the wheel approach is the key that allows AE to be used as a proximity detector and is demonstrated at LLNL to be about mm. We noted significant changes of the AE signal as process parameters are modified, but conclude that with a quick CNC calibration routine and holding the parameters constant during a given operation, the AE system can be successfully used to sense pre- contact wheel- to- workpiece separation. Additionally, the AE sensing system allows real- time monitoring during grinding to provide in- process information. The first prototype of an AE system on a commercially available generator is currently be tested at the Center for Optics Manufacturing.

  7. Studies of Elastic Waves in Ethylene Propylene Rubber Using Acoustic Emission Sensor

    NASA Astrophysics Data System (ADS)

    Takaoka, Masanori; Sakoda, Tatsuya; Otsubo, Masahisa; Akaiwa, Shigeru; Iki, Masatoshi; Nakano, Shigeharu

    The aim of our study is to investigate the relationship between lowering of the insulation performance of cross-linked polyethylene (CV) cable and partial discharges (PDs) followed by the dielectric breakdown and to establish a diagnostic technique using an acoustic emission (AE) sensor. In this study, we focused on characterization of AE signals detected from ethylene propylene rubbers (EPRs) used as insulating materials of CV cables. Elastic waves with various frequencies were added to the surface of the EPR, and then characteristics of the detected AE signals due to the elastic waves propagated in the EPR were evaluated. We showed characteristics of Lamb waves whose low frequency components around 100 kHz were large and their small attenuation characteristics.

  8. Evaluation of shrinkage and cracking in concrete of ring test by acoustic emission method

    NASA Astrophysics Data System (ADS)

    Watanabe, Takeshi; Hashimoto, Chikanori

    2015-03-01

    Drying shrinkage of concrete is one of the typical problems related to reduce durability and defilation of concrete structures. Lime stone, expansive additive and low-heat Portland cement are used to reduce drying shrinkage in Japan. Drying shrinkage is commonly evaluated by methods of measurement for length change of mortar and concrete. In these methods, there is detected strain due to drying shrinkage of free body, although visible cracking does not occur. In this study, the ring test was employed to detect strain and age cracking of concrete. The acoustic emission (AE) method was adopted to detect micro cracking due to shrinkage. It was recognized that in concrete using lime stone, expansive additive and low-heat Portland cement are effective to decrease drying shrinkage and visible cracking. Micro cracking due to shrinkage of this concrete was detected and evaluated by the AE method.

  9. Flow topology and acoustic emissions of trailing edge serrations at incidence

    NASA Astrophysics Data System (ADS)

    Arce León, Carlos; Ragni, Daniele; Pröbsting, Stefan; Scarano, Fulvio; Madsen, Jesper

    2016-05-01

    The flow past a NACA 0018 airfoil with sawtooth trailing edge serrations has been investigated using stereoscopic particle image velocimetry (PIV). The serration flap angle and airfoil incidence are varied in order to study the effect of secondary flow establishing between the suction and pressure sides of the serrations. The flow topology around the serrations is inferred from the analysis of time-averaged streamlines close to the airfoil surface and from the wall-normal flow velocity in between serrations. Additional PIV measurements with a plane in cross-flow highlight the formation of streamwise vortex pairs. The flow behavior is further characterized in terms of its turbulence statistics. Noise emissions are measured with an acoustic phased array in combination with beamforming. The serrations are found to be effective in reducing noise, and their application is studied for different degrees of airfoil incidence and serration flap angle.

  10. Punch stretching process monitoring using acoustic emission signal analysis. II - Application of frequency domain deconvolution

    NASA Technical Reports Server (NTRS)

    Liang, Steven Y.; Dornfeld, David A.; Nickerson, Jackson A.

    1987-01-01

    The coloring effect on the acoustic emission signal due to the frequency response of the data acquisition/processing instrumentation may bias the interpretation of AE signal characteristics. In this paper, a frequency domain deconvolution technique, which involves the identification of the instrumentation transfer functions and multiplication of the AE signal spectrum by the inverse of these system functions, has been carried out. In this way, the change in AE signal characteristics can be better interpreted as the result of the change in only the states of the process. Punch stretching process was used as an example to demonstrate the application of the technique. Results showed that, through the deconvolution, the frequency characteristics of AE signals generated during the stretching became more distinctive and can be more effectively used as tools for process monitoring.

  11. Estimation of durability of GFRP laminates under stress-corrosive environments using acoustic emission

    SciTech Connect

    Fujii, Yoshimichi; Ramakrishna, S.; Hamada, Hiroyuki

    1996-12-31

    The objective of this investigation was to estimate the creep life of glass fiber reinforced plastic (GFRP) materials subjected to stress-corrosive environments using acoustic emission (AE). The laminates were fabricated using combinations of rigid bisphenolic polyester resin (LP-1), flexible vinylester resin (R806), random fiber mat and woven cloth. The creep tests were conducted in 5% nitric acid environment. The rigid matrix composites displayed higher AE count rate than the flexible matrix composites. For given creep testing conditions, the woven cloth reinforced specimens displayed higher number of AE counts than the random mat reinforced specimens. The creep life decreased with increasing creep stress, whereas the AE count rate increased with increasing creep stress. A linear relationship was found between the creep life and the AE count rate.

  12. In Situ Monitoring of Plasma Spraying Process by Laser Acoustic Emission Method

    NASA Astrophysics Data System (ADS)

    Ito, Kaita; Enoki, Manabu; Watanabe, Makoto; Kuroda, Seiji

    Estimation of microfractures in ceramic coating layer during plasma spraying process is critical for its reliability. Acoustic emission (AE) method enables in-process monitoring of such microfractures. Laser AE method was adopted to realize the monitoring of plasma spraying process by non-contact detection of AE with laser interferometer. Also a high performance method for noise reduction of laser AE waveform was investigated. In this new method, laser AE signal was continuously sampled and transformed into spectrogram by time-frequency analysis to cut out noise component effectively. After this noise reduction process, inverse transform was applied to obtain a clear AE signals in time domain. Whole these processes can be done in real time. The effectiveness of this method was confirmed by a detection test of simulated AE and successfully applied to the monitoring of plasma spraying process. Two types of AE events with different duration time range were found and the sources of these AE were presumed.

  13. Microstructure-Sensitive Investigation of Fracture Using Acoustic Emission Coupled With Electron Microscopy

    NASA Technical Reports Server (NTRS)

    Wisner, Brian; Cabal, Mike; Vanniamparambiland, Prashanth A.; Leser, William; Hochhalter, Jacob; Kontsos, Antonios

    2015-01-01

    A novel technique using Scanning Electron Microscopy (SEM) in conjunction with Acoustic Emission (AE) monitoring is proposed to investigate microstructure-sensitive fatigue and fracture of metals. The coupling between quasi in situ microscopy with actual in situ nondestructive evaluation falls into the ICME framework and the idea of quantitative data-driven characterization of material behavior. To validate the use of AE monitoring inside the SEM chamber, Aluminum 2024-B sharp notch specimen were tested both inside and outside the microscope using a small scale mechanical testing device. Subsequently, the same type of specimen was tested inside the SEM chamber. Load data were correlated with both AE information and observations of microcracks around grain boundaries as well as secondary cracks, voids, and slip bands. The preliminary results are in excellent agreement with similar findings at the mesoscale. Extensions of the application of this novel technique are discussed.

  14. Use of Acoustic Emission to Monitor Progressive Damage Accumulation in Kevlar (R) 49 Composites

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Saulsberry, Regor L.; Andrade, Eduardo

    2009-01-01

    Acoustic emission (AE) data acquired during intermittent load hold tensile testing of epoxy impregnated Kevlar(Registeres TradeMark) 49 (K/Ep) composite strands were analyzed to monitor progressive damage during the approach to tensile failure. Insight into the progressive damage of K/Ep strands was gained by monitoring AE event rate and energy. Source location based on energy attenuation and arrival time data was used to discern between significant AE attributable to microstructural damage and spurious AE attributable to noise. One of the significant findings was the observation of increasing violation of the Kaiser effect (Felicity ratio < 1.0) with damage accumulation. The efficacy of three different intermittent load hold stress schedules that allowed the Felicity ratio to be determined analytically is discussed.

  15. Accumulated damage process of thermal sprayed coating under rolling contact by acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Xu, Jia; Zhou, Zhen-yu; Piao, Zhong-yu

    2016-07-01

    The accumulated damage process of rolling contact fatigue (RCF) of plasma-sprayed coatings was investigated. The influences of surface roughness, loading condition, and stress cycle frequency on the accumulated damage status of the coatings were discussed. A ball-ondisc machine was employed to conduct RCF experiments. Acoustic emission (AE) technique was introduced to monitor the RCF process of the coatings. AE signal characteristics were investigated to reveal the accumulated damage process. Result showed that the polished coating would resist the asperity contact and remit accumulated damage. The RCF lifetime would then extend. Heavy load would aggravate the accumulated damage status and induce surface fracture. Wear became the main failure mode that reduced the RCF lifetime. Frequent stress cycle would aggravate the accumulated damage status and induce interface fracture. Fatigue then became the main failure mode that also reduced the RCF lifetime.

  16. Avalanches in compressed Ti-Ni shape-memory porous alloys: An acoustic emission study.

    PubMed

    Soto-Parra, Daniel; Zhang, Xiaoxin; Cao, Shanshan; Vives, Eduard; Salje, Ekhard K H; Planes, Antoni

    2015-06-01

    Mechanical avalanches during compression of martensitic porous Ti-Ni have been characterized by high-frequency acoustic emission (AE). Two sequences of AE signals were found in the same sample. The first sequence is mainly generated by detwinning at the early stages of compression while fracture dominates the later stages. Fracture also determines the catastrophic failure (big crash). For high-porosity samples, the AE energies of both sequences display power-law distributions with exponents ɛ≃2 (twinning) and 1.7 (fracture). The two power laws confirm that twinning and fracture both lead to avalanche criticality during compression. As twinning precedes fracture, the observation of twinning allows us to predict incipient fracture of the porous shape memory material as an early warning sign (i.e., in bone implants) before the fracture collapse actually happens.

  17. Acoustic emission characteristics of copper alloys under low-cycle fatigue conditions

    NASA Technical Reports Server (NTRS)

    Krampfner, Y.; Kawamoto, A.; Ono, K.; Green, A.

    1975-01-01

    The acoustic emission (AE) characteristics of pure copper, zirconium-copper, and several copper alloys were determined to develop nondestructive evaluation schemes of thrust chambers through AE techniques. The AE counts rms voltages, frequency spectrum, and amplitude distribution analysis evaluated AE behavior under fatigue loading conditions. The results were interpreted with the evaluation of wave forms, crack propagation characteristics, as well as scanning electron fractographs of fatigue-tested samples. AE signals at the beginning of a fatigue test were produced by a sample of annealed alloys. A sample of zirconium-containing alloys annealed repeatedly after each fatigue loading cycle showed numerous surface cracks during the subsequent fatigue cycle, emitting strong-burst AE signals. Amplitude distribution analysis exhibits responses that are characteristic of certain types of AE signals.

  18. Influence of attenuation on acoustic emission signals in carbon fiber reinforced polymer panels.

    PubMed

    Asamene, Kassahun; Hudson, Larry; Sundaresan, Mannur

    2015-05-01

    Influence of attenuation on acoustic emission (AE) signals in Carbon Fiber Reinforced Polymer (CFRP) crossply and quasi-isotropic panels is examined in this paper. Attenuation coefficients of the fundamental antisymmetric (A0) and symmetric (S0) wave modes were determined experimentally along different directions for the two types of CFRP panels. In the frequency range from 100 kHz to 500 kHz, the A0 mode undergoes significantly greater changes due to material related attenuation compared to the S0 mode. Moderate to strong changes in the attenuation levels were noted with propagation directions. Such mode and frequency dependent attenuation introduces major changes in the characteristics of AE signals depending on the position of the AE sensor relative to the source. Results from finite element simulations of a microscopic damage event in the composite laminates are used to illustrate attenuation related changes in modal and frequency components of AE signals.

  19. Hysteresis and acoustic emission as non-destructive measures of the fatigue process in metals

    NASA Astrophysics Data System (ADS)

    Guralnick, S. A.

    1995-03-01

    Metal fatigue is a result of a cumulative damage process due to repeated cyclic loading which causes premature and unpredictable failure. It is a complicated metallurgical process at the microscopic level which is difficult to accurately explain or model. Despite the complexities, fatigue analysis methods have been developed and are being developed to facilitate fatigue damage assessment and the prediction of fatigue life. This research project is concerned with the behavior of metals subjected to cyclic loading carried to failure. The purpose of this investigation is to develop a relationship between hysteresis loss, hysteresis loop drift, strain amplitudes, and the number of cycles to failure and to correlate this phenomenological description of the fatigue process with mesoscopic observables such as acoustic emission and stress-induced magnetization.

  20. Analysis Techniques of Acoustic Emission Data for Damage Assessment of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Garilli, G.; Proverbio, E.; Marino, A.; de Domenico, D.; Termini, D.; Teramo, A.

    2010-12-01

    The aim of this work is the arrangement, through Acoustics Emission (AE) techniques, of a procedure aimed at early diagnosis of building diseases with the assessment of the causes that have produced a crack in a given structural element, in order to plan suitable structural adjustment works. To this end, bending tests were performed, divided into different cycles of increasing load on a concrete beam, to assess the damage level and response in relation to the stress change. Through the proposed procedure and different indicators of the damage level of material, such as b, Ib and Z-value, it was possible to identify in the study sample areas where cracks were detected, assessing the size, evolution process typology of microcraks. The recorded parameters of AE (Counts, Amplitude) are well related to the damage extent and applied load, providing a significant validation of the reliability analysis procedures used for monitoring and early detection of building diseases.

  1. A framework for the damage evaluation of acoustic emission signals through Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Siracusano, Giulio; Lamonaca, Francesco; Tomasello, Riccardo; Garescì, Francesca; Corte, Aurelio La; Carnì, Domenico Luca; Carpentieri, Mario; Grimaldi, Domenico; Finocchio, Giovanni

    2016-06-01

    The acoustic emission (AE) is a powerful and potential nondestructive testing method for structural monitoring in civil engineering. Here, we show how systematic investigation of crack phenomena based on AE data can be significantly improved by the use of advanced signal processing techniques. Such data are a fundamental source of information that can be used as the basis for evaluating the status of the material, thereby paving the way for a new frontier of innovation made by data-enabled analytics. In this article, we propose a framework based on the Hilbert-Huang Transform for the evaluation of material damages that (i) facilitates the systematic employment of both established and promising analysis criteria, and (ii) provides unsupervised tools to achieve an accurate classification of the fracture type, the discrimination between longitudinal (P-) and traversal (S-) waves related to an AE event. The experimental validation shows promising results for a reliable assessment of the health status through the monitoring of civil infrastructures.

  2. Detection and characterization of stainless steel SCC by the analysis of crack related acoustic emission.

    PubMed

    Kovač, Jaka; Legat, Andraž; Zajec, Bojan; Kosec, Tadeja; Govekar, Edvard

    2015-09-01

    In the paper the results of the acoustic emission (AE) based detection and characterization of stress-corrosion cracking (SCC) in stainless steel are presented. As supportive methods for AE interpretation, electrochemical noise, specimen elongation measurements, and digital imaging of the specimen surface were used. Based on the defined qualitative and quantitative time and power spectra characteristics of the AE bursts, a manual and an automatic procedure for the detection of crack related AE bursts were introduced. The results of the analysis of the crack related AE bursts indicate that the AE method is capable of detecting large scale cracks, where, apart from intergranular crack propagation, also some small ductile fractures occur. The sizes of the corresponding ductile fracture areas can be estimated based on a relative comparison of the energies of the detected AE bursts. It has also been shown that AE burst time and power spectra features can be successfully used for the automatic detection of SCC.

  3. Feasibility of using acoustic emission to determine in-process tool wear

    SciTech Connect

    Lazarus, L.J.

    1996-04-01

    Acoustic emission (AE) was evaluated for its ability to predict and recognize failure of cutting tools during machining processes when the cutting tool rotates and the workpiece is stationary. AE output was evaluated with a simple algorithm. AE was able to detect drill failure when the transducer was mounted on the workpiece holding fixture. Drill failure was recognized as size was reduced to 0.0003 in. diameter. The ability to predict failure was reduced with drill size, drill material elasticity, and tool coating. AE output for the turning process on a lathe was compared to turning tool insert wear. The turning tool must have sufficient wear to produce a detectable change in AE output to predict insert failure.

  4. Avalanches in compressed Ti-Ni shape-memory porous alloys: An acoustic emission study.

    PubMed

    Soto-Parra, Daniel; Zhang, Xiaoxin; Cao, Shanshan; Vives, Eduard; Salje, Ekhard K H; Planes, Antoni

    2015-06-01

    Mechanical avalanches during compression of martensitic porous Ti-Ni have been characterized by high-frequency acoustic emission (AE). Two sequences of AE signals were found in the same sample. The first sequence is mainly generated by detwinning at the early stages of compression while fracture dominates the later stages. Fracture also determines the catastrophic failure (big crash). For high-porosity samples, the AE energies of both sequences display power-law distributions with exponents ɛ≃2 (twinning) and 1.7 (fracture). The two power laws confirm that twinning and fracture both lead to avalanche criticality during compression. As twinning precedes fracture, the observation of twinning allows us to predict incipient fracture of the porous shape memory material as an early warning sign (i.e., in bone implants) before the fracture collapse actually happens. PMID:26172646

  5. Problems Associated with Statistical Pattern Recognition of Acoustic Emission Signals in a Compact Tension Fatigue Specimen

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.

    1999-01-01

    Acoustic emission (AE) data were acquired during fatigue testing of an aluminum 2024-T4 compact tension specimen using a commercially available AE system. AE signals from crack extension were identified and separated from noise spikes, signals that reflected from the specimen edges, and signals that saturated the instrumentation. A commercially available software package was used to train a statistical pattern recognition system to classify the signals. The software trained a network to recognize signals with a 91-percent accuracy when compared with the researcher's interpretation of the data. Reasons for the discrepancies are examined and it is postulated that additional preprocessing of the AE data to focus on the extensional wave mode and eliminate other effects before training the pattern recognition system will result in increased accuracy.

  6. Detection of Delamination in Composite Beams Using Broadband Acoustic Emission Signatures

    NASA Technical Reports Server (NTRS)

    Okafor, A. C.; Chandrashekhara, K.; Jiang, Y. P.

    1996-01-01

    Delamination in composite structure may be caused by imperfections introduced during the manufacturing process or by impact loads by foreign objects during the operational life. There are some nondestructive evaluation methods to detect delamination in composite structures such as x-radiography, ultrasonic testing, and thermal/infrared inspection. These methods are expensive and hard to use for on line detection. Acoustic emission testing can monitor the material under test even under the presence of noise generated under load. It has been used extensively in proof-testing of fiberglass pressure vessels and beams. In the present work, experimental studies are conducted to investigate the use of broadband acoustic emission signatures to detect delaminations in composite beams. Glass/epoxy beam specimens with full width, prescribed delamination sizes of 2 inches and 4 inches are investigated. The prescribed delamination is produced by inserting Teflon film between laminae during the fabrication of composite laminate. The objectives of this research is to develop a method for predicting delamination size and location in laminated composite beams by combining smart materials concept and broadband AE analysis techniques. More specifically, a piezoceramic (PZT) patch is bonded on the surface of composite beams and used as a pulser. The piezoceramic patch simulates the AE wave source as a 3 cycles, 50KHz, burst sine wave. One broadband AE sensor is fixed near the PZT patch to measure the AE wave near the AE source. A second broadband AE sensor, which is used as a receiver, is scanned along the composite beams at 0.25 inch step to measure propagation of AE wave along the composite beams. The acquired AE waveform is digitized and processed. Signal strength, signal energy, cross-correlation of AE waveforms, and tracking of specific cycle of AE waveforms are used to detect delamination size and location.

  7. A robust calibration technique for acoustic emission systems based on momentum transfer from a ball drop

    USGS Publications Warehouse

    McLaskey, Gregory C.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.

    2015-01-01

    We describe a technique to estimate the seismic moment of acoustic emissions and other extremely small seismic events. Unlike previous calibration techniques, it does not require modeling of the wave propagation, sensor response, or signal conditioning. Rather, this technique calibrates the recording system as a whole and uses a ball impact as a reference source or empirical Green’s function. To correctly apply this technique, we develop mathematical expressions that link the seismic moment $M_{0}$ of internal seismic sources (i.e., earthquakes and acoustic emissions) to the impulse, or change in momentum $\\Delta p $, of externally applied seismic sources (i.e., meteor impacts or, in this case, ball impact). We find that, at low frequencies, moment and impulse are linked by a constant, which we call the force‐moment‐rate scale factor $C_{F\\dot{M}} = M_{0}/\\Delta p$. This constant is equal to twice the speed of sound in the material from which the seismic sources were generated. Next, we demonstrate the calibration technique on two different experimental rock mechanics facilities. The first example is a saw‐cut cylindrical granite sample that is loaded in a triaxial apparatus at 40 MPa confining pressure. The second example is a 2 m long fault cut in a granite sample and deformed in a large biaxial apparatus at lower stress levels. Using the empirical calibration technique, we are able to determine absolute source parameters including the seismic moment, corner frequency, stress drop, and radiated energy of these magnitude −2.5 to −7 seismic events.

  8. Fluid displacement fronts in porous media: pore scale interfacial jumps, pressure bursts and acoustic emissions

    NASA Astrophysics Data System (ADS)

    Moebius, Franziska; Or, Dani

    2014-05-01

    The macroscopically smooth and regular motion of fluid fronts in porous media is composed of numerous rapid pore-scale interfacial jumps and pressure bursts that involve intense interfacial energy release in the form of acoustic emissions. The characteristics of these pore scale events affect residual phase entrapment and transport properties behind the front. We present experimental studies using acoustic emission technique (AE), rapid imaging, and liquid pressure measurements to characterize these processes during drainage and imbibition in simple porous media. Imbibition and drainage produce different AE signatures (AE amplitudes obey a power law). For rapid drainage, AE signals persist long after cessation of front motion reflecting fluid redistribution and interfacial relaxation. Imaging revealed that the velocity of interfacial jumps often exceeds front velocity by more than 50 fold and is highly inertial component (Re>1000). Pore invasion volumes reduced deduced from pressure fluctuations waiting times (for constant withdrawal rates) show remarkable agreement with geometrically-deduced pore volumes. Discrepancies between invaded volumes and geometrical pores increase with increasing capillary numbers due to constraints on evacuation opportunity times and simultaneous invasion events. A mechanistic model for interfacial motions in a pore-throat network was developed to investigate interfacial dynamics focusing on the role of inertia. Results suggest that while pore scale dynamics were sensitive to variations in pore geometry and boundary conditions, inertia exerted only a minor effect on phase entrapment. The study on pore scale invasion events paints a complex picture of rapid and inertial motions and provides new insights on mechanisms at displacement fronts that are essential for improved macroscopic description of multiphase flows in porous media.

  9. Role of transient water pressure in quarrying: A subglacial experiment using acoustic emissions

    USGS Publications Warehouse

    Cohen, D.; Hooyer, T.S.; Iverson, N.R.; Thomason, J.F.; Jackson, M.

    2006-01-01

    Probably the most important mechanism of glacial erosion is quarrying: the growth and coalescence of cracks in subglacial bedrock and dislodgement of resultant rock fragments. Although evidence indicates that erosion rates depend on sliding speed, rates of crack growth in bedrock may be enhanced by changing stresses on the bed caused by fluctuating basal water pressure in zones of ice-bed separation. To study quarrying in real time, a granite step, 12 cm high with a crack in its stoss surface, was installed at the bed of Engabreen, Norway. Acoustic emission sensors monitored crack growth events in the step as ice slid over it. Vertical stresses, water pressure, and cavity height in the lee of the step were also measured. Water was pumped to the lee of the step several times over 8 days. Pumping initially caused opening of a leeward cavity, which then closed after pumping was stopped and water pressure decreased. During cavity closure, acoustic emissions emanating mostly from the vicinity of the base of the crack in the step increased dramatically. With repeated pump tests this crack grew with time until the step's lee surface was quarried. Our experiments indicate that fluctuating water pressure caused stress thresholds required for crack growth to be exceeded. Natural basal water pressure fluctuations should also concentrate stresses on rock steps, increasing rates of crack growth. Stress changes on the bed due to water pressure fluctuations will increase in magnitude and duration with cavity size, which may help explain the effect of sliding speed on erosion rates. Copyright 2006 by the American Geophysical Union.

  10. Acoustic emission (AE) health monitoring of diaphragm type couplings using neural network analysis

    NASA Astrophysics Data System (ADS)

    Godinez-Azcuaga, Valery F.; Shu, Fong; Finlayson, Richard D.; O'Donnell, Bruce

    2005-05-01

    This paper presents the latest results obtained from Acoustic Emission (AE) monitoring and detection of cracks and/or damage in diaphragm couplings, which are used in some aircraft and engine drive systems. Early detection of mechanical failure in aircraft drive train components is a key safety and economical issue with both military and civil sectors of aviation. One of these components is the diaphragm-type coupling, which has been evaluated as the ideal drive coupling for many application requirements such as high speed, high torque, and non-lubrication. Its flexible axial and angular displacement capabilities have made it indispensable for aircraft drive systems. However, diaphragm-type couplings may develop cracks during their operation. The ability to monitor, detect, identify, and isolate coupling cracks on an operational aircraft system is required in order to provide sufficient advance warning to preclude catastrophic failure. It is known that metallic structures generate characteristic Acoustic Emission (AE) during crack growth/propagation cycles. This phenomenon makes AE very attractive among various monitoring techniques for fault detection in diaphragm-type couplings. However, commercially available systems capable of automatic discrimination between signals from crack growth and normal mechanical noise are not readily available. Positive classification of signals requires experienced personnel and post-test data analysis, which tend to be a time-consuming, laborious, and expensive process. With further development of automated classifiers, AE can become a fully autonomous fault detection technique requiring no human intervention after implementation. AE has the potential to be fully integrated with automated query and response mechanisms for system/process monitoring and control.

  11. Stimulated acoustic emission: pseudo-Doppler shifts seen during the destruction of nonmoving microbubbles.

    PubMed

    Tiemann, K; Pohl, C; Schlosser, T; Goenechea, J; Bruce, M; Veltmann, C; Kuntz, S; Bangard, M; Becher, H

    2000-09-01

    The purpose of this study was to evaluate the appearance and the characteristics of stimulated acoustic emission (SAE) as an echo contrast-specific color Doppler phenomenon with impact on myocardial contrast echocardiography (MCE). Stationary microbubbles of the new contrast agent SH-U 563A (Schering AG) were embedded within a tissue-mimicking gel material. Harmonic power Doppler imaging (H-PDI), color Doppler and pulse-wave Doppler data were acquired using an HDI-5000 equipped with a phased-array transducer (1.67/3.3 MHz). In color Doppler mode, bubble destruction resulted in random noise like Doppler signals. PW-Doppler revealed short "pseudo-Doppler" shifts with a broadband frequency spectrum. Quantification of SAE events by H-PDI demonstrated an exponential decay of signal intensities over successive frames. A strong linear relationship was found between bubble concentration and the square root of the linearized H-PDI signal for a range of concentrations of more than two orders of magnitude (R = 0.993, p < 0.0001). Intensity of the H-PDI signals correlated well with emission power (R = 0.96, p = 0.0014). SAE results from disintegration of microbubbles and can be demonstrated by all Doppler imaging modalities, including H-PDI. Intensity of SAE signals is influenced by the applied acoustic power and correlates highly with the concentration of microbubbles. Because intensity of SAE signals correlates highly with echo contrast concentrations, analysis of SAE signals might be used for quantitative MCE. PMID:11053751

  12. Acoustic emission monitoring of cement-based structures immobilising radioactive waste

    SciTech Connect

    Spasova, L.M.; Ojovan, M.I.; Hayes, M.; Godfrey, H.

    2007-07-01

    The long term performance of cementitious structures immobilising radioactive waste can be affected by physical and chemical processes within the encapsulating materials such as formation of new phases (e.g., vaterite, brucite), degradation of cement phases (e.g., CSH gel, portlandite), degradation of some waste components (e.g., organics), corrosion of metallic constituents (aluminium, magnesium), gas emission, further hydration etc. The corrosion of metals in the high pH cementitious environment is of especial concern as it can potentially cause wasteform cracking. One of the perspective non-destructive methods used to monitor and assess the mechanical properties of materials and structures is based on an acoustic emission (AE) technique. In this study an AE non-destructive technique was used to evaluate the mechanical performance of cementitious structures with encapsulated metallic waste such as aluminium. AE signals generated as a result of aluminium corrosion in a small-size blast furnace slag (BFS)/ordinary Portland cement (OPC) sample were detected, recorded and analysed. A procedure for AE data analysis including conventional parameter-based AE approach and signal-based analysis was applied and demonstrated to provide information on the aluminium corrosion process and its impact on the mechanical performance of the encapsulating cement matrix. (authors)

  13. Neural Network Burst Pressure Prediction in Graphite/Epoxy Pressure Vessels from Acoustic Emission Amplitude Data

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Walker, James L., II; Rowell, Ginger H.

    1995-01-01

    Acoustic emission (AE) data were taken during hydroproof for three sets of ASTM standard 5.75 inch diameter filament wound graphite/epoxy bottles. All three sets of bottles had the same design and were wound from the same graphite fiber; the only difference was in the epoxies used. Two of the epoxies had similar mechanical properties, and because the acoustic properties of materials are a function of their stiffnesses, it was thought that the AE data from the two sets might also be similar; however, this was not the case. Therefore, the three resin types were categorized using dummy variables, which allowed the prediction of burst pressures all three sets of bottles using a single neural network. Three bottles from each set were used to train the network. The resin category, the AE amplitude distribution data taken up to 25 % of the expected burst pressure, and the actual burst pressures were used as inputs. Architecturally, the network consisted of a forty-three neuron input layer (a single categorical variable defining the resin type plus forty-two continuous variables for the AE amplitude frequencies), a fifteen neuron hidden layer for mapping, and a single output neuron for burst pressure prediction. The network trained on all three bottle sets was able to predict burst pressures in the remaining bottles with a worst case error of + 6.59%, slightly greater than the desired goal of + 5%. This larger than desired error was due to poor resolution in the amplitude data for the third bottle set. When the third set of bottles was eliminated from consideration, only four hidden layer neurons were necessary to generate a worst case prediction error of - 3.43%, well within the desired goal.

  14. Identification of the fragmentation of brittle particles during compaction process by the acoustic emission technique.

    PubMed

    Favretto-Cristini, Nathalie; Hégron, Lise; Sornay, Philippe

    2016-04-01

    Some nuclear fuels are currently manufactured by a powder metallurgy process that consists of three main steps, namely preparation of the powders, powder compaction, and sintering of the compact. An optimum between size, shape and cohesion of the particles of the nuclear fuels must be sought in order to obtain a compact with a sufficient mechanical strength, and to facilitate the release of helium and fission gases during irradiation through pores connected to the outside of the pellet after sintering. Being simple to adapt to nuclear-oriented purposes, the Acoustic Emission (AE) technique is used to control the microstructure of the compact by monitoring the compaction of brittle Uranium Dioxide (UO2) particles of a few hundred micrometers. The objective is to identify in situ the mechanisms that occur during the UO2 compaction, and more specifically the particle fragmentation that is linked to the open porosity of the nuclear matter. Three zones of acoustic activity, strongly related to the applied stress, can be clearly defined from analysis of the continuous signals recorded during the compaction process. They correspond to particle rearrangement and/or fragmentation. The end of the noteworthy fragmentation process is clearly defined as the end of the significant process that increases the compactness of the material. Despite the fact that the wave propagation strongly evolves during the compaction process, the acoustic signature of the fragmentation of a single UO2 particle and a bed of UO2 particles under compaction is well identified. The waveform, with a short rise time and an exponential-like decay of the signal envelope, is the most reliable descriptor. The impact of the particle size and cohesion on the AE activity, and then on the fragmentation domain, is analyzed through the discrete AE signals. The maximum amplitude of the burst signals, as well as the mean stress corresponding to the end of the recorded AE, increase with increasing mean diameter of

  15. Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media — A review

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Cohen, Denis; Or, Dani

    2012-05-01

    The formation of cracks and emergence of shearing planes and other modes of rapid macroscopic failure in geologic granular media involve numerous grain scale mechanical interactions often generating high frequency (kHz) elastic waves, referred to as acoustic emissions (AE). These acoustic signals have been used primarily for monitoring and characterizing fatigue and progressive failure in engineered systems, with only a few applications concerning geologic granular media reported in the literature. Similar to the monitoring of seismic events preceding an earthquake, AE may offer a means for non-invasive, in-situ, assessment of mechanical precursors associated with imminent landslides or other types of rapid mass movements (debris flows, rock falls, snow avalanches, glacier stick-slip events). Despite diverse applications and potential usefulness, a systematic description of the AE method and its relevance to mechanical processes in Earth sciences is lacking. This review is aimed at providing a sound foundation for linking observed AE with various micro-mechanical failure events in geologic granular materials, not only for monitoring of triggering events preceding mass mobilization, but also as a non-invasive tool in its own right for probing the rich spectrum of mechanical processes at scales ranging from a single grain to a hillslope. We review first studies reporting use of AE for monitoring of failure in various geologic materials, and describe AE generating source mechanisms in mechanically stressed geologic media (e.g., frictional sliding, micro-crackling, particle collisions, rupture of water bridges, etc.) including AE statistical features, such as frequency content and occurrence probabilities. We summarize available AE sensors and measurement principles. The high sampling rates of advanced AE systems enable detection of numerous discrete failure events within a volume and thus provide access to statistical descriptions of progressive collapse of systems

  16. Evidence of Increasing Acoustic Emissivity at High Frequency with Solar Cycle 23 in Sun-as-a-star Observations

    SciTech Connect

    Simoniello, R.; Finsterle, W.

    2009-09-16

    We used long high-quality unresolved (Sun-as-a-star observations) data collected by GOLF and VIRGO instruments on board the ESA/NASA SOHO satellite to investigate the amplitude variation with solar cycle 23 in the high-frequency band (5.7<{nu}<6.3 mHz). We found an enhancement of acoustic emissivity over the ascending phase of about 18{+-}3 in velocity observations and a slight enhancement of 3{+-}2 in intensity. Mode conversion from fast acoustic to fast magneto-acoustic waves could explain the enhancement in velocity observations. These findings open up the possibility to apply the same technique to stellar intensity data, in order to investigate stellar-magnetic activity.

  17. Testing of containers made of glass-fiber reinforced plastic with the aid of acoustic emission analysis

    NASA Technical Reports Server (NTRS)

    Wolitz, K.; Brockmann, W.; Fischer, T.

    1979-01-01

    Acoustic emission analysis as a quasi-nondestructive test method makes it possible to differentiate clearly, in judging the total behavior of fiber-reinforced plastic composites, between critical failure modes (in the case of unidirectional composites fiber fractures) and non-critical failure modes (delamination processes or matrix fractures). A particular advantage is that, for varying pressure demands on the composites, the emitted acoustic pulses can be analyzed with regard to their amplitude distribution. In addition, definite indications as to how the damages occurred can be obtained from the time curves of the emitted acoustic pulses as well as from the particular frequency spectrum. Distinct analogies can be drawn between the various analytical methods with respect to whether the failure modes can be classified as critical or non-critical.

  18. Detecting Acoustic Emissions With/Without Dehydration of Serpentine Outside P-T Field of Conventional Brittle Failure

    NASA Astrophysics Data System (ADS)

    Jung, H.; Fei, Y.; Silver, P. G.; Green, H. W.

    2005-12-01

    It is currently thought that earthquakes cannot be triggered at depths greater than ~60 km by unassisted brittle failure or frictional sliding, but could be triggered by dehydration embrittlement of hydrous minerals (Raleigh and Paterson, 1965; Green and Houston, 1995; Kirby, 1995; Jung et al., 2004). Using a new multianvil-based system for detecting acoustic emissions with four channels at high pressure and high temperature that was recently developed (Jung et al., 2005), we tested this hypothesis by deforming samples of serpentine. We found that acoustic emissions were detected not only during/after the dehydration of serpentine, but even in the absence of dehydration. These emissions occurred at high pressure and high temperature, and thus outside pressure-temperature field of conventional brittle failure. Backscattered-electron images of microstructures of the post-run specimen revealed fault slip at elevated pressure, with offsets of up to ~500 μm, even without dehydration. Analysis of P-wave travel times from the four sensors confirmed that the acoustic emissions originated from within the specimen during fault slip. These observations suggest that earthquakes can be triggered by slip along a fault containing serpentine at significantly higher pressure and temperature conditions than that previously thought, even without dehydration. They are thus consistent with faulting mechanisms that appeal to dehydration embrittlement, as well as those that rely solely on the rheology of non-dehydrated serpentine.

  19. Identifying co-located acoustic emissions with highly correlated waveforms during stick-slip experiments

    NASA Astrophysics Data System (ADS)

    Goebel, T. H.; Zechar, J. D.; Becker, T. W.; Dresen, G. H.

    2012-12-01

    Repeating earthquakes, which may result from the repeated failure of strong fault patches, could help advance the understanding of structural differences of faults. They also provide a framework to test basic assumptions in earthquake physics and to quantify earthquake predictability. Our current efforts concentrate on a broadening of the understanding of micro-seismicity characteristics and its relation to fault structure and larger magnitude seismic events. In this study, we consider the possibly smallest repeating earthquakes: those generated in a laboratory setting. We present results from stick-slip experiments conducted on saw-cut surfaces with different roughness. During these tests we identified repeating acoustic emissions (AEs), i.e, largely co-located AEs with highly similar waveforms, and relate them to the difference in roughness of a particular surfaces. For these test we used three homogeneous Westerly granite cores that were pre-cut at a 30 degree angle to the loading axis. The saw-cuts were ground to be largely parallel and to create a specific roughness using silicon-carbide abrasives with different grain-sizes. We loaded the so prepared surfaces axially at a confining pressure of 120 to 150 MPa until several (up to 7) stick-slips occurred and recorded mechanical data and AEs, including full waveforms. AE locations were determined using automatically-picked first-arrival times of a 14 channel miniature seismic array. The location uncertainty was between 1-4 mm. In identifying repeating AEs, we conducted a systematic sensitivity analysis. Initially, we only imposed constrains on waveforms similarity and tested the influence of distance-constrains on the identification process. For a more restrictive choice of cross-correlation coefficient and correlation windows, the size of clusters did not grow above twice the approximate uncertainties of acoustic emission locations. Thus, repeating AEs identified with our algorithm are representative of tectonic

  20. Tuning avalanche criticality: Acoustic emission during the martensitic transformation of a compressed Ni-Mn-Ga single crystal

    NASA Astrophysics Data System (ADS)

    Niemann, R.; Baró, J.; Heczko, O.; Schultz, L.; Fähler, S.; Vives, E.; Mañosa, L.; Planes, A.

    2012-12-01

    The propagation of a phase front during a thermally induced martensitic transition is discontinuous due to pinning at various defects, an effect which results in acoustic emission. Here we analyze the consequences of an applied compressive stress exemplarily on a Ni50.4Mn27.9Ga21.7 single crystal. Our experiments show that the distribution of the energies of the acoustic emission events follows a power law for more than three decades. This indicates that the transition exhibits avalanche criticality. The exponent characterizing the distribution of energies depends on the applied stress, and decreases from 1.9±0.1 at zero stress to 1.5±0.2 at stress above 3MPa. This decrease could be attributed to the reduced multiplicity of variants possible under uniaxial compression.

  1. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    PubMed Central

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-01

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467

  2. Acoustic emission characterization of the onset of corrosion in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Di Benedetti, M.; De Cais, E.; Karim, Z.; Loreto, G.; Presuel, F.; Nanni, A.

    2012-04-01

    The development of techniques capable of evaluating deterioration of reinforced concrete (RC) is instrumental to the advancement of the structural health monitoring (SHM) and service life estimate for constructed facilities. One of the main causes leading to degradation of RC is the corrosion of the steel reinforcement. This process can be modeled phenomenologically, while laboratory tests aimed at studying durability responses are typically accelerated in order to provide useful results within a realistic period of time. Among nondestructive methods, acoustic emission (AE) is emerging as a tool to detect the onset and progression of deterioration mechanisms. In this paper, the development of accelerated corrosion and continuous AE monitoring test set-up for RC specimens are presented. Relevant information are provided with regard to the characteristics of the corrosion circuit, continuous measurement and acquisition of corrosion potential, selection of AE sensors and AE parameter setting. Results from small-scale pre-notched RC specimens aim to isolate the frequency spectrum where the corrosion first takes place. Waveform analysis critical in the definition of a prognosis model will extend the AE dataset for the onset of corrosion.

  3. Acoustic Emission Source Location Using a Distributed Feedback Fiber Laser Rosette

    PubMed Central

    Huang, Wenzhu; Zhang, Wentao; Li, Fang

    2013-01-01

    This paper proposes an approach for acoustic emission (AE) source localization in a large marble stone using distributed feedback (DFB) fiber lasers. The aim of this study is to detect damage in structures such as those found in civil applications. The directional sensitivity of DFB fiber laser is investigated by calculating location coefficient using a method of digital signal analysis. In this, autocorrelation is used to extract the location coefficient from the periodic AE signal and wavelet packet energy is calculated to get the location coefficient of a burst AE source. Normalization is processed to eliminate the influence of distance and intensity of AE source. Then a new location algorithm based on the location coefficient is presented and tested to determine the location of AE source using a Delta (Δ) DFB fiber laser rosette configuration. The advantage of the proposed algorithm over the traditional methods based on fiber Bragg Grating (FBG) include the capability of: having higher strain resolution for AE detection and taking into account two different types of AE source for location. PMID:24141266

  4. Acoustic emission for characterising the crack propagation in strain-hardening cement-based composites (SHCC)

    SciTech Connect

    Paul, S.C.; Pirskawetz, S.; Zijl, G.P.A.G. van; Schmidt, W.

    2015-03-15

    This paper presents the analysis of crack propagation in strain-hardening cement-based composite (SHCC) under tensile and flexural load by using acoustic emission (AE). AE is a non-destructive technique to monitor the development of structural damage due to external forces. The main objective of this research was to characterise the cracking behaviour in SHCC in direct tensile and flexural tests by using AE. A better understanding of the development of microcracks in SHCC will lead to a better understanding of pseudo strain-hardening behaviour of SHCC and its general performance. ARAMIS optical deformation analysis was also used in direct tensile tests to observe crack propagation in SHCC materials. For the direct tensile tests, SHCC specimens were prepared with polyvinyl alcohol (PVA) fibre with three different volume percentages (1%, 1.85% and 2.5%). For the flexural test beam specimens, only a fibre dosage of 1.85% was applied. It was found that the application of AE in SHCC can be a good option to analyse the crack growth in the specimens under increasing load, the location of the cracks and most importantly the identification of matrix cracking and fibre rupture or slippage.

  5. Acoustic Emission Monitoring of Multicell Reinforced Concrete Box Girders Subjected to Torsion

    PubMed Central

    Bagherifaez, Marya; Behnia, Arash; Majeed, Abeer Aqeel; Hwa Kian, Chai

    2014-01-01

    Reinforced concrete (RC) box girders are a common structural member for road bridges in modern construction. The hollow cross-section of a box girder is ideal in carrying eccentric loads or torques introduced by skew supports. This study employed acoustic emission (AE) monitoring on multicell RC box girder specimens subjected to laboratory-based torsion loading. Three multicell box girder specimens with different cross-sections were tested. The aim is to acquire AE analysis data indicative for characterizing torsion fracture in the box girders. It was demonstrated through appropriate parametric analysis that the AE technique could be utilized to effectively classify fracture developed in the specimens for describing their mechanical behavior under torsion. AE events localization was presented to illustrate the trend of crack and damage propagation in different stages of fracture. It could be observed that spiral-like patterns of crack were captured through AE damage localization system and damage was quantified successfully in different stages of fracture by using smoothed b-value analysis. PMID:25180203

  6. Acoustic emission studies for characterization of fatigue crack growth behavior in HSLA steel

    NASA Astrophysics Data System (ADS)

    Kumar, Jalaj; Ahmad, S.; Mukhopadhyay, C. K.; Jayakumar, T.; Kumar, Vikas

    2016-01-01

    High strength low alloy (HSLA) steels are a group of low carbon steels and used in oil and gas pipelines, automotive components, offshore structures and shipbuilding. Fatigue crack growth (FCG) characteristics of a HSLA steel have been studied at two different stress ratios (R = 0.3 and 0.5). Acoustic emission (AE) signals generated during the FCG tests have been used to understand the FCG processes. The AE signals were captured by mounting two piezoelectric sensors on compact tension specimens in liner location configuration. The AE generated in stage II of the linear Paris region of FCG has been attributed to the presence of two sub-stages with two different slopes. The AE generated at higher values of stress intensity factor is found to be useful to identify the transition from stage II to stage III of the FCG. AE location analysis has provided support for increased damage at the crack tip for higher stress ratio. The peak stress intensity (Kmax) values at the crack tip have shown good correlation with the transitions from stage IIa to stage IIb and stage II to stage III of the FCG for the two stress ratios.

  7. Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors--a comparative study.

    PubMed

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-14

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.

  8. Clustering reveals cavitation-related acoustic emission signals from dehydrating branches.

    PubMed

    Vergeynst, Lidewei L; Sause, Markus G R; De Baerdemaeker, Niels J F; De Roo, Linus; Steppe, Kathy

    2016-06-01

    The formation of air emboli in the xylem during drought is one of the key processes leading to plant mortality due to loss in hydraulic conductivity, and strongly fuels the interest in quantifying vulnerability to cavitation. The acoustic emission (AE) technique can be used to measure hydraulic conductivity losses and construct vulnerability curves. For years, it has been believed that all the AE signals are produced by the formation of gas emboli in the xylem sap under tension. More recent experiments, however, demonstrate that gas emboli formation cannot explain all the signals detected during drought, suggesting that different sources of AE exist. This complicates the use of the AE technique to measure emboli formation in plants. We therefore analysed AE waveforms measured on branches of grapevine (Vitis vinifera L. 'Chardonnay') during bench dehydration with broadband sensors, and applied an automated clustering algorithm in order to find natural clusters of AE signals. We used AE features and AE activity patterns during consecutive dehydration phases to identify the different AE sources. Based on the frequency spectrum of the signals, we distinguished three different types of AE signals, of which the frequency cluster with high 100-200 kHz frequency content was strongly correlated with cavitation. Our results indicate that cavitation-related AE signals can be filtered from other AE sources, which presents a promising avenue into quantifying xylem embolism in plants in laboratory and field conditions. PMID:27095256

  9. Acoustic emission monitoring of multicell reinforced concrete box girders subjected to torsion.

    PubMed

    Bagherifaez, Marya; Behnia, Arash; Majeed, Abeer Aqeel; Hwa Kian, Chai

    2014-01-01

    Reinforced concrete (RC) box girders are a common structural member for road bridges in modern construction. The hollow cross-section of a box girder is ideal in carrying eccentric loads or torques introduced by skew supports. This study employed acoustic emission (AE) monitoring on multicell RC box girder specimens subjected to laboratory-based torsion loading. Three multicell box girder specimens with different cross-sections were tested. The aim is to acquire AE analysis data indicative for characterizing torsion fracture in the box girders. It was demonstrated through appropriate parametric analysis that the AE technique could be utilized to effectively classify fracture developed in the specimens for describing their mechanical behavior under torsion. AE events localization was presented to illustrate the trend of crack and damage propagation in different stages of fracture. It could be observed that spiral-like patterns of crack were captured through AE damage localization system and damage was quantified successfully in different stages of fracture by using smoothed b-value analysis. PMID:25180203

  10. Evaluation of marginal failures of dental composite restorations by acoustic emission analysis.

    PubMed

    Gu, Ja-Uk; Choi, Nak-Sam

    2013-01-01

    In this study, a nondestructive method based on acoustic emission (AE) analysis was developed to evaluate the marginal failure states of dental composite restorations. Three types of ring-shaped substrates, which were modeled after a Class I cavity, were prepared from polymethyl methacrylate, stainless steel, and human molar teeth. A bonding agent and a composite resin were applied to the ring-shaped substrates and cured by light exposure. At each time-interval measurement, the tooth substrate presented a higher number of AE hits than polymethyl methacrylate and steel substrates. Marginal disintegration estimations derived from cumulative AE hits and cumulative AE energy parameters showed that a signification portion of marginal gap formation was already realized within 1 min at the initial light-curing stage. Estimation based on cumulative AE energy gave a higher level of marginal failure than that based on AE hits. It was concluded that the AE analysis method developed in this study was a viable approach in predicting the clinical survival of dental composite restorations efficiently within a short test period.

  11. Spatial scanning for anomaly detection in acoustic emission testing of an aerospace structure

    NASA Astrophysics Data System (ADS)

    Hensman, James; Worden, Keith; Eaton, Mark; Pullin, Rhys; Holford, Karen; Evans, Sam

    2011-10-01

    Acoustic emission (AE) monitoring of engineering structures potentially provides a convenient, cost-effective means of performing structural health monitoring. Networks of AE sensors can be easily and unobtrusively installed upon structures, giving the ability to detect and locate damage-related strain releases ('events') in the structure. Use of the technique is not widespread due to the lack of a simple and effective method for detecting abnormal activity levels: the sensitivity of AE sensor networks is such that events unrelated to damage are prevalent in most applications. In this publication, we propose to monitor AE activity in a structure using a spatial scanning statistic, developed and used effectively in the field of epidemiology. The technique is demonstrated on an aerospace structure - an Airbus A320 main landing gear fitting - undergoing fatigue loading, and the method is compared to existing techniques. Despite its simplicity, the scanning statistic proves to be an extremely effective tool in detecting the onset of damage in the structure: it requires little to no user intervention or expertise, is inexpensive to compute and has an easily interpretable output. Furthermore, the generic nature of the method allows the technique to be used in a variety of monitoring scenarios, to detect damage in a wide range of structures.

  12. Non-destructive evaluation of laboratory scale hydraulic fracturing using acoustic emission

    NASA Astrophysics Data System (ADS)

    Hampton, Jesse Clay

    The primary objective of this research is to develop techniques to characterize hydraulic fractures and fracturing processes using acoustic emission monitoring based on laboratory scale hydraulic fracturing experiments. Individual microcrack AE source characterization is performed to understand the failure mechanisms associated with small failures along pre-existing discontinuities and grain boundaries. Individual microcrack analysis methods include moment tensor inversion techniques to elucidate the mode of failure, crack slip and crack normal direction vectors, and relative volumetric deformation of an individual microcrack. Differentiation between individual microcrack analysis and AE cloud based techniques is studied in efforts to refine discrete fracture network (DFN) creation and regional damage quantification of densely fractured media. Regional damage estimations from combinations of individual microcrack analyses and AE cloud density plotting are used to investigate the usefulness of weighting cloud based AE analysis techniques with microcrack source data. Two granite types were used in several sample configurations including multi-block systems. Laboratory hydraulic fracturing was performed with sample sizes ranging from 15 x 15 x 25 cm3 to 30 x 30 x 25 cm 3 in both unconfined and true-triaxially confined stress states using different types of materials. Hydraulic fracture testing in rock block systems containing a large natural fracture was investigated in terms of AE response throughout fracture interactions. Investigations of differing scale analyses showed the usefulness of individual microcrack characterization as well as DFN and cloud based techniques. Individual microcrack characterization weighting cloud based techniques correlated well with post-test damage evaluations.

  13. Detection of Adult Beetles Inside the Stored Wheat Mass Based on Their Acoustic Emissions.

    PubMed

    Eliopoulos, P A; Potamitis, I; Kontodimas, D Ch; Givropoulou, E G

    2015-12-01

    The efficacy of bioacoustics in detecting the presence of adult beetles inside the grain mass was evaluated in the laboratory. A piezoelectric sensor and a portable acoustic emission amplifier connected with a computer were used. Adults of the most common beetle pests of stored wheat have been detected in varying population densities (0.1, 0.5, 1, and 2 adults per kilogram of wheat). The verification of the presence of the insect individuals was achieved through automated signal parameterization and classification. We tried out two different ways to detect impulses: 1) by applying a Hilbert transform on the audio recording and 2) by subtracting a noise estimation of the recording from the spectral content of the recording, thus allowing the frequency content of possible impulses to emerge. Prediction for infestation was rated falsely negative in 60-74%, 48-60%, 0-28%, and 0-4% of the cases when actual population density was 0.1, 0.5, 1, and 2 adults per kilogram, respectively, irrespective of pest species. No significant differences were recorded in positive predictions among different species in almost all cases. The system was very accurate (72-100%) in detecting 1 or 2 insects per kilogram of hard wheat grain, which is the standard threshold for classifying a grain mass "clean" or "infested." Our findings are discussed on the basis of enhancing the use of bioacoustics in stored-product IPM framework.

  14. Acoustic emission monitoring of low velocity impact damage in graphite/epoxy laminates during tensile loading

    NASA Technical Reports Server (NTRS)

    Parker, Bradford H.

    1992-01-01

    An acoustic emission (AE) system was set up in a linear location data acquisition mode to monitor the tensile loading of eight-ply quasi-isotropic graphite/epoxy specimens containing low velocity impact damage. The impact damage was induced using an instrumented drop weight tower. During impact, specimens were supported by either an aluminum plate or a membrane configuration. Cross-sectional examinations revealed that the aluminum plate configuration resulted in primarily matrix cracking and back surface fiber failure. The membrane support resulted in only matrix cracking and delamination damage. Penetrant enhanced radiography and immersion ultrasonics were used in order to assess the amount of impact damage in each tensile specimen. During tensile loading, AE reliably detected and located the damage sites which included fiber failure. All specimens with areas of fiber breakage ultimately failed at the impact site. AE did not reliably locate damage which consisted of only delaminations and matrix cracking. Specimens with this type of damage did not ultimately fail at the impact site. In summary, AE demonstrated the ability to increase the reliability of structural proof tests; however, the successful use of this technique requires extensive baseline testing.

  15. Application of Acoustic Emission on the Characterization of Fracture in Textile Reinforced Cement Laminates

    PubMed Central

    Blom, J.; Wastiels, J.; Aggelis, D. G.

    2014-01-01

    This work studies the acoustic emission (AE) behavior of textile reinforced cementitious (TRC) composites under flexural loading. The main objective is to link specific AE parameters to the fracture mechanisms that are successively dominating the failure of this laminated material. At relatively low load, fracture is initiated by matrix cracking while, at the moment of peak load and thereafter, the fiber pull-out stage is reached. Stress modeling of the material under bending reveals that initiation of shear phenomena can also be activated depending on the shape (curvature) of the plate specimens. Preliminary results show that AE waveform parameters like frequency and energy are changing during loading, following the shift of fracturing mechanisms. Additionally, the AE behavior of specimens with different curvature is very indicative of the stress mode confirming the results of modeling. Moreover, AE source location shows the extent of the fracture process zone and its development in relation to the load. It is seen that AE monitoring yields valuable real time information on the fracture of the material and at the same time supplies valuable feedback to the stress modeling. PMID:24605050

  16. Investigation of Hydraulic Fracture Propagation Using a Post-Peak Control System Coupled with Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Chen, Li-Hsien; Chen, Wei-Chih; Chen, Yao-Chung; Benyamin, Leo; Li, An-Jui

    2015-05-01

    This study investigates the fracture mechanism of fluid coupled with a solid resulting from hydraulic fracture. A new loading machine was designed to improve upon conventional laboratory hydraulic fracture testing and to provide a means of better understanding fracture behavior of solid media. Test specimens were made of cement mortar. An extensometer and acoustic emission (AE) monitoring system recorded the circumferential deformation and crack growth location/number during the test. To control the crack growth at the post-peak stage the input fluid rate can be adjusted automatically according to feedback from the extensometer. The complete stress-deformation curve, including pre- and post-peak stages, was therefore obtained. The crack extension/growth developed intensively after the applied stress reached the breakdown pressure. The number of cracks recorded by the AE monitoring system was in good agreement with the amount of deformation (expansion) recorded by the extensometer. The results obtained in this paper provide a better understanding of the hydraulic fracture mechanism which is useful for underground injection projects.

  17. Development of Methodology to Assess the Failure Behaviour of Bamboo Single Fibre by Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    Alam, Md. Saiful; Gulshan, Fahmida; Ahsan, Qumrul; Wevers, Martine; Pfeiffer, Helge; van Vuure, Aart-Willem; Osorio, Lina; Verpoest, Ignaas

    2016-06-01

    Acoustic emission (AE) was used as a tool for detecting, evaluating and for better understanding of the damage mechanism and failure behavior in composites during mechanical loading. Methodology was developed for tensile test of natural fibres (bamboo single fibre). A series of experiments were performed and load drops (one or two) were observed in the load versus time graphs. From the observed AE parameters such as amplitude, energy, duration etc. significant information corresponding to the load drops were found. These AE signals from the load drop occurred from such failure as debonding between two elementary fibre or from join of elementary fibre at edge. The various sources of load at first load drop was not consistent for the different samples (for a particular sample the value is 8 N, stress: 517.51 MPa). Final breaking of fibre corresponded to saturated level AE amplitude of preamplifier (99.9 dB) for all samples. Therefore, it was not possible to determine the exact AE energy value for final breaking. Same methodology was used for tensile test of three single fibres, which gave clear indication of load drop before the final breaking of first and second fibre.

  18. Evaluating damage potential of cryogenic concrete using acoustic emission sensors and permeability testing

    NASA Astrophysics Data System (ADS)

    Kogbara, Reginald B.; Parsaei, Boback; Iyengar, Srinath R.; Grasley, Zachary C.; Masad, Eyad A.; Zollinger, Dan G.

    2014-04-01

    This study evaluates the damage potential of concrete of different mix designs subjected to cryogenic temperatures, using acoustic emission (AE) and permeability testing. The aim is to investigate design methodologies that might be employed to produce concrete that resists damage when cooled to cryogenic temperatures. Such concrete would be suitable for primary containment of liquefied natural gas (LNG) and could replace currently used 9% Ni steel, thereby leading to huge cost savings. In the experiments described, concrete cubes, 150 mm x 150 mm x 150 mm, were cast using four different mix designs. The four mixes employed siliceous river sand as fine aggregate. Moreover, limestone, sandstone, trap rock and lightweight aggregate were individually used as coarse aggregates in the mixes. The concrete samples were then cooled from room temperature (20°C) to cryogenic temperature (-165°C) in a temperature chamber. AE sensors were placed on the concrete cubes during the cryogenic freezing process. The damage potential was evaluated in terms of the growth of damage as determined from AE, as a function of temperature and concrete mixture design. The damage potential observed was validated with water permeability testing. Initial results demonstrate the effects of the coefficient of thermal expansion (CTE) of the aggregates on damage growth. Concrete damage (cracking) resistance generally decreased with increasing coarse aggregate CTE, and was in the order, limestone ≥ trap rock << lightweight aggregate ≥ sandstone. Work is in progress to fully understand thermal dilation and damage growth in concrete due to differential CTE of its components.

  19. Acoustic emission-based sensor analysis and damage classification for structural health monitoring of composite structures

    NASA Astrophysics Data System (ADS)

    Uprety, Bibhisha

    Within the aerospace industry the need to detect and locate impact events, even when no visible damage is present, is important both from the maintenance and design perspectives. This research focused on the use of Acoustic Emission (AE) based sensing technologies to identify impact events and characterize damage modes in composite structures for structural health monitoring. Six commercially available piezoelectric AE sensors were evaluated for use with impact location estimation algorithms under development at the University of Utah. Both active and passive testing were performed to estimate the time of arrival and plate wave mode velocities for impact location estimation. Four sensors were recommended for further comparative investigations. Furthermore, instrumented low-velocity impact experiments were conducted on quasi-isotropic carbon/epoxy composite laminates to initiate specific types of damage: matrix cracking, delamination and fiber breakage. AE signal responses were collected during impacting and the test panels were ultrasonically C-scanned after impact to identify the internal damage corresponding to the AE signals. Matrix cracking and delamination damage produced using more compliant test panels and larger diameter impactor were characterized by lower frequency signals while fiber breakage produced higher frequency responses. The results obtained suggest that selected characteristics of sensor response signals can be used both to determine whether damage is produced during impacting and to characterize the types of damage produced in an impacted composite structure.

  20. Identification of the Onset of Cracking in Gear Teeth Using Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Pullin, R.; Clarke, A.; Eaton, M. J.; Pearson, M. R.; Holford, K. M.

    2012-08-01

    The development of diagnostic methods for gear tooth faults in aerospace power transmission systems is an active research area being driven largely by the interests of military organisations or large aerospace organisations. In aerospace applications, the potential results of gear failure are serious, ranging from increased asset downtime to, at worst, catastrophic failure with life-threatening consequences. New monitoring techniques which can identify the onset of failure at earlier stages are in demand. Acoustic Emission (AE) is the most sensitive condition monitoring tool and is a passive technique that detects the stress wave emitted by a structure as cracks propagate. In this study a gear test rig that allows the fatigue loading of an individual gear tooth was utilised. The rig allows a full AE analysis of damage signatures in gear teeth without the presence of constant background noise due to rotational and frictional sources. Furthermore this approach allows validation of AE results using crack gauges or strain gauges. Utilising a new approach to AE monitoring a sensor was mounted on the gear and used to continuously capture AE data for a complete fatigue load cycle of data, rather than the traditional approach where discrete signals are captured on a threshold basis. Data was captured every 10th load cycle for the duration of the test. A developed fast fourier transform analysis technique was compared with traditional analytical methods. In this investigation the developed techniques were validated against visual inspection and were shown to be far superior to the traditional approach.

  1. Analytical modelling of acoustic emission from buried or surface-breaking cracks under stress

    NASA Astrophysics Data System (ADS)

    Ben Khalifa, W.; Jezzine, K.; Hello, G.; Grondel, S.

    2012-03-01

    Acoustic emission (AE) is a non-destructive testing method used in various industries (aerospace, petrochemical and pressure-vessel industries in general, power generation, civil engineering, mechanical engineering, etc...) for the examination of large structures subjected to various stresses (e.g. mechanical loading).The energy released by a defect under stress (the AE phenomenon) can propagate as guided waves in thin structures or as surface Rayleigh waves in thick ones. Sensors (possibly permanently) are positioned at various locations on the structure under examination and are assumed to be sensitive to these waves. Then, post-processing tools typically based on signal processing and triangulation algorithms can be used to inverse these data, allowing one to estimate the position of the defect from which emanates the waves measured. The French Atomic Energy Commission is engaged in the development of tools for simulating AE examinations. These tools are based on specific models for the AE sources, for the propagation of guided or Rayleigh waves and for the behaviour of AE sensors. Here, the coupling of a fracture mechanics based model for AE source and surface/guided wave propagation models is achieved through an integral formulation relying on the elastodynamic reciprocity principle. As a first approximation, a simple piston-like model is used to predict the sensitivity of AE sensors. Predictions computed by our simulation tool are compared to results from the literature for validation purpose.

  2. Classification of alkali-silica reaction and corrosion distress using acoustic emission

    NASA Astrophysics Data System (ADS)

    Abdelrahman, Marwa; ElBatanouny, Mohamed; Serrato, Michael; Dixon, Kenneth; Larosche, Carl; Ziehl, Paul

    2016-02-01

    The Nuclear Regulatory Commission regulates approximately 100 commercial nuclear power reactor facilities that contribute about 20% of the total electric energy produced in the United States. Half of these reactor facilities are over 30 years old and are approaching their original design service life. Due to economic and durability considerations, significant portions of many of the facilities were constructed with reinforced concrete, including the containment facilities, cooling towers, and foundations. While most of these concrete facilities have performed exceptionally well throughout their initial expected service life, some are beginning to exhibit different forms of concrete deterioration. In this study, acoustic emission (AE) is used to monitor two main concrete deterioration mechanisms; alkali-silica reaction (ASR) distress and corrosion of reinforcing steel. An accelerated ASR test was conducted where specimens were continuously monitored with AE. The results show that AE can detect and classify damage due to ASR distress in the specimens. AE was also used to remotely monitor active corrosion regions in a reactor facility. AE monitoring of accelerated corrosion testing was also conducted on a concrete block specimen cut from a similar reactor building. Electrochemical measurements were conducted to correlate AE activity to quantifiable corrosion measurements and to enhance capabilities for service life prediction.

  3. Role of superposition of dislocation avalanches in the statistics of acoustic emission during plastic deformation.

    PubMed

    Lebyodkin, M A; Shashkov, I V; Lebedkina, T A; Mathis, K; Dobron, P; Chmelik, F

    2013-10-01

    Various dynamical systems with many degrees of freedom display avalanche dynamics, which is characterized by scale invariance reflected in power-law statistics. The superposition of avalanche processes in real systems driven at a finite velocity may influence the experimental determination of the underlying power law. The present paper reports results of an investigation of this effect using the example of acoustic emission (AE) accompanying plastic deformation of crystals. Indeed, recent studies of AE did not only prove that the dynamics of crystal defects obeys power-law statistics, but also led to a hypothesis of universality of the scaling law. We examine the sensitivity of the apparent statistics of AE to the parameters applied to individualize AE events. Two different alloys, MgZr and AlMg, both displaying strong AE but characterized by different plasticity mechanisms, are investigated. It is shown that the power-law indices display a good robustness in wide ranges of parameters even in the conditions leading to very strong superposition of AE events, although some deviations from the persistent values are also detected. The totality of the results confirms the scale-invariant character of deformation processes on the scale relevant to AE, but uncovers essential differences between the power-law exponents found for two kinds of alloys.

  4. Diamond wheel wear sensing with acoustic emission --wheel wear mechanisms and the effects of process variables

    SciTech Connect

    Tang, Jianshe; Dornfeld, D.; Syoji, Katsuo

    1996-12-31

    The wear of diamond wheels has significant influence on the surface finish of ground ceramics and the resulting subsurface fracture damage. For optimization and control of the grinding process it is necessary to monitor the wear states of the grinding wheels. A project on diamond wheel wear sensing with acoustic emission was started recently in the Laboratory of Manufacturing Automation at the University of California at Berkeley. The main aims of the project are: (a) to identify the possible wheel wear patterns at different combinations of bond materials, grits, and grinding conditions; (b) to develop suitable AE signal processing methods to extract the AE features to represent the wheel wear characteristics, and establish a strategy for using AE for in-process monitoring of diamond wheel wear in grinding of ceramics. This paper presents the results of part of the project. It mainly focuses on the diamond wheel wear mechanisms, the effects of process variables including basic wheel elements and grinding parameters, and the relationship with AErms and AE frequency content.

  5. Acceleration of acoustical emission precursors preceding failure in sheared granular material

    NASA Astrophysics Data System (ADS)

    Johnson, P. A.; Kaproth, B. M.; Scuderi, M.; Ferdowsi, B.; Griffa, M.; Carmeliet, J.; Guyer, R. A.; Le Bas, P.; Trugman, D.; Ben Naim, E.; Daub, E. G.; Marone, C.

    2013-12-01

    Earthquake precursor observations are becoming progressively more widespread as instrumentation improves, in particular for interplate earthquakes (e.g., Bouchon et al., Nature Geoscience, 2013). One question regarding precursor behavior is whether or not they are due to a triggering cascade where one precursor triggers the next, or if they are independent events resulting from slow slip. We investigate this topic in order to characterize the physics of precursors, by applying laboratory experiments of sheared granular media in a bi-axial configuration. We sheared layers of glass beads under applied normal loads of 2-8 MPa, shearing rates of 5-10 μm/s at room temperature and humidity. We show that above ~ 3 MPa load, precursors are manifest by an exponential increase in time of the acoustic emission (AE), with an additional acceleration of event rate leading to the primary stick-slip failure event. The recorded AE are clearly correlated with small drops in shear stress during slow slip prior to the main stick-slip failure. Event precursors take place where the material is still modestly dilating, yet while the macroscopic frictional strength is no longer increasing. The precursors are of order 100x smaller in recorded strain amplitude than the stick-slip events. We are currently working on statistical methods to determine whether or not the precursors are triggered cascades. [reference: Bouchon et al., (2013) Nature Geoscience 6, 299-302 doi:10.1038/ngeo1770].

  6. Fiber-optic sensor-based remote acoustic emission measurement of composites

    NASA Astrophysics Data System (ADS)

    Yu, Fengming; Okabe, Yoji; Wu, Qi; Shigeta, Naoki

    2016-10-01

    Acoustic emission (AE) detection functioning at high temperatures could clarify the damage process in high heat-resistant composites. To achieve the high-temperature AE detection, a remote AE measurement based on a phase-shifted fiber Bragg grating (PS-FBG) sensor with a high sensitivity over a broad bandwidth was proposed. The common optical fibers were made from glass with good heat resistance. Hence, in this method, optical fiber was used as the waveguide to propagate the AE in the composite from a high-temperature environment to the room-temperature environment wherein the PS-FBG was located. Owing to the special AE detection configuration, this method was a new adhesive method for remote measurement (ADRM). The experiment and numerical simulation revealed that the PS-FBG sensor in the ADRM configuration demonstrated accurate remote sensing for the AE signals. This was because of the good waveguide system provided by the thin optical fiber and the sensitivity of the PS-FBG sensor to the axial strain in the core of the fiber. Consequently, the remote measurement utilizing the PS-FBG sensor in the ADRM configuration has a high potential for AE detection in high-temperature conditions.

  7. A novel technique for acoustic emission monitoring in civil structures with global fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Verstrynge, E.; Pfeiffer, H.; Wevers, M.

    2014-06-01

    The application of acoustic emission (AE)-based damage detection is gaining interest in the field of civil structural health monitoring. Damage progress can be detected and located in real time and the recorded AEs hold information on the fracture process which produced them. One of the drawbacks for on-site application in large-scale concrete and masonry structures is the relatively high attenuation of the ultrasonic signal, which limits the detection range of the AE sensors. Consequently, a large number of point sensors are required to cover a certain area. To tackle this issue, a global damage detection system, based on AE detection with a polarization-modulated, single mode fiber optic sensor (FOS), has been developed. The sensing principle, data acquisition and analysis in time and frequency domain are presented. During experimental investigations, this AE-FOS is applied for the first time as a global sensor for the detection of crack-induced AEs in a full-scale concrete beam. Damage progress is monitored during a cyclic four-point bending test and the AE activity, detected with the FOS, is related to the subsequent stages of damage progress in the concrete element. The results obtained with the AE-FOS are successfully linked to the mechanical behavior of the concrete beam and a qualitative correspondence is found with AE data obtained by a commercial system.

  8. Acoustic emission source location using a distributed feedback fiber laser rosette.

    PubMed

    Huang, Wenzhu; Zhang, Wentao; Li, Fang

    2013-01-01

    This paper proposes an approach for acoustic emission (AE) source localization in a large marble stone using distributed feedback (DFB) fiber lasers. The aim of this study is to detect damage in structures such as those found in civil applications. The directional sensitivity of DFB fiber laser is investigated by calculating location coefficient using a method of digital signal analysis. In this, autocorrelation is used to extract the location coefficient from the periodic AE signal and wavelet packet energy is calculated to get the location coefficient of a burst AE source. Normalization is processed to eliminate the influence of distance and intensity of AE source. Then a new location algorithm based on the location coefficient is presented and tested to determine the location of AE source using a Delta (Δ) DFB fiber laser rosette configuration. The advantage of the proposed algorithm over the traditional methods based on fiber Bragg Grating (FBG) include the capability of: having higher strain resolution for AE detection and taking into account two different types of AE source for location. PMID:24141266

  9. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals

    NASA Astrophysics Data System (ADS)

    Moradian, Zabihallah; Einstein, Herbert H.; Ballivy, Gerard

    2016-03-01

    Determination of the cracking levels during the crack propagation is one of the key challenges in the field of fracture mechanics of rocks. Acoustic emission (AE) is a technique that has been used to detect cracks as they occur across the specimen. Parametric analysis of AE signals and correlating these parameters (e.g., hits and energy) to stress-strain plots of rocks let us detect cracking levels properly. The number of AE hits is related to the number of cracks, and the AE energy is related to magnitude of the cracking event. For a full understanding of the fracture process in brittle rocks, prismatic specimens of granite containing pre-existing flaws have been tested in uniaxial compression tests, and their cracking process was monitored with both AE and high-speed video imaging. In this paper, the characteristics of the AE parameters and the evolution of cracking sequences are analyzed for every cracking level. Based on micro- and macro-crack damage, a classification of cracking levels is introduced. This classification contains eight stages (1) crack closure, (2) linear elastic deformation, (3) micro-crack initiation (white patch initiation), (4) micro-crack growth (stable crack growth), (5) micro-crack coalescence (macro-crack initiation), (6) macro-crack growth (unstable crack growth), (7) macro-crack coalescence and (8) failure.

  10. Accurate Damage Location in Complex Composite Structures and Industrial Environments using Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Eaton, M.; Pearson, M.; Lee, W.; Pullin, R.

    2015-07-01

    The ability to accurately locate damage in any given structure is a highly desirable attribute for an effective structural health monitoring system and could help to reduce operating costs and improve safety. This becomes a far greater challenge in complex geometries and materials, such as modern composite airframes. The poor translation of promising laboratory based SHM demonstrators to industrial environments forms a barrier to commercial up take of technology. The acoustic emission (AE) technique is a passive NDT method that detects elastic stress waves released by the growth of damage. It offers very sensitive damage detection, using a sparse array of sensors to detect and globally locate damage within a structure. However its application to complex structures commonly yields poor accuracy due to anisotropic wave propagation and the interruption of wave propagation by structural features such as holes and thickness changes. This work adopts an empirical mapping technique for AE location, known as Delta T Mapping, which uses experimental training data to account for such structural complexities. The technique is applied to a complex geometry composite aerospace structure undergoing certification testing. The component consists of a carbon fibre composite tube with varying wall thickness and multiple holes, that was loaded under bending. The damage location was validated using X-ray CT scanning and the Delta T Mapping technique was shown to improve location accuracy when compared with commercial algorithms. The onset and progression of damage were monitored throughout the test and used to inform future design iterations.

  11. Predicting burst pressures in filament-wound composite pressure vessels by using acoustic emission data

    NASA Astrophysics Data System (ADS)

    Hill, Eric V. K.

    1992-12-01

    Multivariate statistical analysis was used to generate equations for predicting burst pressures in 14.6 cm dia. fiberglass-epoxy and 45.7 cm dia. graphite-epoxy pressure vessels from acoustic emission (AE) data taken during hydroproof. Using the AE energy and amplitude measurements as the primary independent variables, the less accurate of the two linear equations was able to predict burst pressures to within +/- 0.841 MPa of the value given by the 95 percent prediction interval. Moreover, this equation included the effects of two bottles that contained simulated manufacturing defects. Because the AE data used to generate the burst-pressure equations were both taken at or below 25 percent of the expected burst pressures, it is anticipated that by using this approach, it would be possible to lower proof pressures in larger filament-wound composite pressure vessels such as rocket motor cases. This would minimize hydroproof damage to the composite structure and the accompanying potential for premature failure in service.

  12. Nonlinear Kalman Filtering for acoustic emission source localization in anisotropic panels.

    PubMed

    Dehghan Niri, E; Farhidzadeh, A; Salamone, S

    2014-02-01

    Nonlinear Kalman Filtering is an established field in applied probability and control systems, which plays an important role in many practical applications from target tracking to weather and climate prediction. However, its application for acoustic emission (AE) source localization has been very limited. In this paper, two well-known nonlinear Kalman Filtering algorithms are presented to estimate the location of AE sources in anisotropic panels: the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). These algorithms are applied to two cases: velocity profile known (CASE I) and velocity profile unknown (CASE II). The algorithms are compared with a more traditional nonlinear least squares method. Experimental tests are carried out on a carbon-fiber reinforced polymer (CFRP) composite panel instrumented with a sparse array of piezoelectric transducers to validate the proposed approaches. AE sources are simulated using an instrumented miniature impulse hammer. In order to evaluate the performance of the algorithms, two metrics are used: (1) accuracy of the AE source localization and (2) computational cost. Furthermore, it is shown that both EKF and UKF can provide a confidence interval of the estimated AE source location and can account for uncertainty in time of flight measurements.

  13. Acoustic emission responses of plasma sprayed ceramics during four point bend tests

    SciTech Connect

    Lin, Chung-Kwei; Leigh, S.H.; Berndt, C.C.

    1996-12-31

    Free standing ceramics including alumina-13 wt.% titania (AT13), alumina-3 wt.% titania (AT3), alumina-40 wt.% zirconia (AZ40), and calcia-stabilized zirconia (CSZ), were produced by water-stabilized plasma spraying. Four point bend tests were performed in the in-plane direction (i.e., spray direction) to obtain the modulus of rupture of the materials. In situ acoustic emission (AE) monitoring was used to detect cracking during the tests. The AE characteristics such as ring down counts, event duration, peak amplitude, and energy were recorded and analyzed to evaluate different cracking mechanisms. The AE responses versus time for individual tests were evaluated and two basic types of cracking mechanisms; i.e., catastrophic failure and microcracking before failure, can be observed. AT3 and AZ40 tend to exhibit microcracking before failure and CSZ shows catastrophic failure. However, both mechanisms can be observed for AT13. For the total AE responses, the amplitude distributions are skewed to the right and the energy distributions show multi-modal distributions. Micro-, transitional, and macro-cracks can be better distinguished by the energy distribution. The relative proportion of these cracks was also determined.

  14. Paradoxical effects of contralateral white noise on evoked otoacoustic emissions in ears with acoustic neuroma.

    PubMed

    Quaranta, A; Gandolfi, A; Fava, G; Quaranta, N; Zini, C

    2000-03-01

    A contralateral suppression effect on evoked otoacoustic emissions (EOAEs) is usually present in normally hearing subjects and in patients with sensorineural hearing loss, while it is absent or reduced in ears to which the vestibular nerve has been cut and in ears with acoustic neuroma (AN). To date, a paradoxical effect, that is an increase in EOAE amplitude during contralateral stimulation, has been described in one ear with sensorineural hearing loss of unknown aetiology and in three ears with AN (two in the present paper). Evidence has been provided that the contralateral suppression effect on EOAEs is accomplished largely, if not entirely, via the medial olivocochlear bundle (OCB). According to clinical data the absence or the reduced amount of contralateral suppression effect on EAOEs may be attributed to a totally, or partially, damaged or malfunctioning medial OCB. The way in which a contralateral noise may increase EOAE amplitude is more difficult to explain. One attractive hypothesis is that this paradoxical effect is a result of some pathological adaptive process in the medial OCB. PMID:11603779

  15. Fatigue features study on the crankshaft material of 42CrMo steel using acoustic emission

    NASA Astrophysics Data System (ADS)

    Shi, Yue; Dong, Lihong; Wang, Haidou; Li, Guolu; Liu, Shenshui

    2016-09-01

    Crankshaft is regarded as an important component of engines, and it is an important application of remanufacturing because of its high added value. However, the fatigue failure research of remanufactured crankshaft is still in its primary stage. Thus, monitoring and investigating the fatigue failure of the remanufacturing crankshaft is crucial. In this paper, acoustic emission (AE) technology and machine vision are used to monitor the four-point bending fatigue of 42CrMo, which is the material of crankshaft. The specimens are divided into two categories, namely, pre-existing crack and non-preexisting crack, which simulate the crankshaft and crankshaft blank, respectively. The analysis methods of parameter-based AE techniques, wavelet transform (WT) and SEM analysis are combined to identify the stage of fatigue failure. The stage of fatigue failure is the basis of using AE technology in the field of remanufacturing crankshafts. The experiment results show that the fatigue crack propagation style is a transgranular fracture and the fracture is a brittle fracture. The difference mainly depends on the form of crack initiation. Various AE signals are detected by parameter analysis method. Wavelet threshold denoising and WT are combined to extract the spectral features of AE signals at different fatigue failure stages.

  16. Acoustic emission detection with fiber optical sensors for dry cask storage health monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Bin; Bao, Jingjing; Yu, Lingyu; Giurgiutiu, Victor

    2016-04-01

    The increasing number, size, and complexity of nuclear facilities deployed worldwide are increasing the need to maintain readiness and develop innovative sensing materials to monitor important to safety structures (ITS). In the past two decades, an extensive sensor technology development has been used for structural health monitoring (SHM). Technologies for the diagnosis and prognosis of a nuclear system, such as dry cask storage system (DCSS), can improve verification of the health of the structure that can eventually reduce the likelihood of inadvertently failure of a component. Fiber optical sensors have emerged as one of the major SHM technologies developed particularly for temperature and strain measurements. This paper presents the development of optical equipment that is suitable for ultrasonic guided wave detection for active SHM in the MHz range. An experimental study of using fiber Bragg grating (FBG) as acoustic emission (AE) sensors was performed on steel blocks. FBG have the advantage of being durable, lightweight, and easily embeddable into composite structures as well as being immune to electromagnetic interference and optically multiplexed. The temperature effect on the FBG sensors was also studied. A multi-channel FBG system was developed and compared with piezoelectric based AE system. The paper ends with conclusions and suggestions for further work.

  17. Acoustic emission source location in composite structure by Voronoi construction using geodesic curve evolution.

    PubMed

    Gangadharan, R; Prasanna, G; Bhat, M R; Murthy, C R L; Gopalakrishnan, S

    2009-11-01

    Conventional analytical/numerical methods employing triangulation technique are suitable for locating acoustic emission (AE) source in a planar structure without structural discontinuities. But these methods cannot be extended to structures with complicated geometry, and, also, the problem gets compounded if the material of the structure is anisotropic warranting complex analytical velocity models. A geodesic approach using Voronoi construction is proposed in this work to locate the AE source in a composite structure. The approach is based on the fact that the wave takes minimum energy path to travel from the source to any other point in the connected domain. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. In this work, the geodesic approach is shown more suitable for a practicable source location solution in a composite structure with arbitrary surface containing finite discontinuities. Experiments have been conducted on composite plate specimens of simple and complex geometry to validate this method. PMID:19894815

  18. Deciphering acoustic emission signals in drought stressed branches: the missing link between source and sensor

    PubMed Central

    Vergeynst, Lidewei L.; Sause, Markus G. R.; Hamstad, Marvin A.; Steppe, Kathy

    2015-01-01

    When drought occurs in plants, acoustic emission (AE) signals can be detected, but the actual causes of these signals are still unknown. By analyzing the waveforms of the measured signals, it should, however, be possible to trace the characteristics of the AE source and get information about the underlying physiological processes. A problem encountered during this analysis is that the waveform changes significantly from source to sensor and lack of knowledge on wave propagation impedes research progress made in this field. We used finite element modeling and the well-known pencil lead break source to investigate wave propagation in a branch. A cylindrical rod of polyvinyl chloride was first used to identify the theoretical propagation modes. Two wave propagation modes could be distinguished and we used the finite element model to interpret their behavior in terms of source position for both the PVC rod and a wooden rod. Both wave propagation modes were also identified in drying-induced signals from woody branches, and we used the obtained insights to provide recommendations for further AE research in plant science. PMID:26191070

  19. The deformation and acoustic emission of aluminum-magnesium alloy under non-isothermal thermo-mechanical loading

    SciTech Connect

    Makarov, S. V.; Plotnikov, V. A. Lysikov, M. V.; Kolubaev, E. A.

    2015-10-27

    The following study investigates the deformation behavior and acoustic emission in aluminum-magnesium alloy under conditions of non-isothermal thermo-mechanical loading. The accumulation of deformation in the alloy, in conditions of change from room temperature to 500°C, occurs in two temperature intervals (I, II), characterized by different rates of deformation. The rate of deformation accumulation is correlated with acoustic emission. With load increasing in cycles from 40 to 200 MPa, the value of the boundary temperature (T{sub b}) between intervals I and II changes non-monotonically. In cycles with load up to 90 MPa, the T{sub b} value increases, while an increase up to 200 MPa makes T{sub b} shift toward lower temperatures. This suggests that the shift of boundaries in the region of low temperatures and the appearance of high-amplitude pulses of acoustic emission characterize the decrease of the magnitude of thermal fluctuations with increasing mechanical load, leading to the rupture of interatomic bonds in an elementary deformation act.

  20. Use of Modal Acoustic Emission to Monitor Damage Progression in Carbon Fiber/Epoxy and Implications for Composite Structures

    NASA Technical Reports Server (NTRS)

    Waller, J. M.; Nichols, C. T.; Wentzel, D. J.; Saulsberry R. L.

    2010-01-01

    Broad-band modal acoustic emission (AE) data was used to characterize micromechanical damage progression in uniaxial IM7 and T1000 carbon fiber-epoxy tows and an IM7 composite overwrapped pressure vessel (COPV) subjected to an intermittent load hold tensile stress profile known to activate the Felicity ratio (FR). Damage progression was followed by inspecting the Fast Fourier Transforms (FFTs) associated with acoustic emission events. FFT analysis revealed the occurrence of cooperative micromechanical damage events in a frequency range between 100 kHz and 1 MHz. Evidence was found for the existence of a universal damage parameter, referred to here as the critical Felicity ratio, or Felicity ratio at rupture (FR*), which had a value close to 0.96 for the tows and the COPV tested. The implications of using FR* to predict failure in carbon/epoxy composite materials and related composite components such as COPVs are discussed. Trends in the FFT data are also discussed; namely, the difference between the low and high energy events, the difference between early and late-life events, comparison of IM7 and T1000 damage progression, and lastly, the similarity of events occurring at the onset of significant acoustic emission used to calculate the FR.

  1. Dynamic control of the optical emission from GaN/InGaN nanowire quantum dots by surface acoustic waves

    SciTech Connect

    Lazić, S. Chernysheva, E.; Meulen, H. P. van der; Calleja Pardo, J. M.; Gačević, Ž.; Calleja, E.

    2015-09-15

    The optical emission of InGaN quantum dots embedded in GaN nanowires is dynamically controlled by a surface acoustic wave (SAW). The emission energy of both the exciton and biexciton lines is modulated over a 1.5 meV range at ∼330 MHz. A small but systematic difference in the exciton and biexciton spectral modulation reveals a linear change of the biexciton binding energy with the SAW amplitude. The present results are relevant for the dynamic control of individual single photon emitters based on nitride semiconductors.

  2. Monitoring early age cementitious materials using ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Borgerson, Jacob L.

    The evaluation of early age concrete is critical for reducing construction times and ensuring quality. In this study, the use of ultrasonic guided waves for monitoring the development of early age cementitious materials is investigated. A torsional wave is transmitted and received through a waveguide that is embedded in early age mortar or concrete. As the cementitious material sets and hardens, the received wave(s) change, indicating the transition from a semifluid to a solid state. This thesis proposes two systems. The first system is a through-transmission system; a wave is transmitted on one end of an embedded waveguide using a sensor arrangement and then it is received on the opposite end of the rod with another sensor. This approach monitors the attenuation of the fundamental torsional wave mode, resulting from the leakage of energy from the cylindrical steel rod to the surrounding cementitious material. The evolution of the material's properties is related to the energy leakage or attenuation of the guided wave. The second system is a pulse-echo system; a wave is transmitted on one end of a partially embedded waveguide via a sensor arrangement that also receives the reflected signals. This approach monitors both the reflection from the end of the rod and the reflection from the point where the waveguide enters the material. The development of the cementitious material's mechanical properties is related to both the energy leaked into the surrounding material and the energy reflected at the point of entry. The ability of this method to only require access to one side of the specimen makes it attractive for monitoring early age cementitious materials in the field. Experiments were performed on mixtures with varying water-cement ratios (w/c = 0.40, 0.50, and 0.60), chemical admixtures (accelerant and retardant), mineral admixtures (silica fume and fly ash), and coarse aggregate (pea gravel). The time of setting and compressive strength of the various mixtures

  3. The role of acoustic emission in the study of rock fracture

    USGS Publications Warehouse

    Lockner, D.

    1993-01-01

    The development of faults and shear fracture systems over a broad range of temperature and pressure and for a variety of rock types involves the growth and interaction of microcracks. Acoustic emission (AE), which is produced by rapid microcrack growth, is a ubiquitous phenomenon associated with brittle fracture and has provided a wealth of information regarding the failure process in rock. This paper reviews the successes and limitations of AE studies as applied to the fracture process in rock with emphasis on our ability to predict rock failure. Application of laboratory AE studies to larger scale problems related to the understanding of earthquake processes is also discussed. In this context, laboratory studies can be divided into the following categories. 1) Simple counting of the number of AE events prior to sample failure shows a correlation between AE rate and inelastic strain rate. Additional sorting of events by amplitude has shown that AE events obey the power law frequency-magnitude relation observed for earthquakes. These cumulative event count techniques are being used in conjunction with damage mechanics models to determine how damage accumulates during loading and to predict failure. 2) A second area of research involves the location of hypocenters of AE source events. This technique requires precise arrival time data of AE signals recorded over an array of sensors that are essentially a miniature seismic net. Analysis of the spatial and temporal variation of event hypocenters has improved our understanding of the progression of microcrack growth and clustering leading to rock failure. Recently, fracture nucleation and growth have been studied under conditions of quasi-static fault propagation by controlling stress to maintain constant AE rate. 3) A third area of study involves the analysis of full waveform data as recorded at receiver sites. One aspect of this research has been to determine fault plane solutions of AE source events from first motion

  4. A signal processing approach for enhanced Acoustic Emission data analysis in high activity systems: Application to organic matrix composites

    NASA Astrophysics Data System (ADS)

    Kharrat, M.; Ramasso, E.; Placet, V.; Boubakar, M. L.

    2016-03-01

    Structural elements made of Organic Matrix Composites (OMC) under complex loading may suffer from high Acoustic Emission (AE) activity caused by the emergence of different emission sources at high rates with high noise level, which finally engender continuous emissions. The detection of hits in this situation becomes a challenge particularly during fatigue tests. This work suggests an approach based on the Discrete Wavelet Transform (DWT) denoising applied on signal segments. A particular attention is paid to the adjustment of the denoising parameters based on pencil lead breaks and their influence on the quality of the denoised AE signals. The validation of the proposed approach is performed on a ring-shaped Carbon Fiber Reinforced Plastics (CFRP) under in-service-like conditions involving continuous emissions with superimposed damage-related transients. It is demonstrated that errors in hit detection are greatly reduced leading to a better identification of the natural damage scenario based on AE signals.

  5. The Velocity and Attenuation of Acoustic Emission Waves in SiC/SiC Composites Loaded in Tension

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Gyekenyesi, Andrew L.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The behavior of acoustic waves produced by microfracture events and from pencil lead breaks was studied for two different silicon carbide fiber-reinforced silicon carbide matrix composites. The two composite systems both consisted of Hi-Nicalon (trademark) fibers and carbon interfaces but had different matrix compositions that led to considerable differences in damage accumulation and acoustic response. This behavior was primarily due to an order of magnitude difference in the interfacial shear stress for the two composite systems. Load/unload/reload tensile tests were performed and measurements were made over the entire stress range in order to determine the stress-dependence of acoustic activity for increasing damage states. It was found that using the extensional wave velocities from acoustic emission (AE) events produced from pencil lead breaks performed outside of the transducers enabled accurate measurements of the stiffness of the composite. The extensional wave velocities changed as a function of the damage state and the stress where the measurement was taken. Attenuation for AE waveforms from the pencil lead breaks occurred only for the composite possessing the lower interfacial shear stress and only at significantly high stresses. At zero stress after unloading from a peak stress, no attenuation occurred for this composite because of crack closure. For the high interfacial stress composite no attenuation was discernable at peak or zero stress over the entire stress-range of the composite. From these observations, it is believed that attenuation of AE waveforms is dependent on the magnitude of matrix crack opening.

  6. Investigation of correlation of LF power modulation of light in natural and artificial illumination situations and acoustic emission

    NASA Astrophysics Data System (ADS)

    Kleeberg, Florian P.; Gutzmann, Holger L.; Weyer, Cornelia; Weiß, Jürgen; Dörfler, Joachim; Hahlweg, Cornelius F.

    2014-09-01

    The present paper is a follow up of a paper presented in 2013 at the Novel Optical Systems conference in the session on Optics and Music. It is derived from an ongoing study on the human perception of combined optical and acoustical periodical stimuli. Originating from problems concerning artificial illumination and certain machinery with coherent optical and acoustical emissions there are effects to be observed which are interesting in the context of occupational medicine. It seems, that acoustic stimuli in the frequency range of the flicker fusion and below might lead to unexpected perceptible effects beyond those of the single stimuli. The effect of infrasound stimuli as a whole body perception seems to be boosted. Because of the difficulties in evaluation of physical and psychological effects of such coherent stimuli in a first step we question if such coherence is perceivable at all. Further, the problem of modulation of optical signals by acoustical signal is concerned. A catalogue of scenarios and 'effects to look for' including measurement concepts is presented and discussed.

  7. A methodology to condition distorted acoustic emission signals to identify fracture timing from human cadaver spine impact tests.

    PubMed

    Arun, Mike W J; Yoganandan, Narayan; Stemper, Brian D; Pintar, Frank A

    2014-12-01

    While studies have used acoustic sensors to determine fracture initiation time in biomechanical studies, a systematic procedure is not established to process acoustic signals. The objective of the study was to develop a methodology to condition distorted acoustic emission data using signal processing techniques to identify fracture initiation time. The methodology was developed from testing a human cadaver lumbar spine column. Acoustic sensors were glued to all vertebrae, high-rate impact loading was applied, load-time histories were recorded (load cell), and fracture was documented using CT. Compression fracture occurred to L1 while other vertebrae were intact. FFT of raw voltage-time traces were used to determine an optimum frequency range associated with high decibel levels. Signals were bandpass filtered in this range. Bursting pattern was found in the fractured vertebra while signals from other vertebrae were silent. Bursting time was associated with time of fracture initiation. Force at fracture was determined using this time and force-time data. The methodology is independent of selecting parameters a priori such as fixing a voltage level(s), bandpass frequency and/or using force-time signal, and allows determination of force based on time identified during signal processing. The methodology can be used for different body regions in cadaver experiments.

  8. Sensoring fusion data from the optic and acoustic emissions of electric arcs in the GMAW-S process for welding quality assessment.

    PubMed

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  9. Sensoring fusion data from the optic and acoustic emissions of electric arcs in the GMAW-S process for welding quality assessment.

    PubMed

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms. PMID:22969330

  10. Sensoring Fusion Data from the Optic and Acoustic Emissions of Electric Arcs in the GMAW-S Process for Welding Quality Assessment

    PubMed Central

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms. PMID:22969330

  11. Anatomic and acoustic sexual dimorphism in the sound emission system of Phoenicoprocta capistrata (Lepidoptera: Arctiidae)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Loeches, Laura; Barro, Alejandro; Pérez, Martha; Coro, Frank

    2009-04-01

    Both sexes of Phoenicoprocta capistrata have functional tymbals. The scanning electron microscopy revealed differences in the morphology of these organs in males and females. Male tymbals have a well-developed striated band, constituted by 21 ± 2 regularly arranged striae whereas female tymbals lack a striated band. This type of sexual dimorphism is rare in Arctiidae. The recording of the sound produced by moths held by the wings revealed that while males produced trains of pulses organized in modulation cycles, females produced clicks at low repetition rate following very irregular patterns. Statistically, there are differences between sexes in terms of the duration of pulses, which were 355 ± 24 μs in the case of males and 289 ± 29 μs for females. The spectral characteristics of the pulses also show sexual dimorphism. Male pulses are more tuned ( Q 10 = 5.2 ± 0.5) than female pulses ( Q 10 = 2.7 ± 0.5) and have a higher best frequency (42 ± 1 kHz vs. 29 ± 2 kHz). To our knowledge, this is the first report on an arctiid moth showing sexual dimorphism in tymbal’s anatomy that leads to a best frequency dimorphism. Males produce sound at mating attempts. The sounds recorded during mating are modulation cycles with the same spectral characteristics as those recorded when males are held by the wings. The morphological and acoustic features of female tymbals could indicate a process of degeneration and adaptation to conditions under which the emission of complex patterns is not necessary.

  12. Evaluation of SHM System Produced by Additive Manufacturing via Acoustic Emission and Other NDT Methods

    PubMed Central

    Strantza, Maria; Aggelis, Dimitrios G.; de Baere, Dieter; Guillaume, Patrick; van Hemelrijck, Danny

    2015-01-01

    During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called “effective structural health monitoring” (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals. PMID:26506349

  13. Evaluation of SHM system produced by additive manufacturing via acoustic emission and other NDT methods.

    PubMed

    Strantza, Maria; Aggelis, Dimitrios G; de Baere, Dieter; Guillaume, Patrick; van Hemelrijck, Danny

    2015-01-01

    During the last decades, structural health monitoring (SHM) systems are used in order to detect damage in structures. We have developed a novel structural health monitoring approach, the so-called "effective structural health monitoring" (eSHM) system. The current SHM system is incorporated into a metallic structure by means of additive manufacturing (AM) and has the possibility to advance life safety and reduce direct operative costs. It operates based on a network of capillaries that are integrated into an AM structure. The internal pressure of the capillaries is continuously monitored by a pressure sensor. When a crack nucleates and reaches the capillary, the internal pressure changes signifying the existence of the flaw. The main objective of this paper is to evaluate the crack detection capacity of the eSHM system and crack location accuracy by means of various non-destructive testing (NDT) techniques. During this study, detailed acoustic emission (AE) analysis was applied in AM materials for the first time in order to investigate if phenomena like the Kaiser effect and waveform parameters used in conventional metals can offer valuable insight into the damage accumulation of the AM structure as well. Liquid penetrant inspection, eddy current and radiography were also used in order to confirm the fatigue damage and indicate the damage location on un-notched four-point bending AM metallic specimens with an integrated eSHM system. It is shown that the eSHM system in combination with NDT can provide correct information on the damage condition of additive manufactured metals.

  14. A hybrid wireless sensor network for acoustic emission testing in SHM

    NASA Astrophysics Data System (ADS)

    Grosse, Christian; McLaskey, Greg; Bachmaier, Sebastian; Glaser, Steven D.; Krüger, Markus

    2008-03-01

    Acoustic emission techniques (AET) have a lot of potential in structural health monitoring for example to detect cracks or wire breaks. However, the number of actual applications of conventional wired AET on structures is limited due to the expensive and time consuming installation process. Wires are also vulnerable to damage and vandalisms. Wireless systems instead are easy to be attached to structures, scalable and cost efficient. A hybrid sensor network system is presented being able to use any kind of commercial available AE sensor controlled by a sensor node. In addition micro-electro-mechanical systems (MEMS) can be used as sensors measuring for example temperature, humidity or strain. The network combines multi-hop data transmission techniques with efficient data pre-processing in the nodes. The data processing of different sensor data prior to energy consuming radio transmission is an important feature to enable wireless networking. Moreover, clusters of sensor nodes are formed within the network to compare the pre-processed data. In this way it is possible to limit the data transfer through the network and to the sink as well as the amount of data to be reviewed by the owner. In particular, this paper deals with the optimization of the network to record different type of data including AE data. The basic principles of a wireless monitoring system equipped with MEMS sensors is presented along with a first prototype able to record temperature, moisture, strain and other data continuously. The extraction of relevant information out of the recorded AE data in terms of array data processing is presented in a second paper by McLaskey et al. in these proceedings. Using these two techniques, monitoring of large structures in civil engineering becomes very efficient.

  15. Some Studies of Spontaneous and Evoked Acoustic Emissions from the Human Ear.

    NASA Astrophysics Data System (ADS)

    Sutton, Graham John

    Available from UMI in association with The British Library. Several studies of spontaneous and evoked oto -acoustic emissions (SOAEs and EOAEs) and their relationship to normal and pathological hearing mechanisms are described. (1) A computer model was developed to study the theory that the EOAE is produced by summation of responses from activity distributed along the cochlea. It was found that, whilst with a regular cochlea and mapping the summed response is small owing to phase cancellation, any irregularity of mapping or structure or sensitivity gives rise to a sharply-tuned response showing many of the characteristics of EOAEs. (2) A search for SOAEs in 17 normal subjects revealed a prevalence of 53% (42% of ears), which was significantly higher among the females. (3) A group of 49 clinical tinnitus sufferers was investigated to test the hypothesis that SOAEs might be responsible in some cases. 3 such cases were found, all with tonal tinnitus and normal hearing at the tinnitus pitch (although 1 had a bilateral loss at other frequencies). The SOAEs in both studies were found between 680 and 9610 Hz at levels up to 24 dB SPL. They were not found at frequencies where hearing threshold was greater than 20 dB, and no consistent association with audiometric abnormalities was noted, implying that they should be seen as part of normal hearing variation, rather than the result of minor pathology. (4) Suppression effects were studied for (a) SOAEs in 2 ears and (b) both click -evoked and continuous-tone evoked OAEs in another ear. A number of features were observed, most notably multiple lobes in many of the suppression tuning curves. The implications of these results for theories of OAE generation are discussed.

  16. Damage characterization on human femur bone by means of ultrasonics and acoustic emission

    NASA Astrophysics Data System (ADS)

    Strantza, M.; Polyzos, D.; Louis, O.; Boulpaep, F.; Van Hemelrijck, D.; Aggelis, D. G.

    2015-07-01

    Human bone tissue is characterized as a material with high brittleness. Due to this nature, visible signs of cracking are not easy to be detected before final failure. The main objective of this work is to investigate if the acoustic emission (AE) technique can offer valuable insight to the fracture process of human femur specimens as in other engineering materials characterization. This study describes the AE activity during fracture of whole femur bones under flexural load. Before fracture, broadband AE sensors were used in order to measure parameters like wave velocity dispersion and attenuation. Waveform parameters like the duration, rise time and average frequency, were also examined relatively to the propagation distance as a preparation for the AE monitoring during fracture. After the ultrasonic study, the samples were partly cast in concrete and fixed as cantilevers. A point load was applied on the femur head, which due to the test geometry resulted in a combination of two different patterns of fracture, bending and torsion. Two AE broadband sensors were placed in different points of the sample, one near the fixing end and the other near the femur head. Preliminary analysis shows that parameters like the number of acquired AE signals and their amplitude are well correlated with the load history. Furthermore, the parameters of rise time and frequency can differentiate the two fracture patterns. Additionally, AE allows the detection of the load at the onset of fracture from the micro-cracking events that occur at the early loading stages, allowing monitoring of the whole fracture process. Parameters that have been used extensively for monitoring and characterization of fracture modes of engineering materials seem to poses characterization power in the case of bone tissue monitoring as well.

  17. Ultrasonic Acoustic Emissions from the Sapwood of Cedar and Hemlock 1

    PubMed Central

    Tyree, Melvin T.; Dixon, Michael A.; Tyree, E. Loeta; Johnson, Robert

    1984-01-01

    Measurements are reported of ultrasonic acoustic emissions (AEs) measured from sapwood samples of Thuja occidentalis L. and Tsuga canadensis (L.) Carr. during air dehydration. The measurements were undertaken to test the following three hypotheses: (a) Each cavitation event produces one ultrasonic AE. (b) Large tracheids are more likely to cavitate than small tracheids. (c) When stem water potentials are >−0.4 MPa, a significant fraction of the water content of sapwood is held by `capillary forces.' The last two hypotheses were recently discussed at length by M. H. Zimmermann. Experimental evidence consistent with all three hypotheses was obtained. The evidence for each hypothesis respectively is: (a) the cumulative number of AEs nearly equals the number of tracheids in small samples; (b) more water is lost per AE event at the beginning of the dehydration process than at the end, and (c) sapwood samples dehydrated from an initial water potential of 0 MPa lost significantly more water before AEs started than lost by samples dehydrated from an initial water potential of about −0.4 MPa. The extra water held by fully hydrated sapwood samples may have been capillary water as defined by Zimmerman. We also report an improved method for the measurement of the `intensity' of ultrasonic AEs. Intensity is defined here as the area under the positive spikes of the AE signal (plotted as voltage versus time). This method was applied to produce a frequency histogram of the number of AEs versus intensity. A large fraction of the total number of AEs were of low intensity even in small samples (4 mm diameter by 10 mm length). This suggests that the effective `listening distance' for most AEs was less than 5 to 10 mm. PMID:16663774

  18. Indirect measurement of cylinder pressure from diesel engines using acoustic emission

    NASA Astrophysics Data System (ADS)

    El-Ghamry, M.; Steel, J. A.; Reuben, R. L.; Fog, T. L.

    2005-07-01

    Indirect measurement of the cylinder pressure from diesel engines is possible using acoustic emission (AE). A method is demonstrated for a large two-stroke marine diesel engine and a small four-stroke diesel engine, which involves reconstructing the cylinder crank angle domain diagram from the AE generated during the combustion phase. Raw AE was used for modelling and reconstructing the pressure waveform in the time domain but this could not be used to model the pressure rise (compression). To overcome this problem the signal was divided into two sections representing the compression part of the signal and the fuel injection/expansion stroke. The compression part of the pressure signal was reconstructed by using polynomial fitting. An auto-regressive technique was used during the injection/expansion stroke. The rms AE signal is well correlated with the pressure signal in the time and frequency domain and complex cepstrum analysis was used to model the pressure signal for the complete combustion phase (compression, injection and expansion). The main advantage of using cepstral analysis is that the model uses the frequency content of the rms AE signal rather than the energy content of the rms AE signal, which gives an advantage when the signal has lower energy content, during the compression process. By calculating the engine running speed from the rms AE signal and selecting the proper cepstrum model correlated to the combustion rms AE energy content, an analytical algorithm was developed to give a wide range of applicability over the different conditions of engine speed, engine type and load. The pressure reconstructed from both AE and acceleration data are compared. AE has the advantage of a much higher signal-to-noise ratio and improved time resolution and is shown to be better than the acceleration.

  19. Acoustic emission, microstructure, and damage model of dry and wet sandstone stressed to failure

    NASA Astrophysics Data System (ADS)

    Zang, Arno; Wagner, Christian F.; Dresen, Georg

    1996-08-01

    Twenty-three uniaxial compression tests were performed on dry and wet Flechtingen sandstone from Germany. Compressive strength of wet core is 60% of the strength of dry core. Before fracture, the transverse P wave speed drops by 13% and the pulse amplitude by 22% for wet and 37% for dry cores. Accumulated strain energy doubles for dry core. Acoustic emissions (AE) are detected with 10 sensors for 19 cores. AE activity starts at 84% of the fracture strength of wet cores (55 MPa) and at 91% of the strength of dry cores (87 MPa). The ratio of located to recorded AE is 0.37 for dry and 0.13 for fully wet cores. AE hypocenter patterns document the development of two opposite fracture cones. The negative slope of cumulative AE-amplitude frequency distribution drops by 50% before failure in dry cores. The slope of the wet core drops and recovers. Energy discrimination of AE detected by a broadband sensor resolves different stages of damage and captures the onset of the dilatant throughgoing macrofracture. Using the analogy to visible light microfracturing events are separated into high-energy short pulses (blue AE) and low-energy pulses with long duration times (red AE). Blue AE are explained by intragranular grain breakage, red AE by multiple stick slip on crack planes or grain boundaries. Deformed cores show highly fractured calcite cement and mostly intact quartz grains. The stochastic damage model for brittle composites developed highlights that microfracturing of the sandstone is controlled by the amount and distribution of the weak mineral (calcite).

  20. Wear detection by means of wavelet-based acoustic emission analysis

    NASA Astrophysics Data System (ADS)

    Baccar, D.; Söffker, D.

    2015-08-01

    Wear detection and monitoring during operation are complex and difficult tasks especially for materials under sliding conditions. Due to the permanent contact and repetitive motion, the material surface remains during tests non-accessible for optical inspection so that attrition of the contact partners cannot be easily detected. This paper introduces the relevant scientific components of reliable and efficient condition monitoring system for online detection and automated classification of wear phenomena by means of acoustic emission (AE) and advanced signal processing approaches. The related experiments were performed using a tribological system consisting of two martensitic plates, sliding against each other. High sensitive piezoelectric transducer was used to provide the continuous measurement of AE signals. The recorded AE signals were analyzed mainly by time-frequency analysis. A feature extraction module using a novel combination of Short-Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) were used for the first time. A detailed correlation analysis between complex signal characteristics and the surface damage resulting from contact fatigue was investigated. Three wear process stages were detected and could be distinguished. To obtain quantitative and detailed information about different wear phases, the AE energy was calculated using STFT and decomposed into a suitable number of frequency levels. The individual energy distribution and the cumulative AE energy of each frequency components were analyzed using CWT. Results show that the behavior of individual frequency component changes when the wear state changes. Here, specific frequency ranges are attributed to the different wear states. The study reveals that the application of the STFT-/CWT-based AE analysis is an appropriate approach to distinguish and to interpret the different damage states occurred during sliding contact. Based on this results a new generation of condition monitoring

  1. Monitoring Rock Failure Processes Using the Hilbert-Huang Transform of Acoustic Emission Signals

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Peng, Weihong; Liu, Fengyu; Zhang, Haixiang; Li, Zhijian

    2016-02-01

    Rock fracturing generates acoustic emission (AE) signals that have statistical parameters referred to as AE signal parameters (AESP). Identification of rock fracturing or the failure process stage using such data raises several challenges. This study proposes a Hilbert-Huang transform-based AE processing approach to capture the time-frequency characteristics of both AE signals and AESP during rock failure processes. The damage occurring in tested rock specimens can be illustrated through analysis using this method. In this study, the specimens were 25 × 60 × 150 mm3 in size and were compressed at a displacement rate of 0.05 mm/min until failure. The recorded data included force and displacement, AE signals, and AESP. The AESP in the last third of the strain range period and 14 typical moments of strong AE signals were selected for further investigation. These results show that AE signals and AESP can be jointly used for identification of deformation stages. The transition between linear and nonlinear deformation stages was found to last for a short period in this process. The instantaneous frequency of the AE effective energy rate increased linearly from 0.5 to 1.5 Hz. Attenuation of elastic waves spreading in rock samples developed with deformation, as illustrated in the Hilbert spectra of AE signals. This attenuation is frequency dependent. Furthermore, AE signals in the softening process showed a complex frequency distribution attributed to the mechanical properties of the tested specimen. The results indicate that rock failure is predictable. The novel technology applied in this study is feasible for analysis of the entire deformation process, including softening and failure processes.

  2. The application of compressed sensing to long-term acoustic emission-based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alessandro; Park, Gyuhae; Farrar, Charles; Mascareñas, David

    2012-04-01

    The acoustic emission (AE) phenomena generated by a rapid release in the internal stress of a material represent a promising technique for structural health monitoring (SHM) applications. AE events typically result in a discrete number of short-time, transient signals. The challenge associated with capturing these events using classical techniques is that very high sampling rates must be used over extended periods of time. The result is that a very large amount of data is collected to capture a phenomenon that rarely occurs. Furthermore, the high energy consumption associated with the required high sampling rates makes the implementation of high-endurance, low-power, embedded AE sensor nodes difficult to achieve. The relatively rare occurrence of AE events over long time scales implies that these measurements are inherently sparse in the spike domain. The sparse nature of AE measurements makes them an attractive candidate for the application of compressed sampling techniques. Collecting compressed measurements of sparse AE signals will relax the requirements on the sampling rate and memory demands. The focus of this work is to investigate the suitability of compressed sensing techniques for AE-based SHM. The work explores estimating AE signal statistics in the compressed domain for low-power classification applications. In the event compressed classification finds an event of interest, ι1 norm minimization will be used to reconstruct the measurement for further analysis. The impact of structured noise on compressive measurements is specifically addressed. The suitability of a particular algorithm, called Justice Pursuit, to increase robustness to a small amount of arbitrary measurement corruption is investigated.

  3. Detection of bond failure in the anchorage zone of reinforced concrete beams via acoustic emission monitoring

    NASA Astrophysics Data System (ADS)

    Abouhussien, Ahmed A.; Hassan, Assem A. A.

    2016-07-01

    In this study, acoustic emission (AE) monitoring was utilised to identify the onset of bond failure in reinforced concrete beams. Beam anchorage specimens were designed and tested to fail in bond in the anchorage zone. The specimens included four 250 × 250 × 1500 mm beams with four variable bonded lengths (100, 200, 300, and 400 mm). Meanwhile, an additional 250 × 250 × 2440 mm beam, with 200 mm bonded length, was tested to investigate the influence of sensor location on the identification of bond damage. All beams were tested under four-point loading setup and continuously monitored using three distributed AE sensors. These attached sensors were exploited to record AE signals resulting from both cracking and bond deterioration until failure. The variations in the number of AE hits and cumulative signal strength (CSS) versus test time were evaluated to achieve early detection of crack growth and bar slippage. In addition, AE intensity analysis was performed on signal strength of collected AE signals to develop two additional parameters: historic index (H (t)) and severity (S r). The analysis of these AE parameters enabled an early detection of both first cracks (at almost the mid-span of the beam) and bar slip in either of the anchorage zones at the beams’ end before their visual observation, regardless of sensor location. The results also demonstrated a clear correlation between the damage level in terms of crack development/measured free end bar slip and AE parameters (number of hits, CSS, H(t), and S r).

  4. Characteristics of ultrasonic acoustic emissions from walnut branches during freeze-thaw-induced embolism formation.

    PubMed

    Kasuga, Jun; Charrier, Guillaume; Uemura, Matsuo; Améglio, Thierry

    2015-04-01

    Ultrasonic acoustic emission (UAE) methods have been applied for the detection of freeze-thaw-induced embolism formation in water conduits of tree species. Until now, however, the exact source(s) of UAE has not been identified especially in angiosperm species, in which xylem tissues are composed of diverse types of cells. In this study, UAE was recorded from excised branches of walnut (Juglans regia cv. Franquette) during freeze-thaw cycles, and attempts were made to characterize UAEs generated by cavitation events leading to embolism formation according to their properties. During freeze-thaw cycles, a large number of UAEs were generated from the sample segments. However, the cumulative numbers of total UAE during freeze-thawing were not correlated with the percentage loss of hydraulic conductivity after thawing, suggesting that the sources of UAE were not only cavitation leading to embolism formation in vessels. Among the UAEs, cumulative numbers of UAEs with absolute energy >10.0 fJ strongly correlated with the increase in percentage loss of hydraulic conductivity. The high absolute energy of the UAEs might reflect the formation of large bubbles in the large lumen of vessels. Therefore, UAEs generated by cavitation events in vessels during freeze-thawing might be distinguished from other signals according to their magnitudes of absolute energy. On the other hand, the freezing of xylem parenchyma cells was followed by a certain number of UAEs. These results indicate the possibility that UAE methods can be applied to the detection of both freeze-thaw-induced embolism and supercooling breakdown in parenchyma cells in xylem.

  5. Characteristics of ultrasonic acoustic emissions from walnut branches during freeze–thaw-induced embolism formation

    PubMed Central

    Kasuga, Jun; Charrier, Guillaume; Uemura, Matsuo; Améglio, Thierry

    2015-01-01

    Ultrasonic acoustic emission (UAE) methods have been applied for the detection of freeze–thaw-induced embolism formation in water conduits of tree species. Until now, however, the exact source(s) of UAE has not been identified especially in angiosperm species, in which xylem tissues are composed of diverse types of cells. In this study, UAE was recorded from excised branches of walnut (Juglans regia cv. Franquette) during freeze–thaw cycles, and attempts were made to characterize UAEs generated by cavitation events leading to embolism formation according to their properties. During freeze–thaw cycles, a large number of UAEs were generated from the sample segments. However, the cumulative numbers of total UAE during freeze–thawing were not correlated with the percentage loss of hydraulic conductivity after thawing, suggesting that the sources of UAE were not only cavitation leading to embolism formation in vessels. Among the UAEs, cumulative numbers of UAEs with absolute energy >10.0 fJ strongly correlated with the increase in percentage loss of hydraulic conductivity. The high absolute energy of the UAEs might reflect the formation of large bubbles in the large lumen of vessels. Therefore, UAEs generated by cavitation events in vessels during freeze–thawing might be distinguished from other signals according to their magnitudes of absolute energy. On the other hand, the freezing of xylem parenchyma cells was followed by a certain number of UAEs. These results indicate the possibility that UAE methods can be applied to the detection of both freeze–thaw-induced embolism and supercooling breakdown in parenchyma cells in xylem. PMID:25662846

  6. Bridging aero-fracture evolution with the characteristics of the acoustic emissions in a porous medium

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Eriksen, Fredrik; Zecevic, Megan; Daniel, Guillaume; Flekkøy, Eirik; Måløy, Knut Jørgen

    2015-09-01

    The characterization and understanding of rock deformation processes due to fluid flow is a challenging problem with numerous applications. The signature of this problem can be found in Earth Science and Physics, notably with applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, landslides with hydrological control, volcanic eruptions), or in industrial applications such as hydraulic-fracturing, steam-assisted gravity drainage, CO sequestration operations or soil remediation. Here we investigate the link between the visual deformation and the mechanical wave signals generated due to fluid injection into porous media. In a rectangular Hele-Shaw Cell, side air injection causes burst movement and compaction of grains along with channeling (creation of high permeability channels empty of grains). During the initial compaction and emergence of the main channel, the hydraulic fracturing in the medium generates a large non-impulsive low frequency signal in the frequency range 100 Hz - 10 kHz. When the channel network is established, the relaxation of the surrounding medium causes impulsive aftershock-like events, with high frequency (above 10 kHz) acoustic emissions, the rate of which follows an Omori Law. These signals and observations are comparable to seismicity induced by fluid injection. Compared to the data obtained during hydraulic fracturing operations, low frequency seismicity with evolving spectral characteristics have also been observed. An Omori-like decay of microearthquake rates is also often observed after injection shut-in, with a similar exponent p≃0.5 as observed here, where the decay rate of aftershock follows a scaling law dN/dt ∝(t-t₀ )-p . The physical basis for this modified Omori law is explained by pore pressure diffusion affecting the stress relaxation.

  7. Acoustic emission in a fluid saturated heterogeneous porous layer with application to hydraulic fracture

    SciTech Connect

    Nelson, J.T. . Dept. of Mechanical Engineering Lawrence Berkeley Lab., CA )

    1988-11-01

    A theoretical model for acoustic emission in a vertically heterogeneous porous layer bounded by semi-infinite solid regions is developed using linearized equations of motion for a fluid/solid mixture and a reflectivity method. Green's functions are derived for both point loads and moments. Numerically integrated propagators represent solutions for intermediate heterogeneous layers in the porous region. These are substituted into a global matrix for solution by Gaussian elimination and back-substitution. Fluid partial stress and seismic responses to dislocations associated with fracturing of a layer of rock with a hydraulically conductive fracture network are computed with the model. A constitutive model is developed for representing the fractured rock layer as a porous material, using commonly accepted relationships for moduli. Derivations of density, tortuosity, and sinuosity are provided. The main results of the model application are the prediction of a substantial fluid partial stress response related to a second mode wave for the porous material. The response is observable for relatively large distances, on the order of several tens of meters. The visco-dynamic transition frequency associated with parabolic versus planar fluid velocity distributions across micro-crack apertures is in the low audio or seismic range, in contrast to materials with small pore size, such as porous rocks, for which the transition frequency is ultrasonic. Seismic responses are predicted for receiver locations both in the layer and in the outlying solid regions. In the porous region, the seismic response includes both shear and dilatational wave arrivals and a second-mode arrival. The second-mode arrival is not observable outside of the layer because of its low velocity relative to the dilatational and shear wave propagation velocities of the solid region.

  8. Premonitory acoustic emissions and stick-slip in natural and smooth-faulted Westerly granite

    USGS Publications Warehouse

    Thompson, B.D.; Young, R.P.; Lockner, D.A.

    2009-01-01

    A stick-slip event was induced in a cylindrical sample of Westerly granite containing a preexisting natural fault by loading at constant confining pressure of 150 MPa. Continuously recorded acoustic emission (AE) data and computer tomography (CT)-generated images of the fault plane were combined to provide a detailed examination of microscale processes operating on the fault. The dynamic stick-slip event, considered to be a laboratory analog of an earthquake, generated an ultrasonic signal that was recorded as a large-amplitude AE event. First arrivals of this event were inverted to determine the nucleation site of slip, which is associated with a geometric asperity on the fault surface. CT images and AE locations suggest that a variety of asperities existed in the sample because of the intersection of branch or splay faults with the main fault. This experiment is compared with a stick-slip experiment on a sample prepared with a smooth, artificial saw-cut fault surface. Nearly a thousand times more AE were observed for the natural fault, which has a higher friction coefficient (0.78 compared to 0.53) and larger shear stress drop (140 compared to 68 MPa). However at the measured resolution, the ultrasonic signal emitted during slip initiation does not vary significantly between the two experiments, suggesting a similar dynamic rupture process. We propose that the natural faulted sample under triaxial compression provides a good laboratory analogue for a field-scale fault system in terms of the presence of asperities, fault surface heterogeneity, and interaction of branching faults. ?? 2009.

  9. Acoustic emission source location in complex structures using full automatic delta T mapping technique

    NASA Astrophysics Data System (ADS)

    Al-Jumaili, Safaa Kh.; Pearson, Matthew R.; Holford, Karen M.; Eaton, Mark J.; Pullin, Rhys

    2016-05-01

    An easy to use, fast to apply, cost-effective, and very accurate non-destructive testing (NDT) technique for damage localisation in complex structures is key for the uptake of structural health monitoring systems (SHM). Acoustic emission (AE) is a viable technique that can be used for SHM and one of the most attractive features is the ability to locate AE sources. The time of arrival (TOA) technique is traditionally used to locate AE sources, and relies on the assumption of constant wave speed within the material and uninterrupted propagation path between the source and the sensor. In complex structural geometries and complex materials such as composites, this assumption is no longer valid. Delta T mapping was developed in Cardiff in order to overcome these limitations; this technique uses artificial sources on an area of interest to create training maps. These are used to locate subsequent AE sources. However operator expertise is required to select the best data from the training maps and to choose the correct parameter to locate the sources, which can be a time consuming process. This paper presents a new and improved fully automatic delta T mapping technique where a clustering algorithm is used to automatically identify and select the highly correlated events at each grid point whilst the "Minimum Difference" approach is used to determine the source location. This removes the requirement for operator expertise, saving time and preventing human errors. A thorough assessment is conducted to evaluate the performance and the robustness of the new technique. In the initial test, the results showed excellent reduction in running time as well as improved accuracy of locating AE sources, as a result of the automatic selection of the training data. Furthermore, because the process is performed automatically, this is now a very simple and reliable technique due to the prevention of the potential source of error related to manual manipulation.

  10. A quantitative acoustic emission study on fracture processes in ceramics based on wavelet packet decomposition

    SciTech Connect

    Ning, J. G.; Chu, L.; Ren, H. L.

    2014-08-28

    We base a quantitative acoustic emission (AE) study on fracture processes in alumina ceramics on wavelet packet decomposition and AE source location. According to the frequency characteristics, as well as energy and ringdown counts of AE, the fracture process is divided into four stages: crack closure, nucleation, development, and critical failure. Each of the AE signals is decomposed by a 2-level wavelet package decomposition into four different (from-low-to-high) frequency bands (AA{sub 2}, AD{sub 2}, DA{sub 2}, and DD{sub 2}). The energy eigenvalues P{sub 0}, P{sub 1}, P{sub 2}, and P{sub 3} corresponding to these four frequency bands are calculated. By analyzing changes in P{sub 0} and P{sub 3} in the four stages, we determine the inverse relationship between AE frequency and the crack source size during ceramic fracture. AE signals with regard to crack nucleation can be expressed when P{sub 0} is less than 5 and P{sub 3} more than 60; whereas AE signals with regard to dangerous crack propagation can be expressed when more than 92% of P{sub 0} is greater than 4, and more than 95% of P{sub 3} is less than 45. Geiger location algorithm is used to locate AE sources and cracks in the sample. The results of this location algorithm are consistent with the positions of fractures in the sample when observed under a scanning electronic microscope; thus the locations of fractures located with Geiger's method can reflect the fracture process. The stage division by location results is in a good agreement with the division based on AE frequency characteristics. We find that both wavelet package decomposition and Geiger's AE source locations are suitable for the identification of the evolutionary process of cracks in alumina ceramics.

  11. Crustal stress, seismicity, acoustic emission (AE), and tectonics: the Kefallinì;a (Greece) case study

    NASA Astrophysics Data System (ADS)

    Gregori, G. P.; Poscolieri, M.; Paparo, G.; Ventrice, G.; de Simone, S.; Rafanelli, C.

    2009-04-01

    New inferences - confirming previous results (see references)- are presented dealing with a few years Acoustic Emission (AE) records collected at Kefallinìa (Ionian Islands, Greece). A physical distinction between HF (high frequency) vs. LF (low frequency) AE is required. Step-wise changes of the AE underground conductivity are evidenced, and can be suitably handled. "Smooth" results concern (i) the annual variation, (ii) some long-lasting stress "solitons" crossing through the area, and (iii) tidal effects. In particular, every AE station can be operated like a monitoring station both for Earth's tides and for the free oscillations of the Earth. In addition, Kefallinìa exhibits a much peculiar groundwater circulation, in which conduit flow is dominant, that originates a specific (and unique) AE effect. By means of AE time-series analysis, "extreme" or "catastrophic" events can be also monitored and possibly related to relevant tectonic occurrences (either earthquakes, or maybe other occasional phenomena). They can be investigated, and have a regional - rather than local - character. Therefore, every interpretation based on a single station record - being biased by some arbitrariness - can only result indicative. A standardized procedure and software is proposed for routine AE data handling and analysis. References.: Lagios et al., 2004. In Proc. SCI 2004 (The 8th World Multi-Conference on Systemics, Cybernetics and Informatic), Orlando, Florida, July 1004, 6 pp. Poscolieri et al., 2006. In. G. Cello and B. D. Malamud, (eds), 2006. Geol. Soc. London, Special Publ., 261, 63-78. Poscolieri et al., 2006a. Nat. Hazards Earth Syst. Sci., 6, 961-971.

  12. Contralateral acoustic stimulation induces a phase advance in evoked otoacoustic emissions in humans.

    PubMed

    Giraud, A L; Perrin, E; Chéry-Croze, S; Chays, A; Collet, L

    1996-05-01

    In 28 normal-hearing human subjects, the medial olivocochlear efferent system was activated by contralateral acoustic stimulation which is able to mimic the inhibitory effects of electrical stimulation of the crossed olivocochlear bundle. A first experiment on 16 subjects demonstrated that a contralateral white noise of 35 dB SL was able to induce temporal changes on transiently evoked otoacoustic emissions in response to clicks of 63 dB SPL. These temporal changes consisted of an advance of click-evoked otoacoustic signals in 87% of cases and is referred to as phase-shift effect. The phase advance, quantified using two signal processing methods in both time and frequency domains, was found to be mainly associated with lower frequencies, with a maximal effect at 1.5 kHz and minimal effects around 3.5 and 4 kHz. In a second experiment, carried out on 12 subjects, a negative relationship was found to exist between the ipsilateral stimulation level (level of clicks ranging from 57 to 69 dB SPL) and the phase-shift effect (PSE). Specifically in the range of levels tested (25-45 dB SL), a linear relationship presenting no obvious saturation effect was observed between the contralateral level and the PSE. The PSE was examined in 6 additional subjects exhibiting pathological symptoms; 2 of 3 individuals, who had no contralateral stapedial reflexes unilaterally, showed the PSE whereas this response was reduced or absent in 3 other subjects in the ear with severed efferents associated with a vestibular neurotomy. The integrity of olivocochlear efferents was, therefore, necessary to obtain a full effect, but the absence of stapedial reflex did not prevent the effect from occurring. PMID:8789811

  13. Chaotic behaviour of acoustic emission induced in hard coal by gas sorption-desorption

    NASA Astrophysics Data System (ADS)

    Majewska, Zofia; Mortimer, Zofia

    2006-03-01

    This paper presents study of non-linear dynamics of acoustic emission (AE) generated in coal samples subjected to gas sorption-desorption. Carbon-dioxide and methane were used as sorbats. Experimental facilities used in high pressure sorption of CO2 and/or CH4 on coal comprised a pressure vessel and associated pressurisation and monitoring systems. Tests were conducted on medium-rank coal obtained from the Upper Silesia Basin. Several approaches to the treatment of experimental results are proposed in order to detect and characterize deterministic chaos: (1) analysis of fractal/multifractal character of AE energy rate, using fractal generalised dimensions D q(q); (2) analysis of temporal changes of AE energy rate and its fractal correlation dimension D 2; and (3) evaluation of attractor dimension within the reconstructed phase space from experimental time series. It was shown that AE generated during CO2 sorption on medium-rank coal is a more heterogeneous and lower dimensional process in comparison with AE induced by CO2 desorption. Yet, the AE associated with desorption of CO2 exhibits higher heterogeneity than the AE generated during desorption of CH4. There are certain similarities between changes of D2 during desorption of CO2 as well desorption of CH4. However, dynamics of these changes and character of time distributions of D2 differ, depending on a sorbate. We do not know the precise reason for observed differences, but we presume that the carbon-dioxide molecules dissimilarity to methane molecules can account for them.

  14. Imaging velocity and attenuation anomalies in mining environments using Acoustic Emissions

    NASA Astrophysics Data System (ADS)

    Cesca, S.; Monna, S.; Kaiser, D.; Dahm, T.

    2012-04-01

    Imaging structural properties and monitoring fracturing processes in mining environments is of importance for mining exploitation. It is also helpful to characterize damages induced by mining activities, thus it is of primary interest for mining engineering and civil protection. Additionally, the development of improved monitoring and imaging methods is of great importance for salt deposits as potential reservoirs for CO2 sequestration. The analysis of Acoustic Emission (AE) and microseismicity data, which are routinely used in mining survey, is typically limited to estimate location of induced microcracks and seismicity. AE data will be here further analysed to obtain images of the seismic structure. We focus on an AE dataset recorded at the Morsleben salt mine, in Germany; the dataset contains more than 1 million events, recorded during a period of two months, with AE magnitudes spanning 5 units. Arrival times of first P and S onsets, as well as maximal amplitudes recorded for both seismic phases, are used to assess the seismic velocities and attenuation properties of the mining environment. Given the large size of the considered dataset, a spatial clustering of the events is first performed and a spatial homogeneous catalog of averaged "pseudoevents" is built. This new catalog is then used to provide first averaged images of the attenuation and velocity anomalies at specific depths. Results points to clear velocity and attenuation anomalies, which are correlated with the main structural features and the geometry of the salt body. The potential of the dataset for tomographic applications is investigated, both including synthetic simulations and considering real data. This study is funded by the project MINE, which is part of the R&D-Programme GEOTECHNOLOGIEN. The project MINE is funded by the German Ministry of Education and Research (BMBF), Grant of project BMBF03G0737.

  15. Early state damage detection of aluminum 7075-T6 plate based on acoustic emission

    NASA Astrophysics Data System (ADS)

    Ozevin, Didem; Li, Zhong; Heidary, Zahra

    2011-04-01

    Aluminum alloy 7075-T6 is a commonly used material in aircraft industry. A crack usually initiates at the edge of a fastener hole, and it can affect the maintenance schedule and reduce the life of an aircraft structure significantly. The fatigue property of the material has been researched widely to develop methods and models for predicting fatigue crack growth under random loading. From the point of damage tolerance design, the inspection technique of a crack for an aircraft structure is very important because it can be used to determine the inspection period of the aircraft structure. The acoustic emission (AE) technique is a nondestructive testing (NDT) method that is able to monitor damage initiation and progression in real time. Understanding the early stage of AE signature due to the damage progression using small scale laboratory samples requires non-traditional data analysis approaches. In this study, 1mm thick Al-7075-T6 plates were tested under monotonic and fatigue loading. The initiation of damage progression using AE data was identified based on improved linear location algorithm and the result was verified using elasto-plastic finite element model. The improved location algorithm integrates dispersive characteristics of flexural waves and threshold independent approach to pick up the wave arrival time. In this paper, AE results in comparison with FE model under monotonic and fatigue loading will be presented. The comparison of traditional and improved location approaches will be shown. The approach for implementing the laboratory scale results in the large scale field testing will be discussed.

  16. Otoacoustic emissions and medial olivocochlear suppression during auditory recovery from acoustic trauma in humans.

    PubMed

    Veuillet, E; Martin, V; Suc, B; Vesson, J F; Morgon, A; Collet, L

    2001-01-01

    It is well known that the large inter-individual susceptibility to noise exposure makes it impossible to predict the degree of hearing loss which will develop after any given intense noise exposure. The acoustic trauma which sometimes occurs affects cochlear mechanisms, the damage being most probably due to deactivation of the active processes of the outer hair cells (OHCs), which receive direct efferent innervation. The present report is of a follow-up study involving young military personnel recovering auditively from impulse noise exposure, and seeks to assess changes in cochlear status by means of otoacoustic emissions (OAEs) and their modulation by the medial olivocochlear (MOC) system. The study investigated the relationship between recovery of cochlear function and variables that could serve as predictors of vulnerability to noise-induced hearing loss (NIHL). Thirty-six subjects with unilateral NHIL above 4 kHz were included. Normal and affected ears were compared with respect to click-evoked and spontaneous OAEs (CEOAEs and SOAEs, respectively) and for contralateral CEOAE suppression. Measurements were obtained: (i) just after the traumatic exposure (D0); (ii) 3 days after this first measurement (D3); and (iii) 30 days after (D30). Significant improvement in the 4, 6 and 8 kHz thresholds was observed for the affected ear, with large inter-subject variability. No significant change was observed in CEOAE amplitude or MOC suppression, whereas incidence of SOAE was found to increase in the affected ear, leading to higher SOAE prevalence on this side I month after the intense noise exposure. There was no significant correlation between NIHL at 4, 6 and 8 kHz and MOC functioning on D0, but significant correlations were obtained between audiometric threshold improvement by D3 and contralateral CEOAE suppression, with better recovery in subjects with greater MOC suppressive action. The MOC system could be an underlying mechanism in post-traumatic auditory threshold

  17. Acoustic emission and fatigue damage induced in plasma-sprayed hydroxyapatite coating layers.

    PubMed

    Laonapakul, Teerawat; Otsuka, Yuichi; Nimkerdphol, Achariya Rakngarm; Mutoh, Yoshiharu

    2012-04-01

    In order to improve the adhesive strength of hydroxyapatite (HAp) coatings, grit blasting with Al(2)O(3) powder and then wet blasting with HAp/Ti mixed powders was carried out on a commercially pure Ti (cp-Ti) substrate. Subsequently, an HAp/Ti bond coat layer and HAp top coat layer were deposited by plasma spraying. Fatigue tests of the HAp-coated specimens were carried out under four-point bending. Acoustic emission (AE) signals during the entire fatigue test were monitored to investigate the fatigue cracking behavior of the HAp-coated specimens. The HAp-coated specimens could survive up to 10(7) cycles without spallation of the HAp coating layers at the stress amplitude of 120 MPa. The HAp-coated specimens without HAp/Ti bond coat layer showed shorter fatigue life and easy crack nucleation compared to the HAp-coated specimens with HAp/Ti bond coat layer. The delamination and spallation of the HAp top coat with HAp/Ti bond coat on cp-Ti was not observed until the crack propagated into the cp-Ti during the final fracture stage of the fatigue cycle. Therefore, the HAp/Ti bond coat layer was found to greatly improve the fatigue damage resistance of the HAp coating layer. Three stages of the fatigue failure behavior of the HAp top coat with HAp/Ti bond coat on a cp-Ti substrate can be clearly estimated by the AE monitoring technique. These stages are cracks nucleating and propagating in the coating layer, cracks propagating in the substrate, and cracks propagating unstably to final fracture.

  18. Moulding Faces at an Early Age-A Case Series

    PubMed Central

    Sunny, Sunil; Mathew, Neethu; Parambath, Anvar Kizhakke; Madhusudanan, Amla

    2016-01-01

    Certain malocclusions have to be treated at an early age to avoid surgeries for the correction in the future. Introduction of functional appliances has reduced the elimination and correction of skeletal as well as dental discrepancies. Proper case selection taking into consideration skeletal and dental age with the use of various diagnostic aids helps us to identify and treat the malocclusions before it is too late. In this case series, we report three patients with skeletal jaw malrelationship treated with functional and orthopaedic appliances. PMID:27656599

  19. Moulding Faces at an Early Age-A Case Series.

    PubMed

    Sunny, Sunil; Thomas, Rinu; Mathew, Neethu; Parambath, Anvar Kizhakke; Madhusudanan, Amla

    2016-08-01

    Certain malocclusions have to be treated at an early age to avoid surgeries for the correction in the future. Introduction of functional appliances has reduced the elimination and correction of skeletal as well as dental discrepancies. Proper case selection taking into consideration skeletal and dental age with the use of various diagnostic aids helps us to identify and treat the malocclusions before it is too late. In this case series, we report three patients with skeletal jaw malrelationship treated with functional and orthopaedic appliances. PMID:27656599

  20. Computational Thermomechanical Modelling of Early-Age Silicate Composites

    NASA Astrophysics Data System (ADS)

    Vala, J.; Št'astník, S.; Kozák, V.

    2009-09-01

    Strains and stresses in early-age silicate composites, widely used in civil engineering, especially in fresh concrete mixtures, in addition to those caused by exterior mechanical loads, are results of complicated non-deterministic physical and chemical processes. Their numerical prediction at the macro-scale level requires the non-trivial physical analysis based on the thermodynamic principles, making use of micro-structural information from both theoretical and experimental research. The paper introduces a computational model, based on a nonlinear system of macroscopic equations of evolution, supplied with certain effective material characteristics, coming from the micro-scale analysis, and sketches the algorithm for its numerical analysis.

  1. Effects of Acoustic Emission and Energy Evolution of Rock Specimens Under the Uniaxial Cyclic Loading and Unloading Compression

    NASA Astrophysics Data System (ADS)

    Meng, Qingbin; Zhang, Mingwei; Han, Lijun; Pu, Hai; Nie, Taoyi

    2016-10-01

    Characteristics of energy accumulation, evolution, and dissipation in uniaxial cyclic loading and unloading compression of 30 sandstone rock specimens under six different loading rates were explored. Stress-strain relations and acoustic emission characteristics of the deformation and failure of rock specimens were analyzed. The densities and rates of stored energy, elastic energy, and dissipated energy under different loading rates were confirmed, and an effective approach for the equivalent energy surface was presented. The energy evolution of rock deformation and failure were revealed. It turns out that the rock deformation behavior under uniaxial cyclic loading and unloading compression remained almost unchanged compared with that of uniaxial compression. The degree of match between reloading stress-strain curves and previous unloading curves was high, thereby demonstrating the memory function of rock masses. The intensity of acoustic emission fluctuated continually during the entire cyclic process. Emissions significantly increased as the stress exceeded the unloading level. The peak of acoustic emission increased with increasing loading stress level. Relationships between energy density and axial load indicate that the rock mass possesses a certain energy storage limitation. The energy evolution of rock masses is closely related to the axial loading stress, rather than to the axial loading rate. With increasing axial loading stress, stored energy varied most rapidly, followed by that of the elastic energy, then dissipated energy. Energy accumulation dominates prior to the axial load reaching peak strength; thereafter, energy dissipation becomes dominant. The input energy causes the irreversible initiation and extension of microcracks in the rock body. Elastic energy release leads to sudden instability of rock bodies and drives rock damage.

  2. Acoustic Emission Detection of Macro-Cracks on Engraving Tool Steel Inserts during the Injection Molding Cycle Using PZT Sensors

    PubMed Central

    Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez

    2013-01-01

    This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process. PMID:23673677

  3. Acoustic monitoring of gas emissions from the seafloor. Part II: a case study from the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Bayrakci, Gaye; Scalabrin, Carla; Dupré, Stéphanie; Leblond, Isabelle; Tary, Jean-Baptiste; Lanteri, Nadine; Augustin, Jean-Marie; Berger, Laurent; Cros, Estelle; Ogor, André; Tsabaris, Christos; Lescanne, Marc; Géli, Louis

    2014-09-01

    A rotating, acoustic gas bubble detector, BOB (Bubble OBservatory) module was deployed during two surveys, conducted in 2009 and 2011 respectively, to study the temporal variations of gas emissions from the Marmara seafloor, along the North Anatolian Fault zone. The echosounder mounted on the instrument insonifies an angular sector of 7° during a given duration (of about 1 h). Then it rotates to the next, near-by angular sector and so forth. When the full angular domain is insonified, the "pan and tilt system" rotates back to its initial position, in order to start a new cycle (of about 1 day). The acoustic data reveal that gas emission is not a steady process, with observed temporal variations ranging between a few minutes and 24 h (from one cycle to the other). Echo-integration and inversion performed on the acoustic data as described in the companion paper of Leblond et al. (Mar Geophys Res, 2014), also indicate important variations in, respectively, the target strength and the volumetric flow rates of individual sources. However, the observed temporal variations may not be related to the properties of the gas source only, but reflect possible variations in sea-bottom currents, which could deviate the bubble train towards the neighboring sector. During the 2011 survey, a 4-component ocean bottom seismometer (OBS) was co-located at the seafloor, 59 m away from the BOB module. The acoustic data from our rotating, monitoring system support, but do not provide undisputable evidence to confirm, the hypothesis formulated by Tary et al. (2012), that the short-duration, non-seismic micro-events recorded by the OBS are likely produced by gas-related processes within the near seabed sediments. Hence, the use of a multibeam echosounder, or of several split beam echosounders should be preferred to rotating systems, for future experiments.

  4. Calorimetric and acoustic emission study of martensitic transformation in single-crystalline Ni2MnGa alloys

    NASA Astrophysics Data System (ADS)

    Tóth, László Z.; Szabó, Sándor; Daróczi, Lajos; Beke, Dezső L.

    2014-12-01

    The jerky character of austenite-martensite phase transformation in Ni2MnGa single crystals (with 10M martensite structure) has been investigated by thermal cycling using a differential scanning calorimeter (DSC) and by detection of acoustic emissions (AEs) at low cooling and heating rates (0.1 K/min and below). It is illustrated that, besides the low cooling and heating rate, mass and surface roughness are also important parameters in optimizing the best signal/noise ratio in order to obtain individual peaks suitable for statistical analysis. Three types of samples, differing in the twin structure and twin boundary behavior, were investigated with and without surface roughening made by electro-erosion. The statistical analysis, carried out for both (thermal and acoustic) types of signals, provided power-law behavior. In calorimetric measurements the energy exponents, obtained in cooling, were the same within the experimental errors (ɛ =1.7 ±0.2 ) for the three samples investigated. In acoustic emission experiments the energy and amplitude, α , exponents were determined both for cooling and heating. The exponents for cooling and heating runs are slightly different. They are larger for heating for both α and ɛ , in accordance with the asymmetric acoustic activity: we observed higher acoustic activity (higher number of hits) during cooling. The effect of the surface roughness is negligible in the exponents (but higher acoustic activity corresponds to higher roughness) and the following values were obtained: ɛ =1.5 ±0.1 and α =2.1 ±0.1 for cooling as well as ɛ =1.8 ±0.1 and α =2.6 ±0.1 for heating. Our results are in accordance with the results of Gallardo et al. [Phys. Rev. B 81, 174102 (2010), 10.1103/PhysRevB.81.174102] obtained in Cu based alloys: the exponents of the energy distributions, for both DSC and AE signals, were the same within the experimental errors. Furthermore, our exponents obtained from the AE measurements are close to the values

  5. Multi Reflection of Lamb Wave Emission in an Acoustic Waveguide Sensor

    PubMed Central

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-01-01

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid—liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner. PMID:23447010

  6. Monitoring Induced Seismicity with Acoustic-Emission Sensors : The Calibration Problem

    NASA Astrophysics Data System (ADS)

    Plenkers, K.; Kwiatek, G.

    2012-12-01

    We study the effect that an uncalibrated acoustic-emission (AE) sensor has on source parameters using data of the JAGUARS project. The JAGUARS project recorded mining-induced seismicity in Mponeng Gold mine in Carletonville, South Africa in the frequency range 1 kHz < f < 180 kHz combining AE-sensors and accelerometers. Advanced monitoring of induced seismicity in underground structures sometimes includes today the use of high-frequency (f >> 1 kHz) AE monitoring systems. High-frequency monitoring allows the detection of seismic fractures on the centimeter scale and provides therefore important information about the migration of instabilities in the rock. Whereas the temporal-spatial analysis of seismic events recorded with AE sensors provides stable results, the analysis of source parameters including the estimation of magnitudes remains more challenging, because AE sensors are normally not well calibrated and exploit resonance frequencies to allow for high sensitivity. In our study the AE sensors are first calibrated in the frequency range 1kHz to 17 kHz relative to the well calibrated accelerometer. The calibration is possible due to the close employment of both sensor types, which allows to extract the sensor response (including the coupling effect) using signal deconvolution. We estimate three main resonance frequencies at about 2.5 kHz, 6 kHz and 10 kHz. Furthermore we calculate the directivity effect of the AE-sensor that influences the amplitude of the signal by up to - 15 dB. Second, we calculate the effect of the instrument response on the calculation of magnitude, magnitude-frequency distribution and static source parameters. We study magnitudes, magitude-frequency distributions and static source parameters using both the calibrated sensors, as well as the uncalibrated AE sensors. We show the significant uncertainty that is indroduced owing to the AE sensor response and conclude that source parameters often have high uncertainties and are not reliable

  7. Stress Corrosion Cracking—Crevice Interaction in Austenitic Stainless Steels Characterized By Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Leinonen, H.; Schildt, T.; Hänninen, H.

    2011-02-01

    Stress corrosion cracking (SCC) susceptibility of austenitic EN1.4301 (AISI 304) and EN1.4404 (AISI 316L) stainless steels was studied using the constant load method and polymer (PTFE) crevice former in order to study the effects of crevice on SCC susceptibility. The uniaxial active loading tests were performed in 50 pct CaCl2 at 373 K (100 °C) and in 0.1 M NaCl at 353 K (80 °C) under open-circuit corrosion potential (OCP) and electrochemical polarization. Pitting, crevice, and SCC corrosion were characterized and identified by acoustic emission (AE) analysis using ∆ t filtering and the linear locationing technique. The correlation of AE parameters including amplitude, duration, rise time, counts, and energy were used to identify the different types of corrosion. The stages of crevice corrosion and SCC induced by constant active load/crevice former were monitored by AE. In the early phase of the tests, some low amplitude AE activity was detected. In the steady-state phase, the AE activity was low, and toward the end of the test, it increased with the increasing amplitude of the impulses. AE allowed a good correlation between AE signals and corrosion damage. Although crevice corrosion and SCC induced AE signals overlapped slightly, a good correlation between them and microscopical characterization and stress-strain data was found. Especially, the activity of AE signals increased in the early and final stages of the SCC experiment under constant active load conditions corresponding to the changes in the measured steady-state creep strain rate of the specimen. The results of the constant active load/crevice former test indicate that a crevice can initiate SCC even in the mild chloride solution at low temperatures. Based on the mechanistic model of SCC, the rate determining step in SCC is thought to be the generation of vacancies by selective dissolution, which is supported by the low activity phase of AE during the steady-state creep strain rate region.

  8. Effect of Anisotropic Velocity Structure on Acoustic Emission Source Location during True-Triaxial Deformation Experiments

    NASA Astrophysics Data System (ADS)

    Ghofrani Tabari, Mehdi; Goodfellow, Sebastian; Young, R. Paul

    2016-04-01

    Although true-triaxial testing (TTT) of rocks is now more extensive worldwide, stress-induced heterogeneity due to the existence of several loading boundary effects is not usually accounted for and simplified anisotropic models are used. This study focuses on the enhanced anisotropic velocity structure to improve acoustic emission (AE) analysis for an enhanced interpretation of induced fracturing. Data from a TTT on a cubic sample of Fontainebleau sandstone is used in this study to evaluate the methodology. At different stages of the experiment the True-Triaxial Geophysical Imaging Cell (TTGIC), armed with an ultrasonic and AE monitoring system, performed several velocity surveys to image velocity structure of the sample. Going beyond a hydrostatic stress state (poro-elastic phase), the rock sample went through a non-dilatational elastic phase, a dilatational non-damaging elasto-plastic phase containing initial AE activity and finally a dilatational and damaging elasto-plastic phase up to the failure point. The experiment was divided into these phases based on the information obtained from strain, velocity and AE streaming data. Analysis of the ultrasonic velocity survey data discovered that a homogeneous anisotropic core in the center of the sample is formed with ellipsoidal symmetry under the standard polyaxial setup. Location of the transducer shots were improved by implementation of different velocity models for the sample starting from isotropic and homogeneous models going toward anisotropic and heterogeneous models. The transducer shot locations showed a major improvement after the velocity model corrections had been applied especially at the final phase of the experiment. This location improvement validated our velocity model at the final phase of the experiment consisting lower-velocity zones bearing partially saturated fractures. The ellipsoidal anisotropic velocity model was also verified at the core of the cubic rock specimen by AE event location of

  9. Validation and verification of the acoustic emission technique for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Gagar, Daniel Omatsola

    The performance of the Acoustic Emission (AE) technique was investigated to establish its reliability in detecting and locating fatigue crack damage as well as distinguishing between different AE sources in potential SHM applications. Experiments were conducted to monitor the AE signals generated during fatigue crack growth in coupon 2014 T6 aluminium. The influence of stress ratio, stress range, sample geometry and whether or not the load spectrum was of constant or variable amplitude were all investigated. AE signals detected were correlated with values of applied cyclic load throughout the tests. Measurements of time difference of arrival were taken for assessment of errors in location estimates obtained using time of flight algorithms with a 1D location setup. At the onset of crack growth high AE Hit rates were observed for the first few millimetres after which they rapidly declined to minimal values for an extended period of crack growth. Another peak and then decline in AE Hit rates was observed for subsequent crack growth before yet another increase as the sample approached final failure.. AE signals were seen to occur in the lower two-thirds of the maximum load in the first few millimetres of crack growth before occurring at progressively smaller values as the crack length increased. A separate set of AE signals were observed close to the maximum cyclic stress throughout the entire crack growth process. At the failure crack length AE signals were generated across the entire loading range. Novel metrics were developed to statistically characterise variability of AE generation with crack growth and at particular crack lengths across different samples. A novel approach for fatigue crack length estimation was developed based on monitoring applied loads to the sample corresponding with generated AE signals. An acousto-ultrasonic method was used to calibrate the AE wave velocity in a representative wing-box structure which was used to successfully locate the

  10. Waves on a Hele-Shaw Cell: Simulations of Acoustic Emissions During Aerofracture

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Daniel, Guillaume; Grude Flekkøy, Eirik; Jørgen Måløy, Knut

    2016-04-01

    acoustic emissions in a porous medium." Front. Phys., 3 (2015): 70. doi: 10.3389/fphy.2015.00070 2. Niebling MJ, Toussaint R, Flekkøy EG, Maløy KJ. "Dynamic aerofracture of dense granular packings." Phys Rev E, 86 (2012): 061315. 3. Goyder, H. G. D. and White, R. G. "Vibrational power flow from machines into built-up structures, part I: introduction and approximate analyses of beam and plate-like foundations." Journal of sound and vibration, 68.1 (1980): 59-75.

  11. Detection of transverse cracking in a hybrid composite laminate using acoustic emission

    NASA Astrophysics Data System (ADS)

    Jong, Hwai-Jiang

    Transverse cracking detection in a uniaxially-loaded symmetric cross-ply hybrid laminate containing 0° IM7/8552 carbon/epoxy and a very thin 90° 52/8552 glass/epoxy layer is studied using the acoustic emission (AE) technique. By conducting modal-based AE experiments and analysis, we investigate some parameters that can be used as the waveform signatures to identify transverse crack growth in the hybrid laminate. Wave dispersion relations of the hybrid laminate are established, and a comparison with those from a material homogenization model based on the equivalent stiffness is made. It is found that material homogenization is not accurate for predicting wave dispersion in the hybrid laminate. Wave dispersion for a homogeneous IM7/8552 unidirectional plate is also constructed. Cut-off frequencies belonging to various wave modes are discussed concerning their significance in interpreting AE signals. The wave attenuation behaviors that exist in the hybrid laminate and in the homogeneous IM7/8552 plate are compared and discussed using the finite element method (FEM). The use of singular elements dealing with the high strain gradient near the crack tip is addressed for convergence purposes. It is shown by the FEM results and demonstrated in the AE experiments that wave attenuation in the cross-ply hybrid laminate is much stronger than in the plain IM7/8552 plate. A simple calibration method for the AE sensors is discussed. Some important aspects in conducting an AE experiment, such as the sensor averaging effect and sensor frequency response range, are addressed. A new source location method based on the waveform's first peak search and the associated primary frequency content is proposed. The accuracy of the source location method is verified by pencil-lead break experiments. The so-called symmetric energy fraction (SEF) of the AE signals in conjunction with the finite element analysis result in identification of the transverse cracking event. Lastly, a material

  12. A new setup for studying thermal microcracking through acoustic emission monitoring

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Baud, Patrick; Schmittbuhl, Jean

    2016-04-01

    Thermal stressing is common in geothermal environments and has been shown in the laboratory to induce changes in the physical and mechanical properties of rocks. These changes are generally considered to be a consequence of the generation of thermal microcracks and debilitating chemical reactions. Thermal microcracks form as a result of the build-up of internal stresses due to: (1) the thermal expansion mismatch between the different phases present in the material, (2) thermal expansion anisotropy within individual minerals, and (3) thermal gradients. The generation of cracks during thermal stressing has been monitored in previous studies using the output of acoustic emissions (AE), a common proxy for microcrack damage, and through microstructural observations. Here we present a new experimental setup which is optimised to record AE from a rock sample at high temperatures and under a servo-controlled uniaxial stress. The design is such that the AE transducer is embedded in the top of the piston, which acts as a continuous wave guide to the sample. In this way, we simplify the ray path geometry whilst minimising the number of interfaces between the microcrack and the transducer, maximising the quality of the signal. This allows for an in-depth study of waveform attributes such as energy, amplitude, counts and duration. Furthermore, the capability of this device to apply a servo-controlled load on the sample, whilst measuring strain in real time, leads to a spectrum of possible tests combining mechanical and thermal stress. It is also an essential feature to eliminate the build-up of stresses through thermal expansion of the pistons and the sample. We plan a systematic experimental study of the AE of thermally stressed rock during heating and cooling cycles. We present results from pilot tests performed on Darley Dale sandstone and Westerly granite. Understanding the effects of thermal stressing in rock is of particular interest at a geothermal site, where

  13. Early-age monitoring of cement structures using FBG sensors

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Zhou, Zhi; Zhang, Zhichun; Ou, Jinping

    2006-03-01

    With more and more broad applications of the cement-based structures such as neat cement paste, cement mortar and concrete in civil engineering, people hope to find out what their performances should like. The in-service performances of cement-based structures are highly affected by their hardening process during the early-age. But it is still a big problem for traditional sensors to be used to monitor the early curing of cement-based structures due to such disadvantages as difficulties to install sensors inside the concrete, limited measuring points, poor durability and interference of electromagnetic wave and so on. In this paper, according to the sensing properties of the Fiber Bragg Grating sensors and self-characters of the cement-based structures, we have successfully finished measuring and monitoring the early-age inner-strain and temperature changes of the neat cement paste, concrete with and without restrictions, mass concrete structures and negative concrete, respectively. Three types of FBG-based sensors have been developed to monitor the cement-based structures. Besides, the installation techniques and the embedding requirements of FBG sensors in cement-based structures are also discussed. Moreover, such kind of technique has been used in practical structure, 3rd Nanjing Yangtze Bridge, and the results show that FBG sensors are well proper for measuring and monitoring the temperature and strain changes including self-shrinkage, dry shrinkage, plastic shrinkage, temperature expansion, frost heaving and so on inside different cement-based structures. This technique provides us a new useful measuring method on early curing monitoring of cement-based structures and greater understanding of details of their hardening process.

  14. Information Theory Filters for Wavelet Packet Coefficient Selection with Application to Corrosion Type Identification from Acoustic Emission Signals

    PubMed Central

    Van Dijck, Gert; Van Hulle, Marc M.

    2011-01-01

    The damage caused by corrosion in chemical process installations can lead to unexpected plant shutdowns and the leakage of potentially toxic chemicals into the environment. When subjected to corrosion, structural changes in the material occur, leading to energy releases as acoustic waves. This acoustic activity can in turn be used for corrosion monitoring, and even for predicting the type of corrosion. Here we apply wavelet packet decomposition to extract features from acoustic emission signals. We then use the extracted wavelet packet coefficients for distinguishing between the most important types of corrosion processes in the chemical process industry: uniform corrosion, pitting and stress corrosion cracking. The local discriminant basis selection algorithm can be considered as a standard for the selection of the most discriminative wavelet coefficients. However, it does not take the statistical dependencies between wavelet coefficients into account. We show that, when these dependencies are ignored, a lower accuracy is obtained in predicting the corrosion type. We compare several mutual information filters to take these dependencies into account in order to arrive at a more accurate prediction. PMID:22163921

  15. Assessment of impact damage in Kevlar{reg_sign}-epoxy, filament-wound spherical test specimens by acoustic emission techniques

    SciTech Connect

    Whittaker, J.W.; Brosey, W.D.; Hamstad, M.A.

    1996-09-26

    The results of a study of the acoustic emission (AE) behavior of impact-damaged, spherical, composite test specimens subjected to thermal cycling and biaxial mechanical loading are presented. Seven Kevlar{reg_sign}-epoxy, filament-wound, spherical composite test specimens were subjected to different levels of impact damage. The seven specimens were a subset of a group of 77 specimens made with simulated fabrication-induced flaws. The specimens were subjected to two or three cycles of elevated temperature and then hydraulically pressurized to failure. The pressurization regime consisted of two cycles to different intermediate levels with a hold at each peak pressure level; a final pressurization to failure followed. The thermal and pressurization cycles were carefully designed to stimulate AE production under defined conditions. Both impacted and nonimpacted specimens produced thermo-AE (the term given to emission stimulated by thermal loading), but impacted specimens produced significantly more. Thermo-AE was produced primarily by damaged composite material. Damaged material produced emission as a function of both rising and falling temperature, but the effect was not repeatable. More seriously damaged specimens produced very large quantities of emission. Emission recorded during the static portion of the hydraulic loading cycles varied with load, time, and degree of damage. Static load AE behavior was quantified using a newly developed concept, the event-rate moment, and various correlations with residual strength were attempted. Correlations between residual strength, long-duration events, and even-rate moments were developed with varying degrees of success.

  16. Acoustic Emission and Guided Ultrasonic Waves for Detection and Continuous Monitoring of Cracks in Light Water Reactor Components

    SciTech Connect

    Meyer, Ryan M.; Coble, Jamie B.; Ramuhalli, Pradeep; Watson, Bruce E.; Cumblidge, Stephen E.; Doctor, Steven R.; Bond, Leonard J.

    2012-06-28

    Acoustic emission (AE) and guided ultrasonic waves (GUW) are considered for continuous monitoring and detection of cracks in Light Water Reactor (LWR) components. In this effort, both techniques are applied to the detection and monitoring of fatigue crack growth in a full scale pipe component. AE results indicated crack initiation and rapid growth in the pipe, and significant GUW responses were observed in response to the growth of the fatigue crack. After initiation, the crack growth was detectable with AE for approximately 20,000 cycles. Signals associated with initiation and rapid growth where distinguished based on total rate of activity and differences observed in the centroid frequency of hits. An intermediate stage between initiation and rapid growth was associated with significant energy emissions, though few hits. GUW exhibit a nearly monotonic trend with crack length with an exception of measurements obtained at 41 mm and 46 mm.

  17. Acoustic Emission Source Location in Unidirectional Carbon-Fibre-Reinforced Plastic Plates Using Virtually Trained Artificial Neural Networks

    SciTech Connect

    Caprino, G.; Lopresto, V.; Leone, C.; Papa, I.

    2010-06-02

    Acoustic emission source location in a unidirectional carbon-fibre-reinforced plastic plate was attempted employing Artificial Neural Network (ANN) technology. The acoustic emission events were produced by a lead break, and the response wave received by piezoelectric sensors, type VS150-M resonant at 150 kHz. The waves were detected by a Vallen AMSY4 eight-channel instrumentation. The time of arrival, determined through the conventional threshold crossing technique, was used to measure the dependence of wave velocity on fibre orientation. A simple empirical formula, relying on classical lamination and suggested by wave propagation theory, was able to accurately model the experimental trend. Based on the formula, virtual training and testing data sets were generated for the case of a plate monitored by three transducers, and adopted to select two potentially effective ANN architectures. For final validation, experimental tests were carried out, positioning the source at predetermined points evenly distributed within the plate area. A very satisfactory correlation was found between the actual source locations and the ANN predictions.

  18. Acoustic Emission Source Location in Unidirectional Carbon-Fibre-Reinforced Plastic Plates Using Virtually Trained Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Caprino, G.; Lopresto, V.; Leone, C.; Papa, I.

    2010-06-01

    Acoustic emission source location in a unidirectional carbon-fibre-reinforced plastic plate was attempted employing Artificial Neural Network (ANN) technology. The acoustic emission events were produced by a lead break, and the response wave received by piezoelectric sensors, type VS150-M resonant at 150 kHz. The waves were detected by a Vallen AMSY4 eight-channel instrumentation. The time of arrival, determined through the conventional threshold crossing technique, was used to measure the dependence of wave velocity on fibre orientation. A simple empirical formula, relying on classical lamination and suggested by wave propagation theory, was able to accurately model the experimental trend. Based on the formula, virtual training and testing data sets were generated for the case of a plate monitored by three transducers, and adopted to select two potentially effective ANN architectures. For final validation, experimental tests were carried out, positioning the source at predetermined points evenly distributed within the plate area. A very satisfactory correlation was found between the actual source locations and the ANN predictions.

  19. Use of Modal Acoustic Emission to Monitor Damage Progression in Carbon Fiber/Epoxy Tows and Implications for Composite Structures

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Saulsberry, Regor L.; Nichols, Charles T.; Wentzel, Daniel J.

    2010-01-01

    This slide presentation reviews the use of Modal Acoustic Emission to monitor damage progression to carbon fiber/epoxy tows. There is a risk for catastrophic failure of composite overwrapped pressure vessels (COPVs) due to burst-before-leak (BBL) stress rupture (SR) failure of carbon-epoxy (C/Ep) COPVs. A lack of quantitative nondestructive evaluation (NDE) is causing problems in current and future spacecraft designs. It is therefore important to develop and demonstrate critical NDE that can be implemented during stages of the design process since the observed rupture can occur with little of no advanced warning. Therefore a program was required to develop quantitative acoustic emission (AE) procedures specific to C/Ep overwraps, but which also have utility for monitoring damage accumulation in composite structure in general, and to lay the groundwork for establishing critical thresholds for accumulated damage in composite structures, such as COPVs, so that precautionary or preemptive engineering steps can be implemented to minimize of obviate the risk of catastrophic failure. A computed Felicity Ratio (FR) coupled with fast Fourier Transform (FFT) frequency analysis shows promise as an analytical pass/fail criterion. The FR analysis and waveform and FFT analysis are reviewed

  20. Detecting the Activation of a Self-Healing Mechanism in Concrete by Acoustic Emission and Digital Image Correlation

    PubMed Central

    Tsangouri, E.; Aggelis, D. G.; Van Tittelboom, K.; De Belie, N.; Van Hemelrijck, D.

    2013-01-01

    Autonomous crack healing in concrete is obtained when encapsulated healing agent is embedded into the material. Cracking damage in concrete elements ruptures the capsules and activates the healing process by healing agent release. Previously, the strength and stiffness recovery as well as the sealing efficiency after autonomous crack repair was well established. However, the mechanisms that trigger capsule breakage remain unknown. In parallel, the conditions under which the crack interacts with embedded capsules stay black-box. In this research, an experimental approach implementing an advanced optical and acoustic method sets up scopes to monitor and justify the crack formation and capsule breakage of concrete samples tested under three-point bending. Digital Image Correlation was used to visualize the crack opening. The optical information was the basis for an extensive and analytical study of the damage by Acoustic Emission analysis. The influence of embedding capsules on the concrete fracture process, the location of capsule damage, and the differentiation between emissions due to capsule rupture and crack formation are presented in this research. A profound observation of the capsules performance provides a clear view of the healing activation process. PMID:24381518

  1. Results obtained during acoustic emission monitoring of proof testing of a large Kevlar/epoxy rocket motor case

    SciTech Connect

    Hamstad, M.A.

    1982-12-01

    A total of 15 acoustic emission (AE) sensors were used to monitor a large Kevlar 49/epoxy rocket motor case during proof cycles to successively higher levels. Fourteen of the sensors were placed on the composite surface and one sensor was coupled to a stainless steel waveguide which penetrated the full length of the inside of the hydraulically pressurized motor case. To reduce signal propagation losses, the bandpass was chosen to be 5 to 10 kHz. In addition to an Acoustic Emission Technology (AET) 5000 system, Hewlett Packard 3400 A root-mean-square voltmeters, and a 1010 Biomation transient recorder were used to record AE data. The AET system measured rise time, event duration, peak amplitude, and energy (calculated from event duration and peak amplitude) for each AE event. The main purpose of this paper is to present and discuss the AE data obtained by hand post-processing of event listings generated for each proof cycle of the AE data taped by the 5000 system during the test. Real AE signal propagation losses are compared to the losses from Pentel pencil-lead breaks. We present first-hit sensor data for events with high amplitude, energy, and event duration. This data indicated that a certain area of the composite case is the potential region of failure.

  2. Acoustic emission and sorptive deformation induced in coals of various rank by the sorption-desorption of gas

    NASA Astrophysics Data System (ADS)

    Majewska, Zofia; Ziętek, Jerzy

    2007-09-01

    Simultaneous measurements of acoustic emission (AE) and expansion/contraction of coal samples subjected to gas sorption-desorption processes were conducted on high-and medium-rank coal. The aim of this study was to examine the influence of the coal rank and type of sorbate on measured AE and strain characteristics. The experimental equipment employed in this study consisted of a pressure vessel and associated pressurisation and monitoring units. The arrangement of pressure-vacuum valves permitted the coal sample to be pressurised and depressurised. Carbon-dioxide and methane were used as sorbats. Acoustic emission and strains were recorded continuously for a period of 50 hours during sorption and for at least 12 hours during the desorption process. Tests were conducted on cylindrical coal samples at 298 K. The experimental data were presented as plots of AE basic parameters versus time and in strain diagrams. These studies lead to the following conclusions: 1. There are significant differences in AE and strain characteristics for the two systems (coal-CO2 and coal-CH4); 2. There is a direct influence of rank and type of coal on its behaviour during the sorption-desorption of gas. An attempt has been made to interpret the results obtained on the grounds of the copolymer model of coal structure. More research is needed into this topic in order to get a quantitative description of the observed facts.

  3. Acoustic-emission signal-processing analog unit for locating flaws in large tanks

    NASA Technical Reports Server (NTRS)

    Moskal, F. J.; Fageol, J. D.

    1973-01-01

    Technique monitors structural flaws in 105-in. diameter tanks. Tank surface is divided into many areas and each area is sectioned into 20 equilateral triangles that form icosahedron. Twelve transducers are equally positioned on tank surface at vertex of each triangle. Transducers monitor area for flaws by detecting any increase in acoustical activity.

  4. An Acoustic Emission and Acousto-Ultrasonic Analysis of Impact Damaged Composite Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.; Workman, Gary L.

    1996-01-01

    The research presented herein summarizes the development of acoustic emission (AE) and acousto-ultrasonic (AU) techniques for the nondestructive evaluation of filament wound composite pressure vessels. Vessels fabricated from both graphite and kevlar fibers with an epoxy matrix were examined prior to hydroburst using AU and during hydroburst using AE. A dead weight drop apparatus featuring both blunt and sharp impactor tips was utilized to produce a single known energy 'damage' level in each of the vessels so that the degree to which the effects of impact damage could be measured. The damage levels ranged from barely visible to obvious fiber breakage and delamination. Independent neural network burst pressure prediction models were developed from a sample of each fiber/resin material system. Here, the cumulative AE amplitude distribution data collected from low level proof test (25% of the expected burst for undamaged vessels) were used to measure the effects of the impact on the residual burst pressure of the vessels. The results of the AE/neural network model for the inert propellant filled graphite/epoxy vessels 'IM7/3501-6, IM7/977-2 and IM7/8553-45' demonstrated that burst pressures can be predicted from low level AE proof test data, yielding an average error of 5.0%. The trained network for the IM7/977-2 class vessels was also able to predict the expected burst pressure of taller vessels (three times longer hoop region length) constructed of the same material and using the same manufacturing technique, with an average error of 4.9%. To a lesser extent, the burst pressure prediction models could also measure the effects of impact damage to the kevlar/epoxy 'Kevlar 49/ DPL862' vessels. Here though, due to the higher attenuation of the material, an insufficient amount of AE amplitude information was collected to generate robust network models. Although, the worst case trial errors were less than 6%, when additional blind predictions were attempted, errors as

  5. Effects of crystallographic anisotropy on fracture development and acoustic emission in quartz

    NASA Astrophysics Data System (ADS)

    Timms, Nick E.; Healy, David; Reyes-Montes, Juan M.; Collins, David S.; Prior, Dave J.; Young, R. Paul

    2010-07-01

    Transgranular microcracking is fundamental for the initiation and propagation of all fractures in rocks. The geometry of these microcracks is primarily controlled by the interaction of the imposed stress field with the mineral elastic properties. However, the effects of anisotropic elastic properties of minerals on brittle fracture are not well understood. This study examines the effects of elastic anisotropy of quartz on the geometry of brittle fracture and related acoustic emissions (AE) developed during indentation experiments on single crystals at ambient pressure and temperature. A Hertzian cone crack developed during blunt indentation of a single crystal of flawless Brazilian quartz parallel to the c axis shows geometric deviation away from predictions based on the isotropic case, consistent with trigonal symmetry. The visible cone crack penetration depth varies from 3 to 5 mm and apical angle from 53° to 40°. Electron backscatter diffraction (EBSD) mapping of the crack tip shows that fracturing initiates along a ˜40 μm wide process zone, comprising damage along overlapping en echelon high-index crystallographic planes, shown by discrete bands of reduced electron backscatter pattern (EBSP) quality (band contrast). Coalescence of these surfaces results in a stepped fracture morphology. Monitoring of AE during indentation reveals that the elastic anisotropy of quartz has a significant effect on AE location and focal mechanisms. Ninety-four AE events were recorded during indentation and show an increasing frequency with increasing load. They correspond to the development of subsidiary concentric cracks peripheral to the main cone crack. The strong and complex anisotropy in seismic velocity (˜28% Vp, ˜43% Vs with trigonal symmetry) resulted in inaccurate and high uncertainty in AE locations using Geiger location routine with an isotropic velocity model. This problem was overcome by using a relative (master event) location algorithm that only requires a

  6. Multiscale monitoring of interface failure of brittle coating/ductile substrate systems: A non-destructive evaluation method combined digital image correlation with acoustic emission

    NASA Astrophysics Data System (ADS)

    Mao, W. G.; Wu, D. J.; Yao, W. B.; Zhou, M.; Lu, C.

    2011-10-01

    In this paper, we proposed a non-destructive evaluation method combined digital image correlation with acoustic emission techniques. The method was used to in situ monitor interface failure and internal damage of brittle coating/ductile substrate systems with different size scales. The results show that there is a good relationship between digital image correlation and acoustic emission signals, which can be applied to judge cracking formation and coating delamination and to determine fracture toughness of a thermal barrier coating system subjected to bending.

  7. The effect of refraction on acoustic wave-angle emission from free jets

    NASA Astrophysics Data System (ADS)

    Hall, S.-L.

    Good quality optical photographs of supersonic helium free jets show three principal types of acoustic waves: (1) nozzle centered radiation in the form of high-frequency, closely-spaced waves which steepen with distance away from the jet; (2) wider-spaced high-frequency waves emanating from the first six diameters from the exit and inclined at approximately the same angle as the initial nozzle-centered waves, but with little steepening; and (3) low-angled low-frequency waves which originate from the end of the potential jet core and are cut off at the end of the sonic core. A theoretical method developed for ideally-expanded air jets has been modified for refraction and convection effects due to significantly different density and sound-speed jets exhausting into the quiescent atmosphere. The predicted acoustic wave angles are within 3 deg of the measured angles for six correctly-expanded air and helium jets; the additional shock noise contribution for 13 helium and air jets operating in the 50-150% expansion range are underestimated by 4-8 deg. The predicted angle for the low-frequency radiation is within 3 deg of the cone-of-silence angle in the 15 cases where the acoustic cut-off is within the optical field of view.

  8. Arguments for fundamental emission by the parametric process L yields T + S in interplanetary type III bursts. [langmuir, electromagnetic, ion acoustic waves (L, T, S)

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.

    1984-01-01

    Observations of low frequency ion acoustic-like waves associated with Langmuir waves present during interplanetary Type 3 bursts are used to study plasma emission mechanisms and wave processes involving ion acoustic waves. It is shown that the observed wave frequency characteristics are consistent with the processes L yields T + S (where L = Langmuir waves, T = electromagnetic waves, S = ion acoustic waves) and L yields L' + S proceeding. The usual incoherent (random phase) version of the process L yields T + S cannot explain the observed wave production time scale. The clumpy nature of the observed Langmuir waves is vital to the theory of IP Type 3 bursts. The incoherent process L yields T + S may encounter difficulties explaining the observed Type 3 brightness temperatures when Langmuir wave clumps are incorporated into the theory. The parametric process L yields T + S may be the important emission process for the fundamental radiation of interplanetary Type 3 bursts.

  9. Prediction of early-age shrinkage cracking in concrete elements

    NASA Astrophysics Data System (ADS)

    Weiss, William Jason

    1999-11-01

    When concrete is prevented from shrinking freely, tensile stresses develop which frequently result in cracking. Cracks in reinforced concrete structures reduce overall durability by allowing the penetration of water and aggressive agents, thereby accelerating the deterioration of the reinforcing steel. Highway pavements, bridge decks, and industrial floors are especially susceptible to this type of deterioration since these structures exhibit high rates of shrinkage and are frequently exposed to aggressive environmental conditions. The objectives of this investigation included the development of experimental procedures for assessing shrinkage cracking potential, the evaluation of mix composition on shrinkage cracking potential, and the development of theoretical models to simulate early-age cracking behavior. Specifically, the influence of a shrinkage-reducing admixture (SRA) was investigated. The shrinkage-reducing admixture substantially reduces free shrinkage and restrained shrinkage cracking while providing similar mechanical properties. An experimental procedure was developed in which a pressurized cylindrical specimen was used to assess tensile creep. Electrical properties were investigated using impedance spectroscopy to evaluate the moisture profiles of drying and wetting concrete. Restrained shrinkage experiments were developed and shrinkage cracking was shown to be size/geometry dependent, even though shrinkage strains and residual stress levels were comparable. A fracture mechanics modeling approach was developed to predict the behavior of a variety of restrained concrete specimens. This modeling approach was used to successfully explain experimental results from a variety of mixture compositions and specimen geometries. The model was used to demonstrate the influence of material and structural properties on the potential for cracking. A favorable correlation was observed between the predictions of the fracture-based model and the experimentally observed

  10. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock-walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-06-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock-walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a Wireless Sensor Network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock-wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock-wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock-wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock-fall hazard surveillance or structural monitoring of concrete structures.

  11. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-11-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a wireless sensor network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock fall hazard surveillance or structural monitoring of concrete structures.

  12. Localization of quenches and mechanical disturbances in the Mu2e transport solenoid prototype using acoustic emission technique

    DOE PAGESBeta

    Marchevsky, M.; Ambrosio, G.; Lamm, M.; Tartaglia, M. A.; Lopes, M. L.

    2016-02-12

    Acoustic emission (AE) detection is a noninvasive technique allowing the localization of the mechanical events and quenches in superconducting magnets. Application of the AE technique is especially advantageous in situations where magnet integrity can be jeopardized by the use of voltage taps or inductive pickup coils. As the prototype module of the transport solenoid (TS) for the Mu2e experiment at Fermilab represents such a special case, we have developed a dedicated six-channel AE detection system and accompanying software aimed at localizing mechanical events during the coil cold testing. The AE sensors based on transversely polarized piezoceramic washers combined with cryogenicmore » preamplifiers were mounted at the outer surface of the solenoid aluminum shell, with a 60° angular step around the circumference. Acoustic signals were simultaneously acquired at a rate of 500 kS/s, prefiltered and sorted based on their arrival time. Next, based on the arrival timing, angular and axial coordinates of the AE sources within the magnet structure were calculated. Furthermore, we present AE measurement results obtained during cooldown, spot heater firing, and spontaneous quenching of the Mu2e TS module prototype and discuss their relevance for mechanical stability assessment and quench localization.« less

  13. A comparative evaluation of piezoelectric sensors for acoustic emission-based impact location estimation and damage classification in composite structures

    NASA Astrophysics Data System (ADS)

    Uprety, Bibhisha; Kim, Sungwon; Mathews, V. John; Adams, Daniel O.

    2015-03-01

    Acoustic Emission (AE) based Structural Health Monitoring (SHM) is of great interest for detecting impact damage in composite structures. Within the aerospace industry the need to detect and locate these events, even when no visible damage is present, is important both from the maintenance and design perspectives. In this investigation, four commercially available piezoelectric sensors were evaluated for usage in an AE-based SHM system. Of particular interest was comparing the acoustic response of the candidate piezoelectric sensors for impact location estimations as well as damage classification resulting from the impact in fiber-reinforced composite structures. Sensor assessment was performed based on response signal characterization and performance for active testing at 300 kHz and steel-ball drop testing using both aluminum and carbon/epoxy composite plates. Wave mode velocities calculated from the measured arrival times were found to be in good agreement with predictions obtained using both the Disperse code and finite element analysis. Differences in the relative strength of the received wave modes, the overall signal strengths and signal-to-noise ratios were observed through the use of both active testing as well as passive steel-ball drop testing. Further comparative is focusing on assessing AE sensor performance for use in impact location estimation algorithms as well as detecting and classifying damage produced in composite structures due to impact events.

  14. Novel cell design for combined in situ acoustic emission and x-ray diffraction study during electrochemical cycling of batteries

    SciTech Connect

    Rhodes, Kevin; Meisner, Roberta; Daniel, Claus; Kirkham, Melanie; Parish, Chad M.; Dudney, Nancy

    2011-07-15

    An in situ acoustic emission (AE) and x-ray diffraction cell for use in the study of battery electrode materials has been designed and tested. This cell uses commercially available coin cell hardware retrofitted with a metalized polyethylene terephthalate (PET) disk, which acts as both an x-ray window and a current collector. In this manner, the use of beryllium and its associated cost and hazards is avoided. An AE sensor may be affixed to the cell face opposite the PET window in order to monitor degradation effects, such as particle fracture, during cell cycling. Silicon particles, which were previously studied by the AE technique, were tested in this cell as a model material. The performance of these cells compared well with unmodified coin cells, while providing information about structural changes in the active material as the cell is repeatedly charged and discharged.

  15. A novel acoustic emission monitoring and signal processing to elucidate the fracture dynamics of hydrogen assisted cracking

    SciTech Connect

    Hayashi, Yasuhisa; Takemoto, Makoto; Takemoto, Mikio

    1994-12-31

    An advanced Acoustic Emission (AE) monitoring and signal processing system was developed and applied to elucidate the fracture dynamics of hydrogen assisted cracking (HAC) of quenched-tempered low alloy steel. The developed system enables one to monitor an initiation of microcrack correctly and also to elucidate the dynamics of microcracks when multi-channel moment tensor analysis is jointly used. The system consists of 8-channel monitoring. One channel monitors the surface displacement in loading direction excited by the propagation of elastic wave, and gives the source wave by the deconvolution integral of it with the Green`s function of the second kind. Another 7 channels were designed to measure arrival time and relative amplitude of the P-waves, and to determine both the source location and the crack kinematics by tensor analysis. This paper introduces the developed monitoring system and signal processing method, and fracture dynamics of microcracks in HAC.

  16. Assessment of the application of acoustic emission technology for monitoring the presence of sand under multiphase flow condition

    SciTech Connect

    El-Alej, M. Mba, D. Yeung, H.

    2014-04-11

    The monitoring of multiphase flow is an established process that has spanned several decades. This paper demonstrates the use of acoustic emission (AE) technology to investigate sand transport characteristic in three-phase (air-water-sand) flow in a horizontal pipe where the superficial gas velocity (VSG) had a range of between 0.2 ms{sup −1} to 2.0 ms{sup −1} and superficial liquid velocity (VSL) had a range of between 0.2 ms{sup −1} to 1.0 ms{sup −1}. The experimental findings clearly show a correlation exists between AE energy levels, sand concentration, superficial gas velocity (VSG) and superficial liquid velocity (VSL)

  17. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique.

    PubMed

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G; Alver, Ninel

    2015-08-05

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods.

  18. Acoustic Emission Precursors of M6.0 2004 Parkfield and M7.0 1989Loma Prieta Earthquakes

    SciTech Connect

    Korneev, Valeri

    2005-02-01

    Two recent strike-slip earthquakes on the San Andreas Fault(SAF) in California, the M6.0 2004 Parkfield and M7.0 1989 Loma Prietaevents, revealed peaks in the acoustic emission (AE) activity in thesurrounding crust several months prior to the main events. Earthquakesdirectly within the SAF zone were intentionally excluded from theanalysis. The observed increase in AE is assumed to be a signature of theincreasing stress level in the surrounding crust, while the peak andsubsequent decrease in AE starting several months prior to the mainevents is attributed to damage-induced softening processes as discussedherein. Further, distinctive zones of low seismic activity surroundingthe epicentral regions in the pre-event time period are present for thetwo studied events. Both AE increases in the crust surrounding apotential future event and the development of a low-seismicity epicentralzone can be regarded as promising precursory information that could helpsignal the arrival of large earthquakes.

  19. Acoustic Emission Investigation of Rolling/Sliding Contact Fatigue Failure of NiCr-Cr3C2 Coating

    NASA Astrophysics Data System (ADS)

    Guolu, Li; Zhonglin, Xu; Tianshun, Dong; Haidou, Wang; Jinhai, Liu; Jiajie, Kang

    2016-08-01

    NiCr-Cr3C2 coating was fabricated using supersonic plasma spraying technology. Subsequently, rolling/sliding contact fatigue (R/SCF) testing was carried out, using acoustic emission (AE) technology to monitor the failure process. The results showed that R/SCF consists of three failure modes, namely abrasion, spalling, and delamination. Abrasion is the main failure mode, but delamination is the most severe. The AE monitoring results indicated that the R/SCF failure process is composed of normal contact, crack initiation, crack propagation, and material removal stages. The frequency of each stage was analyzed by fast Fourier transform, revealing a peak frequency for each stage mainly distributed from 200 to 250 kHz.

  20. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    PubMed Central

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  1. Observations of premonitory acoustic emission and slip nucleation during a stick slip experiment in smooth faulted Westerly granite

    USGS Publications Warehouse

    Thompson, B.D.; Young, R.P.; Lockner, D.A.

    2005-01-01

    To investigate laboratory earthquakes, stick-slip events were induced on a saw-cut Westerly granite sample by triaxial loading at 150 MPa confining pressure. Acoustic emissions (AE) were monitored using an innovative continuous waveform recorder. The first motion of each stick slip was recorded as a large-amplitude AE signal. These events source locate onto the saw-cut fault plane, implying that they represent the nucleation sites of the dynamic failure stick-slip events. The precise location of nucleation varied between events and was probably controlled by heterogeneity of stress or surface conditions on the fault. The initial nucleation diameter of each dynamic instability was inferred to be less than 3 mm. A small number of AE were recorded prior to each macro slip event. For the second and third slip events, premonitory AE source mechanisms mimic the large scale fault plane geometry. Copyright 2005 by the American Geophysical Union.

  2. Application of a novel optical fiber sensor to detection of acoustic emissions by various damages in CFRP laminates

    NASA Astrophysics Data System (ADS)

    Wu, Qi; Yu, Fengming; Okabe, Yoji; Kobayashi, Satoshi

    2015-01-01

    In this research, we applied a novel optical fiber sensor, phase-shifted fiber Bragg grating balanced sensor with high sensitivity and broad bandwidth, to acoustic emission (AE) detection in carbon fiber reinforced plastics (CFRPs). AE signals generated in the tensile testing of angle-ply and cross-ply CFRP laminates were both detected by the novel optical fiber sensor and traditional PZT sensors. The cumulative hits detected by both sensors coincided after applying simple data processing to eliminate the noise, and clearly exhibited Kaiser effect and Felicity effect. Typical AE signals detected by both sensors were discussed and were tried to relate to micro CFRP damages observed via microscope. These results demonstrate that this novel optical fiber sensor can reliably detect AE signals from various damages. It has the potential to be used in practical AE detection, as an alternative to the piezoelectric PZT sensor.

  3. Experimental study of ultra-thin films mechanical integrity by combined nanoindentation and nano-acoustic emission

    NASA Astrophysics Data System (ADS)

    Zhang, Zihou

    Advancement of interconnect technology has imposed significant challenge on interface characterization and reliability for blurred interfaces between layers. There is a need for material properties and these miniaturized length scales and assessment of reliability; including the intrinsic film fracture toughness and the interfacial fracture toughness. The nano-meter range of film thicknesses currently employed, impose significant challenges on evaluating these physical quantities and thereby impose significant challenge on the design cycle. In this study we attempted to use a combined nano-indentation and nano-acoustic emission to qualitatively and quantitatively characterize the failure modes in ultra-thin blanket films on Si substrates or stakes of different characteristics. We have performed and analyzed an exhaustive group of testes that cove many diverge combination of film-substrate combination, provided by both Intel and IBM. When the force-indentation depth curve shows excursion, a direct measure of the total energy release rate is estimated. The collected acoustic emission signal is then used to partition the total energy into two segments, one associated with the cohesive fracture toughness of the film and the other is for the adhesive fracture toughness of the interface. The acoustic emission signal is analyzed in both the time and frequency domain to achieve such energy division. In particular, the signal time domain analysis for signal skewness, time of arrival and total energy content are employed with the proper signal to noise ratio. In the frequency domain, an expansive group of acoustic emission signals are utilized to construct the details of the power spectral density. A bank of band-pass filters are designed to sort the individual signals to those associated with adhesive interlayer cracking, cohesive channel cracking, or other system induced noise. The attenuation time and the energy content within each spectral frequency were the key elements

  4. Acoustic Emission Investigation of Rolling/Sliding Contact Fatigue Failure of NiCr-Cr3C2 Coating

    NASA Astrophysics Data System (ADS)

    Guolu, Li; Zhonglin, Xu; Tianshun, Dong; Haidou, Wang; Jinhai, Liu; Jiajie, Kang

    2016-10-01

    NiCr-Cr3C2 coating was fabricated using supersonic plasma spraying technology. Subsequently, rolling/sliding contact fatigue (R/SCF) testing was carried out, using acoustic emission (AE) technology to monitor the failure process. The results showed that R/SCF consists of three failure modes, namely abrasion, spalling, and delamination. Abrasion is the main failure mode, but delamination is the most severe. The AE monitoring results indicated that the R/SCF failure process is composed of normal contact, crack initiation, crack propagation, and material removal stages. The frequency of each stage was analyzed by fast Fourier transform, revealing a peak frequency for each stage mainly distributed from 200 to 250 kHz.

  5. Acoustic Emission and Damage Accumulation for Various Woven C/SiC Composites Tested in Tension at Room Temperature

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Petko, Jeanne; Kiser, James D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Modal acoustic emission (AE) has proven to be an excellent technique to monitor damage accumulation in ceramic matrix composites. In this study, AE was used to monitor tensile load-unload-reload hysteresis tests for a variety of C fiber reinforced, SiC matrix composites. C/SiC composites were reinforced with T300 and IM7 fibers, had C, multilayer, or pseudo-porous C interphases, and had chemical vapor infiltrated SiC or melt-infiltrated SiC matrices. All of the composites exhibited considerable AE during testing. The extent and nature of the AE activity will be analyzed and discussed in light of matrix cracking and the variety of composite constituents. It is hoped that understanding the nature of stress dependent damage accumulation in these materials can be of use in life modeling for these types of composites.

  6. Acoustic Emission and Damage Accumulation for Various Woven C/SiC Composites Tested in Tension at Room Temperature

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory; Petko, Jeanne; Kiser, James D.

    2002-01-01

    Modal acoustic emission (AE) has proven to be an excellent technique to monitor damage accumulation in ceramic matrix composites. In this study, AE was used to monitor tensile load-unload-reload hysteresis tests for a variety of C fiber reinforced, Sic matrix composites. C/SiC composites were reinforced with T-300 and IM7 fibers, had C, multilayer, or pseudo-porous C interphases, and had chemical vapor infiltrated Sic or melt-infiltrated SiC matrices. All of the composites exhibited considerable AE during testing. The extent and nature of the AE activity will be analyzed and discussed in light of matrix cracking and the variety of composite constituents. It is hoped that understanding the nature of stress-dependent damage accumulation in these materials can be of use in life-modeling for these types of composites.

  7. Acoustic emission study of the plastic deformation of quenched and partitioned 35CrMnSiA steel

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xiao, Gui-yong; Chen, Lu-bin; Lu, Yu-peng

    2014-12-01

    Acoustic emission (AE) monitored tensile tests were performed on 35CrMnSiA steel subjected to different heat treatments. The results showed that quenching and partitioning (Q-P) heat treatments enhanced the combined mechanical properties of high strength and high ductility for commercial 35CrMnSiA steel, as compared with traditional heat treatments such as quenching and tempering (Q-T) and austempering (AT). AE signals with high amplitude and high energy were produced during the tensile deformation of 35CrMnSiA steel with retained austenite (RA) in the microstructure (obtained via Q-P and AT heat treatments) due to an austenite-to-martensite phase transformation. Moreover, additional AE signals would not appear again and the mechanical properties would degenerate to a lower level once RA degenerated by tempering for the Q-P treated steel.

  8. Evaluation of Acoustic Emission NDE of Composite Crew Module Service Module/Alternate Launch Abort System (CCM SM/ALAS) Test Article Failure Tests

    NASA Technical Reports Server (NTRS)

    Horne, Michael R.; Madaras, Eric I.

    2010-01-01

    Failure tests of CCM SM/ALAS (Composite Crew Module Service Module / Alternate Launch Abort System) composite panels were conducted during July 10, 2008 and July 24, 2008 at Langley Research Center. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests.

  9. Traceability of Acoustic Emission measurements for a proposed calibration method - Classification of characteristics and identification using signal analysis

    NASA Astrophysics Data System (ADS)

    Griffin, James

    2015-01-01

    When using Acoustic Emission (AE) technologies, tensile, compressive and shear stress/strain tests can provide a detector for material deformation and dislocations. In this paper improvements are made to standardise calibration techniques for AE against known metrics such as force. AE signatures were evaluated from various calibration energy sources based on the energy from the first harmonic (dominant energy band) [1,2]. The effects of AE against its calibration identity are investigated: where signals are correlated to the average energy and distance of the detected phenomena. In addition, extra tests are investigated in terms of the tensile tests and single grit tests characterising different materials. Necessary translations to the time-frequency domain were necessary when segregating salient features between different material properties. Continuing this work the obtained AE is summarised and evaluated by a Neural Network (NN) regression classification technique which identifies how far the malformation has progressed (in terms of energy/force) during material transformation. Both genetic-fuzzy clustering and tree rule based classifier techniques were used as the second and third classification techniques respectively to verify the NN output giving a weighted three classifier system. The work discussed in this paper looks at both distance and force relationships for various prolonged Acoustic Emission stresses. Later such analysis was realised with different classifier models and finally implemented into the Simulink simulations. Further investigations were made into classifier models for different material interactions in terms of force and distance which add further dimension to this work with different materials based simulation realisations. Within the statistical analysis section there are two varying prolonged stress tests which together offer the mechanical calibration system (automated solenoid and pencil break calibration system). Taking such a

  10. Simultaneous investigation of thermal, acoustic, and magnetic emission during martensitic transformation in single-crystalline Ni2MnGa

    NASA Astrophysics Data System (ADS)

    Tóth, László Z.; Daróczi, Lajos; Szabó, Sándor; Beke, Dezső L.

    2016-04-01

    Simultaneous thermal, acoustic, and magnetic emission (AE and ME) measurements during thermally induced martensitic transformation in Ni2MnGa single crystals demonstrate that all three types of the above noises display many coincident peaks and the same start and finish temperatures. The amplitude and energy distribution functions for AE and ME avalanches satisfy power-law behavior, corresponding to the symmetry of the martensite. At zero external magnetic field asymmetry in the exponents was obtained: their value was larger for heating than for cooling. Application of constant, external magnetic fields (up to B =722 mT) leads to the disappearance of the above asymmetry, due to the decrease of the multiplicity of the martensite variants. Time correlations (i.e., the existence of nonhomogeneous temporal processes) within AE as well as ME emission events are demonstrated by deviations from the uncorrelated behavior on probability distributions of waiting times as well as of a sequence of number of events. It is shown that the above functions collapse on universal master curves for cooling and heating as well as for AE and ME noises. The analysis of the existence of temporal correlations between AE and ME events revealed that at short times the acoustic signals show a time delay relative to the magnetic one, due to the time necessary for the propagation of the ultrasound. At intermediate times, as expected, the magnetic signal is delayed, i.e., the magnetic domain rearrangement followed the steps of structural transformation. At much longer times the deviation from an uncorrelated (Poisson-type) behavior is attributed to the nonhomogeneity of the avalanche statistics.

  11. The nondestructive evaluation of high temperature conditioned concrete in conjunction with acoustic emission and x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Su, Yu-Min; Hou, Tsung-Chin; Lin, Li-Chiang; Chen, Gwan-Ying; Pan, Huang-Hsing

    2016-04-01

    Portland Cement Concrete plays a vital part of protecting structural rebars or steels when high-temperature fire incidents occur, that induces loss of evaporate water, dehydration of CH, and deconstruction of C-S-H. The objective of the study was to assess fire-damaged concrete in conjunction with nondestructive evaluation methods of acoustic emission, visual inspections, and X-ray computed tomography. The experimental program was to mix an Ordinary Portland Cement concrete firstly. Concrete cylinders with twenty-day moisture cure were treated in a furnace with 400 and 600°C for one hour. After temperature is cooled down, the concrete cylinders were brought to air or moisture re-curing for ten days. Due to the incident of the furnace, acoustic emission associated with splitting tensile strength test was not able to continue. Future efforts are planned to resume this unfinished task. However, two proposed tasks were executed and completed, namely visual inspections and voids analysis on segments obtained from X-ray CT facility. Results of visual inspections on cross-sectional and cylindrical length of specimens showed that both aggregates and cement pastes turned to pink or red at 600°C. More surface cracks were generated at 600°C than that at 400°C. On the other hand, voids analysis indicated that not many cracks were generated and voids were remedied at 400°C. However, a clear tendency was found that remedy by moisture curing may heal up to 2% voids of the concrete cylinder that was previously subject to 600°C of high temperature conditioning.

  12. Earthquake-like patterns of acoustic emission in crumpled plastic sheets

    NASA Astrophysics Data System (ADS)

    Mendes, R. S.; Malacarne, L. C.; Santos, R. P. B.; Ribeiro, H. V.; Picoli, S., Jr.

    2010-10-01

    We report remarkable similarities in the output signal of two distinct out-of-equilibrium physical systems —earthquakes and the intermittent acoustic noise emitted by crumpled plastic sheets, i.e. Biaxially Oriented Polypropylene (BOPP) films. We show that both signals share several statistical properties including the distribution of energy, distribution of energy increments for distinct time scales, distribution of return intervals and correlations in the magnitude and sign of energy increments. This analogy is consistent with the concept of universality in complex systems and could provide some insight on the mechanisms behind the complex behavior of earthquakes.

  13. Effects of signal attenuation in natural media on interpretation of acoustic emissions in the context early warning systems

    NASA Astrophysics Data System (ADS)

    Faillettaz, Jerome; Or, Dani

    2015-04-01

    Gravity driven instabilities in natural media such as rockfalls, landslides, snow avalanches or glacier break-offs represent a significant class of natural hazards. Reliable prediction of imminence of such events combined with timely evacuation remain a challenge because material failure is a non linear process involving inherent heterogeneities affecting the outcome. Nevertheless, such materials break gradually with the weakest parts breaking first, producing precursory "micro-cracks" and associated elastic waves traveling in the material. The monitoring of such acoustic/micro-seismic activity offers valuable information on the progression of damage and imminence of global failure. The main challenge is that acoustic waves are strongly attenuated during their travel through natural media thereby introducing ambiguity in the interpretation of the magnitude (severity) or leading to loss of detection for faraway events. For example, a micro-crack event would be measured as a large event if occurring close to the sensor, and as a small event if far from the sensor ( or may not be detected at all). A more complete picture of acoustic emissions or micro- seismic activity requires deployment of a dense network of sensors that enables localization of sources and thus the determination of initial energy released with each event. However, such networks are prohibitively costly difficult to analyze in real time over scales of interest. Is it possible to find a way to analyze directly in real time the measured micro-seismic activity to infer the slope mechanical status? Following a qualitative description of the observation problem and the processes leading to attenuation, a quantitative analysis is performed using a numerical model based on the classical Fiber Bundle Model. Introducing a basic attenuation law in such simple models enables to directly compare un-attenuated and attenuated acoustic activity (and also avalanche size-frequency distribution) at any location

  14. Detection and Location of Transverse Matrix Cracks in Cross-Ply Gr/Ep Composites Using Acoustic Emission

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Jackson, K. E.; Kellas, S.; Smith, B. T.; McKeon, J.; Friedman, A.

    1995-01-01

    Transverse matrix cracking in cross-ply gr/ep laminates was studied with advanced acoustic emission (AE) techniques. The primary goal of this research was to measure the load required to initiate the first transverse matrix crack in cross-ply laminates of different thicknesses. Other methods had been previously used for these measurements including penetrant enhanced radiography, optical microscopy, and audible acoustic microphone measurements. The former methods required that the mechanical test be paused for measurements at load intervals. This slowed the test procedure and did not provide the required resolution in load. With acoustic microphones, acoustic signals from cracks could not be clearly differentiated from other noise sources such as grip damage, specimen slippage, or test machine noise. A second goal for this work was to use the high resolution source location accuracy of the advanced acoustic emission techniques to determine whether the crack initiation site was at the specimen edge or in the interior of the specimen.In this research, advanced AE techniques using broad band sensors, high capture rate digital waveform acquisition, and plate wave propagation based analysis were applied to cross-ply composite coupons with different numbers of 0 and 90 degree plies. Noise signals, believed to be caused by grip damage or specimen slipping, were eliminated based on their plate wave characteristics. Such signals were always located outside the sensor gage length in the gripped region of the specimen. Cracks were confirmed post-test by microscopic analysis of a polished specimen edge, backscatter ultrasonic scans, and in limited cases, by penetrant enhanced radiography. For specimens with three or more 90 degree plies together, there was an exact 1-1 correlation between AE crack signals and observed cracks. The ultrasonic scans and some destructive sectioning analysis showed that the cracks extended across the full width of the specimen. Furthermore, the

  15. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO2 emission

    SciTech Connect

    Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO2 . The sensor frequency change was around 300ppm for pure CO2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  16. Acoustic emission and guided ultrasonic waves for detection and continuous monitoring of cracks in light water reactor components

    SciTech Connect

    Meyer, R. M.; Coble, J.; Ramuhalli, P.; Watson, B.; Cumblidge, S. E.; Doctor, S. R.; Bond, L. J.

    2012-07-01

    Acoustic emission (AE) and guided ultrasonic waves (GUW) are considered for continuous monitoring and detection of cracks in Light Water Reactor (LWR) components. In this effort, both techniques are applied to the detection and monitoring of fatigue crack growth in a full scale pipe component. AE results indicated crack initiation and rapid growth in the pipe, and significant GUW responses were observed in response to the growth of the fatigue crack. After initiation, the crack growth was detectable with AE for approximately 20,000 cycles. Signals associated with initiation and rapid growth were distinguished based on total rate of activity and differences observed in the centroid frequency of hits. An intermediate stage between initiation and rapid growth was associated with significant energy emissions, though few hits. GUW exhibit a nearly monotonic trend with crack length with an exception of measurements obtained at crack lengths of 41 mm and 46 mm. Coupling variability and shadowing by the electro-discharge machining (EDM) starter notch set the lower limit of detectability. (authors)

  17. Detection of defect parameters using nonlinear air-coupled emission by ultrasonic guided waves at contact acoustic nonlinearities.

    PubMed

    Delrue, Steven; Van Den Abeele, Koen

    2015-12-01

    Interaction of ultrasonic guided waves with kissing bonds (closed delaminations and incipient surface breaking cracks) gives rise to nonlinear features at the defect location. This causes higher harmonic frequency ultrasonic radiation into the ambient air, often referred to as Nonlinear Air-Coupled Emission (NACE), which may serve as a nonlinear tag to detect the defects. This paper summarizes the results of a numerical implementation and simulation study of NACE. The developed model combines a 3D time domain model for the nonlinear Lamb wave propagation in delaminated samples with a spectral solution for the nonlinear air-coupled emission. A parametric study is conducted to illustrate the potential of detecting defect location, size and shape by studying the NACE acoustic radiation patterns in different orientation planes. The simulation results prove that there is a good determination potential for the defect parameters, especially when the radiated frequency matches one of the resonance frequencies of the delaminated layer, leading to a Local Defect Resonance (LDR). PMID:26208725

  18. Leak detection by acoustic emissions monitoring: An experimental investigation of the acoustic properties of leaks and the attenuation characteristics of soil

    SciTech Connect

    Kilpatrick, J.F.; March, P.A.

    1994-05-27

    This study experimentally explored the conditions, equipment, and methodology necessary for the acoustic detection of small leaks of jet fuel (JP4) from underground storage tank (UST) systems. The study indicates that acoustic leak detection of very small leaks is feasible. In general, significant JP4 fuel leaks which occur across a 5 PSI (pounds per square inch) or greater pressure drop are acoustically active and can be detected with proper sensors and proper placement of sensors. The primary source of leak noise is turbulent flow through the leak orifice. At lower pressures, the leak flow becomes laminar, and the leak becomes virtually silent. With direct transducer contact on the pipe or tank wall and sufficient system pressure, leaks smaller than 0.1 GPH (gallons per hour) can be detected. Larger leaks can be detected through short distances in soil. However, sand, which is the most commonly used fill material for UST systems, provides significant acoustic attenuation. Consequently, waveguides must be used when monitoring distances exceeding about 1 foot of travel through sand. Sand acts to reduce background noise levels, providing an ideal environment for acoustic leak detection using sensors mounted directly on the pipe or tank wall. Leak detection, Acoustics, Underground storage tanks, Pipelines, Attenuation.

  19. Method of characterizing residual stress in ferromagnetic materials using a pulse histogram of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Namkung, Min (Inventor); Yost, William T. (Inventor); Kushnick, Peter W. (Inventor); Grainger, John L. (Inventor)

    1992-01-01

    The invention is a method and apparatus for characterizing residual uniaxial stress in a ferromagnetic test member by distinguishing between residual stresses resulting from positive (tension) forces and negative (compression) forces by using the distinct and known magnetoacoustic (MAC) and a magnetoacoustic emission (MAE) measurement circuit means. A switch permits the selective operation of the respective circuit means.

  20. Leak detection by acoustic emissions monitoring: An experimental investigation of the acoustic properties of leaks and the attenuation characteristics of soil

    NASA Astrophysics Data System (ADS)

    Kilpatrick, James F.; March, Patrick A.

    1994-05-01

    This study experimentally explored the conditions, equipment, and methodology necessary for the acoustic detection of small leaks of jet fuel (JP4) from underground storage tank (UST) systems. The study indicates that acoustic leak detection of very small leaks is feasible. In general, significant JP4 fuel leaks which occur across a 5 PSI (pounds per square inch) or greater pressure drop are acoustically active and can be detected with proper sensors and proper placement of sensors. The primary source of leak noise is turbulent flow through the leak orifice. At lower pressures, the leak flow becomes laminar, and the leak becomes virtually silent. With direct transducer contact on the pipe or tank wall and sufficient system pressure, leaks smaller than 0.1 GPH (gallons per hour) can be detected. Larger leaks can be detected through short distances in soil. However, sand, which is the most commonly used fill material for UST systems, provides significant acoustic attenuation. Consequently, waveguides must be used when monitoring distances exceeding about 1 foot of travel through sand. Sand acts to reduce background noise levels, providing an ideal environment for acoustic leak detection using sensors mounted directly on the pipe or tank wall.

  1. [Neonatal screening of deafness: evoked otoacoustic emissions or acoustic distortion products?].

    PubMed

    Roman, S; Mondain, M; Triglia, J M; Uziel, A

    2001-01-01

    Transiently evoked otoacoustic emissions (TEOAE) allows an auditory screening in neonates above 30 dB and between 2 kHz to 4 kHz. Another type of otoacoustic emissions, the distortion product (DP) allows a similar screening and provides more specific frequency information over a broader frequency range, including frequencies below 2 kHz and above 4 kHz. The goal of this study was to determine 1) the interest of distortion product in comparison with TEOAE in a auditory screening program in neonates; 2) The predictive value of information extracted from otoacoustic emissions recordings, on frequential parameters of distortion product (DP). In this prospective study, TEOAE and DP were successively recorded in 20 neonates (34 ears) with risk of hearing impairment, using the ILO92 software and hardware. When TEOAs were no detectable (9/34), the DPs were no detectable neither (10/34). When TEOAs were detectable, the Dps carried more specific frequency information above 1 kHz in 52 to 80% of the patients. DP amplitudes have been quantitatively correlated with TEOA energy bands. Correlations between DP and TEOA have been objectivized for DP2.5 and DP4 with OE2, and for DP4 and DP6 with OE5. The correlation predictive value was above 85%. In conclusion, this study demonstrated that analysis of TEOA spectrums procures frequential information without requiring DP recordings.

  2. AE (Acoustic Emission) for Flip-Chip CGA/FCBGA Defect Detection

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2014-01-01

    C-mode scanning acoustic microscopy (C-SAM) is a nondestructive inspection technique that uses ultrasound to show the internal feature of a specimen. A very high or ultra-high-frequency ultrasound passes through a specimen to produce a visible acoustic microimage (AMI) of its inner features. As ultrasound travels into a specimen, the wave is absorbed, scattered or reflected. The response is highly sensitive to the elastic properties of the materials and is especially sensitive to air gaps. This specific characteristic makes AMI the preferred method for finding "air gaps" such as delamination, cracks, voids, and porosity. C-SAM analysis, which is a type of AMI, was widely used in the past for evaluation of plastic microelectronic circuits, especially for detecting delamination of direct die bonding. With the introduction of the flip-chip die attachment in a package; its use has been expanded to nondestructive characterization of the flip-chip solder bumps and underfill. Figure 1.1 compares visual and C-SAM inspection approaches for defect detection, especially for solder joint interconnections and hidden defects. C-SAM is specifically useful for package features like internal cracks and delamination. C-SAM not only allows for the visualization of the interior features, it has the ability to produce images on layer-by-layer basis. Visual inspection; however, is only superior to C-SAM for the exposed features including solder dewetting, microcracks, and contamination. Ideally, a combination of various inspection techniques - visual, optical and SEM microscopy, C-SAM, and X-ray - need to be performed in order to assure quality at part, package, and system levels. This reports presents evaluations performed on various advanced packages/assemblies, especially the flip-chip die version of ball grid array/column grid array (BGA/CGA) using C-SAM equipment. Both external and internal equipment was used for evaluation. The outside facility provided images of the key features

  3. Characterization of blocks impacts from acoustic emissions: insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Farin, Maxime; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Shapiro, Nikolaï

    2014-05-01

    Rockfalls, debris flows and rock avalanches represent a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and glass and over rock blocks. The elastic energy emitted by a single bouncing bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. We obtained simple scaling laws relating the impactor characteristics (size, height of fall, material,...) to the elastic energy and spectral content. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, accelerometers (1 Hz to 56 kHz) were used to record the signals in a wide frequency range. The experiments were also monitored optically using fast cameras. Eventually, we looked at what types of features in the signal are affected by individual impacts, rolling of beads or by the large scale geometry of the avalanche.

  4. Quadratic Time-Frequency Analysis of Hydroacoustic Signals as Applied to Acoustic Emissions of Large Whales

    NASA Astrophysics Data System (ADS)

    Le Bras, Ronan; Victor, Sucic; Damir, Malnar; Götz, Bokelmann

    2014-05-01

    In order to enrich the set of attributes in setting up a large database of whale signals, as envisioned in the Baleakanta project, we investigate methods of time-frequency analysis. The purpose of establishing the database is to increase and refine knowledge of the emitted signal and of its propagation characteristics, leading to a better understanding of the animal migrations in a non-invasive manner and to characterize acoustic propagation in oceanic media. The higher resolution for signal extraction and a better separation from other signals and noise will be used for various purposes, including improved signal detection and individual animal identification. The quadratic class of time-frequency distributions (TFDs) is the most popular set of time-frequency tools for analysis and processing of non-stationary signals. Two best known and most studied members of this class are the spectrogram and the Wigner-Ville distribution. However, to be used efficiently, i.e. to have highly concentrated signal components while significantly suppressing interference and noise simultaneously, TFDs need to be optimized first. The optimization method used in this paper is based on the Cross-Wigner-Ville distribution, and unlike similar approaches it does not require prior information on the analysed signal. The method is applied to whale signals, which, just like the majority of other real-life signals, can generally be classified as multicomponent non-stationary signals, and hence time-frequency techniques are a natural choice for their representation, analysis, and processing. We present processed data from a set containing hundreds of individual calls. The TFD optimization method results into a high resolution time-frequency representation of the signals. It allows for a simple extraction of signal components from the TFD's dominant ridges. The local peaks of those ridges can then be used for the signal components instantaneous frequency estimation, which in turn can be used as

  5. Relationship Between Distortion Product – Otoacoustic Emissions (DPOAEs) and High-Frequency Acoustic Immittance Measures

    PubMed Central

    De Paula Campos, Ualace; Hatzopoulos, Stavros; Śliwa, Lech K.; Skarżyński, Piotr H.; Jędrzejczak, Wiesław W.; Skarżyński, Henryk; Carvallo, Renata Mota Mamede

    2016-01-01

    Background Pathologies that alter the impedance of the middle ear may consequently modify the DPOAE amplitude. The aim of this study was to correlate information from 2 different clinical procedures assessing middle ear status. Data from DPOAE responses (both DP-Gram and DP I/O functions) were correlated with data from multi-component tympanometry at 1000 Hz. Material/Methods The subjects were divided into a double-peak group (DPG) and a single-peak group (SPG) depending on 1000 Hz tympanogram pattern. Exclusion criteria (described in the Methods section) were applied to both groups and finally only 31 ears were assigned to each group. The subjects were also assessed with traditional tympanometry and behavioral audiometry. Results Compared to the single-peak group, in terms of the 226 Hz tympanometry data, subjects in the DPG group presented: (i) higher values of ear canal volume; (ii) higher peak pressure, and (iii) significantly higher values of acoustic admittance. DPOAE amplitudes were lower in the DPG group only at 6006 Hz, but the difference in amplitude between the DPG and SPG groups decreased as the frequency increased. Statistical differences were observed only at 1001 Hz and a borderline difference at 1501 Hz. In terms of DPOAE I/O functions, significant differences were observed only in 4 of the 50 tested points. Conclusions The 1000-Hz tympanometric pattern significantly affects the structure of DPOAE responses only at 1001 Hz. In this context, changes in the properties of the middle ear (as detected by the 1000 Hz tympanometry) can be considered as prime candidates for the observed variability in the DP-grams and the DP I/O functions. PMID:27299792

  6. Quantum theory of the emission spectrum from quantum dots coupled to structured photonic reservoirs and acoustic phonons

    NASA Astrophysics Data System (ADS)

    Roy-Choudhury, Kaushik; Hughes, Stephen

    2015-11-01

    Electron-phonon coupling in semiconductor quantum dots plays a significant role in determining the optical properties of excited excitons, especially the spectral nature of emitted photons. This paper presents a comprehensive theory and analysis of emission spectra from artificial atoms or quantum dots coupled to structured photon reservoirs and acoustic phonons, when excited with incoherent pump fields. As specific examples of structured reservoirs, we chose a Lorentzian cavity and a slow-light coupled-cavity waveguide, which have both been explored experimentally. For the case of optical cavities, we directly compare and contrast the spectra from three well-known and distinct theoretical approaches to treat electron-phonon coupling, including a Markovian polaron master equation, a non-Markovian phonon correlation expansion technique, and a semiclassical linear susceptibility approach, and we point out the limitations of these models. For the cavity-QED polaron master equation, which treats the cavity-mode operator at the level of a system operator, we give closed form analytical solutions to the phonon-assisted scattering rates in the weak excitation approximation, fully accounting for temperature, cavity-exciton detuning, and cavity-dot coupling. We also show explicitly why the semiclassical linear susceptibility approach fails to correctly account for phonon-mediated cavity feeding. For weakly coupled cavities, we calculate the optical spectra using a more general photon reservoir polaron master-equation approach, and explain its differences from the above approaches in the low-Q limit of a Lorentzian cavity. We subsequently use this general reservoir approach to calculate the emission spectra from quantum dots coupled to slow-light photonic crystal waveguides, which demonstrate a number of striking photon-phonon coupling effects.

  7. A study of aluminum-lithium alloy solidification using acoustic emission techniques. Ph.D. Thesis, 1991

    NASA Technical Reports Server (NTRS)

    Henkel, Daniel P.

    1992-01-01

    Physical phenomena associated with the solidification of an aluminum lithium alloy was characterized using acoustic emission (AE) techniques. It is shown that repeatable patterns of AE activity may be correlated to microstructural changes that occur during solidification. The influence of the experimental system on generated signals was examined in the time and frequency domains. The analysis was used to show how an AE signal from solidifying aluminum is changed by each component in the detection system to produce a complex waveform. Conventional AE analysis has shown that a period of high AE activity occurs in pure aluminum, an Al-Cu alloy, and the Al-Li alloy, as the last fraction of solid forms. A model attributes this to the internal stresses of grain boundary formation. An additional period of activity occurs as the last fraction of solid forms, but only in the two alloys. A model attributes this to the formation of interdendritic porosity which was not present in the pure aluminum. The AE waveforms were dominated by resonant effects of the waveguide and the transducer.

  8. Acoustic Emission Analysis of Damage during Compressive Deformation of Amorphous Zr-Based Foams with Aligned, Elongated Pores

    NASA Astrophysics Data System (ADS)

    Cox, Marie E.; Dunand, David C.

    2013-07-01

    Acoustic emission methods are used to investigate the evolution of internal microfractural damage during uniaxial compression of amorphous Zr-based foams with aligned, elongated pores. The foams are fabricated by means of densifying a blend of crystalline W powders and amorphous Zr-based powders with two oxygen contents (0.078 and 0.144 wt pct) by warm equal channel angular extrusion, followed by dissolution of the elongated W phase from the fully densified amorphous matrix. For the high-oxygen foams, prior powder boundaries in the amorphous struts promote damage that accumulates during compression, resulting in energy-absorbing properties comparable with the low-oxygen foams without stress-concentrating powder boundaries. The influence of pore orientation on the evolution of microfracture damage and the ability of the foams to accumulate damage without catastrophic failure is also investigated: pores oriented from 24 to 68 deg to the loading direction promote wall bending, resulting in foams with more diffuse damage and better energy-absorbing properties.

  9. The Sacred Mountain of Varallo in Italy: seismic risk assessment by acoustic emission and structural numerical models.

    PubMed

    Carpinteri, Alberto; Lacidogna, Giuseppe; Invernizzi, Stefano; Accornero, Federico

    2013-01-01

    We examine an application of Acoustic Emission (AE) technique for a probabilistic analysis in time and space of earthquakes, in order to preserve the valuable Italian Renaissance Architectural Complex named "The Sacred Mountain of Varallo." Among the forty-five chapels of the Renaissance Complex, the structure of the Chapel XVII is of particular concern due to its uncertain structural condition and due to the level of stress caused by the regional seismicity. Therefore, lifetime assessment, taking into account the evolution of damage phenomena, is necessary to preserve the reliability and safety of this masterpiece of cultural heritage. A continuous AE monitoring was performed to assess the structural behavior of the Chapel. During the monitoring period, a correlation between peaks of AE activity in the masonry of the "Sacred Mountain of Varallo" and regional seismicity was found. Although the two phenomena take place on very different scales, the AE in materials and the earthquakes in Earth's crust, belong to the same class of invariance. In addition, an accurate finite element model, performed with DIANA finite element code, is presented to describe the dynamic behavior of Chapel XVII structure, confirming visual and instrumental inspections of regional seismic effects. PMID:24381511

  10. Acoustic emission source location and damage detection in a metallic structure using a graph-theory-based geodesic approach

    NASA Astrophysics Data System (ADS)

    Gangadharan, R.; Prasanna, G.; Bhat, M. R.; Murthy, C. R. L.; Gopalakrishnan, S.

    2009-11-01

    A geodesic-based approach using Lamb waves is proposed to locate the acoustic emission (AE) source and damage in an isotropic metallic structure. In the case of the AE (passive) technique, the elastic waves take the shortest path from the source to the sensor array distributed in the structure. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. The same approach is extended for detection of damage in a structure. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrix is compared and their difference gives the information about the reflection of waves from the damage. These waves are backpropagated from the sensors and the above method is used to locate the damage by finding the point where intersection of geodesics occurs. In this work, the geodesic approach is shown to be suitable to obtain a practicable source location solution in a more general set-up on any arbitrary surface containing finite discontinuities. Experiments were conducted on aluminum specimens of simple and complex geometry to validate this new method.

  11. Vesuvius acoustic emissions, deformation, seismicity - an inflating and deflating system by a time varying hot fluid pressure

    NASA Astrophysics Data System (ADS)

    Paparo, G.; Coppa, U.; Gregori, G. P.; Luongo, G.; Taloni, T.

    2003-04-01

    Acoustic Emissions (AE) allow for clear assessment of the times when AE sources appear 3D distributed in space, envisaging a likely origin by hot fluid diffusion through rock pores, in contrast to times when AE sources denote some more 2D than mere 3D spatial distribution, envisaging an origin by micro-cracks, much like e.g. along a cleavage plane of a crystal. Hence, the AE recorded on a dyke of a volcano recognize the role of hot fluids (having great mobility underground) compared to the role of plutonic intrusions (producing cracks, due to the extremely low mobility of magma underground). AE provide per se with a high sensitivity and time resolution, and recognise inflation and deflation times. AE ought to be correlated with soil degassing and topographical micro-deformations. In contrast, seismic monitoring has a much lower time resolution, as it is concerned with time- and energy-integrated effects, which appear likely to be triggered by the weight of the edifice. Vesuvius is a good test case history. The state of the art is reported about correlation studies between AE, precision topography, and seismicity.

  12. The Sacred Mountain of Varallo in Italy: Seismic Risk Assessment by Acoustic Emission and Structural Numerical Models

    PubMed Central

    Carpinteri, Alberto; Invernizzi, Stefano; Accornero, Federico

    2013-01-01

    We examine an application of Acoustic Emission (AE) technique for a probabilistic analysis in time and space of earthquakes, in order to preserve the valuable Italian Renaissance Architectural Complex named “The Sacred Mountain of Varallo.” Among the forty-five chapels of the Renaissance Complex, the structure of the Chapel XVII is of particular concern due to its uncertain structural condition and due to the level of stress caused by the regional seismicity. Therefore, lifetime assessment, taking into account the evolution of damage phenomena, is necessary to preserve the reliability and safety of this masterpiece of cultural heritage. A continuous AE monitoring was performed to assess the structural behavior of the Chapel. During the monitoring period, a correlation between peaks of AE activity in the masonry of the “Sacred Mountain of Varallo” and regional seismicity was found. Although the two phenomena take place on very different scales, the AE in materials and the earthquakes in Earth's crust, belong to the same class of invariance. In addition, an accurate finite element model, performed with DIANA finite element code, is presented to describe the dynamic behavior of Chapel XVII structure, confirming visual and instrumental inspections of regional seismic effects. PMID:24381511

  13. Normalization and source separation of acoustic emission signals for condition monitoring and fault detection of multi-cylinder diesel engines

    NASA Astrophysics Data System (ADS)

    Wu, Weiliang; Lin, Tian Ran; Tan, Andy C. C.

    2015-12-01

    A signal processing technique is presented in this paper to normalize and separate the source of non-linear acoustic emission (AE) signals of a multi-cylinder diesel engine for condition monitoring applications and fault detection. The normalization technique presented in the paper overcomes the long-existing non-linearity problem of AE sensors so that responses measured by different AE sensors can be quantitatively analysed and compared. A source separation algorithm is also developed in the paper to separate the mixture of the normalized AE signals produced by a multi-cylinder diesel engine by utilising the system parameters (i.e., wave attenuation constant and the arrival time delay) of AE wave propagation determined by a standard pencil lead break test on the engine cylinder head. It is shown that the source separation algorithm is able to separate the signal interference of adjacent cylinders from the monitored cylinder once the wave attenuation constant and the arrival time delay along the propagation path are known. The algorithm is particularly useful in the application of AE technique for condition monitoring of small-size diesel engines where signal interference from the neighbouring cylinders is strong.

  14. Semi-real-time monitoring of cracking on couplings by neural network analysis of acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Godinez-Azcuaga, Valery F.; Shu, Fong; Finlayson, Richard D.; O'Donnell, Bruce W.

    2004-07-01

    This paper presents the results obtained during the development of a semi-real-time monitoring methodology based on Neural Network Pattern Recognition of Acoustic Emission (AE) signals for early detection of cracks in couplings used in aircraft and engine drive systems. AE signals were collected in order to establish a baseline of a gear-testing fixture background noise and its variations due to rotational speed and torque. Also, simulated cracking signals immersed in background noise were collected. EDM notches were machined in the driving gear and the load on the gearbox was increased until damaged was induced. Using these data, a Neural Network Signal Classifier (NNSC) was implemented and tested. The testing showed that the NNSC was capable of correctly identifying six different classes of AE signals corresponding to different gearbox operation conditions. Also, a semi-real-time classification software was implemented. This software includes functions that allow the user to view and classify AE data from a dynamic process as they are recorded at programmable time intervals. The software is capable of monitoring periodic statistics of AE data, which can be used as an indicator of damage presence and severity in a dynamic system. The semi-real-time classification software was successfully tested in situations where a delay of 10 seconds between data acquisition and classification was achieved with a hit rate of 50 hits/second per channel on eight active AE channels.

  15. Damage mechanisms characterization of carbon fiber/epoxy composite laminates by both electrical resistance measurements and acoustic emission analysis

    SciTech Connect

    Ceysson, O.; Salvia, M.; Vincent, L.

    1996-04-15

    Carbon fiber reinforced plastics (CFRP) offer high specific mechanical properties (performance vs weight ratio). Since carbon fibers are electrical conductors ({rho} = 2.10{sup {minus}5} {Omega}.m), the measurement of the variations of electrical resistance appears to be a valuable technique for damage detection. In the case of CFRP samples, conductivity is not isotropic but depends on the orientation of the carbon fibers. The electrical conduction of (0{degree}) unidirectional (UD) CFRP parallel to the fibers is due to the current flow along the fibers. This can be modeled using the parallel resistance approach. In this present work, the variation of the electrical conductivity can be taken as an indicator of the evolution of various types of damage in classical longitudinal UD but also in ({+-} 45{degree}) CFRP laminates. By comparison with a more classical non-destructive technique such as Acoustic Emission, it has been shown that it is possible that the electrical resistance measurement allows one to monitor in-situ the evolution of various internal damage nucleation and growth in CFRP such as fiber fractures, intraply matrix cracks and interply delaminations.

  16. Damage Characterization of Glass/Epoxy Composite Under Three-Point Bending Test Using Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    Pashmforoush, Farzad; Fotouhi, Mohamad; Ahmadi, Mehdi

    2012-07-01

    Acoustic emission (AE) technique is an efficient non-destructive method for detection and identification of various damage mechanisms in composite materials. Discrimination of AE signals related to different damage modes is of great importance in the use of this technique. For this purpose, integration of k-means algorithm and genetic algorithm (GA) was used in this study to cluster AE events of glass/epoxy composite during three-point bending test. Performing clustering analysis, three clusters with separate frequency ranges were obtained, each one representing a distinct damage mechanism. Furthermore, time-frequency analysis of AE signals was performed based on wavelet packet transform (WPT). In order to find the dominant components associated with different damage mechanisms, the energy distribution criterion was used. The frequency ranges of the dominant components were then compared with k-means genetic algorithm (KGA) outputs. Finally, SEM observation was utilized to validate the results. The obtained results indicate good performance of the proposed methods in the damage characterization of composite materials.

  17. Stochastic dislocation kinetics and fractal structures in deforming metals probed by acoustic emission and surface topography measurements

    SciTech Connect

    Vinogradov, A.; Yasnikov, I. S.; Estrin, Y.

    2014-06-21

    We demonstrate that the fractal dimension (FD) of the dislocation population in a deforming material is an important quantitative characteristic of the evolution of the dislocation structure. Thus, we show that peaking of FD signifies a nearing loss of uniformity of plastic flow and the onset of strain localization. Two techniques were employed to determine FD: (i) inspection of surface morphology of the deforming crystal by white light interferometry and (ii) monitoring of acoustic emission (AE) during uniaxial tensile deformation. A connection between the AE characteristics and the fractal dimension determined from surface topography measurements was established. As a common platform for the two methods, the dislocation density evolution in the bulk was used. The relations found made it possible to identify the occurrence of a peak in the median frequency of AE as a harbinger of plastic instability leading to necking. It is suggested that access to the fractal dimension provided by AE measurements and by surface topography analysis makes these techniques important tools for monitoring the evolution of the dislocation structure during plastic deformation—both as stand-alone methods and especially when used in tandem.

  18. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    SciTech Connect

    Huang, Jun-Lin; Zhou, Ke-Yi Xu, Jian-Qun; Wang, Xin-Meng; Tu, Yi-You

    2014-07-28

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  19. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    NASA Astrophysics Data System (ADS)

    Huang, Jun-Lin; Zhou, Ke-Yi; Wang, Xin-Meng; Tu, Yi-You; Xu, Jian-Qun

    2014-07-01

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  20. Examination of rotational fixation of the femoral component in total hip arthroplasty. A mechanical study of micromovement and acoustic emission.

    PubMed

    Sugiyama, H; Whiteside, L A; Kaiser, A D

    1989-12-01

    Rotational loosening has recently emerged as an important cause of failure of the femoral component of total hip arthroplasties. This study was designed to investigate the role played by torsional loads in loosening of cementless femoral components and to evaluate three cementing techniques involving a combination of canal irrigation, manual insertion, and vacuum mixing combined with pressure injection of the cement for their ability to improve rotational fixation. Rotational micromotion and subsidence were measured in 24 preserved human anatomic specimen femora. Acoustic emission (AE) technique was applied as a non-destructive method for evaluating material failure during loading. From the micromovement data, torque to 50 mu subsidence and torque to failure were surprisingly low with cementless fixation and with poor cement technique but were markedly improved with pulsed irrigation. Further improvement was achieved by pressure injection and vacuum mixing of the cement. However, AE was detected even in the most carefully performed cement specimens under torsional-loading conditions commonly occurring in daily activities. These signs of microfailure of the cement mantle at relatively low torsional loads suggest that the mode of failure of deeply penetrated cement is by microfracture of the cement mantle. The poor performance suggests that cementless fixation of intramedullary stems provides unsatisfactory fixation against torsional loading. There is need for major improvements in fixation mechanisms and techniques. The signs of failure of the cement mantle at normally occurring torsional loads suggest that even the best cement technique is prone to failure in torsion when exposed to normal daily use. PMID:2582663

  1. Avalanche correlations in the martensitic transition of a Cu-Zn-Al shape memory alloy: analysis of acoustic emission and calorimetry.

    PubMed

    Baró, Jordi; Martín-Olalla, José-María; Romero, Francisco Javier; Gallardo, María Carmen; Salje, Ekhard K H; Vives, Eduard; Planes, Antoni

    2014-03-26

    The existence of temporal correlations during the intermittent dynamics of a thermally driven structural phase transition is studied in a Cu-Zn-Al alloy. The sequence of avalanches is observed by means of two techniques: acoustic emission and high sensitivity calorimetry. Both methods reveal the existence of event clustering in a way that is equivalent to the Omori correlations between aftershocks in earthquakes as are commonly used in seismology. PMID:24599153

  2. Remote Diagnosis of Dug-in Areas and Bottom Pipe by Main Acoustic Emission Method Using a Self-organizing Wireless Network

    NASA Astrophysics Data System (ADS)

    Kravtsova, Ye; Shram, V.; Lysyannikova, N.; Bezborodov, Yu; Selsky, A.; Lysyannikov, A.

    2016-06-01

    This paper discusses methods of nondestructive testing, the main method is method of acoustic flue gas emission. It was found that the use of this method in the diagnosis of bottom pipe and dug-in areas allows to reduce time, does not require surface dressing to a certain value, provides almost instant information about the defect at a great distance to the nearest gas-pumping station and is not inferior to the reliability of the control other existing methods.

  3. A new strategy toward Internet of Things: structural health monitoring using a combined fiber optic and acoustic emission wireless sensor platform

    NASA Astrophysics Data System (ADS)

    Nguyen, A. D.; Page, C.; Wilson, C. L.

    2016-04-01

    This paper investigates a new low-power structural health monitoring (SHM) strategy where fiber Bragg grating (FBG) rosettes can be used to continuously monitor for changes in a host structure's principal strain direction, suggesting damage and thus enabling the immediate triggering of a higher power acoustic emissions (AE) sensor to provide for better characterization of the damage. Unlike traditional "always on" AE platforms, this strategy has the potential for low power, while the wireless communication between different sensor types supports the Internet of Things (IoT) approach. A combination of fiber-optic sensor rosettes for strain monitoring and a fiber-optic sensor for acoustic emissions monitoring was attached to a sample and used to monitor crack initiation. The results suggest that passive principal strain direction monitoring could be used as a damage initiation trigger for other active sensing elements such as acoustic emissions. In future work, additional AE sensors can be added to provide for damage location; and a strategy where these sensors can be powered on periodically to further establish reliability while preserving an energy efficient scheme can be incorporated.

  4. Objective low-frequency audiometry by distortion-product acoustic emissions.

    PubMed

    Bonfils, P; Avan, P; Londero, A; Trotoux, J; Narcy, P

    1991-10-01

    The aim of this study was to measure distortion-product otoacoustic emissions (DPOEs) in a clinical setting. First, DPOE input-output functions were automatically realized to determine the ratio of the pure tones (primaries) f2 and f1 that would elicit the most significant DPOE input-output function. The DPOE input-output functions presented two separate portions for the f2/f1 ratio, ranging from 1.18 to 1.26: (1) below 60-dB sound pressure level (SPL), a saturating portion with a DPOE detection threshold at 36-dB SPL; and (2) above 66-dB SPL, a linear portion. For other f2/f1 ratios, DPOE input-output functions had a more linear behavior. The DPOEs generated by primary intensities below 60-dB SPL, which show saturating behavior, probably have their origin in the properties of outer hair cells. This indicates that DPOE measurements in a clinical setting must be realized with precise stimulus values: (1) f2/f1 ratio near 1.22, and (2) primary intensities below 60-dB SPL. Second, DPOE input-output functions were realized for DPOEs varying from 707.5 to 342 Hz. No more saturating plateau could be observed with DPOEs below 512.5 Hz, suggesting that active mechanisms are absent below 725 Hz within the human cochlea. These data permit us to establish the bases of an objective low-frequency audiometric test. PMID:1910706

  5. Evidence of post-seismic creep type deformations derived by tilt and acoustic emission monitoring of mining induced seismic events

    NASA Astrophysics Data System (ADS)

    Milev, Alexander; Share, Pieter-Ewald; Naoi, Makoto; Durrheim, Raymond; Yabe, Yasuo; Ogasawara, Hiroshi; Nakatani, Masao

    2015-04-01

    In this study we try to understand pre- and post-failure rock behavior associated with mining induced seismic events. This involves underground installation of various high precision instruments, including geophones, acoustic emission sensors, tilt- and strain-meters at a number of sites in deep level South African gold mines. The rate of tilt, strain and the seismic ground motion were analysed in order to understand the coseismic and aseismic deformation of the rocks. A good correspondence between the coseismic and the aseismic deformations was found. The rate of coseismic and aseismic tilt, as well as seismicity recorded by the mine seismic network, are approximately constant until the daily blasting time, which takes place from about 19:30 until shortly before 21:00. During the blasting time and the subsequent seismic events, the coseismic tilt and strain shows a rapid increase. Much of the aseismic deformation, however, occurs independently of the seismic events and blasting. In an attempt to distinguish between the different mechanisms of tilting two types of events were recognized. The "fast" seismic events characterized with sharp increase of the tilt during the seismic rupture and "slow" seismic events characterized by creep type post seismic deformations. Tilt behaviour before and after a seismic event was also analysed. The fact that no recognizable aftertilt was observed for more of the "fast" seismic events means that there is no gradual release of stress and an associated continuous strain rate change afterwards. It can therefore be concluded that a large seismic event causes a rapid change in the state of stress rather than a gradual change in the strain rate During the monitoring period a seismic event with MW 2.2 occurred in the vicinity of the instrumented site. This event was recorded by both the CSIR integrated monitoring system and JAGUARS acoustic emission network. More than 21,000 AE aftershocks were located in the first 150 hours after the

  6. Neural network burst pressure prediction in impact damaged Kevlar/epoxy bottles from acoustic emission amplitude data

    SciTech Connect

    Walker, J.L.; Workman, G.L.; Russell, S.S.

    1994-12-31

    Acoustic emission (AE) signal analysis has been used to measure the effect of impact damage on the burst pressure of 5.75 inch diameter filament wound Kevlar/epoxy pressure vessels. A calibrated dead weight drop fixture, featuring both sharp and blunt hemispherical impact tups, generated impact damages with energies up to twenty ft-lb{sub f} in the mid hoop region of each vessel. Burst pressures were obtained by hydrostatically testing twenty-seven damaged and undamaged bottles, eleven of which were filled with inert propellant to simulate a rocket motor. Burst pressure prediction models were developed by correlating the differential AE amplitude distributions, Generated during the first pressure ramp to 25% of the expected burst pressure for the undamaged vessels, to known burst pressures using back propagation neural networks. Independent networks were created for the inert propellant filled vessels and the unfilled vessels using a small subset of each during the training phases. The remaining bottles served as the test sets. The eleven filled vessels had an average prediction error of 5.6%, while the unfilled bottles averaged 5.4%. Both of these results were within the 95% prediction interval, but a portion of the vessel burst pressure errors were greater than the {+-}5% worst case error obtained in previous work. in conclusion, the AE amplitude distribution data collected at low proof loads provided a suitable input for neural network burst pressure prediction in damaged and undamaged Kevlar/epoxy bottles. This included pressure vessels both with and without propellant backing. Work is ongoing to decrease the magnitude of the prediction error through network restructuring.

  7. Seismic moment tensors of acoustic emissions recorded during laboratory rock deformation experiments: sensitivity to attenuation and anisotropy

    NASA Astrophysics Data System (ADS)

    Stierle, Eva; Vavryčuk, Václav; Kwiatek, Grzegorz; Charalampidou, Elli-Maria; Bohnhoff, Marco

    2016-04-01

    Seismic moment tensors can provide information on the size and orientation of fractures producing acoustic emissions (AEs) and on the stress conditions in the sample. The moment tensor inversion of AEs is, however, a demanding procedure requiring carefully calibrated sensors and accurate knowledge of the velocity model. In field observations, the velocity model is usually isotropic and time independent. In laboratory experiments, the velocity is often anisotropic and time dependent and attenuation might be significant due to opening or closure of microcracks in the sample during loading. In this paper, we study the sensitivity of the moment tensor inversion to anisotropy of P-wave velocities and attenuation. We show that retrieved moment tensors critically depend on anisotropy and attenuation and their neglect can lead to misinterpretations of the source mechanisms. The accuracy of the inversion also depends on the fracturing mode of AEs: tensile events are more sensitive to P-wave anisotropy and attenuation than shear events. We show that geometry of faulting in anisotropic rocks should be studied using the source tensors, since the P- and T-axes of the moment tensors are affected by velocity anisotropy and deviate from the true orientation of faulting. The stronger the anisotropy is, the larger the deviations are. Finally, we prove that the moment tensor inversion applied to a large dataset of AEs can be utilized to provide information on the attenuation parameters of the rock sample. The method is capable of measuring anisotropic attenuation in the sample and allows for detection of dilatant cracking according to the stress regime.

  8. Acoustic emission and volumetric strain induced in coal by the displacement sorption of methane and carbone dioxide

    NASA Astrophysics Data System (ADS)

    Majewska, Zofia; Ziętek, Jerzy

    2008-06-01

    The aim of this study was to assess whether acoustic emission (AE) could carry information on preferential sorption/desorption of CH4 or CO2 in coal. AE and expansion/contraction of two nearly identical cylindrical coal samples were continuously monitored during displacement sorption experiments. One sample was subjected to presorption of CH4, followed by sorption of CH4/CO2 mixture. With the other one, presorption of CO2 preceded sorption of the mixture. The results obtained are the following: first, AE and stain kinetics show that the affinity of the coal tested is higher for CO2 than for CH4; second, methane is preferentially desorbed after presorption of CH4 — sorption of mixture of CH4 and CO2; third, during displacement sorption, kinetics of AE and sample swelling/shrinkage bring out the importance of presorption and the sorbate used. It matters whether the coal is first exposed to CH4 or to CO2. The present study has demonstrated that injection of CO2 into the coal previously exposed to CH4 causes considerable swelling of the coal. On desorption after CH4/CO2 exchange sorption, initial shrinkage is followed by swelling of the coal. These results could have implications for the sequestration of CO2 in coal seams and CH4 recovery from coalbeds (ECBM). Swelling/shrinkage of the coal matrix should be included in models used to predict coal permeability and gas flow rates. They also show that the AE technique can give more insights into coal matrix-gas interactions.

  9. Use of woven glass fibres to reinforce a composite veneer. A fracture resistance and acoustic emission study.

    PubMed

    Vallittu, P K

    2002-05-01

    The aim of this study was to investigate the possibility to reinforce the mechanically interlocked veneer of a porcelain-fused-to-metal (PFM) crown by woven glass fibre. A simulated situation to repair a fractured porcelain veneer was used in the experimental test set-up. A brass jig made into the shape of a framework of PFM maxillary central incisor crown with a retentive area at the palatal side of the incisal edge was used. A veneer were made with a restorative hybrid composite on the brass jig (control group). In the test groups, one or two layers of woven polymer pre-impregnated glass fibres (thickness: 0.06 mm/layer) were used by pressing the fibre weaves to the surface of the brass jig. Restorative hybrid composite was applied on the glass fibre weaves. Five veneers were made for all groups and the veneers were not cemented on the test jig. The veneers were loaded from the incisal edge until fracture occurred. The force was measured simultaneously with an acoustic emission analysis (AE) of the fracture propagation. Fracture force values for control veneers were 121 N and for those reinforced with one layer of glass fibres 399 N and for those reinforced with two layers of glass fibres 744 N ANOVA revealed significant difference between the mean values (P=0.003). The AE analysis showed different fracture propagation for the unreinforced and glass fibre reinforced veneers. The results of this study suggests that by placing two layers of woven glass fibres on the retentively shaped metal framework of the PFM crown before applying the restorative composite, considerably higher fracture resistance for the veneer could be obtained.

  10. Acoustic Emission and Velocity Measurements using a Modular Borehole Prototype Tool to Provide Real Time Rock Mass Characterization.

    NASA Astrophysics Data System (ADS)

    Collins, D. S.; Pettitt, W. S.; Young, R. P.

    2003-04-01

    Permanent changes to rock mass properties can occur due to the application of excavation or thermal induced stresses. This project involves the design of hardware and software for the long term monitoring of a rock volume, and the real time analysis and interpretation of induced microcracks and their properties. A set of borehole sondes have been designed with each sonde containing up to 6 sensor modules. Each piezoelectric sensor is dual mode allowing it to either transmit an ultrasonic pulse through a rock mass, or receive ultrasonic waveform data. Good coupling of the sensors with the borehole wall is achieved through a motorized clamping mechanism. The borehole sondes are connected to a surface interface box and digital acquisition system and controlled by a laptop computer. The system allows acoustic emission (AE) data to be recorded at all times using programmable trigger logic. The AE data is processed in real time for 3D source location and magnitude, with further analysis such as mechanism type available offline. Additionally the system allows velocity surveys to be automatically performed at pre-defined times. A modelling component of the project, using a 3D dynamic finite difference code, is investigating the effect that different microcrack distributions have on velocity waveform data in terms of time and frequency amplitude. The modelling codes will be validated using data recorded from laboratory tests on rocks with known crack fabrics, and then used in insitu experimental tests. This modelling information will be used to help interpret, in real time, microcrack characteristics such as crack density, size, and fluid content. The technology has applications in a number of branches of geotechnical and civil engineering including radioactive waste storage, mining, dams, bridges, and oil reservoir monitoring.

  11. Analysis, prediction, and case studies of early-age cracking in bridge decks

    NASA Astrophysics Data System (ADS)

    ElSafty, Adel; Graeff, Matthew K.; El-Gharib, Georges; Abdel-Mohti, Ahmed; Mike Jackson, N.

    2016-06-01

    Early-age cracking can adversely affect strength, serviceability, and durability of concrete bridge decks. Early age is defined as the period after final setting, during which concrete properties change rapidly. Many factors can cause early-age bridge deck cracking including temperature change, hydration, plastic shrinkage, autogenous shrinkage, and drying shrinkage. The cracking may also increase the effect of freeze and thaw cycles and may lead to corrosion of reinforcement. This research paper presents an analysis of causes and factors affecting early-age cracking. It also provides a tool developed to predict the likelihood and initiation of early-age cracking of concrete bridge decks. Understanding the concrete properties is essential so that the developed tool can accurately model the mechanisms contributing to the cracking of concrete bridge decks. The user interface of the implemented computer Excel program enables the user to input the properties of the concrete being monitored. The research study and the developed spreadsheet were used to comprehensively investigate the issue of concrete deck cracking. The spreadsheet is designed to be a user-friendly calculation tool for concrete mixture proportioning, temperature prediction, thermal analysis, and tensile cracking prediction. The study also provides review and makes recommendations on the deck cracking based mainly on the Florida Department of Transportation specifications and Structures Design Guidelines, and Bridge Design Manuals of other states. The results were also compared with that of other commercially available software programs that predict early-age cracking in concrete slabs, concrete pavement, and reinforced concrete bridge decks. The outcome of this study can identify a set of recommendations to limit the deck cracking problem and maintain a longer service life of bridges.

  12. Numerical simulation of acoustic emission in brittle rocks by two-dimensional finite-discrete element analysis

    NASA Astrophysics Data System (ADS)

    Lisjak, A.; Liu, Q.; Zhao, Q.; Mahabadi, O. K.; Grasselli, G.

    2013-10-01

    Stress waves, known as acoustic emissions (AEs), are released by localized inelastic deformation events during the progressive failure of brittle rocks. Although several numerical models have been developed to simulate the deformation and damage processes of rocks, such as non-linear stress-strain behaviour and localization of failure, only a limited number have been capable of providing quantitative information regarding the associated seismicity. Moreover, the majority of these studies have adopted a pseudo-static approach based on elastic strain energy dissipation that completely disregards elastodynamic effects. This paper describes a new AE modelling technique based on the combined finite-discrete element method (FEM/DEM), a numerical tool that simulates material failure by explicitly considering fracture nucleation and propagation in the modelling domain. Given the explicit time integration scheme of the solver, stress wave propagation and the effect of radiated seismic energy can be directly captured. Quasi-dynamic seismic information is extracted from a FEM/DEM model with a newly developed algorithm based on the monitoring of internal variables (e.g. relative displacements and kinetic energy) in proximity to propagating cracks. The AE of a wing crack propagation model based on this algorithm are cross-analysed by traveltime inversion and energy estimation from seismic recordings. Results indicate a good correlation of AE initiation times and locations, and scaling of energies, independently calculated with the two methods. Finally, the modelling technique is validated by simulating a laboratory compression test on a granite sample. The micromechanical parameters of the heterogeneous model are first calibrated to reproduce the macroscopic stress-strain response measured during standard laboratory tests. Subsequently, AE frequency-magnitude statistics, spatial clustering of source locations and the evolution of AE rate are investigated. The distribution of

  13. Acoustic emission and acousto-ultrasonic signature analysis of failure mechanisms in carbon fiber reinforced polymer materials

    NASA Astrophysics Data System (ADS)

    Carey, Shawn Allen

    Fiber reinforced polymer composite materials, particularly carbon (CFRPs), are being used for primary structural applications, particularly in the aerospace and naval industries. Advantages of CFRP materials, compared to traditional materials such as steel and aluminum, include: light weight, high strength to weight ratio, corrosion resistance, and long life expectancy. A concern with CFRPs is that despite quality control during fabrication, the material can contain many hidden internal flaws. These flaws in combination with unseen damage due to fatigue and low velocity impact have led to catastrophic failure of structures and components. Therefore a large amount of research has been conducted regarding nondestructive testing (NDT) and structural health monitoring (SHM) of CFRP materials. The principal objective of this research program was to develop methods to characterize failure mechanisms in CFRP materials used by the U.S. Army using acoustic emission (AE) and/or acousto-ultrasonic (AU) data. Failure mechanisms addressed include fiber breakage, matrix cracking, and delamination due to shear between layers. CFRP specimens were fabricated and tested in uniaxial tension to obtain AE and AU data. The specimens were designed with carbon fibers in different orientations to produce the different failure mechanisms. Some specimens were impacted with a blunt indenter prior to testing to simulate low-velocity impact. A signature analysis program was developed to characterize the AE data based on data examination using visual pattern recognition techniques. It was determined that it was important to characterize the AE event , using the location of the event as a parameter, rather than just the AE hit (signal recorded by an AE sensor). A back propagation neural network was also trained based on the results of the signature analysis program. Damage observed on the specimens visually with the aid of a scanning electron microscope agreed with the damage type assigned by the

  14. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  15. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers.

    PubMed

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  16. INEQUITY ISSUES AND MOTHERS' PREGNANCY, DELIVERY AND EARLY-AGE SURVIVAL EXPERIENCES IN ENDE DISTRICT, INDONESIA.

    PubMed

    Pardosi, Jerico Franciscus; Parr, Nick; Muhidin, Salut

    2015-11-01

    Indonesia's infant mortality rates are among the highest in South-East Asia, and there are substantial variations between its sub-national regions. This qualitative study aims to explore early mortality-related health service provision and gender inequity issues based on mothers' pregnancy, delivery and early-age survival experience in Ende district, Nusa Tenggara Timur province. Thirty-two mothers aged 18-45 years with at least one birth in the previous five years were interviewed in depth in May 2013. The results show most mothers have little knowledge about the danger signs for a child's illness. Mothers with early-age deaths generally did not know the cause of death. Very few mothers had received adequate information on maternal and child health during their antenatal and postnatal visits to the health facility. Some mothers expressed a preference for using a traditional birth attendant, because of their ready availability and the more extensive range of support services they provide, compared with local midwives. Unprofessional attitudes displayed by midwives were reported by several mothers. As elsewhere in Indonesia, the power of health decision-making lies with the husband. Policies aimed at elevating mothers' roles in health care decision-making are discussed as measures that would help to improve early-age survival outcomes. Widening the public health insurance distribution, especially among poorer mothers, and equalizing the geographical distribution of midwives and health facilities are recommended to tackle geographical inequities and to increase early-age survival in Ende district. PMID:25499196

  17. Treatment Moderators and Predictors of Outcome in the Treatment of Early Age Mania (TEAM) Study

    ERIC Educational Resources Information Center

    Vitiello, Benedetto; Riddle, Mark A.; Yenokyan, Gayane; Axelson, David A.; Wagner, Karen D.; Joshi, Paramjit; Walkup, John T.; Luby, Joan; Birmaher, Boris; Ryan, Neal D.; Emslie, Graham; Robb, Adelaide; Tillman, Rebecca

    2012-01-01

    Objective: Both the diagnosis and treatment of bipolar disorder in youth remain the subject of debate. In the Treatment of Early Age Mania (TEAM) study, risperidone was more effective than lithium or divalproex in children diagnosed with bipolar mania and highly comorbid with attention-deficit/hyperactivity disorder (ADHD). We searched for…

  18. In-flight fiber optic acoustic emission sensor (FAESense) system for the real time detection, localization, and classification of damage in composite aircraft structures

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian

    2013-05-01

    Acoustic emission sensing is a leading structural health monitoring technique use for the early warning detection of structural damage associated with impacts, cracks, fracture, and delaminations in advanced materials. Current AE systems based on electronic PZT transducers suffer from various limitations that prevent its wide dynamic use in practical avionics and aerospace applications where weight, size and power are critical for operation. This paper describes progress towards the development of a wireless in-flight distributed fiber optic acoustic emission monitoring system (FAESense™) suitable for the onboard-unattended detection, localization, and classification of damage in avionics and aerospace structures. Fiber optic AE sensors offer significant advantages over its counterpart electronic AE sensors by using a high-density array of micron-size AE transducers distributed and multiplex over long lengths of a standard single mode optical fiber. Immediate SHM applications are found in commercial and military aircraft, helicopters, spacecraft, wind mil turbine blades, and in next generation weapon systems, as well as in the petrochemical and aerospace industries, civil structures, power utilities, and a wide spectrum of other applications.

  19. A new sparse design method on phased array-based acoustic emission sensor for partial discharge detection

    NASA Astrophysics Data System (ADS)

    Xie, Qing; Cheng, Shuyi; Lü, Fangcheng; Li, Yanqing

    2014-03-01

    The acoustic detecting performance of a partial discharge (PD) ultrasonic sensor array can be improved by increasing the number of array elements. However, it will increase the complexity and cost of the PD detection system. Therefore, a sparse sensor with an optimization design can be chosen to ensure good acoustic performance. In this paper, first, a quantitative method is proposed for evaluating the acoustic performance of a square PD ultrasonic array sensor. Second, a method of sparse design is presented to combine the evaluation method with the chaotic monkey algorithm. Third, an optimal sparse structure of a 3 × 3 square PD ultrasonic array sensor is deduced. It is found that, under different sparseness and sparse structure, the main beam width of the directivity function shows a small variation, while the sidelobe amplitude shows a bigger variation. For a specific sparseness, the acoustic performance under the optimal sparse structure is close to that using a full array. Finally, some simulations based on the above method show that, for certain sparseness, the sensor with the optimal sparse structure exhibits superior positioning accuracy compared to that with a stochastic one. The sensor array structure may be chosen according to the actual requirements for an actual engineering application.

  20. Coupling creep and damage in concrete under high sustained loading: Experimental investigation on bending beams and application of Acoustic Emission technique

    NASA Astrophysics Data System (ADS)

    Saliba, J.; Loukili, A.; Grondin, F.

    2010-06-01

    effect on concrete, probably because of the consolidation of the hardened cement paste. The influence of creep on fracture energy, fracture toughness, and characteristic length of concrete is also studied. The fracture energy and the characteristic length of concrete increases slightly when creep occurs prior to failure and the size of the fracture process zone increases too. The load-CMOD relationship is linear in the ascending portion and gradually drops off after the peak value in the descending portion. The length of the tail end portion of the softening curve increases with beams subjected to creep. Relatively more ductile fracture behavior was observed with beams subjected to creep. The contribution of non-destructive and instrumental investigation methods is currently exploited to check and measure the evolution of some negative structural phenomena, such as micro-and macro-cracking, finally resulting in a creep-like behaviour. Among these methods, the non-destructive technique based on acoustic Emission proves to be very effective, especially to check and measure micro-cracking that takes place inside a structure under mechanical loading. Thus as a part of the investigation quantitative acoustic emission techniques were applied to investigate microcracking and damage localization in concrete beams. The AE signals were captured with the AE WIN software and further analyzed with Noesis software analysis of acoustic emission data. AE waveforms were generated as elastic waves in concrete due to crack nucleation. And a multichannel data acquisition system was used to record the AE waveforms. During the three point bending tests, quantitative acoustic emission (AE) techniques were used to monitor crack growth and to deduce micro fracture mechanics in concrete beams before and after creep. Several specimens are experimented in order to match each cluster with corresponding damage mechanism of the material under loading. At the same time acoustic emission was used to

  1. Comparative Analysis of Continuous Acoustic Emission (AE) Data, Acquired from 12 and 16 Bit Streaming Systems during Rock Deformation Experiments

    NASA Astrophysics Data System (ADS)

    Flynn, J.; Goodfellow, S. D.; Nasseri, M. H.; Reyes-Montes, J. M.; Young, R.

    2013-12-01

    A comparative analysis of continuous acoustic emission (AE) data acquired during a triaxial compression test, using a 12-bit and a 16-bit acquisition system, is presented. A cylindrical sample (diameter 50.1 mm and length 125 mm) of Berea sandstone was triaxally deformed at a confining pressure of 15 MPa and a strain rate of 1.6E-06 s-1. The sample was loaded differentially until failure occurred at approximately σ1 = 160 MPa. AE activity was monitored for the duration of the experiment by an array of 8 broadband piezoelectric transducers coupled to the rock sample. Raw signals were amplified by 40 dB using pre-amplifiers equipped with filter modules with a frequency passband of 100 kHz to 1 MHz. The amplifiers had a split output enabling the measured signal to be fed into a 12-bit and a 16-bit acquisition system. AE waveforms were continuously recorded at 10 MS/s on 8 data acquisition channels per system. Approximately 4,500 events were harvested and source located from the continuous data for each system. P-wave arrivals were automatically picked and event locations calculated using the downhill Simplex method and a time-varying transverse isotropic velocity model based on periodical surveys across the sample. Events detected on the 12-bit and 16-bit systems were compared both in terms of their P-wave picks and their source locations. In the early stages of AE activity, there appeared to be little difference between P-wave picks and hypocenter locations from both data sets. As the experiment progressed into the post-peak stress regime, which was accompanied by an increase in AE rate and amplitude, fewer events could be harvested from the 12-bit data compared to the 16-bit data. This is linked to the observation of a higher signal-to-noise ratio on AE waveforms harvested from the 16-bit stream compared to those from the 12-bit stream, which results in an easier identification of P-wave onsets. Similarly a higher confidence in source location is expected. Analysis

  2. Influence of movement regime of stick-slip process on the size distribution of accompanying acoustic emission characteristics

    NASA Astrophysics Data System (ADS)

    Matcharashvili, Teimuraz; Chelidze, Tamaz; Zhukova, Natalia; Mepharidze, Ekaterine; Sborshchikov, Alexander

    2010-05-01

    Many scientific works on dynamics of earthquake generation are devoted to qualitative and quantitative reproduction of behavior of seismic faults. Number of theoretical, numerical or physical models are already designed for this purpose. Main assumption of these works is that the correct model must be capable to reproduce power law type relation for event sizes with magnitudes greater than or equal to a some threshold value, similar to Gutenberg-Richter (GR) law for the size distribution of earthquakes. To model behavior of a seismic faults in laboratory conditions spring-block experimental systems are often used. They enable to generate stick-slip movement, intermittent behavior occurring when two solids in contact slide relative to each other driven at a constant velocity. Wide interest to such spring-block models is caused by the fact that stick-slip is recognized as a basic process underlying earthquakes generation along pre-existing faults. It is worth to mention, that in stick slip experiments reproduction of power law, in slip events size distribution, with b values close or equal to the one found for natural seismicity is possible. Stick-slip process observed in these experimental models is accompanied by a transient elastic waves propagation generated during the rapid release of stress energy in spring-block system. Oscillations of stress energy can be detected as a characteristic acoustic emission (AE). Accompanying stick slip AE is the subject of intense investigation, but many aspects of this process are still unclear. In the present research we aimed to investigate dynamics of stick slip AE in order to find whether its distributional properties obey power law. Experiments have been carried out on spring-block system consisting of fixed and sliding plates of roughly finished basalt samples. The sliding block was driven with a constant velocity. Experiments have been carried out for five different stiffness of pulling spring. Thus five different regimes

  3. The origin of early age expansions induced in cementitious materials containing shrinkage reducing admixtures

    SciTech Connect

    Sant, Gaurav; Lothenbach, Barbara; Juilland, Patrick; Le Saout, Gwenn; Weiss, Jason; Scrivener, Karen

    2011-03-15

    Studies on the early-age shrinkage behavior of cement pastes, mortars, and concretes containing shrinkage reducing admixtures (SRAs) have indicated these mixtures frequently exhibit an expansion shortly after setting. While the magnitude of the expansion has been noted to be a function of the chemistry of the cement and the admixture dosage; the cause of the expansion is not clearly understood. This investigation uses measurements of autogenous deformation, X-ray diffraction, pore solution analysis, thermogravimetry, and scanning electron microscopy to study the early-age properties and describe the mechanism of the expansion in OPC pastes made with and without SRA. The composition of the pore solution indicates that the presence of the SRA increases the portlandite oversaturation level in solution which can result in higher crystallization stresses which could lead to an expansion. This observation is supported by deformation calculations for the systems examined.

  4. Exercise boosts hippocampal volume by preventing early age-related gray matter loss.

    PubMed

    Fuss, Johannes; Biedermann, Sarah V; Falfán-Melgoza, Claudia; Auer, Matthias K; Zheng, Lei; Steinle, Jörg; Hörner, Felix; Sartorius, Alexander; Ende, Gabriele; Weber-Fahr, Wolfgang; Gass, Peter

    2014-02-01

    Recently, a larger hippocampus was found in exercising mice and men. Here we studied the morphological underpinnings in wheel running mice by longitudinal magnetic resonance imaging. Voxel-based morphometry revealed that running increases hippocampal volume by inhibiting an early age-related gray matter loss. Disruption of neurogenesis-related neuroplasticity by focalized irradiation is sufficient to block positive effects of exercise on macroscopic brain morphology. PMID:24178895

  5. Early-age concrete strength estimation based on piezoelectric sensor using artificial neural network

    NASA Astrophysics Data System (ADS)

    Kim, Junkyeong; Kim, Ju-Won; Park, Seunghee

    2014-04-01

    Recently, novel methods to estimate the strength of concrete have been reported based on numerous NDT methods. Especially, electro-mechanical impedance technique using piezoelectric sensors are studied to estimate the strength of concrete. However, the previous research works could not provide the general information about the early-age strength important to manage the quality of concrete and/or the construction process. In order to estimate the early-age strength of concrete, the electro-mechanical impedance method and the artificial neural network(ANN) is utilized in this study. The electro-mechanical impedance varies with the mechanical properties of host structures. Because the strength development is most influential factor among the change of mechanical properties at early-age of curing, it is possible to estimate the strength of concrete by analyzing the change of E/M impedance. The strength of concrete is a complex function of several factors like mix proportion, temperature, elasticity, etc. Because of this, it is hard to mathematically derive equations about strength of concrete. The ANN can provide the solution about early-age strength of concrete without mathematical equations. To verify the proposed approach, a series of experimental studies are conducted. The impedance signals are measured using embedded piezoelectric sensors during curing process and the resonant frequency of impedance is extracted as a strength feature. The strength of concrete is calculated by regression of strength development curve obtained by destructive test. Then ANN model is established by trained using experimental results. Finally the ANN model is verified using impedance data of other sensors.

  6. Localization of a continuous CO2 leak from an isotropic flat-surface structure using acoustic emission detection and near-field beamforming techniques

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Cui, Xiwang; Guo, Miao; Han, Xiaojuan

    2016-11-01

    Seal capacity is of great importance for the safety operation of pressurized vessels. It is crucial to locate the leak hole timely and accurately for reasons of safety and maintenance. This paper presents the principle and application of a linear acoustic emission sensor array and a near-field beamforming technique to identify the location of a continuous CO2 leak from an isotropic flat-surface structure on a pressurized vessel in the carbon capture and storage system. Acoustic signals generated by the leak hole are collected using a linear high-frequency sensor array. Time-frequency analysis and a narrow-band filtering technique are deployed to extract effective information about the leak. The impacts of various factors on the performance of the localization technique are simulated, compared and discussed, including the number of sensors, distance between the leak hole and sensor array and spacing between adjacent sensors. Experiments were carried out on a laboratory-scale test rig to assess the effectiveness and operability of the proposed method. The results obtained suggest that the proposed method is capable of providing accurate and reliable localization of a continuous CO2 leak.

  7. AECM-4; Proceedings of the 4th International Symposium on Acoustic Emission from Composite Materials, Seattle, WA, July 27-31, 1992

    SciTech Connect

    Not Available

    1992-01-01

    Various papers on AE from composite materials are presented. Among the individual topics addressed are: acoustic analysis of tranverse lamina cracking in CFRP laminates under tensile loading, characterization of fiber failure in graphite-epoxy (G/E) composites, application of AE in the study of microfissure damage to composite used in the aeronautic and space industries, interfacial shear properties and AE behavior of model aluminum and titanium matrix composites, amplitude distribution modelling and ultimate strength prediction of ASTM D-3039 G/E tensile specimens, AE prefailure warning system for composite structural tests, characterization of failure mechanisms in G/E tensile tests specimens using AE data, development of a standard testing procedure to yield an AE vs. strain curve, benchmark exercise on AE measurements from carbon fiber-epoxy composites. Also discussed are: interpretation of optically detected AE signals, acoustic emission monitoring of fracture process of SiC/Al composites under cyclic loading, application of pattern recognition techniques to acousto-ultrasonic testing of Kevlar composite panels, AE for high temperature monitoring of processing of carbon/carbon composite, monitoring the resistance welding of thermoplastic composites through AE, plate wave AE composite materials, determination of the elastic properties of composite materials using simulated AE signals, AE source location in thin plates using cross-correlation, propagation of flexural mode AE signals in Gr/Ep composite plates.

  8. Influence of the Si particle size on the mechanical stability of Si-based electrodes evaluated by in-operando dilatometry and acoustic emission

    NASA Astrophysics Data System (ADS)

    Tranchot, A.; Idrissi, H.; Thivel, P.-X.; Roué, L.

    2016-10-01

    The influence of the Si particle size (85 nm versus 230 nm) on the mechanical stability of composite Si/C/carboxymethyl cellulose (CMC) electrodes is evaluated from in-operando dilatometry and acoustic emission measurements. A lower, more progressive and more reversible expansion/contraction of the electrode is observed with the Si 230 nm powder, with a maximum expansion of ∼140% and a residual irreversible expansion of ∼25% measured during the first cycle compared to ∼350% and ∼90% for the Si 85 nm based electrode. Moreover, during the 2nd cycle, an abrupt and very large expansion/contraction (up to ∼400%) is observed for the Si 85 nm based electrode, which results in the irreversible cracking and exfoliation of the electrode as confirmed by post-mortem scanning electron microscopy observations. This is also in accordance with the more intensive acoustic activity measured during the Si 85 nm electrode cycling. The lower mechanical strength of the Si 85 nm electrode is interpreted as the consequence of an insufficient amount of CMC binder relative to the larger specific surface area of the Si 85 nm powder. This tends to be confirmed by the significant improvement of its electrochemical cycling performance as its CMC content is increased.

  9. Cyclic Crack Growth Testing of an A.O. Smith Multilayer Pressure Vessel with Modal Acoustic Emission Monitoring and Data Assessment

    NASA Technical Reports Server (NTRS)

    Ziola, Steven M.

    2014-01-01

    Digital Wave Corp. (DWC) was retained by Jacobs ATOM at NASA Ames Research Center to perform cyclic pressure crack growth sensitivity testing on a multilayer pressure vessel instrumented with DWC's Modal Acoustic Emission (MAE) system, with captured wave analysis to be performed using DWCs WaveExplorerTM software, which has been used at Ames since 2001. The objectives were to document the ability to detect and characterize a known growing crack in such a vessel using only MAE, to establish the sensitivity of the equipment vs. crack size and / or relevance in a realistic field environment, and to obtain fracture toughness materials properties in follow up testing to enable accurate crack growth analysis. This report contains the results of the testing.

  10. 4-D imaging of seepage in earthen embankments with time-lapse inversion of self-potential data constrained by acoustic emissions localization

    NASA Astrophysics Data System (ADS)

    Rittgers, J. B.; Revil, A.; Planes, T.; Mooney, M. A.; Koelewijn, A. R.

    2015-02-01

    New methods are required to combine the information contained in the passive electrical and seismic signals to detect, localize and monitor hydromechanical disturbances in porous media. We propose a field experiment showing how passive seismic and electrical data can be combined together to detect a preferential flow path associated with internal erosion in a Earth dam. Continuous passive seismic and electrical (self-potential) monitoring data were recorded during a 7-d full-scale levee (earthen embankment) failure test, conducted in Booneschans, Netherlands in 2012. Spatially coherent acoustic emissions events and the development of a self-potential anomaly, associated with induced concentrated seepage and internal erosion phenomena, were identified and imaged near the downstream toe of the embankment, in an area that subsequently developed a series of concentrated water flows and sand boils, and where liquefaction of the embankment toe eventually developed. We present a new 4-D grid-search algorithm for acoustic emissions localization in both time and space, and the application of the localization results to add spatially varying constraints to time-lapse 3-D modelling of self-potential data in the terms of source current localization. Seismic signal localization results are utilized to build a set of time-invariant yet spatially varying model weights used for the inversion of the self-potential data. Results from the combination of these two passive techniques show results that are more consistent in terms of focused ground water flow with respect to visual observation on the embankment. This approach to geophysical monitoring of earthen embankments provides an improved approach for early detection and imaging of the development of embankment defects associated with concentrated seepage and internal erosion phenomena. The same approach can be used to detect various types of hydromechanical disturbances at larger scales.

  11. Damage assessed by wavelet scale bands and b-value in dynamical tests of a reinforced concrete slab monitored with acoustic emission

    NASA Astrophysics Data System (ADS)

    Zitto, Miguel E.; Piotrkowski, Rosa; Gallego, Antolino; Sagasta, Francisco; Benavent-Climent, Amadeo

    2015-08-01

    The complex Morlet Continuous Wavelet Transform (CWT) was applied to acoustic emission (AE) signals from dynamic tests conducted on a reinforced concrete slab with a shaking table. The steel reinforcement bars did not yield during the tests, but a severe loss of bond between reinforcement bars and surrounding concrete was detected. Comparison of the evolution of the scale position of maximum values of CWT coefficients and the histories of response acceleration obtained in different seismic simulations allowed us to identify the (45-64 kHz) frequency band corresponding to the fracture of concrete. The Cumulative Acoustic Emission Energy (CAE) obtained by reconstructing the AE signals in this scale (frequency) band was compared with the Cumulative Dissipated Energy (CDE) of the tested structure. The CDE is accepted as a good parameter for characterizing the mechanical damage in structures. A reasonably good agreement was found between the normalized histories of CAE and CDE. This made it possible to categorize the cracking of concrete as the main source of damage in the reinforced concrete slab. Conversely, the differences between the CAE and CDE curves observed for high levels of peak acceleration applied to the shaking table can be attributed to the deformation of the steel that formed the columns. The AE coming from the plastic deformation of the steel is not detected by CAE due to the threshold amplitude (45 dB) used in the AE monitoring, but the strain energy dissipated by the steel through plastic deformations is included in the CDE. Further, a study of the evolution of the b-value in the successive seismic simulations revealed that the b-value can capture the inception of severe cracking in the concrete, which the tests described in this study attributed mainly to the loss of bond between reinforcing steel and surrounding concrete.

  12. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    NASA Astrophysics Data System (ADS)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement

  13. Cone photopigment in older subjects: decreased optical density in early age-related macular degeneration

    NASA Astrophysics Data System (ADS)

    Elsner, Ann E.; Burns, Stephen A.; Weiter, John J.

    2002-01-01

    We measured changes to cone photoreceptors in patients with early age-related macular degeneration. The data of 53 patients were compared with normative data for color matching measurements of long- and middle-wavelength-sensitive cones in the central macula. A four-parameter model quantified cone photopigment optical density and kinetics. Cone photopigment optical density was on average less for the patients than for normal subjects and was uncorrelated with visual acuity. More light was needed to reduce the photopigment density by 50% in the steady state for patients. These results imply that cone photopigment optical density is reduced by factors other than slowed kinetics.

  14. The sound emission pattern and the acoustical role of the noseleaf in the echolocating bat, Carollia perspicillata.

    PubMed

    Hartley, D J; Suthers, R A

    1987-12-01

    Carollia perspicillata (Phyllostomidae) is a frugivorous bat that emits low-intensity, broadband, frequency-modulated echolocation pulses through nostrils surrounded by a noseleaf. The emission pattern of this bat is of interest because the ratio between the nostril spacing and the emitted wavelength varies during the pulse, causing complex interference patterns in the horizontal dimension. Sound pressures around the bat were measured using a movable microphone and were referenced to those at a stationary microphone positioned directly in front of the animal. Interference between the nostrils was confirmed by blocking one nostril, which eliminated sidelobes and minima in the emission pattern, and by comparison of real emission patterns with simple computer models. The positions of minima in the patterns indicate effective nostril spacings of over a half-wavelength. Displacement of the dorsal lancet of the noseleaf demonstrated that this structure directs sound in the vertical dimension. PMID:3429728

  15. Effect of various Portland cement paste compositions on early-age strain

    NASA Astrophysics Data System (ADS)

    Guzzetta, Alana G.

    Early-age strain in paste, mortar, and concrete mixtures was investigated using a new method where the specimen shape was a cone frustum. Strain of the specimen from both the horizontal and vertical directions was captured by height change measurement. The volumetric strain was then calculated as a function of the height change and was plotted versus time. A correlation was found between the slopes of the volumetric strain curve resulting from this test method and the initial setting time of the tested material. An initial evaluation of the repeatability of this innovative test method was conducted. The early-age strain effects of aggregate volume, shrinkage reducing admixture, water-cementitious ratio (w/cm), and partial cement replacement with supplementary cementitious materials were tested and individually compared. From these comparisons, it was observed that ambient temperature, bleed water development, and rheological properties had a significant impact on the volumetric strain results. Data showed increased strain as aggregate volume was reduced and as the w/cm was changed from 0.25 up to 0.50. The addition of shrinkage reducing admixture generally caused an increase in the 36-hour volumetric strain value. In most of the mixtures, cement replacement with 20% fly ash or 10% metakaolin reduced the measured volumetric strain when the w/cm was 0.30. Replacement of cement with 10% silica fume caused an insignificant change in volumetric strain results.

  16. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2001-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  17. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  18. Solitary-wave emission fronts, spectral chirping, and coupling to beam acoustic modes in RPIC simulation of SRS backscatter.

    SciTech Connect

    DuBois, D. F.; Yin, L.; Daughton, W. S.; Bezzerides, B.; Dodd, E. S.; Vu, H. X.

    2004-01-01

    Detailed diagnostics of quasi-2D RPIC simulations of backward stimulated Raman scattering (BSRS), from single speckles under putative NIF conditions, reveal a complex spatio-temporal behavior. The scattered light consists of localized packets, tens of microns in width, traveling toward the laser at an appreciable fraction of the speed of light. Sub pico-second reflectivity pulses occur as these packets leave the system. The LW activity consists of a front traveling with the light packets with a wake of free LWs traveling in the laser direction. The parametric coupling occurs in the front where the scattered light and LW overlap and are strongest. As the light leaves the plasma the LW quickly decays, liberating its trapped electrons. The high frequency part of the |n{sub e}(k,{omega})|{sup 2} spectrum, where n{sub e} is the electron density fluctuation, consists of a narrow streak or straight line with a slope that is the velocity of the parametric front. The time dependence of |n{sub e}(k,t)|{sup 2}, shows that during each pulse the most intense value of k also 'chirps' to higher values, consistent with the k excursions seen in the |n{sub e}(k,{omega})|{sup 2} spectrum. But k does not always return, in the subsequent pulses, to the original parametrically matched value, indicating that, in spite of side loss, the electron distribution function does not return to its original Maxwellian form. Liberated pulses of hot electrons result in down-stream, bump on tail distributions that excite LWs and beam acoustic modes deeper in the plasma. The frequency broadened spectra are consistent with Thomson scatter spectra observed in TRIDENT single-hot-spot experiments in the high k{lambda}{sub D}, trapping regime. Further details including a comparison of results from full PIC simulations, and movies of the spatio-temporal behavior, will be given in the poster by L Yin et al.

  19. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  20. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.