Science.gov

Sample records for early-cluster chemical pollution

  1. Microorganisms and Chemical Pollution

    ERIC Educational Resources Information Center

    Alexander, M.

    1973-01-01

    Discusses the importance of microorganisms in chemical pollution and pollution abatement. Selected chemical pollutants are chosen to illustrate that microorganisms synthesize hazardous substances from reasonably innocuous precursors, while others act as excellent environmental decontaminating agents by removing undesirable natural and synthetic…

  2. Chemical Pollution from Transportation Vehicles

    PubMed Central

    Starkman, Ernest S.

    1969-01-01

    Recent publicity on electrically powered vehicles notwithstanding, the gasoline engine will probably be the principal power plant for passenger cars for at least the next decade. Chemical pollutants discharged by the gasoline engine are now under partial control. Motor cars of 1968 and 1969 model discharge only about 30 percent as much carbon monoxide and unburned hydrocarbons as do older models. In theory, carbon monoxide, unburned hydrocarbons and oxides of nitrogen ultimately can be completely removed from gasoline engine exhaust. In order to accomplish this it would be necessary to modify cars to operate satisfactorily on a lean mixture and perhaps to use a catalyst in the exhaust system. Present designs of gas turbines for aircraft and for future projected application to ground vehicles yield pollutants (except for smoke) at levels below those of gasoline engines for a decade to come. It has also been shown possible to eliminate smoke as well as odor from the gas turbine. Thus with proper effort it is feasible to reduce pollution of the atmosphere due to transportation to an acceptable level, even if electrically or alternatively powered vehicles cannot be developed for a decade. PMID:4183827

  3. Exploring the planetary boundary for chemical pollution.

    PubMed

    Diamond, Miriam L; de Wit, Cynthia A; Molander, Sverker; Scheringer, Martin; Backhaus, Thomas; Lohmann, Rainer; Arvidsson, Rickard; Bergman, Åke; Hauschild, Michael; Holoubek, Ivan; Persson, Linn; Suzuki, Noriyuki; Vighi, Marco; Zetzsch, Cornelius

    2015-05-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social

  4. Exploring the planetary boundary for chemical pollution.

    PubMed

    Diamond, Miriam L; de Wit, Cynthia A; Molander, Sverker; Scheringer, Martin; Backhaus, Thomas; Lohmann, Rainer; Arvidsson, Rickard; Bergman, Åke; Hauschild, Michael; Holoubek, Ivan; Persson, Linn; Suzuki, Noriyuki; Vighi, Marco; Zetzsch, Cornelius

    2015-05-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social

  5. Chemical air pollutants and otorhinolaryngeal toxicity

    SciTech Connect

    Bisesi, M.S.; Rubin, A.M. . Occupational Health and Otolaryngology)

    1994-03-01

    Air pollution and the specific issue regarding the impact of airborne chemical agents to human health are familiar topics to most members of the environmental health science and environmental medicine communities. Some aspects, however, have received relatively less attention. Much has been published regarding the impact of air pollutants on the human upper and lower respiratory system, including interaction with the rhinologic (nasal) system. Relatively fewer data have been published, however, regarding the potential impact of air pollutants in reference specifically to the otologic (auditory and vestibular) and the laryngeal (larynx) system. Adverse impact to the ears, nose and throat, referred to as the otorhinolaryngeal system'', warrants attention as an important environmental health issue. Toxic interactions from exposure to many chemical air pollutants not only causes potential respiratory irritation and lung disease, but can also result in impaired hearing, balance, sense of smell, taste, and speech due to interaction with related target systems. This may be significant to environmental health risk assessment of chemical air pollutants if multi-target site models are considered.

  6. [Chemical pollution and breast milk: Taking positions].

    PubMed

    Díaz-Gómez, N M; Ares, S; Hernández-Aguilar, M T; Ortega-García, J A; Paricio-Talayero, J M; Landa-Rivera, L

    2013-12-01

    Chemical pollution affects all ecosystems of our planet. Human milk has been used as a biomarker of environmental pollution as, due to bioaccumulation processes in fat tissue, many chemical compounds reach measurable concentrations that can be readily tested in breast milk. Quite frequently information about the presence of contaminants in breast milk appears in the media, leading to misunderstanding among parents and health professionals, and in some cases breastfeeding the child is stopped. In this article, the Breastfeeding Committee of the Spanish Association of Paediatrics stresses the importance of promoting breastfeeding as the healthiest option, because its benefits clearly outweigh any health risks associated with chemical contaminants in breast milk. Breast milk contains protective factors that counteract the potential effects related to prenatal exposure to environmental pollutants. This article summarises the key recommendations to reduce the level of chemical contaminants in breast milk. It also highlights the importance of government involvement in the development of programs to eliminate or reduce chemical contamination of food and the environment. In this way, the negative effects on child health resulting from exposure to these toxic compounds through the placenta and breast milk may be prevented.

  7. [Chemical pollution and breast milk: Taking positions].

    PubMed

    Díaz-Gómez, N M; Ares, S; Hernández-Aguilar, M T; Ortega-García, J A; Paricio-Talayero, J M; Landa-Rivera, L

    2013-12-01

    Chemical pollution affects all ecosystems of our planet. Human milk has been used as a biomarker of environmental pollution as, due to bioaccumulation processes in fat tissue, many chemical compounds reach measurable concentrations that can be readily tested in breast milk. Quite frequently information about the presence of contaminants in breast milk appears in the media, leading to misunderstanding among parents and health professionals, and in some cases breastfeeding the child is stopped. In this article, the Breastfeeding Committee of the Spanish Association of Paediatrics stresses the importance of promoting breastfeeding as the healthiest option, because its benefits clearly outweigh any health risks associated with chemical contaminants in breast milk. Breast milk contains protective factors that counteract the potential effects related to prenatal exposure to environmental pollutants. This article summarises the key recommendations to reduce the level of chemical contaminants in breast milk. It also highlights the importance of government involvement in the development of programs to eliminate or reduce chemical contamination of food and the environment. In this way, the negative effects on child health resulting from exposure to these toxic compounds through the placenta and breast milk may be prevented. PMID:23791806

  8. A POLLUTION REDUCTION METHODOLOGY FOR CHEMICAL PROCESS SIMULATORS

    EPA Science Inventory

    A pollution minimization methodology was developed for chemical process design using computer simulation. It is based on a pollution balance that at steady state is used to define a pollution index with units of mass of pollution per mass of products. The pollution balance has be...

  9. Confronting unknown planetary boundary threats from chemical pollution.

    PubMed

    Persson, Linn M; Breitholtz, Magnus; Cousins, Ian T; de Wit, Cynthia A; MacLeod, Matthew; McLachlan, Michael S

    2013-11-19

    Rockström et al. proposed a set of planetary boundaries that delimitate a "safe operating space for humanity". One of the planetary boundaries is determined by "chemical pollution", however no clear definition was provided. Here, we propose that there is no single chemical pollution planetary boundary, but rather that many planetary boundary issues governed by chemical pollution exist. We identify three conditions that must be simultaneously met for chemical pollution to pose a planetary boundary threat. We then discuss approaches to identify chemicals that could fulfill those conditions, and outline a proactive hazard identification strategy that considers long-range transport and the reversibility of chemical pollution.

  10. Protection of plants against air pollutants: Role of chemical protectants

    SciTech Connect

    Pandey, J.; Agrawal, M. )

    1993-03-01

    The protection of plants against air pollution damage can best be achieved either by developing pollution-tolerant cultivars or by using chemical protectants. Use of chemical protectants such as pesticides, growth regulators, anti-oxidants, fertilizers, etc. is a short-term solution to reduce the risk of air pollution damage. In addition, these protectants help in understanding the mechanism of air pollution toxicity and provide a scientific basis for assessing crop losses in field conditions. 95 refs.

  11. SYSTEMS CHEMICAL ANALYSIS OF PETROLEUM POLLUTANTS

    EPA Science Inventory

    The application of an established mathematical treatment useful for the characterization and identification of petroleum pollutants is described. Using discriminant analysis of relevant infrared spectrophotometric data, 99% of numerous known and unknown oil samples have been corr...

  12. Method for detecting pollutants. [through chemical reactions and heat treatment

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Richards, R. R.; Conway, E. J. (Inventor)

    1976-01-01

    A method is described for detecting and measuring trace amounts of pollutants of the group consisting of ozone, nitrogen dioxide, and carbon monoxide in a gaseous environment. A sample organic solid material that will undergo a chemical reaction with the test pollutant is exposed to the test environment and thereafter, when heated in the temperature range of 100-200 C., undergoes chemiluminescence that is measured and recorded as a function of concentration of the test pollutant. The chemiluminescence of the solid organic material is specific to the pollutant being tested.

  13. 77 FR 75739 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... Control Technology HAP Hazardous Air Pollutants HON National Emission Standards for Organic Hazardous Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry ICR Information Collection Request lb... Hazardous Air Pollutants: Miscellaneous Organic Chemical Manufacturing MSDS Material Safety Data...

  14. Definition and applications of a versatile chemical pollution footprint methodology.

    PubMed

    Zijp, Michiel C; Posthuma, Leo; van de Meent, Dik

    2014-09-16

    Because of the great variety in behavior and modes of action of chemicals, impact assessment of multiple substances is complex, as is the communication of its results. Given calls for cumulative impact assessments, we developed a methodology that is aimed at expressing the expected cumulative impacts of mixtures of chemicals on aquatic ecosystems for a region and subsequently allows to present these results as a chemical pollution footprint, in short: a chemical footprint. Setting and using a boundary for chemical pollution is part of the methodology. Two case studies were executed to test and illustrate the methodology. The first case illustrates that the production and use of organic substances in Europe, judged with the European water volume, stays within the currently set policy boundaries for chemical pollution. The second case shows that the use of pesticides in Northwestern Europe, judged with the regional water volume, has exceeded the set boundaries, while showing a declining trend over time. The impact of mixtures of substances in the environment could be expressed as a chemical footprint, and the relative contribution of substances to that footprint could be evaluated. These features are a novel type of information to support risk management, by helping prioritization of management among chemicals and environmental compartments.

  15. 40 CFR 1.43 - Office of Chemical Safety and Pollution Prevention.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Office of Chemical Safety and Pollution... ORGANIZATION AND GENERAL INFORMATION Headquarters § 1.43 Office of Chemical Safety and Pollution Prevention. The Assistant Administrator, Office of Chemical Safety and Pollution Prevention (OCSPP), serves as...

  16. Chemical pollution of the environment: past, present and future.

    PubMed

    Hoffmann, M R

    1993-01-01

    In an era of 'global environmental change' people are concerned about emissions of CO2, CH4, N2O and chlorofluorocarbons (CFCs) to the atmosphere because of their direct impact on global warming and their stratospheric ozone-depleting effects. Unprecedented efforts have been made to reduce the global emissions of CFCs. Major industries, which are competing within the modern global economy, have recognized the importance of maintaining a 'green' perspective. Future operations will be designed to reduce the direct emissions of chemical by-products to air, water and soil, and to recycle and to reuse critical solvents such as water. 'Star Wars' technologies for the rapid, economical and effective elimination of industrial and domestic wastes will be developed and employed on a large scale. Advanced technologies for the control and monitoring of chemical pollutants on regional and global scales will be developed and implemented. Satellite-based instruments will be able to detect, to quantify, and to monitor a wide range of chemical pollutants. Our understanding of the fate and consequences of chemicals in the environment will increase dramatically such that we shall be able to predict the environmental, ecological and biochemical consequences of novel synthetic molecules with much greater precision.

  17. The Automobile and Air Pollution: A Chemical Review of the Problem

    ERIC Educational Resources Information Center

    Wildeman, Thomas R.

    1974-01-01

    Summarizes chemical principles underlying the operation of automobiles and the cause of air pollution, including concentrations of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen. Comments and opinions are made concerning present and future pollution control devices. (CC)

  18. Bioavailability of chemical pollutants in contaminated soils and pitfalls of chemical analyses in hazard assessment.

    PubMed

    Vasseur, P; Bonnard, M; Palais, F; Eom, I C; Morel, J L

    2008-10-01

    Decision-making for remediation of industrial wastelands are still based on the concentrations of pollutants of concern measured in soils. In this work, two soils polluted by polycyclic aromatic hydrocarbons (PAHs) and metals were investigated for their toxicity on earthworms (Eisenia fetida), collembolae (Folsomia candida), and higher plants (Brassica chinensis, Lactucca sativa and Avena sativa) in order to study the relationships between chemical contamination and biological effects. Although the level of contamination by PAHs was elevated and commensurate in the two soils, their toxicity profile was quite different. Soil A affected survival and reproduction of invertebrates and growth of higher plants. Surprisingly, soil B, heavily contaminated by metals in addition to PAHs, was devoid of toxicity. Our results indicate that toxicity cannot simply be extrapolated from pollutant concentrations in a complex matrix in which bioavailability of pollutants may be reduced by ageing. Moreover, the use of toxicity data obtained from spiked soils characterized by readily bioavailable pollutants can also be called into question for such extrapolations. Predicting biological effects therefore requires biological tools to avoid any erroneous conclusions that can be drawn from sole extrapolation of analytical results.

  19. Chemical footprint: a methodological framework for bridging life cycle assessment and planetary boundaries for chemical pollution.

    PubMed

    Sala, Serenella; Goralczyk, Malgorzata

    2013-10-01

    The development and use of footprint methodologies for environmental assessment are increasingly important for both the scientific and political communities. Starting from the ecological footprint, developed at the beginning of the 1990s, several other footprints were defined, e.g., carbon and water footprint. These footprints-even though based on a different meaning of "footprint"-integrate life cycle thinking, and focus on some challenging environmental impacts including resource consumption, CO2 emission leading to climate change, and water consumption. However, they usually neglect relevant sources of impacts, as those related to the production and use of chemicals. This article presents and discusses the need and relevance of developing a methodology for assessing the chemical footprint, coupling a life cycle-based approach with methodologies developed in other contexts, such as ERA and sustainability science. Furthermore, different concepts underpin existing footprint and this could be the case also of chemical footprint. At least 2 different approaches and steps to chemical footprint could be envisaged, applicable at the micro- as well as at the meso- and macroscale. The first step (step 1) is related to the account of chemicals use and emissions along the life cycle of a product, sector, or entire economy, to assess potential impacts on ecosystems and human health. The second step (step 2) aims at assessing to which extent actual emission of chemicals harm the ecosystems above their capability to recover (carrying capacity of the system). The latter step might contribute to the wide discussion on planetary boundaries for chemical pollution: the thresholds that should not be surpassed to guarantee a sustainable use of chemicals from an environmental safety perspective. The definition of what the planetary boundaries for chemical pollution are and how the boundaries should be identified is an on-going scientific challenge for ecotoxicology and ecology. In

  20. Strategies for emission reduction of air pollutants produced from a chemical plant.

    PubMed

    Lee, Byeong-Kyu; Cho, Sung-Woong

    2003-01-01

    Various air pollution control (APC) techniques were employed in order to reduce emissions of air pollutants produced from chemical plants, which have many different chemical production facilities. For an emission reduction of acid gases, this study employed a method to improve solubility of pollutants by decreasing the operating temperature of the scrubbers, increasing the surface area for effective contact of gas and liquid, and modifying processes in the acid scrubbers. To reduce emission of both amines and acid gases, pollutant gas components were first separated, then condensation and/or acid scrubbing, depending on the chemical and physical properties of pollutant components, were used. To reduce emission of solvents, condensation and activated carbon adsorption were employed. To reduce emission of a mixture gases containing acid gases and solvents, the mixed gases were passed into the first condenser, the acid scrubber, the second condenser, and the activated carbon adsorption tower in sequence. As a strategy to reduce emission of pollutants at the source, this study also employed the simple pollution prevention concept of modification of the previously operating APC control device. Finally, air emissions of pollutants produced from the chemical plants were much more reduced by applying proper APC methods, depending upon the types (physical or chemical properties) and the specific emission situations of pollutants. PMID:12447574

  1. Great Lakes Environmentalists Push for Zero Chemical Pollution.

    ERIC Educational Resources Information Center

    Heylin, Michael

    1991-01-01

    Described are the efforts of a coalition of several environmental organizations to influence federal legislation regarding water pollution in the Great Lakes region. Statements from regional legislators are included. (CW)

  2. Marine biodegradation: Chemical pollutants. (Latest citations from Oceanic abstracts). Published Search

    SciTech Connect

    Not Available

    1993-03-01

    The bibliography contains citations concerning the biological degradation of marine pollutants. The citations explore the microbial breakdown of petroleum, herbicides, pesticides, polychlorinated biphenyls and other hazardous materials. The chemical details of biotransformation, and the development of microorganisms capable of degrading pollutants are presented. (Contains a minimum of 222 citations and includes a subject term index and title list.)

  3. [The effect of atmospheric pollution in petroleum refining, petrochemical and chemical regions on population mortality].

    PubMed

    Sabirova, Z F

    1999-01-01

    The composition of ambient air pollution in the towns having petrochemical and other chemical enterprises in 1979-1996 was studied. Hydrocarbons were prevalent in the air of these towns. Air pollution causes a greater neoplasm mortality among males and a higher incidence of respiratory and digestive diseases.

  4. A chemical adsorption system for the sampling of gaseous organic pollutants in operating theatre atmospheres.

    PubMed

    Halliday, M M; Carter, K B

    1978-10-01

    The development of an air sampler and its use in measuring organic pollutants in operating theatre atmospheres are described. Air was sampled continuously during an operating session and the results obtained represent the average pollution at the sample site during that session. The technique involved the chemical adsorption of organic vapours to polymer beads and pollutants thus trapped could be stored for several days before thermal desorption and analysis by gas chromatography. The three most abundant organic pollutants were ethanol, propan-2-ol (isopropanol) and halothane.

  5. 76 FR 13514 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...). \\1\\ Chemical Manufacturing Process Unit. On February 12, 2010, the American Chemistry Council and the Society of Chemical Manufacturers and Affiliates (collectively referred to as ``Petitioners'') sought... AGENCY 40 CFR Part 63 RIN 2060-AQ89 National Emission Standards for Hazardous Air Pollutants for...

  6. Low levels of chemical anthropogenic pollution may threaten amphibians by impairing predator recognition.

    PubMed

    Polo-Cavia, Nuria; Burraco, Pablo; Gomez-Mestre, Ivan

    2016-03-01

    Recent studies suggest that direct mortality and physiological effects caused by pollutants are major contributing factors to global amphibian decline. However, even sublethal concentrations of pollutants could be harmful if they combined with other factors to cause high mortality in amphibians. Here we show that sublethal concentrations of pollutants can disrupt the ability of amphibian larvae to recognize predators, hence increasing their risk of predation. This effect is indeed much more important since very low amounts of pollutants are ubiquitous, and environmental efforts are mostly directed towards preventing lethal spills. We analyzed the effects of two common contaminants (humic acid and ammonium nitrate) on the ability of tadpoles of the western spadefoot toad (Pelobates cultripes) to recognize chemical cues from a common predator, nymphs of the dragonfly Anax imperator. We compared the swimming activity of tadpoles in the presence and absence of water-borne chemical cues from dragonflies at different concentrations of humic acid and ammonium nitrate. Tadpoles reduced swimming activity in response to predator cues in the absence of pollutants, whereas they remained unresponsive to these cues when either humic acid or ammonium nitrate was added to the water, even at low concentrations. Moreover, changes in tadpole activity associated with the pollutants themselves were non-significant, indicating no toxic effect. Alteration of the natural chemical environment of aquatic systems by pollutants may be an important contributing cause for declines in amphibian populations, even at sublethal concentrations.

  7. Low levels of chemical anthropogenic pollution may threaten amphibians by impairing predator recognition.

    PubMed

    Polo-Cavia, Nuria; Burraco, Pablo; Gomez-Mestre, Ivan

    2016-03-01

    Recent studies suggest that direct mortality and physiological effects caused by pollutants are major contributing factors to global amphibian decline. However, even sublethal concentrations of pollutants could be harmful if they combined with other factors to cause high mortality in amphibians. Here we show that sublethal concentrations of pollutants can disrupt the ability of amphibian larvae to recognize predators, hence increasing their risk of predation. This effect is indeed much more important since very low amounts of pollutants are ubiquitous, and environmental efforts are mostly directed towards preventing lethal spills. We analyzed the effects of two common contaminants (humic acid and ammonium nitrate) on the ability of tadpoles of the western spadefoot toad (Pelobates cultripes) to recognize chemical cues from a common predator, nymphs of the dragonfly Anax imperator. We compared the swimming activity of tadpoles in the presence and absence of water-borne chemical cues from dragonflies at different concentrations of humic acid and ammonium nitrate. Tadpoles reduced swimming activity in response to predator cues in the absence of pollutants, whereas they remained unresponsive to these cues when either humic acid or ammonium nitrate was added to the water, even at low concentrations. Moreover, changes in tadpole activity associated with the pollutants themselves were non-significant, indicating no toxic effect. Alteration of the natural chemical environment of aquatic systems by pollutants may be an important contributing cause for declines in amphibian populations, even at sublethal concentrations. PMID:26765086

  8. Chemicals and excess materials disposition during facility deactivation as a means of pollution prevention

    SciTech Connect

    Godfrey, S.D.

    1998-05-28

    This paper presents several innovative and common sense approaches to pollution prevention that have been employed during facility deactivation at the Hanford Site in South Central Washington. It also presents several pollution prevention principles applicable to other projects. Innovative pollution prevention ideas employed at the Hanford site during facility deactivation included: (1) Recycling more than 185,000 gallons of radioactively contaminated nitric acid by sending it to an operating nuclear fuels reprocessing facility in England; (2) Recycling millions of pounds of chemicals and excess materials to other industries for reuse; (3) Evaporating flush water at a low rate and discharging it into the facility exhaust air stream to avoid discharging thousands of gallons of liquid to the soil column; and (4) Decontaminating and disposing of thousands of gallons of radioactively contaminated organic solvent waste to a RCRA licensed, power-producing, commercial incinerator. Common sense pollution prevention ideas that were employed include recycling office furniture, recycling paper from office files, and redeploying tools and miscellaneous process equipment. Additional pollution prevention occurred as the facility liquid and gaseous discharge streams were deactivated. From the facilities deactivation experiences at Hanford and the ensuing efforts to disposition excess chemicals and materials, several key pollution prevention principles should be considered at other projects and facilities, especially during the operational periods of the facility`s mission. These principles include: Institute pollution prevention as a fundamental requirement early in the planning stage of a project or during the operational phase of a facility`s mission; Promote recognition and implementation of pollution prevention initiatives; Instill pollution prevention as a value in all participants in the project or facility work scope; Minimize the amount of chemical products and materials

  9. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants.

    PubMed

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-08-14

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes-catalyst/oxidant concentrations, incident radiation flux, and pH-need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities.

  10. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants

    PubMed Central

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-01-01

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes—catalyst/oxidant concentrations, incident radiation flux, and pH—need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities. PMID:26287222

  11. Effect of water pollutants and other chemicals upon ribonuclease activity in vitro

    SciTech Connect

    Christensen, G.M.; Olson, D.L.

    1981-12-01

    Ribonuclease was treated in vitro with 73 chemicals, many of which are environmental pollutants, including inorganic, organic, and metal-organic chemicals, pesticides and other biocides, alkyl and aryl industrial pollutants, and certain additional chemicals, to determine their effect upon enzyme activity. Palladium (II and IV) and gold (III) were the strongest inhibitors of RNase activity. Other strong inhibitors, in decreasing order of effect, were: sodium dodecyl sulfate, silver (I), EDTA, mercury (II), copper (II), thiram (fungicide), platinum (IV), malathion (pesticide), lead (II), and beryllium (II). Intermediate effects were found with other inorganic cations, many anions, and some other chemicals. A number of compounds of different chemical types caused no measureable effect. None of the chemicals tested caused a measureable activation of this enzyme.

  12. Experimental assessment of the microbocenosis stability in chemically polluted soils

    NASA Astrophysics Data System (ADS)

    Sorokin, N. D.; Grodnitskaya, I. D.; Shapchenkova, O. A.; Evgrafova, S. Yu.

    2009-06-01

    Water solutions of fluorine and sulfur-containing salts of sodium—NaF, Na2SO3, and NaF + Na2SO3 (30, 150, and 300 MPC, respectively)—and salts of heavy metals—(Cu(NO3)2 · 3H2O, NiSO4, and Pb(NO3)2 (10, 25, and 50 MPC, respectively)—were applied as pollutants to dark gray forest soils of experimental plots (1 m2) in Siberian larch ( Larix sibirica Ledeb.) plantations once per growing period. The soil samples for the determination of the microbial biomass, respiration, and enzymatic activity (urease, protease, invertase, and catalase) were taken from the mineral soil layer (0-5 cm) at the beginning of the growing seasons before the application of the pollutants then in 14- to 18-day intervals every month. The fluorine and sulfur-containing compounds applied activated the respiration, lowered the enzymatic activity of the microorganisms, and decreased the microbial biomass by 1.3-2.2 times in the soils of the test plots as compared to the control one. The single application of Cu, Ni, and Pb increased the microbial biomass, while the changes in the basal respiration were compatible with its natural variability. Two months after the beginning of the experiment, all the parameters characterizing the functioning of the soil microbocenoses were restored.

  13. Chemical Pollution from Combustion of Modern Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.

    2013-01-01

    Fire is one of the most critical contingencies in spacecraft and any closed environment including submarines. Currently, NASA uses particle based technology to detect fires and hand-held combustion product monitors to track the clean-up and restoration of habitable cabin environment after the fire is extinguished. In the future, chemical detection could augment particle detection to eliminate frequent nuisance false alarms triggered by dust. In the interest of understanding combustion from both particulate and chemical generation, NASA Centers have been collaborating on combustion studies at White Sands Test Facility using modern spacecraft materials as fuels, and both old and new technology to measure the chemical and particulate products of combustion. The tests attempted to study smoldering pyrolysis at relatively low temperatures without ignition to flaming conditions. This paper will summarize the results of two 1-week long tests undertaken in 2012, focusing on the chemical products of combustion. The results confirm the key chemical products are carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen fluoride (HF) and hydrogen chloride (HCl), whose concentrations depend on the particular material and test conditions. For example, modern aerospace wire insulation produces significant concentration of HF, which persists in the test chamber longer than anticipated. These compounds are the analytical targets identified for the development of new tunable diode laser based hand-held monitors, to replace the aging electrochemical sensor based devices currently in use on the International Space Station.

  14. Oxidative metabolism of chemical pollutants in marine organisms: molecular and biochemical biomarkers in environmental toxicology.

    PubMed

    Benedetti, Maura; Giuliani, Maria Elisa; Regoli, Francesco

    2015-03-01

    Oxidative stress biomarkers are widely used in marine ecotoxicology. Environmental pollutants enhance intracellular formation of oxyradicals through several mechanisms, but complex oxidative interactions occur in response to chemical mixtures. Metabolism of individual classes of pollutants can be influenced by a sophisticated network of prooxidant relationships, reciprocal and cascade effects, changes of redox-sensitive signaling proteins, and transcription factors. Chemically mediated pathways can affect antioxidant responses at different levels, including pretranscriptional, transcriptional, protein, and catalytic functions; such mechanisms remain largely unexplored in marine organisms. Molecular responses of antioxidants are frequently not paralleled by expected biochemical changes or cellular effects, and caution is needed when interpreting the effects of environmental pollutants. Results on antioxidant variations can be influenced by mRNA stability and protein turnover, different timing for transcriptional and translational mechanisms, metabolic capability of tissues, posttranscriptional modifications of proteins, biphasic responses of antioxidant enzymes, and adaptation mechanisms to chronic pollution. PMID:25712694

  15. Synergistic health effects between chemical pollutants and electromagnetic fields.

    PubMed

    Ledoigt, Gérard; Sta, Chaima; Goujon, Eric; Souguir, Dalila; El Ferjani, Ezzeddine

    2015-01-01

    Humans and ecosystems are exposed to highly variable and unknown cocktail of chemicals and radiations. Although individual chemicals are typically present at low concentrations, they can interact with each other resulting in additive or potentially synergistic mixture effects. This was also observed with products obtained by radiation actions such as sunlight or electromagnetic fields that can change the effects of chemicals, such as pesticides, and metal trace elements on health. Concomitant presence of various pesticides and their transformation products adds further complexity to chemical risk assessment since chronic inflammation is a key step for cancer promotion. Degradation of a parent molecule can produce several by-products which can trigger various toxic effects with different impacts on health and environment. For instance, the cocktail of sunlight irradiated sulcotrione pesticide has a greater cytotoxicity and genotoxicity than parent molecule, sulcotrione, and questions about the impact of photochemical process on environment. Adjuvants were shown to modify the biological features of pesticides. Addition of other elements, metals or biological products, can differently enhance cell toxicity of pesticides or electromagnetic radiations suggesting a synergy in living organisms. Electromagnetic fields spreading, pesticide by-products and mixtures monitoring become greater for environmental contamination evaluations.

  16. Synergistic health effects between chemical pollutants and electromagnetic fields.

    PubMed

    Ledoigt, Gérard; Sta, Chaima; Goujon, Eric; Souguir, Dalila; El Ferjani, Ezzeddine

    2015-01-01

    Humans and ecosystems are exposed to highly variable and unknown cocktail of chemicals and radiations. Although individual chemicals are typically present at low concentrations, they can interact with each other resulting in additive or potentially synergistic mixture effects. This was also observed with products obtained by radiation actions such as sunlight or electromagnetic fields that can change the effects of chemicals, such as pesticides, and metal trace elements on health. Concomitant presence of various pesticides and their transformation products adds further complexity to chemical risk assessment since chronic inflammation is a key step for cancer promotion. Degradation of a parent molecule can produce several by-products which can trigger various toxic effects with different impacts on health and environment. For instance, the cocktail of sunlight irradiated sulcotrione pesticide has a greater cytotoxicity and genotoxicity than parent molecule, sulcotrione, and questions about the impact of photochemical process on environment. Adjuvants were shown to modify the biological features of pesticides. Addition of other elements, metals or biological products, can differently enhance cell toxicity of pesticides or electromagnetic radiations suggesting a synergy in living organisms. Electromagnetic fields spreading, pesticide by-products and mixtures monitoring become greater for environmental contamination evaluations. PMID:26598938

  17. Heavy metal pollution in soils from abandoned Taizhou Chemical Industry Zone in Zhejiang province.

    PubMed

    Yu, Binbin; Zhang, Huimin; Chen, Tao; Mou, Yijun; Wu, Zucheng

    2015-01-01

    Heavy metal (HM) pollution in soils from an abandoned Taizhou Chemical Industry Zone (TCIZ) was investigated. By analysing soils, including sediments, collected from the study zone, the main pollutants were quantitatively identified and their spatial distribution patterns were clearly displayed. Eleven types of HM pollutants were obtained and the results indicated a significant correlation in most of the elements of the soil and sediment. A pollution index Pi was employed to classify the degree of contamination and characterize the main pollutant, which was controlled with the evaluation standard value instead of background one. As was characterized to be one of the main pollutants with the mean concentrations at the pollution source, in the surrounding area, and in the sediment of 603, 20.4, and 22.5 mg/kg, respectively. Our study suggested that the contaminated area of TCIZ may necessitate remediation before it can be considered for reuse. Pollution index method could be a useful tool for assessing soils quality to provide comparable criteria.

  18. Detection of chemical pollutants by passive LWIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Lavoie, Hugo; Thériault, Jean-Marc; Bouffard, François; Puckrin, Eldon; Dubé, Denis

    2012-09-01

    Toxic industrial chemicals (TICs) represent a major threat to public health and security. Their detection constitutes a real challenge to security and first responder's communities. One promising detection method is based on the passive standoff identification of chemical vapors emanating from the laboratory under surveillance. To investigate this method, the Department of National Defense and Public Safety Canada have mandated Defense Research and Development Canada (DRDC) - Valcartier to develop and test passive Long Wave Infrared (LWIR) hyperspectral imaging (HSI) sensors for standoff detection. The initial effort was focused to address the standoff detection and identification of toxic industrial chemicals (TICs) and precursors. Sensors such as the Multi-option Differential Detection and Imaging Fourier Spectrometer (MoDDIFS) and the Improved Compact ATmospheric Sounding Interferometer (iCATSI) were developed for this application. This paper describes the sensor developments and presents initial results of standoff detection and identification of TICs and precursors. The standoff sensors are based on the differential Fourier-transform infrared (FTIR) radiometric technology and are able to detect, spectrally resolve and identify small leak plumes at ranges in excess of 1 km. Results from a series of trials in asymmetric threat type scenarios will be presented. These results will serve to establish the potential of the method for standoff detection of TICs precursors and surrogates.

  19. A review of the toxicology of air pollutants: toxicology of chemical mixtures.

    PubMed

    Oehme, F W; Coppock, R W; Mostrom, M S; Khan, A A

    1996-10-01

    On a temporal basis, air has immense capacity for moving a large mass of pollutants. Mammals and birds are exposed to pollutants in air by the inhalation (nose and mouth), cutaneous or ocular routes. Most laboratory studies on air pollutants have been limited to single air pollutants and very little research has been done on the complex mixture of compounds that exist in ambient air. Complex mixtures are further complicated by dynamic chemical reactions that occur after the emissions leave point sources. Exposure parameters are also important in the toxicity of air pollutants. Intermittent exposure of monkeys to ozone increased the adverse pulmonary effects. Superimposing spikes of 0.8 ppm nitrogen dioxide on a baseline of 0.2 ppm, as occurs on a calm winter day, increased the susceptibility of mice to bacteria-induced pneumonia. Sulfur dioxide at concentrations of 5 ppm increased pulmonary resistance by 39%. Sulfuric acid is the predominate acid particle in the atmosphere. Exposure for 1 h to > 200 micrograms sulfuric acid/m3 depressed bronchomucociliary clearance. Concentrations of 100 micrograms/m3 of photochemical products caused headaches and 510 micrograms/m3 produced cough and chest pain. For chemical interactions in dose response, nitrogen dioxide is synergistic with ozone and ammonium sulfate. When all 3 chemicals are used in mixture, the response was 340%. Atmospheric conditions, such as fog, can alter the toxicity of air pollutants. The dose response to a single chemical can be altered by chemical mixtures and pre-existing disease conditions. Understanding these relationships is important for establishing no observable adverse effect levels. Mechanisms for multiple chemical interactions are multifaceted. One chemical may interfere with the metabolism or detoxification of another. Others may interact at cell receptors. To understand the effects of multiple chemical interactions of air pollutants, there is a need for a blend of epidemiological, laboratory

  20. [Monitoring of the chemical composition of snow cover pollution in the Moscow region].

    PubMed

    Ermakov, A A; Karpova, E A; Malysheva, A G; Mikhaylova, R I; Ryzhova, I N

    2014-01-01

    Monitoring of snow cover pollution as an indicator of ambient air pollution in 20 districts in the Moscow region during 2009-2013 was performed. The identification with a quantitative assessment of a wide array of organic compounds and the control of the main physical and chemical and inorganic indices of snow water pollution were carried out. More than 60 organic substances for most of which there are no the hygienic standards were established. The assessment of pollution levels of basic inorganic indices was given by means of the comparing them with the average values in the snow cover in the European territory of Russia and natural content in areas not been exposed to human impact.

  1. [The adaptive strategy of rodent populations living in conditions of radioactive and chemical environmental pollution].

    PubMed

    Liubashevskiĭ, N M; Starichenko, V I

    2010-01-01

    The comparative analysis of demographic, morphological and physiological processes in mouselike rodents in pollution zones (90Sr + 90Y, 137Cs) on East-Ural radioactive track (EURT) and (Cu + Cd + Pb + Zn + SO2) on a site near copper-smelting factory is carried out. The direct (not mediated) defeat of animals by an irradiation leads to inherited adaptation (density preservation, tolerance increase to pollution, migration decrease and so forth). The mediated defeat of animals at pollution by metals influences animals as a result of degradation of a vegetative cover, reducing a forage reserve, shelters and reproduction places. Population is decreasing, migration is increasing. Hence, population reacts onto direct defeat of animals or on inhabitancy locuses degradation, id est unspecifically, without dependence from the physical and chemical nature of pollution.

  2. POLLUTION PREVENTION IN THE DESIGN OF CHEMICAL PROCESSES USING HIERARCHICAL DESIGN AND SIMULATION

    EPA Science Inventory

    The design of chemical processes is normally an interactive process of synthesis and analysis. When one also desires or needs to limit the amount of pollution generated by the process the difficulty of the task can increase substantially. In this work, we show how combining hier...

  3. 77 FR 65135 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-25

    ... Society of Chemical Manufacturers and Affiliates (collectively referred to as ``Petitioners'') sought... responsibilities between the federal government and Indian tribes, as specified by Executive Order 13175 (65 FR... AGENCY 40 CFR Part 63 RIN 2060-AQ89 National Emission Standards for Hazardous Air Pollutants for...

  4. Pollution

    ERIC Educational Resources Information Center

    Rowbotham, N.

    1973-01-01

    Presents the material given in one class period in a course on Environmental Studies at Chesterfield School, England. The topics covered include air pollution, water pollution, fertilizers, and insecticides. (JR)

  5. Pollution

    ERIC Educational Resources Information Center

    Terry, Luther L.

    1970-01-01

    Our mechanized environment has produced a variety of man-made pollutants. Prevention of pollution and resulting health hazards is a primary challenge. The Federal Government undertakes a large responsibility in the field of environmental control. (CK)

  6. In situ combined chemical and biological assessment of estrogenic pollution in a water recycling system.

    PubMed

    Chi, Yulang; Huang, Qiansheng; Zhang, Huanteng; Chen, Yajie; Dong, Sijun

    2016-05-01

    Estrogenic pollution and its control in aquatic systems have drawn substantial attention around the world. The chemical and biological assessment approaches currently utilized in the laboratory or field cannot give an integrated assessment of the pollution when used separately. In this study, in situ chemical and biological methods were combined to detect pollution in a water recycling system. Data for the water quality index (WQI) demonstrated that the water treatment resulted in the decline of pollution from upstream to downstream. Wild male Nile tilapia, Oreochromis niloticus, was sampled in June and September. The concentrations of four common endocrine disrupting chemicals (EDCs) were determined in the tilapia liver by chromatographic analysis methods. The level of 17β-estradiol (E2) declined from upstream to downstream in both months. In contrast, the levels of bisphenol A (BPA), di-(2-ethylhcxyl) phthalate (DEHP), and perfluorooctane sulfonate (PFOS) did not display this declining tendency. The highest relative expression of vitellogenin 1 (VTG1) was observed in tilapia from upstream, then the level significantly decreased along the water system. The relative expression levels of CYP1A1 in the water system were also significantly higher than that of the control. However, no declining trend could be observed along the water system. The change of VTG1 expression corresponded well with that of E2 levels in the tilapia liver. Overall, our study assessed the pollution by endocrine disruptors using chemical and biological data with good correspondence. This study also demonstrated the effectiveness of the water recycling system in eliminating estrogen pollution in municipal sewage. PMID:27155427

  7. CFD modeling of reactive pollutant dispersion in simplified urban configurations with different chemical mechanisms

    NASA Astrophysics Data System (ADS)

    Sanchez, Beatriz; Santiago, Jose-Luis; Martilli, Alberto; Palacios, Magdalena; Kirchner, Frank

    2016-09-01

    An accurate understanding of urban air quality requires considering a coupled behavior between the dispersion of reactive pollutants and atmospheric dynamics. Currently, urban air pollution is mostly dominated by traffic emission, where nitrogen oxides (NOx) and volatile organic compounds (VOCs) are the primary emitted pollutants. However, modeling reactive pollutants with a large set of chemical reactions, using a computational fluid dynamic (CFD) model, requires a large amount of computational (CPU) time. In this sense, the selection of the chemical reactions needed in different atmospheric conditions becomes essential in finding the best compromise between CPU time and accuracy. The purpose of this work is to assess the differences in NO and NO2 concentrations by considering three chemical approaches: (a) passive tracers (non-reactive), (b) the NOx-O3 photostationary state and (c) a reduced complex chemical mechanism based on 23 species and 25 reactions. The appraisal of the effects of chemical reactions focuses on studying the NO and NO2 dispersion in comparison with the tracer behavior within the street. In turn, the effect of including VOC reactions is also analyzed taking into account several VOC / NOx ratios of traffic emission. Given that the NO and NO2 dispersion can also be affected by atmospheric conditions, such as wind flow or the background concentration from season-dependent pollutants, in this work the influence of wind speeds and background O3 concentrations are studied. The results show that the presence of ozone in the street plays an important role in NO and NO2 concentrations. Therefore, greater differences linked to the chemical approach used are found with higher O3 concentrations and faster wind speeds. This bears relation to the vertical flux as a function of ambient wind speed since it increases the pollutant exchange between the street and the overlying air. This detailed study allows one to ascertain under which atmospheric conditions

  8. 40 CFR Table 1 to Subpart Vvvvvv... - Hazardous Air Pollutants Used To Determine Applicability of Chemical Manufacturing Operations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Determine Applicability of Chemical Manufacturing Operations 1 Table 1 to Subpart VVVVVV of Part 63... Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources Pt. 63, Subpt. VVVVVV, Table 1 Table 1 to Subpart VVVVVV of Part 63—Hazardous Air Pollutants Used To Determine Applicability...

  9. Toxicity testing of organic chemicals in groundwater polluted with landfill leachate

    SciTech Connect

    Baun, A.; Kloeft, L.; Bjerg, P.L.; Nyholm, N.

    1999-09-01

    A method for assessment of toxicity of nonvolatile organic chemicals contaminants in groundwater polluted with landfill leachate has been evaluated. The biotests utilized were composed of an algal growth inhibition test (Selenastrum capricornutum), a daphnia immobilization test (Daphnia magna), and a bacterial genotoxicity test (umuC, Salmonella typhimurium). The feasibility of the selected biotests was investigated for a series of groundwater samples collected along pollution gradients downstreams of two landfills in Jutland, Denmark. Two different approaches were used, direct toxicity testing of whole groundwater samples, and toxicity testing of concentrates obtained by solid-phase extraction. Direct testing of whole groundwater samples produced toxic responses, but the complex sample matrix masked the toxicity of the organic chemical contaminants of interest. Solid-phase extraction was used successfully as an on-site method that eliminated ion toxicity and produced biotest responses that reflected the toxicity of the nonvolatile organic chemical contaminants in the groundwater.

  10. Bringing the Polluters Back In: Environmental Inequality and the Organization of Chemical Production

    PubMed Central

    Grant, Don; Trautner, Mary Nell; Downey, Liam; Thiebaud, Lisa

    2011-01-01

    Environmental justice scholars have suggested that because chemical plants and other hazardous facilities emit more pollutants where they face the least resistance, disadvantaged communities face a special health risk. In trying to determine whether race or income has the bigger impact on a neighborhood’s exposure to pollution, however, scholars tend to overlook the facilities themselves and the effect of their characteristics on emissions. In particular, how do the characteristics of facilities and their surrounding communities jointly shape pollution outcomes? We propose a new line of environmental justice research that focuses on facilities and how their features combine with communities’ features to create dangerous emissions. Using novel fuzzy-set analysis techniques and the EPA’s newly developed Risk-Screening Environmental Indicators, we test the influence of facility and community factors on chemical plants’ health-threatening emissions. Contrary to the idea that community characteristics have singular, linear effects, findings show that facility and community factors combine in a variety of ways to produce risky emissions. We speculate that as chemical firms experiment with different ways of producing goods and externalizing pollution costs, new “recipes of risk” are likely to emerge. The question, then, will no longer be whether race or income matters most, but in which of these recipes do they matter and how. PMID:21921966

  11. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators

    USGS Publications Warehouse

    Haack, S.K.; Duris, J.W.; Fogarty, L.R.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Meyer, M.T.

    2009-01-01

    The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL-1, human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  12. Use of a chemical sensor array for detecting pollutants in domestic wastewater.

    PubMed

    Bourgeois, W; Stuetz, R M

    2002-11-01

    A chemical sensor array (consisting of 8 conducting polymers) was used to continuously monitor for the presence or absence of industrial pollutants in the headspace of wastewater generated from an on-line flow-cell. A domestic wastewater (Cranfield University sewage works) was dosed with diesel to stimulate the presence of an intermittent discharge in a wastewater influent. Response patterns between the sensors were used to detect for the presence of organic compounds in the wastewater. Correlations between the sensor response patterns or fingerprints were also analysed using principal component analysis. The results clearly demonstrate that a chemical sensor array can rapidly identify the presence of organic compounds (such as diesel) in a wastewater matrix and could be further developed to monitor for industrial pollutants at the inlet of a sewage works.

  13. Chemical Pollutants Sorbed to Ingested Microbeads from Personal Care Products Accumulate in Fish.

    PubMed

    Wardrop, Peter; Shimeta, Jeff; Nugegoda, Dayanthi; Morrison, Paul D; Miranda, Ana; Tang, Min; Clarke, Bradley O

    2016-04-01

    The prevalence of microplastics (<5 mm) in natural environments has become a widely recognized global problem. Microplastics have been shown to sorb chemical pollutants from their surrounding environment, thus raising concern as to their role in the movement of these pollutants through the food chain. This experiment investigated whether organic pollutants sorbed to microbeads (MBs) from personal care products were assimilated by fish following particle ingestion. Rainbow fish (Melanotaenia fluviatilis) were exposed to MBs with sorbed polybrominated diphenyl ethers (PBDEs; BDE-28, -47, -100, -99, -153, -154, -183, 200 ng g(-1); BDE-209, 2000 ng g(-1)) and sampled at 0, 21, 42, and 63 days along with two control treatments (food only and food + clean MBs). Exposed fish had significantly higher Σ8PBDE concentrations than both control treatments after just 21 days, and continued exposure resulted in increased accumulation of the pollutants over the experiment (ca. 115 pg g(-1) ww d(-1)). Lower brominated congeners showed the highest assimilation whereas higher brominated congeners did not appear to transfer, indicating they may be too strongly sorbed to the plastic or unable to be assimilated by the fish due to large molecular size or other factors. Seemingly against this trend, however, BDE-99 did not appear to bioaccumulate in the fish, which may be due to partitioning from the MBs or it being metabolized in vivo. This work provides evidence that MBs from personal care products are capable of transferring sorbed pollutants to fish that ingest them.

  14. Biomarker response in the earthworm Lumbricus terrestris exposed to chemical pollutants.

    PubMed

    Calisi, A; Lionetto, M G; Schettino, T

    2011-09-15

    Earthworms are important organisms for the soil ecosystem. They are sensitive to toxic chemicals and represent useful bioindicator organisms for soil biomonitoring. Recently the use of biomarkers in earthworms has been increasingly investigated for soil monitoring and assessment purpose. The aim of the preset paper was to analyze the pollutant-induced response of a suite of cellular and biochemical biomarkers in the earthworm Lumbricus terrestris exposed to copper sulphate or methiocarb in OECD soil at the maximal concentrations recommended in agriculture. These responses were compared to lifecycle parameters such as survival, growth and reproduction. Granulocyte morphometric alteration, lysosomal membrane stability, metallothionein concentration, and acetylcholinesterase activity were considered. In either copper sulphate or methiocarb exposure conditions the mean percentage variation of the pollutant-induced molecular and cellular biomarkers was consistent with the whole organism end-point responses. In particular pollutant-induced granulocyte enlargement, detected in either copper sulphate or methiocarb exposed organisms, showed to be a potential general biomarker that may be directly linked to organism health. Compared to the other biological responses to pollutants, it showed high sensitivity to pollutant exposure suggesting its possible applications as a sensitive, simple, and quick general biomarker for monitoring and assessment applications. PMID:21783228

  15. Chemical Pollutants Sorbed to Ingested Microbeads from Personal Care Products Accumulate in Fish.

    PubMed

    Wardrop, Peter; Shimeta, Jeff; Nugegoda, Dayanthi; Morrison, Paul D; Miranda, Ana; Tang, Min; Clarke, Bradley O

    2016-04-01

    The prevalence of microplastics (<5 mm) in natural environments has become a widely recognized global problem. Microplastics have been shown to sorb chemical pollutants from their surrounding environment, thus raising concern as to their role in the movement of these pollutants through the food chain. This experiment investigated whether organic pollutants sorbed to microbeads (MBs) from personal care products were assimilated by fish following particle ingestion. Rainbow fish (Melanotaenia fluviatilis) were exposed to MBs with sorbed polybrominated diphenyl ethers (PBDEs; BDE-28, -47, -100, -99, -153, -154, -183, 200 ng g(-1); BDE-209, 2000 ng g(-1)) and sampled at 0, 21, 42, and 63 days along with two control treatments (food only and food + clean MBs). Exposed fish had significantly higher Σ8PBDE concentrations than both control treatments after just 21 days, and continued exposure resulted in increased accumulation of the pollutants over the experiment (ca. 115 pg g(-1) ww d(-1)). Lower brominated congeners showed the highest assimilation whereas higher brominated congeners did not appear to transfer, indicating they may be too strongly sorbed to the plastic or unable to be assimilated by the fish due to large molecular size or other factors. Seemingly against this trend, however, BDE-99 did not appear to bioaccumulate in the fish, which may be due to partitioning from the MBs or it being metabolized in vivo. This work provides evidence that MBs from personal care products are capable of transferring sorbed pollutants to fish that ingest them. PMID:26963589

  16. Cellular RNA is chemically modified by exposure to air pollution mixtures.

    PubMed

    Baldridge, Kevin C; Zavala, Jose; Surratt, Jason; Sexton, Kenneth G; Contreras, Lydia M

    2015-01-01

    RNAs are more susceptible to modifications than DNA, and chemical modifications in RNA have an effect on their structure and function. This study aimed to characterize chemical effects on total RNA in human A549 lung cells after exposure to elevated levels of major secondary air pollutants commonly found in urban locations, including ozone (O3), acrolein (ACR) and methacrolein (MACR). Enzyme-linked immunosorbent assays (ELISA) were used to measure levels of interleukin (IL)-8 in the growth media and 8-oxoguanine (8OG) levels in total cellular RNA, and lactate dehydrogenase (LDH) in the growth media was measured by a coupled enzymatic assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure levels of microRNA 10b (miR-10b). The study found that 1-h exposure to all tested pollutant mixtures consistently caused significant increases in the levels of 8OG in total RNA. In the case of 4 ppm O3 exposures, measured levels of IL-8, LDH and miR-10b each showed consistent trends between two independent trials, but varied among these three targets. After 1-h exposures to an ACR+MACR mixture, measured levels of IL-8, LDH and miR-10b showed variable results. For mixtures of O3+ACR+MACR, IL-8 measurements showed no change; miR-10b and LDH showed variable results. The results indicate that short-term high-concentration exposures to air pollution can cause RNA chemical modifications. Chemical modifications in RNAs could represent more consistent markers of cellular stress relative to other inflammation markers, such as IL-8 and LDH, and provide a new biomarker endpoint for mechanistic studies in toxicity of air pollution exposure.

  17. Investigation of chemical properties and transport phenomena associated with pollutants in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Holmes, Heather A.

    Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on

  18. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    NASA Astrophysics Data System (ADS)

    Lakey, Pascale S. J.; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M.; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-09-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.

  19. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract.

    PubMed

    Lakey, Pascale S J; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-01-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air. PMID:27605301

  20. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    PubMed Central

    Lakey, Pascale S. J.; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M.; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-01-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air. PMID:27605301

  1. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract.

    PubMed

    Lakey, Pascale S J; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-09-08

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.

  2. Integrated assessment of oil pollution using biological monitoring and chemical fingerprinting.

    PubMed

    Lewis, Ceri; Guitart, Carlos; Pook, Chris; Scarlett, Alan; Readman, James W; Galloway, Tamara S

    2010-06-01

    A full assessment of the impact of oil and chemical spills at sea requires the identification of both the polluting chemicals and the biological effects they cause. Here, a combination of chemical fingerprinting of surface oils, tissue residue analysis, and biological effects measures was used to explore the relationship between spilled oil and biological impact following the grounding of the MSC Napoli container ship in Lyme Bay, England in January 2007. Initially, oil contamination remained restricted to a surface slick in the vicinity of the wreck, and there was no chemical evidence to link biological impairment of animals (the common limpet, Patella vulgata) on the shore adjacent to the oil spill. Secondary oil contamination associated with salvage activities in July 2007 was also assessed. Chemical analyses of aliphatic hydrocarbons and terpanes in shell swabs taken from limpet shells provided an unequivocal match with the fuel oil carried by the ship. Corresponding chemical analysis of limpet tissues revealed increased concentrations of polycyclic aromatic hydrocarbons (PAHs) dominated by phenanthrene and C1 to C3 phenanthrenes with smaller contributions from heavier molecular weight PAHs. Concurrent ecotoxicological tests indicated impairment of cellular viability (p < 0.001), reduced immune function (p < 0.001), and damage to DNA (Comet assay, p < 0.001) in these animals, whereas antioxidant defenses were elevated relative to un-oiled animals. These results illustrate the value of combining biological monitoring with chemical fingerprinting for the rapid identification of spilled oils and their sublethal impacts on biota in situ.

  3. Evaluating the performance of low cost chemical sensors for air pollution research.

    PubMed

    Lewis, Alastair C; Lee, James D; Edwards, Peter M; Shaw, Marvin D; Evans, Mat J; Moller, Sarah J; Smith, Katie R; Buckley, Jack W; Ellis, Matthew; Gillot, Stefan R; White, Andrew

    2016-07-18

    Low cost pollution sensors have been widely publicized, in principle offering increased information on the distribution of air pollution and a democratization of air quality measurements to amateur users. We report a laboratory study of commonly-used electrochemical sensors and quantify a number of cross-interferences with other atmospheric chemicals, some of which become significant at typical suburban air pollution concentrations. We highlight that artefact signals from co-sampled pollutants such as CO2 can be greater than the electrochemical sensor signal generated by the measurand. We subsequently tested in ambient air, over a period of three weeks, twenty identical commercial sensor packages alongside standard measurements and report on the degree of agreement between references and sensors. We then explore potential experimental approaches to improve sensor performance, enhancing outputs from qualitative to quantitative, focusing on low cost VOC photoionization sensors. Careful signal handling, for example, was seen to improve limits of detection by one order of magnitude. The quantity, magnitude and complexity of analytical interferences that must be characterised to convert a signal into a quantitative observation, with known uncertainties, make standard individual parameter regression inappropriate. We show that one potential solution to this problem is the application of supervised machine learning approaches such as boosted regression trees and Gaussian processes emulation. PMID:27104223

  4. Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra, Ghana

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng; Dionisio, Kathie L.; Verissimo, Thiago G.; Kerr, Americo S.; Coull, Brent; Arku, Raphael E.; Koutrakis, Petros; Spengler, John D.; Hughes, Allison F.; Vallarino, Jose; Agyei-Mensah, Samuel; Ezzati, Majid

    2013-12-01

    The highest levels of air pollution in the world now occur in developing country cities, where air pollution sources differ from high-income countries. We analyzed particulate matter (PM) chemical composition and estimated the contributions of various sources to particle pollution in poor and affluent neighborhoods of Accra, Ghana. Elements from earth’s crust were most abundant during the seasonal Harmattan period between late December and late January when Saharan dust is carried to coastal West Africa. During Harmattan, crustal particles accounted for 55 μg m-3 (37%) of fine particle (PM2.5) mass and 128 μg m-3 (42%) of PM10 mass. Outside Harmattan, biomass combustion, which was associated with higher black carbon, potassium, and sulfur, accounted for between 10.6 and 21.3 μg m-3 of fine particle mass in different neighborhoods, with its contribution largest in the poorest neighborhood. Other sources were sea salt, vehicle emissions, tire and brake wear, road dust, and solid waste burning. Reducing air pollution in African cities requires policies related to energy, transportation and urban planning, and forestry and agriculture, with explicit attention to impacts of each strategy in poor communities. Such cross-sectoral integration requires emphasis on urban environment and urban poverty in the post-2015 Development Agenda.

  5. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China.

    PubMed

    Duan, Weili; He, Bin

    2015-07-10

    In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs) is a significant issue in China. An emergency response system (ERS) was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP) was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency.

  6. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China

    PubMed Central

    Duan, Weili; He, Bin

    2015-01-01

    In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs) is a significant issue in China. An emergency response system (ERS) was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP) was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency. PMID:26184260

  7. Investigating and evaluating surface water pollution: The integrated chemical and biological approach

    SciTech Connect

    Michaelidou, S.C.

    1995-12-31

    Surface water can get contaminated from diffused and point sources of pollution. The implementation therefore of both biological and chemical methods is essential. The efficiency of the integrated approach in evaluating surface water pollution in Cyprus will be presented. The use of biofractionation to select the most toxic fraction increases cost-effectiveness. To get maximum information and certainty at minimum cost, a Tier Approach is applied for the evaluation of Industrial and Pesticide Pollution and to assess possible ecotoxicological effects. On the first Tier biofractionation is applied in combination with the measurement of aggregated parameters related to industrial pollution e.g. TOX, General FID/GC profile of base/neutral extracts, HPLC screening with multidetection systems (UV and Fluorescence detector) to identify the presence of major pollutants groups of intermediate to high polarity, i.e. acids, aldehydes/ketones, phenols, PAHs, phthalates etc., and purge and trap for volatiles (VOCs). Under the same Tier most of the metals are screened by ICP and pesticides by multi-residues methods. Under the 1st Tier the basic 99% Microtox test is carried out directly on water samples or fractions and the solid phase Microtox test on sediments. Mutagenicity testing (Mutatox) is also applied. The 2nd Tier (more specific oriented) is based on results from Tier 1 and comprises an extensive testing of group parameters identified at Tier 1 and a confirmatory stage using GC/MS or HPLC Photodiode Array detection. Water concentrates on XAD are tested by Microtox to evaluate pT values (potential Toxicity value). The overall assessment is done based not only on numerical criteria (limits) which are not always sufficient, but also on narrative criteria according to the international practice. This work indicates the capabilities of integrating approaches in evaluating environmental problems.

  8. Efficiency of stepwise magnetic-chemical site assessment for fly ash derived heavy metal pollution

    NASA Astrophysics Data System (ADS)

    Cao, Liwan; Appel, Erwin; Rösler, Wolfgang; Magiera, Tadeusz

    2015-11-01

    Previous works revealed a close relationship between magnetic susceptibility (MS) and heavy metal (HM) contents originating from industrial sources. However, despite general statements on the usefulness of magnetic mapping, the benefit of this procedure for geochemistry was not quantified yet. We present a study on fly ash pollution in soil around a coal-burning power plant complex and simulate a stepwise approach of magnetic pre-screening and subsequent targeted sampling for chemical analysis. The aim of this study is not to discuss correlations between MS and HM, but to show that a combined stepwise magnetic-chemical approach is the most efficient way for outlining HM contamination. In order to provide quantitative evidence, we explored map similarities of spatial HM distributions based on magnetochemical data and chemical data only. We determined 3-D triangular planes defined by categorized HM values at the sampling coordinates and calculated the average dihedral angle of the normal vectors as a similarity result. The study shows that the `Targeted' HM map (selection of 30 sites based magnetic pre-screening) has a higher similarity with the `True' Pollution HM map (85 sites) than HM maps resulting from site selections (30 sites) without using magnetic pre-screening information.

  9. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  10. Water Pollution

    ERIC Educational Resources Information Center

    Bowen, H. J. M.

    1975-01-01

    Deals with water pollution in the following categories: a global view, self purification, local pollution, difficulties in chemical analysis, and remedies for water pollution. Emphasizes the extent to which man's activities have modified the cycles of certain elements. (GS)

  11. Atmospheric pollution history at Linfen (China) uncovered by magnetic and chemical parameters of sediments from a water reservoir.

    PubMed

    Ma, Mingming; Hu, Shouyun; Cao, Liwan; Appel, Erwin; Wang, Longsheng

    2015-09-01

    We studied magnetic and chemical parameters of sediments from sediments of a water reservoir at Linfen (China) in order to quantitatively reconstruct the atmospheric pollution history in this region. The results show that the main magnetic phases are magnetite and maghemite originating from the surrounding catchment and from anthropogenic activities, and there is a significant positive relationship between magnetic concentration parameters and heavy metals concentrations, indicating that magnetic proxies can be used to monitor the anthropogenic pollution. In order to uncover the atmospheric pollution history, we combined the known events of environmental improvement with variations of magnetic susceptibility (χ) and heavy metals along the cores to obtain a detailed chronological framework. In addition, air comprehensive pollution index (ACPI) was reconstructed from regression equation among magnetic and chemical parameters as well as atmospheric monitoring data. Based on these results, the atmospheric pollution history was successfully reconstructed.

  12. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    PubMed

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  13. [Respiratory tract diseases caused by chemically irritating or toxic pollutants at the work site].

    PubMed

    Baur, X

    1995-05-01

    Update statistics of job-related diseases show there is still a high level in reported and also in recognised and financially compensated airway diseases caused by the action of chemically irritating or toxic substances during work. Most reported cases occur in the chemical and metal processing industries. Main triggering substances are said to be isocyanates, aerosols of pollutants produced during welding, cutting, casting or moulding (smoke), by solvents and hair dyes. Experiments prove that a variety of these noxious substances produce dose-dependent hypersensitivity of the bronchial system. Long-term monitoring of granary workers clearly points to both the possibility of and the need for early diagnosis followed by mandatory and immediate abstention from further exposure to avoid occurrence of irreversible disease patterns. Work-related health risks over and above job-conditioned diseases must be generally included in the protective measures in accordance with the new EC guidelines.

  14. Biochemical response of the mussel Mytilus galloprovincialis from Bizerta (Tunisia) to chemical pollutant exposure.

    PubMed

    Khessiba, A; Hoarau, P; Gnassia-Barelli, M; Aissa, P; Roméo, M

    2001-02-01

    Three biomarkers (glutathione S-transferase [GST] activity, catalase [CAT] activity, and malonedialdehyde [MDA] levels) were measured in specimens of the mussel Mytilus galloprovincialis collected from two different stations (BC and MJ) in the lagoon of Bizerta (Tunisia). Animals were allowed to acclimate in the laboratory for some days. They were then exposed for 48 h to two concentrations of pp'DDE and two doses of mercury chloride. The acclimation period increased CAT activities and MDA levels in control mussels from both sites. GST activities were not modified during the acclimation period, whereas the sampling site of mussels appeared to exert a significant influence (higher values in control mussels from MJ than in those from BC). The treatment with both contaminants also increased GST activities of mussels from BC and not from MJ. It is hypothesized that animals from this last location are more exposed to the urban waste waster disposal, their biochemical response (GST activity) to pollutant exposure will be less marked. The treatment with pp'DDE or mercury did not show significant trend in CAT activities or MDA levels due to the variation of controls, and comparison of sites for mussels exposed to either pollutant therefore seems difficult. The acclimation period in the laboratory and the origin of mussels must be taken into consideration when studying the biochemical responses of mussels experimentally exposed to chemical pollutants.

  15. Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution.

    PubMed

    Kwon, Bum Gun; Koizumi, Koshiro; Chung, Seon-Yong; Kodera, Yoichi; Kim, Jong-Oh; Saido, Katsuhiko

    2015-12-30

    Polystyrene (PS) plastic marine pollution is an environmental concern. However, a reliable and objective assessment of the scope of this problem, which can lead to persistent organic contaminants, has yet to be performed. Here, we show that anthropogenic styrene oligomers (SOs), a possible indicator of PS pollution in the ocean, are found globally at concentrations that are higher than those expected based on the stability of PS. SOs appear to persist to varying degrees in the seawater and sand samples collected from beaches around the world. The most persistent forms are styrene monomer, styrene dimer, and styrene trimer. Sand samples from beaches, which are commonly recreation sites, are particularly polluted with these high SOs concentrations. This finding is of interest from both scientific and public perspectives because SOs may pose potential long-term risks to the environment in combination with other endocrine disrupting chemicals. From SOs monitoring results, this study proposes a flow diagram for SOs leaching from PS cycle. Using this flow diagram, we conclude that SOs are global contaminants in sandy beaches around the world due to their broad spatial distribution.

  16. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-01-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  17. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-04-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  19. Waste processing and pollution in the chemical and petrochemical industries. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1995-02-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  20. Application of SOS umu-test for the detection of genotoxic volatile chemicals and air pollutants.

    PubMed

    Ong, T M; Stewart, J; Wen, Y F; Whong, W Z

    1987-01-01

    The SOS umu-test has been used for the detection of DNA-damaging agents. In this system the plasmid pSK1002 carrying a fused gene umuC-lacZ was introduced into Salmonella typhimurium TA1535. The SOS function induced by genotoxic agents is detected by a colorimetric measurement of beta-galactosidase activity encoded by the lacZ gene, which is regulated by the Umu operon. This system was used with modifications to study the SOS function inducibility of volatile chemicals (propylene oxide, methyl bromide, and ethylene dibromide) and air pollutants (diesel emission, welding fumes, and cigarette smoke). Tester cells were exposed directly to the test material. The enzyme activity of the treated cells was measured according to the established procedure. Results of the study showed that all chemicals and pollutants tested induced SOS function in a dose-related manner. These results indicate that the SOS umu-test is potentially useful for the in situ detection of genotoxic agents in occupational settings.

  1. Pollution-Induced Community Tolerance To Diagnose Hazardous Chemicals in Multiple Contaminated Aquatic Systems.

    PubMed

    Rotter, Stefanie; Gunold, Roman; Mothes, Sibylle; Paschke, Albrecht; Brack, Werner; Altenburger, Rolf; Schmitt-Jansen, Mechthild

    2015-08-18

    Aquatic ecosystems are often contaminated with large numbers of chemicals, which cannot be sufficiently addressed by chemical target analyses. Effect-directed analysis (EDA) enables the identification of toxicants in complex contaminated environmental samples. This study suggests pollution-induced community tolerance (PICT) as a confirmation tool for EDA to identify contaminants which actually impact on local communities. The effects of three phytotoxic compounds local periphyton communities, cultivated at a reference (R-site) and a polluted site (P-site), were assessed to confirm the findings of a former EDA study on sediments. The sensitivities of R- and P-communities to prometryn, tributyltin (TBT) and N-phenyl-2-naphthylamine (PNA) were quantified in short-term toxicity tests and exposure concentrations were determined. Prometryn and PNA concentrations were significantly higher at the P-site, whereas TBT concentrations were in the same range at both sites. Periphyton communities differed in biomass, but algal class composition and diatom diversity were similar. Community tolerance of P-communities was significantly enhanced for prometryn, but not for PNA and TBT, confirming site-specific effects on local periphyton for prometryn only. Thus, PICT enables in situ effect confirmation of phytotoxic compounds at the community level and seems to be suitable to support confirmation and enhance ecological realism of EDA. PMID:26196040

  2. Chemical pollutants in field-collected canvasback tissues, eggs, and food materials

    USGS Publications Warehouse

    White, D.H.; Dieter, M.P.; Stendell, R.C.

    1976-01-01

    In 1972 studies began on the levels of environmental pollutants in canvasback tissues, eggs, and food items. The purpose of the studies were to determine if the levels of toxic chemicals found in canvasbacks were of the magnitude to cause problems affecting reproduction and survival. Overall, levels of organochlorine pesticides and PCB's were low in canvasbacks and their eggs. Some individual birds, however, laid eggs with elevated residues of DDE (12.1 ppm) or PCB's (28.6 ppm). There was no significant difference between eggshell thicknesses of 1972-73 and pre-1946 collections. About 12% of the canvasbacks analyzed had elevated levels of blood lead with reduced ALAD enzyme activity. Adult canvasbacks collected from the Chesapeake Bay in 1975 had moderate to high levels of cadmium in their kidneys. Cadmium, in excessive amounts is very toxic and can curtail spermatogenesis in male birds. Although no single toxic chemical found in wild canvasbacks appears to be a major factor in population declines, the cumulative effects of sublethal levels of all the pollutants may render birds susceptible to disease, hunting pressure or predation.

  3. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth.

    PubMed

    Castaldi, Paola; Santona, Laura; Melis, Pietro

    2005-07-01

    The effects of chemical amendments (zeolite, compost and calcium hydroxide) on the solubility of Pb, Cd and Zn in a contaminated soil were determined. The polluted soil was from the Southwest Sardinia, Italy. It showed very high total concentrations of Pb (19663 mgkg(-1) d.m.), Cd (196 mgkg(-1) d.m.) and Zn (14667 mgkg(-1) d.m.). The growth and uptake of heavy metals by white lupin (Lupinus albus L., cv. Multitalia) in amended soils were also studied in a pot experiment under greenhouse conditions. Results showed that the amendments increased the residual fraction of heavy metals in the soils, and decreased the heavy metals uptake by white lupin compared with the unamended control. Among the three amendments, compost and Ca(OH)2 were the most efficient at reducing Pb and Zn uptake, while zeolite was the most efficient at reducing Cd uptake by the plants. White lupin growth was better in amended soils than in unamended control. The above ground biomass increased with a factor 1.8 (soil amended with zeolite), 3.6 (soil amended with compost) and 3.1 (soil amended with Ca(OH)2) with respect to unamended soil. The roots biomass increased with a factor 1.4 (soil amended with zeolite), 5.6 (soil amended with compost) and 4.8 (soil amended with Ca(OH)2). Results obtained suggest that the soil chemical treatment improved the performance of crops by reducing bioavailability of metals in the soils. However it would be therefore interesting to find a suitable mixture of these amendments to contemporarily immobilize the three main pollutants in the polluted soils.

  4. Quantifying the impact of model uncertainties on chemical budgets in trans-Atlantic pollution transport

    NASA Astrophysics Data System (ADS)

    Ridley, D. A.; Arnold, S. R.

    2009-12-01

    Chemical transport models rely upon parameterised gas-phase reaction and photolysis rates, based on data from laboratory studies. These data have associated uncertanties that may impact upon the prediction of the concentrations of key species, such as O3, OH and nitrogen oxides. A unique set of linked aircraft observations in single air masses from the ICARTT (International Consortium for Atmospheric Research on Transport and Transformation) pseudo-Lagrangian experiment allow the isolation of chemical change from transport. We exploit this to investigate the impact of chemical model uncertainties on tropospheric photochemistry in plumes undergoing long-range transport. The aim is to characterise key process which contribute to large uncertainty in oxidant budgets, and identify rates and processes that are a priority for better quantification in the lab. The impact of uncertainties in bimolecular and termolecular rates has been investigated using a tropospheric trajectory chemical transport model (CiTTyCAT) and linked aircraft observations for both anthropogenic polluted and biomass burning air masses. A Monte-Carlo methodology is used to sample the parameter space and ensembles of several thousand model runs generated to provide a firm statistical basis for analysis. Initial results show that uncertainty in ozone concentration is approximately +/-10ppb as a result of the uncertainty in bimolecular and termolecular reaction rates. We will present quantification of the key reaction rates that cause the large uncertainty in ozone photochemistry.

  5. The Numerical Simulation of Coupling Behavior of Soil with Chemical Pollutant Effects

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Li, X. K.; Tang, L. Q.

    2010-05-01

    The coupling behavior of clay plays a role in the integrity of clay barriers used in landfills. The clay barriers are subjected to mechanical and thermal effects coupled with hydraulic behavior, also, if the leachates become in contact with the clay liner, chemical effects may lead to some drastic changes in the properties of the clay. A numerical method to simulate the coupling behavior of soil with chemical pollutant effects is presented. Within the framework of Gens-Alonso model describing the constitutive behavior of unsaturated clay presented in reference[1], basing on the work of Wu[2] and Hueckel[3], a constitutive model describing the chemo-thermo-hydro-mechanical(CTHM) coupling behavior of clays in contact with a single organic contaminant is presented. The thermical softening and chemical softening is considered in the presented model. The strain arising in the material due to chemical and thermical effects can be decomposed into two parts: elastic expansion and plastic compaction. The chemical effects are described in terms of the mass concentration of the contaminant. The increases in temperature and contaminant concentration cause decreases of the pre-consolidation pressure and the cohesion. The mechanisms are called thermical softening and chemical softening. The presented coupled CTHM constitutive model has been integrated into the coupled thermo-hydro-mechanical mathematical model including contaminant transport in porous media. To solve the equilibrium equations, the grogram of finite element methods is developed with a stagger algorithm. The mechanisms taking place due to the coupling behaviour of the clay with a single contaminant solute are analysed with the presented numerical method.

  6. [AOX Pollution in Wastewater Treatment Process of Dyeing and Dyestuff Chemical Industries].

    PubMed

    Shen, Yang-yang; Liu, Rui; Xu, Can-can; Shu, Xiao-ming; Xu, Jiang-jun; Lan, Ya-qiong; Chen, Lü-jun

    2015-09-01

    Selecting six large-scale dyeing factories and four large-scale dyestuff chemical factories in the well-developed Yangtze River Delta region, this study aimed to investigate the AOX pollution status in the raw wastewater as well as in the activated sludge treatment system. The components of AOX were characterized by GC-MS. Results showed that AOX concentration was low in wastewater from the six dyeing enterprises, ranging 0. 15-1. 62 mg.L-1 in the raw wastewater and 0. 06-1. 30 mg.L-1 in the biologically treated effluent. All the biologically treated effluent met the emission limits of 8 mg.L-1 in the Discharge Standard of Water Pollutants for Dyeing and Finishing of Textile Industry. Sludge in five factories with AOX was below 621 mg.kg-1, only one factory was with high AOX concentration of 3 280 mg.kg-1. By comparison, AOX concentration greatly varied between the wastewater from dyestuff chemical factories, was 1. 70 mg.L-1 to 78. 72 mg.L-1 in the raw wastewater and was 1. 88 mg.L-1 to 33. 11 mg.L-1 in the biologically treated effluent. AOX concentration in the activated sludge was as high as 960-2,297 mg.kg-1. Chlorobenzenes, chloronitrobenzenes, chloroanilines, chlorine nitroanilines and halophenols were typical TOX components detectable in the dyestuff chemical wastewater. Halophenols and chlorine nitroanilines could be efficiently removed. Single chloroanilines and single chloronitrobenzenes seemed to be easier removable than polychlorinated anilines and polychlorinated nitrobenzenes. Polychlorinated benzenes were also easily removal but the products chlorobenzene was hard to remove. PMID:26717692

  7. Review article: effects of oil pollution, chemically treated oil, and cleaning on thermal balance of birds.

    PubMed

    Jenssen, B M

    1994-01-01

    The acute effect of oil pollution on birds is on their thermal balance. Oil adheres to the plumage and causes a reduction in water repellant properties of the plumage, causing water to penetrate into the plumage to displace the insulating layer of air. The effect of oil on the plumage insulation is dose-dependent. The effect of oiling is greatly enhanced when the oil is spread in the plumage due to preening. In water, plumage oiling may cause the heat loss to exceed the bird's heat production capacity, resulting in hypothermia. If the oiled bird is ashore, with a dry plumage, it may have a normal thermal insulation. Bird species dependent upon feeding in water (such as diving birds) are therefore much more susceptible to the harmful effects of oil pollution than are semi-aquatic species that can feed ashore. It is possible to restore the water-repelling and insulative properties of the plumage by the process of cleaning if all the oil and soap is removed, and if the plumage is completely dry. Chemical treatment of oil has been suggested as a way to reduce the impact of oil spills on avian life. However, very few reports seem to have addressed the effects of chemically treated oil on the thermal balance of birds, and the results from one study actually indicate that oil treated with dispersants may be more harmful to birds than oil. The urgent need for more information about the effects of chemically treated oil on aquatic birds is therefore stressed. PMID:15091638

  8. Review article: effects of oil pollution, chemically treated oil, and cleaning on thermal balance of birds.

    PubMed

    Jenssen, B M

    1994-01-01

    The acute effect of oil pollution on birds is on their thermal balance. Oil adheres to the plumage and causes a reduction in water repellant properties of the plumage, causing water to penetrate into the plumage to displace the insulating layer of air. The effect of oil on the plumage insulation is dose-dependent. The effect of oiling is greatly enhanced when the oil is spread in the plumage due to preening. In water, plumage oiling may cause the heat loss to exceed the bird's heat production capacity, resulting in hypothermia. If the oiled bird is ashore, with a dry plumage, it may have a normal thermal insulation. Bird species dependent upon feeding in water (such as diving birds) are therefore much more susceptible to the harmful effects of oil pollution than are semi-aquatic species that can feed ashore. It is possible to restore the water-repelling and insulative properties of the plumage by the process of cleaning if all the oil and soap is removed, and if the plumage is completely dry. Chemical treatment of oil has been suggested as a way to reduce the impact of oil spills on avian life. However, very few reports seem to have addressed the effects of chemically treated oil on the thermal balance of birds, and the results from one study actually indicate that oil treated with dispersants may be more harmful to birds than oil. The urgent need for more information about the effects of chemically treated oil on aquatic birds is therefore stressed.

  9. Characteristics of aerosol size distributions and chemical compositions during wintertime pollution episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Liu, Zirui; Hu, Bo; Zhang, Junke; Yu, Yangchun; Wang, Yuesi

    2016-02-01

    To characterize the features of particle pollution, continuous measurements of particle number size distributions and chemical compositions were performed at an urban site in Beijing in January 2013. The particle number and volume concentration from 14 nm to 1000 nm were (37.4 ± 15.3) × 103 cm- 3 and (85.2 ± 65.6) μm3 cm- 3, respectively. N-Ait (Aitken mode) particles dominated the number concentration, whereas N-Acc (accumulation mode) particles dominated the volume concentration. Submicron particles were generally characterized by a high content of organics and SO42 -, and a low level of NO3- and Cl-. Two types of pollution episodes were observed, characterized by the "explosive growth" (EXP) and "sustained growth" (SUS) of PM2.5. Fine particles greater than 100 nm dominated the volume concentration during the ends of these pollution episodes, shifting the maximum of the number size distribution from 60 nm to greater than 100 nm in a few hours (EXP) or a few days (SUS). Secondary transformation is the main reason for the pollution episodes; SO42 -, NO3- and NH4+ (SNA) accounted for approximately 42% (EXP) and greater than 60% (SUS) of the N-Acc particle mass increase. The size distributions of particulate organics and SNA varied on timescales of hours to days, the characteristics of which changed from bimodal to unimodal during the evolution of haze episodes. The accumulation mode (peaking at approximately 500-700 nm) was dominated by organics that appeared to be internally mixed with nitrate or sulfate. The sulfate was most likely formed via heterogeneous reactions, because the SOR was constant under dry conditions (RH < 50%) and began to increase when RH > 50%, suggesting an important contribution from heterogeneous reactions with abundant aerosol water under wet conditions. Finally, the correlations between [NO3-]/[SO42 -] and [NH4+]/[SO42 -] suggest that the homogenous reaction between HNO3 and NH3 dominated the formation of nitrate under conditions of

  10. Waste-water treatment: chemical industry. January 1970-September 1988 (Citations from Pollution Abstracts). Report for January 1970-September 1988

    SciTech Connect

    Not Available

    1988-10-01

    This bibliography contains citations concerning waste-water treatment in the chemical industry relative to a wide variety of industrial pollutants. Biological treatments including carbon additives are described relative to effectiveness. The removal of mercury and its compounds are included, as well as associated problems and recommendations from fertilizer and pesticide pollution. (This updated bibliography contains 287 citations, 51 of which are new entries to the previous edition.)

  11. Wastewater treatment: Chemical industry. January 1970-September 1989 (Citations from Pollution Abstracts). Report for January 1970-September 1989

    SciTech Connect

    Not Available

    1989-09-01

    This bibliography contains citations concerning waste-water treatment in the chemical industry relative to a wide variety of industrial pollutants. Biological treatments including carbon additives are described relative to effectiveness. The removal of mercury and its compounds are included, as well as associated problems and recommendations from fertilizer and pesticide pollution. (This updated bibliography contains 250 citations, 16 of which are new entries to the previous edition.)

  12. The impact of chemical pollution on the resilience of soils under multiple stresses: A conceptual framework for future research.

    PubMed

    Schaeffer, Andreas; Amelung, Wulf; Hollert, Henner; Kaestner, Matthias; Kandeler, Ellen; Kruse, Jens; Miltner, Anja; Ottermanns, Richard; Pagel, Holger; Peth, Stephan; Poll, Christian; Rambold, Gerhard; Schloter, Michael; Schulz, Stefanie; Streck, Thilo; Roß-Nickoll, Martina

    2016-10-15

    Soils are faced with man-made chemical stress factors, such as the input of organic or metal-containing pesticides, in combination with non-chemical stressors like soil compaction and natural disturbance like drought. Although multiple stress factors are typically co-occurring in soil ecosystems, research in soil sciences on this aspect is limited and focuses mostly on single structural or functional endpoints. A mechanistic understanding of the reaction of soils to multiple stressors is currently lacking. Based on a review of resilience theory, we introduce a new concept for research on the ability of polluted soil (xenobiotics or other chemical pollutants as one stressor) to resist further natural or anthropogenic stress and to retain its functions and structure. There is strong indication that pollution as a primary stressor will change the system reaction of soil, i.e., its resilience, stability and resistance. It can be expected that pollution affects the physiological adaption of organisms and the functional redundancy of the soil to further stress. We hypothesize that the recovery of organisms and chemical-physical properties after impact of a follow-up stressor is faster in polluted soil than in non-polluted soil, i.e., polluted soil has a higher dynamical stability (dynamical stability=1/recovery time), whereas resilience of the contaminated soil is lower compared to that of not or less contaminated soil. Thus, a polluted soil might be more prone to change into another system regime after occurrence of further stress. We highlight this issue by compiling the literature exemplarily for the effects of Cu contamination and compaction on soil functions and structure. We propose to intensify research on effects of combined stresses involving a multidisciplinary team of experts and provide suggestions for corresponding experiments. Our concept offers thus a framework for system level analysis of soils paving the way to enhance ecological theory. PMID:27372890

  13. The impact of chemical pollution on the resilience of soils under multiple stresses: A conceptual framework for future research.

    PubMed

    Schaeffer, Andreas; Amelung, Wulf; Hollert, Henner; Kaestner, Matthias; Kandeler, Ellen; Kruse, Jens; Miltner, Anja; Ottermanns, Richard; Pagel, Holger; Peth, Stephan; Poll, Christian; Rambold, Gerhard; Schloter, Michael; Schulz, Stefanie; Streck, Thilo; Roß-Nickoll, Martina

    2016-10-15

    Soils are faced with man-made chemical stress factors, such as the input of organic or metal-containing pesticides, in combination with non-chemical stressors like soil compaction and natural disturbance like drought. Although multiple stress factors are typically co-occurring in soil ecosystems, research in soil sciences on this aspect is limited and focuses mostly on single structural or functional endpoints. A mechanistic understanding of the reaction of soils to multiple stressors is currently lacking. Based on a review of resilience theory, we introduce a new concept for research on the ability of polluted soil (xenobiotics or other chemical pollutants as one stressor) to resist further natural or anthropogenic stress and to retain its functions and structure. There is strong indication that pollution as a primary stressor will change the system reaction of soil, i.e., its resilience, stability and resistance. It can be expected that pollution affects the physiological adaption of organisms and the functional redundancy of the soil to further stress. We hypothesize that the recovery of organisms and chemical-physical properties after impact of a follow-up stressor is faster in polluted soil than in non-polluted soil, i.e., polluted soil has a higher dynamical stability (dynamical stability=1/recovery time), whereas resilience of the contaminated soil is lower compared to that of not or less contaminated soil. Thus, a polluted soil might be more prone to change into another system regime after occurrence of further stress. We highlight this issue by compiling the literature exemplarily for the effects of Cu contamination and compaction on soil functions and structure. We propose to intensify research on effects of combined stresses involving a multidisciplinary team of experts and provide suggestions for corresponding experiments. Our concept offers thus a framework for system level analysis of soils paving the way to enhance ecological theory.

  14. Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grindsted, Denmark)

    SciTech Connect

    Baun, A.; Jensen, S.D.; Bjerg, P.L.; Christensen, T.H.; Nyholm, N.

    2000-05-01

    The aim of the present study was to describe the occurrence and distribution of toxicity related to organic chemical contaminants in the leachate plume downgradient of the Grindsted Landfill (Denmark). A total of 27 groundwater samples were preconcentrated by solid-phase extraction (SPE) using XAD-2 as the resin material. This treatment effectively eliminated sample matrix toxicity caused by inorganic salts and natural organic compounds and produced an aqueous concentrate of the nonvolatile chemical contaminants. The SPE extracts were tested in a battery of standardized short-term aquatic toxicity tests with luminescent bacteria (Vibrio fischeri), algae (Selenastrum capricornutum), and crustaceans (Daphnia magna). Additional genotoxicity tests were made using the umuC test (Salmonella typhimurium). Biotests with algae and luminescent bacteria were the most sensitive tests. On the basis of results with these two bioassays, it was concluded that SPE extracts of groundwater collected close to the landfill were toxic. The toxicity decreased with the distance from the landfill. At distances greater than 80 m from the border of the landfill, the groundwater toxicity was not significantly different from the background toxicity. SPE extracts were not toxic to Daphnia, and no genotoxicity was observed in the umuC test. The overall findings indicate that a battery of biotests applied on preconcentrated groundwater samples can be a useful tool for toxicity characterization and hazard ranking of groundwater polluted with complex chemical mixtures, such as landfill leachates.

  15. Chemical Diversity and Defence Metabolism: How Plants Cope with Pathogens and Ozone Pollution

    PubMed Central

    Iriti, Marcello; Faoro, Franco

    2009-01-01

    Chemical defences represent a main trait of the plant innate immune system. Besides regulating the relationship between plants and their ecosystems, phytochemicals are involved both in resistance against pathogens and in tolerance towards abiotic stresses, such as atmospheric pollution. Plant defence metabolites arise from the main secondary metabolic routes, the phenylpropanoid, the isoprenoid and the alkaloid pathways. In plants, antibiotic compounds can be both preformed (phytoanticipins) and inducible (phytoalexins), the former including saponins, cyanogenic glycosides and glucosinolates. Chronic exposure to tropospheric ozone (O3) stimulates the carbon fluxes from the primary to the secondary metabolic pathways to a great extent, inducing a shift of the available resources in favour of the synthesis of secondary products. In some cases, the plant defence responses against pathogens and environmental pollutants may overlap, leading to the unspecific synthesis of similar molecules, such as phenylpropanoids. Exposure to ozone can also modify the pattern of biogenic volatile organic compounds (BVOC), emitted from plant in response to herbivore feeding, thus altering the tritrophic interaction among plant, phytophagy and their natural enemies. Finally, the synthesis of ethylene and polyamines can be regulated by ozone at level of S-adenosylmethionine (SAM), the biosynthetic precursor of both classes of hormones, which can, therefore, mutually inhibit their own biosynthesis with consequence on plant phenotype. PMID:20111684

  16. Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution.

    PubMed

    Iriti, Marcello; Faoro, Franco

    2009-07-30

    Chemical defences represent a main trait of the plant innate immune system. Besides regulating the relationship between plants and their ecosystems, phytochemicals are involved both in resistance against pathogens and in tolerance towards abiotic stresses, such as atmospheric pollution. Plant defence metabolites arise from the main secondary metabolic routes, the phenylpropanoid, the isoprenoid and the alkaloid pathways. In plants, antibiotic compounds can be both preformed (phytoanticipins) and inducible (phytoalexins), the former including saponins, cyanogenic glycosides and glucosinolates. Chronic exposure to tropospheric ozone (O(3)) stimulates the carbon fluxes from the primary to the secondary metabolic pathways to a great extent, inducing a shift of the available resources in favour of the synthesis of secondary products. In some cases, the plant defence responses against pathogens and environmental pollutants may overlap, leading to the unspecific synthesis of similar molecules, such as phenylpropanoids. Exposure to ozone can also modify the pattern of biogenic volatile organic compounds (BVOC), emitted from plant in response to herbivore feeding, thus altering the tritrophic interaction among plant, phytophagy and their natural enemies. Finally, the synthesis of ethylene and polyamines can be regulated by ozone at level of S-adenosylmethionine (SAM), the biosynthetic precursor of both classes of hormones, which can, therefore, mutually inhibit their own biosynthesis with consequence on plant phenotype.

  17. [Hygienic evaluation of the large city environmental chemical pollution influence on children's health status].

    PubMed

    Maĭmulov, qV G; Patsiuk, N A; Baskovich, G A

    2004-01-01

    The data of hygienic monitoring of the Saint Petersburg environment suggest that the soil of the megapolis is greatly polluted with heavy metals among which lead is of priority. The studies performed indicate that under the environmental and hygienic conditions, the level of lead in the hair of children is a qualitative and quantitative criterion for the negative impact of chemical pollution of the environment. The threshold level at which there are higher morbidity rates in children is 5.8 micrograms/g. The findings suggest that there is a reduction in the earlier accepted critical level 8 micrograms/g. (V. Lukovenko, 1990; B.A. Revich, 1999). When its level is 8 micrograms/g, the children are found to have retarded mental and physical development. The results of examination of the nonspecific resistance system in children living under the conditions of the megapolis show that the level of nonspecific defense decreases when the hair content of lead is 5 micrograms/g.

  18. Chemical characterization and screening of hydrocarbon pollution in industrial soils by headspace solid-phase microextraction.

    PubMed

    Havenga, W J; Rohwer, E R

    1999-07-01

    A headspace solid-phase microextraction method, followed by a gas chromatographic-mass spectrometric analysis, has been developed for the screening of soil samples polluted by coal tar or refined petroleum products. Vapor pressures of target analytes were determined using a capillary GC method to identify environmentally important components with a sufficiently high vapor pressure to be analyzed in the headspace mode. The method was optimized under non-equilibrium conditions with simplicity and automation in mind and does not require any extraction procedure or sample preparation, other than grinding, drying and homogenizing. The analytical performance and the significance of the results for the purpose of chemical characterization, source discrimination, determination of individual isomer distributions and to calculate source or weathering ratios, is discussed.

  19. Smog events over Athens during winter 2013-2014: Pollution measurements and chemical characterization

    NASA Astrophysics Data System (ADS)

    Gerasopoulos, Evangelos; Liakakou, Eleni; Psiloglou, Vassilis; Stavroulas, Jason; Fourtziou, Luciana; Roukounakis, Nikolaos; Lianou, Maria; Kappos, Nikolaos; Zarmpas, Pavlos; Kambezidis, Harry; Sciare, Jean; Mihalopoulos, Nikolaos

    2014-05-01

    Smog due to wood burning has evolved to a major pollution problem affecting the most populated Greek cities during winter time. The economic crisis and the subsequent increase in the price of heating oil, has led people to look for alternative ways for domestic heating. Wood burning appeared to be the most common option, resulting to a rapid increase of pollution levels during nighttime, with emphasis on particulate matter. Taking into account the fact that highly populated cities such as Athens are also overloaded with traffic pollution, the need for specialized air quality measurements for the evaluation of the newly emerged problem was an imperative. Measurements of smog related pollution components in Athens took place during winter 2013-2014, at the premises of the National Observatory of Athens in Thissio (city center). The site was selected as representative of the average situation in Athens, while most of wood burning activities take place in Athens' suburban areas. For the chemical characterization of the smog particles, on line chemistry monitoring was performed by an Aerosol Chemical Speciation Monitor (ACSM, with 30 minutes resolution for the determination of organics, ammonium, sulfate, nitrate and chloride) and a Particle Into Liquid Sampler coupled with an Ionic Chromatograph (PILS, with 15 minutes resolution for the determination of ammonium and potassium). Additionally, aerosol samples were collected on 12-hour basis using a sequential dichotomous sampler for the sampling of PM2.5, PM2.5-10and PM10 fractions of aerosols on quartz filters, for further analyses, while a beta attenuation PM monitor was also deployed. Gas analyzers were installed for continuous NOx (NO, NO2), SO2, CO and O3 monitoring on 1-minute resolution. Finally, black carbon (BC) measurements were conducted with: a Particle Soot Absorption Photometer, a portable Aethalometer and two Multi Angle Absorption Photometers. The meteorological conditions were recorded during the whole

  20. Determinants of exposure to chemical pollutants in wet X-ray film processing in Iran.

    PubMed

    Kakooei, Hossein; Ardakani, Mehdi B; Sadighi, Alireza

    2007-07-15

    The aim of the current study was to measure glutaraldehyde, acetic acid and sulfur dioxide and levels inside wet x-ray processing areas in a developing country and comparing data with those in developed countries. Forty-five radiographers from 10 educational hospitals affiliated to the Tehran University of Medical Sciences (TUMS) in Tehran, Iran participated in this descriptive-analytical study. Exposure to glutaraldehyde (a constituent of developer chemistry), acetic acid (a constituent of fixer chemistry) and sulfur dioxide (a byproduct of sulfites present in both developer and fixer solutions) was measured in all participants as well as area exposure. Average full-shift exposure to glutaraldehyde, acetic acid and sulfur dioxide were 0.0018, 2.65 and 1.64 mg m(-1), respectively. The results showed that the TUMS radiographers full-shift exposures are generally lower than the American Conference of Governmental Industrial Hygienists (ACGIH) recommended levels. The concentration of glutaraldehyde collected by area sampling (darkroom) was almost five times (0.0104 mg m(-3)) greater than taken by personal sampling. Exposure to the chemical pollutants in the currents study were generally higher than in developed countries. Identification of these key exposure determinants is useful in targeting exposure evaluation and controls to reduce developer and fixer chemicals exposures in the radiology departments. Employing of a digital imaging system that do not involve wet x-ray processing of photographic film would be a useful device for radiographers protection. PMID:19070154

  1. Cadmium chemical speciation and absorption in plant in a polluted soil

    NASA Astrophysics Data System (ADS)

    Gigliotti, Giovanni; Massaccesi, Luisa

    2013-04-01

    Cadmium is a very toxic heavy metal presents in nature in small amounts, with an average content of 0.2 mg kg-1 in the geosphere. Nonetheless, anthropogenic activities such as industrial processes, large use of phosphate fertilizers and sewage sludge disposals may determine a massive accumulation of Cd in soil. Cd is considered a particularly interesting heavy metal as it can be accumulated by plants to levels that can be toxic to humans and animals, when consumed even in minor amounts. The aim of the present work was to study in a soil polluted with Cd for a long time i) the distribution of Cd in different chemical fractions by means of a sequential extraction procedure; ii) the adsorption of Cd by plants grown in this polluted soil; iii) the change in the distribution of Cd in the soil fractions possibly due to root exudates after plant growing. The chemical fractionation procedure used involved the following forms: a) exchangeable, b) bound to carbonates, c) bound to Fe-Mn oxides and hydroxides, d) bound to organic matter, e) residual part. The following reagents and extraction times were applied: a) 1 M CH3COONa (1:10, w/v; pH 8.2) for 16 h at room temperature; b) 0,1 M CH3COOH for 16 h at room temperature; c) 0,1 M NH2OH•HCl (1:10, w/v; adjusted to pH 2.0 with HNO3) for 16 h at room temperature; d) 30% H2O2 (adjusted to pH 2.0 with HNO3) at 85 °C, followed by extraction with 1 M CH3COONH4 (1:10, w/v; adjusted to pH 2.0 with HNO3) for 16 h at room temperature; e) acid digestion with concentrated HNO3 and 30% H2O2 for residue fraction. Festuca seeds were germinated in the contaminated soil in plastic flats and non-contaminated soil. After two days the seedling were submitted to day/night conditions. The seedlings were collected 6 weeks after seeding and divided in roots and shoots and analysed for Cd concentration. The polluted soil has average Cd content of 200 mg kg-1, instead, the Cd content in the same unpolluted soil was about 0.44 mg kg-1. The

  2. Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: the Healthy Volunteer Natural Relocation study.

    PubMed

    Wu, Shaowei; Deng, Furong; Hao, Yu; Shima, Masayuki; Wang, Xin; Zheng, Chanjuan; Wei, Hongying; Lv, Haibo; Lu, Xiuling; Huang, Jing; Qin, Yu; Guo, Xinbiao

    2013-09-15

    The study examined the associations of 32 chemical constituents of particulate matter with an aerodynamic diameter ≤2.5 μm (PM₂.₅) with pulmonary function in a panel of 21 college students. Study subjects relocated from a suburban area to an urban area with changing ambient air pollution levels and contents in Beijing, China, and provided daily morning/evening peak expiratory flow (PEF) and forced expiratory volume in 1s (FEV₂₁) measurements over 6 months in three study periods. There were significant reductions in evening PEF and morning/evening FEV₂₁ associated with various air pollutants and PM₂.₅ constituents. Four PM₂.₅ constituents (copper, cadmium, arsenic and stannum) were found to be most consistently associated with the reductions in these pulmonary function measures. These findings provide clues for the respiratory effects of specific particulate chemical constituents in the context of urban air pollution. PMID:23747477

  3. Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: the Healthy Volunteer Natural Relocation study.

    PubMed

    Wu, Shaowei; Deng, Furong; Hao, Yu; Shima, Masayuki; Wang, Xin; Zheng, Chanjuan; Wei, Hongying; Lv, Haibo; Lu, Xiuling; Huang, Jing; Qin, Yu; Guo, Xinbiao

    2013-09-15

    The study examined the associations of 32 chemical constituents of particulate matter with an aerodynamic diameter ≤2.5 μm (PM₂.₅) with pulmonary function in a panel of 21 college students. Study subjects relocated from a suburban area to an urban area with changing ambient air pollution levels and contents in Beijing, China, and provided daily morning/evening peak expiratory flow (PEF) and forced expiratory volume in 1s (FEV₂₁) measurements over 6 months in three study periods. There were significant reductions in evening PEF and morning/evening FEV₂₁ associated with various air pollutants and PM₂.₅ constituents. Four PM₂.₅ constituents (copper, cadmium, arsenic and stannum) were found to be most consistently associated with the reductions in these pulmonary function measures. These findings provide clues for the respiratory effects of specific particulate chemical constituents in the context of urban air pollution.

  4. Method for Fusing Observational Data and Chemical Transport Model Simulations To Estimate Spatiotemporally Resolved Ambient Air Pollution.

    PubMed

    Friberg, Mariel D; Zhai, Xinxin; Holmes, Heather A; Chang, Howard H; Strickland, Matthew J; Sarnat, Stefanie Ebelt; Tolbert, Paige E; Russell, Armistead G; Mulholland, James A

    2016-04-01

    Investigations of ambient air pollution health effects rely on complete and accurate spatiotemporal air pollutant estimates. Three methods are developed for fusing ambient monitor measurements and 12 km resolution chemical transport model (CMAQ) simulations to estimate daily air pollutant concentrations across Georgia. Temporal variance is determined by observations in one method, with the annual mean CMAQ field providing spatial structure. A second method involves scaling daily CMAQ simulated fields using mean observations to reduce bias. Finally, a weighted average of these results based on prediction of temporal variance provides optimized daily estimates for each 12 × 12 km grid. These methods were applied to daily metrics of 12 pollutants (CO, NO2, NOx, O3, SO2, PM10, PM2.5, and five PM2.5 components) over the state of Georgia for a seven-year period (2002-2008). Cross-validation demonstrates a wide range in optimized model performance across pollutants, with SO2 predicted most poorly due to limitations in coal combustion plume monitoring and modeling. For the other pollutants studied, 54-88% of the spatiotemporal variance (Pearson R(2) from cross-validation) was captured, with ozone and PM2.5 predicted best. The optimized fusion approach developed provides daily spatial field estimates of air pollutant concentrations and uncertainties that are consistent with observations, emissions, and meteorology. PMID:26923334

  5. Chemical pollution assessment and prioritisation model for the Upper and Middle Vaal water management areas of South Africa.

    PubMed

    Dzwairo, B; Otieno, F A O

    2014-12-01

    A chemical pollution assessment and prioritisation model was developed for the Upper and Middle Vaal water management areas of South Africa in order to provide a simple and practical Pollution Index to assist with mitigation and rehabilitation activities. Historical data for 2003 to 2008 from 21 river sites were cubic-interpolated to daily values. Nine parameters were considered for this purpose, that is, ammonium, chloride, electrical conductivity, dissolved oxygen, pH, fluoride, nitrate, phosphate and sulphate. Parameter selection was based on sub-catchment pollution characteristics and availability of a consistent data range, against a harmonised guideline which provided five classes. Classes 1, 2, 3 and 4 used ideal catchment background values for Vaal Dam, Vaal Barrage, Blesbokspruit/Suikerbosrant and Klip Rivers, respectively. Class 5 represented values which fell above those for Klip River. The Pollution Index, as provided by the model, identified pollution prioritisation monitoring points on Rietspruit-W:K2, Natalspruit:K12, Blesbokspruit:B1, Rietspruit-L:R1/R2, Taaibosspruit:T1 and Leeuspruit:L1. Pre-classification indicated that pollution sources were domestic, industrial and mine effluent. It was concluded that rehabilitation and mitigation measures should prioritise points with high classes. Ability of the model to perform simple scenario building and analysis was considered to be an effective tool for acid mine drainage pollution assessment.

  6. 40 CFR Table 1 to Subpart Vvvvvv... - Hazardous Air Pollutants Used To Determine Applicability of Chemical Manufacturing Operations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 14 2011-07-01 2011-07-01 false Hazardous Air Pollutants Used To Determine Applicability of Chemical Manufacturing Operations 1 Table 1 to Subpart VVVVVV of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED)...

  7. 40 CFR Table 1 to Subpart Vvvvvv... - Hazardous Air Pollutants Used To Determine Applicability of Chemical Manufacturing Operations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 15 2012-07-01 2012-07-01 false Hazardous Air Pollutants Used To Determine Applicability of Chemical Manufacturing Operations 1 Table 1 to Subpart VVVVVV of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED)...

  8. Influence of extreme pollution on the inorganic chemical composition of some plants.

    PubMed

    Reimann, C; Koller, F; Kashulina, G; Niskavaara, H; Englmaier, P

    2001-01-01

    Leaves of nine different plant species (terrestrial moss: Hylocomium splendens and Pleurozium schreberi, blueberry: Vaccinium myrtillus, cowberry: Vaccinium vitis-idaea, crowberry: Empetrum nigrum, birch: Betula pubescens, willow: Salix spp., pine: Pinus sylvestris, and spruce: Picea abies) have been collected from up to nine catchments (size 14-50 km2) spread over a 1,500,000 km2 area in northern Europe. Additional soil samples were taken from the O-horizon and the C-horizon at each plant sample site. All samples were analysed for 38 elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Sb, Sc, Se, Si, Sn, Sr, Th, Tl, U, V, Y, Zn, and Zr) by ICP-MS, ICP-AES or CV-AAS (Hg) techniques. One of the 9 catchments was located directly adjacent (5-10 km S) to the nickel smelter and refinery at Monchegorsk, Kola Peninsula, Russia. The high levels of pollution at this site are reflected in the chemical composition of all plant leaves. However, it appears that each plant enriches (or excludes) different elements. Elements emitted at trace levels, such as Ag, As and Bi, are relatively much more enriched in most plants than the major pollutants Ni, Cu and Co. The very high levels of SO2 emissions are generally not reflected by increases in plant total S-content. Several important macro-(P) and micro-nutrients (Mn, Mg, and Zn) are depleted in most plant leaves collected near Monchegorsk. PMID:11706797

  9. EPA'S APPROACH TO POLLUTION PREVENTION REF: CHEMICAL ENGINEERING PROCESS, PP. 53-58, JUNE 1989

    EPA Science Inventory

    EPA'S adoption of pollution prevention as the cornerstone of its future efforts on environmental protection is described as are the roles of the Pollution Prevention Office and the Waste Minimization Branch. Copy of paper available at NTIS as PB89236418.

  10. Environmental Pollution

    ERIC Educational Resources Information Center

    Breitbeil, Fred W., III

    1973-01-01

    Presents a thorough overview of the many factors contributing to air and water pollution, outlines the chemical reactions involved in producing toxic end-products, and describes some of the consequences of pollutants on human health and ecosystems. (JR)

  11. Indoor Air Pollution (Environmental Health Student Portal)

    MedlinePlus

    ... Gases Impact on Weather Health Effects Take Action Water Pollution Water Pollution Home Chemicals and Pollutants Natural Disasters Drinking Water ... Gases Impact on Weather Health Effects Take Action Water Pollution Water Pollution Home Chemicals and Pollutants Natural Disasters ...

  12. Construction of a technique plan repository and evaluation system based on AHP group decision-making for emergency treatment and disposal in chemical pollution accidents.

    PubMed

    Shi, Shenggang; Cao, Jingcan; Feng, Li; Liang, Wenyan; Zhang, Liqiu

    2014-07-15

    The environmental pollution resulting from chemical accidents has caused increasingly serious concerns. Therefore, it is very important to be able to determine in advance the appropriate emergency treatment and disposal technology for different types of chemical accidents. However, the formulation of an emergency plan for chemical pollution accidents is considerably difficult due to the substantial uncertainty and complexity of such accidents. This paper explains how the event tree method was used to create 54 different scenarios for chemical pollution accidents, based on the polluted medium, dangerous characteristics and properties of chemicals involved. For each type of chemical accident, feasible emergency treatment and disposal technology schemes were established, considering the areas of pollution source control, pollutant non-proliferation, contaminant elimination and waste disposal. Meanwhile, in order to obtain the optimum emergency disposal technology schemes as soon as the chemical pollution accident occurs from the plan repository, the technique evaluation index system was developed based on group decision-improved analytical hierarchy process (AHP), and has been tested by using a sudden aniline pollution accident that occurred in a river in December 2012. PMID:24887122

  13. Construction of a technique plan repository and evaluation system based on AHP group decision-making for emergency treatment and disposal in chemical pollution accidents.

    PubMed

    Shi, Shenggang; Cao, Jingcan; Feng, Li; Liang, Wenyan; Zhang, Liqiu

    2014-07-15

    The environmental pollution resulting from chemical accidents has caused increasingly serious concerns. Therefore, it is very important to be able to determine in advance the appropriate emergency treatment and disposal technology for different types of chemical accidents. However, the formulation of an emergency plan for chemical pollution accidents is considerably difficult due to the substantial uncertainty and complexity of such accidents. This paper explains how the event tree method was used to create 54 different scenarios for chemical pollution accidents, based on the polluted medium, dangerous characteristics and properties of chemicals involved. For each type of chemical accident, feasible emergency treatment and disposal technology schemes were established, considering the areas of pollution source control, pollutant non-proliferation, contaminant elimination and waste disposal. Meanwhile, in order to obtain the optimum emergency disposal technology schemes as soon as the chemical pollution accident occurs from the plan repository, the technique evaluation index system was developed based on group decision-improved analytical hierarchy process (AHP), and has been tested by using a sudden aniline pollution accident that occurred in a river in December 2012.

  14. 77 FR 4522 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ..., Industrial Inorganic Chemical Manufacturing, Industrial Organic Chemical Manufacturing, Inorganic Pigments Manufacturing, Miscellaneous Organic Chemical Manufacturing, Plastic Materials and Resins Manufacturing.... On October 29, 2009 (74 FR 56008), the EPA issued the NESHAP for the nine chemical manufacturing...

  15. Spatial distribution characteristics of polycyclic musks as a chemical marker in river water and sediment compared with other typical pollutants.

    PubMed

    Mu, Li; Wen, Jianping

    2013-01-01

    Polycyclic musks (PMs), widely used in the cosmetic and perfume industries, are gaining attention as a new type of persistent organic pollutant (POP). The related contamination in developing countries, such as China, where the use of these compounds is increasing, needs to be closely monitored. This work systematically studied the distribution profile (water-suspended particulate-sediment-porewater) of PMs in Haihe River, China. The average concentrations of PMs were comparable to those of the traditional POPs. The typical PMs (galaxolide and tonalide) exhibited different environmental behaviors in various media. Water played a more significant role than suspended particulates in the transport of pollutants. Importantly, this work explored the relationships among PMs, surfactant, phosphorus, carbon, salinity, heavy metals and pesticides. Unlike previous reports focusing on the relationships among PMs, wastewater discharge and population distribution, this work innovatively studied the distribution characteristics of pollutants by principal components analysis. The results suggest that PMs can be used as a chemical marker indicating domestic contamination.

  16. Association of allergic rhinitis or asthma with pollen and chemical pollutants in Szeged, Hungary, 1999-2007

    NASA Astrophysics Data System (ADS)

    Makra, László; Matyasovszky, István; Bálint, Beatrix; Csépe, Zoltán

    2014-07-01

    The effect of biological (pollen) and chemical air pollutants on respiratory hospital admissions for the Szeged region in Southern Hungary is analysed. A 9-year (1999-2007) database includes—besides daily number of respiratory hospital admissions—daily mean concentrations of CO, PM10, NO, NO2, O3 and SO2. Two pollen variables ( Ambrosia and total pollen excluding Ambrosia) are also included. The analysis was performed for patients with chronic respiratory complaints (allergic rhinitis or asthma bronchiale) for two age categories (adults and the elderly) of males and females. Factor analysis was performed to clarify the relative importance of the pollutant variables affecting respiratory complaints. Using selected low and high quantiles corresponding to probability distributions of respiratory hospital admissions, averages of two data sets of each air pollutant variable were evaluated. Elements of these data sets were chosen according to whether actual daily patient numbers were below or above their quantile value. A nonparametric regression technique was applied to discriminate between extreme and non-extreme numbers of respiratory admissions using pollen and chemical pollutants as explanatory variables. The strongest correlations between extreme patient numbers and pollutants can be observed during the pollen season of Ambrosia, while the pollen-free period exhibits the weakest relationships. The elderly group with asthma bronchiale is characterised by lower correlations between extreme patient numbers and pollutants compared to adults and allergic rhinitis, respectively. The ratio of the number of correct decisions on the exceedance of a quantile resulted in similar conclusions as those obtained by using multiple correlations.

  17. Association of allergic rhinitis or asthma with pollen and chemical pollutants in Szeged, Hungary, 1999-2007.

    PubMed

    Makra, László; Matyasovszky, István; Bálint, Beatrix; Csépe, Zoltán

    2014-07-01

    The effect of biological (pollen) and chemical air pollutants on respiratory hospital admissions for the Szeged region in Southern Hungary is analysed. A 9-year (1999-2007) database includes--besides daily number of respiratory hospital admissions--daily mean concentrations of CO, PM10, NO, NO2, O3 and SO2. Two pollen variables (Ambrosia and total pollen excluding Ambrosia) are also included. The analysis was performed for patients with chronic respiratory complaints (allergic rhinitis or asthma bronchiale) for two age categories (adults and the elderly) of males and females. Factor analysis was performed to clarify the relative importance of the pollutant variables affecting respiratory complaints. Using selected low and high quantiles corresponding to probability distributions of respiratory hospital admissions, averages of two data sets of each air pollutant variable were evaluated. Elements of these data sets were chosen according to whether actual daily patient numbers were below or above their quantile value. A nonparametric regression technique was applied to discriminate between extreme and non-extreme numbers of respiratory admissions using pollen and chemical pollutants as explanatory variables. The strongest correlations between extreme patient numbers and pollutants can be observed during the pollen season of Ambrosia, while the pollen-free period exhibits the weakest relationships. The elderly group with asthma bronchiale is characterised by lower correlations between extreme patient numbers and pollutants compared to adults and allergic rhinitis, respectively. The ratio of the number of correct decisions on the exceedance of a quantile resulted in similar conclusions as those obtained by using multiple correlations.

  18. The origin and evolution of assessment criteria for persistent, bioaccumulative and toxic (PBT) chemicals and persistent organic pollutants (POPs).

    PubMed

    Matthies, Michael; Solomon, Keith; Vighi, Marco; Gilman, Andy; Tarazona, Jose V

    2016-09-14

    General public concern over the effects of persistent chemicals began in the early 1960s. Since then, significant scientific advances have increased our understanding of persistent, bioaccumulative, and toxic (PBT) chemicals and the properties and processes that influence their fates in, and adverse effects on, human health and the environment. In addition to the scientific advances, a number of legislations and agreements for national, international, and global identification and control of PBT chemicals have been adopted. However, some of the rationales and thoughts that were relied upon when the first criteria were developed to identify and categorize PBT chemicals and then POPs (persistent organic pollutants) have not been carried forward. Criteria have been based upon available data of neutral hydrophobic substances as reference chemicals, derived under laboratory conditions. They evolved over the last decades due to the diversification of the protection aims under various national regulatory frameworks and international agreements, advances in methods for estimation of physical/chemical properties, and the identification of chemicals which are non-traditional POPs. Criteria are not defined purely by science; they also are subject to the aims of policy. This paper offers a historical perspective on the development of criteria for PBT chemicals and POPs. It also offers suggestions for rationalization of protection goals, describes some emerging procedures for identification of compounds of concern, and proposes information that needs to be considered when applying criteria to screening and/or evaluation of new chemicals. PMID:27477634

  19. Aquamicrobium terrae sp. nov., isolated from the polluted soil near a chemical factory.

    PubMed

    Wu, Zhi-Guo; Wang, Fang; Gu, Cheng-Gang; Zhang, Yin-Ping; Yang, Zong-Zheng; Wu, Xiao-Wei; Jiang, Xin

    2014-06-01

    A Gram-negative, aerobic, non-motile bacterial strain hun6(T) isolated from the polluted soil near a chemical factory in northern Nanjing, China was investigated to clarify its taxonomic position. Growth of strain hun6(T) occurred between 10 and 45 °C (optimum, 30 °C) and between pH 6.0 and 8.0 (optimum, pH 7.0). No growth occurred at NaCl concentrations greater than 5 % (w/v). The 16S rRNA gene sequence analysis indicated that strain hun6(T) belongs to the genus Aquamicrobium. The sequence similarities of strain hun6(T) to other type strains of Aquamicrobium genus were all below 98.5 %. The presence of ubiquinone-10, the predominant fatty acid summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) and C19:0 cyclo ω8c, a polar lipid pattern with phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, phosphatidylethanolamine and phophatidylmonomethylethanoamine were in accord with the characteristics of the genus Aquamicrobium. The G+C content of the genomic DNA was determined to be 63.5 mol%. The results of DNA-DNA hybridization, physiological and biochemical tests and chemotaxonomic properties allowed genotypic and phenotypic differentiation of strain hun6(T) from all known Aquamicrobium species. Therefore, strain hun6(T) can be assigned to a new species of this genus for which the name Aquamicrobium terrae sp. nov. is proposed. The type strain is hun6(T) (= CICC 10733(T) = DSM 27865(T)). PMID:24788880

  20. Aquamicrobium terrae sp. nov., isolated from the polluted soil near a chemical factory.

    PubMed

    Wu, Zhi-Guo; Wang, Fang; Gu, Cheng-Gang; Zhang, Yin-Ping; Yang, Zong-Zheng; Wu, Xiao-Wei; Jiang, Xin

    2014-06-01

    A Gram-negative, aerobic, non-motile bacterial strain hun6(T) isolated from the polluted soil near a chemical factory in northern Nanjing, China was investigated to clarify its taxonomic position. Growth of strain hun6(T) occurred between 10 and 45 °C (optimum, 30 °C) and between pH 6.0 and 8.0 (optimum, pH 7.0). No growth occurred at NaCl concentrations greater than 5 % (w/v). The 16S rRNA gene sequence analysis indicated that strain hun6(T) belongs to the genus Aquamicrobium. The sequence similarities of strain hun6(T) to other type strains of Aquamicrobium genus were all below 98.5 %. The presence of ubiquinone-10, the predominant fatty acid summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) and C19:0 cyclo ω8c, a polar lipid pattern with phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, phosphatidylethanolamine and phophatidylmonomethylethanoamine were in accord with the characteristics of the genus Aquamicrobium. The G+C content of the genomic DNA was determined to be 63.5 mol%. The results of DNA-DNA hybridization, physiological and biochemical tests and chemotaxonomic properties allowed genotypic and phenotypic differentiation of strain hun6(T) from all known Aquamicrobium species. Therefore, strain hun6(T) can be assigned to a new species of this genus for which the name Aquamicrobium terrae sp. nov. is proposed. The type strain is hun6(T) (= CICC 10733(T) = DSM 27865(T)).

  1. Wastewater treatment: Chemical industry. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    1995-11-01

    The bibliography contains citations concerning wastewater treatment of industrial pollutants. The use and effectiveness of biological treatments and carbon additives are examined. References also discuss problems and recommendations for the removal of mercury and its compounds, fertilizers, and pesticides from polluted waste water. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. A new technology for harnessing the dye polluted water and dye collection in a chemical factory.

    PubMed

    Pu, J P; Pu, P M; Hu, C H; Qian, J L; Pu, J X; Hua, J K

    2001-04-01

    A new technology for harnessing the dye polluted water and dye collection was developed. It is based on the enhanced evaporation by using solar, wind and air temperature energy and additional heat-electric energy. It consists of four parts: (1) evaporation carrier system (evaporation carrier and frame for evaporation carrier) for polluted water; (2) polluted water circulating system (pumping-spraying-collecting); (3) heating system; (4) workshop with polluted water reservoir-tanks and rainfall prevention roof. The polluted water was (heated in case necessary) sprayed to the evaporation carrier system and the water was evaporated when it moved in the space and downward along the carrier mainly by using natural (solar, wind and air temperature energy). In case, when there is no roof for the carrier system, the polluted water can be stored in the reservoirs (storage volume for about 20 days). The first 10-25 mm rainfall also need to be stored in the reservoirs to meet the state standard for discharging wastewater. The dye may be collected at the surface in the reservoir-tanks and the crystallized salt may be collected at the bottom plate. The black-color wastewater released by the factory is no more discharged to the surface water system of Taihu Lake Basin. About 2 kg dye and 200 kg industrial salt may be collected from each tone of the polluted water. The non-pollution production of dye may be realized by using this technology with environmental, economical and social benefits. PMID:11590742

  3. Waste water treatment: Chemical industry. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-05-01

    The bibliography contains citations concerning wastewater treatment of industrial pollutants. The use and effectiveness of biological treatments and carbon additives are examined. References also discuss problems and recommendations for the removal of mercury and its compounds, fertilizers, and pesticides from polluted waste water. (Contains 250 citations and includes a subject term index and title list.)

  4. Non-Chemical Stressors and Cumulative Risk Assessment: An Overview of Current Initiatives and Potential Air Pollutant Interactions

    PubMed Central

    Lewis, Ari S.; Sax, Sonja N.; Wason, Susan C.; Campleman, Sharan L.

    2011-01-01

    Regulatory agencies are under increased pressure to consider broader public health concerns that extend to multiple pollutant exposures, multiple exposure pathways, and vulnerable populations. Specifically, cumulative risk assessment initiatives have stressed the importance of considering both chemical and non-chemical stressors, such as socioeconomic status (SES) and related psychosocial stress, in evaluating health risks. The integration of non-chemical stressors into a cumulative risk assessment framework has been largely driven by evidence of health disparities across different segments of society that may also bear a disproportionate risk from chemical exposures. This review will discuss current efforts to advance the field of cumulative risk assessment, highlighting some of the major challenges, discussed within the construct of the traditional risk assessment paradigm. Additionally, we present a summary of studies of potential interactions between social stressors and air pollutants on health as an example of current research that supports the incorporation of non-chemical stressors into risk assessment. The results from these studies, while suggestive of possible interactions, are mixed and hindered by inconsistent application of social stress indicators. Overall, while there have been significant advances, further developments across all of the risk assessment stages (i.e., hazard identification, exposure assessment, dose-response, and risk characterization) are necessary to provide a scientific basis for regulatory actions and effective community interventions, particularly when considering non-chemical stressors. A better understanding of the biological underpinnings of social stress on disease and implications for chemical-based dose-response relationships is needed. Furthermore, when considering non-chemical stressors, an appropriate metric, or series of metrics, for risk characterization is also needed. Cumulative risk assessment research will benefit

  5. Epiphytic lichenosynusia under conditions of chemical pollution: Dose-effect dependencies

    SciTech Connect

    Mikhailova, I.N.; Vorobeichik, E.L.

    1995-11-01

    The dose-effect dependencies, which characterize response of the epiphytic lichenosynusia of southern taiga in the Middle Urals to pollution by discharges of a copper-smelting plant, are substantially non-linear and, in most cases, have an S-shaped form. A transition from background to impact state is very sharp and begins when the background level of pollution is exceeded by 1.5 - 2.3 times.

  6. How chemical pollution becomes a social problem. Risk communication and assessment through regional newspapers during the management of PCB pollutions of the Rhône River (France).

    PubMed

    Comby, Emeline; Le Lay, Yves-François; Piégay, Hervé

    2014-06-01

    The case study of the polychlorinated biphenyl (PCB) pollutions of the Rhône River (France) offers the possibility of studying criteria for the construction of social problems that result from chemical pollution (2005-2010). We investigated the dynamics of competition that create and define pollution as a social problem and entail its decline. News outlets are crucial for determining how an environmental issue emerges locally or nationally; this study used newspapers to highlight the potential of new outlets as a data source to analyze discourse variability, science-policy-media connections and the hydrosphere. Media coverage was based on a content analysis and textual data analysis of 75 articles. Analytical frameworks such as the Downs Model and the Public Arena Model (Hilgartner and Bosk, 1988) that consider time and stakeholders were tested to determine how human alteration of the hydrosphere can become a social problem and to analyze different communication strategies held by stakeholders. In terms of management, we described the temporal dynamics of the social problem based on the case study and considered an explanation of the selections. We considered the organization of particular stakeholders who define the social problem from its beginning to end by focusing on their discourses, relationships, decision-making and political choices, and scientific studies. Despite some biases, newspapers are useful for retrospectively evaluating the emergence of a social problem in the public arena by describing it through discourse and then understanding the temporal patterns of information. Despite uncertainties and information flow, decisions are made and science is translated to the public.

  7. Waste processing and pollution in the chemical and petrochemical industries. 1978-June 1980 (citations from the NTIS Data Base). Report for 1978-June 1980

    SciTech Connect

    Cavagnaro, D.M.

    1980-07-01

    These citations from Federally funded research cover many aspects of waste processing and pollution in the chemical and petrochemical industries. The bibliography includes emissions, economics, control processes, pollution effects, and abatement strategies. (This updated bibliography contains 280 citations, 89 of which are new entries to the previous edition.)

  8. Multi-step approach for comparing the local air pollution contributions of conventional and innovative MSW thermo-chemical treatments.

    PubMed

    Ragazzi, M; Rada, E C

    2012-10-01

    In the sector of municipal solid waste management the debate on the performances of conventional and novel thermo-chemical technologies is still relevant. When a plant must be constructed, decision makers often select a technology prior to analyzing the local environmental impact of the available options, as this type of study is generally developed when the design of the plant has been carried out. Additionally, in the literature there is a lack of comparative analyses of the contributions to local air pollution from different technologies. The present study offers a multi-step approach, based on pollutant emission factors and atmospheric dilution coefficients, for a local comparative analysis. With this approach it is possible to check if some assumptions related to the advantages of the novel thermochemical technologies, in terms of local direct impact on air quality, can be applied to municipal solid waste treatment. The selected processes concern combustion, gasification and pyrolysis, alone or in combination. The pollutants considered are both carcinogenic and non-carcinogenic. A case study is presented concerning the location of a plant in an alpine region and its contribution to the local air pollution. Results show that differences among technologies are less than expected. Performances of each technology are discussed in details. PMID:22795304

  9. Construction of a chemical ranking system of soil pollution substances for screening of priority soil contaminants in Korea.

    PubMed

    Jeong, Seung-Woo; An, Youn-Joo

    2012-04-01

    The Korean government recently proposed expanding the number of soil-quality standards to 30 by 2015. The objectives of our study were to construct a reasonable protocol for screening priority soil contaminants for inclusion in the planned soil quality standard expansion. The chemical ranking system of soil pollution substances (CROSS) was first developed to serve as an analytical tool in chemical scoring and ranking of possible soil pollution substances. CROSS incorporates important parameters commonly used in several previous chemical ranking and scoring systems and the new soil pollution parameters. CROSS uses soil-related parameters in its algorithm, including information related to the soil environment, such as soil ecotoxicological data, the soil toxic release inventory (TRI), and soil partitioning coefficients. Soil TRI and monitoring data were incorporated as local specific parameters. In addition, CROSS scores the transportability of chemicals in soil because soil contamination may result in groundwater contamination. Dermal toxicity was used in CROSS only to consider contact with soil. CROSS uses a certainty score to incorporate data uncertainty. CROSS scores the importance of each candidate substance and assigns rankings on the basis of total scores. Cadmium was the most highly ranked. Generally, metals were ranked higher than other substances. Pentachlorophenol, phenol, dieldrin, and methyl tert-butyl ether were ranked the highest among chlorinated compounds, aromatic compounds, pesticides, and others, respectively. The priority substance list generated from CROSS will be used in selecting substances for possible inclusion in the Korean soil quality standard expansion; it will also provide important information for designing a soil-environment management scheme.

  10. Ecotoxicological risk assessment of chemical pollution in four Iberian river basins and its relationship with the aquatic macroinvertebrate community status.

    PubMed

    Kuzmanović, Maja; López-Doval, Julio C; De Castro-Català, Núria; Guasch, Helena; Petrović, Mira; Muñoz, Isabel; Ginebreda, Antoni; Barceló, Damià

    2016-01-01

    Ecotoxicological risk assessment of chemical pollution in four Iberian river basins (Llobregat, Ebro, Júcar and Guadalquivir) was performed. The data set included more than 200 emerging and priority compounds measured at 77 sampling sites along four river basins studied. The toxic units (TU) approach was used to assess the risk of individual compounds and the concentration addition model (CA) to assess the site specific risk. Link between chemical pollution and aquatic macroinvertebrate communities in situ was examined by using four biological indexes; SPEAR ("Species at Risk Index") as the indicator of decline of sensitive species in relation to general organic (SPEARorganic) and pesticides (SPEARpesticides) pollution; and Shannon and Margalef biodiversity indexes. The results of the study suggested that organic chemicals posed the risk of acute effects at 42% of the sampling sites and the risk of chronic effects at all the sites. Metals posed the acute risk at 44% of the sites. The main drivers of the risk were mainly pesticides and metals. However, several emerging contaminants (e.g. the antidepressant drug sertraline and the disinfectant triclosan) were contributing to the chronic effects risk. When risk associated with metals and organic chemicals was compared, the latter dominated in 2010, mainly due to the presence of highly toxic pesticides, while metals did in 2011. Compounds that are not regulated on the European level were posing the risk of chronic effects at 23% of the sites. The decline of sensitive macroinvertebrate taxa expressed in terms of SPEAR index was correlated with the increase of toxic stress related to organic compounds Biodiversity indexes were negatively correlated with the metals and the urban land use type in the catchment.

  11. Using magnetic and chemical measurements to detect atmospherically-derived metal pollution in artificial soils and metal uptake in plants.

    PubMed

    Sapkota, B; Cioppa, M T

    2012-11-01

    Quantification of potential effects of ambient atmospheric pollution on magnetic and chemical properties of soils and plants requires precise experimental studies. A controlled growth experiment assessing magnetic and chemical parameters was conducted within (controls) and outside (exposed) a greenhouse setting. Magnetic susceptibility (MS) measurements showed that while initial MS values were similar for the sample sets, the overall MS value of exposed soil was significantly greater than in controls, suggesting an additional input of Fe-containing particles. Scanning electron microscope images of the exposed soils revealed numerous angular magnetic particles and magnetic spherules typical of vehicular exhaust and combustion processes, respectively. Similarly, chemical analysis of plant roots showed that plants grown in the exposed soil had higher concentrations of Fe and heavy (toxic) metals than controls. This evidence suggests that atmospheric deposition contributed to the MS increase in exposed soils and increased metal uptake by plants grown in this soil.

  12. Pollutant sensitivity of the endangered Tar River Spinymussel as assessed by single chemical and effluent toxicity tests

    USGS Publications Warehouse

    Augspurger, Thomas P.; Wang, Ning; Kunz, James L.; Ingersoll, Christopher G.

    2014-01-01

    The federally endangered Tar River spinymussel (Elliptio steinstansana) is endemic to the Tar River and Neuse River systems in North Carolina. The extent to which water quality limits Tar River spinymussels’ recovery is important to establish, and one aspect of that is understanding the species’ pollutant sensitivity. The primary objectives of this study were to 1) develop captive propagation and culture methods for Tar River spinymussels; 2) determine the pollutant sensitivity of captively propagated Tar River spinymussels; 3) examine the utility of the non-endangered yellow lance (Elliptio lanceolata), yellow lampmussel (Lampsilis cariosa) and notched rainbow (Villosa constricta) as surrogates for the Tar River spinymussels’ chemical sensitivity; 4) develop a 7-d method for conducting effluent toxicity tests starting with newly transformed mussels; 5) assess the toxicity of municipal wastewater effluents discharged into the Tar River spinymussels’ current and historic habitat; and, 6) evaluate the protection afforded by existing effluent toxicity test requirements.

  13. Multiple stressor effects in Chlamydomonas reinhardtii--toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants.

    PubMed

    Korkaric, Muris; Behra, Renata; Fischer, Beat B; Junghans, Marion; Eggen, Rik I L

    2015-05-01

    The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are discussed. PMID:25768714

  14. Multiple stressor effects in Chlamydomonas reinhardtii--toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants.

    PubMed

    Korkaric, Muris; Behra, Renata; Fischer, Beat B; Junghans, Marion; Eggen, Rik I L

    2015-05-01

    The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are discussed.

  15. Chemical characterization of particulate air pollutants Case studies on indoor air quality, cultural heritage and the marine environment

    NASA Astrophysics Data System (ADS)

    Horemans, Benjamin

    When attempting to discuss the effects of airborne particulate matter (PM), it is important to address both physical and chemical aspects of this pollutant. This work reports on the results of three separate case studies, each approaching a specific problem of air pollution by evaluating the chemical composition of PM. 1. In the US and Europe, office workers often complain about work-related health symptoms. These symptoms are collectively referred as the 'sick building syndrome'. This work could be considered as one of the largest data collections on particulate pollutants in Belgian offices. It helps to understand the sources as well as the behavior and fate of PM at our workplace environments. Especially the chemical information on PM makes the results unique, since it enables a better evaluation of the health risks connected to office dust. 2. The Alhambra and Generalife bring every year more than 3 million people to Granada in Southern Spain. Recently, the increasing urbanization of Granada and the immense pressure of mass tourism form a threat for this heritage. Despite the fact that atmospheric pollutants are known to he potentially aggressive for our cultural patrimony. this case study is the first to assess the effects of environmental aerosols on the Alhambra monument. The results of this study could help decision-makers at the Alhambra and the city of Granada with the formulation of preventive conservation measures. They show how local vehicular traffic is the main source for atmospheric pollution in and around the Alhambra monument. Targeted strategies are necessary in order to maximally preserve these monuments and their UNESCO world cultural heritage label. 3. Excessive input of nitrogen-containing atmospheric nutrients via dry and wet deposition can cause entrophication of marine regions, which is also a common, seasonal phenomenon along the coasts of the North Sea. This study is the first to give a complete quantitative description of the

  16. The physical and chemical characteristics of long-lasting trans-boundary mixed pollutants over East Asia

    NASA Astrophysics Data System (ADS)

    Hara, Y.; Uno, I.; Kobayashi, H.; Itahashi, S.; PAN, X.; Nishizawa, T.; Shimizu, A.; Matsui, I.; Sugimoto, N.

    2014-12-01

    Trans-boundary air pollution lasted about 1 week over East Asia from late May to early June 2014. Daily averaged PM2.5 and PM10 exceeded respectively 35μg/m3 and 100μg/m3 during this episode at Fukuoka, southeastern city of Japan. The continuous aerosol plumes were constructed by Asian dust and anthropogenic pollutants, and observed by many aerosol measurements, such as ground-based lidar, space-born lidar, Aerosol Chemical Speciation Analyzer (ACSA) and Polarization Optical Particle Counter (POPC). Regional chemical transport model was used to clarify the meteorological condition forming long-lasting aerosol plumes and the 3D structure. The continuous aerosol plume was made by 2 sequential low pressure systems passing over desert area, and subsequently generated blocking high pressure system over Japan. The averaged aerosol depolarization ratio derived by ground-based lidar and POPC at around 0.5μm during this episode were 0.11 and 0.146, these values were very low for dust case. ACSA data at Fukuoka also showed that coarse model nitrate and fine mode sulfate concentration was very high (3~6μg/m3 for coarse mode nitrate, 5-15 μg/m3 for fine mode sulfate) during this episode. These results suggested that transport of anthropogenic aerosols were occurred during this event together with dust plume. Coarse mode nitrate might be made by internal mixing between dust particles and nitrate. Numerical chemical transport model could not reproduced high concentration of coarse mode nitrate because model did not consider the process of internal mixing between dust particles and nitrate. Further vertical structure and mixing state during long-lasting trans-boundary pollution are clarified.

  17. CASE STUDY. MERCURY POLLUTION NEAR A CHEMICAL PLANT IN NORTHERN KAZAKHSTAN

    EPA Science Inventory

    In northern Kazakhstan, there is a serious case of mercury pollution near Pavlodar City from an old mercury cell chlor-alkali plant. The soil, sediment, and water are contaminated with more than a thousand tons of mercury and mercury compounds as a result of the operation of the ...

  18. CHANGES TO THE CHEMICAL MECHANISMS FOR HAZARDOUS AIR POLLUTANTS IN CMAQ VERSION 4.6

    EPA Science Inventory

    The extended abstract describes a presentation to the 2006 conference of the Community Modeling and Analysis System. The presentation introduces two new mechanisms for the atmospheric photochemistry of Hazardous Air Pollutants (HAPs) to be used in regional air quality models. It ...

  19. Detection of human and animal sources of pollution by microbial and chemical methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-indicator approach comprising Enterococcus, bacterial source tracking (BST), and sterol analysis was tested for pollution source identification. Fecal contamination was detected in 100% of surface water sites tested. Enterococcus faecium was the dominant species in aged litter samples from p...

  20. Modeling of Air Pollution Systems with Chemical Reactions: Application to Gas Flares in Nigeria

    NASA Astrophysics Data System (ADS)

    Susu, Alfred A.; Abhulimen, Kingsley E.; Adereti, Adedayo B.

    2005-09-01

    The Eulerian model was used for the prediction of air pollutants in some gas flare locations in the Niger Delta region of Nigeria. A continuity equation (mass balance) that incorporates second order reaction schemes for the generation of pollutants at source or in the ensuing atmosphere was used to characterize the n species in the fluid element and the finite difference method (the Crank-Nicholson formulation) was applied for the numerical scheme. Thus, the spatial and transient concentration profiles of key contaminants were obtained for the meteorological conditions under consideration. The first series of simulations were carried out at ground level and at altitudes of 30 and 90 m, for a simulation time of 10 min. The second series of simulations were identical to the first, except that the simulation time was 20 min. The third series of simulations were carried out for 50 min at ground level and at an altitude of 30 m. The concentration profiles were parabolic for at least one of the pollutants at the ground level for 10, 20 and 50 min simulation times, and additionally at an altitude of 30 m for a simulation time of 50 min. Other concentration profiles are exponential in nature. The deterministic Eulerian model provided a satisfactory prediction of the spatial and transient concentration profiles for the pollutants in the gas flares.

  1. Waste processing and pollution in the chemical and petrochemical industries. March 1983-July 1989 (Citations from the NTIS data base). Report for March 1983-July 1989

    SciTech Connect

    Not Available

    1989-08-01

    This bibliography contains citations concerning techniques and equipment utilized for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site-hazard evaluations, and the toxicity of specific chemicals are also discussed. (This updated bibliography contains 248 citations, 15 of which are new entries to the previous edition.)

  2. Waste processing and pollution in the chemical and petrochemical industries. March 1983-March 1990 (A Bibliography from the NTIS data base). Report for March 1983-March 1990

    SciTech Connect

    Not Available

    1990-03-01

    This bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials-recovery studies, and standards for specific industries. Sources, site-hazard evaluations, and the toxicity of specific chemicals are also discussed. (This updated bibliography contains 68 citations, 13 of which are new entries to the previous edition.)

  3. Waste processing and pollution in the chemical and petrochemical industries. March 1983-June 1988 (Citations from the NTIS data base). Report for March 1983-June 1988

    SciTech Connect

    Not Available

    1988-07-01

    This bibliography contains citations concerning techniques and equipment utilized for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site-hazard evaluations, and the toxicity of specific chemicals are also discussed. (This updated bibliography contains 245 citations, 15 of which are new entries to the previous edition.)

  4. Waste processing and pollution in the chemical and petrochemical industries. January 1984-October 1991 (Citations from the NTIS Data Base). Rept. for Jan 84-Oct 91

    SciTech Connect

    Not Available

    1991-09-01

    The bibliography contains citations concerning techniques and equipment used for pollution control in the chemical and petrochemical industries. Topics include emissions investigations, recycling and materials recovery studies, and standards for specific industries. Sources, site hazard evaluations, and the toxicity of specific chemicals are also discussed. (Contains 151 citations with title list and subject index.)

  5. The relationship between chemical elements in soil and whole blood, and fluorosis induced by coal-fired pollution.

    PubMed

    Wang, Hao; Mu, Lihong; Jiang, Miao; Wang, Yingxiong; Yan, Wei; Jiao, Yongzhuo

    2014-04-01

    To study the relationship between chemical elements in soil and whole blood, and fluorosis induced by coal-fired pollution, ecological and case-control studies were carried out. We determined the concentrations of 11 chemical elements and pH values in soil in two fluorosis-affected counties in Chongqing, China, and analyzed the correlation between these values and prevalence of dental fluorosis. Ni, I, F, Hg, and pH values positively correlated with fluorosis prevalence (P < 0.05); these soil parameters may be related to coal-fired pollution fluorosis. Cu, Zn, Ca, Mg, and Fe concentrations in whole blood, and fluoride levels in urine of residents in epidemic and non-epidemic areas were determined. Cu, Zn, Mg, and Fe levels of the children in the case group were lower than those of the children in the external control group; urine fluoride level in the children in the case group was higher than that of the children in the internal and external control groups (P < 0.05). The levels of Mg, Fe, and urine fluoride were higher in the case adult group than in the internal adult control group (P < 0.05). Anti-fluoride elements were deficient in endemic areas.

  6. Equilibrium sampling of environmental pollutants in fish: comparison with lipid-normalized concentrations and homogenization effects on chemical activity.

    PubMed

    Jahnke, Annika; Mayer, Philipp; Adolfsson-Erici, Margaretha; McLachlan, Michael S

    2011-07-01

    Equilibrium sampling of organic pollutants into the silicone polydimethylsiloxane (PDMS) has recently been applied in biological tissues including fish. Pollutant concentrations in PDMS can then be multiplied with lipid/PDMS distribution coefficients (D(Lipid,PDMS) ) to obtain concentrations in fish lipids. In the present study, PDMS thin films were used for equilibrium sampling of polychlorinated biphenyls (PCBs) in intact tissue of two eels and one salmon. A classical exhaustive extraction technique to determine lipid-normalized PCB concentrations, which assigns the body burden of the chemical to the lipid fraction of the fish, was additionally applied. Lipid-based PCB concentrations obtained by equilibrium sampling were 85 to 106% (Norwegian Atlantic salmon), 108 to 128% (Baltic Sea eel), and 51 to 83% (Finnish lake eel) of those determined using total extraction. This supports the validity of the equilibrium sampling technique, while at the same time confirming that the fugacity capacity of these lipid-rich tissues for PCBs was dominated by the lipid fraction. Equilibrium sampling was also applied to homogenates of the same fish tissues. The PCB concentrations in the PDMS were 1.2 to 2.0 times higher in the homogenates (statistically significant in 18 of 21 cases, p < 0.05), indicating that homogenization increased the chemical activity of the PCBs and decreased the fugacity capacity of the tissue. This observation has implications for equilibrium sampling and partition coefficients determined using tissue homogenates.

  7. Raman Microscopic Studies of the Physical and Chemical Properties of Particulate Matter in one of the World's Most Polluted Cities

    NASA Astrophysics Data System (ADS)

    Tolbert, M.; Hasenkopf, C. A.; Schill, G.

    2013-05-01

    Due to frequent wintertime temperature inversions and smoke emitted from individual stoves and coal-fired power plants to meet high heating demands during the sub-arctic winter, the annual average PM10 concentration in Ulaanbaatar, Mongolia is one of the highest in the world. With winter daily PM10 averages reaching as high as 4000 micrograms per cubic meter, the pollution has had devastating health effects for the 1.3 million living in Ulaanbaatar, with some studies estimating 25% of deaths in Ulaanbaatar are attributable to the high PM10 levels. At present, there is little information on particulate levels, the chemical and physical characteristics of the particles, or their ice-nucleating ability. Here we examine individual particles from Ulaanbaatar using optical and Raman microscopy. Particles are analyzed for size, shape, composition and mixing state. We also probe the ice nucleating ability of the particles using an environmental cell coupled to the microscope. Ice nucleation on the Ulaanbaatar particles is compared to ice nucleation on other solid particles such as mineral dust and volcanic ash. These studies aim to provide new insight into the chemical and physical properties of particulate matter in a highly polluted, yet understudied, city.

  8. Cardiovascular Outcomes and the Physical and Chemical Properties of Metal Ions Found in Particulate Matter Air Pollution: A QICAR Study

    PubMed Central

    Meng, Qingyu; Lu, Shou-En; Buckley, Barbara; Welsh, William J.; Whitsel, Eric A.; Hanna, Adel; Yeatts, Karin B.; Warren, Joshua; Herring, Amy H.; Xiu, Aijun

    2013-01-01

    Background: This paper presents an application of quantitative ion character–activity relationships (QICAR) to estimate associations of human cardiovascular (CV) diseases (CVDs) with a set of metal ion properties commonly observed in ambient air pollutants. QICAR has previously been used to predict ecotoxicity of inorganic metal ions based on ion properties. Objectives: The objective of this work was to examine potential associations of biological end points with a set of physical and chemical properties describing inorganic metal ions present in exposures using QICAR. Methods: Chemical and physical properties of 17 metal ions were obtained from peer-reviewed publications. Associations of cardiac arrhythmia, myocardial ischemia, myocardial infarction, stroke, and thrombosis with exposures to metal ions (measured as inference scores) were obtained from the Comparative Toxicogenomics Database (CTD). Robust regressions were applied to estimate the associations of CVDs with ion properties. Results: CVD was statistically significantly associated (Bonferroni-adjusted significance level of 0.003) with many ion properties reflecting ion size, solubility, oxidation potential, and abilities to form covalent and ionic bonds. The properties are relevant for reactive oxygen species (ROS) generation, which has been identified as a possible mechanism leading to CVDs. Conclusion: QICAR has the potential to complement existing epidemiologic methods for estimating associations between CVDs and air pollutant exposures by providing clues about the underlying mechanisms that may explain these associations. PMID:23462649

  9. Environmental implementation plan: Chapter 5, Chemical management, pollution prevention and other compliance programs. Draft revision

    SciTech Connect

    Peterson, G.L.

    1993-11-18

    Compliance with environmental regulations and US Department of Energy Orders (DOE) relating to environmental protection is an important part of SRS`s program. Over the past few years, the number of environmental regulations has increased. The strategy to comply with new and existing environmental regulations and DOE orders is described in chapter two. In this chapter, the following environmental programs are described: Toxic Substances Control Act (TSCA); Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA); Emergency Planning and Community Right-to-Know Act (EPCRA); and SPCC/BMP/Pollution Prevention Plans;The implementation section identifies issues and those responsible to achieve defined objectives.

  10. Permissible and background concentrations of pollutants in environmental regulation (heavy metals and other chemical elements)

    NASA Astrophysics Data System (ADS)

    Chernova, O. V.; Beketskaya, O. V.

    2011-09-01

    Approaches to the establishment of the limit concentrations of pollutants in Russia and abroad were considered. It was shown that the norms for the concentrations of total trace elements and heavy metals in soils used in Russia and European countries are comparable. On the basis of the analysis of cartographic data, general regularities in changes of the concentrations of some trace elements were revealed for soils of European Russia. Different computational methods were tested for establishing the background concentrations of elements in soils of different composition in different regions.

  11. Alterations of chemical composition, construction cost and payback time in needles of Masson pine (Pinus massoniana L.) trees grown under pollution.

    PubMed

    Liu, Nan; Guan, Lan-Lan; Sun, Fang-Fang; Wen, Da-Zhi

    2014-07-01

    Previous studies show that Masson pine (Pinus massoniana L.) stands grown at the industrially-polluted site have experienced unprecedented growth decline, but the causal mechanisms are poorly understood. In this study, to understand the mechanisms of growth decline of Mason pine strands under pollution stresses, we determined the reactive oxygen species levels and chemical composition of the current-year (C) and one-year-old (C + 1) needles, and calculated the needle construction costs (CCmass) of Masson pine trees grown at an industrially-polluted site and an unpolluted remote site. Pine trees grown at the polluted site had significantly higher levels of hydroxyl radical and superoxide anion in their needles than those grown at the unpolluted site, and the former trees eventually exhibited needle early senescence. The contents of lipids, soluble phenolics and lignins in C and C + 1 needles were significantly higher at the polluted site than at the unpolluted site, but the total amounts of non-construction carbohydrates were lower in non-polluted needles than in polluted needles. Elevated levels of the reactive oxygen species and early senescence in polluted needles together led to significant increases in CCmass and a longer payback time. We infer that the lengthened payback time and needle early senescence under pollution stress may reduce the Masson pine tree growth and consequently accelerate tree decline.

  12. Exposure to Endocrine-Disrupting Chemicals during Pregnancy and Weight at 7 Years of Age: A Multi-pollutant Approach

    PubMed Central

    Agay-Shay, Keren; Martinez, David; Valvi, Damaskini; Garcia-Esteban, Raquel; Basagaña, Xavier; Robinson, Oliver; Casas, Maribel; Sunyer, Jordi

    2015-01-01

    Background Prenatal exposure to endocrine-disrupting chemicals (EDCs) may induce weight gain and obesity in children, but the obesogenic effects of mixtures have not been studied. Objective We evaluated the associations between pre- and perinatal biomarker concentrations of 27 EDCs and child weight status at 7 years of age. Methods In pregnant women enrolled in a Spanish birth cohort study between 2004 and 2006, we measured the concentrations of 10 phthalate metabolites, bisphenol A, cadmium, arsenic, and lead in two maternal pregnancy urine samples; 6 organochlorine compounds in maternal pregnancy serum; mercury in cord blood; and 6 polybrominated diphenyl ether congeners in colostrum. Among 470 children at 7 years, body mass index (BMI) z-scores were calculated, and overweight was defined as BMI > 85th percentile. We estimated associations with EDCs in single-pollutant models and applied principal-component analysis (PCA) on the 27 pollutant concentrations. Results In single-pollutant models, HCB (hexachlorobenzene), βHCH (β-hexachlorocyclohexane), and polychlorinated biphenyl (PCB) congeners 138 and 180 were associated with increased child BMI z-scores; and HCB, βHCH, PCB-138, and DDE (dichlorodiphenyldichloroethylene) with overweight risk. PCA generated four factors that accounted for 43.4% of the total variance. The organochlorine factor was positively associated with BMI z-scores and with overweight (adjusted RR, tertile 3 vs. 1: 2.59; 95% CI: 1.19, 5.63), and these associations were robust to adjustment for other EDCs. Exposure in the second tertile of the phthalate factor was inversely associated with overweight. Conclusions Prenatal exposure to organochlorines was positively associated with overweight at age 7 years in our study population. Other EDCs exposures did not confound this association. Citation Agay-Shay K, Martinez D, Valvi D, Garcia-Esteban R, Basagaña X, Robinson O, Casas M, Sunyer J, Vrijheid M. 2015. Exposure to endocrine

  13. The prediction of toxic mode of action for environmental pollutants based on physico-chemical properties

    SciTech Connect

    Boxall, A.B.A. |; Watts, C.D.; Bresnen, G.M.; Dearden, J.C.; Scoffin, R.

    1995-12-31

    Aquatic ecosystems receive a wide range of potentially toxic contaminants. One approach to measure the environmental impact of these compounds is to perform costly and detailed experimental investigations. A quick and cost-effective alternative is to predict the likely effects of chemical contaminants using quantitative structure activity relationships (QSARs) which relate effects to chemical structure. One problem with the predictive approach is that QSARs can be established and used only for compounds with a common mode of toxic action. It is therefore important that a compound is assigned to the correct mode of action and that the correct QSAR is used. Two kinds of approach can be used to address this problem. In the first a compound is assigned to a class based on responses observed during experimental tests. The other approach uses chemical structural information e.g. the OECD method where compounds are classed as inert, less inert, reactive or specific acting based on chemical structure. The objective of this study was to determine whether compounds could be classified into one of the four OECD classes solely on the basis of their physico-chemical properties. Approximately 800 compounds were assigned to an OECD class and a range of properties were calculated. Discriminant analysis demonstrated that a large proportion of these compounds could be classified correctly based on two properties, namely a molecular connectivity index ({sup 2}{sub x}) and an electronic parameter (E{sub HOMO}).

  14. Mussel watch - measurements of chemical pollutants in bivalves as one indicator of coastal environmental quality

    SciTech Connect

    Farrington, J.W.; Davis, A.C.; Tripp, B.W.; Phelps, D.K.; Galloway, W.B.

    1987-01-01

    The utility of the bivalve sentinel organism approach to monitoring for some chemicals of environmental concern in coastal and estuarine areas has been evaluated by regional and national programs and by smaller-scale research efforts during the past 15 years. The extent and severity of coastal contamination by chemicals such as polychlorinated biphenyls, chlorinated pesticides, trace metals, and plutonium was assessed in several bivalve sentinel organism programs. Advantages and limitations of this approach are presented and discussed briefly within the context of both national and international efforts.

  15. The chemical composition of red giants in 47 Tucanae. II. Magnesium isotopes and pollution scenarios

    NASA Astrophysics Data System (ADS)

    Thygesen, A. O.; Sbordone, L.; Ludwig, H.-G.; Ventura, P.; Yong, D.; Collet, R.; Christlieb, N.; Melendez, J.; Zaggia, S.

    2016-04-01

    Context. The phenomenon of multiple populations in globular clusters is still far from understood, with several proposed mechanisms to explain the observed behaviour. The study of elemental and isotopic abundance patterns are crucial for investigating the differences among candidate pollution mechanisms. Aims: We derive magnesium isotopic ratios for 13 stars in the globular cluster 47 Tucanae (NGC 104) to provide new, detailed information about the nucleosynthesis that has occurred within the cluster. For the first time, the impact of 3D model stellar atmospheres on the derived Mg isotopic ratios is investigated. Methods: Using both tailored 1D atmospheric models and 3D hydrodynamical models, we derive magnesium isotopic ratios from four features of MgH near 5135 Å in 13 giants near the tip of the red giant branch, using high signal-to-noise, high-resolution spectra. Results: We derive the magnesium isotopic ratios for all stars and find no significant offset of the isotopic distribution between the pristine and the polluted populations. Furthermore, we do not detect any statistically significant differences in the spread in the Mg isotopes in either population. No trends were found between the Mg isotopes and [Al/Fe]. The inclusion of 3D atmospheres has a significant impact on the derived 25Mg/24Mg ratio, increasing it by a factor of up to 2.5, compared to 1D. The 26Mg/24Mg ratio, on the other hand, essentially remains unchanged. Conclusions: We confirm the results seen from other globular clusters, where no strong variation in the isotopic ratios is observed between stellar populations, for observed ranges in [Al/Fe]. We see no evidence for any significant activation of the Mg-Al burning chain. The use of 3D atmospheres causes an increase of a factor of up to 2.5 in the fraction of 25Mg, resolving part of the discrepancy between the observed isotopic fraction and the predictions from pollution models. Based on observations made with the ESO Very Large Telescope

  16. Pollution Comes Home and Gets Personal: Women's Experience of Household Chemical Exposure

    ERIC Educational Resources Information Center

    Altman, Rebecca Gasior; Morello-Frosch, Rachel; Brody, Julia Green; Rudel, Ruthann; Brown, Phil; Averick, Mara

    2008-01-01

    We report on interviews conducted with participants in a novel study about environmental chemicals in body fluids and household air and dust. Interviews reveal how personal and collective environmental history influence the interpretation of exposure data, and how participants fashion an emergent understanding of environmental health problems from…

  17. Multivariate analysis of respiratory problems and their connection with meteorological parameters and the main biological and chemical air pollutants

    NASA Astrophysics Data System (ADS)

    Matyasovszky, István; Makra, László; Bálint, Beatrix; Guba, Zoltán; Sümeghy, Zoltán

    2011-08-01

    The aim of the study is to analyse the joint effect of biological (pollen) and chemical air pollutants, as well as meteorological variables, on the hospital admissions of respiratory problems for the Szeged region in Southern Hungary. The data set used covers a nine-year period (1999-2007) and is unique in the sense that it includes—besides the daily number of respiratory hospital admissions—not just the hourly mean concentrations of CO, PM 10, NO, NO 2, O 3 and SO 2 with meteorological variables (temperature, global solar flux, relative humidity, air pressure and wind speed), but two pollen variables ( Ambrosia and total pollen excluding Ambrosia) as well. The analysis was performed using three age categories for the pollen season of Ambrosia and the pollen-free season. Meteorological elements and air pollutants are clustered in order to define optimum environmental conditions of high patient numbers. ANOVA was then used to determine whether cluster-related mean patient numbers differ significantly. Furthermore, two novel procedures are applied here: factor analysis including a special transformation and a time-varying multivariate linear regression that makes it possible to determine the rank of importance of the influencing variables in respiratory hospital admissions, and also compute the relative importance of the parameters affecting respiratory disorders. Both techniques revealed that Ambrosia pollen is an important variable that influences hospital admissions (an increase of 10 pollen grains m -3 can imply an increase of around 24% in patient numbers). The role of chemical and meteorological parameters is also significant, but their weights vary according to the seasons and the methods. Clearer results are obtained for the pollination season of Ambrosia. Here, a 10 μg m -3 increase in O 3 implies a patient number response from -17% to +11%. Wind speed is a surprisingly important variable, where a 1 m s -1 rise may result in a hospital admission

  18. Chemical Pollution and Evolution of Massive Starbursts: Cleaning up the Environment in Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Kobulnicky, C.

    1996-12-01

    I present the results of a research program seeking to characterize the impact of massive star-clusters on the chemical and dynamical evolution of metal-poor, irregular and blue compact galaxies. The evolution of high mass stars is thought to contribute the bulk of heavy element enrichment in the interstellar medium, especially alpha -process elements like O, Si, etc. Yet, in actively star-forming galaxies, localized chemical inhomogeneities are seldom observed. Spatially-resolved optical and ultraviolet spectroscopy from the Hubble Space Telescope and ground-based observatories is used to search for chemical enrichment in the vicinity of young star clusters in nearby galaxies. VLA aperture synthesis maps are used to examine the neutral hydrogen content, dynamics, and local environment of the sample galaxies. Despite the spread in evolutionary state of the starbursts determined by the EW of Balmer emission lines and the radio continuum spectral index, few instances of localized enrichment are found. In light of these data, the ``instantaneous enrichment'' scenario for extragalactic HII regions appears less probable than one which operates on long timescales and global spatial scales. The results are consistent with the idea that starburst driven winds expel freshly synthesized metals in a hot 10(6) K phase into the halos of galaxies where they cool, condense into globules, and mix homogeneously with the rest of the galaxy on long (dynamical) timescales. The C/O and N/O ratios of the galaxies are used as new tools for measuring the recent star formation history. Implications for chemical evolution of galaxies both locally and cosmologically are developed.

  19. Simple, rapid zebrafish larva bioassay for assessing the potential of chemical pollutants and drugs to disrupt thyroid gland function.

    PubMed

    Raldúa, Demetrio; Babin, Patrick J

    2009-09-01

    Thyroid function may be altered by a very large number of chemicals routinely found in the environment Research evaluating potential thyroid disruption is ongoing, but there are thousands of synthetic and naturally occurring drugs and chemicals to be considered. European and United States policies call for the development of simple methodologies for screening endocrine-disrupting chemicals. Zebrafish are widely used as a model organism for assessing drug effects because of their small size, high fecundity, rapid organogenesis, morphological and physiological similarities to mammals, and easewithwhich large-scale phenotypic screening is performed. A zebrafish-based short-duration screening method was developed to detect the potential effect of chemicals and drugs on thyroid function. This method used a T4 immunofluorescence quantitative disruption test (TIQDT) to measure thyroid function. The 3 day exposure window protocol, from day 2 to day 5 postfertilization (dpf), avoided any potential side effects on thyroid gland morphogenesis. Methimazole, propylthiouracil, and potassium perchlorate, three well-known goitrogens, totally abolished T4 immunoreactivity in thyroid follicles in a dose-specific manner. Amiodarone, a human pharmaceutical with a reported cytotoxic effect on thyroid follicular cells, also decreased T4 levels. Moreover, exposure to 50 nM 3,3',5-triiodothyronine induced a significant decrease in T4 immunoreactivity as did DDT, 2,4-D, and 4-nonylphenol. In conclusion, these data indicated that TIQDT may be useful for obtaining initial information about the ability of environmental pollutants and drugs to impair thyroid gland function as well as assessing the combined effects of endocrine disruptors. PMID:19764258

  20. The sea urchin Paracentrotus lividus immunological response to chemical pollution exposure: The case of lindane.

    PubMed

    Stabili, Loredana; Pagliara, Patrizia

    2015-09-01

    In the marine environment organochlorine insecticides can be broadly detected in water, sediments, and biota. These pollutants may have major ecological consequences since they may affect marine organisms and endanger organismal growth, reproduction or survival. In this study we investigated the modification of some sea urchin immunological parameters in response to subchronic lindane (γ-HCH) exposure. Adult specimens of the sea urchin Paracentrotus lividus were exposed to two different concentrations (0.1 and 0.5 mg L(-1)) of lindane. After 24 and 48h of treatment, we examined the lindane influence on coelomocytes vitality and enumeration as well on some humoral parameters. Our results showed that the presence of the pesticide affected both cellular and humoral components of the immune system. In particular, P. lividus coelomocytes vitality did not change but a decrease of the total cell number and an increase of the red cells was recorded. Haemolytic and lysozyme-like activities as well as antibacterial activity on Vibrio alginolyticus of treated animals decreased. Sea urchin immunological competence modifications might represent a tool for monitoring disease susceptibility thus providing biological criteria for the implementation of water quality standards to protect marine organisms.

  1. Soil microcosm for testing the effects of chemical pollutants on soil fauna communities and trophic structure

    SciTech Connect

    Parmelee, R.W. . Dept. of Entomology); Wentsel, R.S.; Phillips, C.T.; Checkai, R.T. ); Simini, M. )

    1993-08-01

    A microcosm technique is presented that uses community and trophic-level analysis of soil nematodes and microarthropods to determine the effects of chemicals on soil systems. Forest soil was treated with either copper, p-nitrophenol, or trinitrotoluene. Nematodes were sorted into bacterivore, fungivore, herbivore, and omnivore-predator trophic groups, and a hatchling category. Microarthropods were sorted to the acarine suborders Prostigmata, Mesostigmata, and Oribatida; the insectan order Collembola; and a miscellaneous group. Omnivore-predator nematodes and meso-stigmatid and oribatid mites were the groups most sensitive to copper and were significantly reduced at levels as low as 100 [mu]g g[sup [minus]1] copper. Total nematode and microarthropod numbers declined above 200 [mu]g g[sup [minus]1] copper. Trophic structure analysis suggested that high sensitivity of nematode predators to intermediate levels of copper reduced predation on herbivore nematodes and resulted in greater numbers of nematodes compared to controls. p-Nitrophenol was very toxic to the nematode community, and all trophic groups were significantly reduced above 20 [mu]g g[sup [minus]1]. However, there was no effect of p-nitrophenol on microarthropods. Trinitrotoluene had no significant negative effect on total abundance of either groups of soil fauna, but oribatids were significantly reduced at 200 [mu]g g[sup [minus]1]. The results demonstrated that soil nematodes and microarthropods were sensitive indicators of environmental contaminants and that trophic-structure and community analysis has the potential to detect more subtle indirect effects of chemicals on soil food-web structure. The authors conclude that microcosms with field communities of soil microfauna offer high resolution of the ecotoxicological effects of chemicals in complex soil systems.

  2. Photocatalytic elimination of indoor air biological and chemical pollution in realistic conditions.

    PubMed

    Sánchez, Benigno; Sánchez-Muñoz, Marta; Muñoz-Vicente, María; Cobas, Guillermo; Portela, Raquel; Suárez, Silvia; González, Aldo E; Rodríguez, Nuria; Amils, Ricardo

    2012-05-01

    The photocatalytic elimination of microorganisms from indoor air in realistic conditions and the feasibility of simultaneous elimination of chemical contaminants have been studied at laboratory scale. Transparent polymeric monoliths have been coated with sol-gel TiO(2) films and used as photocatalyst to treat real indoor air in a laboratory-scale single-step annular photocatalytic reactor. The analytical techniques used to characterize the air quality and analyze the results of the photocatalytic tests were: colony counting, microscopy and PCR with subsequent sequencing for microbial quantification and identification; automated thermal desorption coupled to gas chromatography with mass spectrometry detection for chemical analysis. The first experiments performed proved that photocatalysis based on UVA-irradiated TiO(2) for the reduction of the concentration of bacteria in the air could compete with the conventional photolytic treatment with UVC radiation, more expensive and hazardous. Simultaneously to the disinfection, the concentration of volatile organic compounds was greatly reduced, which adds value to this technology for real applications. The fungal colony number was not apparently modified.

  3. Mixtures of Chemical Pollutants at European Legislation Safety Concentrations: How Safe Are They?

    PubMed Central

    Carvalho, Raquel N.; Arukwe, Augustine; Ait-Aissa, Selim; Bado-Nilles, Anne; Balzamo, Stefania; Baun, Anders; Belkin, Shimshon; Blaha, Ludek; Brion, François; Conti, Daniela; Creusot, Nicolas; Essig, Yona; Ferrero, Valentina E. V.; Flander-Putrle, Vesna; Fürhacker, Maria; Grillari-Voglauer, Regina; Hogstrand, Christer; Jonáš, Adam; Kharlyngdoh, Joubert B.; Loos, Robert; Lundebye, Anne-Katrine; Modig, Carina; Olsson, Per-Erik; Pillai, Smitha; Polak, Natasa; Potalivo, Monica; Sanchez, Wilfried; Schifferli, Andrea; Schirmer, Kristin; Sforzini, Susanna; Stürzenbaum, Stephen R.; Søfteland, Liv; Turk, Valentina; Viarengo, Aldo; Werner, Inge; Yagur-Kroll, Sharon; Zounková, Radka; Lettieri, Teresa

    2014-01-01

    The risk posed by complex chemical mixtures in the environment to wildlife and humans is increasingly debated, but has been rarely tested under environmentally relevant scenarios. To address this issue, two mixtures of 14 or 19 substances of concern (pesticides, pharmaceuticals, heavy metals, polyaromatic hydrocarbons, a surfactant, and a plasticizer), each present at its safety limit concentration imposed by the European legislation, were prepared and tested for their toxic effects. The effects of the mixtures were assessed in 35 bioassays, based on 11 organisms representing different trophic levels. A consortium of 16 laboratories was involved in performing the bioassays. The mixtures elicited quantifiable toxic effects on some of the test systems employed, including i) changes in marine microbial composition, ii) microalgae toxicity, iii) immobilization in the crustacean Daphnia magna, iv) fish embryo toxicity, v) impaired frog embryo development, and vi) increased expression on oxidative stress-linked reporter genes. Estrogenic activity close to regulatory safety limit concentrations was uncovered by receptor-binding assays. The results highlight the need of precautionary actions on the assessment of chemical mixtures even in cases where individual toxicants are present at seemingly harmless concentrations. PMID:24958932

  4. Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they?

    PubMed

    Carvalho, Raquel N; Arukwe, Augustine; Ait-Aissa, Selim; Bado-Nilles, Anne; Balzamo, Stefania; Baun, Anders; Belkin, Shimshon; Blaha, Ludek; Brion, François; Conti, Daniela; Creusot, Nicolas; Essig, Yona; Ferrero, Valentina E V; Flander-Putrle, Vesna; Fürhacker, Maria; Grillari-Voglauer, Regina; Hogstrand, Christer; Jonáš, Adam; Kharlyngdoh, Joubert B; Loos, Robert; Lundebye, Anne-Katrine; Modig, Carina; Olsson, Per-Erik; Pillai, Smitha; Polak, Natasa; Potalivo, Monica; Sanchez, Wilfried; Schifferli, Andrea; Schirmer, Kristin; Sforzini, Susanna; Stürzenbaum, Stephen R; Søfteland, Liv; Turk, Valentina; Viarengo, Aldo; Werner, Inge; Yagur-Kroll, Sharon; Zounková, Radka; Lettieri, Teresa

    2014-09-01

    The risk posed by complex chemical mixtures in the environment to wildlife and humans is increasingly debated, but has been rarely tested under environmentally relevant scenarios. To address this issue, two mixtures of 14 or 19 substances of concern (pesticides, pharmaceuticals, heavy metals, polyaromatic hydrocarbons, a surfactant, and a plasticizer), each present at its safety limit concentration imposed by the European legislation, were prepared and tested for their toxic effects. The effects of the mixtures were assessed in 35 bioassays, based on 11 organisms representing different trophic levels. A consortium of 16 laboratories was involved in performing the bioassays. The mixtures elicited quantifiable toxic effects on some of the test systems employed, including i) changes in marine microbial composition, ii) microalgae toxicity, iii) immobilization in the crustacean Daphnia magna, iv) fish embryo toxicity, v) impaired frog embryo development, and vi) increased expression on oxidative stress-linked reporter genes. Estrogenic activity close to regulatory safety limit concentrations was uncovered by receptor-binding assays. The results highlight the need of precautionary actions on the assessment of chemical mixtures even in cases where individual toxicants are present at seemingly harmless concentrations. PMID:24958932

  5. Chemical characterization and sources apportionment of fine particulate pollution in a mining town of Vietnam

    NASA Astrophysics Data System (ADS)

    Hang, Nguyen Thanh; Kim Oanh, Nguyen Thi

    2014-08-01

    Monitoring for PM2.5 was conducted in a mining town in Northern Vietnam in both dry and wet seasons from 2009 to 2010. Levels and compositions of PM were characterized at two sites representing two separate air bubbles; an industrial site in Mong Duong (MD) and a reference rural site in Cam Hai (CH). Two MiniVol samplers were collocated to collect 24 h PM2.5 samples for about 30 days at each site in a season, simultaneously with meteorological data recording. All samples were analyzed for mass, black carbon (BC), water soluble ions and elements, while selected samples were also analyzed for OC (organic carbon) and EC (element carbon). Higher PM2.5 levels were observed in the dry season than the wet season at both sites in spite of abnormal rainfall occurrences observed on some days during the dry season. In both seasons, higher PM2.5 levels were observed in the industrial site than the reference rural site. The differences in PM, BC or EC and OC levels between two sites and between two seasons at one site, respectively, were all statistically significant except for that in OC between two sites, and BC between two seasons at MD. The reconstructed PM2.5 mass indicated major contributing groups being organic matter, secondary inorganic particles, crustal and soot in both seasons. Higher values of K-Smoke in the dry season suggested more contribution from biomass burning. The PMF results revealed the largest contribution to PM2.5 mass from secondary PM (35-40%); followed by biomass burning, ship and road traffic (diesel) each had a share of 15-22%; and a small contribution from miscellaneous sources such as industry and construction activities (3-8%). Analysis of HYSPLIT backward trajectory patterns showed a high potential contribution of the long range transport (LRT) pollution when air masses had long continental pathways before arriving at the study area.

  6. Association of chemical constituents and pollution sources of ambient fine particulate air pollution and biomarkers of oxidative stress associated with atherosclerosis: A panel study among young adults in Beijing, China.

    PubMed

    Wu, Shaowei; Yang, Di; Wei, Hongying; Wang, Bin; Huang, Jing; Li, Hongyu; Shima, Masayuki; Deng, Furong; Guo, Xinbiao

    2015-09-01

    Ambient particulate air pollution has been associated with increased oxidative stress and atherosclerosis, but the chemical constituents and pollution sources behind the association are unclear. We investigated the associations of various chemical constituents and pollution sources of ambient fine particles (PM2.5) with biomarkers of oxidative stress in a panel of 40 healthy university students. Study participants underwent repeated blood collections for 12 times before and after relocating from a suburban campus to an urban campus with high air pollution levels in Beijing, China. Air pollution data were obtained from central air-monitoring stations, and plasma levels of oxidized low-density lipoprotein (Ox-LDL) and soluble CD36 (sCD36) were determined in the laboratory (n=464). Linear mixed-effects models were used to estimate the changes in biomarkers in association with exposure variables. PM2.5 iron and nickel were positively associated with Ox-LDL (p<0.05). For each interquartile range increase in iron (1-day, 0.51 μg/m(3)) and nickel (2-day, 2.5 ng/m(3)), there were a 1.9% [95% confidence interval (CI): 0.2%, 3.7%] increase and a 1.8% (95% CI: 0.2%, 3.4%) increase in Ox-LDL, respectively. We also found that each interquartile range increase in calcium (1-day, 0.7 μg/m(3)) was associated with a 4.8% (95% CI: 0.7%, 9.1%) increase in sCD36. Among the pollution sources, PM2.5 from traffic emissions and coal combustion were suggestively and positively associated with Ox-LDL. Our findings suggest that a subset of metals in airborne particles may be the major air pollution components that contribute to the increased oxidative stress associated with atherosclerosis.

  7. Chemical characterization of iron oxide precipitates from wetlands constructed to treat polluted mine drainage

    SciTech Connect

    Fish, C.L.; Partezana, J.M.; Hedin, R.S.

    1996-12-31

    The passive treatment of abandoned mine drainage using wetlands will produce a significant amount of iron rich sludge which will require costly removal and disposal. An alternative to disposal may be the use of this iron oxide material as pigments which could defray some of these costs. In this research, iron deposits from five alkaline mine drainage wetlands were collected and a series of standard tests were run. The tests included loss on ignition, moisture, pH, acid soluble metals, oil absorption, and water soluble matter. The results of these tests were compared to those achieved using commercially available natural and synthetic iron oxides. The results indicate that iron oxides from constructed wetlands have chemical properties that are intermediate to those of natural and synthetic iron oxide products.

  8. Assessment of pollution in the Bizerte lagoon (Tunisia) by the combined use of chemical and biochemical markers in mussels, Mytilus galloprovincialis.

    PubMed

    Barhoumi, Badreddine; Le Menach, Karyn; Clérandeau, Christelle; Ameur, Walid Ben; Budzinski, Hélène; Driss, Mohamed Ridha; Cachot, Jérôme

    2014-07-15

    In order to assess the environmental quality of the Bizerte lagoon (Tunisia), biomarker and contaminant levels were measured in Mediterranean mussels (Mytilus galloprovincialis) from five selected sites. Persistent organic pollutants (POPs) were quantified in whole body and enzyme activities such as acetylcholinesterase (AChE), catalase (CAT) and glutathione S-transferase (GST) in gills. Despite the relatively low levels of organic contaminants, the selected biomarkers responded differently according to the pollution level at the different sites. GST and AChE activities were correlated with the amount of DDTs in mussel tissues. These two enzymatic activities were also correlated to temperature and pH. No significant difference was observed for CAT activity. Principal component analysis showed a clear separation of sampling sites in three different assemblages which is consistent with POP body burden in mussels. Our results confirmed the usefulness of combining biomarker and chemical analyses in mussels to assess chemical pollution in the Bizerte lagoon.

  9. [Problem of risk of processes of increasing in the concentration of chemical pollutants in the small rivers of the Saratov region for population health].

    PubMed

    Musaev, Sh Zh; Eliseev, Iu Iu; Lutsevich, I N

    2012-01-01

    The health hazard of the processes of accumulation of the chemical pollutants in superficial reservoirs of the small rivers of the Saratov region for the population health was shown in the previous studies. The necessity of application of additional oxidation and absorption methods and also control for technology of an intake of water from superficial sources of water supply on treatment facilities was suggested.

  10. Chemical forms and sources of extremely high nitrate and chloride in winter aerosol pollution in the Kanto Plain of Japan

    NASA Astrophysics Data System (ADS)

    Kaneyasu, Naoki; Yoshikado, Hiroshi; Mizuno, Tateki; Sakamoto, Kazuhiko; Soufuku, Masataka

    The spatial distributions, chemical forms, and potential sources have been investigated for extremely high concentrations of Cl - and NO -3 in aerosols collected during an extensive study for winter pollution episodes in the Kanto Plain of Japan. Air monitoring are conducted at 10 sites including the rooftops of skyscrapers during two measurement periods in November-December 1991. Similarity in the diurnal variation patterns of NO -3 among the sampling sites suggests that its precursor HNO 3 is formed by reactions in the atmosphere, while difference in the maximum concentration of Cl - between the sites indicates the presence of local sources. Measurements at ground level and on the rooftops of skyscrapers show that the pronounced diurnal variations of both components are phenomena occurring in the layer extending from the ground surface to at least 200 m height. Intensified measurements at two ground sites indicate that (1) NO -3 and non sea-salt Cl - are predominantly in the fine mode, (2) [NO -3] + [Cl -] and [NH +4] are in equivalence, (3) gaseous HCl, HNO 3, and NH 3 are in equilibrium with particulate NH 4Cl and NH 4NO 3. From these results, it is concluded that measured Cl - and NO -3 are predominantly in the form of NH 4Cl and NH 4NO 3, respectively. The behavior of peroxyacetyl nitrate (PAN) indicates that HNO 3, the precursor of NO -3, is produced in the photochemical reactions of the NO x-hydrocarbons system. The elevated concentration of NO 2 measured simultaneously in the pollution episodes is regarded as an alternative form of O 3 produced in photochemical reactions. As the precursor of Cl - in aerosols, sources of HCl are discussed, and the emission from incineration of domestic and industrial waste in the area is estimated.

  11. Size- and time-resolved chemical particle characterization during CAREBeijing-2006: Different pollution regimes and diurnal profiles

    NASA Astrophysics Data System (ADS)

    van Pinxteren, D.; Brüggemann, E.; Gnauk, T.; Iinuma, Y.; Müller, K.; Nowak, A.; Achtert, P.; Wiedensohler, A.; Herrmann, H.

    2009-01-01

    Beijing, the capital of China, faces severe air pollution problems, resulting from a steep economic growth during the past decades. To better characterize the processes leading to the frequently observed high concentrations of air pollutants on a regional scale, the international field campaign "Campaigns of Air Quality Research in Beijing and Surrounding Region 2006" (CAREBeijing-2006) was conducted in summer 2006. In this contribution, we present chemical data of size-resolved particles, obtained by a five-stage Berner impactor during 3 weeks at both an urban and suburban site in the area of Beijing, China. The samples were analyzed for inorganic ions (Cl-, SO42-, NO3-, NH4+, K+, Ca2+, Na+, and Mg2+), carbon sum parameters (OC, EC, and WSOC), and a variety of organic compounds such as dicarboxylic acids, alkanes, PAHs, and, for the first time in China, nitrooxy-organosulfates. On average, the observed PM10 (where PM is particulate matter) mass concentrations were 133 μg m-3 and 112 μg m-3 at the urban and suburban site, respectively. A high influence of meteorology on the PM pollution was observed and is discussed. The highest concentrations of both PM mass and particle constituents were observed when sampled air masses originated south of Beijing and moved over the area with low wind speeds. During such periods, a strong increase of daytime concentrations of the secondary ions sulfate, nitrate, ammonium, and also some dicarboxylic acids could be observed. A strong diurnal variation of particle sulfate concentration with increasing values from morning to afternoon was observed during an intensive period, which could be attributed to regional production. Similar observations were made for oxalic acid. Generally, water-soluble organic carbon concentrations were enhanced by a factor of 2 in fine particles during the studied period of intense photochemistry. Elemental carbon, alkanes, and PAHs showed clear nighttime concentration maxima obviously due to enhanced

  12. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L.; Eisele, Fred L.; Siepmann, J. Ilja; Hanson, David R.; Zhao, Jun; McMurry, Peter H.

    2013-05-01

    Measurements of aerosol number distributions down to one molecule have provided information that we've used to develop a new approach for modeling atmospheric nucleation rates. Measurements were carried out with the Cluster Chemical Ionization Mass Spectrometer (Cluster CIMS), the scanning mobility spectrometer using a diethylene glycol condensation particle counter as detector (DEG SMPS), and an ambient pressure proton transfer mass spectrometer for ammonia and amines (AmPMS). The model explains nucleation as a result of cluster evolution due to a sequence of acid-base reactions. We conclude that the smallest stable cluster contains four sulfuric acid molecules. The model leads to a simple analytic expression for nucleation rates that is reasonably consistent (i.e., ± 10x) with atmospheric observations. The model predicts that nucleation rates are equal to a prefactor, P<1, times the sulfuric acid vapor collision rate, (i.e., J=Pṡ0.5ṡk11 *[H2SO4]2).

  13. Toxicological investigation and evaluation of drinking-water pollution caused by chemical wastes

    SciTech Connect

    Desi, I.; Somosi, G.

    1984-08-01

    Acute, subacute, in vitro, and animal experiments were performed in the spring and fall of 1981. In the course of these investigations, samples from bank-filtered drinking-water wells of Vac, a town along the Danube; from three neighboring observation wells; from water transported from the opposite side of the Danube; from a drinking-water well of a town farther northward; and from Danube water were examined. The aim of the study was to detect whether any of the water samples became contaminated by toxic chemicals. The drinking-water samples of the wells in Vac (Nos. 1-5) proved to be contaminated, and toxic effects of different degrees were also induced by other wells of Vac. The Danube water caused changes in some tests only; the control drinking-water well, the samples of the K3 observation well, and of the well on the opposite side of the Danube examined in the fall only did not cause any alterations. The toxicity was confirmed by the elevated hemolysis by the genotoxic effects on human erythrocytes and leukocytes, by the functional changes observed in the nervous system of rats, by alterations detected in the electric activity of the rats brains, in the learning ability and the behavior of the rats, by the increase in the cytochrome P-450 enzyme level of the liver, and by the chromosome aberrations emerging in mice. The changes were caused by different compounds of low and high boiling points escaping with water vapor or with organic solvents. On the basis of the investigations, the water proved to be inappropriate for human consumption.

  14. The Dart estuary, Devon, UK: a case study of chemical dynamics and pollutant mobility

    NASA Astrophysics Data System (ADS)

    Schuwerack, P.-M. M.; Neal, M.; Neal, C.

    2007-01-01

    Water, sediments and gill and digestive gland tissues of adult common shore crab (Carcinus maenas), collected at Noss Marina, Sandquay (Britannia Royal Naval College), the Dartmouth Pier, Warfleet Cove and Sugary Cove in the Dart estuary, Devon, UK, were analysed for major, minor and trace elements in spring 2004. Total acid-available measurements analysed included the truly dissolved component and acid-available sediments. Trace metal concentrations are associated largely with particulate and micro-particulate/colloidal phases, the latter being able to pass through standard filter papers. Wide ranges of chemical concentrations were found in the water, sediments and tissues at all the locations. In the water column, 48% of the variance is linked to the sea-salt component (Cl, Na, K, Ca, Mg, B, Li and Sr) and the sediment-associated acid-available fractions are linked to Fe-rich lithogenous materials (Ba, Co, Cu, Fe, Mn, V and Zn). In the sediments, trace elements of Cd, Co, Cr, Fe, Pb, Mn, Ni and V are correlated with the sea salts and associated with the fraction of fine sediments within the total sediment. In the gills and the digestive gland tissues of crabs, high concentrations of Al, Cu and Fe are found and there are correlations between acid-available trace metals of Cu, Cr, Fe, Mn, Ni, Sr and Zn. The relationships between trace metal contaminants, their site-specific concentrations, their temporal and spatial variability and the effects of human activities, such as moorland/agriculture with historic mining and recreational activities in the lower Dart estuary, are discussed.

  15. Chemical characteristics and causes of airborne particulate pollution in warm seasons in Wuhan, central China

    NASA Astrophysics Data System (ADS)

    Lyu, Xiaopu; Chen, Nan; Guo, Hai; Zeng, Lewei; Zhang, Weihao; Shen, Fan; Quan, Jihong; Wang, Nan

    2016-08-01

    Continuous measurements of airborne particles and their chemical compositions were conducted in May, June, October, and November 2014 at an urban site in Wuhan, central China. The results indicate that particle concentrations remained at a relatively high level in Wuhan, with averages of 135.1 ± 4.4 (mean ± 95 % confidence interval) and 118.9 ± 3.7 µg m-3 for PM10 and 81.2 ± 2.6 and 85.3 ± 2.6 µg m-3 for PM2.5 in summer and autumn, respectively. Moreover, PM2.5 levels frequently exceeded the National Standard Level II (i.e., daily average of 75 µg m-3), and six PM2.5 episodes (i.e., daily PM2.5 averages above 75 µg m-3 for 3 or more consecutive days) were captured during the sampling campaign. Potassium was the most abundant element in PM2.5, with an average concentration of 2060.7 ± 82.3 ng m-3; this finding indicates intensive biomass burning in and around Wuhan during the study period, because almost no correlation was found between potassium and mineral elements (iron and calcium). The source apportionment results confirm that biomass burning was the main cause of episodes 1, 3, and 4, with contributions to PM2.5 of 46.6 % ± 3.0 %, 50.8 % ± 1.2 %, and 44.8 % ± 2.6%, respectively, whereas fugitive dust was the leading factor in episode 2. Episodes 5 and 6 resulted mainly from increases in vehicular emissions and secondary inorganic aerosols, and the mass and proportion of NO3- both peaked during episode 6. The high levels of NOx and NH3 and the low temperature during episode 6 were responsible for the increase of NO3-. Moreover, the formation of secondary organic carbon was found to be dominated by aromatics and isoprene in autumn, and the contribution of aromatics to secondary organic carbon increased during the episodes.

  16. The Effects of Chronic Lifelong Activation of the AHR Pathway by Industrial Chemical Pollutants on Female Human Reproduction

    PubMed Central

    Vacca, Margherita; Nardelli, Claudia; Castegna, Alessandra; Arnesano, Fabio; Carella, Nicola; Depalo, Raffaella

    2016-01-01

    Environmental chemicals, such as heavy metals, affect female reproductive function. A biological sensor of the signals of many toxic chemical compounds seems to be the aryl hydrocarbon receptor (AHR). Previous studies demonstrated the environmental of heavy metals in Taranto city (Italy), an area that has been influenced by anthropogenic factors such as industrial activities and waste treatments since 1986. However, the impact of these elements on female fertility in this geographic area has never been analyzed. Thus, in the present study, we evaluated the AHR pathway, sex steroid receptor pattern and apoptotic process in granulosa cells (GCs) retrieved from 30 women, born and living in Taranto, and 30 women who are living in non-contaminated areas (control group), who were undergoing in vitro fertilization (IVF) protocol. In follicular fluids (FFs) of both groups the toxic and essential heavy metals, such as chromiun (Cr), Manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), were also analyzed. Higher levels of Cr, Fe, Zn and Pb were found in the FFs of the women from Taranto as compared to the control group, as were the levels of AHR and AHR-dependent cytochrome P450 1A1 and 1B1; while CYP19A1 expression was decreased. The anti-apoptotic process found in the GCs of women fromTaranto was associated with the highest levels of progesterone receptor membrane component 1 (PGRMC1), a novel progesterone receptor, the expression of which is subjected to AHR activated by its highest affinity ligands (e.g., dioxins) or indirectly by other environmental pollutants, such as heavy metals. In conclusion, decreased production of estradiol and decreased number of retrieved mature oocytes found in women from Taranto could be due to chronic exposure to heavy metals, in particular to Cr and Pb. PMID:27008165

  17. Atmospheric pollution

    SciTech Connect

    Schlesinger, R.B. )

    1992-06-01

    Air pollution has been directly responsible for increases in mortality and morbidity in the general population during periods known as episodes, when pollutant levels were elevated well above those that occur on a regular basis. The major concern today regarding pollution and health is, however, more subtle--namely, whether the lower levels of pollution to which we are exposed daily are harmful to health. It is extremely difficult to relate specific health problems to specific pollutants, because other environmental and lifestyle factors may contribute to decrements in health. Furthermore, people are generally exposed to mixtures of pollutants, making it difficult to extract the effects caused by individual components, or to determine which combinations are the most hazardous. Community air pollution results from various sources: mobile sources, such as vehicles; stationary sources, such as power plants and factories; and indoor sources, such as building material. Complicating the picture is the fact that many chemicals released into the air may react, producing additional secondary pollutants. This article provides an overview of the major air pollutants that may be of concern in terms of public health.

  18. Atmospheric pollution.

    PubMed

    Schlesinger, R B

    1992-06-01

    Air pollution has been directly responsible for increases in mortality and morbidity in the general population during periods known as episodes, when pollutant levels were elevated well above those that occur on a regular basis. The major concern today regarding pollution and health is, however, more subtle--namely, whether the lower levels of pollution to which we are exposed daily are harmful to health. It is extremely difficult to relate specific health problems to specific pollutants, because other environmental and lifestyle factors may contribute to decrements in health. Furthermore, people are generally exposed to mixtures of pollutants, making it difficult to extract the effects caused by individual components, or to determine which combinations are the most hazardous. Community air pollution results from various sources: mobile sources, such as vehicles; stationary sources, such as power plants and factories; and indoor sources, such as building material. Complicating the picture is the fact that many chemicals released into the air may react, producing additional secondary pollutants. This article provides an overview of the major air pollutants that may be of concern in terms of public health.

  19. Assessment of full-scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico.

    PubMed

    Estrada-Arriaga, Edson Baltazar; Cortés-Muñoz, Juana Enriqueta; González-Herrera, Arturo; Calderón-Mólgora, César Guillermo; de Lourdes Rivera-Huerta, Ma; Ramírez-Camperos, Esperanza; Montellano-Palacios, Leticia; Gelover-Santiago, Silvia Lucila; Pérez-Castrejón, Sara; Cardoso-Vigueros, Lina; Martín-Domínguez, Alejandra; García-Sánchez, Liliana

    2016-11-15

    Two full-scale biological nutrient removal systems upgraded with three physico-chemical processes (coagulation, chemical precipitation, and neutral Fenton) were evaluated in order to determine the removal of emerging pollutants (EPs) present in municipal wastewater from Mexico. Between 41 and 55 EPs were detected in the influents of two wastewater treatment plants (WWTPs), including personal care products (PPCPs), antibiotics, analgesics, antiepileptics, antilipidemics, antihypertensives, antiseptics, stimulants, and hormones. Emerging pollutants were detected at concentrations ranging from 0.69ng/L to 94,600ng/L. High concentrations of emerging pollutants were found during dry season. WWTP 1, integrated by oxidation ditches and UV light lamps, showed removal efficiencies of EPs between 20% and 22%. On the other hand, WWTP 2 consisted of anaerobic/anoxic/aerobic tanks coupled with two disinfection processes; chlorine dioxide and UV light lamps, for which the removal of EPs was significant (up to 80%). The concentrations of emerging pollutants in WWTP 1 effluent was found within a rangepollutants in the effluent were below 210ng/L. WWTP 2 showed high emerging pollutant removals, compared to those of WWTP 1, due to a greater activity of the simultaneous nitrification-denitrification processes, hydraulic retention time, and solids retention time. The compounds that were more persistent with removals below 50% in both effluents were: carbamazepine, dehydronifedipine, meprobamate, sertraline, propranolol, propoxyphene, norverapamil, diazepam, alprazolam, sulfamethoxazole, metoprolol, ofloxacin, norfloxacin, fluoxetine, erythromycin-H2O, diphenhydramine, dehydronifedipine, clarithromycin, hydrochlorothiazide, and albuterol. The application of neutral Fenton reaction as post-treatment for the two effluents from the WWTPs is promising for the removal of emerging pollutants (up to 100

  20. Assessment of full-scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico.

    PubMed

    Estrada-Arriaga, Edson Baltazar; Cortés-Muñoz, Juana Enriqueta; González-Herrera, Arturo; Calderón-Mólgora, César Guillermo; de Lourdes Rivera-Huerta, Ma; Ramírez-Camperos, Esperanza; Montellano-Palacios, Leticia; Gelover-Santiago, Silvia Lucila; Pérez-Castrejón, Sara; Cardoso-Vigueros, Lina; Martín-Domínguez, Alejandra; García-Sánchez, Liliana

    2016-11-15

    Two full-scale biological nutrient removal systems upgraded with three physico-chemical processes (coagulation, chemical precipitation, and neutral Fenton) were evaluated in order to determine the removal of emerging pollutants (EPs) present in municipal wastewater from Mexico. Between 41 and 55 EPs were detected in the influents of two wastewater treatment plants (WWTPs), including personal care products (PPCPs), antibiotics, analgesics, antiepileptics, antilipidemics, antihypertensives, antiseptics, stimulants, and hormones. Emerging pollutants were detected at concentrations ranging from 0.69ng/L to 94,600ng/L. High concentrations of emerging pollutants were found during dry season. WWTP 1, integrated by oxidation ditches and UV light lamps, showed removal efficiencies of EPs between 20% and 22%. On the other hand, WWTP 2 consisted of anaerobic/anoxic/aerobic tanks coupled with two disinfection processes; chlorine dioxide and UV light lamps, for which the removal of EPs was significant (up to 80%). The concentrations of emerging pollutants in WWTP 1 effluent was found within a rangepollutants in the effluent were below 210ng/L. WWTP 2 showed high emerging pollutant removals, compared to those of WWTP 1, due to a greater activity of the simultaneous nitrification-denitrification processes, hydraulic retention time, and solids retention time. The compounds that were more persistent with removals below 50% in both effluents were: carbamazepine, dehydronifedipine, meprobamate, sertraline, propranolol, propoxyphene, norverapamil, diazepam, alprazolam, sulfamethoxazole, metoprolol, ofloxacin, norfloxacin, fluoxetine, erythromycin-H2O, diphenhydramine, dehydronifedipine, clarithromycin, hydrochlorothiazide, and albuterol. The application of neutral Fenton reaction as post-treatment for the two effluents from the WWTPs is promising for the removal of emerging pollutants (up to 100

  1. Design of Laser Based Monitoring Systems for Compliance Management of Odorous and Hazardous Air Pollutants in Selected Chemical Industrial Estates at Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Sudhakar, P.; Kalavathi, P.; Ramakrishna Rao, D.; Satyanarayna, M.

    2014-12-01

    Industrialization can no longer sustain without internalization of the concerns of the receiving environment and land-use. Increased awareness and public pressure, coupled with regulatory instruments and bodies exert constant pressure on industries to control their emissions to a level acceptable to the receiving environment. However, when a group of industries come-up together as an industrial estate, the cumulative impacts of all the industries together often challenges the expected/desired quality of receiving environment, requiring stringent pollution control and monitoring measures. Laser remote sensing techniques provide powerful tools for environmental monitoring. These methods provide range resolved measurements of concentrations of various gaseous pollutants and suspended particulate matter (SPM) not only in the path of the beam but over the entire area. A three dimensional mapping of the pollutants and their dispersal can be estimated using the laser remote sensing methods on a continuous basis. Laser Radar (Lidar) systems are the measurements technology used in the laser remote sensing methods. Differential absorption lidar (DIAL) and Raman Lidar technologies have proved to be very useful for remote sensing of air pollutants. DIAL and Raman lidar systems can be applied for range resolved measurements of molecules like SO2, NO2, O3 Hg, CO, C2H4, H2O, CH4, hydrocarbons etc. in real time on a continuous basis. This paper describes the design details of the DAIL and Raman lidar techniques for measurement of various hazardous air pollutants which are being released into the atmosphere by the chemical industries operating in the Bachupally industrial Estate area at Hyderabad, India. The relative merits of the two techniques have been studied and the minimum concentration of pollutants that can be measured using these systems are presented. A dispersion model of the air pollutants in the selected chemical industrial estates at Hyderabad has been developed.

  2. Simulating the transport and chemical evolution of biomass burning pollutants originating from Southeast Asia during 7-SEAS/2010 Dongsha experiment

    NASA Astrophysics Data System (ADS)

    Chuang, Ming-Tung; Fu, Joshua S.; Lin, Neng-Huei; Lee, Chung-Te; Gao, Yang; Wang, Sheng-Hsiang; Sheu, Guey-Rong; Hsiao, Ta-Chih; Wang, Jia-Lin; Yen, Ming-Cheng; Lin, Tang-Huang; Thongboonchoo, Narisara; Chen, Wei-Chen

    2015-07-01

    This study aimed to simulate the transport of biomass burning (BB) aerosol originating from Southeast Asia (SEA) during the Dongsha Experiment conducted from March 2010 to April 2010. Transport pathways were reanalyzed and steering flow in the mid-latitude areas and anticyclones in low-latitude areas were found to control the transport of BB plume after it was injected to a high atmosphere. For the 12 simulated and observed events at Mt. Lulin (2862 m MSL; 23°28‧07″ N, 120°52‧25″ E), the 72 h backward trajectories were all tracked back to southern China and northern Indochina, which were the locations of the largest BB fire activities in SEA. Chemical evolutions of BB pollutants along the moving trajectories showed that organic matter was always the dominant component in PM2.5, consistent with the observations at both near-source regions and Mt. Lulin. For nitrogen species, nearly all NOx molecules oxidized into HNO3, NO3-, PAN, and PANX in fires or near fires. The synchronic consumption of NOx, SO2, and NH3 explained the production of the major components of inorganic salts. In the moving BB plume, sulfate concentration increased with decreased nitrate concentration. Ratios of ammonium to PM2.5 and elemental carbon to PM2.5 remained nearly constant because additional sources were lacking.

  3. An ionic liquid tolerant cellulase derived from chemically polluted microhabitats and its application in in situ saccharification of rice straw.

    PubMed

    Xu, Jiaxing; He, Bingfang; Wu, Bin; Wang, Bin; Wang, Chenghua; Hu, Lei

    2014-04-01

    A cellulase-producing fungus was isolated from chemically polluted microhabitats by [Amim][Cl] enrichment and identified as Aspergillus fumigatus. The maximum activity of the cellulase in 30% (v/v) ionic liquids (ILs) was detected in [Emim][DMP], [Amim][Cl] and [Emim][MA] as 127%, 111% and 109%, respectively, of its activity in buffer, suggesting its superior performance in high concentration ILs. Strikingly, although its initial activity varied in each IL, its half-life was longer in most ILs than in buffer, evidence of a high conformational stability of the enzyme that is essential for maintaining the remaining activity in relevant media. It noteworthy that 1-3M NaCl can activate the cellulase somewhat. More gratifyingly, a compatible IL-cellulase system based on the cellulase was developed, and its use significantly improved the saccharification rate of rice straw from 53% to 88% versus the control, demonstrating its potential for efficient transformation of lignocellulose to glucose in a single-step process.

  4. Chemical pollution and toxicity of water samples from stream receiving leachate from controlled municipal solid waste (MSW) landfill.

    PubMed

    Melnyk, A; Kuklińska, K; Wolska, L; Namieśnik, J

    2014-11-01

    The present study was aimed to determine the impact of municipal waste landfill on the pollution level of surface waters, and to investigate whether the choice and number of physical and chemical parameters monitored are sufficient for determining the actual risk related to bioavailability and mobility of contaminants. In 2007-2012, water samples were collected from the stream flowing through the site at two sampling locations, i.e. before the stream׳s entry to the landfill, and at the stream outlet from the landfill. The impact of leachate on the quality of stream water was observed in all samples. In 2007-2010, high values of TOC and conductivity in samples collected down the stream from the landfill were observed; the toxicity of these samples was much greater than that of samples collected up the stream from the landfill. In 2010-2012, a significant decrease of conductivity and TOC was observed, which may be related to the modernization of the landfill. Three tests were used to evaluate the toxicity of sampled water. As a novelty the application of Phytotoxkit F™ for determining water toxicity should be considered. Microtox(®) showed the lowest sensitivity of evaluating the toxicity of water samples, while Phytotoxkit F™ showed the highest. High mortality rates of Thamnocephalus platyurus in Thamnotoxkit F™ test can be caused by high conductivity, high concentration of TOC or the presence of compounds which are not accounted for in the water quality monitoring program.

  5. Time matters: A stock-pollution approach to authorisation decision-making for PBT/vPvB chemicals under REACH.

    PubMed

    Gabbert, Silke; Hilber, Isabel

    2016-12-01

    A core aim of the European chemicals legislation REACH is to ensure that the risks caused by substances of very high concern (SVHC) are adequately controlled. Authorisation - i.e. the formal approval of certain uses of SVHC for a limited time - is a key regulatory instrument in order to achieve this goal. For SVHC which are, in addition to their toxicity, (very) persistent and/or (very) bioaccumulative (PBT/vPvB chemicals), decision-making on the authorisation is conditional on a socio-economic analysis (SEA). In a SEA companies must demonstrate that the gains from keeping a chemical in use outweigh expected damage costs for society. The current setup of the REACH authorisation process, including existing guidance on performing a SEA, ignores that PBT/vPvB chemicals are stock pollutants. This paper explores the implications of incorporating stock pollution effects of these chemicals into a SEA on authorisation decision-making. We develop a cost-benefit approach which includes stock dynamics of PBT/vPvB chemicals. This allows identifying the decision rules for granting or refusing an authorisation. Furthermore, we generalize the model to an entire set of damage functions. We show that ignoring stock pollution effects in a SEA may lead to erroneous decisions on the use of PBT/vPvB chemicals because long-term impacts are not adequately captured. Using a historic case of DDT soil contamination as an illustrative example we discuss information requirements and challenges for authorisation decisions on the use of PBT/vPvB chemicals under REACH. PMID:27594688

  6. Time matters: A stock-pollution approach to authorisation decision-making for PBT/vPvB chemicals under REACH.

    PubMed

    Gabbert, Silke; Hilber, Isabel

    2016-12-01

    A core aim of the European chemicals legislation REACH is to ensure that the risks caused by substances of very high concern (SVHC) are adequately controlled. Authorisation - i.e. the formal approval of certain uses of SVHC for a limited time - is a key regulatory instrument in order to achieve this goal. For SVHC which are, in addition to their toxicity, (very) persistent and/or (very) bioaccumulative (PBT/vPvB chemicals), decision-making on the authorisation is conditional on a socio-economic analysis (SEA). In a SEA companies must demonstrate that the gains from keeping a chemical in use outweigh expected damage costs for society. The current setup of the REACH authorisation process, including existing guidance on performing a SEA, ignores that PBT/vPvB chemicals are stock pollutants. This paper explores the implications of incorporating stock pollution effects of these chemicals into a SEA on authorisation decision-making. We develop a cost-benefit approach which includes stock dynamics of PBT/vPvB chemicals. This allows identifying the decision rules for granting or refusing an authorisation. Furthermore, we generalize the model to an entire set of damage functions. We show that ignoring stock pollution effects in a SEA may lead to erroneous decisions on the use of PBT/vPvB chemicals because long-term impacts are not adequately captured. Using a historic case of DDT soil contamination as an illustrative example we discuss information requirements and challenges for authorisation decisions on the use of PBT/vPvB chemicals under REACH.

  7. An indicator to map diffuse chemical river pollution considering buffer capacity of riparian vegetation--a pan-European case study on pesticides.

    PubMed

    Weissteiner, Christof J; Pistocchi, Alberto; Marinov, Dimitar; Bouraoui, Fayçal; Sala, Serenella

    2014-06-15

    Vegetated riparian areas alongside streams are thought to be effective at intercepting and controlling chemical loads from diffuse agricultural sources entering water bodies. Based on a recently compiled European map of riparian zones and a simplified soil chemical balance model, we propose a new indicator at a continental scale. QuBES (Qualitative indicator of Buffered Emissions to Streams) allows a qualitative assessment of European rivers exposed to pesticide input. The indicator consists of normalised pesticide loads to streams computed through a simplified steady-state fate model that distinguishes various chemical groups according to physico-chemical behaviour (solubility and persistence). The retention of pollutants in the buffer zone is modelled according to buffer width and sorption properties. While the indicator may be applied for the study of a generic emission pattern and for a chemical of generic properties, we demonstrate it to the case of agricultural emissions of pesticides. Due to missing geo-spatial data of pesticide emissions, a total pesticide emission scenario is assumed. The QuBES indicator is easy to calculate and requires far less input data and parameterisation than typical chemical-specific models. At the same time, it allows mapping of (i) riparian buffer permeability, (ii) chemical runoff from soils, and (iii) the buffered load of chemicals to the stream network. When the purpose of modelling is limited to identifying chemical pollution patterns and understanding the relative importance of emissions and natural attenuation in soils and stream buffer strips, the indicator may be suggested as a screening level, cost-effective alternative to spatially distributed models of higher complexity.

  8. Association between particulate matter and its chemical constituents of urban air pollution and daily mortality or morbidity in Beijing City.

    PubMed

    Li, Pei; Xin, Jinyuan; Wang, Yuesi; Li, Guoxing; Pan, Xiaochuan; Wang, Shigong; Cheng, Mengtian; Wen, Tianxue; Wang, Guangcheng; Liu, Zirui

    2015-01-01

    Recent time series studies have indicated that daily mortality and morbidity are associated with particulate matters. However, about the relative effects and its seasonal patterns of fine particulate matter constituents is particularly limited in developing Asian countries. In this study, we examined the role of particulate matters and its key chemical components of fine particles on both mortality and morbidity in Beijing. We applied several overdispersed Poisson generalized nonlinear models, adjusting for time, day of week, holiday, temperature, and relative humidity, to investigate the association between risk of mortality or morbidity and particulate matters and its constituents in Beijing, China, for January 2005 through December 2009. Particles and several constituents were associated with multiple mortality or morbidity categories, especially on respiratory health. For a 3-day lag, the nonaccident mortality increased by 1.52, 0.19, 1.03, 0.56, 0.42, and 0.32% for particulate matter (PM)2.5, PM10, K(+), SO4(2-), Ca(2+), and NO3(-) based on interquartile ranges of 36.00, 64.00, 0.41, 8.75, 1.43, and 2.24 μg/m(3), respectively. The estimates of short-term effects for PM2.5 and its components in the cold season were 1 ~ 6 times higher than that in the full year on these health outcomes. Most of components had stronger adverse effects on human health in the heavy PM2.5 mass concentrations, especially for K(+), NO3(-), and SO4(2-). This analysis added to the growing body of evidence linking PM2.5 with mortality or morbidity and indicated that excess risks may vary among specific PM2.5 components. Combustion-related products, traffic sources, vegetative burning, and crustal component and resuspended road dust may play a key role in the associations between air pollution and public health in Beijing.

  9. The variation of chemical characteristics of PM2.5 and PM10 and formation causes during two haze pollution events in urban Beijing, China

    NASA Astrophysics Data System (ADS)

    Gao, Jiajia; Tian, Hezhong; Cheng, Ke; Lu, Long; Zheng, Mei; Wang, Shuxiao; Hao, Jiming; Wang, Kun; Hua, Shenbing; Zhu, Chuanyong; Wang, Yong

    2015-04-01

    Airborne particles in urban Beijing during haze days and normal days were collected and analyzed in the autumn and winter seasons to reveal the chemical characteristics variations of air pollution. The air quality in haze days was substantially worse than that in normal days. Both the relatively low wind speed and high relative humidity were in favor of the accumulation of pollution species and new formation of secondary PM2.5 in the atmosphere. Elevated concentrations of elements and water-soluble inorganic ions were found on haze days for both PM10 and PM2.5. Particularly, the crustal element, such as Fe, in both PM10 and PM2.5 were substantially higher in autumn normal days and winter haze days than those in autumn haze days and winter normal days, indicating that the abundance of Fe in autumn haze days mainly be originated from crustal dust while in winter haze days it might be primarily emitted from anthropogenic sources (iron and steel smelting) instead of road dust. Secondary ion species (SO42-, NO3-, NH4+) in particles were generated much more during haze episodes, and contributed a higher proportion in PM2.5 than in PM10 during the two sampling periods. Moreover, HYSPLIT model was used to explain the possible transport of airborne particles from distant sources. By comparing with south-type trajectory, west-type trajectory entrained larger amounts of primary crustal pollutants, while, south-type trajectory was comprised of a higher mass of anthropogenic pollution species. The results of back trajectory analysis indicated that the elevated concentration of aerosol and its chemical components during haze days might be caused by the integrated effects of accumulation under stagnant meteorological condition and the transport emissions of pollutants from anthropogenic sources surrounding Beijing city.

  10. [On the problem of the study of the chemical air pollution with chlororganic hydrocarbons at productions of polyvinyl chloride and epichlorohydrin].

    PubMed

    Taranenko, N A; Meshakova, N M; Zhurba, O M; Telezhkin, V V

    2014-01-01

    Hygienic assessment of working conditions at the chemical productions of polyvinyl chloride (PVC) and epichlorohydrin (EPCH) in East Siberia has shown that the employees are exposed to the chlororganic hydrocarbons of hazard category 1-2, out of them there were found to be more toxical pollutants such as vinyl chloride, 1.2-dicloroethane in the production of polyvinyl chloride; allyl chloride and epichlorohydrin in the production of epichlorohydrin. Multistageness of the technological processes, the absence of the isolation of main stages of the technological processes as well as the heating microclimate contribute to the chemical pollution of the air environment. In spite of the significant improvement of the hygienic situation at the productions mentioned in the recent 10 years according to the chemical factor due to the introduction of the complex of curative measures, the working conditions of the employees still belonged to the harmful category. According to the content of the harmful chemical substances in the air of the working zone and the parameters of microclimate, the working conditions of the employees working at the production of epichlorohydrin and in the shop of vinyl chloride production must be qualified as the harmful ones of the first category of the hazard and danger (Class 3.1), in the production shop for PVC- as the harmful ones which correspond to the second category of the hazard and danger (Class 3.2).

  11. Removal of pollutants and reduction of bio-toxicity in a full scale chemical coagulation and reverse osmosis leachate treatment system.

    PubMed

    Theepharaksapan, S; Chiemchaisri, C; Chiemchaisri, W; Yamamoto, K

    2011-05-01

    Removals of pollutants and toxic organic compounds and reduction in bio-toxicity of leachate along an operating full-scale leachate treatment system utilizing chemical coagulation, sand filtration, microfiltration (MF) and reverse osmosis (RO) membrane were evaluated. High pollutant removals were achieved mainly by coagulation and sand filtration. Major toxic organic pollutants, i.e. DEHP, DBP and bisphenol A were removed by 100%, 99.6% and 98.0%. Acute toxicity test using water flea, Nile Tilapia and common carp and genotoxicity (Comet assay) were conducted to determine toxicity reduction in leachate along the treatment. Ammonia was found to be the main acute toxic compounds in leachate as determined by LC(50) but the effect of organic substances was also observed. DNA damage in fish exposed to diluted raw leachate (10% of LC(50)) was found to be 8.9-24.3% and it was subsequently decreased along the treatment. Correlation between pollutants and its bio-toxicity was established using multivariable analyses.

  12. A systematic review of the physical and chemical characteristics of pollutants from biomass burning and combustion of fossil fuels and health effects in Brazil.

    PubMed

    Oliveira, Beatriz Fátima Alves de; Ignotti, Eliane; Hacon, Sandra S

    2011-09-01

    The aim of this study was to carry out a review of scientific literature published in Brazil between 2000 and 2009 on the characteristics of air pollutants from different emission sources, especially particulate matter (PM) and its effects on respiratory health. Using electronic databases, a systematic literature review was performed of all research related to air pollutant emissions. Publications were analyzed to identify the physical and chemical characteristics of pollutants from different emission sources and their related effects on the respiratory system. The PM2.5 is composed predominantly of organic compounds with 20% of inorganic elements. Higher concentrations of metals were detected in metropolitan areas than in biomass burning regions. The relative risk of hospital admissions due to respiratory diseases in children was higher than in the elderly population. The results of studies of health effects of air pollution are specific to the region where the emissions occurred and should not be used to depict the situation in other areas with different emission sources.

  13. Atmospheric deposition of selected chemicals and their effect on nonpoint-source pollution in the Twin Cities Metropolitan Area, Minnesota

    USGS Publications Warehouse

    Brown, R.G.

    1984-01-01

    The atmospheric contribution to nonpoint-source-runoff pollution of nitrogen, in the form of nitrite-plus-nitrate, and lead was extremely high contributing as much as 84 percent of the runoff load. In contrast, phosphorus and chloride inputs were low averaging of 6 percent of the total runoff load. Future investigations of nonpoint-source pollution in runoff might include collection of data on atmospheric deposition of nitrite-plus-nitrate nitrogen and lead because of the importance of that source of these constituents in runoff.

  14. Coupling chemical oxidation and biostimulation: Effects on the natural attenuation capacity and resilience of the native microbial community in alkylbenzene-polluted soil.

    PubMed

    Martínez-Pascual, Eulàlia; Grotenhuis, Tim; Solanas, Anna M; Viñas, Marc

    2015-12-30

    Coupling chemical oxidation with bioremediation could be a cost-effective system to cope with soil and groundwater pollution. However, the effects of chemical oxidation on autochthonous microbial communities are scarcely known. A detailed analysis that considers both the efficiency of the two technologies and the response of the microbial communities was performed on a linear alkylbenzene-polluted soil and groundwater samples. The impacts of a modified Fenton's reaction (MFR) at various dosages and of permanganate on the microbiota over 4 weeks were assessed. The permanganate and MFR negatively affected microbial abundance and activity. However, the resilience of certain microbial populations was observed, with a final increase in potential hydrocarbon-degrading populations as determined by both the alkB gene abundance and the predominance of well-known hydrocarbon-degrading phylotypes such as Rhodococcus, Ochrobactrum, Acinetobacter and Cupriavidus genera as determined by 16S rRNA-based DGGE fingerprinting. The assessment of the chemical oxidant impact on autochthonous microbiota should be considered for the optimization of coupled field remediation technologies.

  15. Coupling chemical oxidation and biostimulation: Effects on the natural attenuation capacity and resilience of the native microbial community in alkylbenzene-polluted soil.

    PubMed

    Martínez-Pascual, Eulàlia; Grotenhuis, Tim; Solanas, Anna M; Viñas, Marc

    2015-12-30

    Coupling chemical oxidation with bioremediation could be a cost-effective system to cope with soil and groundwater pollution. However, the effects of chemical oxidation on autochthonous microbial communities are scarcely known. A detailed analysis that considers both the efficiency of the two technologies and the response of the microbial communities was performed on a linear alkylbenzene-polluted soil and groundwater samples. The impacts of a modified Fenton's reaction (MFR) at various dosages and of permanganate on the microbiota over 4 weeks were assessed. The permanganate and MFR negatively affected microbial abundance and activity. However, the resilience of certain microbial populations was observed, with a final increase in potential hydrocarbon-degrading populations as determined by both the alkB gene abundance and the predominance of well-known hydrocarbon-degrading phylotypes such as Rhodococcus, Ochrobactrum, Acinetobacter and Cupriavidus genera as determined by 16S rRNA-based DGGE fingerprinting. The assessment of the chemical oxidant impact on autochthonous microbiota should be considered for the optimization of coupled field remediation technologies. PMID:26177489

  16. Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Fu, Xiao; Wang, Shuxiao; Zhao, Bin; Xing, Jia; Cheng, Zhen; Liu, Huan; Hao, Jiming

    2013-05-01

    We developed a high-resolution emission inventory of primary air pollutants for Yangtze River Delta (YRD) region, which included Shanghai plus 24 cities in the provinces of Jiangsu and Zhejiang. The emissions of SO2, NOX, PM10, PM2.5, NMVOCs and NH3 in the year of 2010 were estimated as 2147 kt, 2776 kt, 1006 kt, 643 kt, 3822 kt and 1439 kt, respectively. Power plants are the largest emission sources for SO2 and NOX, which contributes 44.1% and 37.3% of total SO2 and NOX emissions. Emissions from industrial process accounted for 26.9%, 28.9% and 33.7% of the total PM10, PM2.5 and NMVOCs respectively. Besides, 37.3% of NMVOCs emissions were contributed by solvent use. Livestock and fertilizer application contribute over 90% of NH3 emissions. High emission densities are visible in Shanghai and the area around Tai Lake. This emission inventory includes the speciation of PM2.5 for the YRD region for the first time, which is important to source apportionment and secondary-pollution analysis. In 2010, emissions of three major PM2.5 species, namely OC, EC and sulfate, are 136.9 kt, 75.0 kt and 76.2 kt, respectively. Aromatics and alkanes are the main NMVOC species, accounting for 30.4% and 20.3% of total VOCs. Non-road transportation and biomass burning were main uncertain sources because of a lack of proper activity and emission factor data. Compared with other pollutants, NMVOCs and NH3 have higher uncertainty. From 2000 to 2010, emissions of all pollutants have changed significantly, suggesting that the newly updated and high-resolution emission inventory will be useful for the identification of air pollution sources in YRD.

  17. Strategic of Applying Free Chemical Usage In Purified Water System For Pharmaceutical Industry Toward CPOB (Cara Pembuatan Obat yang Baik) Indonesia To Reducing Environmental Pollution

    NASA Astrophysics Data System (ADS)

    Kartono, R.; Basuki, Y. T.

    2014-03-01

    The purpose of this paper is to examine the sets of model and literature review to prove that strategy of applying free chemical usage in purified water system for pharmaceutical industry would be help the existing and new pharmaceutical companies to comply with part of Natioanal Agency of Drug and Food Control / Badan Pengawas Obat dan Makanan (NADFC/BPOM) regulation in order to achieve "Cara Pembuatan Obat yang Baik" (CPOB) of Indonesia pharmaceutical industry. One of the main reasons is when we figured out the number of Indonesian pharmaceutical industries in 2012 are kept reducing compare to the increasing numbers of Indonesian population growth. This strategy concept also might help the industries to reducing environmental pollution, and operational cost in pharmaceutical industries, by reducing of the chemical usage for water treatment process in floculation and cougulation and chlorination for sterillization. This new model is free usage of chemicals for purified water generation system process and sterilization. The concept offering of using membrane technology- Reverse Osmosis (RO) membrane base treatment to replace traditional chemical base treatment, following enhance Electrodeionization (EDI) as final polisher for controlling conductivity, and finally Ultra Violet (UV) disinfectant technology as final guard for bacteria controls instead of chemical base system in purified water generation system.

  18. Exploitation of deep-sea resources: the urgent need to understand the role of high pressure in the toxicity of chemical pollutants to deep-sea organisms.

    PubMed

    Mestre, Nélia C; Calado, Ricardo; Soares, Amadeu M V M

    2014-02-01

    The advent of industrial activities in the deep sea will inevitably expose deep-sea organisms to potentially toxic compounds. Although international regulations require environmental risk assessment prior to exploitation activities, toxicity tests remain focused on shallow-water model species. Moreover, current tests overlook potential synergies that may arise from the interaction of chemicals with natural stressors, such as the high pressures prevailing in the deep sea. As pressure affects chemical reactions and the physiology of marine organisms, it will certainly affect the toxicity of pollutants arising from the exploitation of deep-sea resources. We emphasize the need for environmental risk assessments based on information generated from ecotoxicological trials that mimic, as close as possible, the deep-sea environment, with emphasis to a key environmental factor - high hydrostatic pressure.

  19. Exploitation of deep-sea resources: the urgent need to understand the role of high pressure in the toxicity of chemical pollutants to deep-sea organisms.

    PubMed

    Mestre, Nélia C; Calado, Ricardo; Soares, Amadeu M V M

    2014-02-01

    The advent of industrial activities in the deep sea will inevitably expose deep-sea organisms to potentially toxic compounds. Although international regulations require environmental risk assessment prior to exploitation activities, toxicity tests remain focused on shallow-water model species. Moreover, current tests overlook potential synergies that may arise from the interaction of chemicals with natural stressors, such as the high pressures prevailing in the deep sea. As pressure affects chemical reactions and the physiology of marine organisms, it will certainly affect the toxicity of pollutants arising from the exploitation of deep-sea resources. We emphasize the need for environmental risk assessments based on information generated from ecotoxicological trials that mimic, as close as possible, the deep-sea environment, with emphasis to a key environmental factor - high hydrostatic pressure. PMID:24230462

  20. Chemical Processing in a Polluted Forest Canopy: a Model Comparison of the Regional Atmospheric Chemistry Mechanism, Version 2 and SAPRC07

    NASA Astrophysics Data System (ADS)

    Goliff, W.; Stockwell, W. R.; Fuentes, J. D.

    2007-12-01

    In this study, we present a comparison of modeled chemical processing in polluted forest canopies using the Regional Atmospheric Chemistry Mechanism, Version 2 and SAPRC07. The comparison involves a number of field studies, one, for example, was conducted at a forested site near Oak Ridge, TN during the summer of 1999. The sites were under the influence of nitrogen oxide and hydrocarbon emissions from suburban automobile traffic. Air chemistry measurements (e.g., ozone, NOx and VOC) and meteorological measurements were collected within and above the forest canopies. A comparison of the degree of chemical processing by HO and NO3 radicals and O3 for biogenic compounds, and the amount of HOx formation between the two mechanisms is presented.

  1. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications

    NASA Astrophysics Data System (ADS)

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  2. Urban pollution.

    PubMed

    Sancini, Angela; Tomei, Francesco; Tomei, Gianfranco; Caciari, Tiziana; Di Giorgio, Valeria; André, Jean-Claude; Palermo, Paola; Andreozzi, Giorgia; Nardone, Nadia; Schifano, Maria Pia; Fiaschetti, Maria; Cetica, Carlotta; Ciarrocca, Manuela

    2012-01-01

    Air pollution represents a health risk for people living in urban environment. Urban air consists in a complex mixture of chemicals and carcinogens and its effects on health can be summarized in acute respiratory effects, neoplastic nonneoplastic (e.g. chronic bronchitis) chronic respiratory effects, and effects on other organs and systems. Air pollution may be defined according to origin of the phenomena that determine it: natural causes (natural fumes, decomposition, volcanic ash) or anthropogenic causes which are the result of human activities (industrial and civil emissions). Transport is the sector that more than others contributes to the deterioration of air quality in cities. In this context, in recent years, governments of the territory were asked to advance policies aimed at solving problems related to pollution. In consideration of the many effects on health caused by pollution it becomes necessary to know the risks from exposure to various environmental pollutants and to limit and control their effects. Many are the categories of "outdoor" workers, who daily serve the in urban environment: police, drivers, newsagents, etc.

  3. Urban pollution.

    PubMed

    Sancini, Angela; Tomei, Francesco; Tomei, Gianfranco; Caciari, Tiziana; Di Giorgio, Valeria; André, Jean-Claude; Palermo, Paola; Andreozzi, Giorgia; Nardone, Nadia; Schifano, Maria Pia; Fiaschetti, Maria; Cetica, Carlotta; Ciarrocca, Manuela

    2012-01-01

    Air pollution represents a health risk for people living in urban environment. Urban air consists in a complex mixture of chemicals and carcinogens and its effects on health can be summarized in acute respiratory effects, neoplastic nonneoplastic (e.g. chronic bronchitis) chronic respiratory effects, and effects on other organs and systems. Air pollution may be defined according to origin of the phenomena that determine it: natural causes (natural fumes, decomposition, volcanic ash) or anthropogenic causes which are the result of human activities (industrial and civil emissions). Transport is the sector that more than others contributes to the deterioration of air quality in cities. In this context, in recent years, governments of the territory were asked to advance policies aimed at solving problems related to pollution. In consideration of the many effects on health caused by pollution it becomes necessary to know the risks from exposure to various environmental pollutants and to limit and control their effects. Many are the categories of "outdoor" workers, who daily serve the in urban environment: police, drivers, newsagents, etc. PMID:22888729

  4. Climatic, biological, and land cover controls on the exchange of gas-phase semivolatile chemical pollutants between forest canopies and the atmosphere.

    PubMed

    Nizzetto, Luca; Perlinger, Judith A

    2012-03-01

    An ecophysiological model of a structured broadleaved forest canopy was coupled to a chemical fate model of the air-canopy exchange of gaseous semivolatile chemicals to dynamically assess the short-term (hours) and medium term (days to season) air-canopy exchange and the influence of biological, climatic, and land cover drivers on the dynamics of the air-canopy exchange and on the canopy storage for airborne semivolatile pollutants. The chemical fate model accounts for effects of short-term variations in air temperature, wind speed, stomatal opening, and leaf energy balance, all as a function of layer in the canopy. Simulations showed the potential occurrence of intense short/medium term re-emission of pollutants having log K(OA) up to 10.7 from the canopy as a result of environmental forcing. In addition, relatively small interannual variations in seasonally averaged air temperature, canopy biomass, and precipitation can produce relevant changes in the canopy storage capacity for the chemicals. It was estimated that possible climate change related variability in environmental parameters (e.g., an increase of 2 °C in seasonally averaged air temperature in combination with a 10% reduction in canopy biomass due to, e.g., disturbance or acclimatization) may cause a reduction in canopy storage capacity of up to 15-25%, favoring re-emission and potential for long-range atmospheric transport. On the other hand, an increase of 300% in yearly precipitation can increase canopy sequestration by 2-7% for the less hydrophobic compounds. PMID:22304464

  5. Pollution evaluation in the Shahrood River: Do physico-chemical and macroinvertebrate-based indices indicate same responses to anthropogenic activities?

    PubMed

    Sharifinia, Moslem; Mahmoudifard, Abbas; Imanpour Namin, Javid; Ramezanpour, Zohreh; Yap, Chee Kong

    2016-09-01

    This study evaluates the impact of anthropogenic activities on the Shahrood River using water physico-chemical variables and macroinvertebrates data sets obtained over a period of 12 months between February 2012 and February 2013 at 8 sampling sites. Biotic indices i.e. FBI and BMWP based on macroinvertebrates and physico-chemical indices (MPI, HPI and NSF-WQI) were employed to evaluate the water quality status in connection with natural- and human-induced pressures. Based on physico-chemical indices, water quality was categorized as low polluted level and it is suitable for drinking purposes. The water quality based on biotic indices was related to the anthropic activities; a clear deterioration of the water quality was observed from upstream to downstream sites. The water quality along the river changed from very good (class I; reference sites) to good (class II; midstream sites) and turned into moderate (class III) and poor (class IV) quality (downstream sites). These findings indicate that biotic indices are more powerful indicators in assessing water quality than physico-chemical indices. Allocapnia, Glossosoma and Hesperoperla were exclusively related to least disturbed sites, and Naididae, Orthocladiinae and Ecdyonurus were found in sites showing notable degradation. Our results recommended that the use of macroinvertebrates could be employed as a cost-effective tool for biomonitoring and controlling of polluted riverine ecosystems in the Middle East. Finally, the results from this study may be useful not only for developing countries, but also for any organization struggling to use macroinvertebrate based indices with restricted financial resources and knowledge. PMID:27343865

  6. Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer.

    PubMed

    Li, Adela J; Leung, Priscilla T Y; Bao, Vivien W W; Yi, Andy X L; Leung, Kenneth M Y

    2014-10-01

    We hypothesize that chemical toxicity to marine ectotherms is the lowest at an optimum temperature (OT) and it exacerbates with increasing or decreasing temperature from the OT. This study aimed to verify this hypothetical temperature-dependent chemical toxicity (TDCT) model through laboratory experiments. Acute toxicity over a range of temperatures was tested on four commonly used chemicals to three marine ectotherms. Our results confirmed that toxicities, in terms of 96-h LC50 (median lethal concentration; for the marine medaka fish Oryzias melastigma and the copepod Tigriopus japonicus) and 24-h LC50 (for the rotifer Brachionus koreanus), were highly temperature-dependent, and varied between test species and between study chemicals. The LC50 value of the fish peaked at 20 °C for copper (II) sulphate pentahydrate and triphenyltin chloride, and at 25 °C for dichlorophenyltrichloroethane and copper pyrithione, and decreased with temperature increase or decrease from the peak (i.e., OT). However, LC50 values of the copepod and the rotifer generally showed a negative relationship with temperature across all test chemicals. Both copepod and rotifer entered dormancy at the lowest temperature of 4 °C. Such metabolic depression responses in these zooplanktons could reduce their uptake of the chemical and hence minimize the chemical toxicity at low temperatures. Our TDCT model is supported by the fish data only, whereas a simple linear model fits better to the zooplankton data. Such species-specific TDCT patterns may be jointly ascribed to temperature-mediated changes in (1) the physiological response and susceptibility of the marine ectotherms to the chemical, (2) speciation and bioavailability of the chemical, and (3) toxicokinetics of the chemical in the organisms.

  7. Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer.

    PubMed

    Li, Adela J; Leung, Priscilla T Y; Bao, Vivien W W; Yi, Andy X L; Leung, Kenneth M Y

    2014-10-01

    We hypothesize that chemical toxicity to marine ectotherms is the lowest at an optimum temperature (OT) and it exacerbates with increasing or decreasing temperature from the OT. This study aimed to verify this hypothetical temperature-dependent chemical toxicity (TDCT) model through laboratory experiments. Acute toxicity over a range of temperatures was tested on four commonly used chemicals to three marine ectotherms. Our results confirmed that toxicities, in terms of 96-h LC50 (median lethal concentration; for the marine medaka fish Oryzias melastigma and the copepod Tigriopus japonicus) and 24-h LC50 (for the rotifer Brachionus koreanus), were highly temperature-dependent, and varied between test species and between study chemicals. The LC50 value of the fish peaked at 20 °C for copper (II) sulphate pentahydrate and triphenyltin chloride, and at 25 °C for dichlorophenyltrichloroethane and copper pyrithione, and decreased with temperature increase or decrease from the peak (i.e., OT). However, LC50 values of the copepod and the rotifer generally showed a negative relationship with temperature across all test chemicals. Both copepod and rotifer entered dormancy at the lowest temperature of 4 °C. Such metabolic depression responses in these zooplanktons could reduce their uptake of the chemical and hence minimize the chemical toxicity at low temperatures. Our TDCT model is supported by the fish data only, whereas a simple linear model fits better to the zooplankton data. Such species-specific TDCT patterns may be jointly ascribed to temperature-mediated changes in (1) the physiological response and susceptibility of the marine ectotherms to the chemical, (2) speciation and bioavailability of the chemical, and (3) toxicokinetics of the chemical in the organisms. PMID:25098775

  8. A Synthetic Method for Atmospheric Diffusion Simulation and Environmental Impact Assessment of Accidental Pollution in the Chemical Industry in a WEBGIS Context

    PubMed Central

    Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang

    2014-01-01

    The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents. PMID:25198686

  9. A synthetic method for atmospheric diffusion simulation and environmental impact assessment of accidental pollution in the chemical industry in a WEBGIS context.

    PubMed

    Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang

    2014-09-01

    The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents. PMID:25198686

  10. A synthetic method for atmospheric diffusion simulation and environmental impact assessment of accidental pollution in the chemical industry in a WEBGIS context.

    PubMed

    Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang

    2014-09-05

    The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents.

  11. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    NASA Technical Reports Server (NTRS)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  12. Decision-tree-model identification of nitrate pollution activities in groundwater: A combination of a dual isotope approach and chemical ions.

    PubMed

    Xue, Dongmei; Pang, Fengmei; Meng, Fanqiao; Wang, Zhongliang; Wu, Wenliang

    2015-09-01

    To develop management practices for agricultural crops to protect against NO3(-) contamination in groundwater, dominant pollution activities require reliable classification. In this study, we (1) classified potential NO3(-) pollution activities via an unsupervised learning algorithm based on δ(15)N- and δ(18)O-NO3(-) and physico-chemical properties of groundwater at 55 sampling locations; and (2) determined which water quality parameters could be used to identify the sources of NO3(-) contamination via a decision tree model. When a combination of δ(15)N-, δ(18)O-NO3(-) and physico-chemical properties of groundwater was used as an input for the k-means clustering algorithm, it allowed for a reliable clustering of the 55 sampling locations into 4 corresponding agricultural activities: well irrigated agriculture (28 sampling locations), sewage irrigated agriculture (16 sampling locations), a combination of sewage irrigated agriculture, farm and industry (5 sampling locations) and a combination of well irrigated agriculture and farm (6 sampling locations). A decision tree model with 97.5% classification success was developed based on SO4(2-) and Cl(-) variables. The NO3(-) and the δ(15)N- and δ(18)O-NO3(-) variables demonstrated limitation in developing a decision tree model as multiple N sources and fractionation processes both resulted in difficulties of discriminating NO3(-) concentrations and isotopic values. Although only the SO4(2-) and Cl(-) were selected as important discriminating variables, concentration data alone could not identify the specific NO3(-) sources responsible for groundwater contamination. This is a result of comprehensive analysis. To further reduce NO3(-) contamination, an integrated approach should be set-up by combining N and O isotopes of NO3(-) with land-uses and physico-chemical properties, especially in areas with complex agricultural activities.

  13. Decision-tree-model identification of nitrate pollution activities in groundwater: A combination of a dual isotope approach and chemical ions.

    PubMed

    Xue, Dongmei; Pang, Fengmei; Meng, Fanqiao; Wang, Zhongliang; Wu, Wenliang

    2015-09-01

    To develop management practices for agricultural crops to protect against NO3(-) contamination in groundwater, dominant pollution activities require reliable classification. In this study, we (1) classified potential NO3(-) pollution activities via an unsupervised learning algorithm based on δ(15)N- and δ(18)O-NO3(-) and physico-chemical properties of groundwater at 55 sampling locations; and (2) determined which water quality parameters could be used to identify the sources of NO3(-) contamination via a decision tree model. When a combination of δ(15)N-, δ(18)O-NO3(-) and physico-chemical properties of groundwater was used as an input for the k-means clustering algorithm, it allowed for a reliable clustering of the 55 sampling locations into 4 corresponding agricultural activities: well irrigated agriculture (28 sampling locations), sewage irrigated agriculture (16 sampling locations), a combination of sewage irrigated agriculture, farm and industry (5 sampling locations) and a combination of well irrigated agriculture and farm (6 sampling locations). A decision tree model with 97.5% classification success was developed based on SO4(2-) and Cl(-) variables. The NO3(-) and the δ(15)N- and δ(18)O-NO3(-) variables demonstrated limitation in developing a decision tree model as multiple N sources and fractionation processes both resulted in difficulties of discriminating NO3(-) concentrations and isotopic values. Although only the SO4(2-) and Cl(-) were selected as important discriminating variables, concentration data alone could not identify the specific NO3(-) sources responsible for groundwater contamination. This is a result of comprehensive analysis. To further reduce NO3(-) contamination, an integrated approach should be set-up by combining N and O isotopes of NO3(-) with land-uses and physico-chemical properties, especially in areas with complex agricultural activities. PMID:26231989

  14. Remote measurement of pollution

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A summary of the major conclusions and recommendations developed by the panels on gaseous air pollution, water pollution, and particulate air pollution is presented. It becomes evident that many of the trace gases are amenable to remote sensing; that certain water pollutants can be measured by remote techniques, but their number is limited; and that a similar approach to the remote measurement of specific particulate pollutants will follow only after understanding of their physical, chemical, and radiative properties is improved. It is also clear that remote sensing can provide essential information in all three categories that can not be obtained by any other means.

  15. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    SciTech Connect

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  16. [Indoor pollution].

    PubMed

    Tarsitani, G

    1995-01-01

    The Author reports more important phases from the beginning of housing to now: the indoor pollution time. Shelter is a basic need; humans require protection against the elements, somewhere to store and prepare the food, and a secure place to raise offspring; but indoor environment is not always safe. It has been known since Hippocrates' time that housing conditions affect health. Today situation starts from the enormous growth of urbanization. At 1888 in Italy first legislation on health, including healthy building, has been issued. The prevention policies were based on local hygiene regulations. At present housing programmes of who stress the problem in consideration too of the great part of time that, in industrialized Countries, we all pass at home, in the indoor environment. Following the general introduction the Author relates on the features of indoor climate, that may be identical that out of doors, or may be modified by heating, cooling, humidification and ventilation. Larger commentaries are reported on indoor pollution and its increasing by modern technology producing several new hazards. Physical, chemical and biological indoor air pollutants, with their principal sources and health damages associated, are analyzed. In conclusion the author shows some data from a research on indoor pollution in the houses of Rome.

  17. Chemical mechanisms of photocatalytic de-soiling and de-polluting processes in indoor environments and urban surfaces

    NASA Astrophysics Data System (ADS)

    Sleiman, M.; Rosseler, O.; Montesinos, N.; Litter, M.; Bikiel, D.; Kirchstetter, T.; Bluhm, H.; Ahmed, M.; Salmeron, M.; Destaillats, H.

    2013-12-01

    Photocatalysis has been postulated as a promising approach for the de-pollution of indoor air and urban atmospheres, and for self-cleaning surfaces. Building materials and coatings containing nano-sized TiO2 photocatalytic functionalities are gaining market share, including self-cleaning building envelope materials (coatings, mortar, plaster, architectural fabrics and tiles) and indoor air purifiers. While many studies have reported good performance of photocatalysis in the removal of organic pollutants from indoor air, more information is needed to understand secondary emissions of potentially harmful byproducts from photocatalytic air cleaners. This presentation will describe analytical methods and experimental results from room-sized chamber experiments using a realistic challenge VOC mixture at low ppb levels. We will also present results from separate studies that used synchrotron-based surface spectroscopic and mass spectrometric methods to better understand the photocatalytic mechanisms that regulate the de-soiling and de-polluting activity. Two photocatalytic processes were studied: de-noxification (NOx removal) and de-soiling (removal of deposited black carbon or soot). Ambient pressure XPS was used to study surface and gas-phase species formed during adsorption of NO2 on TiO2 and subsequent UV irradiation at λ = 365 nm. The results illustrate how NOx chemistry on TiO2 surfaces can be affected by the presence of water vapor, heteroatoms present as impurities, and carbonaceous soiling. The reactivity of NOx and NO3- on surfaces leads to reduced adsorbed and gas-phase nitrogenated species. These processes need to be considered in the engineering of depolluting materials and incorporated into atmospheric models. De-soiling properties were investigated by analyzing soot oxidation on TiO2 surfaces. Model soot samples were used as surrogates of urban grime. Using laser desorption coupled with time-of-flight (TOF) mass spectrometry synchrotron ionization, we

  18. Large-eddy simulation of pollutant dispersion from a ground-level area source over urban street canyons with irreversible chemical reactions

    NASA Astrophysics Data System (ADS)

    Du, T. Z.; Liu, C.-H.; Zhao, Y. B.

    2014-10-01

    In this study, the dispersion of chemically reactive pollutants is calculated by large-eddy simulation (LES) in a neutrally stratified urban canopy layer (UCL) over urban areas. As a pilot attempt, idealized street canyons of unity building-height-to-street-width (aspect) ratio are used. Nitric oxide (NO) is emitted from the ground surface of the first street canyon into the domain doped with ozone (O3). In the absence of ultraviolet radiation, this irreversible chemistry produces nitrogen dioxide (NO2), developing a reactive plume over the rough urban surface. A range of timescales of turbulence and chemistry are utilized to examine the mechanism of turbulent mixing and chemical reactions in the UCL. The Damköhler number (Da) and the reaction rate (r) are analyzed along the vertical direction on the plane normal to the prevailing flow at 10 m after the source. The maximum reaction rate peaks at an elevation where Damköhler number Da is equal or close to unity. Hence, comparable timescales of turbulence and reaction could enhance the chemical reactions in the plume.

  19. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment.

    PubMed

    Rochman, Chelsea M; Kurobe, Tomofumi; Flores, Ida; Teh, Swee J

    2014-09-15

    Plastic debris is associated with several chemical pollutants known to disrupt the functioning of the endocrine system. To determine if the exposure to plastic debris and associated chemicals promotes endocrine-disrupting effects in fish, we conducted a chronic two-month dietary exposure using Japanese medaka (Oryzias latipes) and environmentally relevant concentrations of microplastic (<1mm) and associated chemicals. We exposed fish to three treatments: a no-plastic (i.e. negative control), virgin-plastic (i.e. virgin polyethylene pre-production pellets) and marine-plastic treatment (i.e. polyethylene pellets deployed in San Diego Bay, CA for 3 months). Altered gene expression was observed in male fish exposed to the marine-plastic treatment, whereas altered gene expression was observed in female fish exposed to both the marine- and virgin-plastic treatment. Significant down-regulation of choriogenin (Chg H) gene expression was observed in males and significant down-regulation of vitellogenin (Vtg I), Chg H and the estrogen receptor (ERα) gene expression was observed in females. In addition, histological observation revealed abnormal proliferation of germ cells in one male fish from the marine-plastic treatment. Overall, our study suggests that the ingestion of plastic debris at environmentally relevant concentrations may alter endocrine system function in adult fish and warrants further research. PMID:24995635

  20. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment.

    PubMed

    Rochman, Chelsea M; Kurobe, Tomofumi; Flores, Ida; Teh, Swee J

    2014-09-15

    Plastic debris is associated with several chemical pollutants known to disrupt the functioning of the endocrine system. To determine if the exposure to plastic debris and associated chemicals promotes endocrine-disrupting effects in fish, we conducted a chronic two-month dietary exposure using Japanese medaka (Oryzias latipes) and environmentally relevant concentrations of microplastic (<1mm) and associated chemicals. We exposed fish to three treatments: a no-plastic (i.e. negative control), virgin-plastic (i.e. virgin polyethylene pre-production pellets) and marine-plastic treatment (i.e. polyethylene pellets deployed in San Diego Bay, CA for 3 months). Altered gene expression was observed in male fish exposed to the marine-plastic treatment, whereas altered gene expression was observed in female fish exposed to both the marine- and virgin-plastic treatment. Significant down-regulation of choriogenin (Chg H) gene expression was observed in males and significant down-regulation of vitellogenin (Vtg I), Chg H and the estrogen receptor (ERα) gene expression was observed in females. In addition, histological observation revealed abnormal proliferation of germ cells in one male fish from the marine-plastic treatment. Overall, our study suggests that the ingestion of plastic debris at environmentally relevant concentrations may alter endocrine system function in adult fish and warrants further research.

  1. The role of acoustic screens in distribution of technogenic magnetic particles and chemical pollution in roadside soil

    NASA Astrophysics Data System (ADS)

    Wawer, Małgorzata; Magiera, Tadeusz; Szuszkiewicz, Marcin

    2015-04-01

    Roads constructed nowadays should by all means be functional for their motorized users but at the same time their effect on the environment ought to be limited to the minimum. Despite the existence of various methods for preventing from negative influence of roads on the environment, there is still lack of adequate techniques to monitor and reduce the spreading of roadside pollution in the air and soils. The aim of the study was to assess the influence of acoustic screens on spreading and deposition of solid pollutants deriving from car emissions, based on their quantitative and qualitative analysis. During this study, measurements of magnetic susceptibility and analyses of heavy metals as well as Pt and Rh contents in soil and plant samples (Taraxacum officinale, Plantago major, Parthenocissus quinquefolia) collected near different kinds of acoustic screens ("green walls", Plexiglass, sawdust concrete, steel panels and earth embankments) have been done. Previous investigations showed showed that most of traffic emission is deposited in the close vicinity of the roads (up to 10 m) and the level of contamination decreased with increasing distance from the road edge. However, the results of this project indicate that, in the area where the acoustic screens are located, this distribution is disturbed and the additional enrichment of heavy metals in soil about 10 - 15 m behind screens is observed. Spatial distribution of heavy metal contents in soil samples corresponds to its magnetic susceptibility values. High contents of Fe, Zn, Mn and Pb was observed next to acoustic screens made of sawdust concrete and steel panels. Additionally, concentration of Zn in soil samples collected close to these screens exceeded threshold value. Analyses of plants showed that the highest content of examined elements and highest values of magnetic susceptibility were recorded near road edge. What is more, samples of Parthenocissus quinquefolia collected at height 0.2 m were characterized

  2. Composition and effects of inhalable size fractions of atmospheric aerosols in the polluted atmosphere: part I. PAHs, PCBs and OCPs and the matrix chemical composition.

    PubMed

    Landlová, Linda; Cupr, Pavel; Franců, Juraj; Klánová, Jana; Lammel, Gerhard

    2014-05-01

    Atmospheric particulate matter (PM) abundance, mass size distribution (MSD) and chemical composition are parameters relevant for human health effects. The MSD and phase state of semivolatile organic pollutants were determined at various polluted sites in addition to the PM composition and MSD. The distribution pattern of pollutants varied from side to side in correspondence to main particle sources and PM composition. Levels of particle-associated polycyclic aromatic hydrocarbons (PAHs) were 1-30 ng m(-3) (corresponding to 15-35 % of the total, i.e., gas and particulate phase concentrations), of polychlorinated biphenyls (PCBs) were 2-11 pg m(-3) (4-26 % of the total) and of DDT compounds were 2-12 pg m(-3) (4-23 % of the total). The PM associated amounts of other organochlorine pesticides were too low for quantification. The organics were preferentially found associated with particles <0.45 μm of aerodynamic equivalent diameter. The mass fractions associated with sub-micrometer particles (PM0.95) were 73-90 %, 34-71 % and 36-81 % for PAHs, PCBs and DDT compounds, respectively. The finest particles fraction had the highest aerosol surface concentration (6.3-29.7)×10(-6) cm(-1) (44-70 % of the surface concentration of all size fractions). The data set was used to test gas-particle partitioning models for semivolatile organics for the first time in terms of the organics' MSD and size-dependent PM composition. The results of this study prove that at the various sites particles with diverse size, matrix composition, amount of contaminants and toxicological effects occur. Legislative regulation based on gravimetric determination of PM mass can clearly be insufficient for assessment.

  3. Surface runoff pollution by cattle slurry and inorganic fertilizer spreading: chemical oxygen demand, ortho-phosphates, and electrical conductivity levels for different buffer strip lengths.

    PubMed

    Núñez-Delgado, A; López-Periago, E; Quiroga-Lago, F; Díaz-Fierros Viqueira, F

    2001-01-01

    As a way of dealing with the removal of pollutants from farming practices generated wastewater in the EU, we investigate the effect of spreading cattle slurry and inorganic fertiliser on 8 x 5 m2 and 8 x 3 m2 areas, referred to surface runoff chemical oxygen demand (COD), ortho-phosphates (o-P) and electrical conductivity (EC) levels, and the efficiency of grass buffer strips of various lengths in removing pollutants from runoff. The experimental plot was a 15% sloped Lolium perenne pasture. Surface runoff was generated by means of a rainfall simulator working at 47 mm h-1 rainfall intensity. Runoff was sampled by using Gerlach-type troughs situated 2, 4, 6 and 8 m downslope from the amended areas. During the first rainfall simulation, COD, o-P and EC levels were consistently higher in the slurry zone, more evidently in the larger amended area. During the second and third rainfall simulations, concentration and mass levels show a downslope drift into the buffer zones, with no clear buffer strip length attenuation. Correlation between runoff and mass drift is clearly higher in the slurry zone. Percentage attenuation in COD and o-P levels, referred to initial slurry concentrations--including rainfall dilution--were higher than 98%, and higher than 90% for EC.

  4. The Effect of Chemical Amendments Used for Phosphorus Abatement on Greenhouse Gas and Ammonia Emissions from Dairy Cattle Slurry: Synergies and Pollution Swapping

    PubMed Central

    Brennan, Raymond B.; Healy, Mark G.; Fenton, Owen; Lanigan, Gary J.

    2015-01-01

    Land application of cattle slurry can result in incidental and chronic phosphorus (P) loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-called ‘pollution swapping’ potential) and therefore the feasibility of using such amendments has not been examined to date. The aim of this laboratory scale study was to determine how the chemical amendment of slurry affects losses of NH3, CH4, N2O, and CO2. Alum, FeCl2, Polyaluminium chloride (PAC)- and biochar reduced NH3 emissions by 92, 54, 65 and 77% compared to the slurry control, while lime increased emissions by 114%. Cumulative N2O emissions of cattle slurry increased when amended with alum and FeCl2 by 202% and 154% compared to the slurry only treatment. Lime, PAC and biochar resulted in a reduction of 44, 29 and 63% in cumulative N2O loss compared to the slurry only treatment. Addition of amendments to slurry did not significantly affect soil CO2 release during the study while CH4 emissions followed a similar trend for all of the amended slurries applied, with an initial increase in losses followed by a rapid decrease for the duration of the study. All of the amendments examined reduced the initial peak in CH4 emissions compared to the slurry only treatment. There was no significant effect of slurry amendments on global warming potential (GWP) caused by slurry land application, with the exception of biochar. After considering pollution swapping in conjunction with amendment effectiveness, the amendments recommended for further field study are PAC, alum and lime. This study has also shown that biochar has potential to reduce GHG losses arising from slurry application. PMID:26053923

  5. The Effect of Chemical Amendments Used for Phosphorus Abatement on Greenhouse Gas and Ammonia Emissions from Dairy Cattle Slurry: Synergies and Pollution Swapping.

    PubMed

    Brennan, Raymond B; Healy, Mark G; Fenton, Owen; Lanigan, Gary J

    2015-01-01

    Land application of cattle slurry can result in incidental and chronic phosphorus (P) loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-called 'pollution swapping' potential) and therefore the feasibility of using such amendments has not been examined to date. The aim of this laboratory scale study was to determine how the chemical amendment of slurry affects losses of NH3, CH4, N2O, and CO2. Alum, FeCl2, Polyaluminium chloride (PAC)- and biochar reduced NH3 emissions by 92, 54, 65 and 77% compared to the slurry control, while lime increased emissions by 114%. Cumulative N2O emissions of cattle slurry increased when amended with alum and FeCl2 by 202% and 154% compared to the slurry only treatment. Lime, PAC and biochar resulted in a reduction of 44, 29 and 63% in cumulative N2O loss compared to the slurry only treatment. Addition of amendments to slurry did not significantly affect soil CO2 release during the study while CH4 emissions followed a similar trend for all of the amended slurries applied, with an initial increase in losses followed by a rapid decrease for the duration of the study. All of the amendments examined reduced the initial peak in CH4 emissions compared to the slurry only treatment. There was no significant effect of slurry amendments on global warming potential (GWP) caused by slurry land application, with the exception of biochar. After considering pollution swapping in conjunction with amendment effectiveness, the amendments recommended for further field study are PAC, alum and lime. This study has also shown that biochar has potential to reduce GHG losses arising from slurry application.

  6. Chemical Speciation and Quantitative Evaluation of Heavy Metal Pollution Hazards in Two Army Shooting Range Backstop Soils.

    PubMed

    Islam, Mohammad Nazrul; Nguyen, Xuan Phuc; Jung, Ho-Young; Park, Jeong-Hun

    2016-02-01

    The chemical speciation and ecological risk assessment of heavy metals in two shooting range backstop soils in Korea were studied. Both soils were highly contaminated with Cd, Cu, Pb, and Sb. The chemical speciation of heavy metals reflected the present status of contamination, which could help in promoting management practices. We-rye soil had a higher proportion of exchangeable and carbonate bound metals and water-extractable Cd and Sb than the Cho-do soil. Bioavailable Pb represented 42 % of the total Pb content in both soils. A significant amount of Sb was found in the two most bioavailable fractions, amounting to ~32 % in the soil samples, in good agreement with the batch leaching test using water. Based on the values of ecological risk indices, both soils showed extremely high potential risk and may represent serious environmental problems.

  7. Day and night variation in chemical composition and toxicological responses of size segregated urban air PM samples in a high air pollution situation

    NASA Astrophysics Data System (ADS)

    Jalava, P. I.; Wang, Q.; Kuuspalo, K.; Ruusunen, J.; Hao, L.; Fang, D.; Väisänen, O.; Ruuskanen, A.; Sippula, O.; Happo, M. S.; Uski, O.; Kasurinen, S.; Torvela, T.; Koponen, H.; Lehtinen, K. E. J.; Komppula, M.; Gu, C.; Jokiniemi, J.; Hirvonen, M.-R.

    2015-11-01

    Urban air particulate pollution is a known cause for adverse human health effects worldwide. China has encountered air quality problems in recent years due to rapid industrialization. Toxicological effects induced by particulate air pollution vary with particle sizes and season. However, it is not known how distinctively different photochemical activity and different emission sources during the day and the night affect the chemical composition of the PM size ranges and subsequently how it is reflected to the toxicological properties of the PM exposures. The particulate matter (PM) samples were collected in four different size ranges (PM10-2.5; PM2.5-1; PM1-0.2 and PM0.2) with a high volume cascade impactor. The PM samples were extracted with methanol, dried and thereafter used in the chemical and toxicological analyses. RAW264.7 macrophages were exposed to the particulate samples in four different doses for 24 h. Cytotoxicity, inflammatory parameters, cell cycle and genotoxicity were measured after exposure of the cells to particulate samples. Particles were characterized for their chemical composition, including ions, element and PAH compounds, and transmission electron microscopy (TEM) was used to take images of the PM samples. Chemical composition and the induced toxicological responses of the size segregated PM samples showed considerable size dependent differences as well as day to night variation. The PM10-2.5 and the PM0.2 samples had the highest inflammatory potency among the size ranges. Instead, almost all the PM samples were equally cytotoxic and only minor differences were seen in genotoxicity and cell cycle effects. Overall, the PM0.2 samples had the highest toxic potential among the different size ranges in many parameters. PAH compounds in the samples and were generally more abundant during the night than the day, indicating possible photo-oxidation of the PAH compounds due to solar radiation. This was reflected to different toxicity in the PM

  8. Industrial waste pollution

    NASA Technical Reports Server (NTRS)

    Jensen, L. D.

    1972-01-01

    The characteristics and effects of industrial waste pollution in the Chesapeake Bay are discussed. The sources of inorganic and organic pollution entering the bay are described. The four types of pollutants are defined as: (1) inorganic chemical wastes, (2) naturally occurring organic wastes, (3) synthetic organic wastes (exotics) and (4) thermal effluents. The ecological behavior of industrial wastes in the surface waters is analyzed with respect to surface film phenomena, interfacial phenomena, and benthis phenomena

  9. DEVELOPMENT OF ANALYTICAL METHODS FOR THE QUANTIFICATION OF THE CHEMICAL FORMS OF MERCURY AND OTHER TARGET POLLUTANTS IN COAL-FIRED BOILER FLUE GAS

    SciTech Connect

    Terence J. McManus, Ph.D.

    1999-06-30

    Since approximately 55% of the electrical power produced in the U. S. is generated by coal-based power utility plants, there is serious concern about the massive amounts of coal combustion products emitted into the atmosphere annually. Furthermore, Title III of the 1990 Clean Air Act Amendments (CAAA) requires the measurement and inventory of a possible 189 hazardous air pollutants (HAPs) from any stationary source producing more than 10 tons per year of any one pollutant or more than 25 tons per year of total pollutants. Although power utilities are not presently included on the list of source categories, the CAAA requires the U. S. Environmental Protection Agency to carry out a study of emissions from electricity generation using fossil fuels. Since many of these HAPs are known to be present in coal derived flue gas, coal-fired electric power utilities may be subject to regulation following these studies if Congress considers it necessary. In a cooperative effort with the U. S. Environmental Protection Agency (EPA), the U. S. Department of Energy (DOE) through its Federal Energy Technology Center (FETC) initiated such a study in 1991. DOE-FETC commissioned five primary contractors to conduct emission studies at eight different coal-fired electric utilities. The eight sites represented a cross section of feed coal type, boiler designs, and particulate and gaseous pollutant control technologies. The major goal of these studies was to determine the sampling and analytical methodologies that could be used efficiently to perform these emission tests while producing representative and reliable emission data. The successful methodology could then be recommended to the EPA for use in compliance testing in the event the regulation of air toxic emissions from coal-fired power plants is implemented. A secondary purpose of the testing was to determine the effectiveness of the control technologies in reducing target hazardous air pollutants. Advanced Technology Systems, Inc

  10. Partitionable-space enhanced coagulation (PEC) reactor and its working mechanism: a new prospective chemical technology for phosphorus pollution control.

    PubMed

    Zhang, Meng; Zheng, Ping; Abbas, Ghulam; Chen, Xiaoguang

    2014-02-01

    Phosphorus pollution control and phosphorus recycling, simultaneously, are focus of attention in the wastewater treatment. In this work, a novel reactor named partitionable-space enhanced coagulation (PEC) was invented for phosphorus control. The working performance and process mechanism of PEC reactor were investigated. The results showed that the PEC technology was highly efficient and cost-effective. The volumetric removal rate (VRR) reached up to 2.86 ± 0.04 kg P/(m(3) d) with a phosphorus removal rate of over 97%. The precipitant consumption was reduced to 2.60-2.76 kg Fe(II)/kg P with low operational cost of $ 0.632-0.673/kg P. The peak phosphorus content in precipitate was up to 30.44% by P2O5, which reveal the benefit of the recycling phosphorus resource. The excellent performance of PEC technology was mainly attributed to the partitionable-space and 'flocculation filter'. The partition limited the trans-regional back-mixing of reagents along the reactor, which promoted the precipitation reaction. The 'flocculation filter' retained the microflocs, enhancing the flocculation process.

  11. Levels, sources and chemical fate of persistent organic pollutants in the atmosphere and snow along the western Antarctic Peninsula.

    PubMed

    Khairy, Mohammed A; Luek, Jenna L; Dickhut, Rebecca; Lohmann, Rainer

    2016-09-01

    The Antarctic continent is among the most pristine regions; yet various organic contaminants have been measured there routinely. Air and snow samples were collected during the austral spring (October-November, 2010) along the western Antarctic Peninsula and analyzed for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) to assess the relative importance of long-range transport versus local primary or secondary emissions. Highest concentrations of PCBs, PBDEs and DDTs were observed in the glacier's snow sample, highlighting the importance of melting glaciers as a possible secondary source of legacy pollutants to the Antarctic. In the atmosphere, contaminants were mainly found in the vapor phase (>65%). Hexachlorobenzene (33.6 pg/m(3)), PCBs (11.6 pg/m(3)), heptachlor (5.64 pg/m(3)), PBDEs (4.22 pg/m(3)) and cis-chlordane (2.43 pg/m(3)) were the most abundant contaminants. In contrast to other compounds, PBDEs seem to have originated from local sources, possibly the research station itself. Gas-particle partitioning for analytes were better predicted using the adsorption partitioning model than an octanol-based absorption approach. Diffusive flux calculations indicated that net deposition is the dominant pathway for PBDEs and chlordanes, whereas re-volatilization from snow (during melting or metamorphosis) was observed for PCBs and some OCPs.

  12. Petroleum pollution in surface sediments of Daya Bay, South China, revealed by chemical fingerprinting of aliphatic and alicyclic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Gao, Xuelu; Chen, Shaoyong

    2008-10-01

    Nine surface sediments collected from Daya Bay have been Soxhlet-extracted with 2:1 (v/v) dichloromethane-methanol. The non-aromatic hydrocarbon (NAH) fraction of solvent extractable organic matter (EOM) and some bulk geochemical parameters have been analyzed to determine petroleum pollution of the bay. The NAH content varies from 32 to 276 μg g -1 (average 104 μg g -1) dry sediment and accounts for 5.8-64.1% (average 41.6%) of the EOM. n-Alkanes with carbon number ranging from 15 to 35 are identified to be derived from both biogenic and petrogenic sources in varying proportions. The contribution of marine authigenic input to the sedimentary n-alkanes is lower than the allochthonous input based on the average n-C 31/ n-C 19 alkane ratio. 25.6-46.5% of the n-alkanes, with a mean of 35.6%, are contributed by vascular plant wax. Results of unresolved complex mixture, isoprenoid hydrocarbons, hopanes and steranes also suggest possible petroleum contamination. There is strong evidence of a common petroleum contamination source in the bay.

  13. The role of boron nitride nanotube as a new chemical sensor and potential reservoir for hydrogen halides environmental pollutants

    NASA Astrophysics Data System (ADS)

    Yoosefian, Mehdi; Etminan, Nazanin; Moghani, Maryam Zeraati; Mirzaei, Samaneh; Abbasi, Shima

    2016-10-01

    Density functional theory (DFT) studies on the interaction of hydrogen halides (HX) environmental pollutants and the boron nitride nanotubes (BNNTs) have been reported. To exploit the possibility of BNNTs as gas sensors, the adsorption of hydrogen fluoride (HF), hydrogen chloride (HCl) and hydrogen bromide (HBr) on the side wall of armchair (5,5) boron nitride nanotubes have been investigated. B3LYP/6-31G (d) level were used to analyze the structural and electronic properties of investigate sensor. The adsorption process were interpreted by highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO), quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO) and molecular electrostatic potential (MEP) analysis. Topological parameters of bond critical points have been used to calculate as measure of hydrogen bond (HB) strength. Stronger binding energy, larger charge transfer and charge density illustrate that HF gas possesses chemisorbed adsorption process. The obtained results also show the strongest HB in HF/BNNT complex. We expect that results could provide helpful information for the design of new BNNTs based sensing devices.

  14. CHEMICAL ABUNDANCES IN THE EXTERNALLY POLLUTED WHITE DWARF GD 40: EVIDENCE OF A ROCKY EXTRASOLAR MINOR PLANET

    SciTech Connect

    Klein, B.; Jura, M.; Zuckerman, B.; Melis, C.; Koester, D. E-mail: jura@astro.ucla.ed E-mail: cmelis@ucsd.ed

    2010-02-01

    We present Keck/High Resolution Echelle Spectrometer data with model atmosphere analysis of the helium-dominated polluted white dwarf GD 40, in which we measure atmospheric abundances relative to helium of nine elements: H, O, Mg, Si, Ca, Ti, Cr, Mn, and Fe. Apart from hydrogen, whose association with the other contaminants is uncertain, this material most likely accreted from GD 40's circumstellar dust disk whose existence is demonstrated by excess infrared emission. The data are best explained by accretion of rocky planetary material, in which heavy elements are largely contained within oxides, derived from a tidally disrupted minor planet at least the mass of Juno, and probably as massive as Vesta. The relatively low hydrogen abundance sets an upper limit of 10% water by mass in the inferred parent body, and the relatively high abundances of refractory elements, Ca and Ti, may indicate high-temperature processing. While the overall constitution of the parent body is similar to the bulk Earth being over 85% by mass composed of oxygen, magnesium, silicon, and iron, we find n(Si)/n(Mg) = 0.30 +- 0.11, significantly smaller than the ratio near unity for the bulk Earth, chondrites, the Sun, and nearby stars. This result suggests that differentiation occurred within the parent body.

  15. Levels, sources and chemical fate of persistent organic pollutants in the atmosphere and snow along the western Antarctic Peninsula.

    PubMed

    Khairy, Mohammed A; Luek, Jenna L; Dickhut, Rebecca; Lohmann, Rainer

    2016-09-01

    The Antarctic continent is among the most pristine regions; yet various organic contaminants have been measured there routinely. Air and snow samples were collected during the austral spring (October-November, 2010) along the western Antarctic Peninsula and analyzed for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) to assess the relative importance of long-range transport versus local primary or secondary emissions. Highest concentrations of PCBs, PBDEs and DDTs were observed in the glacier's snow sample, highlighting the importance of melting glaciers as a possible secondary source of legacy pollutants to the Antarctic. In the atmosphere, contaminants were mainly found in the vapor phase (>65%). Hexachlorobenzene (33.6 pg/m(3)), PCBs (11.6 pg/m(3)), heptachlor (5.64 pg/m(3)), PBDEs (4.22 pg/m(3)) and cis-chlordane (2.43 pg/m(3)) were the most abundant contaminants. In contrast to other compounds, PBDEs seem to have originated from local sources, possibly the research station itself. Gas-particle partitioning for analytes were better predicted using the adsorption partitioning model than an octanol-based absorption approach. Diffusive flux calculations indicated that net deposition is the dominant pathway for PBDEs and chlordanes, whereas re-volatilization from snow (during melting or metamorphosis) was observed for PCBs and some OCPs. PMID:27288629

  16. A high-pressure premixed flat-flame burner for chemical process studies. [of pollutant formation in hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.

    1978-01-01

    A premixed flat-flame burner was designed and tested with methane-air mixtures at pressures from 1.1 to 20 atm and equivalence ratios from 0.7 to 1.1. Reactant velocity in the burner mixing chamber was used to characterize the range of stable flames at each pressure-equivalence-ratio condition. Color photographs of the flames were used to determine flame zone thickness and flame height. The results show that this burner can be used for chemical process studies in premixed high pressure methane-air flames up to 20 atm.

  17. Effects of Pollution on Freshwater Fish.

    ERIC Educational Resources Information Center

    Brungs, W. A.; And Others

    1978-01-01

    Presents a literature review of the effects of pollution on freshwater fish, covering publications of 1976-77. This review includes: (1) water quality; (2) pesticide pollutants; (3) chemical pollutants; (4) miscellaneous pollutants; and (5) physical factors of pollution on freshwater fish. A list of 338 references is also presented. (HM)

  18. Air Pollution and Industry.

    ERIC Educational Resources Information Center

    Ross, R. D., Ed.

    This book is an authoritative reference and practical guide designed to help the plant engineer identify and solve industrial air pollution problems in order to be able to meet current air pollution regulations. Prepared under the editorial supervision of an experienced chemical engineer, with each chapter contributed by an expert in his field,…

  19. Air Pollution Surveillance Systems

    ERIC Educational Resources Information Center

    Morgan, George B.; And Others

    1970-01-01

    Describes atmospheric data monitoring as part of total airpollution control effort. Summarizes types of gaseous, liquid and solid pollutants and their sources; contrast between urban and rural environmental air quality; instrumentation to identify pollutants; and anticipated new non-wet chemical physical and physiochemical techniques tor cetection…

  20. Eutrophication. [Water pollution

    SciTech Connect

    Medine, A.J.; Porcella, D.B.

    1982-06-01

    A literature review dealing with the process of eutrophication with respect to the sources and transport of pollutants is presented. Topics include the mathematical modeling of nutrient loading, eutrophication, and aquatic ecosystems. Biological and environmental indicators of eutrophication are reviewed, and the interactions between various chemical and biological pollutants are considered. Several lake management projects are discussed. (KRM)

  1. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  2. Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants

    NASA Astrophysics Data System (ADS)

    Jamal, Aslam; Rahman, Mohammed M.; Khan, Sher Bahadar; Faisal, Mohd.; Akhtar, Kalsoom; Rub, Malik Abdul; Asiri, Abdullah M.; Al-Youbi, Abdulrahman O.

    2012-11-01

    Cobalt doped antimony oxide nano-particles (NPs) have been synthesized by hydrothermal process and structurally characterized by utilizing X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transforms infrared spectrophotometer (FT-IR) which revealed that the synthesized cobalt antimony oxides (CoSb2O6) are well crystalline nano-particles with an average particles size of 26 ± 10 nm. UV-visible absorption spectra (˜286 nm) were used to investigate the optical properties of CoSb2O6. The chemical sensing of CoSb2O6 NPs have been primarily investigated by I-V technique, where dichloromethane is used as a model compound. The analytical performance of dichloromethane chemical sensor exhibits high sensitivity (1.2432 μA cm-2 mM-1) and a large linear dynamic range (1.0 μM-0.01 M) in short response time (10 s). The photo catalytic activity of the synthesized CoSb2O6 nano-particles was evaluated by degradation of acridine orange (AO), which degraded 58.37% in 200 min. These results indicate that CoSb2O6 nano-particles can play an excellent research impact in the environmental field.

  3. A modified BAF system configuring synergistic denitrification and chemical phosphorus precipitation: Examination on pollutants removal and clogging development.

    PubMed

    Wang, Hongjie; Dong, Wengyi; Li, Ting; Liu, Tongzhou

    2015-01-01

    The performance of a BAF system configuring simultaneous chemical phosphorus precipitation in the pre-denitrification stage was examined using a continuously operated setup to treat real domestic wastewater. The effects of using no chemical, dosing sole Fe(2+), and dosing combined Fe(2+), PAM, and NaHCO3 in the pre-denitrification tank were assessed by monitoring COD, nitrogen, and phosphorus removal and hydraulic headloss development in the BAF column. Though dosing sole Fe(2+) significantly enhanced phosphorus removal, it would consume alkalinity through hydrolysis and form smaller-sized sludge flocs in the pre-denitrification tank, and hence resulted in affected NH4(+)-N, insoluble COD, and SS removal in the BAF. Dosing combined Fe(2+), PAM, and NaHCO3 can enhance sludge flocculation to form larger flocs and compensate alkalinity consumption. It exhibited sound performance on COD, nitrogen, and phosphorus removal, and led to less frequent BAF backwashing by slowing clogging development in the BAF filter layer.

  4. [Effect of physico-chemical characteristics of activated carbon on the adsorption of organic pollutants in natural water].

    PubMed

    Zhang, Jing-Yi; Shi, Bao-You; Xie, Jian-Kun; Yuan, Hong-Lin; Wang, Dong-Sheng

    2011-02-01

    In this paper, the adsorption characteristics of two synthetic organic compounds (SOCs), i. e., methyl parathion(MP) and trichloroethylene (TCE), and natural organic matter (NOM) on powdered activated carbons (PAC) in natural water were studied. On the basis of fully characterizing the physical and chemical characteristics of PAC, the effect of physical and chemical properties of PAC on the adsorption of low molecular weight SOCs in natural water was studied by correlation analysis. The effect of molecular weight fractionation on the adsorption of NOM on PAC was investigated using high performance size exclusion chromatography (HPSEC). It was found that, compared to the surface chemistry, the physical property (pore properties) of PAC was the critical factor to determine its adsorption capacity of MP and TCE in natural water. The adsorption of the low molecular weight SOC and NOM with apparent molecular weight (AMW) < 500 on PAC was primarily impacted by the micropore surface area, and that of NOM with 500 < AMW < 3 000 was affected by the mesopore surface area combined with the mesopore size distribution. PMID:21528573

  5. [Comparative research on determination of water integrated organic pollution index with three dimensional excitation-emission fluorescence spectroscopy and traditional wet chemical methods].

    PubMed

    Wang, Zhi-gang; Liu, Wen-qing; Zhang, Yu-jun; Li, Hong-bin; Zhao, Nan-Jing; Liu, Jian-guo; Sima, Wei-chang; Yang, Li-shu

    2007-12-01

    Three dimensional excitation-emission fluorescence spectra, chemical oxygen demanding (COD) and dissolved organic carbon (DOC) for water samples from Science Island, Chaohu Lake and Taihu Lake were determined. The COD values of the samples from Chaohu Lake were linearly correlated with the DOC values. Relationships of dissolved organic matter (DOM) concentrations determined by three dimensional excitation-emission fluorescence matrix (3DEEM), observed protein-like fluorescence intensity (Ipro-like) and humic-like fluorescence intensity (Ihum-like) to the chemical oxygen Demanding (COD) for all the samples from different sources were analyzed. Results indicated that DOM concentrations measured by 3DEEM and COD for the water samples from Science Island were well linearly related (r = 0.82172), and the linear relationships also existed between Ipro-like. and COD (r = 0.84651), as well as Ihum-like and COD (r = 0.83689). However, for the water samples from Chaohu Lake and Taihu Lake, no linear relationships existed. The cause of the above difference between the water samples from Science Island and those from Chaohu Lake and Taihu Lake, and the feasibility and the limits of the integrated organic pollution measurement using three dimensional excitation-emission fluorescence spectroscopy were further discussed.

  6. A NEW NON-DESTRUCTIVE METHOD FOR CHEMICAL ANALYSIS OF PARTICULATE MATTER FILTERS: THE CASE OF MANGANESE AIR POLLUTION IN VALLECAMONICA (ITALY)

    PubMed Central

    Borgese, Laura; Zacco, Annalisa; Pal, Sudipto; Bontempi, Elza; Lucchini, Roberto; Zimmerman, Neil; Depero, Laura E.

    2011-01-01

    Total Reflection X-ray Fluorescence (TXRF) is a well-established technique for chemical analysis, but it is mainly employed for quality control in the electronics semiconductor industry. The capability to analyze liquid and uniformly thin solid samples makes this technique suitable for other applications, and especially in the very critical field of environmental analysis. Comparison with standard methods like Inductively Coupled Plasma (ICP) and Atomic Absorption Spectroscopy (AAS) show that TXRF is a practical, accurate, and reliable technique in occupational settings. Due to the greater sensitivity necessary in trace heavy metal detection, TXRF is also suitable for environmental chemical analysis. In this paper we show that based on appropriate standards, TXRF can be considered for non-destructive routine quantitative analysis of environmental matrices such as air filters. This work has been developed in the frame of the EU-FP6 PHIME (Public Health Impact of long-term, low-level Mixed element Exposure in susceptible population strata) Integrated Project (www.phime.org). The aim of this work was to investigate Mn air pollution in the area of Vallecamonica (Italy). PMID:21315919

  7. Ion trap LC/MS characterisation of toxic polar organic pollutants in colour photographic wastewaters and monitoring of their chemical degradation.

    PubMed

    Lunar, L; Rubio, S; Pérez-Bendito, D

    2004-02-01

    Liquid chromatography/electrospray ionisation-ion trap mass spectrometry (LC/ESI-ITMS) with positive mode of operation was successfully applied to the characterisation of aromatic amines and chelating agents in colour photographic wastewaters. In addition to residual ingredients, monomers and dimers of sulphonated aromatic amines were the main toxic polar organic pollutants found. Oxidation of wastewater components by the Fenton-like reagent (Fe3+ + H2O2) was investigated by continuously pumping a solution of hydrogen peroxide. Iron concentration, present in the wastewater as ferric carboxylate complexes, was typically above 1 g l(-1), and therefore addition of Fe3+ was not necessary for treatment. Operating variables like reagent feeding concentration and flowrate, temperature and pH were studied. The overall chemical oxygen demand (COD) removal reached 90% after 7.5 h of treatment when the dosage of hydrogen peroxide was 230 g per litre of effluent, the pH was about 4 and the temperature was 60 degrees C. The absence of toxics in the treated effluents was confirmed by the Photobacterium phosphoreum luminescence reduction test. Monitoring of the chemical degradation of aromatic amines and chelating agents by LC/ESI-ITMS proved that the Fenton's like reagent was effective in degrading them. Propylenediamine tetraacetic acid (PDTA) was found to be the more recalcitrant compound, however about 97% of degradation was achieved after 7.5 hours of treatment.

  8. Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran

    NASA Astrophysics Data System (ADS)

    Keshavarzi, Behnam; Tazarvi, Zahra; Rajabzadeh, Mohammad Ali; Najmeddin, Ali

    2015-10-01

    The distribution, pollution level, sources and health risk of Hg, As, Cd, Cu, Cr, Ni, Mn, Fe, Pb, Sb and Zn in urban street dust were investigated. X-ray diffraction analysis of dust samples shows that the mineralogy of airborne dusts is dominated by calcite, dolomite and quartz. The total concentration of trace elements across the sampling sites ranged from 36.8 to 234.3 mg kg-1 for Pb, 0.004-4.504 mg kg-1 for Hg, 160.9-778.3 mg kg-1 for Zn, 245-652 mg kg-1 for Mn, 39.4-117.9 mg kg-1 for Ni, 31.6-105.9 mg kg-1 for Cr, 49.8-232.5 mg kg-1 for Cu, 5.3-8.6 mg kg-1 for As, 0.31-0.85 mg kg-1 for Cd, 0.76-9.45 mg kg-1 for Sb, and 16,300-24,900 mg kg-1 for Fe. The enrichment factor results reveal the following order: Cu > Hg > Sb > Zn > Pb > Ni > Cr > As > Mn > Cd > Fe. Among the measured elements, the highest mobility factor belongs to Pb (79.2%), Hg (74.6%), Zn (64.1%) and Mn (56.4%). According to the calculated Hazard Quotient (HQ) and Hazard Index (HI), special attention should be paid to Hg, Pb, Zn, and Mn in the street dusts of Shiraz. Multivariate statistics indicate that traffic, natural soil particles and industrial activities are likely to be the main sources of heavy metals in Shiraz street dusts.

  9. Characterizing ozone pollution in a petrochemical industrial area in Beijing, China: a case study using a chemical reaction model.

    PubMed

    Wei, Wei; Lv, Zhaofeng; Cheng, Shuiyuan; Wang, Lili; Ji, Dongsheng; Zhou, Ying; Han, Lihui; Wang, Litao

    2015-06-01

    This study selected a petrochemical industrial complex in Beijing, China, to understand the characteristics of surface ozone (O3) in this industrial area through the on-site measurement campaign during the July-August of 2010 and 2011, and to reveal the response of local O3 to its precursors' emissions through the NCAR-Master Mechanism model (NCAR-MM) simulation. Measurement results showed that the O3 concentration in this industrial area was significantly higher, with the mean daily average of 124.6 μg/m(3) and mean daily maximum of 236.8 μg/m(3), which are, respectively, 90.9 and 50.6 % higher than those in Beijing urban area. Moreover, the diurnal O3 peak generally started up early in 11:00-12:00 and usually remained for 5-6 h, greatly different with the normal diurnal pattern of urban O3. Then, we used NCAR-MM to simulate the average diurnal variation of photochemical O3 in sunny days of August 2010 in both industrial and urban areas. A good agreement in O3 diurnal variation pattern and in O3 relative level was obtained for both areas. For example of O3 daily maximum, the calculated value in the industrial area was about 51 % higher than in the urban area, while measured value in the industrial area was approximately 60 % higher than in the urban area. Finally, the sensitivity analysis of photochemical O3 to its precursors was conducted based on a set of VOCs/NOx emissions cases. Simulation results implied that in the industrial area, the response of O3 to VOCs was negative and to NOx was positive under the current conditions, with the sensitivity coefficients of -0.16~-0.43 and +0.04~+0.06, respectively. By contrast, the urban area was within the VOCs-limitation regime, where ozone enhancement in response to increasing VOCs emissions and to decreasing NOx emission. So, we think that the VOCs emissions control for this petrochemical industrial complex will increase the potential risk of local ozone pollution aggravation, but will be helpful to inhibit the

  10. Characterizing ozone pollution in a petrochemical industrial area in Beijing, China: a case study using a chemical reaction model.

    PubMed

    Wei, Wei; Lv, Zhaofeng; Cheng, Shuiyuan; Wang, Lili; Ji, Dongsheng; Zhou, Ying; Han, Lihui; Wang, Litao

    2015-06-01

    This study selected a petrochemical industrial complex in Beijing, China, to understand the characteristics of surface ozone (O3) in this industrial area through the on-site measurement campaign during the July-August of 2010 and 2011, and to reveal the response of local O3 to its precursors' emissions through the NCAR-Master Mechanism model (NCAR-MM) simulation. Measurement results showed that the O3 concentration in this industrial area was significantly higher, with the mean daily average of 124.6 μg/m(3) and mean daily maximum of 236.8 μg/m(3), which are, respectively, 90.9 and 50.6 % higher than those in Beijing urban area. Moreover, the diurnal O3 peak generally started up early in 11:00-12:00 and usually remained for 5-6 h, greatly different with the normal diurnal pattern of urban O3. Then, we used NCAR-MM to simulate the average diurnal variation of photochemical O3 in sunny days of August 2010 in both industrial and urban areas. A good agreement in O3 diurnal variation pattern and in O3 relative level was obtained for both areas. For example of O3 daily maximum, the calculated value in the industrial area was about 51 % higher than in the urban area, while measured value in the industrial area was approximately 60 % higher than in the urban area. Finally, the sensitivity analysis of photochemical O3 to its precursors was conducted based on a set of VOCs/NOx emissions cases. Simulation results implied that in the industrial area, the response of O3 to VOCs was negative and to NOx was positive under the current conditions, with the sensitivity coefficients of -0.16~-0.43 and +0.04~+0.06, respectively. By contrast, the urban area was within the VOCs-limitation regime, where ozone enhancement in response to increasing VOCs emissions and to decreasing NOx emission. So, we think that the VOCs emissions control for this petrochemical industrial complex will increase the potential risk of local ozone pollution aggravation, but will be helpful to inhibit the

  11. Dissolved Organic In Natural and Polluted Waters: Methodology and Results of Running Control of Chemical Oxygen Demand (cod) For The Inland and Marine Aquatic System

    NASA Astrophysics Data System (ADS)

    Melentyev, K. V.; Worontsov, A. M.

    Current control of dissolved organic matter in natural and waste waters is the definition traditionally of chemical oxygen demand (COD) -- one of the basic parameters of quality of water. According to the International Standard (ISO 6060), it requires not less than one hour, while in many cases the operative information about amount of dissolved organic matter in aquatic environments have importance for prevention of an emergency. The standard method is applicable to waters with meaning of COD above 30 mg O2/l and, as the chloride ion prevents, it could be difficult for assessment of organic matter in sea water. Besides it is based on dichromate oxidation of the sum of organic substances in strong acid conditions at the presence of silver and mercury, that resulted in formation toxic pollutants. Till now attempts of automation of the COD definition in aquatic system were limited, basically, to duplication of the technology submitted the above standard (automatic COD analyzers "SERES Co."-- France, or "Tsvet Co." - Russia). The system of ozone-chemiluminescence automatic control of organic matter in water (CS COD) is offered and designed. Its based on the ozone oxidation of these substances in flowing water system and measurement arising from luminescent effects. CS COD works in real time. An instrument uses for reaction the atmospheric air, doesn't require fill of reagents and doesn't make new toxic pollutants. The system was tested in laboratory, and biochemical control of organic matter in water samples gathered from the river Neva and other polluted inland water areas and basins in St. Petersburg region was fulfilled (distilled water was used as "zero" media). The results of systematization of these measurements are presented. The new special ozone generator and flowing reactor for real-time running control of different waters in natural conditions were developed, and several series of large - scale field experiments onboard research ship were provided

  12. Chemical composition and source apportionment of PM2.5 during Chinese Spring Festival at Xinxiang, a heavily polluted city in North China: Fireworks and health risks

    NASA Astrophysics Data System (ADS)

    Feng, Jinglan; Yu, Hao; Su, Xianfa; Liu, Shuhui; Li, Yi; Pan, Yuepeng; Sun, Jian-Hui

    2016-12-01

    Twenty-four PM2.5 samples were collected at a suburban site of Xinxiang during Chinese Spring Festival (SF) in 2015. 10 water-soluble ions, 19 trace elements and 8 fractions of carbonaceous species in PM2.5 were analyzed. Potential sources of PM2.5 were quantitatively apportioned using principal component analysis (PCA)-multivariate linear regressions (MLR). The threat of heavy metals in PM2.5 was assessed using incremental lifetime cancer risk (ILCR). During the whole period, serious regional haze pollution persisted, the average concentration of PM2.5 was 111 ± 54 μg m- 3, with 95.8% and 79.2% of the daily samples exhibiting higher PM2.5 concentrations than the national air quality standard I and II. Chemical species declined due to holiday effect with the exception of K, Fe, Mg, Al and K+, Cl-, which increased on Chinese New Year (CNY)'s Eve and Lantern Festival in 2015, indicating the injection of firework burning particles in certain short period. PM2.5 mass closure showed that secondary inorganic species were the dominant fractions of PM2.5 over the entire sampling (37.3%). 72-hour backward trajectory clusters indicated that most serious air pollution occurred when air masses transported from the Inner Mongolia, Shanxi and Zhengzhou. Health risk assessment revealed that noncancerous effects of heavy metals in PM2.5 of Xinxiang were unlikely happened, while lifetime cancer risks of heavy metals obviously exceeded the threshold, which might have a cancer risk for residents in Xinxiang. This study provided detailed composition data and first comprehensive analysis of PM2.5 during the Spring Festival period in Xinxiang.

  13. Fine particles (PM2.5) at a CAWNET background site in Central China: Chemical compositions, seasonal variations and regional pollution events

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Cheng, Hai-rong; Wang, Zu-wu; Lv, Xiao-pu; Zhu, Zhong-min; Zhang, Gan; Wang, Xin-ming

    2014-04-01

    Fine particle (PM2.5) samples were collected at Jinsha (JSH), a regional background China Atmosphere Watch Network (CAWNET) site in Central China from March 2012 to March 2013. The mass concentrations of water-soluble inorganic ions (WSIIs), organic carbon (OC) and elemental carbon (EC) in PM2.5 were measured. The average PM2.5 mass concentration was 48.7 ± 26.9 μg m-3, exceeding the Chinese National Ambient Air Quality Standards (NAAQS) (35 μg m-3), implying that PM2.5 is a pollutant of regional concern in Central China. The average concentrations of total WSIIs, OC and EC were 26.1 ± 18.8, 7.5 ± 3.5 and 0.7 ± 0.5 μg m-3, accounting for 53.5%, 15.1% and 1.5% of the PM2.5 concentrations at JSH, respectively. Clear seasonal variations in PM2.5 and the levels of its main chemical species were observed in the following order: winter > autumn > spring > summer. Backward air trajectory analysis and potential source contribution function (PSCF) analysis implied that the areas north and northeast of JSH contributed significantly to the levels of SO42-, NO3-, NH4+ and OC, while sandstorms originating from Mongolia and traveling across Northwest China may have contributed significantly to the levels of Na+, Ca2+, and Mg2+ in PM2.5 at JSH. Two pollution events, related to regional biomass burning and haze, respectively, were recorded at JSH during the sampling campaign.

  14. In Search of Air Pollution

    ERIC Educational Resources Information Center

    Beckendorf, Kirk

    2006-01-01

    Air pollution is no longer just a local issue; it is a global problem. The atmosphere is a very dynamic system. Pollution not only changes in chemical composition after it is emitted, but also is transported on local and global air systems hundreds and even thousands of miles away. Some of the pollutants that are major health concerns are not even…

  15. Extreme haze pollution in Beijing during January 2013: chemical characteristics, formation mechanism and role of fog processing

    NASA Astrophysics Data System (ADS)

    Huang, K.; Zhuang, G.; Wang, Q.; Fu, J. S.; Lin, Y.; Liu, T.; Han, L.; Deng, C.

    2014-03-01

    Severe haze hovered over large areas of China in January 2013 right after the public release of PM2.5 data of major cities in China at the very first time. This historical severe haze emerged over the northern China with monthly average concentrations of PM2.5, SO2, and NO2 exceeding 225, 200, and 80 μg m-3, respectively. Surface aerosol mean concentration of Beijing in January 2013 reached record high (only slightly lower than 2006) compared to historical data from 2003-2012, but with the largest daily fluctuation. Anomalous meteorological conditions in 2013 compared to the mean climatology from 2007-2012 were especially favorable for the formation of haze, such as higher humidity, lower temperature, lower PBL height, lower wind speed, and the high frequency of fog occurrences. The field campaign in Beijing showed an extremely high PM2.5 average concentration of 299.2 ± 79.1μg m-3 with extremely low visibility of 0.92 ± 0.82 km during an episode of high relative humidity with fog events. High AOD (Aerosol Optical Depth) was observed during fog days but with relatively low Angstrom exponent (< 1.0), suggesting the modification of fog processing on the particle size. Major aerosol chemical species, such as SO42-, NO3-, NH4+, Cl-, K+, and C2O42- presented an explicit exponential growth relationship with relative humidity, suggesting the significant impact of aerosol hygroscopicity on the visibility impairment. SO42- increased ∼5 folds while NO3-, NH4+, and C2O42- increased ∼3 folds in the fog days compared to the non-fog days. Aerosol in fog days was much more acidic than that in non-fog days. The in situ aerosol pH ranged from -0.78 to 0.14 in fog days based on the E-AIM model simulation. Bisulfate (HSO42-) accounted for 52% of the total sulfate and free hydrogen ion (H+Aq) accounted for 27% of the total acids in average. Enhanced coal combustion during the winter heating season along with traffic and industrial emissions were recognized to be the major

  16. Interchange of pollutants between groundwater and mineral strata as applied to waste chemical dumps and 'in situ' coal gasification sites. Completion report, 1 October 1979-30 September 1980

    SciTech Connect

    Manahan, S.E.; Tobben, P.; Gale, R.; Hoeffner, S.; Bornhop, D.

    1981-03-15

    The overall objective of this research was to study the interchange of pollutants between minerals and groundwater produced as leachate from waste chemical dumps and as a by-product of in situ (underground) coal gasification. Particular emphasis was placed upon the development of methods to evaluate the chemical interaction between contaminated groundwaters and specific solids so that these methods could be applied to specific situations which other investigators might need to study. Of particular importance was the development of methods to obtain chemical data which in turn can be used to provide meaningful bases for modelling groundwater contamination. Water contaminated by vapor from laboratory-simulated in situ coal gasification was employed as a model polluted water. The solids used to sorb organics from this waster were subbituminous coal, non-activated coal char, activated coal char, and coal ash.

  17. Pollution of the marine environment

    SciTech Connect

    Malins, D.C.

    1980-01-01

    An interdisciplinary approach to identifying chemical pollution in the marine environment and assessing the effects of such pollution on living marine resources is described. Such a study requires knowing: what pollutants organisms are exposed to, which pollutants are accumulated; the fate of pollutants taken up by organisms, and biological changes caused by the pollutants. Analytical limitations of such studies are noted. Examples of specific interdisciplinary laboratory and field investigations are presented, for instance, the finding of liver tumors in flatfish that accumulated sediment-bound naphthalene.

  18. An integrated chemical-biological study using caged mussels (Mytilus trossulus) along a pollution gradient in the Archipelago Sea (SW Finland, Baltic Sea).

    PubMed

    Lehtonen, Kari K; Turja, Raisa; Budzinski, Hélène; Devier, Marie-Hélène

    2016-08-01

    Mussels (Mytilus trossulus) were caged along a known pollution gradient in the inner Archipelago Sea (northern Baltic Sea) and retrieved after 71 and 121 d for the measurement of selected chemical contaminants in tissues and biological endpoints including biochemical biomarkers and growth. Additional samples were collected during the growth season from a native mussel population at an alleged reference site. Elevated concentrations of numerous contaminants (e.g., PAH) were observed in spring, apparently due to the loss of tissue mass during the winter, while also the levels of many biomarkers (e.g., glutathione S-transferase activity) were elevated. Spatial and temporal changes in the accumulation of contaminants and biological parameters were observed with some of them (e.g., growth) linked to seasonal changes in environmental factors. The results underline the importance of understanding the effects of seasonal natural factors on the growth dynamics and general condition of mussels when assessing tissue concentrations of contaminants and biological effects. PMID:27337550

  19. Effects of chemical oxygen demand (COD)/N ratios on pollutants removal in the subsurface wastewater infiltration systems with/without intermittent aeration.

    PubMed

    Song, Siyu; Pan, Jing; Wu, Shiwei; Guo, Yijing; Yu, Jingxiao; Shan, Qingchi

    2016-01-01

    The matrix oxidation reduction potential level, organic pollutants and nitrogen removal performances of eight subsurface wastewater infiltration systems (SWISs) (four with intermittent aeration, four without intermittent aeration) fed with influent chemical oxygen demand (COD)/N ratio of 3, 6, 12 and 18 were investigated. Nitrification of non-aerated SWISs was poor due to oxygen deficiency while higher COD/N ratios further led to lower COD and nitrogen removal rate. Intermittent aeration achieved almost complete nitrification, which successfully created aerobic conditions in the depth of 50 cm and did not change anoxic or anaerobic conditions in the depth of 80 and 110 cm. The sufficient carbon source in high COD/N ratio influent greatly promoted denitrification in SWISs with intermittent aeration. High average removal rates of COD (95.68%), ammonia nitrogen (NH4(+)-N) (99.32%) and total nitrogen (TN) (89.65%) were obtained with influent COD/N ratio of 12 in aerated SWISs. The results suggest that intermittent aeration was a reliable option to achieve high nitrogen removal in SWISs, especially with high COD/N ratio wastewater.

  20. Pollution prevention in laboratory operations

    SciTech Connect

    Phifer, R.W.

    1995-09-01

    The scale of chemical usage has the most significant impact on pollution prevention efforts in the laboratory. The average chemical laboratory facility, particularly one involved in the academic or industrial research area, uses thousands of chemicals. Instead of a few chemicals in significant quantities, laboratories use many chemicals in small quantities. This results in both unique problems and unique solutions for those involved in any aspect of pollution prevention. The Occupational Safety and Health Administration (OSHA) defines a laboratory as a workplace where relatively small quantities of hazardous chemicals are used on a non-production basis. This includes facilities for teaching, quality control, environmental testing, chemical and medical research and development, and clinical testing. As in other facilities that use chemicals, pollution prevention in the laboratory means source reduction, waste minimization, recycling, and reclamation. Nonetheless, how these procedures are implemented varies significantly from other chemical activities.

  1. Use of criteria pollutants, active and passive mercury sampling, and receptor modeling to understand the chemical forms of gaseous oxidized mercury in Florida

    NASA Astrophysics Data System (ADS)

    Huang, J.; Miller, M. B.; Edgerton, E.; Gustin, M. S.

    2015-04-01

    The highest mercury (Hg) wet deposition in the United States (US) occurs along the Gulf of Mexico, and in the southern and central Mississippi River Valley. Gaseous oxidized Hg (GOM) is thought to be a major contributor due to its high water solubility and reactivity. Therefore, it is critical to understand the concentrations, potential for wet and dry deposition, and GOM compounds present in the air. Concentrations and dry deposition fluxes of GOM were measured at Outlying Landing Field (OLF), Florida, using a Tekran® 2537/1130/1135, and active and passive samplers using cation-exchange and nylon membranes. Relationships with Tekran® derived data must be interpreted with caution, since GOM concentrations can be biased low depending on the chemical compounds in air, and interferences with water vapor and ozone. Only gaseous elemental Hg and GOM are discussed here since the PBM measurement uncertainties are higher. Criteria air pollutants were concurrently measured and Tekran® data were assessed along with these using Principal Component Analysis to identify associations among air pollutants. Based on the diel pattern, high GOM concentrations at this site were associated with fossil fuel combustion and gas phase oxidation during the day, and gas phase oxidation and transport in the free troposphere. The ratio of GEM/CO at OLF (0.008 ng m-3 ppbv-1) was much higher than the numbers reported for the Western United States and central New York for domestic emissions or biomass burning (0.001 ng m-3 ppbv-1), which we suggest is indicative of a marine boundary layer source. Results from nylon membranes with thermal desorption analyses suggest five potential GOM compounds exist in this area, including HgBr2, HgO, Hg(NO3)2, HgSO4, and an unknown compound. This indicates that the site is influenced by different gaseous phase reactions and sources. A~high GOM event related to high CO but average SO2 suggests the air parcels moved from the free troposphere and

  2. Chemical and isotopical characterisation of atmospheric pollution from urban and rural environments of the Rhine Valley (PCBs, trace elements and Sr-, Nd- and Pb- isotope determinations)

    NASA Astrophysics Data System (ADS)

    Guéguen, F.; Stille, P.; Millet, M.; Dietze, V.; Gieré, R.

    2010-05-01

    Atmosheric samples (gas and particulate matter (PM)) have been collected in the urban environment of the cities of Strasbourg and Kehl and in the rural environment of the Vosges mountains. For sampling of gas phase pollutants and particles two different passive sampler devices have been applied (PAS and Sigma-2, respectively). The PAS has been used for gas phase Polychlorinated Biphenyls (PCBs) sampling and is based on the passive adsorption of gas phase pollutants onto XAD-2 resin. The Sigma-2 sampler is based on the sedimentation principle (Stoke's law), collects particles in the size range 2.5-100 μm and allows the calculation of ambient air concentration. The sampler is mainly used for routine air quality measurements in German health and recreation resorts and in this field study the first time for collection of samples for subsequent trace element and isotope analysis. The collection time for the Sigma-2 and PAS are four and two weeks, respectively. Major and trace elements have been analyzed by ICP-MS and the Sr, Nd and Pb isotope ratios by a sector field MC-ICP-MS (Neptune) while PCBs were ASE extracted and analysed by GC-ECD. The aerosol data are compared with those from tree barks which have previously been used successfully as biomonitors of atmospheric pollution (Lahd Geagea et al. 2008)1. The outer 1 mm thick part of the bark has been analyzed corresponding to about 2 to 8 years of accumulation. Some of the trace elements (Cr, Ni and Mo) of the aerosol samples are strongly (up to 1000 times) enriched compared to average 'upper continental crust (UCC)'. Normalization to a « natural » sample with an atmospheric baseline composition allows to identify industrial contributions: transition metals (Cr, Mn, Fe, Co, Ni, Zn, Mo, Cd), Ba and Pb appear to be important elements in steel plant and incinerator (chemical waste) emissions. Similarly enrichment in light rare earth elements (La, Pr, Nd) is observable. The enrichments increase with decreasing distance

  3. Pollution Probe.

    ERIC Educational Resources Information Center

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  4. Temporal trends of persistent organic pollutants in dated sediment cores: Chemical fingerprinting of the anthropogenic impacts in the Seine River basin, Paris.

    PubMed

    Lorgeoux, C; Moilleron, R; Gasperi, J; Ayrault, S; Bonté, P; Lefèvre, I; Tassin, B

    2016-01-15

    Persistent organic pollutants (POPs) were extensively produced and used throughout the last century. In the early 1980s, a rising concern on the environmental impact of these chemicals has led to the establishment of regulations and changes of use including bans. Long term monitoring of the environmental impacts of these emissions and regulations is a challenge because regular monitoring was not mandatory at the beginning of the first emissions. Moreover, the analytical methods have been strongly improved over the decades. To overcome the lack of monitoring and accurate data, sediment cores are powerful tools to construct contamination records. In this study, a high resolution record was constructed for four POPs families (13 polycyclic aromatic hydrocarbons (PAHs), 15 polychlorinated biphenyls (PCBs), 3 alkylphenols (APs) and 8 polybromodiphenyl ethers (PBDEs)) to establish their historical trends in a long-term urbanized and industrialized environment: the Seine River basin, France. These specific families were selected because they had different sources, uses and histories. The results showed concentrations up to 90 mg/kg for ∑PAHs, 2.3mg/kg for ∑PCB, 1.2mg/kg for ∑APs and 0.06 mg/kg for ∑PBDE. The vertical distribution profiles were different from one family to another and presented a good correlation with uses (e.g. transition from coal to natural gas for PAHs), and regulation implementation (e.g., AP ban after "OSPAR Convention" in 1992). The study of compounds distribution provided original information on sources, e.g. temporal variations in PAH uses. This study demonstrates the usefulness and accuracy of sedimentary archives in floodplain to assess the fate of POPs through time in continental hydrosystems. These first results give a comprehensive overview of the contamination in the Seine River basin downstream of Paris Megacity. They were in good agreement with previous studies dedicated to European areas and highlighted specificities of this basin

  5. Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe.

    PubMed

    Happo, Mikko S; Hirvonen, Maija-Riitta; Halinen, Arja I; Jalava, Pasi I; Pennanen, Arto S; Sillanpaa, Markus; Hillamo, Risto; Salonen, Raimo O

    2008-11-01

    Inflammation is regarded as an important mechanism in mortality and morbidity associated with exposures of cardiorespiratory patients to urban air particulate matter. We investigated the association of the chemical composition and sources of urban air fine (PM(2.5-0.2)) and coarse (PM(10-2.5)) particulate samples with the inflammatory activity in the mouse lung. The particulate samples were collected during selected seasons in six European cities using a high-volume cascade impactor. Healthy C57BL/6J mice were intratracheally instilled with a single dose (10 mg/kg) of the particulate samples. At 4, 12, and 24 h after the exposure, the lungs were lavaged and the bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation and tissue damage: cell number, total protein, and cytokines (tumor necrosis factor [TNF]-alpha, interleukin [IL]-6, and KC). Dicarboxylic acids and transition metals, especially Ni and V, in PM(2.5-0.2) correlated positively and some secondary inorganic ions (NO3(-), NH4(+)) negatively with the inflammatory activity. Total organic matter and SO4(2-) had no consistent correlations. In addition, the soil-derived constituents (Ca2+, Al, Fe, Si) showed positive correlations with the PM(2.5-0.2)-induced inflammatory activity, but their role in PM(10-2.5) remained obscure, possibly due to largely undefined biogenic material. Markers of poor biomass and coal combustion, i.e., monosaccharide anhydrides and As, were associated with elevated PAH contents in PM(2.5-0.2) and a consistent immunosuppressive effect. Overall, our results support epidemiological findings that the local sources of incomplete combustion and resuspended road dust are important in urban air particulate pollution-related health effects.

  6. Temporal trends of persistent organic pollutants in dated sediment cores: Chemical fingerprinting of the anthropogenic impacts in the Seine River basin, Paris.

    PubMed

    Lorgeoux, C; Moilleron, R; Gasperi, J; Ayrault, S; Bonté, P; Lefèvre, I; Tassin, B

    2016-01-15

    Persistent organic pollutants (POPs) were extensively produced and used throughout the last century. In the early 1980s, a rising concern on the environmental impact of these chemicals has led to the establishment of regulations and changes of use including bans. Long term monitoring of the environmental impacts of these emissions and regulations is a challenge because regular monitoring was not mandatory at the beginning of the first emissions. Moreover, the analytical methods have been strongly improved over the decades. To overcome the lack of monitoring and accurate data, sediment cores are powerful tools to construct contamination records. In this study, a high resolution record was constructed for four POPs families (13 polycyclic aromatic hydrocarbons (PAHs), 15 polychlorinated biphenyls (PCBs), 3 alkylphenols (APs) and 8 polybromodiphenyl ethers (PBDEs)) to establish their historical trends in a long-term urbanized and industrialized environment: the Seine River basin, France. These specific families were selected because they had different sources, uses and histories. The results showed concentrations up to 90 mg/kg for ∑PAHs, 2.3mg/kg for ∑PCB, 1.2mg/kg for ∑APs and 0.06 mg/kg for ∑PBDE. The vertical distribution profiles were different from one family to another and presented a good correlation with uses (e.g. transition from coal to natural gas for PAHs), and regulation implementation (e.g., AP ban after "OSPAR Convention" in 1992). The study of compounds distribution provided original information on sources, e.g. temporal variations in PAH uses. This study demonstrates the usefulness and accuracy of sedimentary archives in floodplain to assess the fate of POPs through time in continental hydrosystems. These first results give a comprehensive overview of the contamination in the Seine River basin downstream of Paris Megacity. They were in good agreement with previous studies dedicated to European areas and highlighted specificities of this basin

  7. Ecological restoration of a copper polluted vineyard: Long-term impact of farmland abandonment on soil bio-chemical properties and microbial communities.

    PubMed

    Cavani, Luciano; Manici, Luisa M; Caputo, Francesco; Peruzzi, Elisabetta; Ciavatta, Claudio

    2016-11-01

    This study aimed at investigating the degree of interference of high soil copper (Cu) contamination when an old vineyard is converted into a protected area. This study was performed within an intensive agricultural system; it was organized into a two-factorial nested design to analyze the impact of management (conventional vs re-naturalized orchard) and position within each orchard (tree-rows and strips). Chemical and biochemical properties along with bacterial and fungal communities, evaluated with PCR-DGGE starting from total soil DNA, were analyzed. Total Cu was localized in tree rows in the old vineyard at 1000 mg kg(-1) of soil, whereas it did not exceed 80 mg kg(-1) soil in the other treatments. Total organic carbon and all biochemical properties significantly improved in re-naturalized compared to conventionally cultivated site, while no significant differences were observed between tree row and strip. Moreover, a higher extractable carbon-extractable nitrogen (Cext-to-Next) ratio in the re-naturalized (19.3) site than in the conventionally managed site (10.2) indicated a shift of soil system from C-limited to N-limited, confirming a successful ecological restoration. Deep improvement of soil biochemical properties exceeded the negative impact of Cu contamination. A shift of bacterial community composition as well as increased bacterial diversity in Cu contaminated treatment indicated a bacterial response to Cu stress; to the contrary, soil fungi were less susceptible than bacteria, though an overall reduction of fungal DNA was detected. Findings suggest that ecological restoration of highly polluted agricultural soils leads to overcoming the reduction of soil functionalities linked to Cu contamination and opens interesting perspectives for mitigating Cu stress in agricultural soils with strategies based on conservative agriculture.

  8. Ecological restoration of a copper polluted vineyard: Long-term impact of farmland abandonment on soil bio-chemical properties and microbial communities.

    PubMed

    Cavani, Luciano; Manici, Luisa M; Caputo, Francesco; Peruzzi, Elisabetta; Ciavatta, Claudio

    2016-11-01

    This study aimed at investigating the degree of interference of high soil copper (Cu) contamination when an old vineyard is converted into a protected area. This study was performed within an intensive agricultural system; it was organized into a two-factorial nested design to analyze the impact of management (conventional vs re-naturalized orchard) and position within each orchard (tree-rows and strips). Chemical and biochemical properties along with bacterial and fungal communities, evaluated with PCR-DGGE starting from total soil DNA, were analyzed. Total Cu was localized in tree rows in the old vineyard at 1000 mg kg(-1) of soil, whereas it did not exceed 80 mg kg(-1) soil in the other treatments. Total organic carbon and all biochemical properties significantly improved in re-naturalized compared to conventionally cultivated site, while no significant differences were observed between tree row and strip. Moreover, a higher extractable carbon-extractable nitrogen (Cext-to-Next) ratio in the re-naturalized (19.3) site than in the conventionally managed site (10.2) indicated a shift of soil system from C-limited to N-limited, confirming a successful ecological restoration. Deep improvement of soil biochemical properties exceeded the negative impact of Cu contamination. A shift of bacterial community composition as well as increased bacterial diversity in Cu contaminated treatment indicated a bacterial response to Cu stress; to the contrary, soil fungi were less susceptible than bacteria, though an overall reduction of fungal DNA was detected. Findings suggest that ecological restoration of highly polluted agricultural soils leads to overcoming the reduction of soil functionalities linked to Cu contamination and opens interesting perspectives for mitigating Cu stress in agricultural soils with strategies based on conservative agriculture. PMID:27454095

  9. Examining the temperature dependence of ethanol (E85) versus gasoline emissions on air pollution with a largely-explicit chemical mechanism

    NASA Astrophysics Data System (ADS)

    Ginnebaugh, Diana L.; Liang, Jinyou; Jacobson, Mark Z.

    2010-03-01

    The increased use of ethanol in transportation fuels warrants an investigation of its consequences. An important component of such an investigation is the temperature dependence of ethanol and gasoline exhaust chemistry. We use the Master Chemical Mechanism (MCM, version 3.1, LEEDS University) with the SMVGEAR II chemical ordinary differential solver to provide the speed necessary to simulate complex chemistry to examine such effects. The MCM has over 13,500 organic reactions and 4600 species. SMVGEAR II is a sparse-matrix Gear solver that reduces the computation time significantly while maintaining any specified accuracy. Although we use a box model for this study, we determine and demonstrate in a separate study that the speed of the MCM with SMVGEAR II allows the MCM to be modeled in 3-dimensions. We also verified the accuracy of the model in comparison with smog chamber data. We then use the model with species-resolved tailpipe emissions data for E85 (15% gasoline, 85% ethanol fuel blend) and gasoline vehicles to compare the impact of each on nitrogen oxides, organic gases, and ozone as a function of ambient temperature and background concentrations, using Los Angeles in 2020 as a base case. We use two different emissions sets - one is a compilation of exhaust and evaporative data taken near 24 °C and the other from exhaust data taken at -7 °C - to determine how atmospheric chemistry and emissions are affected by temperature. We include diurnal effects by examining two day scenarios. We find that, accounting for chemistry and dilution alone, the average ozone concentrations through the range of temperatures tested are higher with E85 than with gasoline by ˜7 part per billion volume (ppbv) at higher temperatures (summer conditions) to ˜39 ppbv at low temperatures and low sunlight (winter conditions) for an area with a high nitrogen oxide (NOx) to non-methane organic gas (NMOG) ratio. The results suggest that E85's effect on health through ozone formation

  10. Nurses join pollution fight.

    PubMed

    Sadler, Catharine

    2016-08-10

    Most of us are aware of outdoor air pollution: spend time in any traffic-clogged street, and you can taste the chemicals. Even spring days in the countryside can be spoiled by ozone haze. But a report published earlier this year by the Royal College of Physicians (RCP) and the Royal College of Paediatrics and Child Health (RCPCH) revealed that air pollution is much more than an inconvenience - it is a major health risk. PMID:27507373

  11. Mercury pollution in China

    SciTech Connect

    Gui-Bin Jiang; Jian-Bo Shi; Xin-Bin Feng

    2006-06-15

    With a long history of mercury mining and use and a rapidly growing economy that relies heavily on coal for heat and energy, China faces an enormous challenge to reduce pollution from this toxic metal. The authors delineate what is known about the extent of the problem, regulatory steps are being taken to reduce mercury pollution, and next steps for environmental researchers. It addresses issues of mercury pollution from mercury and gold mining, coal combustion and the chemical industry. Data on dietary intake of mercury is also reported. 50 refs., 2 figs., 2 photos.

  12. Vertical profiles of pollutant gases measured with passive DOAS in the Po Valley devoted to satellite and chemical model data comparison

    NASA Astrophysics Data System (ADS)

    Masieri, S.; Petritoli, A.; Kostadinov, I.; Bortoli, D.; Premuda, M.; Ravegnani, F.; Giovanelli, G.

    2009-04-01

    In the frame of QUITSAT Italian pilot project (Air QUality with InTegration of ground-based and SAtellite measurement and chemical Transport model), two field campaigns were made in S.Pietro Capofiume (44.65˚ N; 11.37˚ E) and Bologna (44.52˚ N; 11.34˚ E) to provide concentration of ground particular matter and gaseous pollutants, namely nitrogen dioxide (NO2), formaldehyde (HCHO), sulphur dioxide (SO2) and ozone (O3). The aim of the campaigns was to provide experimental data need for tests and improvement of algorithms developed for integration of satellite and ground-based data together with chemical transport model data in order to retrieve air quality in the QUITSAT domain. Ground based measurements were carried out within a network of in-situ analyser in the Po Valley and with a scanning multi-axis DOAS (Differential Optical Absorption Spectroscopy) spectrometer system developed at ISAC-CNR institute [1], in collaboration with Geophysics Center of Evora [2]. TropoGAS (TROPOspheric Gas Analyser Spectrometer) spectrometer permits active and passive DOAS measurements at the chosen angles: α =1,2,3,6,10,15,20,90 and another measurement was taken along the sun direction. A Xenon lamp installed at 1km of distance from spectrometer was used as a reference concentration measured in the same place, and these values shows good agreement with in-situ analyser concentration. Gas spectral absorption was evaluated with DOAS [3] algorithms from 430 to 500 nm in two different windows: first from 436 to 460 nm for NO2 retrieval; second from 460 to 500 nm for O4 (best line at 477 nm) and NO2. Air Mass Factor (AMF) was calculated using PROMSAR (PROcessing of Multi-Scattered Atmospheric Radiation) model [4], that is a backward Montecarlo Radiative Transfer Model (RTM). An apposite inversion method [5][6], was applied to retrieve profiles of the target gases from their Slant Column Densities (SCD), using advanced approaches involving measurement of the atmospheric O4

  13. Oxygen levels versus chemical pollutants: do they have similar influence on macrofaunal assemblages? A case study in a harbour with two opposing entrances.

    PubMed

    Guerra-García, J M; García-Gómez, J C

    2005-05-01

    Generally, harbours are polluted zones characterised by low values of hydrodynamism and oxygen in the water column and high concentrations of pollutants in sediments. The harbour of Ceuta, North Africa, has an unusual structure; it is located between two bays connected by a channel, which increases the water movement and exchange in the harbour, maintaining moderate oxygen levels in the water-sediment interface. Nevertheless, high concentration of organic matter, nutrients and heavy metals were measured in sediments from this harbour. Under these unusual conditions (high levels of pollution but total saturation of oxygen in the water column) we studied the responses of soft-bottom macrobenthic communities using uni and multivariate analyses. The number of species was similar inside and outside the harbour but the species composition differed between internal and external stations; oxygen levels seem to control the "quantity" of species whereas pollutants control the "quality" of them. PMID:15734588

  14. Social Pollution

    ERIC Educational Resources Information Center

    Esser, Aristide Henri

    1971-01-01

    Social pollution provides the matrix for the pollution of the physical environment. This stems from man's present inability to function synergistically. To find new freedoms in purposeful evolution, we will have to start cleansing our Mind. (Author/SD)

  15. Silica- and sulfate-bearing rock coatings in smelter areas: Products of chemical weathering and atmospheric pollution I. Formation and mineralogical composition

    NASA Astrophysics Data System (ADS)

    Mantha, Nathalie M.; Schindler, Michael; Murayama, Mitsuhiro; Hochella, Michael F.

    2012-05-01

    Black rock-coatings occur in proximity to smelters and roast yards of the Greater Sudbury area, Ontario, Canada and contain information about the past interactions between surface minerals, and gaseous and particulate atmospheric components, many of which were pollutants. Rock-coatings were collected from various locations within the Sudbury area and are characterized with scanning electron microscopy, transmission electron microscopy, X-ray diffraction, electron microprobe analysis, infrared spectroscopy and X-ray photoelectron spectroscopy. Acidic fumigations and rain, the result of vast quantities of SO2 released from smelting, increased the chemical weathering rate of exposed rocks in the Sudbury area. Non-stoichiometric dissolution of the silicate minerals under acidic conditions resulted in the accumulation of silicic acid and the subsequent formation of a silica-gel type coating. The silica gel transformed overtime into amorphous silica, opal (opal C and opal-CT) and cristobalite. Dissolution of the underlying rock and also of metal-bearing particles by sulfuric acid resulted in the in situ formation of metal-sulfate-rich layers on the interfaces between the atmosphere and the silica-rich coating (atmosphere-coating interface, ACI) and between the silica-rich coating and the underlying rock (rock-coating interface, RCI). These metal-sulfate-rich layers contain nanometer aggregates of Fe-Cu-sulfate-hydroxide, goldichite, mereiterite, guildite, butlerite and antlerite. The silica-rich matrix also contains a mix of detrital grains from adjacent rocks and soils (feldspar, quartz, hematite, chlorite, montmorillonite) and non-dissolved smelter-derived nano- to micro-size particulates (metal-silicates, metal-oxides, C-spheres). The apparent disequilibrium between the embedded particles and the Fe-Cu-sulfates suggests that trapped nanoparticles were encapsulated into pores which prevented their equilibration with acidic metal-sulfate-bearing fluids. An XPS depth

  16. Air Pollution.

    ERIC Educational Resources Information Center

    Barker, K.; And Others

    Pollution of the general environment, which exposes an entire population group for an indeterminate period of time, certainly constitutes a problem in public health. Serious aid pollution episodes have resulted in increased mortality and a possible relationship between chronic exposure to a polluted atmosphere and certain diseases has been…

  17. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  18. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  19. Aircraft borne combined measurements of the Fukushima radionuclide Xe-133 and fossil fuel combustion generated pollutants in the TIL - Implications for Cyclone induced lift and TIL physical-chemical processes

    NASA Astrophysics Data System (ADS)

    Arnold, Frank; Schlager, Hans; Simgen, Hardy; Aufmhoff, Heinfried; Baumann, Robert; Lindemann, Sigfried; Rauch, Ludwig; Kaether, Frank; Pirjolla, Liisa; Schumann, Ulrich

    2013-04-01

    The radionuclide Xe-133, released by the March 2011 nuclear disaster at Fukushima/Daiichi (hereafter FD), represents an ideal tracer for atmospheric transport. We report the, to our best knowledge, only aircraft borne measurements of FD Xe-133 in the Tropopause Inversion Layer (TIL), indicating rapid lift of Xe-133 rich planetary boundary layer air to the TIL. On the same research aircraft (FALCON), we have also conducted on-line measurements of fossil fuel combustion generated pollutant gases (SO2, NOx, HNO3,NOy), which were found to have increased concentrations in the TIL. In addition, we have conducted supporting model simulations of transport, chemical processes, and aerosol processes. Our investigations reveal a potentially important influence of East-Asian cyclone induced pollutants transport to the TIL, particularly influencing aerosol formation in the TIL.

  20. Chemistry for Pollution Control.

    ERIC Educational Resources Information Center

    Everson, Larry

    This booklet presents some methods of quantitative chemical analysis currently used in the field of fresh water pollution control. Only those tests that may be performed with little or no special reagents or pieces of equipment are listed. The booklet addresses the following determinations: (1) acidity; (2) alkalinity; (3) chloride; (4) hardness;…

  1. Water Pollution: Monitoring the Source.

    ERIC Educational Resources Information Center

    Wilkes, James W.

    1980-01-01

    Described is an advanced biology class project involving study of the effects of organic pollution on an aquatic ecosystem from an sewage treatment plant overflow to evaluate the chemical quality and biological activity of the river water. (DS)

  2. Source apportionment of fine particles and its chemical components over the Yangtze River Delta, China during a heavy haze pollution episode

    NASA Astrophysics Data System (ADS)

    Li, L.; An, J. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Lu, Q.; Lin, L.; Wang, Y. J.; Tao, S. K.; Qiao, L. P.; Zhu, S. H.; Chen, C. H.

    2015-12-01

    An extremely high PM2.5 pollution episode occurred over the eastern China in January 2013. In this paper, the particulate matter source apportionment technology (PSAT) method coupled within the Comprehensive air quality model with extensions (CAMx) is applied to study the source contributions to PM2.5 and its major components at six receptors (Urban Shanghai, Chongming, Dianshan Lake, Urban Suzhou, Hangzhou and Zhoushan) in the Yangtze River Delta (YRD) region. Contributions from 4 source areas (including Shanghai, South Jiangsu, North Zhejiang and Super-region) and 9 emission sectors (including power plants, industrial boilers and kilns, industrial processing, mobile source, residential, volatile emissions, dust, agriculture and biogenic emissions) to PM2.5 and its major components (sulfate, nitrate, ammonia, organic carbon and elemental carbon) at the six receptors in the YRD region are quantified. Results show that accumulation of local pollution was the largest contributor during this air pollution episode in urban Shanghai (55%) and Suzhou (46%), followed by long-range transport (37% contribution to Shanghai and 44% to Suzhou). Super-regional emissions play an important role in PM2.5 formation at Hangzhou (48%) and Zhoushan site (68%). Among the emission sectors contributing to the high pollution episode, the major source categories include industrial processing (with contributions ranging between 12.7 and 38.7% at different receptors), combustion source (21.7-37.3%), mobile source (7.5-17.7%) and fugitive dust (8.4-27.3%). Agricultural contribution is also very significant at Zhoushan site (24.5%). In terms of the PM2.5 major components, it is found that industrial boilers and kilns are the major source contributor to sulfate and nitrate. Volatile emission source and agriculture are the major contributors to ammonia; transport is the largest contributor to elemental carbon. Industrial processing, volatile emissions and mobile source are the most significant

  3. Screening of pollution control and clean-up materials for river chemical spills using the multiple case-based reasoning method with a difference-driven revision strategy.

    PubMed

    Liu, Rentao; Jiang, Jiping; Guo, Liang; Shi, Bin; Liu, Jie; Du, Zhaolin; Wang, Peng

    2016-06-01

    In-depth filtering of emergency disposal technology (EDT) and materials has been required in the process of environmental pollution emergency disposal. However, an urgent problem that must be solved is how to quickly and accurately select the most appropriate materials for treating a pollution event from the existing spill control and clean-up materials (SCCM). To meet this need, the following objectives were addressed in this study. First, the material base and a case base for environment pollution emergency disposal were established to build a foundation and provide material for SCCM screening. Second, the multiple case-based reasoning model method with a difference-driven revision strategy (DDRS-MCBR) was applied to improve the original dual case-based reasoning model method system, and screening and decision-making was performed for SCCM using this model. Third, an actual environmental pollution accident from 2012 was used as a case study to verify the material base, case base, and screening model. The results demonstrated that the DDRS-MCBR method was fast, efficient, and practical. The DDRS-MCBR method changes the passive situation in which the choice of SCCM screening depends only on the subjective experience of the decision maker and offers a new approach to screening SCCM.

  4. Pollution of the marine environment

    SciTech Connect

    Malins, D.C.

    1980-01-01

    With 63,000 chemicals in common use, the task of identifying specific pollutants and their effects in relation to marine life is immense. The interdisciplinary approach to this complex issue includes studies in analytical chemistry, biochemistry, vertebrate and invertebrate pathology, electron microscopy, immunology, and behavioral biology. Primary concerns are whether pollutants are available to organisms and whether they are transferred through marine food webs. Studies on marine and estuarine pollution in the New York Bight and Puget Sound, Washington, are summarized. Among other results it is interactive effects between two pollutants in marine organism that account for substantial alterations in certain biochemical systems and in cellular morphology. (JGB)

  5. Particle Pollution

    MedlinePlus

    ... EPA Air Quality Index (AQI) tells you when air pollution is likely to reach levels that could be ... high, take steps to limit the amount of air you breathe in while you're outside. ... pollution levels are usually lower. Choose easier outdoor activities ( ...

  6. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  7. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  8. Chemical signatures of the Anthropocene in the Clyde estuary, UK: sediment-hosted Pb, (207/206)Pb, total petroleum hydrocarbon, polyaromatic hydrocarbon and polychlorinated biphenyl pollution records.

    PubMed

    Vane, C H; Chenery, S R; Harrison, I; Kim, A W; Moss-Hayes, V; Jones, D G

    2011-03-13

    The sediment concentrations of total petroleum hydrocarbons (TPHs), polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), Pb and (207/206)Pb isotope ratios were measured in seven cores from the middle Clyde estuary (Scotland, UK) with an aim of tracking the late Anthropocene. Concentrations of TPHs ranged from 34 to 4386 mg kg(-1), total PAHs from 19 to 16,163 μg kg(-1) and total PCBs between less than 4.3 to 1217 μg kg(-1). Inventories, distributions and isomeric ratios of the organic pollutants were used to reconstruct pollutant histories. Pre-Industrial Revolution and modern non-polluted sediments were characterized by low TPH and PAH values as well as high relative abundance of biogenic-sourced phenanthrene and naphthalene. The increasing industrialization of the Clyde gave rise to elevated PAH concentrations and PAH isomeric ratios characteristic of both grass/wood/coal and petroleum and combustion (specifically petroleum combustion). Overall, PAHs had the longest history of any of the organic contaminants. Increasing TPH concentrations and a concomitant decline in PAHs mirrored the lessening of coal use and increasing reliance on petroleum fuels from about the 1950s. Thereafter, declining hydrocarbon pollution was followed by the onset (1950s), peak (1965-1977) and decline (post-1980s) in total PCB concentrations. Lead concentrations ranged from 6 to 631 mg kg(-1), while (207/206)Pb isotope ratios spanned 0.838-0.876, indicative of various proportions of 'background', British ore/coal and Broken Hill type petrol/industrial lead. A chronology was established using published Pb isotope data for aerosol-derived Pb and applied to the cores.

  9. Chemical analysis of trace elements for air pollution detection. August 1973-May 1990 (A Bibliography from the NTIS data base). Report for August 1973-May 1990

    SciTech Connect

    Not Available

    1990-06-01

    This bibliography contains citations concerning the identification and analysis of trace elements and compounds occurring in air and airborne particulate samples. The citations present methods of analysis and the equipment required for the determinations. Analytical techniques include spectrometry, inductively-coupled plasma, atomic absorption and atomic emission, Fourier transform infrared analysis, and ion chromatography. A separate Published Search covers analysis of trace elements in water pollution detection. (Contains 103 citations fully indexed and including a title list.)

  10. Nanowastes and the environment: using mercury as an example pollutant to assess the environmental fate of chemicals adsorbed onto manufactured nanomaterials.

    PubMed

    Gao, Jie; Bonzongo, Jean-Claude J; Bitton, Gabriel; Li, Ying; Wu, Chang-Yu

    2008-04-01

    Emerging nanotechnologies hold great promise for creating new means of detecting pollutants, cleaning polluted waste streams, and recovering materials before they become wastes, thereby protecting environmental quality. Studies focusing on the different advantages of nanoscience and nanotechnology abound in the literature, but less research effort seems to be directed toward studying the fate and potential impacts of wastes that will be generated by this technology. Using a combination of biogeochemical and toxicological methods, we conducted a preliminary investigation of the potential environmental fate of Hg as an example pollutant bound to nanomaterials used in treatment of gas effluents. Methylation of Hg sorbed onto SiO(2)-TiO(2) nanocomposites was used as a proxy for Hg bioavailability to sedimentary microorganisms, and the FluoroMetPLATE assay was used to assess the toxicity of both virgin and Hg-loaded SiO(2)-TiO(2) nanocomposites. Our results show that the bioavailability of Hg sorbed onto SiO(2)-TiO(2) nanocomposites to sedimentary microorganisms is pH dependent, with decreasing reaction rates as the pH increases from 4 to 6. Toxicity tests conducted using liquid extracts obtained by leaching of Hg-loaded SiO(2)-TiO(2) nanocomposites with the synthetic precipitation leaching procedure solution showed an average inhibition of 84% (vs 57% for virgin SiO(2)-TiO(2) nanocomposites). These results suggest that Hg sorbed onto engineered nanoparticles could become bioavailable and toxic if introduced into natural systems. Accordingly, studies focusing on the environmental implications of nanomaterials should include determination of the fate and impacts of pollutants that enter the environment bound to engineered nanomaterials.

  11. The effect of Eulaliopsis binata on the physi-chemical properties, microbial biomass, and enzymatic activities in Cd-Pb polluted soil.

    PubMed

    Yu, Hui; Xiang, Yanci; Zou, Dongsheng

    2016-10-01

    Pot culture experiment using mining wasteland soil was carried out to study the effect of Eulaliopsis binata on the heavy-metal polluted soil with the growth of 90, 180, 270, and 360 days. Soil nutritional components, heavy metal, microbial biomass, and enzymatic activities were analyzed in this study, and the control group had no plants. The results showed that heavy metal contents decreased with E. binata growth, extractable Cd and Pb decreased 28 and 15 % after 1 year, but the difference was not significant compared with the control. While soil nutritional components, microbial biomass and enzymatic activities increased significantly as compared with the control. Comparing with pre-experiment, soil organic matter, N, P, K, microbial biomass C, N, P, invertase, urease, acid phosphatase, and catalase increased 0.9, 1.1, 3.0, 1.1, 0.4, 0.3, and 0.5 times, respectively. The indexes of soil nutritional components, microbial biomass, and enzymatic activities are positively correlated to each other, while they are negatively correlated to heavy metal content respectively. E. binata has positive influence on Cd-Pb pollution soil and broad application prospects in remediating heavy-metal polluted soil.

  12. The effect of Eulaliopsis binata on the physi-chemical properties, microbial biomass, and enzymatic activities in Cd-Pb polluted soil.

    PubMed

    Yu, Hui; Xiang, Yanci; Zou, Dongsheng

    2016-10-01

    Pot culture experiment using mining wasteland soil was carried out to study the effect of Eulaliopsis binata on the heavy-metal polluted soil with the growth of 90, 180, 270, and 360 days. Soil nutritional components, heavy metal, microbial biomass, and enzymatic activities were analyzed in this study, and the control group had no plants. The results showed that heavy metal contents decreased with E. binata growth, extractable Cd and Pb decreased 28 and 15 % after 1 year, but the difference was not significant compared with the control. While soil nutritional components, microbial biomass and enzymatic activities increased significantly as compared with the control. Comparing with pre-experiment, soil organic matter, N, P, K, microbial biomass C, N, P, invertase, urease, acid phosphatase, and catalase increased 0.9, 1.1, 3.0, 1.1, 0.4, 0.3, and 0.5 times, respectively. The indexes of soil nutritional components, microbial biomass, and enzymatic activities are positively correlated to each other, while they are negatively correlated to heavy metal content respectively. E. binata has positive influence on Cd-Pb pollution soil and broad application prospects in remediating heavy-metal polluted soil. PMID:27357705

  13. Bioremediation of environmental pollutants

    SciTech Connect

    Madsen, E.L. . Div. of Biological Sciences)

    1992-01-01

    This paper reports on disremediation of environmental pollutants. When a tree falls in the forest, when crop residues are left in the fields, and even when spilled gasoline soaks into the ground, microorganisms go to work. Just as humans eat food to sustain life, microorganisms digest nonliving organic materials, using an astounding diversity of enzymes. In the process of deriving carbon and energy for their own use, microorganisms recycle essential nutrients such as nitrogen and phosphorus to the other species with which they share the biosphere. This has thrown many ecosystems into a unsteady state and has threatened human health. Increasing expertise in analytical chemistry and toxicology has contributed to an understanding of the problems of environmental pollution, and remedies are now being sought. Both physical and chemical processes may be essential to pollution-control technologies, but controlled biodegradation also offers significant promise.

  14. Light Pollution

    ERIC Educational Resources Information Center

    Riegel, Kurt W.

    1973-01-01

    Outdoor lighting is light pollution which handicaps certain astronomical programs. Protective measures must be adopted by the government to aid observational astronomy without sacrificing legitimate outdoor lighting needs. (PS)

  15. Air Pollution

    MedlinePlus

    ... tobacco smoke. How is air pollution linked to climate change? While climate change is a global process, it ... ozone levels are also a concern. Impacts of Climate Change on Human Health in the United States: A ...

  16. Atmospheric pollution

    SciTech Connect

    Pickett, E.E.

    1987-01-01

    Atmospheric pollution (AP), its causes, and measures to prevent or reduce it are examined in reviews and reports presented at a workshop held in Damascus, Syria in August 1985. Topics discussed include AP and planning studies, emission sources, pollutant formation and transformation, AP effects on man and vegetation, AP control, atmospheric dispersion mechanisms and modeling, sampling and analysis techniques, air-quality monitoring, and applications. Diagrams, graphs, and tables of numerical data are provided.

  17. Influence of regional pollution and sandstorms on the chemical composition of cloud/fog at the summit of Mt. Taishan in northern China

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Guo, Jia; Wang, Tao; Ding, Aijun; Gao, Jian; Zhou, Yang; Collett, Jeffrey L., Jr.; Wang, Wenxing

    2011-03-01

    Cloud/fog samples were collected during spring of 2007 in the highly polluted North China Plain in order to examine the impact of pollution and dust particles on cloud water chemistry. The volume weighted mean pH of cloud water was 3.68. The cloud acidity was shown to be associated with air mass origins. Cloud water with its air mass trajectories originating from the southern part of China was more acidic than those from northern China. Anthropogenic source and dust had obvious impact on cloud water composition as indicated by the very high mean concentrations of SO42- (1331.65 μeq L- 1), NO3- (772.44 μeq L- 1), NH4+ (1375.92 μeq L- 1) and Ca2+ (625.81 μeq L- 1) in the observation periods. During sandstorm days, cloud pH values were relatively high, and the concentrations of all the ions in cloud water reached unusual high levels. Significant decreases in the mass concentrations of PM2.5 and PM10 were observed during cloud events. The average scavenging ratio for PM2.5 and PM10 was 52.0% and 55.7%, respectively. Among the soluble ions in fine particles, NO3-, K+ and NH4+ tend to be more easily scavenged than Ca2+ and Na+.

  18. Loading of water and soil by pollutants in Shelby County

    SciTech Connect

    Madhavan, K. )

    1990-10-01

    Our environment is constantly being polluted by humans and animals. Pollution is increased by modern practices, such as the use of pesticides, herbicides and other chemicals. The number of household pets in the US is increasing and they add to the pollution. In a city, such as Memphis, where production of chemical compounds is relatively high, the pollution of the environment may grow worse unless concerted efforts are made to control it. This study was undertaken to indicate the possible extent of pollution of the surface soil in and near Memphis. Runoff contributes to the pollution of the waterways and their ultimate resting sites. So, water analyses are useful indicators of pollution.

  19. Significant concentration changes of chemical components of PM1 in the Yangtze River Delta area of China and the implications for the formation mechanism of heavy haze-fog pollution.

    PubMed

    Zhang, Y W; Zhang, X Y; Zhang, Y M; Shen, X J; Sun, J Y; Ma, Q L; Yu, X M; Zhu, J L; Zhang, L; Che, H C

    2015-12-15

    Since the winter season of 2013, a number of persistent haze-fog events have occurred in central-eastern China. Continuous measurements of the chemical and physical properties of PM1 at a regional background station in the Yangtze River Delta area of China from 16 Nov. to 18 Dec., 2013 revealed several haze-fog events, among which a heavy haze-fog event occurred between 6 Dec. and 8 Dec. The mean concentration of PM1 was 212μgm(-3) in the heavy haze-fog period, which was about 10 times higher than on clean days and featured a peak mass concentration that reached 298μgm(-3). Organics were the largest contributor to the dramatic rise of PM1 on heavy haze-fog days (average mass concentration of 86μgm(-3)), followed by nitrate (58μgm(-3)), sulfate (35μgm(-3)), ammonium (29μgm(-3)), and chloride (4.0μgm(-3)). Nitrate exhibited the largest increase (~20 factors), associated with a significant increase in NOx. This was mainly attributable to increased coal combustion emissions, relative to motor vehicle emissions, and was caused by short-distance pollutant transport within surrounding areas. Low-volatility oxidized organic aerosols (OA) (LV-OOA) and biomass-burning OA (BBOA) also increased sharply on heavy haze-fog days, exhibiting an enhanced oxidation capacity of the atmosphere and increased emissions from biomass burning. The strengthening of the oxidation capacity during the heavy pollution episode, along with lower solar radiation, was probably due to increased biomass burning, which were important precursors of O3. The prevailing meteorological conditions, including low wind and high relative humidity, and short distance transported gaseous and particulate matter surrounding of the sampling site, coincided with the increased pollutant concentrations mainly from biomass-burning mentioned above to cause the persistent haze-fog event in the YRD area. PMID:26298245

  20. Significant concentration changes of chemical components of PM1 in the Yangtze River Delta area of China and the implications for the formation mechanism of heavy haze-fog pollution.

    PubMed

    Zhang, Y W; Zhang, X Y; Zhang, Y M; Shen, X J; Sun, J Y; Ma, Q L; Yu, X M; Zhu, J L; Zhang, L; Che, H C

    2015-12-15

    Since the winter season of 2013, a number of persistent haze-fog events have occurred in central-eastern China. Continuous measurements of the chemical and physical properties of PM1 at a regional background station in the Yangtze River Delta area of China from 16 Nov. to 18 Dec., 2013 revealed several haze-fog events, among which a heavy haze-fog event occurred between 6 Dec. and 8 Dec. The mean concentration of PM1 was 212μgm(-3) in the heavy haze-fog period, which was about 10 times higher than on clean days and featured a peak mass concentration that reached 298μgm(-3). Organics were the largest contributor to the dramatic rise of PM1 on heavy haze-fog days (average mass concentration of 86μgm(-3)), followed by nitrate (58μgm(-3)), sulfate (35μgm(-3)), ammonium (29μgm(-3)), and chloride (4.0μgm(-3)). Nitrate exhibited the largest increase (~20 factors), associated with a significant increase in NOx. This was mainly attributable to increased coal combustion emissions, relative to motor vehicle emissions, and was caused by short-distance pollutant transport within surrounding areas. Low-volatility oxidized organic aerosols (OA) (LV-OOA) and biomass-burning OA (BBOA) also increased sharply on heavy haze-fog days, exhibiting an enhanced oxidation capacity of the atmosphere and increased emissions from biomass burning. The strengthening of the oxidation capacity during the heavy pollution episode, along with lower solar radiation, was probably due to increased biomass burning, which were important precursors of O3. The prevailing meteorological conditions, including low wind and high relative humidity, and short distance transported gaseous and particulate matter surrounding of the sampling site, coincided with the increased pollutant concentrations mainly from biomass-burning mentioned above to cause the persistent haze-fog event in the YRD area.

  1. Emerging Pollutants - Part II: Treatment.

    PubMed

    Bo, Liu; Shengen, Zhang; Chang, Chein-Chi

    2016-10-01

    Emerging contaminants are considered as some substances of actual or potential threat to human health or environment, which include endocrine disruptors, pharmaceutical, personal care products, nanoparticles, antibiotic resistance genes and chemicals used in packaging products, etc. The disposal and treatment of emerging contaminants has become a key problem in the field of water pollution control. The purpose of this review is to summarize published researches on emerging pollutants treatment in 2015. PMID:27620112

  2. Hazardous air pollutant emissions from process units in the synthetic organic chemical manufacturing industry: Background information for final standards. Volume 2A. Comments on process vents, storage vessels, transfer operations, and equipment leaks. Final report

    SciTech Connect

    Not Available

    1994-03-01

    This background information document (BID) provides summaries and responses for public comments received regarding the Hazardous Organic National Emission Standard for Hazardous Air Pollutants (NESHAP), commonly referred to as the HON. The HON will primarily affect the Synthetic Organic Chemical Manufacturing Industry (SOCMI). However, the provisions for equipment leaks also apply to certain polymer and resin production processes, certain pesticide production processes, and certain miscellaneous processes that are subject to the negotiated regulation for equipment leaks. Volume 2A is organized by emission point and contains discussions of specific technical issues related to process vents, storage vessels, transfer operations, and equipment leaks. Volume 2A discusses specific technical issues such as control technology, cost analysis, emission estimates, Group 1/Group 2 determination, compliance options and demonstrations, and monitoring.

  3. Mixture effects at very low doses with combinations of anti-androgenic pesticides, antioxidants, industrial pollutant and chemicals used in personal care products

    SciTech Connect

    Orton, Frances; Ermler, Sibylle; Kugathas, Subramaniam; Rosivatz, Erika; Scholze, Martin; Kortenkamp, Andreas

    2014-08-01

    Many xenobiotics have been identified as in vitro androgen receptor (AR) antagonists, but information about their ability to produce combined effects at low concentrations is missing. Such data can reveal whether joint effects at the receptor are induced at low levels and may support the prioritisation of in vivo evaluations and provide orientations for the grouping of anti-androgens in cumulative risk assessment. Combinations of 30 AR antagonists from a wide range of sources and exposure routes (pesticides, antioxidants, parabens, UV-filters, synthetic musks, bisphenol-A, benzo(a)pyrene, perfluorooctane sulfonate and pentabromodiphenyl ether) were tested using a reporter gene assay (MDA-kb2). Chemicals were combined at three mixture ratios, equivalent to single components' effect concentrations that inhibit the action of dihydrotesterone by 1%, 10% or 20%. Concentration addition (CA) and independent action were used to calculate additivity expectations. We observed complete suppression of dihydrotestosterone effects when chemicals were combined at individual concentrations eliciting 1%, 10% or 20% AR antagonistic effect. Due to the large number of mixture components, the combined AR antagonistic effects occurred at very low concentrations of individual mixture components. CA slightly underestimated the combined effects at all mixture ratios. In conclusion, large numbers of AR antagonists from a wide variety of sources and exposure routes have the ability of acting together at the receptor to produce joint effects at very low concentrations. Significant mixture effects are observed when chemicals are combined at concentrations that individually do not induce observable AR antagonistic effects. Cumulative risk assessment for AR antagonists should apply grouping criteria based on effects where data are available, rather than on criteria of chemical similarity. - Highlights: • Mixtures of AR antagonists at low individual concentrations cause complete inhibition.

  4. Mixture effects at very low doses with combinations of anti-androgenic pesticides, antioxidants, industrial pollutant and chemicals used in personal care products.

    PubMed

    Orton, Frances; Ermler, Sibylle; Kugathas, Subramaniam; Rosivatz, Erika; Scholze, Martin; Kortenkamp, Andreas

    2014-08-01

    Many xenobiotics have been identified as in vitro androgen receptor (AR) antagonists, but information about their ability to produce combined effects at low concentrations is missing. Such data can reveal whether joint effects at the receptor are induced at low levels and may support the prioritisation of in vivo evaluations and provide orientations for the grouping of anti-androgens in cumulative risk assessment. Combinations of 30 AR antagonists from a wide range of sources and exposure routes (pesticides, antioxidants, parabens, UV-filters, synthetic musks, bisphenol-A, benzo(a)pyrene, perfluorooctane sulfonate and pentabromodiphenyl ether) were tested using a reporter gene assay (MDA-kb2). Chemicals were combined at three mixture ratios, equivalent to single components' effect concentrations that inhibit the action of dihydrotesterone by 1%, 10% or 20%. Concentration addition (CA) and independent action were used to calculate additivity expectations. We observed complete suppression of dihydrotestosterone effects when chemicals were combined at individual concentrations eliciting 1%, 10% or 20% AR antagonistic effect. Due to the large number of mixture components, the combined AR antagonistic effects occurred at very low concentrations of individual mixture components. CA slightly underestimated the combined effects at all mixture ratios. In conclusion, large numbers of AR antagonists from a wide variety of sources and exposure routes have the ability of acting together at the receptor to produce joint effects at very low concentrations. Significant mixture effects are observed when chemicals are combined at concentrations that individually do not induce observable AR antagonistic effects. Cumulative risk assessment for AR antagonists should apply grouping criteria based on effects where data are available, rather than on criteria of chemical similarity. PMID:24055644

  5. Detailed chemical analysis of regional-scale air pollution in western Portugal using an adapted version of MCM v3.1.

    PubMed

    Pinho, P G; Lemos, L T; Pio, C A; Evtyugina, M G; Nunes, T V; Jenkin, M E

    2009-03-01

    A version of the Master Chemical Mechanism (MCM) v3.1, refined on the basis of recent chamber evaluations, has been incorporated into a Photochemical Trajectory Model (PTM) and applied to the simulation of boundary layer photochemistry in the Portuguese west coast region. Comparison of modelled concentrations of ozone and a number of other species (NO(x) and selected hydrocarbons and organic oxygenates) was carried out, using data from three connected sites on two case study days when well-defined sea breeze conditions were established. The ozone concentrations obtained through the application of the PTM are a good approximation to the measured values, the average difference being ca. 15%, indicating that the model was acceptable for evaluation of the details of the chemical processing. The detailed chemistry is examined, allowing conclusions to be drawn concerning chemical interferences in the measurements of NO(2), and in relation to the sensitivity of ozone formation to changes in ambient temperature. Three important, and comparable, contributions to the temperature sensitivity are identified and quantified, namely (i) an effect of increasing biogenic emissions with temperature; (ii) an effect of increasing ambient water vapour concentration with temperature, and its influence on radical production; and (iii) an increase in VOC oxidation chain lengths resulting from the temperature-dependence of the kinetic parameters, particularly in relation to the stability of PAN and its higher analogues. The sensitivity of the simulations to the refinements implemented into MCM v3.1 are also presented and discussed.

  6. High-resolution mass spectrometry associated with data mining tools for the detection of pollutants and chemical characterization of honey samples.

    PubMed

    Cotton, Jérôme; Leroux, Fanny; Broudin, Simon; Marie, Mylène; Corman, Bruno; Tabet, Jean-Claude; Ducruix, Céline; Junot, Christophe

    2014-11-19

    Analytical methods for food control are mainly focused on restricted lists of well-known contaminants. This paper shows that liquid chromatography-high-resolution mass spectrometry (LC/ESI-HRMS) associated with the data mining tools developed for metabolomics can address this issue by enabling (i) targeted analyses of pollutants, (ii) detection of untargeted and unknown xenobiotics, and (iii) detection of metabolites useful for the characterization of food matrices. A proof-of-concept study was performed on 76 honey samples. Targeted analysis indicated that 35 of 83 targeted molecules were detected in the 76 honey samples at concentrations below regulatory limits. Furthermore, untargeted metabolomic-like analyses highlighted 12 chlorinated xenobiotics, 1 of which was detected in lavender honey samples and identified as 2,6-dichlorobenzamide, a metabolite of dichlobenil, a pesticide banned in France since 2010. Lastly, multivariate statistical analyses discriminated honey samples according to their floral origin, and six discriminating metabolites were characterized thanks to the MS/MS experiments.

  7. Physico-chemical characteristics and pollution level of Lake Nainital (U.P., India): role of macrophytes and phytoplankton in biomonitoring and phytoremediation of toxic metal ions.

    PubMed

    Ali, M B; Tripathi, R D; Rai, U N; Pal, A; Singh, S P

    1999-11-01

    Lake Nainital is the sole source of drinking water for the local people and even to majority of tourists. In background of lake utility and its importance at national level, such study is essential which is focused on toxic metal pollution and current nutrient status of the lake and their magnification by algae and macrophytes. Study has shown that lake water is rich in nutrients which supports growth of many aquatic macrophytes and algal blooms. Besides, water is contaminated with metals like Cr, Cu, Fe, Mn, Ni, Pb and Zn. Concentration of some of them like Fe, Pb and Ni were higher than the recommended maximum permissible limits. Concentration of these metals were also found high in lake sediments. The level of metals amongst various components of lake varied considerably in different season. Plants and algae growing therein accumulated appreciable amount of metals and water roots of Salix being more efficient than others. High metal removing potential of these plants may be significant for biomonitoring studies and could be a useful phytoremediation technology to restore water quality by harvesting submerged and floating biomass inhabiting littoral zone of the lake. PMID:10576113

  8. Physico-chemical characteristics and pollution level of Lake Nainital (U.P., India): role of macrophytes and phytoplankton in biomonitoring and phytoremediation of toxic metal ions.

    PubMed

    Ali, M B; Tripathi, R D; Rai, U N; Pal, A; Singh, S P

    1999-11-01

    Lake Nainital is the sole source of drinking water for the local people and even to majority of tourists. In background of lake utility and its importance at national level, such study is essential which is focused on toxic metal pollution and current nutrient status of the lake and their magnification by algae and macrophytes. Study has shown that lake water is rich in nutrients which supports growth of many aquatic macrophytes and algal blooms. Besides, water is contaminated with metals like Cr, Cu, Fe, Mn, Ni, Pb and Zn. Concentration of some of them like Fe, Pb and Ni were higher than the recommended maximum permissible limits. Concentration of these metals were also found high in lake sediments. The level of metals amongst various components of lake varied considerably in different season. Plants and algae growing therein accumulated appreciable amount of metals and water roots of Salix being more efficient than others. High metal removing potential of these plants may be significant for biomonitoring studies and could be a useful phytoremediation technology to restore water quality by harvesting submerged and floating biomass inhabiting littoral zone of the lake.

  9. Water Pollution

    MedlinePlus

    We all need clean water. People need it to grow crops and to operate factories, and for drinking and recreation. Fish and wildlife depend on ... and phosphorus make algae grow and can turn water green. Bacteria, often from sewage spills, can pollute ...

  10. Pollution Solution

    ERIC Educational Resources Information Center

    Vannan, Donald A.

    1972-01-01

    Stresses briefly the need for individuals' actions for controlling the environmental pollution. A number of projects are suggested for teachers to involve children in this area. Simulated discussion groups of sellers'' and consumers, use of pictures, onion juice, and a water filtration contest are a few of the sources used. (PS)

  11. MOLD POLLUTION

    EPA Science Inventory

    Mold pollution is the growth of molds in a building resulting in a negative impact on the use of that structure. The negative impacts generally fall into two categories: destruction of the structure itself and adverse health impacts on the building's occupants. It is estimated...

  12. Chemical fertilizers as a source of (238)U, (40)K, (226)Ra, (222)Rn, and trace metal pollutant of the environment in Saudi Arabia.

    PubMed

    Alshahri, Fatimh; Alqahtani, Muna

    2015-06-01

    The specific activities of (238)U, (226)Ra, (40)K, and (222)Rn in chemical fertilizers were measured using gamma ray spectrometer and Cr-39 detector. In this study, 21 chemical fertilizers were collected from Eastern Saudi Arabian markets. The specific activities of (238)U ranged from 23 ± 0.5 to 3900 ± 195 Bq kg(-1); (226)Ra ranged from 5.60 ± 2.80 to 392 ± 18 Bq kg(-1); and (40)K ranged from 18.4 ± 3 to 16,476 ± 820 Bq kg(-1). The radon concentrations and the radon exhalation rates were found to vary from 3.20 ± 1.20 to 1532 ± 160 Bq m(-3) and from 1.60 to 774 mBq m(-2) h(-1), respectively. Radium equivalent activities (Raeq) were calculated for the analyzed samples to assess the radiation hazards arising due to the use of these chemical fertilizers in the agriculture soil. The Raeq for six local samples (nitrogen, phosphorous, and potassium (NPK) and single superphosphate (SSP)) and one imported sample (Sulfate of Potash (SOP)) were greater than the acceptable value 370 Bq kg(-1). The total air absorbed doses rates in air 1 m above the ground (D) were calculated for all samples. All samples, except one imported granule sample diammonium phosphate (DAP), were higher than the estimated average global terrestrial radiation of 55 nGy h(-1). The highest annual effective dose was in triple super phosphate (TSP) fertilizers (2.1 mSv y(-1)). The results show that the local TSP, imported SOP, and local NPK (sample 13) fertilizers were unacceptable for use as fertilizers in agricultural soil. Furthermore, the toxic elements and trace metals (Pb, Cd, Cr, Co, Ni, Hg, and As) were determined using atomic absorption spectrometer. The concentrations of chromium in chemical fertilizers were higher than the global values. PMID:25532871

  13. Chemical fertilizers as a source of (238)U, (40)K, (226)Ra, (222)Rn, and trace metal pollutant of the environment in Saudi Arabia.

    PubMed

    Alshahri, Fatimh; Alqahtani, Muna

    2015-06-01

    The specific activities of (238)U, (226)Ra, (40)K, and (222)Rn in chemical fertilizers were measured using gamma ray spectrometer and Cr-39 detector. In this study, 21 chemical fertilizers were collected from Eastern Saudi Arabian markets. The specific activities of (238)U ranged from 23 ± 0.5 to 3900 ± 195 Bq kg(-1); (226)Ra ranged from 5.60 ± 2.80 to 392 ± 18 Bq kg(-1); and (40)K ranged from 18.4 ± 3 to 16,476 ± 820 Bq kg(-1). The radon concentrations and the radon exhalation rates were found to vary from 3.20 ± 1.20 to 1532 ± 160 Bq m(-3) and from 1.60 to 774 mBq m(-2) h(-1), respectively. Radium equivalent activities (Raeq) were calculated for the analyzed samples to assess the radiation hazards arising due to the use of these chemical fertilizers in the agriculture soil. The Raeq for six local samples (nitrogen, phosphorous, and potassium (NPK) and single superphosphate (SSP)) and one imported sample (Sulfate of Potash (SOP)) were greater than the acceptable value 370 Bq kg(-1). The total air absorbed doses rates in air 1 m above the ground (D) were calculated for all samples. All samples, except one imported granule sample diammonium phosphate (DAP), were higher than the estimated average global terrestrial radiation of 55 nGy h(-1). The highest annual effective dose was in triple super phosphate (TSP) fertilizers (2.1 mSv y(-1)). The results show that the local TSP, imported SOP, and local NPK (sample 13) fertilizers were unacceptable for use as fertilizers in agricultural soil. Furthermore, the toxic elements and trace metals (Pb, Cd, Cr, Co, Ni, Hg, and As) were determined using atomic absorption spectrometer. The concentrations of chromium in chemical fertilizers were higher than the global values.

  14. 78 FR 45167 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... AGENCY 40 CFR Part 300 National Oil and Hazardous Substances Pollution Contingency Plan; National... appendix of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The EPA and the... protection, Air pollution control, Chemicals, Hazardous waste, Hazardous substances,...

  15. Influence of meteorology and anthropogenic pollution on chemical flux divergence of the NO-NO2-O3 triad above and within a natural grassland canopy

    NASA Astrophysics Data System (ADS)

    Plake, D.; Sörgel, M.; Stella, P.; Held, A.; Trebs, I.

    2014-07-01

    The detailed understanding of surface-atmosphere exchange of reactive trace gas species is a crucial precondition for reliable modeling of processes in atmospheric chemistry. Plant canopies significantly impact the atmospheric budget of trace gases. In the past, many studies focused on taller forest canopies or crops, where the bulk plant material is concentrated in the uppermost canopy layer. However, within grasslands, a land-cover class that globally covers vast terrestrial areas, the canopy structure is fundamentally different, as the main biomass is concentrated in the lowest canopy part. This has obvious implications for aerodynamic in-canopy transport, and consequently also impacts on global budgets of key species in atmospheric chemistry such as nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3). This study presents for the first time a~comprehensive data set of directly measured in-canopy transport times and aerodynamic resistances, chemical timescales, Damköhler numbers, trace gas and micrometeorological measurements for a natural grassland canopy (canopy height = 0.6 m). Special attention is paid to the impact of contrasting meteorological and air chemical conditions on in-canopy transport and chemical flux divergence. Our results show that the grassland canopy is decoupled throughout the day. In the lower canopy, the measured transport times are fastest during nighttime, which is due to convection during nighttime and stable stratification during daytime in this layer. The inverse was found in the layers above. During periods of low wind speed and high NOx (NO+NO2) levels, the effect of canopy decoupling on trace gas transport was found especially distinct. The aerodynamic resistance in the lower canopy (0.04-0.2 m) was around 1000 s m-1, thus as high as values from literature representing the lowest meter of an Amazonian rain forest canopy. The aerodynamic resistance representing the bulk canopy was found to be more than 3-4 times higher as in

  16. Influence of meteorology and anthropogenic pollution on chemical flux divergence of the NO-NO2-O3 triad above and within a natural grassland canopy

    NASA Astrophysics Data System (ADS)

    Plake, D.; Sörgel, M.; Stella, P.; Held, A.; Trebs, I.

    2015-02-01

    The detailed understanding of surface-atmosphere exchange fluxes of reactive trace gases is a crucial precondition for reliable modelling of processes in atmospheric chemistry. Plant canopies significantly impact the atmospheric budget of trace gases. In the past, many studies focused on taller forest canopies or crops, where the bulk plant material is concentrated in the uppermost canopy layer. However, within grasslands, a land-cover class that globally covers vast terrestrial areas, the canopy structure is fundamentally different, as the main biomass is concentrated in the lowest part of the canopy. This has obvious implications for aerodynamic in-canopy transport, and consequently also impacts on global budgets of key species in atmospheric chemistry such as nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3). This study presents for the first time a comprehensive data set of directly measured in-canopy transport times and aerodynamic resistances, chemical timescales, Damköhler numbers, trace gas and micrometeorological measurements for a natural grassland canopy (canopy height = 0.6 m). Special attention is paid to the impact of contrasting meteorological and air chemical conditions on in-canopy transport and chemical flux divergence. Our results show that the grassland canopy is decoupled throughout the day. In the lowermost canopy layer, the measured transport times are fastest during nighttime, which is due to convection during nighttime and a stable stratification during daytime in this layer. The inverse was found in the layers above. During periods of low wind speed and high NOx (NO+NO2) levels, the effect of canopy decoupling on trace gas transport was found to be especially distinct. The aerodynamic resistance in the lowermost canopy layer (0.04-0.2 m) was around 1000 s m-1, which is as high as values determined previously for the lowest metre of an Amazonian rain forest canopy. The aerodynamic resistance representing the bulk canopy was found to

  17. Aerosol chemical properties and related pollutants measured in Dongsha Island in the northern South China Sea during 7-SEAS/Dongsha Experiment

    NASA Astrophysics Data System (ADS)

    Chuang, Ming-Tung; Chang, Shuenn-Chin; Lin, Neng-Huei; Wang, Jia-Lin; Sheu, Guey-Rong; Chang, You-Jia; Lee, Chung-Te

    2013-10-01

    Aerosol observations were conducted at Dongsha Island in two batches from 19 to 23 March and 10 to 19 April 2010. Dongsha Island is located in a remote area over the northern South China Sea (SCS), distantly surrounded by southern China, Taiwan, the Philippines, and the Indochinese Peninsula. During the study period, the average PM10 and PM2.5 mass concentrations were 26.5 ± 19.4 and 12.6 ± 6.0 μg m-3, respectively. In particular, a daily PM10 concentration of 94.1 μg m-3 caused by a yellow-dust event originating from the Asian Continent was recorded on 21 March. Other than this event, the PM2.5 and PM10-2.5 daily levels were 7.1 ± 1.2 and 12.6 ± 5.0 μg m-3, respectively, on days without pollution from anthropogenic sources in the surrounding areas. Water-soluble ions (WSIs) were the predominant components that accounted for 58.7% ± 10.5% and 51.1% ± 7.2% of the PM10 and PM2.5 mass. The second most abundant component was carbonaceous content, which accounted for 9.5% ± 4.7% and 17.5% ± 5.3% of PM10 and PM2.5, respectively. SO42- was the most abundant PM2.5 WSI, whereas the Na+ and Cl- pair was the most abundant PM10-2.5 WSI. Based on the U.S. IMPROVE protocol, the resolved carbonaceous fractions were mainly distributed in PM2.5 and influenced by coal combustion, mobile vehicles, and biomass burning. Most of the resolved WSIs in particles were in the liquid phase due to the humid environment around the northern SCS.

  18. Capillary Electrophoretic Analysis of Classical Organic Pollutants.

    PubMed

    Malik, Ashok Kumar; Aulakh, Jatinder Singh; Kaur, Varinder

    2016-01-01

    The synthesis and usage of a wide range of organic compounds have shown a considerable increase in the past few decades. Many of these compounds are potential pollutants for the environment. They differ from each other in their chemical structure and properties. Correspondingly different separation strategies are required for their separation. There is need to assess the human exposure to these chemicals and to identify and develop analytical methods for their identification. In this chapter we have presented some methods for the separation and the analysis of the organic pollutants like dyes, phenolic pollutants, phthalates, endocrine disrupting chemicals, polycyclic aromatic hydrocarbon, explosives, agricultural pesticides, and toxins. PMID:27645747

  19. Spatial and seasonal distribution of aerosol chemical components in New York City: (2) road dust and other tracers of traffic-generated air pollution.

    PubMed

    Peltier, Richard E; Cromar, Kevin R; Ma, Yingjun; Fan, Zhi-Hua Tina; Lippmann, Morton

    2011-01-01

    We describe spatial and temporal patterns of seven chemical elements commonly observed in fine particulate matter (PM) and thought to be linked to roadway emissions that were measured at residential locations in New York City (NYC). These elements, that is, Si, Al, Ti, Fe, Ba, Br, and black carbon (BC), were found to have significant spatial and temporal variability at our 10 residential PM(2.5) sampling locations. We also describe pilot study data of near-roadway samples of both PM(10-2.5) and PM(2.5) chemical elements of roadway emissions. PM(2.5) element concentrations collected on the George Washington Bridge (GWB) connecting NYC and New Jersey were higher that similar elemental concentration measured at residential locations. Coarse-particle elements (within PM(10-2.5)) on the GWB were 10-100 times higher in concentration than their PM(2.5) counterparts. Roadway elements were well correlated with one another in both the PM(2.5) and PM(10-2.5) fractions, suggesting common sources. The same elements in the PM(2.5) collected at residential locations were less correlated, suggesting either different sources or different processing mechanisms for each element. Despite the fact that these elements are only a fraction of total PM(2.5) or PM(10-2.5) mass, the results have important implications for near-roadway exposures where elements with known causal links to health effects are shown to be at elevated concentrations in both the PM(2.5) and PM(10-2.5) size ranges.

  20. Air Pollution

    PubMed Central

    Clifton, Marjorie

    1964-01-01

    Dr Marjorie Clifton describes the classification of gaseous and nongaseous constituents of air pollution and then outlines the methods of measuring these. The National Survey embraced 150 towns of all sizes throughout England and Wales and provided data on smoke and sulphur dioxide in relation to climate, topography, industrialization, population density, fuel utilization and urban development. Dr W C Turner discusses the relationship between air pollution and mortality from respiratory conditions, and particularly the incidence of chronic bronchitis. He postulates a theory that such respiratory conditions arise as an allergy to the spores of certain moulds, spore formation being encouraged by the air humidity in Greatv Britain and overcrowded and damp living conditions. He describes the results of a twenty-week study undertaken in 1962-3, showing associations between respiratory disease and levels of air pollution. Dr Stuart Carne undertook a survey in general practice to plot the patterns of respiratory illness in London during the winter of 1962-3. There were two peaks of respiratory illnesses coinciding with the fog at the beginning of December and the freeze-up from the end of December until the beginning of March. PMID:14178955

  1. Historical reconstruction of major pollutant levels in the Hudson-Raritan Basin: 1880-1980. Volume 3. Chemicals and other wastes. Technical report

    SciTech Connect

    Ayers, R.U.; Ayers, L.W.

    1988-10-01

    Chapters 2-5 of Volume 3 deal with chlorinated aromatic hydrocarbon-based biocides (insecticides, acaricides, fungicides, herbicides and germicides) that have been introduced since World War II. Chapter 6 is concerned with PCB's, another class of chlorinated aromatic hydrocarbons, manufactured since 1930, that were utilized not for their biocidal properties but because of their physical properties and extraordinary chemical stability. Chapter 7 is concerned with a class of non-chlorinated polynuclear aromatic hydrocarbons (PAH's) that occurs naturally in crude oil, coal tar, pitch and asphalt and is created artificially by most combustion processes. Chapters 10 and 11 deal with other essential components of organic material (called nutrients for this reason) namely, nitrogen (N) and phosphorus (P). Again N and P are not toxic as such, but their presence may encourage the growth of algae and plankton in profusion. Finally, chapter 12 deals with water withdrawals per se. It has become clear in recent decades that the turbulence and de-oxygenation associated with most large-scale uses of water for cooling, waste dilution or other purposes, is physically harmful to spawning fish and some other ecologically important biota.

  2. [Chemical characteristics in airborne particulate matter (PM10) during a high pollution spring dust storm episode in Beijing, Tianjin and Zhangjiakou, China].

    PubMed

    Liu, Qing-Yang; Liu, Yan-Ju; Zhao, Qiang; Zhang, Ting-Ting; Zhang, Mei-Gen; Wang, Cun-Mei

    2014-08-01

    Atmospheric particulate matter (PM10) was collected at sampling locations of Beijing, Tianjin and Zhangjiakou from April 1st to May 24th, 2012. The mass concentration of PM10 and concentrations of ions, elemental carbon (EC) and organic carbon (OC) in PM10 were determined. The results showed that average mass concentration of PM10 were 233.82 microg x m(-3) for Beijing, 279.64 microg x (-3) for Tianjin and 238.13 microg x m(-3) for Zhangjiakou, respectively. Backward trajectories results confirmed dust storm events occurred from 27th to 29th April. The maximum daily mass concentrations of PM10 were 755.54 microg x m(-3) for Beijing, 831.32 microg x m(-3) for Tianjin and 582.82 microg x m(-3) for Zhangjiakou during the dust storm episodes, respectively. Water-soluble ions (Na+, NH4+, Ca2+, K+, F-, Cl-, NO3-, SO4(2-)), organic carbon (OC) and elemental carbon (EC) were major aerosol components during the dust storm episodes, and their concentrations were higher than non-dust storm days. In addition, dust storm caused increases in NO3-, SO4(2-) and enrichment of secondary organic carbon (SOC) concentration relative to OC, suggesting that chemical reaction processes involving gas-particle conversion occurred during the long-distance transport of aerosol particles. PMID:25338350

  3. [Chemical characteristics in airborne particulate matter (PM10) during a high pollution spring dust storm episode in Beijing, Tianjin and Zhangjiakou, China].

    PubMed

    Liu, Qing-Yang; Liu, Yan-Ju; Zhao, Qiang; Zhang, Ting-Ting; Zhang, Mei-Gen; Wang, Cun-Mei

    2014-08-01

    Atmospheric particulate matter (PM10) was collected at sampling locations of Beijing, Tianjin and Zhangjiakou from April 1st to May 24th, 2012. The mass concentration of PM10 and concentrations of ions, elemental carbon (EC) and organic carbon (OC) in PM10 were determined. The results showed that average mass concentration of PM10 were 233.82 microg x m(-3) for Beijing, 279.64 microg x (-3) for Tianjin and 238.13 microg x m(-3) for Zhangjiakou, respectively. Backward trajectories results confirmed dust storm events occurred from 27th to 29th April. The maximum daily mass concentrations of PM10 were 755.54 microg x m(-3) for Beijing, 831.32 microg x m(-3) for Tianjin and 582.82 microg x m(-3) for Zhangjiakou during the dust storm episodes, respectively. Water-soluble ions (Na+, NH4+, Ca2+, K+, F-, Cl-, NO3-, SO4(2-)), organic carbon (OC) and elemental carbon (EC) were major aerosol components during the dust storm episodes, and their concentrations were higher than non-dust storm days. In addition, dust storm caused increases in NO3-, SO4(2-) and enrichment of secondary organic carbon (SOC) concentration relative to OC, suggesting that chemical reaction processes involving gas-particle conversion occurred during the long-distance transport of aerosol particles.

  4. Charting environmental pollution. [by noise measurements

    NASA Technical Reports Server (NTRS)

    Halpert, E.; Bizo, F.; Karacsonyi, Z.

    1974-01-01

    It is found that areas affected by different noxious agents are within the limits traced for high noise level areas; consequently, it is suggested that high noise pressure levels should be used as the primary indication of environmental pollution. A complex methodology is reported for charting environmental pollution due to physical, chemical and biological noxious agents on the scale of an industrial district.

  5. Water Pollution. Project COMPSEP.

    ERIC Educational Resources Information Center

    Lantz, H. B., Jr.

    This is an introductory program on water pollution. Examined are the cause and effect relationships of water pollution, sources of water pollution, and possible alternatives to effect solutions from our water pollution problems. Included is background information on water pollution, a glossary of pollution terminology, a script for a slide script…

  6. Health Effects of Air Pollution.

    ERIC Educational Resources Information Center

    Environmental Education Report and Newsletter, 1985

    1985-01-01

    Summarizes health hazards associated with air pollution, highlighting the difficulty in establishing acceptable thresholds of exposure. Respiratory disease, asthma, cancer, cardiovascular disease, and other problems are addressed. Indicates that a wide range of effects from any one chemical exists and that there are differences in sensitivity to…

  7. Water Pollution: Appearances Can Be Deceiving

    ERIC Educational Resources Information Center

    Raloff, Janet

    1977-01-01

    Expresses concern over the amounts of toxic chemical pollutants being discharged into fresh water supplies. Analyzes the role of the Environmental Protection Agency (EPA) in establishing and enforcing water quality standards. (CP)

  8. AIR POLLUTION, OXIDATIVE STRESS AND NEUROTOXICITY.

    EPA Science Inventory

    Increased incidents of classic and variant forms of neurodegenerative diseases suggest that environmental chemicals and susceptibility factors (e.g., genetics, diseased states, obesity, etc.) may be contributory. Particulate matter (PM) is a type of air pollution that is associat...

  9. Noise Pollution

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  10. Method oil shale pollutant sorption/NO.sub.x reburning multi-pollutant control

    DOEpatents

    Boardman, Richard D.; Carrington, Robert A.

    2008-06-10

    A method of decreasing pollutants produced in a combustion process. The method comprises combusting coal in a combustion chamber to produce at least one pollutant selected from the group consisting of a nitrogen-containing pollutant, sulfuric acid, sulfur trioxide, carbonyl sulfide, carbon disulfide, chlorine, hydroiodic acid, iodine, hydrofluoric acid, fluorine, hydrobromic acid, bromine, phosphoric acid, phosphorous pentaoxide, elemental mercury, and mercuric chloride. Oil shale particles are introduced into the combustion chamber and are combusted to produce sorbent particulates and a reductant. The at least one pollutant is contacted with at least one of the sorbent particulates and the reductant to decrease an amount of the at least one pollutant in the combustion chamber. The reductant may chemically reduce the at least one pollutant to a benign species. The sorbent particulates may adsorb or absorb the at least one pollutant. A combustion chamber that produces decreased pollutants in a combustion process is also disclosed.

  11. Indoor air pollutants

    SciTech Connect

    Angle, C.R.

    1988-01-01

    A major contribution of the pediatrician is to help families rank the multitude of pollutants according to their known risk for child health. Elimination of household smoking and completely effective venting of indoor heating devices are beneficial to all and mandatory in homes of allergic children. Acute releases of NO/sub 2/ by gas ranges and ovens may be a significant factor in an increased incidence of respiratory infection, especially in children under two years. Despite intensive investigation, immunosuppressive and other health effects have not been defined for indoor levels of PBBs, PCBs, and related halogenated hydrocarbons. The analytic ability to determine nanomolar concentrations of numerous toxic chemicals opens a Pandora's box of inquiry. New methods, particularly immunologic, are urgently needed to quantitate the dose response to multiple combinations of chemicals and determine their significance for the health of the tight-box generation of children. 136 references.

  12. Evolutionary genomics of environmental pollution.

    PubMed

    Whitehead, Andrew

    2014-01-01

    Chemical toxins have been a persistent source of evolutionary challenges throughout the history of life, and deep within the genomic storehouse of evolutionary history lay ancient adaptations to diverse chemical poisons. However, the rate of change of contemporary environments mediated by human-introduced pollutants is rapidly screening this storehouse and severely testing the adaptive potential of many species. In this chapter, we briefly review the deep history of evolutionary adaptation to environmental toxins, and then proceed to describe the attributes of stressors and populations that may facilitate contemporary adaptation to pollutants introduced by humans. We highlight that phenotypes derived to enable persistence in polluted habitats may be multi-dimensional, requiring global genome-scale tools and approaches to uncover their mechanistic basis, and include examples of recent progress in the field. The modern tools of genomics offer promise for discovering how pollutants interact with genomes on physiological timescales, and also for discovering what genomic attributes of populations may enable resistance to pollutants over evolutionary timescales. Through integration of these sophisticated genomics tools and approaches with an understanding of the deep historical forces that shaped current populations, a more mature understanding of the mechanistic basis of contemporary ecological-evolutionary dynamics should emerge.

  13. PHARMACEUTICALS & PERSONAL CARE PRODUCTS AS ENVIRONMENTAL POLLUTANTS FROM EVERYDAY ACTIVITIES

    EPA Science Inventory

    Those chemical pollutants that are regulated under various international, federal, and state programs represent but a small fraction of the universe of chemicals that occur in the environment as a result of both natural processes and human influence.

  14. Effects of pollution on freshwater fish. [Review (346 references)

    SciTech Connect

    Spehar, R.L.; Lemke, A.E.; Pickering, Q.H,; Roush, T.H.; Russo, R.C.; Yount, J.D.

    1981-06-01

    This article with 346 references reviews the effects of pollution on freshwater fish, including information on water quality, physical and chemical pollutants, and industrial and municipal effluents. A summary of the acute and chronic toxicity of inorganic and organic pollutants is presented in tabular form. (KRM)

  15. A Course on the Physics and Chemistry of Pollution

    ERIC Educational Resources Information Center

    Hodges, Laurent

    1971-01-01

    Describes a course on environmental pollution which stresses physical and chemical principles. Course presents a unified discussion of air and water pollution and solid waste with special treatment of pesticides, thermal pollution, radioactivity, and electric power generation. Uses historical and current statistics extensively to set pollution…

  16. Teaching Applied Chemistry in a Pollution Control Context.

    ERIC Educational Resources Information Center

    Sell, Nancy J.

    1982-01-01

    Discusses rationale behind and content of a course (Industrial Pollution Control Techniques) combining knowledge from fields of industrial chemistry and chemical engineering and utilizing this knowledge in the context of understanding pollution problems and potential methods of pollution control. (Author/SK)

  17. Contemporary threats and air pollution

    NASA Astrophysics Data System (ADS)

    Hopke, Philip K.

    It is now well understood that air pollution produces significant adverse health effects in the general public and over the past 60 years, there have been on-going efforts to reduce the emitted pollutants and their resulting health effects. There are now shifting patterns of industrialization with many heavily polluting industries moving from developed countries with increasingly stringent air quality standards to the developing world. However, even in decreasing concentrations of pollutants, health effects remain important possibly as a result of changes in the nature of the pollutants as new chemicals are produced and as other causes of mortality and morbidity are reduced. In addition, there is now the potential for deliberate introduction of toxic air pollutants by local armed conflicts and terrorists. Thus, there are new challenges to understand the role of the atmospheric environment on public health in this time of changing economic and demographic conditions overlaid with the willingness to indirectly attack governments and other established entities through direct attacks on the general public.

  18. Indoor Air Pollution

    MedlinePlus

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  19. Effects on health of air pollution: a narrative review.

    PubMed

    Mannucci, Pier Mannuccio; Harari, Sergio; Martinelli, Ida; Franchini, Massimo

    2015-09-01

    Air pollution is a complex and ubiquitous mixture of pollutants including particulate matter, chemical substances and biological materials. There is growing awareness of the adverse effects on health of air pollution following both acute and chronic exposure, with a rapidly expanding body of evidence linking air pollution with an increased risk of respiratory (e.g., asthma, chronic obstructive pulmonary disease, lung cancer) and cardiovascular disease (e.g., myocardial infarction, heart failure, cerebrovascular accidents). Elderly subjects, pregnant women, infants and people with prior diseases appear especially susceptible to the deleterious effects of ambient air pollution. The main diseases associated with exposure to air pollutants will be summarized in this narrative review.

  20. PHARMACEUTICALS AND PERSONAL CARE PRODUCTS (PPCP'S) AS ENVIRONMENTAL POLLUTANTS: POLLUTION FROM PERSONAL ACTIONS

    EPA Science Inventory

    The occurrence of pharmaceuticals and personal care products (PPCPs) as trace environmental pollutants is a multifaceted issue whose scope of concerns continues to expand. PPCPs comprise thousands of distinct chemicals from numerous therapeutic and consumer classes. They typical...

  1. PHARMACEUTICALS AND PERSONAL CARE PRODUCTS (PPCPS) AS ENVIRONMENTAL POLLUTANTS: POLLUTION FROM PERSONAL ACTIONS

    EPA Science Inventory

    The occurrence of pharmaceuticals and personal care products (PPCPs) as trace environmental pollutants is a multifaceted issue whose scope of concerns continues to expand. PPCPs comprise thousands of distinct chemicals from numerous therapeutic and consumer classes. They typicall...

  2. PHARMACEUTICALS AS UBIQUITOUS POLLUTANTS: SIGNIFICANCE, CONCERNS, SOLUTIONS

    EPA Science Inventory

    Those chemical pollutants that are regulated under various international, federal, and state programs represent but a small fraction of the universe of chemicals that occur in the environment as a result of both natural processes and human influence. Although this galaxy of targe...

  3. Air quality simulation over South Asia using Hemispheric Transport of Air Pollution version-2 (HTAP-v2) emission inventory and Model for Ozone and Related chemical Tracers (MOZART-4)

    NASA Astrophysics Data System (ADS)

    Surendran, Divya E.; Ghude, Sachin D.; Beig, G.; Emmons, L. K.; Jena, Chinmay; Kumar, Rajesh; Pfister, G. G.; Chate, D. M.

    2015-12-01

    This study presents the distribution of tropospheric ozone and related species for South Asia using the Model for Ozone and Related chemical Tracers (MOZART-4) and Hemispheric Transport of Air Pollution version-2 (HTAP-v2) emission inventory. The model present-day simulated ozone (O3), carbon monoxide (CO) and nitrogen dioxide (NO2) are evaluated against surface-based, balloon-borne and satellite-based (MOPITT and OMI) observations. The model systematically overestimates surface O3 mixing ratios (range of mean bias about: 1-30 ppbv) at different ground-based measurement sites in India. Comparison between simulated and observed vertical profiles of ozone shows a positive bias from the surface up to 600 hPa and a negative bias above 600 hPa. The simulated seasonal variation in surface CO mixing ratio is consistent with the surface observations, but has a negative bias of about 50-200 ppb which can be attributed to a large part to the coarse model resolution. In contrast to the surface evaluation, the model shows a positive bias of about 15-20 × 1017 molecules/cm2 over South Asia when compared to satellite derived CO columns from the MOPITT instrument. The model also overestimates OMI retrieved tropospheric column NO2 abundance by about 100-250 × 1013 molecules/cm2. A response to 20% reduction in all anthropogenic emissions over South Asia shows a decrease in the anuual mean O3 mixing ratios by about 3-12 ppb, CO by about 10-80 ppb and NOX by about 3-6 ppb at the surface level. During summer monsoon, O3 mixing ratios at 200 hPa show a decrease of about 6-12 ppb over South Asia and about 1-4 ppb over the remote northern hemispheric western Pacific region.

  4. Criteria air pollutants and toxic air pollutants.

    PubMed Central

    Suh, H H; Bahadori, T; Vallarino, J; Spengler, J D

    2000-01-01

    This review presents a brief overview of the health effects and exposures of two criteria pollutants--ozone and particulate matter--and two toxic air pollutants--benzene and formaldehyde. These pollutants were selected from the six criteria pollutants and from the 189 toxic air pollutants on the basis of their prevalence in the United States, their physicochemical behavior, and the magnitude of their potential health threat. The health effects data included in this review primarily include results from epidemiologic studies; however, some findings from animal studies are also discussed when no other information is available. Health effects findings for each pollutant are related in this review to corresponding information about outdoor, indoor, and personal exposures and pollutant sources. Images Figure 3 Figure 8 Figure 9 PMID:10940240

  5. Aerosols and environmental pollution

    NASA Astrophysics Data System (ADS)

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth’s atmosphere and are central to many environmental issues; ranging from the Earth’s radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  6. Aerosols and environmental pollution.

    PubMed

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth's atmosphere and are central to many environmental issues; ranging from the Earth's radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  7. Chemical Engineering in the Spectrum of Knowledge.

    ERIC Educational Resources Information Center

    Sutija, Davor P.; Prausnitz, John M.

    1990-01-01

    Provides three classroom examples showing students how chemical engineering techniques can supply partial answers to social questions, such as environmental issues. Examples are depletion of the ozone layer, nuclear winter, and air pollution by chemical solvents. (YP)

  8. [Current data on atmospheric pollutions].

    PubMed

    Festy, B; Petit-Coviaux, F; Le Moullec, Y

    1991-01-01

    Atmospheric pollutions (AP) are very important for human health and ecological equilibrium. They may be natural or anthropogenic and in this later case they can appear outdoor or indoor. Urban air pollution is the most known form of AP. Its main sources are industries, individual and collective heating and now mainly automobile traffic in most cities. Classical AP indicators are SO2, particles, NOx, CO and Pb measured in networks. Important factors of AP are amounts of pollutants emitted and local climatic and meteorological characteristics. Health effects of AP peaks and of AP background levels are not well known. But generally, mean AP levels of SO2 and particles decreased in the last years in most towns as the consequence of collective actions on the three main sources of AP and on fuels, emission and immission levels; but more is wanted about motor-cars. Progress are necessary for limitation of three major ecological risks: "acid-rain" (SO2 and NOx derivatives, ozone,...) which participates in lake and forest attacks; "green house" effects whose air CO2 concentration increase is the main responsible, and stratospheric ozone depletion mainly due to freons (CFC); the consequences of these two last phenomena are not well known but ecological and health risk exist. Besides, indoor air pollution (IAP) is very important because we live more than 20 h a day indoor. IAP may be occupational (a lot of chemical or biological agents) or not. In the later case air pollutants are very various: CO, NOx and particles from heating or cooking, formaldehyde from wood glue, plywood or urea-formol foams, radon and derivatives in some granitic countries, odd jobs products, cosmetics, aero-allergens of chemical or biological origins, microbes,... Environmental tobacco smoke (ETS) is also an important pollutant complex. Risks of IAP are real or potential: acute risk is obvious for CO, aero-allergens, formaldehyde, NOx,...); irritations are produced by ETS, formaldehyde, solvants

  9. Optimal pollution trading without pollution reductions

    EPA Science Inventory

    Many kinds of water pollution occur in pulses, e.g., agricultural and urban runoff. Ecosystems, such as wetlands, can serve to regulate these pulses and smooth pollution distributions over time. This smoothing reduces total environmental damages when “instantaneous” damages are m...

  10. Air pollution and cardiovascular disease.

    PubMed

    Franklin, Barry A; Brook, Robert; Arden Pope, C

    2015-05-01

    An escalating body of epidemiologic and clinical research provides compelling evidence that exposure to fine particulate matter air pollution contributes to the development of cardiovascular disease and the triggering of acute cardiac events. There are 3 potential mediating pathways that have been implicated, including "systemic spillover," autonomic imbalance, and circulating particulate matter constituents. Further support that the increased morbidity and mortality attributed to air pollution comes from studies demonstrating the adverse cardiovascular effects of even brief periods of exposure to secondhand smoke. Accordingly, persons with known or suspected cardiovascular disease, the elderly, diabetic patients, pregnant women, and those with pulmonary disease should be counseled to limit leisure-time outdoor activities when air pollution is high. Recognizing the insidious and pervasive nature of air pollution, and the associated odds ratios and population attributable fractions for this widely underappreciated chemical trigger of acute cardiovascular events, may serve to maximize the potential for cardiovascular risk reduction by addressing at least a portion of the 10%-25% incidence of coronary disease that is unexplained by traditional risk factors.

  11. Regional air pollution over Malaysia

    NASA Astrophysics Data System (ADS)

    Krysztofiak, G.; Catoire, V.; Dorf, M.; Grossmann, K.; Hamer, P. D.; Marécal, V.; Reiter, A.; Schlager, H.; Eckhardt, S.; Jurkat, T.; Oram, D.; Quack, B.; Atlas, E.; Pfeilsticker, K.

    2012-12-01

    During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) campaign in Nov. and Dec. 2011 a number of polluted air masses were observed in the marine and terrestrial boundary layer (0 - 2 km) and in the free troposphere (2 - 12 km) over Borneo/Malaysia. The measurements include isoprene, CO, CO2, CH4, N2O, NO2, SO2 as primary pollutants, O3 and HCHO as secondary pollutants, and meteorological parameters. This set of trace gases can be used to fingerprint different sources of local and regional air pollution (e.g., biomass burning and fossil fuel burning, gas flaring on oil rigs, emission of ships and from urban areas, volcanic emissions, and biogenic emissions). Individual sources and location can be identified when the measurements are combined with a nested-grid regional scale chemical and meteorological model and lagrangian particle dispersion model (e.g., CCATT-BRAMS and FLEXPART). In the case of the former, emission inventories of the primary pollutants provide the basis for the trace gas simulations. In this region, the anthropogenic influence on air pollution seems to dominate over natural causes. For example, CO2 and CH4 often show strong correlations with CO, suggesting biomass burning or urban fossil fuel combustion dominates the combustion sources. The study of the CO/CO2 and CH4/CO ratios can help separate anthropogenic combustion from biomass burning pollution sources. In addition, these ratios can be used as a measure of combustion efficiency to help place the type of biomass burning particular to this region within the wider context of fire types found globally. On several occasions, CH4 enhancements are observed near the ocean surface, which are not directly correlated with CO enhancements thus indicating a non-combustion-related CH4 source. Positive correlations between SO2 and CO show the anthropogenic influence of oil rigs located in the South China Sea. Furthermore, SO2 enhancements are observed without any increase in CO

  12. Exploring Oil Pollution

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1974-01-01

    Discusses damages of oil tanker spillage to the marine organisms and scientists' research in oil pollution removal techniques. Included is a list of learning activities concerning the causes and effects of oil pollution and methods of solving the problem. (CC)

  13. Kookaburras and Polluted Streams.

    ERIC Educational Resources Information Center

    Clark, Julie; Harrison, Terry

    2000-01-01

    Discusses the role of teachers in environmental education. Presents two simulations on water pollution in order to explore pollution of the environment and investigate the life and ecology of a native bird or investigate predator/prey relationships. (ASK)

  14. The Pollution Solution.

    ERIC Educational Resources Information Center

    Stephens, Lillian

    1981-01-01

    Presented are methods to help teachers continue the environmental awareness programs they have already started by providing up-to-date information and activities dealing with air pollution, water pollution, and solid waste disposal. (Author/KC)

  15. Pollution of Florida's rivers

    SciTech Connect

    Cromartie, R.S. 3d. )

    1991-12-01

    Pollution of Florida's waterways is a serious problem. Sources of pollution include sewage, storm water runoff, faulty septic tanks, improperly constructed landfills, and obstruction by causeway bridges. Some of the major causes and solutions are discussed.

  16. [Literature review of pollutants

    SciTech Connect

    1999-08-01

    This review focuses on the following: the measurement and monitoring of pollutants; treatment systems, including physicochemical processes, as well as biological processes; industrial wastes (management); hazardous wastes (waste management as well as remediation); and the fate and effects of pollutants.

  17. Fine particle pollution

    Atmospheric Science Data Center

    2013-01-10

    ...   Satellites Track Human Exposure to Fine Particle Pollution   St. Louis, Missouri Alaskan Wildfires ... provides a good test region for satellite observations of pollution. ( Full St. Louis article ) MISR ...

  18. Evaluating Exposures to Chemical and Non-Chemical Stressors in a Cumulative Risk Assessment

    EPA Science Inventory

    Characteristically toxicological and epidemiological studies involving chemical mixtures (e.g., multi-pollutant exposures) have been increasing. Human health assessment of chemical and nonchemical mixture risk remains rare. Recently, there has been an increased emphasis on integr...

  19. Labor and pollution prevention in Canada.

    PubMed

    Bennett, Dave

    2012-01-01

    This article gives an account of Canadian Chemicals Policy over the past three decades, including the project for the "virtual elimination" of toxic chemicals and the federal government's Chemical Management Plan. The latter is what remained when the virtual elimination program achieved few results. The article then embarks on its central theme: explaining how the labor movement introduced the concept and the practice of Pollution Prevention (P2) to Canada, as well as its impact on legislation and policies over the use reduction of chemical pesticides. The Appendix is a glossary of terms and concepts used in the article.

  20. Nonpoint Source Pollution.

    PubMed

    Mccoy, Nicholas; Chao, Bing; Gang, Daniel Dianchen

    2015-10-01

    The article presents a comprehensive review of research advancing in 2014 on nonpoint source pollution (NPS). The topics presented relate to nonpoint source pollution (NPS) within agricultural and urban areas. NPS pollution from agricultural areas is the main focus in this review. Management of NPS in agricultural, urban and rural areas is presented. Modeling of NPS pollution in different watersheds with various modeling tools is reviewed.

  1. Pollution prevention drives membrane technologies

    SciTech Connect

    Cartwright, P.

    1994-09-01

    Currently, such membrane technologies as crossflow micro-, ultra-, and nanofiltration, reverse osmosis, electrodialysis and pervaporation offer interesting possibilities, each tackling a specific aspect of pollution control. Although none of these methods can, on its own, alter or break down pollutants, each has the ability to separate, fractionate and concentrate contaminants. In addition, they: permit continuous, uninterrupted processing via automatic control; use far less energy than traditional treatment methods; require only minimal temperature changes and no chemical additives; exert no impact on contaminants, and keep them physically separated from the stream; and are easy to install, either alone or combined with other treatment systems, since they are modular and contain few moving parts. The paper discusses the benefits and disadvantages of membrane technology and recommends thorough testing.

  2. Pollution prevention program plan 1996

    SciTech Connect

    1996-06-01

    This plan serves as the principal crosscutting guidance to Department of Energy (DOE) Headquarters, Operations Office, laboratory, and contractor management to fully implement pollution prevention programs within the DOE complex between now and 2000. To firmly demonstrate DOE`s commitment to pollution prevention, the Secretary of Energy has established goals, to be achieved by December 31, 1999, that will aggressively reduce DOE`s routine generation of radioactive, mixed, and hazardous wastes, and total releases and offsite transfers of toxic chemicals. The Secretary also has established sanitary waste reduction, recycling, and affirmative procurement goals. Site progress in meeting these goals will be reported annually to the Secretary in the Annual Report on Waste Generation and Waste Minimization Progress, using 1993 as the baseline year. Implementation of this plan will represent a major step toward reducing the environmental risks and costs associated with DOE operations.

  3. 48 CFR 52.223-5 - Pollution Prevention and Right-to-Know Information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Definitions. As used in this clause— Toxic chemical means a chemical or chemical category listed in 40 CFR 372... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Pollution Prevention and... Provisions and Clauses 52.223-5 Pollution Prevention and Right-to-Know Information. As prescribed in...

  4. 48 CFR 52.223-5 - Pollution Prevention and Right-to-Know Information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Definitions. As used in this clause— Toxic chemical means a chemical or chemical category listed in 40 CFR 372... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Pollution Prevention and... Provisions and Clauses 52.223-5 Pollution Prevention and Right-to-Know Information. As prescribed in...

  5. 48 CFR 52.223-5 - Pollution Prevention and Right-to-Know Information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Definitions. As used in this clause— Toxic chemical means a chemical or chemical category listed in 40 CFR 372... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Pollution Prevention and... Provisions and Clauses 52.223-5 Pollution Prevention and Right-to-Know Information. As prescribed in...

  6. Air Pollution Training Programs.

    ERIC Educational Resources Information Center

    Public Health Service (DHEW), Rockville, MD.

    This catalog lists the universities, both supported and not supported by the Division of Air Pollution, which offer graduate programs in the field of air pollution. The catalog briefly describes the programs and their entrance requirements, the requirements, qualifications and terms of special fellowships offered by the Division of Air Pollution.…

  7. Discriminatory Air Pollution

    ERIC Educational Resources Information Center

    McCaull, Julian

    1976-01-01

    Described are the patterns of air pollution in certain large urban areas. Persons in poverty, in occupations below the management or professional level, in low-rent districts, and in black population are most heavily exposed to air pollution. Pollution paradoxically is largely produced by high energy consuming middle-and upper-class households.…

  8. Air Pollution, Teachers' Edition.

    ERIC Educational Resources Information Center

    Lavaroni, Charles W.; O'Donnell, Patrick A.

    One of three in a series about pollution, this teacher's guide for a unit on air pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of air pollution and involves students in processes of…

  9. Noise Pollution, Teachers' Edition.

    ERIC Educational Resources Information Center

    O'Donnell, Patrick A.; Lavaroni, Charles W.

    One of three in a series about pollution, this teacher's guide for a unit on noise pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of noise pollution and involves students in processes of…

  10. The Other Water Pollution

    ERIC Educational Resources Information Center

    Barton, Kathy

    1978-01-01

    Nonpoint source pollution, water pollution not released at one specific identifiable point, now accounts for 50 percent of the nation's water pollution problem. Runoff is the primary culprit and includes the following sources: agriculture, mining, hydrologic modifications, and urban runoff. Economics, legislation, practices, and management of this…

  11. Water Pollution, Teachers' Edition.

    ERIC Educational Resources Information Center

    Lavaroni, Charles W.; And Others

    One of three in a series about pollution, this teacher's guide for a unit on water pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of water pollution and involves students in processes of…

  12. Anthropogenic pollutants: a threat to ecosystem sustainability?

    PubMed Central

    Rhind, S. M.

    2009-01-01

    Pollutants, including synthetic organic materials and heavy metals, are known to adversely affect physiological systems in all animal species studied to date. While many individual chemicals can perturb normal functions, the combined actions of multiple pollutants are of particular concern because they can exert effects even when each individual chemical is present at concentrations too low to be individually effective. The biological effects of pollutants differ greatly between species reflecting differences in the pattern of exposure, routes of uptake, metabolism following uptake, rates of accumulation and sensitivity of the target organs. Thus, understanding of the effects of pollutants on wildlife and ecosystems will require detailed study of many different species, representing a wide range of taxa. However, such studies can be informed by knowledge obtained in more controlled conditions which may indicate likely mechanisms of action and suitable endpoint measurements. Responses may be exacerbated by interactions between the effects of pollutants and environmental stressors, such as under-nutrition or osmotic stresses and so changes in such variables associated with climatic changes may exacerbate physiological responses to pollutant burdens. PMID:19833650

  13. Environmental costs of mercury pollution.

    PubMed

    Hylander, Lars D; Goodsite, Michael E

    2006-09-01

    Mercury (Hg) has been used for millennia in many applications, primarily in artisanal mining and as an electrode in the chlor-alkali industry. It is anthropogenically emitted as a pollutant from coal fired power plants and naturally emitted, primarily from volcanoes. Its unique chemical characteristics enable global atmospheric transport and it is deposited after various processes, ultimately ending up in one of its final sinks, such as incorporated into deep sediment or bioaccumulated, primarily in the marine environment. All forms of Hg have been established as toxic, and there have been no noted biological benefits from the metal. Throughout time, there have been notable incidents of Hg intoxication documented, and the negative health effects have been documented to those chronically or acutely exposed. Today, exposure to Hg is largely diet or occupationally dependent, however, many are exposed to Hg from their amalgam fillings. This paper puts a tentative monetary value on Hg polluted food sources in the Arctic, where local, significant pollution sources are limited, and relates this to costs for strategies avoiding Hg pollution and to remediation costs of contaminated sites in Sweden and Japan. The case studies are compiled to help policy makers and the public to evaluate whether the benefits to the global environment from banning Hg and limiting its initial emission outweigh the benefits from its continued use or lack of control of Hg emissions. The cases we studied are relevant for point pollution sources globally and their remediation costs ranged between 2,500 and 1.1 million US dollars kg(-1) Hg isolated from the biosphere. Therefore, regulations discontinuing mercury uses combined with extensive flue gas cleaning for all power plants and waste incinerators is cost effective. PMID:16442592

  14. Environmental costs of mercury pollution.

    PubMed

    Hylander, Lars D; Goodsite, Michael E

    2006-09-01

    Mercury (Hg) has been used for millennia in many applications, primarily in artisanal mining and as an electrode in the chlor-alkali industry. It is anthropogenically emitted as a pollutant from coal fired power plants and naturally emitted, primarily from volcanoes. Its unique chemical characteristics enable global atmospheric transport and it is deposited after various processes, ultimately ending up in one of its final sinks, such as incorporated into deep sediment or bioaccumulated, primarily in the marine environment. All forms of Hg have been established as toxic, and there have been no noted biological benefits from the metal. Throughout time, there have been notable incidents of Hg intoxication documented, and the negative health effects have been documented to those chronically or acutely exposed. Today, exposure to Hg is largely diet or occupationally dependent, however, many are exposed to Hg from their amalgam fillings. This paper puts a tentative monetary value on Hg polluted food sources in the Arctic, where local, significant pollution sources are limited, and relates this to costs for strategies avoiding Hg pollution and to remediation costs of contaminated sites in Sweden and Japan. The case studies are compiled to help policy makers and the public to evaluate whether the benefits to the global environment from banning Hg and limiting its initial emission outweigh the benefits from its continued use or lack of control of Hg emissions. The cases we studied are relevant for point pollution sources globally and their remediation costs ranged between 2,500 and 1.1 million US dollars kg(-1) Hg isolated from the biosphere. Therefore, regulations discontinuing mercury uses combined with extensive flue gas cleaning for all power plants and waste incinerators is cost effective.

  15. Sensing land pollution.

    NASA Technical Reports Server (NTRS)

    Bowden, L. W.

    1971-01-01

    Land pollution is described in numerous ways by various societies. Pollutants of land are material by-products of human activity and range from environmentally ineffective to positively toxic. The pollution of land by man is centuries old and correlates directly with economy, technology and population. In order to remotely sense land pollution, standards or thresholds must be established. Examples of the potential for sensing land pollution and quality are presented. The technological capabilities for remotely sensed land quality is far advanced over the judgment on how to use the sensed data. Until authoritative and directive decisions on land pollution policy are made, sensing of pollutants will be a random, local and academic affair.

  16. Managing residential sources of indoor air pollution

    SciTech Connect

    Tichenor, B.A.; Sparks, L.E.

    1994-12-31

    Sources of indoor air pollutants in residential environments can be managed to reduce occupant exposures. Techniques for managing indoor air pollution sources include: source elimination, substitution, modification, and pretreatment, and altering the amount, location, or time of use. Intelligent source management requires knowledge of the source`s emission characteristics, including chemical composition, emission rates, and decay rates. In addition, knowledge of outdoor air exchange rates, heating/air-conditioning duct flow rates, and kitchen/batch exhaust fan flow rates is needed to determine pollutant concentrations. Indoor air quality (IAQ) models use this information and occupant activity patterns to determine instantaneous and/or cumulative individual exposure. This paper describes a number of residential scenarios for various indoor air pollution VOC sources, several air flow conditions, and typical occupant activity patterns. IAQ model predictions of occupant exposures for these scenarios are given for selected source management options.

  17. Indoor air pollution: an edifice complex.

    PubMed

    Brooks, B O; Utter, G M; DeBroy, J A; Schimke, R D

    1991-01-01

    The collision of escalating technological sophistication and surging environmental awareness has caused the reexamination of many societal paradigms. Horror stories about lethal chemical exposures involving isolated cases of ignorance, carelessness or greed have caused the public to demand constant vigilance to prevent exposure to potentially hazardous substances. Accordingly, much time and resource has been expanded by the U.S. government and citizens to abate and prevent air and water pollution. While these efforts have met with measurable success, there is increasing public concern about a new generation of pollution-related human illness in office, home and transportation environments. New instances of Sick Building Syndrome or Building Related Illness are reported daily by the popular press. Human health effects such as cancer, infectious disease, allergy and irritation have been ascribed to indoor air pollution. The clinical aspects of indoor air pollution are often discounted by consulting engineers and industrial hygienists involved in indoor air quality. Physicians and clinically-trained scientists have received a "Macedonian call" to sift clinical relevance from the emotional aspects of indoor air quality problems. Point sources of pollutants, associated human health effects, and problem solving approaches associated with indoor air pollution are described. Regulatory and litigational aspects of indoor air pollution are also discussed. PMID:1920571

  18. Risk prioritisation of stormwater pollutant sources.

    PubMed

    Lundy, L; Ellis, J B; Revitt, D M

    2012-12-15

    This paper describes the development of a pollutant risk prioritisation methodology for the comparative assessment of stormwater pollutants discharged from differing land use types and activities. Guidelines are presented which evaluate available data with respect to 'likelihood of occurrence' and 'severity of impact'. The use of the developed approach is demonstrated through its application to total suspended solids, biochemical oxygen demand, lead and cadmium. The proposed benchmarking scheme represents a transparent and auditable mechanism to support the synthesis of data from a variety of sources and is sufficiently flexible to incorporate the use of chemical, physical and/or ecological data sets. Practitioners involved in developing and implementing pollutant mitigation programmes are assisted in two key ways. Firstly through enabling the risks to receiving waters from diffuse pollution on a source-by-source and/or pollutant-by-pollutant basis at a catchment scale to be comparatively assessed and prioritised. Secondly, the methodology informs the selection of appropriate diffuse pollution control strategies.

  19. Monitoring of air pollution by plants methods and problems

    SciTech Connect

    Steubing, L.; Jager, H.J.

    1985-01-01

    Ecosystem pollution is often discovered too late for preventive measure to be implemented. Papers include the topics of methods and problems of bioindication of air pollution. The participants discussed passive and active biological monitoring, including mapping of natural vegetation (lichens and mosses, for example) and plant exposure. Morphological and microscopical studies, chemical, physiological and biochemical investigations are presented.

  20. Linking Urban Air Pollution to Global Tropospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Wang, Chien

    2005-01-01

    The two major tasks of this project are to study: (a) the impact of urban nonlinear chemistry on chemical budgets of key pollutants in non-urban areas; and (b) the influence of air pollution control strategies in selected metropolitan areas, particularly of emerging economies in East and South Asia, on tropospheric chemistry and hence on regional and global climate.

  1. Water Pollution, Causes and Cures.

    ERIC Educational Resources Information Center

    Manufacturing Chemists Association, Washington, DC.

    This commentary on sources of water pollution and water pollution treatment systems is accompanied by graphic illustrations. Sources of pollution such as lake bottom vegetation, synthetic organic pollutants, heat pollution, radioactive substance pollution, and human and industrial waste products are discussed. Several types of water purification…

  2. Pollution prevention opportunity assessment for Technical Art

    SciTech Connect

    Torres, H.M.

    1995-09-01

    This pollution prevention opportunity assessment was conducted to evaluate Technical Art, which is part of the Technical Communications Department at Sandia National Laboratories/California. It is located in Building 912, Room 138. This assessment documents the processes, identifies the hazardous chemical waste streams generated by these processes, and recommends possible ways to minimize waste.

  3. Immune Response in Mussels To Environmental Pollution.

    ERIC Educational Resources Information Center

    Pryor, Stephen C.; Facher, Evan

    1997-01-01

    Describes the use of mussels in measuring the extent of chemical contamination and its variation in different coastal regions. Presents an experiment to introduce students to immune response and the effects of environmental pollution on marine organisms. Contains 14 references. (JRH)

  4. Water Conservation and Nonpoint Source Pollution.

    ERIC Educational Resources Information Center

    Farrell-Poe, Kitt

    This book contains science activities that are designed to make learning and demonstrating nonpoint source pollution concepts exciting and fun. These activities can either be used alone or with an existing water resources education curricula. Activities include: Water Tasting, Acting Out the Hydrologic Cycle, Concentration of Chemical Pollutants…

  5. Chemistry and Pollution of the Stratosphere.

    ERIC Educational Resources Information Center

    Donovan, R. J.

    1978-01-01

    Presents an outline of the chemistry involved and the steps which are being taken to gain a better understanding of the stratosphere. Chemical composition of natural stratosphere and depletion of ozone in the stratosphere by man-made pollutants are covered. (HM)

  6. SEPARATION OF ENANTIOMERS OF ENVIRONMENTAL POLLUTANTS

    EPA Science Inventory

    Chiral environmental pollutants exist as sets of 2 (or more) enantiorners - mirror image isomers that are identical in all physical and chemical properties except when reacting with other chiral entities such as enzymes and other chiral molecules. This exception give rise to diff...

  7. PHARMACEUTICALS AND PERSONAL CARE PRODUCTS (PPCPS) AS ENVIRONMENTAL POLLUTANTS

    EPA Science Inventory

    The occurrence of pharmaceuticals and personal care products (PPCPs) as trace environmental pollutants is a multifaceted issue whose scope of concerns continues to expand. PPCPs comprise thousands of distinct chemicals from numerous therapeutic and consumer classes. They typical...

  8. PHARMACEUTICALS AND PERSONAL CARE PRODUCTS: DIVERSE GALAXY OF ENVIRONMENTAL POLLUTANTS

    EPA Science Inventory

    The occurrence of pharmaceuticals and personal care products (PPCPs) as trace environmental pollutants is a multifaceted issue whose scope of concerns continues to expand. PPCPs comprise thousands of distinct chemicals from numerous therapeutic and consumer classes. They typical...

  9. Air Pollution Instrumentation: A Trend toward Physical Methods

    ERIC Educational Resources Information Center

    Maugh, Thomas H., II

    1972-01-01

    Reviews reasons for the trend from wet chemical'' analytic techniques for measuring air pollutants toward physical methods based upon chemiluminescence, electrochemical transduction, flame ionization coupled with gas chromotography, and spectroscopy. (AL)

  10. Article "403. Toxicology of Persistent Organic Pollutants (POPs)"

    EPA Science Inventory

    Persistent Organic Pollutants (POPs) are all synthetic chemicals, either intentionally or unintentionally produced/released. Some POPs are pesticides. Others are industrial products or unintended by-products resulting from industrial processes or combustions (see figure 1). POPs ...

  11. Evaluation of agricultural nonpoint source pollution potential risk over China with a Transformed-Agricultural Nonpoint Pollution Potential Index method.

    PubMed

    Yang, Fei; Xu, Zhencheng; Zhu, Yunqiang; He, Chansheng; Wu, Genyi; Qiu, Jin Rong; Fu, Qiang; Liu, Qingsong

    2013-01-01

    Agricultural nonpoint source (NPS) pollution has been the most important threat to water environment quality. Understanding the spatial distribution of NPS pollution potential risk is important for taking effective measures to control and reduce NPS pollution. A Transformed-Agricultural Nonpoint Pollution Potential Index (T-APPI) model was constructed for evaluating the national NPS pollution potential risk in this study; it was also combined with remote sensing and geographic information system techniques for evaluation on the large scale and at 1 km2 spatial resolution. This model considers many factors contributing to the NPS pollution as the original APPI model, summarized as four indicators of the runoff, sediment production, chemical use and the people and animal load. These four indicators were analysed in detail at 1 km2 spatial resolution throughout China. The T-APPI model distinguished the four indicators into pollution source factors and transport process factors; it also took their relationship into consideration. The studied results showed that T-APPI is a credible and convenient method for NPS pollution potential risk evaluation. The results also indicated that the highest NPS pollution potential risk is distributed in the middle-southern Jiangsu province. Several other regions, including the North China Plain, Chengdu Basin Plain, Jianghan Plain, cultivated lands in Guangdong and Guangxi provinces, also showed serious NPS pollution potential. This study can provide a scientific reference for predicting the future NPS pollution risk throughout China and may be helpful for taking reasonable and effective measures for preventing and controlling NPS pollution.

  12. Cultural Dimensions of Water Pollution

    NASA Astrophysics Data System (ADS)

    Polaki, L.; Bekkam, V. R.

    2014-12-01

    Water (along with leaf, flower and fruit) is an important ingredient of Hindu worship. Abhishekam is the ritual pouring of water over idols. Some Shaivite temples perform Sahasra Ghatabhishekam (pouring of thousand pots of water, about 15000 L). However, the pollution caused by Abhishekam is minimal. Hindus cremate their dead and immerse the ashes in the waters of perennial rivers, the most preferred being the sacred waters of the Ganga. It has been estimated that 15,000 tonnes/year of cremation ash is immersed in the Ganga. Apart from these 140 to 250 tonnes of half burned corpses are dumped in the Ganges per year. There are 500 million people living in the catchment area of the Ganga, and that number is increasing. While there may be no objection from the public in regard to the cleansing of about 5.8 ×105 million liters of chemical wastes per year, the control of cremation ashes in the Ganga is for more difficult to achieve because of the sentiment. It is urgently necessary that pollution including cultural pollution of Ganges, is drastically reduced. The new Indian government has ambitious plans to do this, with allocation of about US$ 700 million in the current year's budget.

  13. Detection of Pollution Caused by Solid Wastes

    NASA Technical Reports Server (NTRS)

    Golueke, Clarence G.

    1971-01-01

    To develop a means of detecting pollution, it s necessary to know something about the source and nature of the pollution. The type of pollution rising from solid wastes differs considerably from hat from liquid wastes or that from gaseous wastes ni its effect on the immediate environment. It may be "defined" by a series of negatives. When solid wastes are discarded on land, the resulting pollution is not land pollution in the sense of air and water pollution. For one thing, the solid wastes do not become a "part" of the land in that the wastes are neither intimately mixed nor homogenized into the land as are liquid and gaseous wastes into their respective media. The waste particles retain not only their chemical identity but also their visible (i.e., physical) characteristics. When buried, for example, the soil is under, above, and around the solids, because the wastes are there as discrete units. Secondly, solid wastes neither diffuse nor are they carried from the place at which they were deposited. In other words they remain stationary, providing of course the disposal site is land and not moving water. In a given area, solid wastes be not distributed uniformly over that area. Even the solid wastes falling into the specification of letter meets these specifications. In contrast liquid and gaseous wastes become intimately mixed, homogenized, and even dissolved in their media. Because solid wastes remain stationary, pollution constituted by their presence is highly localized and heavily concentrated, even to the extent that the pollution could be termed "micro" when compared to the macro-pollution arising from liquid and gasequs wastes.

  14. Pollution control system

    SciTech Connect

    Voliva, B.H.; Bernstein, I.B.

    1984-09-25

    A pollution control system is disclosed wherein condensable pollutants are removed from a high-temperature gas stream by counterflow contact in a vertical tower with downwardly flowing, relatively cool absorbent oil. The absorbent is at a sufficiently low temperature so as to rapidly condense a portion of the pollutants in order to form a fog of fine droplets of pollutant entrained by the gas stream, which fog is incapable of being absorbed by the absorbent. The remainder of the condensable pollutants is removed by downwardly flowing absorbent oil, and the gas and entrained fog are directed from the tower to gas/droplet separation means, such as an electrostatic precipitator. The fog is thereby separated from the gas and substantially pollutant-free gas is discharged to the atmosphere.

  15. [Pollution of room air].

    PubMed

    Schlatter, J

    1986-01-01

    In the last decade the significance of indoor air pollution to human health has increased because of improved thermal insulation of buildings to save energy: air turnover is reduced and air quality is impaired. The most frequent air pollutants are tobacco smoke, radioactive radon gas emanating from the soil, formaldehyde from furniture and insulation material, nitrogen oxides from gas stoves, as well as solvents from cleaning agents. The most important pollutants leading to health hazards are tobacco smoke and air pollutants which are emitted continuously from building materials and furniture. Such pollutants have to be eliminated by reducing the emission rate. A fresh air supply is necessary to reduce the pollutants resulting from the inhabitants and their activities, the amount depending on the number of inhabitants and the usage of the room. The carbon dioxide level should not exceed 1500 ppm.

  16. Endocrine disrupting chemicals

    PubMed Central

    Yeung, Bonnie HY; Wan, Hin T; Law, Alice YS

    2011-01-01

    In the past 200 years, an enormous number of synthetic chemicals with diverse structural features have been produced for industrial, medical and domestic purposes. These chemicals, originally thought to have little or no biological toxicity, are widely used in our daily lives as well as are commonly present in foods. It was not until the first World Wildlife Federation Wingspread Conference held in 1994 were concerns about the endocrine disrupting (ED) effects of these chemicals articulated. The potential hazardous effects of endocrine disrupting chemicals (EDCs) on human health and ecological well-being are one of the global concerns that affect the health and propagation of human beings. Considerable numbers of studies indicated that endocrine disruption is linked to “the developmental basis of adult disease,” highlighting the significant effects of EDC exposure on a developing organism, leading to the propensity of an individual to develop a disease or dysfunction in later life. In this review, we intend to provide environmental, epidemiological and experimental data to associate pollutant exposure with reproductive disorders, in particular on the development and function of the male reproductive system. Possible effects of pollutant exposure on the processes of embryonic development, like sex determination and masculinization are described. In addition, the effects of pollutant exposure on hypothalamus-pituitary-gonadal axis, testicular signaling, steroidogenesis and spermatogenesis are also discussed. PMID:22319671

  17. Future of environmental pollution.

    PubMed

    Barnes, D G

    1996-02-01

    In recent years, the concept of pollution prevention has overtaken end-of-pipe controls as the paradigm of choice for effecting environmental protection. Through cooperative mechanisms, significant progress is being made to reduce or eliminate upstream processes and practices that can lead to downstream pollution. These efforts, coupled with productive interactions with the public, are making an impact. The Science Advisory Board released a report in January that described the "next wave" of pollution prevention. Specifically, the report described approaches for anticipating environmental problems of tomorrow so that preventive actions can be taken today. The potential of air pollution problems figures prominently in the Board's vision of the future.

  18. Joint Conference on Sensing of Environmental Pollutants, 2nd, Washington, D.C., December 10-12, 1973, Proceedings

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Subjects considered are related to the remote passive sensing of atmosphere pollutants, the extension of laboratory measurement techniques for field use, instrument quality and measurement standardization, the remote active sensing of atmospheric pollutants, stationary source sensing, and air quality standards and measurement accuracy. Aspects of radiological, electromagnetic, and acoustic pollution monitoring are discussed together with new methods in particulate analysis, the measurement of meteorological variables that impact on atmospheric pollutants, and the impact of meteorological parameters on pollution analysis. The in-situ sensing of acoustic chemical and biological pollutants is reported along with global scale pollution monitoring and the remote sensing of water pollutants. Individual items are announced in this issue.

  19. NON-REGULATED CONTAMINANTS EMERGING RESEARCH, EXISTING AND FUTURE POLLUTANTS IN WATER SUPPLIES: OLD POLLUTANTS, NEW CONCERNS - NEW POLLUTANTS, UNKNOWN ISSUES

    EPA Science Inventory

    Those chemical pollutants that are regulated under various international, federal, and state programs represent but a small fraction of the universe of chemicals that occur in the environment as a result of both natural processes and human influence. Although this galaxy of targe...

  20. Air pollution in China: Scientific and Public Policy Challenges

    NASA Astrophysics Data System (ADS)

    Zhu, T.

    2014-12-01

    Sever air pollution in China has in recent years caused intensive public, media and governmental attention. Many questions need to be answered about the air pollution in China, such as how harmful is the air pollution, especially PM2.5? Why suddenly so many reports about sever air pollution, is the air in China getting more polluted? How to design a policy that can control the air pollution most efficiently? After updated the national Ambient Air Quality Standards in 2012 and included PM2.5 as one of the critical air pollutants, in 2013, Chinese central government released for the first time the "Air Pollution Prevention and Control Action Plan". The plan has set goals to reduce annual mean concentration of PM2.5 up to 25% in 2017 in different regions in China. If the ambitious goals were achieved, this could be the most significant air pollution reduction in such a short time that affects so many people in human history. To achieve these goals, however, there are enormous scientific and public policy challenges to deal with. For example: Identify the key components, size fraction of PM that have the largest health effects; and identify the sources of PM that has the most harmful effects on human health and ecosystem. Reduce the uncertainty in health risk assessment. Understand complicate chemical transformation processes in air pollution formation with intensive emissions from industry, power plant, vehicles, agriculture. Interactions between air pollution, PBL, and atmospheric circulation at different scales. The accountability, feasibility, effectiveness, and efficiency of air pollution control policies. Integrate multi-pollutant control and achieve co-benefit with climate and energy policy. Regional coordinated air pollution control. The largest challenge in China for air pollution control remains how to strength the link between science and policy.

  1. Bioindicators of pollution in lentic water bodies of Nagpur city.

    PubMed

    Kumari, Pramila; Dhadse, Sharda; Chaudhari, P R; Wate, S R

    2007-10-01

    The present study deals with assessment of water quality of four selected lakes in the Nagpur city using physicochemical and biological parameters especially phytoplankton and zooplankton community. Tropic level and pollution status of lakes were assessed on the basis of the Palmer's Pollution Index, Shannon Wiener Index and physico-chemical parameters. 57 genera belonging to 7 groups of phytoplankton and 10 genera belonging to 3 groups of zooplankton were identified from the lakes. Different patterns of dominance and sub-dominance of indicator plankton community and species along with physico-chemical quality observed confirm the pollution status of the lakes.

  2. Tinkering with the tinkerer: pollution versus evolution.

    PubMed Central

    Fox, G A

    1995-01-01

    Pollutants can act as powerful selective forces by altering genetic variability, its intergenerational transfer, and the size, functional viability, adaptability, and survival of future generations. It is at the level of the cell and the individual that meiosis occurs, that genetic diversity is maintained, and behavior, reproduction, growth, and survival occur and are regulated. It is at this level that evolutionary processes occur and most pollutants exert their toxic effects. Chronic exposure to chemicals contributes to the cumulative stress on individuals and disrupts physiological processes and chemically mediated communication thereby threatening the diversity and long-term survival of sexually reproducing biota. Regional or global effects of pollution on the atmosphere, hydrosphere, and lithosphere have indirectly altered Earth's life-support systems, thereby modifying trace metal balance, reproduction, and incidence of UV-B-induced DNA damage in biota. By altering the competitive ability and survival of species, chemical pollutants potentially threaten evolutionary processes and the biodiversity and function of intercepting ecosystems. PMID:7556031

  3. 40 CFR 63.2495 - How do I comply with the pollution prevention standard?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false How do I comply with the pollution... Chemical Manufacturing Alternative Means of Compliance § 63.2495 How do I comply with the pollution prevention standard? (a) You may elect to comply with the pollution prevention alternative...

  4. 40 CFR 63.2495 - How do I comply with the pollution prevention standard?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false How do I comply with the pollution... Chemical Manufacturing Alternative Means of Compliance § 63.2495 How do I comply with the pollution prevention standard? (a) You may elect to comply with the pollution prevention alternative...

  5. 40 CFR 63.2495 - How do I comply with the pollution prevention standard?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I comply with the pollution... Chemical Manufacturing Alternative Means of Compliance § 63.2495 How do I comply with the pollution prevention standard? (a) You may elect to comply with the pollution prevention alternative...

  6. OECD Recommends Procedures for Assessing Chemicals

    ERIC Educational Resources Information Center

    Idman, Mariatta

    1977-01-01

    Previously the OECD Council recommended assessment of all chemicals before their production or sale. In this article five guidelines for this process are put forth. Guidelines include procedures for chemical analysis and surveillance, and review. This scheme is proposed as a cooperative measure among all countries to reduce chemical pollutants.…

  7. Reactions among indoor pollutants.

    PubMed

    Weschler, C J

    2001-09-13

    This paper reviews recent studies in the field of "indoor chemistry"--reactions among indoor pollutants. Advances have occurred in a number of areas. A mouse bioassay procedure has shown that ozone/terpene reactions produce products that are more irritating than their precursors, although the agents responsible for the deleterious effects remain to be determined. Indoor ozone/terpene reactions have been demonstrated to produce hydroxyl radicals, hydrogen peroxide, sub-micron particles, and ultrafine particles. New analytical techniques such as LC/MS and thermal desorption mass spectrometry have greatly improved our knowledge of the condensed-phase species associated with such particles. Indeed, the latter approach has identified a number of short-lived or thermally labile species, including organic hydroperoxides, peroxy-hemiacetals, and secondary ozonides, which would be missed by more conventional techniques. Investigators are making inroads into the poorly understood area of indoor heterogeneous chemistry. Systems studied include ozone/HVAC components, ozone/paint, and ozone/carpets. Another heterogeneous process that has been further examined is the indoor formation of nitrous acid through NO2/surface chemistry. Emissions from indoor sources that contribute to, or are altered by, indoor chemistry have also received attention. Researchers have expanded our awareness of reactive chemicals that can emanate from wood coatings and other products commonly used indoors. In a related vein, a number of recent investigations have shown that emissions from materials can be significantly altered by indoor chemistry. On the theoretical side, an outdoor atmospheric chemistry model has been modified for use as an indoor air model, the effects of ventilation rates on indoor chemistry have been simulated, and initial steps have been taken in applying computational fluid dynamics (CFD) methods to indoor chemistry.

  8. The status of indoor air pollution.

    PubMed Central

    Esmen, N A

    1985-01-01

    Indoor air pollution, specifically restricted in its meaning to chemicals in home indoor air environment, presents a new and probably an important challenge to the researchers of the air pollution field. The general overview of this topic suggests that the voluminous data generated in the past ten or so years have only defined the rudiments of the problem, and significant areas of research still exist. Among the important areas where information is lacking, the exposures to contaminants generated by the use of consumer products and through hobbies and crafts represent perhaps the most urgent need for substantial research. PMID:4085429

  9. Automotive Pollution Control.

    ERIC Educational Resources Information Center

    Raudenbush, David B.

    Intended for a 1- or 2-month curriculum in auto mechanics, this student manual on automotive pollution control was developed by a subject matter specialist at an area vocational school and tested in a vocational auto shop. Intended either for use in an integrated curriculum or for use in teaching pollution control as a separate course, these 12…

  10. Nonpoint Source Pollution.

    PubMed

    Ahmad, Zaki Uddin; Sakib, Salman; Gang, Daniel Dianchen

    2016-10-01

    Research advances on non-point source pollution in the year 2015 have been depicted in this review paper. Nonpoint source pollution is mainly caused by agricultural runoff, urban stormwater, and atmospheric deposition. Modeling techniques of NPS with different tools are reviewed in this article.

  11. Nonpoint Source Pollution.

    PubMed

    Ahmad, Zaki Uddin; Sakib, Salman; Gang, Daniel Dianchen

    2016-10-01

    Research advances on non-point source pollution in the year 2015 have been depicted in this review paper. Nonpoint source pollution is mainly caused by agricultural runoff, urban stormwater, and atmospheric deposition. Modeling techniques of NPS with different tools are reviewed in this article. PMID:27620104

  12. Quebec's Toxic Pollution Concern.

    ERIC Educational Resources Information Center

    Mingie, Walter

    The best solution to the problems of increased pollution of Quebec lakes and rivers with toxic wastes and increased incidence of pollution related diseases is to educate children, to make them aware of the environment and man's interrelationship with it. Attitudes of concern, based on knowledge, must be developed so that as adults, they will take…

  13. Pollution and Climate Change

    ERIC Educational Resources Information Center

    Larr, Allison S.; Neidell, Matthew

    2016-01-01

    Childhood is a particularly sensitive time when it comes to pollution exposure. Allison Larr and Matthew Neidell focus on two atmospheric pollutants--ozone and particulate matter--that can harm children's health in many ways. Ozone irritates the lungs, causing various respiratory symptoms; it can also damage the lung lining or aggravate lung…

  14. River and Stream Pollution

    MedlinePlus

    ... Pollution Dirt Dirt is a big cause of pollution in our rivers and streams. Rain washes dirt into streams and rivers. Dirt can smother fish and other animals that live in the water. If plants can't get enough sunlight because ...

  15. Pollution, An Environmental Crisis.

    ERIC Educational Resources Information Center

    Fischer, Richard B.

    This document, written for teachers, outlines the causes and extent of environmental problems relating to air pollution, water pollution, the use of fertilizers and pesticides, land use, and population density. A short bibliography includes references to periodicals and books dealing with teaching methods as well as references for background…

  16. River Pollution: Part I.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1983-01-01

    Describes a unit on river pollution and analytical methods to use in assessing temperature, pH, flow, calcium, chloride, dissolved oxygen, biochemical oxygen demand, dissolved nitrogen, detergents, heavy metals, sewage pollution, conductivity, and sediment cores. Suggests tests to be carried out and discusses significance of results. (JM)

  17. Benthic meiofauna community composition at polluted and non-polluted sites in New Zealand intertidal environments.

    PubMed

    Hack, Lisa A; Tremblay, Louis A; Wratten, Steve D; Lister, Alison; Keesing, Vaughan

    2007-11-01

    Meiofauna composition was investigated for six field sites, including polluted and non-polluted sites, within two regions (Auckland and Bay of Plenty) during winter (July-August 2004) in the North Island of New Zealand. Physico-chemical parameters were measured during the sampling period and meiofauna distribution and abundance were compared with these measured parameters. Analysis of meiofauna abundance indicated that foraminiferans, nematodes and ostracods were the taxa that contributed to the variability between field sites within the Auckland region. However, no clear taxa dominance was seen in the Bay of Plenty region. Comparison of meiofauna abundance and physico-chemical parameters was done using multivariate analysis (PRIMER). However, no clear relationships between the parameters were observed in any field site in either region. The Shannon-Weiner index of diversity did not show any clear differentiation between polluted and non-polluted field sites. Therefore, from the present study, the taxa or physico-chemical parameters used could not effectively characterise pollution at the investigated field sites.

  18. Pollution trees: identifying similarities among complex pollutant mixtures in water and correlating them to mutagenicity.

    PubMed

    Zheng, Weiwei; Wang, Xia; Tian, Dajun; Zhang, Hao; Tian, Weidong; Andersen, Melvin E; Zheng, Yuxin; Sun, Xin; Jiang, Songhui; Cao, Zhaojin; He, Gengsheng; Qu, Weidong

    2012-07-01

    There are relatively few tools available for computing and visualizing similarities among complex mixtures and in correlating the chemical composition clusters with toxicological clusters of mixtures. Using the "intersection and union ratio (IUR)" and other traditional distance matrices on contaminant profiles of 33 specific water samples, we used "pollution trees" to compare these mixtures. The "pollution trees" constructed by neighbor-joining (NJ), maximum parsimony (MP), and maximum likelihood (ML) methods allowed comparison of similarities among these samples. The mutagenicity of each sample was then mapped to the "pollution tree". The IUR-distance-based measure proved effective in comparing chemical composition and compound level differences between mixtures. We found a robust "pollution tree" containing seven major lineages with certain broad characteristics: treated municipal water samples were different from raw water samples and untreated rural drinking water samples were similar with local water sources. The IUR-distance-based tree was more highly correlated to mutagenicity than were other distance matrices, i.e., MP/ML methods, sampling group, region, or water type. IUR-distance-based "pollution trees" may become important tools for identifying similarities among real mixtures and examining chemical composition clusters in a toxicological context.

  19. Aircraft engine pollution reduction.

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  20. [Pollution of the groundwater in the city of Niamey, Niger].

    PubMed

    Chippaux, J P; Houssier, S; Gross, P; Bouvier, C; Brissaud, F

    2002-06-01

    We conducted a study on chemical and bacteriological groundwater pollution in Niamey, a Sahelian city of some 700,000 inhabitants. A total of 22 wells and 24 bore-holes were selected on a geological and socio-economic basis. The superficial aquifers, located on each bank of the River Niger and connected to the wells, presented high levels of oxidizable nitrogen and bacteriological pollution (coliform and faecal Streptococcus) which make the water unfit for human consumption. The deep aquifer, which supplies pumps, was also polluted but to a lesser degree. Faecal pollution increased after the rainy season. The lack of sanitation in Niamey and the seepage of polluted matters from the superficial layers could explain this pollution. Eventually, the use of the groundwater could increase and constitute a major health risk for the majority of the inhabitants of Niamey.

  1. Health effects of multi-pollutant profiles

    PubMed Central

    Zanobetti, Antonella; Austin, Elena; Coull, Brent A.; Schwartz, Joel; Koutrakis, Petros

    2015-01-01

    Background The association between exposure to particle mass and mortality is well established; however, there are still uncertainties as to whether certain chemical components are more harmful than others. Moreover, understanding the health effects associated with exposure to pollutants mixtures may lead to new regulatory strategies. Objectives Recently we have introduced a new approach that uses cluster analysis to identify distinct air pollutant mixtures by classifying days into groups based on their pollutant concentration profiles. In Boston during the years 1999–2009, we examined whether the effect of PM2.5 on total mortality differed by distinct pollution mixtures. Methods We applied a time series analysis to examine the association of PM2.5 with daily deaths. Subsequently, we included an interaction term between PM2.5 and the pollution mixture clusters. Results We found a 1.1 % increase (95% CI: 0.0, 2.2) and 2.3% increase (95% CI: 0.9–3.7) in total mortality for a 10 µg/m3 increase in the same day and the two-day average of PM2.5 respectively. The association is larger in a cluster characterized by high concentrations of the elements related to primary traffic pollution and oil combustion emissions with a 3.7% increase (95% CI: 0.4, 7.1) in total mortality, per 10 µg/m3 increase in the same day average of PM2.5. Conclusions Our study shows a higher association of PM2.5 on total mortality during days with a strong contribution of traffic emissions, and fuel oil combustion. Our proposed method to create multi-pollutant profiles is robust, and provides a promising tool to identify multi-pollutant mixtures which can be linked to the health effects. PMID:24950160

  2. Ecological crisis in eastern Europe. (Latest citations from Pollution Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning the severe problem of chemical pollution in Eastern Europe. The citations examine the contamination of air, soil, and water by pollutants from agriculture, energy production, chemical plants, and oil refineries, including adverse health effects of chemical pollution. Topics also include international cooperation between Eastern Europe and western nations to exchange information, standardize pollution monitoring techniques, and establish environmental legislation compatible with western standards. The development of remediation technologies, and economic incentives which would promote environmental protection while fostering future economic developments are also discussed. (Contains 250 citations and includes a subject term index and title list.)

  3. Reduction potential, shadow prices, and pollution costs of agricultural pollutants in China.

    PubMed

    Tang, Kai; Gong, Chengzhu; Wang, Dong

    2016-01-15

    This paper analyses the reduction potential, shadow prices, and pollution costs of agricultural pollutants in China based on provincial panel data for 2001-2010. Using a parameterized quadratic form for the directional output distance function, we find that if agricultural sectors in all provinces were to produce on the production frontier, China could potentially reduce agricultural emissions of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) by 16.0%, 16.2%, and 20.4%, respectively. Additionally, our results show that the shadow price of TN increased rapidly and continuously, while that of COD and TP fluctuated for the whole period. For the whole country, the average shadow price of COD, TN, and TP are 8266 Yuan/tonne, 25,560 Yuan/tonne, and 10,160 Yuan/tonne, respectively. The regional shadow prices of agricultural pollutants are unbalanced. Furthermore, we show that the pollution costs from emissions of COD, TN, and TP are 6.09% of the annual gross output value of the agricultural sector and are highest in the Western and lowest in the Eastern provinces. Our estimates suggest that there is scope for further pollution abatement and simultaneous output expansion for China's agriculture if farmers promote greater efficiency in their production process. Policymakers are required to dynamically adjust the pollution tax rates and ascertain the initial permit price in an emission trading system. Policymakers should also consider the different pollution costs for each province when making the reduction allocations within the agricultural sector.

  4. Health Effects of Air Pollution

    MedlinePlus

    ... Health effects of air pollution Health effects of air pollution Breathing air that is not clean can hurt ... important to know about the health effects that air pollution can have on you and others. Once you ...

  5. Correlation of Quantitative PCR for a Poultry-Specific Brevibacterium Marker Gene with Bacterial and Chemical Indicators of Water Pollution in a Watershed Impacted by Land Application of Poultry Litter▿

    PubMed Central

    Weidhaas, Jennifer L.; Macbeth, Tamzen W.; Olsen, Roger L.; Harwood, Valerie J.

    2011-01-01

    The impact of fecal contamination from human and agricultural animal waste on water quality is a major public health concern. Identification of the dominant source(s) of fecal pollution in a watershed is necessary for assessing the safety of recreational water and protecting water resources. A field study was conducted using quantitative PCR (qPCR) for the 16S rRNA gene of Brevibacterium sp. LA35 to track feces-contaminated poultry litter in environmental samples. Based on sensitivity and specificity characteristics of the qPCR method, the Bayesian conditional probability that detection of the LA35 marker gene in a water sample represented a true-positive result was 93%. The marker's covariance with fecal indicator bacteria (FIB) and metals associated with poultry litter was also assessed in litter, runoff, surface water, and groundwater samples. LA35 was detected in water and soil samples collected throughout the watershed, and its concentration covaried with concentrations of Escherichia coli, enterococci, As, Cu, P, and Zn. Significantly greater concentrations of FIB, As, Cu, P, and Zn were observed in edge-of-field runoff samples in which LA35 was detected, compared to samples in which it was not detected. Furthermore, As, Cu, P, and Zn concentrations covaried in environmental samples in which LA35 was detected and typically did not in samples in which the marker gene was not detected. The covariance of the poultry-specific LA35 marker gene with these known contaminants from poultry feces provides further evidence that it is a useful tool for assessing the impact of poultry-derived fecal pollution in environmental waters. PMID:21278274

  6. Correlation of quantitative PCR for a poultry-specific brevibacterium marker gene with bacterial and chemical indicators of water pollution in a watershed impacted by land application of poultry litter.

    PubMed

    Weidhaas, Jennifer L; Macbeth, Tamzen W; Olsen, Roger L; Harwood, Valerie J

    2011-03-01

    The impact of fecal contamination from human and agricultural animal waste on water quality is a major public health concern. Identification of the dominant source(s) of fecal pollution in a watershed is necessary for assessing the safety of recreational water and protecting water resources. A field study was conducted using quantitative PCR (qPCR) for the 16S rRNA gene of Brevibacterium sp. LA35 to track feces-contaminated poultry litter in environmental samples. Based on sensitivity and specificity characteristics of the qPCR method, the Bayesian conditional probability that detection of the LA35 marker gene in a water sample represented a true-positive result was 93%. The marker's covariance with fecal indicator bacteria (FIB) and metals associated with poultry litter was also assessed in litter, runoff, surface water, and groundwater samples. LA35 was detected in water and soil samples collected throughout the watershed, and its concentration covaried with concentrations of Escherichia coli, enterococci, As, Cu, P, and Zn. Significantly greater concentrations of FIB, As, Cu, P, and Zn were observed in edge-of-field runoff samples in which LA35 was detected, compared to samples in which it was not detected. Furthermore, As, Cu, P, and Zn concentrations covaried in environmental samples in which LA35 was detected and typically did not in samples in which the marker gene was not detected. The covariance of the poultry-specific LA35 marker gene with these known contaminants from poultry feces provides further evidence that it is a useful tool for assessing the impact of poultry-derived fecal pollution in environmental waters.

  7. Chemical exchange program analysis.

    SciTech Connect

    Waffelaert, Pascale

    2007-09-01

    As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of

  8. Oil pollution detection and sensing. (Latest citations from the NTIS bibliographic database). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning techniques used to detect and sense oil spills and slicks. Citations discuss remote sensing, chemical and biological monitoring, satellite imagery, surveilllance, and models. Topics include pollution information systems, environmental monitoring, coastal ecology, and paths of pollutants. Pollution effects on fisheries, leak detectors, artificial oil pollution, remedial actions, and international cooperation are covered. (Contains a minimum of 236 citations and includes a subject term index and title list.)

  9. Oil pollution detection and sensing. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning techniques used to detect and sense oil spills and slicks. Citations discuss remote sensing, chemical and biological monitoring, satellite imagery, surveilllance, and models. Topics include pollution information systems, environmental monitoring, coastal ecology, and paths of pollutants. Pollution effects on fisheries, leak detectors, artificial oil pollution, remedial actions, and international cooperation are covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. [Airport related air pollution and health effects].

    PubMed

    Iavicoli, Ivo; Fontana, Luca; Ancona, Carla; Forastiere, Francesco

    2014-01-01

    Airport is an extremely complex emission source of airborne pollutants that can have a significant impact on the environment. Indeed, several airborne chemicals emitted during airport activities may significantly get worse air quality and increase exposure level of both airport workers and general population living nearby the airports. In recent years airport traffic has increased and consequently several studies investigated the association between airport-related air pollution and occurrence of adverse health effects, particularly on respiratory system, in exposed workers and general population resident nearby. In this context, we carried out a critical evaluation of the studies that investigated this correlation in order to obtain a deeper knowledge of this issue and to identify the future research needs. Results show that the evidence of association between airport-related air pollution and health effects on workers and residents is still limited. PMID:25115476

  11. [Airport related air pollution and health effects].

    PubMed

    Iavicoli, Ivo; Fontana, Luca; Ancona, Carla; Forastiere, Francesco

    2014-01-01

    Airport is an extremely complex emission source of airborne pollutants that can have a significant impact on the environment. Indeed, several airborne chemicals emitted during airport activities may significantly get worse air quality and increase exposure level of both airport workers and general population living nearby the airports. In recent years airport traffic has increased and consequently several studies investigated the association between airport-related air pollution and occurrence of adverse health effects, particularly on respiratory system, in exposed workers and general population resident nearby. In this context, we carried out a critical evaluation of the studies that investigated this correlation in order to obtain a deeper knowledge of this issue and to identify the future research needs. Results show that the evidence of association between airport-related air pollution and health effects on workers and residents is still limited.

  12. Air Pollution Exposure

    PubMed Central

    Balmes, John R.; Collard, Harold R.

    2015-01-01

    Air pollution exposure is a well-established risk factor for several adverse respiratory outcomes, including airways diseases and lung cancer. Few studies have investigated the relationship between air pollution and interstitial lung disease (ILD) despite many forms of ILD arising from environmental exposures. There are potential mechanisms by which air pollution could cause, exacerbate, or accelerate the progression of certain forms of ILD via pulmonary and systemic inflammation as well as oxidative stress. This article will review the current epidemiologic and translational data supporting the plausibility of this relationship and propose a new conceptual framework for characterizing novel environmental risk factors for these forms of lung disease. PMID:25846532

  13. Pollution from nonpoint sources

    SciTech Connect

    Humenik, F.J.; Smolen, M.D.; Dressing, S.A.

    1987-08-01

    Efforts to protect water from nonpoint source pollution are underway, but much remains to be done. Recent water quality evaluations and landmark legislation place nonpoint source (NPS) control programs at a pivotal point. The Clean Water Act (CWA) Reauthorization, passed by Congress in Feb. 1987 specifically addresses NPS pollution for the first time. It directs states to submit to EPA a list of waters not meeting CWA goals because of NPS pollution and to submit an NPS management program for those waters. States are required to identify land use sectors that cause major NPS problems. Some professionals declare nonpoint sources to be the major reason for not reaching water quality goals.

  14. Quantifying light pollution

    NASA Astrophysics Data System (ADS)

    Cinzano, P.; Falchi, F.

    2014-05-01

    In this paper we review new available indicators useful to quantify and monitor light pollution, defined as the alteration of the natural quantity of light in the night environment due to introduction of manmade light. With the introduction of recent radiative transfer methods for the computation of light pollution propagation, several new indicators become available. These indicators represent a primary step in light pollution quantification, beyond the bare evaluation of the night sky brightness, which is an observational effect integrated along the line of sight and thus lacking the three-dimensional information.

  15. Earthworms and Soil Pollutants

    PubMed Central

    Hirano, Takeshi; Tamae, Kazuyoshi

    2011-01-01

    Although the toxicity of metal contaminated soils has been assessed with various bioassays, more information is needed about the biochemical responses, which may help to elucidate the mechanisms involved in metal toxicity. We previously reported that the earthworm, Eisenia fetida, accumulates cadmium in its seminal vesicles. The bio-accumulative ability of earthworms is well known, and thus the earthworm could be a useful living organism for the bio-monitoring of soil pollution. In this short review, we describe recent studies concerning the relationship between earthworms and soil pollutants, and discuss the possibility of using the earthworm as a bio-monitoring organism for soil pollution. PMID:22247659

  16. The use of the urogenital papillae of male feral African sharptooth catfish (Clarias gariepinus) as indicator of exposure to estrogenic chemicals in two polluted dams in an urban nature reserve, Gauteng, South Africa.

    PubMed

    Kruger, Taneshka; Barnhoorn, Irene; Jansen van Vuren, Johan; Bornman, Riana

    2013-01-01

    The African sharptooth catfish (Clarias gariepinus) is indigenous to South Africa where it is commonly found in calm waters such as lakes, streams, rivers, swamps and floodplains. The males of this gonochoristic species can be readily distinguished from females via a distinct elongated urogenital papilla with a pointed tip, located just behind the anus. This structure is an androgen controlled secondary sexual characteristic and could potentially be affected by chemicals displaying endocrine disrupting properties during development. Results of previous studies on effects on papillae of different fish species indicated that these structures could be useful as bio-indicators of exposure due to alterations in the structures. This study investigated the occurrence of abnormal morphology in urogenital papillae compared to the macroscopic and microscopic structure of the gonads of presumed male or intersex catfish sampled from the Rietvlei and Marais dams in an urban nature reserve, due to exposure to endocrine disrupting chemicals (EDCs). Macroscopic observation of the UGP, gonad examination after laparotomy and histology were done. Gonadosomatic index (GSI) and Urogenital papilla length index (UGPLI) were determined for all fish collected. Mesenteric fat analyzed for selected alkylphenols and organochlorines showed high levels of especially nonylphenol indicating long term exposure to these chemicals due to bio-accumulation. The GSI indicated that fish with intersex gonads were probably feminized males. It was concluded that use of the UGP alone, without macroscopic and microscopic analyses of the gonads, could not effectively indicate exposure to EDCs.

  17. Effect of environmental pollutants on human semen

    SciTech Connect

    Kaur, S.

    1988-01-01

    With the increased release of numerous chemical substances into the biosphere, careful assessment of health effects of polluted environment must be made for maintaining and enhancing the quality of human life on this earth. Significant number of malformed children are born each year. Sixty-five to 70% of all birth defects have an unknown etiology. More than one-third of early human conception and up to 15% of recognized pregnancies are terminated by spontaneous abortion. The extent of the effect of environmental pollution on human reproductive performance is for the most part unknown. Of the approximately five million chemicals in existence, humans could be expose to a sufficient quantity of an estimated 53,000 for toxicity to be of potential problem. Methods that do not require autopsy or surgery such as semen analysis would be attractive for assessing the effect of environmental toxicology on quality of human life. Therefore, the present study was conducted to observe the effects of heavily polluted environment of industrial area of Ludhiana and relatively clean, pollution free environment of Chandigarh on the human semen quality. It was believed that the function of the male reproductive system may often be the most sensitive to toxic effects.

  18. Students 'Weigh' Atmospheric Pollution.

    ERIC Educational Resources Information Center

    Caporaloni, Marina

    1998-01-01

    Describes a procedure developed by students that measures the mass concentration of particles in a polluted urban atmosphere. Uses a portable fan and filters of various materials. Compares students' data with official data. (DDR)

  19. Profiting from pollution prevention

    SciTech Connect

    LoPilato, A.J.; Eng, D.B.

    1994-12-31

    In the case of pollution prevention, national environmental goals coincide with industry`s economic interests. Most, if not all businesses have strong incentives to reduce the toxicity and quantities of wastes generated. These incentives include not only the ever increasing cost of compliance within a growing framework of regulations, but may include a firms desire to reduce the risk of criminal and civil liability, reduce overall operating costs, improve employee morale and participation, enhance corporate image in the community and insure protection of both public health and the environment. Although some businesses may invest in a pollution prevention program because it is the green thin to do, most businesses will weight their initial and long-term pollution prevention program investments on sound economic analyses. An effective pollution prevention program can provide cost savings that will more than offset the initial development and implementation costs.

  20. Investigating Air Pollution

    ERIC Educational Resources Information Center

    Carter, Edward J.

    1977-01-01

    Describes an experiment using live plants and cigarette smoke to demonstrate the effects of air pollution on a living organism. Procedures include growth of the test plants in glass bottles, and construction and operation of smoking machine. (CS)

  1. The Polluter Pays

    ERIC Educational Resources Information Center

    Jamieson, Martyn

    1975-01-01

    Presents part of the winning entry in the competition organized by Stirling University (England). The extract presented forms the conclusion to a wide ranging essay which covered the various forms of pollution. (EB)

  2. Landsat and water pollution

    NASA Technical Reports Server (NTRS)

    Castruccio, P.; Fowler, T.; Loats, H., Jr.

    1979-01-01

    Report presents data derived from satellite images predicting pollution loads after rainfall. It explains method for converting Landsat images of Eastern United States into cover maps for Baltimore/five county region.

  3. Indoor air pollution

    SciTech Connect

    Not Available

    1985-05-01

    This factsheet reviews what is currently known about pollutant sources, abatement and control equipment and techniques for poorly ventilated houses. Radon, formaldehyde, tobacco smokes, carbon dioxide, carbon monoxide, particulates, bacteria, fungi and viruses are addressed. (PSB)

  4. AIR POLLUTION CONTROL TECHNOLOGIES

    EPA Science Inventory

    This is a chapter for John Wiley & Son's Mechanical Engineers' Handbook, and covers issues involving air pollution control. Various technologies for controlling sulfur oxides is considered including fuel desulfurization. It also considers control of nitrogen oxides including post...

  5. Exploring Pesticide Pollution

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1974-01-01

    Examines environmental problems associated with the use of pesticides, and suggests thirty learning activities designed to give elementary school children a better understanding of the problem of pesticide pollution. (JR)

  6. Pollution in the upland environment.

    PubMed

    Crossley, A; Wilson, D B; Milne, R

    1992-01-01

    As part of a study on the effects of pollutants on forests, a long-term monitoring programme has been operating at two sites (602 and 275 m above sea level (a.s.l.)) in Glentress Forest, south-east Scotland, since June 1987. At these sites, equipment has been recording 20-min data for weather parameters, and cloud and rain event frequency, duration and intensity. The chemical composition of bulk cloud and rainwater has been measured. Cloudwater detection and collection has been made using passive 'Harp wire' gauges (with a cross-sectional area of 0.047 m2) strung with polypropylene filament and having a typical collection efficiency of 29% when compared with independent measurements of windspeed and liquid water content. During 1988, the annual rainfall at the upper site was 1213 mm, occurring over 1776 h. The equivalent cloudwater deposition to a forest with a drag coefficient of 0.06 was estimated to be 375 mm over 1936 h. A 'typical cloud event' lasted 4.5 h and would deposit to forests at a rate of 0.2 mm h(-1). There were significantly higher loadings of suspended particulate material (> 0.2 microm) in cloudwater (mean 18.42, max. 94.5 mg litre(-1)) compared with rainwater (mean 2.6, max. 25.6 mg litre(-1)). There were similar differences in ion concentrations, e.g. for H+ in cloudwater (mean 163, max. 1259 microm) and in rainwater (mean 33, max. 262 microM). It is concluded that cloudwater deposition represents a major pathway for pollutant transfer to the upland environment, especially where the surface vegetation is efficient at capturing cloudwater, i.e. forests. The consequences of this increased pollutant loading to forests and water catchments are yet to be assessed.

  7. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.

  8. Compliance through pollution prevention

    SciTech Connect

    McCarty, B.D.; Coyle, S.; Kachel, W.M.

    1999-07-01

    Decreased budgetary resources have caused the Air Force Materiel Command to look for a better way to target pollution prevention investments. The new paradigm, Compliance through Pollution Prevention (CTP2), is based upon the Code of Environmental Management Principles (CEMP) for federal facilities. It provides a procedure to assure that all future AFMC P2 investments result in the greatest reduction in environmental compliance burden possible. This paper describes the evolution of this new environmental management system, both past and future.

  9. Indoor Pollutants Emitted by Electronic Office Equipment

    SciTech Connect

    Maddalena, Randy L.; Destaillats, Hugo; Russell, Marion L.; Hodgson, Alfred T.; McKone, Thomas E.

    2008-07-01

    The last few decades have seen major changes in how people collect and process information at work and in their homes. More people are spending significant amounts of time in close proximity to computers, video display units, printers, fax machines and photocopiers. At the same time, efforts to improve energy efficiency in buildings by reducing leaks in building envelopes are resulting in tighter (i.e., less ventilated) indoor environments. Therefore, it is critical to understand pollutant emission rates for office equipment because even low emissions in areas that are under-ventilated or where individuals are in close proximity to the pollutant source can result in important indoor exposures. We reviewed existing literature reports on pollutant emission by office equipment, and measured emission factors of equipment with significant market share in California. We determined emission factors for a range of chemical classes including volatile and semivolatile organic compounds (VOCs and SVOCs), ozone and particulates. The measured SVOCs include phthalate esters, brominated and organophosphate flame retardants and polycyclic aromatic hydrocarbons. Measurements were carried out in large and small exposure chambers for several different categories of office equipment. Screening experiments using specific duty cycles in a large test chamber ({approx}20 m{sup 3}) allowed for the assessment of emissions for a range of pollutants. Results from the screening experiments identified pollutants and conditions that were relevant for each category of office equipment. In the second phase of the study, we used a smaller test chamber ({approx}1 m{sup 3}) to measure pollutant specific emission factors for individual devices and explored the influence of a range of environmental and operational factors on emission rates. The measured emission factors provide a data set for estimating indoor pollutant concentrations and for exploring the importance of user proximity when estimating

  10. Voluntary pollution reduction programs

    SciTech Connect

    Sears, E.B.

    1997-08-01

    Despite claims that the government is reducing the amount of environmental regulation, the sheer amount of regulatory language has actually increased yearly. Yet based on media reports and citizen claims, pollution appears to go unchecked. Citizens condemn a perceived lack of government regulation of industrial pollution, while industries find themselves mired in increasingly complex regulatory programs that are sometimes far removed from real world situations. US Environmental Protection Agency (EPA) decision-makers have responded to these concerns by designing regulatory programs that abandon traditional command-and-control regulatory schemes as ill-suited to today`s pollution problems and the interests of these stakeholders. This paper analyzes the use of voluntary pollution control programs in place of command-and-control regulation. It is proposed that voluntary programs may serve as carrots to entice regulated entities to reduce pollution, but that there are a number of hurdles to their effective implementation that preclude them from being embraced as effective environmental regulatory tools. This paper reviews why agencies have moved from command-and-control regulation and examines current voluntary pollution control programs. This paper also contemplates the future of such programs.

  11. Environmental benefits of chemical propulsion

    NASA Technical Reports Server (NTRS)

    Hayes, Joyce A.; Goldberg, Benjamin E.; Anderson, David M.

    1995-01-01

    This paper identifies the necessity of chemical propulsion to satellite usage and some of the benefits accrued through monitoring global resources and patterns, including the Global Climate Change Model (GCM). The paper also summarized how the satellite observations are used to affect national and international policies. Chemical propulsion, like all environmentally conscious industries, does provide limited, controlled pollutant sources through its manufacture and usage. However, chemical propulsion is the sole source which enables mankind to launch spacecraft and monitor the Earth. The information provided by remote sensing directly affects national and international policies designed to protect the environment and enhance the overall quality of life on Earth. The resultant of chemical propulsion is the capability to reduce overall pollutant emissions to the benefit of mankind.

  12. Environmental benefits of chemical propulsion

    SciTech Connect

    Hayes, J.A.; Goldberg, B.E.; Anderson, D.M.

    1995-03-01

    This paper identifies the necessity of chemical propulsion to satellite usage and some of the benefits accrued through monitoring global resources and patterns, including the Global Climate Change Model (GCM). The paper also summarized how the satellite observations are used to affect national and international policies. Chemical propulsion, like all environmentally conscious industries, does provide limited, controlled pollutant sources through its manufacture and usage. However, chemical propulsion is the sole source which enables mankind to launch spacecraft and monitor the Earth. The information provided by remote sensing directly affects national and international policies designed to protect the environment and enhance the overall quality of life on Earth. The resultant of chemical propulsion is the capability to reduce overall pollutant emissions to the benefit of mankind.

  13. 75 FR 1024 - Proposed Significant New Use Rules on Certain Chemical Substances; Reopening of Comment Period

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... technical information contact: Jim Alwood, Chemical Control Division (7405M), Office of Pollution Prevention... Chemical Substances; Reopening of Comment Period AGENCY: Environmental Protection Agency (EPA). ACTION... November 6, 2009, concerning proposed significant new use rules for certain chemical substances. EPA...

  14. Environmental pollutants and breast cancer.

    PubMed Central

    Brody, Julia Green; Rudel, Ruthann A

    2003-01-01

    Breast cancer is the most common cancer in women and the leading cause of cancer death among women 35-54 years of age. Rising incidence, increased risk among migrants to higher risk regions, and poor prediction of individual risk have prompted a search for additional modifiable factors. Risk factors for breast cancer include reproductive characteristics associated with estrogen and other hormones, pharmaceutical hormones, and activities such as alcohol use and lack of exercise that affect hormone levels. As a result, investigation of hormonally active compounds in commercial products and pollution is a priority. Compounds that cause mammary tumors in animals are additional priorities. Animal models provide insight into possible mechanisms for effects of environmental pollutants on breast cancer and identify chemical exposures to target in epidemiologic studies. Although few epidemiologic studies have been conducted for chemical exposures, occupational studies show associations between breast cancer and exposure to certain organic solvents and polycyclic aromatic hydrocarbons (PAHs). Population-based studies have been limited to a few organochlorine compounds and PAHs and have been mostly negative. A variety of challenges in studies of breast cancer and the environment may have contributed to negative findings. Lack of exposure assessment tools and few hypothesis-generating toxicologic studies limit the scope of epidemiologic studies. Issues of timing with respect to latency and periods of breast vulnerability, and individual differences in susceptibility pose other challenges. Substantial work is needed in exposure assessment, toxicology, and susceptibility before we can expect a pay-off from large epidemiologic studies of breast cancer and environment. PMID:12826474

  15. Pollution liability. (Latest citations from Pollution Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning court decisions regarding pollution liability. Specific aspects of pollution legislation that must be proven to establish liability are discussed. Federal, state, or civil exemptions to pollution laws are detailed. Pollution liability insurance is examined. Punitive assessments providing economic recovery and clean up costs to injured parties are briefly considered. Specific court decisions are used to highlight general principles of pollution liability. (Contains a minimum of 225 citations and includes a subject term index and title list.)

  16. Epigenetics and environmental chemicals

    PubMed Central

    Baccarelli, A; Bollati, V.

    2011-01-01

    Purpose of the review Epigenetics investigates heritable changes in gene expression occurring without changes in DNA sequence. Several epigenetic mechanisms, including DNA methylation, histone modifications, and microRNA (miRNA) expression, can change genome function under exogenous influence. Here, we review current evidence indicating that epigenetic alterations mediate toxicity from environmental chemicals. Recent findings In-vitro, animal, and human investigations have identified several classes of environmental chemicals that modify epigenetic marks, including metals (cadmium, arsenic, nickel, chromium, methylmercury), peroxisome proliferators (trichloroethylene, dichloroacetic acid, trichloroacetic acid), air pollutants (particulate matter, black carbon, benzene), and endocrine-disrupting/reproductive toxicants (diethylstilbestrol, bisphenol A, persistent organic pollutants, dioxin). Most studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied environmental chemicals in relation to histone modications and miRNA. Summary For several exposures, it has been proved that chemicals can alter epigenetic marks and that the same or similar epigenetic alterations can be found in patients with the disease of concern or in diseased tissues. Future prospective investigations are needed to determine whether exposed subjects develop epigenetic alterations over time and, in turn, which such alterations increase the risk of disease. Also, further research is needed to determine whether environmental epigenetic changes are transmitted transgenerationally. PMID:19663042

  17. Pupils' Understanding of Air Pollution

    ERIC Educational Resources Information Center

    Dimitriou, Anastasia; Christidou, Vasilia

    2007-01-01

    This paper reports on a study of pupils' knowledge and understanding of atmospheric pollution. Specifically, the study is aimed at identifying: 1) the extent to which pupils conceptualise the term "air pollution" in a scientifically appropriate way; 2) pupils' knowledge of air pollution sources and air pollutants; and 3) pupils' knowledge of air…

  18. Pollution Microbiology, A Laboratory Manual.

    ERIC Educational Resources Information Center

    Finstein, Melvin S.

    This manual is designed for use in the laboratory phase of courses dealing with microbial aspects of pollution. It attempts to cover the subject area broadly in four major categories: (1) microorganisms in clean and polluted waters, (2) carbonaceous pollutants, (3) nitrogen, phosphorus, iron, and sulfur as pollutants, and (4) sanitary…

  19. Workshop on Spanning Regional-to-Global Pollution

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Newman, Paul A.; Gleason, James F.; Brune, William H.; Dickerson, Russell R.

    2002-01-01

    Pollution is often considered a localized phenomenon, but it is now clear that it travels from region-to-region, country to country, and even continent to continent. In addition to urban pollution in developed countries, large emissions from developing nations and large-scale biomass fires add to the global pollution burden. Ozone and aerosols are two components of pollution that contribute to radiative forcing of the earth s climate. In turn, as climate changes, rates of chemical and microphysical reactions may be perturbed. Considering the earth as a coupled chemical-microphysical-climate system poses challenges for models and observations alike. These issues were the topic of a Workshop held in May 2002 at NASA GSFC s Laboratory for Atmospheres. Highlights of the Workshop are summarized in this article.

  20. Environmental policy, legislation and management of persistent organic pollutants (POPs) in China.

    PubMed

    Lau, Melody Hoi Yin; Leung, Kenneth Mei Yee; Wong, Stella Wing Yu; Wang, Hong; Yan, Zhen-Guang

    2012-06-01

    Since early 1980s, chemical pollution has become a serious environmental problem in rapidly developing China. This study reviewed the policy and legal framework for monitoring and management of chemical pollutants in China, with reference to the relevant experience in other jurisdictions. Although efforts in environmental monitoring of chemical contamination have been substantially increased over the last decade, China is lagging behind in terms of nationwide monitoring of chemical contamination in human population, and standardization of sampling and analytical protocols. While actively participating in various international treaties and conventions related to pollution control, China also has a very comprehensive set of environmental laws and policies. These include the newly enacted legislation on the control of new chemicals (i.e., China REACH) and the development of a set of National Environmental Standards. In addition to environmental education, these new measures will further enhance the control of chemical pollutants and facilitate effective law enforcement.

  1. Chemical composition of PM10 and PM2.5 collected at ground level and 100 meters during a strong winter-time pollution episode in Xi'an, China.

    PubMed

    Shen, Zhenxing; Cao, Junji; Liu, Suixin; Zhu, Chongshu; Wang, Xin; Zhang, Ting; Xu, Hongmei; Hu, Tafeng

    2011-11-01

    An intensive sampling of aerosol particles from ground level and 100 m was conducted during a strong pollution episode during the winter in Xi'an, China. Concentrations of water-soluble inorganic ions, carbonaceous compounds, and trace elements were determined to compare the composition of particulate matter (PM) at the two heights. PM mass concentrations were high at both stations: PM10 (PM with aerodynamic diameter < or =10 microm) exceeded the China National Air Quality Standard Class II value on three occasions, and PM2.5 (PM with aerodynamic diameter < or =2.5 microm) exceeded the daily U.S. National Ambient Air Quality Standard more than 10 times. The PM10 organic carbon (OC) and elemental carbon (EC) were slightly lower at the ground than at 100 m, both in terms of concentration and percentage of total mass, but OC and EC in PM2.5 exhibited the opposite pattern. Major ionic species, such as sulfate and nitrate, showed vertical variations similar to the carbonaceous aerosols. High sulfate concentrations indicated that coal combustion dominated the PM mass both at the ground and 100 m. Correlations between K+ and OC and EC at 100 m imply a strong influence from suburban biomass burning, whereas coal combustion and motor vehicle exhaust had a greater influence on the ground PM. Stable atmospheric conditions apparently led to the accumulation of PM, especially at 100 m, and these conditions contributed to the similarities in PM at the two elevations. Low coefficient of divergence (CD) values reflect the similarities in the composition of the aerosol between sites, but higher CDs for fine particles compared with coarse ones were consistent with the differences in emission sources between the ground and 100 m.

  2. A review of ion and metal pollutants in urban green water infrastructures.

    PubMed

    Kabir, Md Imran; Daly, Edoardo; Maggi, Federico

    2014-02-01

    In urban environments, the breakdown of chemicals and pollutants, especially ions and metal compounds, can be favoured by green water infrastructures (GWIs). The overall aim of this review is to set the basis to model GWIs using deterministic approaches in contrast to empirical ones. If a better picture of chemicals and pollutant input and an improved understanding of hydrological and biogeochemical processes affecting these pollutants were known, GWIs could be designed to efficiently retain these pollutants for site-specific meteorological patterns and pollutant load. To this end, we surveyed the existing literature to retrieve a comprehensive dataset of anions and cations, and alkaline and transition metal pollutants incoming to urban environments. Based on this survey, we assessed the pollution load and ecological risk indexes for metals. The existing literature was then surveyed to review the metal retention efficiency of GWIs, and possible biogeochemical processes related to inorganic metal compounds were proposed that could be integrated in biogeochemical models of GWIs. PMID:24184546

  3. Method for measuring pollutant formation

    NASA Technical Reports Server (NTRS)

    Annen, Kurt (Inventor); Stickler, David B. (Inventor)

    2001-01-01

    Diagnostic methods for determining an instantaneous rate of pollutant formation in a combustion system are based on measurement of chemiluminescence intensity generated simultaneously with the formation of the pollutant. The chemiluminescent signal is generated by an analog reaction which occurs in parallel with a key step in the formation of a specific pollutant of interest. The connection between the analog reaction and the pollution reaction is such that the chemiluminescent signal indicates the local, instantaneous formation rate of the pollutant of interest.

  4. Interactive effects of infectious diseases and pollution in aquatic molluscs.

    PubMed

    Morley, N J

    2010-01-21

    Aquatic molluscs are ideal invertebrate model systems for environmental monitoring and toxicology. However, like all animals, they are subjected to a wide range of infectious diseases that can have significant effects on host ecology and physiology and are therefore a source of natural stress to populations. Anthropogenic activities, especially involving chemical contaminants that pollute the environment, can also affect molluscan ecological and physiological parameters. In combination, pollution and pathogens represent a serious threat to the health of aquatic communities that has been increasingly recognised. The present article reviews the interactive effects of viral, bacterial, protozoan, and trematode infections with toxic pollutants on aquatic molluscs. The interactions between pollution and other less well studied infectious diseases as well as the differing responses to pathogens and pollution between wild and cultured molluscan populations are also considered.

  5. History of chemical sensitivity and diagnosis.

    PubMed

    Rea, William J

    2016-09-01

    Histories of mold, pollen, dust, food, chemicals, and electromagnetic field (EMF) sensitivities are the major categories of triggers for chemical sensitivity. They are tied together by the coherence phenomenon, where each has its own frequencies and identifiable EMF; therefore, they can be correlated. The diagnosis of chemical sensitivity can be done accurately in a less-polluted, controlled environment, as was done in these studies. The principles of diagnosis and treatment depend on total environmental and total body pollutant loads, masking or adaptation, bipolarity of response, and biochemical individuality, among others. These principles make less-polluted, controlled conditions necessary. The clinician has to use less-polluted water and organic food with individual challenges for testing, including dust, mold, pesticide, natural gas, formaldehyde, particulates, and EMF testing, which needs to be performed in less-polluted copper-screened rooms. The challenge tests for proof of chemical sensitivity include inhaled toxics within a clean booth that is chemical- and particulate-free at ambient doses in parts per million (ppm) or parts per billion (ppb). Individual foods, both organic and commercial (that are contaminated with herbicides and pesticides), are used orally. Water testing and intradermal testing are performed in a less-polluted, controlled environment. These include specific dose injections of molds, dust, and pollen that are preservative-free, individual organic foods, and individual chemicals, i.e. methane, ethane, propane, butane, hexane, formaldehyde, ethanol, car exhaust, jet fuel exhaust, and prosthetic implants (metal plates, pacemakers, mesh, etc.). Normal saline is used as a placebo. EMF testing is performed in a copper-screened room using a frequency generator. In our experience, 80% of the EMF-sensitive patients had chemical sensitivity when studied under less-polluted conditions for particulates, controlled natural gas, pesticides, and

  6. LINEAR MODELS FOR MANAGING SOURCES OF GROUNDWATER POLLUTION.

    USGS Publications Warehouse

    Gorelick, Steven M.; Gustafson, Sven-Ake; ,

    1984-01-01

    Mathematical models for the problem of maintaining a specified groundwater quality while permitting solute waste disposal at various facilities distributed over space are discussed. The pollutants are assumed to be chemically inert and their concentrations in the groundwater are governed by linear equations for advection and diffusion. The aim is to determine a disposal policy which maximises the total amount of pollutants released during a fixed time T while meeting the condition that the concentration everywhere is below prescribed levels.

  7. Prosperity without pollution: The prevention strategy for industry and consumers

    SciTech Connect

    Hirschhorn, J.S.; Oldenburg, K.U.

    1991-12-31

    ;Contents: Pollution prevention pays for everyone; What pollution prevention is-What waste recycling and other strategies are not; Achieving succcess by overcoming obstacles; Data tells the story-too much waste; The ozone groan-do we still have time; Harm to the farm and home from chemical pesticides; Changing consumption-reducing garbage; Household toxic products-thinking more and buying less; and No time to waste.

  8. Air pollution modifies floral scent trails

    NASA Astrophysics Data System (ADS)

    McFrederick, Quinn S.; Kathilankal, James C.; Fuentes, Jose D.

    Floral hydrocarbons provide essential signals to attract pollinators. As soon as they are emitted to the atmosphere, however, hydrocarbons are destroyed by chemical reactions involving pollutants such as ozone. It is therefore likely that increased air pollution interferes with pollinator attracting hydrocarbon signals. To test this hypothesis, a Lagrangian diffusion model was used to determine the position of air parcels away from hydrocarbon sources and to estimate the rate of chemical destruction of hydrocarbons as air parcels moved across the landscape. The hydrocarbon compounds linalool, β-myrcene, and β-ocimene were chosen because they are known to be common scents released from flowers. The suppressed ambient abundances of volatile organic compounds were determined in response to increased regional levels of ozone, hydroxyl, and nitrate radicals. The results indicate that the documented increases in air pollution concentrations, from pre-industrial to present times, can lead to reductions in volatile compound concentrations insects detect as they pollinate flowers. For highly reactive volatiles the maximum downwind distance from the source at which pollinators can detect the scents may have changed from kilometers during pre-industrial times to <200 m during the more polluted conditions of present times. The increased destruction of floral signals in polluted air masses may have important implications for both pollinators and signaling plants. When patches of flowers are further apart than the visual range of pollinators, such as in fragmented landscapes, the loss of scent signals may mean that pollinators spend more time searching for patches and less time foraging. This decrease in pollinator foraging efficiency will simultaneously decrease the pollinator's reproductive output and the amount of pollen flow in flowering plants.

  9. Pinpointing nonpoint pollution

    SciTech Connect

    Perchalski, F.R.; Higgins, J.M. )

    1988-02-01

    The Tennessee Valley Authority has employed aerial photography to map its attack on nonpoint sources of water pollution. These sources cause most of the water quality problems in the region and, unlike point sources, are difficult to locate and monitor by conventional methods. In one test, analysis of large scale aerial photographs provided the information needed to define the pollution sources and target cleanup efforts. Infrared color stereoscopic photos at a scale of 1:24,000, revealed 226 livestock operations and their surface drainage connections in a 70,000 acre watershed. Controlling nonpoint sources of water pollution will require a long term commitment. But at a cost of pennies per acre, aerial photographic methods provide an essential complement to conventional data collection techniques.

  10. Marine pollution: an overview

    NASA Astrophysics Data System (ADS)

    Valentukevičienė, Marina; Brannvall, Evelina

    2008-01-01

    This overview of marine pollution follows the methodology as proposed below. Firstly, well-known databases (Science Direct, GeoRef, SpringerLINK, etc.) on technological research were studied. All collected references were divided into 27 sections following the key words associated with marine pollution, oil spills, alien species migration, etc. The most commercially promising research and development (R & D) activities seem to be market-oriented sections: detection of oil spills at sea, containment and recovery of floating oil at sea, detection of oil spills on land, disposal of oil and debris on land, alien species migration prevention from ballast water and underwater hull cleaning in water, NOx and SOx emissions, pollutions from ship-building and repair, and biogeochemical modelling. Great market demands for commercially patented innovations are very attractive for initiating new R & D projects.

  11. Mercury pollution issues in mining districts (Armenia)

    NASA Astrophysics Data System (ADS)

    Saghatelyan, Armen; Sahakyan, Lilit; Belyaeva, Olga; Torosyan, Nver

    2015-04-01

    The issue of mercury (Hg) due to its chemical and geochemical peculiarities and a negative impact it produces on human health has a long history. Existence of international projects devoted to Hg research (AMAP Technical Background Report, 2013) and elaboration on a new convention to combat Hg pollution (http://www.mercuryconvention.org/Home/tabid/3360/Default.aspx) prove that Hg has already become a global concern. Presently, data on Armenia's area pollution with Hg available in international literature sources and reports are scarce and cover pollution sources only. According to published data (AMAP Technical Background Report, 2013), in 2009 summary emission of Hg on the entire territory of the Republic of Armenia made 222,723 kg, considerable shares of which fell on primary copper production (88,057 kg), cement production (57,094 kg), production of gold from large mines (46,728 kg), waste and other losses due to breakage and disposal in landfill (29,995 kg); besides, some quantities originated from amalgams, combustion of different-type fuel and garbage, and so on. One should mind, that these are calculated statistical data, which reflect neither a complete list of Hg pollution sources nor a realistic picture of levels of Hg pollution of different environmental compartments and risks. Local monitoring data on Hg pollution are not sufficient either. This abstract is aimed at revealing of Hg pollution problems in some of Armenia's mining regions through generalization of data on complex investigations implemented at the Center for Ecological-Noosphere Studies NAS RA between 2005 and 2011, and is focused on Hg pollution of different environmental compartments: water - atmosphere - soil - farm produce - atmospheric precipitation - human bio-substrates. The obtained data indicate that as a result of ore mining and processing Hg enters onto the surface, travels through air and water migration streams and finally brings to pollution of all environmental compartments

  12. Geographical information system (GIS) mapping of spatio-temporal pollution status of rivers in Ibadan, Nigeria.

    PubMed

    Adeyemo, Olanike K; Babalobi, Olutayo O

    2008-04-01

    More accurate spatio-temporal predictions of urban environment are needed as a basis for assessing exposures as a part of environmental studies and to inform urban protection policy and management. In this study, an information system was developed to manage the physico-chemical pollution information of Ibadan river system, Oyo State, Southwest Nigeria. The study took into account the seasonal influences of point and non-point discharges on the levels of physico-chemical parameters. The overall sensitivity of the watershed to physicochemical environmental pollution revealed that during dry season, of the 22 (100%) sample points, only 3 (13.6%) were unpolluted; 6 (27.3%) were slightly polluted; 10(45.4%) were moderately polluted; 2 (9.1%) were seriously polluted and 1 (4.5%) was exceptionally polluted. During rainy season, 3 (13.6%) were unpolluted; 7 (31.8%) were slightly polluted; 9 (40.9%) were moderately polluted; 2 (9.1%) were seriously polluted and 1 (4.5%) was exceptionally polluted. There is a considerable environmental risk associated with the present level of pollution of the Ibadan river water body on fish health and biodiversity. This research provides a basis for aquatic management and assist in policy making at national and international levels. Appropriate strategies for the control of point and non-point pollution sources, amendments and enforcement of legislation should be developed.

  13. Deposition of Atmospheric Pollutants

    NASA Astrophysics Data System (ADS)

    Malet, L. M.

    Deposition of Atmospheric Pollutants, containing the proceedings of a colloquium held at Oberursel/Taunus, FRG, November 9-11, 1981, is divided into three main parts: dry deposition; wet deposition; and deposition on plants and vegetation.The 20 articles in the volume permit a fair survey of present-day knowledge and will be a useful tool to all working on the topic. Pollution by deposition of either the dry or wet sort is very insidious; its importance only appears in the long range, when its effects are or are almost irreversible. That is why concern was so long in emerging from decision makers.

  14. Rapid guide to hazardous air pollutants

    SciTech Connect

    Beim, H.J.; Spero, J.; Theodore, L.

    1998-12-31

    Concise and easy to use, this book brings together a wealth of hard-to-gather information in one compact pocket guide. It offers--in alphabetical order--detailed profiles of the 189 elements and compounds determined to be hazardous air pollutants by the 1990 Amendments of the Clean Air Act. The profile for each pollutant includes: fundamental identification data (CAS number, molecular formula, formula weight, synonyms); uses (primarily in the manufacture of chemicals and as a component in the manufacturing process); physical properties (such as boiling point, density, vapor pressures, color); chemical properties (such as air/water reactivity, reactivity with skin or metal, flash point, heat of combustion); health risks, including toxic exposure guidelines, toxicity data, and acute and chronic risks; hazard risks (the substance`s potential for accidents, fires, explosions, corrosion, and chemical incompatibility); exposure routes tracking the activities, environment, sources, and occupations that tend to lead to exposure; regulatory status, listing the primary laws and citations of regulated chemicals; and important additional information on symptoms, first aid, firefighting methods, protective equipment, and safe storage.

  15. Recent Progress in Optical Chemical Sensors

    PubMed Central

    Qazi, Hummad Habib; Mohammad, Abu Bakar bin; Akram, Muhammad

    2012-01-01

    Optical chemical sensors have promoted escalating interest in the determination of various pollutants in the environment, which are creating toxicity and may cause serious health problems. This review paper focuses particularly on the recent progress and developments in this field; the working principles and basic classes of optical chemical sensors have been briefly described. PMID:23443392

  16. [Role of environment in complex diseases: air pollution and food contaminants].

    PubMed

    Scheen, A J; Giet, D

    2012-01-01

    Our polluted environment exposes human beings, along their life, to various toxic compounds that could trigger and aggravate different complex diseases. Such a phenomenon is well recognized for cardiovascular diseases, respiratory diseases and cancers, but other chronic inflammatory disorders may also been implicated. The most common factors, but also the most toxic, and thereby the most extensively investigated, are air pollutants (both indoor and outdoor pollution) and various contaminants present in drinking water and food (organic compounds, chemical products, heavy metals, ...). The complex interrelationships between food and pollutants, on the one hand, and between gene and environmental pollutants, including the influence of epigenetics, on the other hand, deserve further careful studies.

  17. Atlantic and indian oceans pollution in africa

    NASA Astrophysics Data System (ADS)

    Abubakar, Babagana

    Africa is the second largest and most populated continent after Asia. Geographically it is located between the Atlantic and Indian Oceans. Most of the Africa's most populated and industrialized cities are located along the coast of the continent facing the Atlantic and Indian Oceans, example of such cities include Casablanca, Dakar, Accra, Lagos, Luanda and Cape town all facing the Atlantic Ocean and cities like East London, Durban, Maputo, Dar-es-salaam and Mogadishu are all facing the Indian Ocean. As a result of the geographical locations of African Coastal Cities plus increase in their population, industries, sea port operations, petroleum exploration activities, trafficking of toxic wastes and improper waste management culture lead to the incessant increase in the pollution of the two oceans. NATURE OF POLLUTION OF THE ATLANTIC OCEAN i. The petroleum exploration activities going on along the coast of "Gulf of Guinea" region and Angola continuously causes oil spillages in the process of drilling, bunkering and discharging of petroleum products in the Atlantic Ocean. ii. The incessant degreasing of the Sea Ports "Quay Aprons" along the Coastal cities of Lagos, Luanda, Cape Town etc are continuously polluting the Atlantic Ocean with chemicals. iii. Local wastes generated from the houses located in the coastal cities are always finding their ways into the Atlantic Ocean. NATURE OF POLLUTION OF THE INDIAN OCEAN i. Unlike the Atlantic ocean where petroleum is the major pollutant, the Indian Ocean is polluted by Toxic / Radioactive waste suspected to have been coming from the developed nations as reported by the United Nations Environmental Programme after the Tsunami disaster in December 2004 especially along the coast of Somalia. ii. The degreasing of the Quay Aprons at Port Elizabeth, Maputo, Dar-es-Salaam and Mongolism Sea Ports are also another major source polluting the Indian Ocean. PROBLEMS GENERATED AS A RESULT OF THE OCEANS POLLUTION i. Recent report

  18. Pollution Measuring System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Research Ventures, Inc.'s visiplume is a portable, microprocessor-controlled air pollution monitor for measuring sulfur dioxide emissions from fossil fuel-fired power plants, and facilities that manufacture sulfuric acid. It observes smokestack plumes at a distance from the stack obviating the expense and difficulty of installing sample collectors in each stack and later analyzing the samples.

  19. Exploring Detergent Pollution

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1975-01-01

    Reviews the ecological dangers of certain types of detergents, and the action taken by government agencies and detergent manufacturers to alleviate the problem. Describes classroom activities and instructional procedures designed to illustrate detergent characteristics and the effects of detergent pollution. (MLH)

  20. Air Pollution Primer.

    ERIC Educational Resources Information Center

    National Tuberculosis and Respiratory Disease Association, New York, NY.

    As the dangers of polluted air to the health and welfare of all individuals became increasingly evident and as the complexity of the causes made responsibility for solutions even more difficult to fix, the National Tuberculosis and Respiratory Disease Association felt obligated to give greater emphasis to its clean air program. To this end they…

  1. Pollution--Who Pays?

    ERIC Educational Resources Information Center

    Ball, D. F.

    1979-01-01

    The cost of dealing with pollution and ensuring an acceptable environment must be regarded as part of the price to be paid for providing ourselves with the products of industrial activity. However, since environmental problems are relative rather than absolute, any judgment of risk needs to be balanced against the assessment of the benefit.…

  2. Exploring Noise: Sound Pollution.

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1980-01-01

    This article is the last of a three-part series dealing with sound measurement, effects, pollution, and indoor/door learning activities. This section focuses on outdoor activities and equipment that students can make to assist them in data collection. (Author/SA)

  3. Exploring Noise: Sound Pollution.

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1979-01-01

    Part one of a three-part series about noise pollution and its effects on humans. This section presents the background information for teachers who are preparing a unit on sound. The next issues will offer learning activities for measuring the effects of sound and some references. (SA)

  4. Testing for Air Pollution.

    ERIC Educational Resources Information Center

    Dunbar, Artice

    Three experiments are presented in this Science Study Aid to provide the teacher with some fundamental air pollution activities. The first experiment involved particulates, the second deals with microorganisms, and the third looks at gases in the atmosphere. Each activity outlines introductory information, objectives, materials required, procedure…

  5. Marine and Estuarine Pollution.

    ERIC Educational Resources Information Center

    Reish, Donald J.

    1978-01-01

    Presents a literature review of the effects of various pollutants on marine and estuarine organisms, covering publications of 1976-77. This review includes: (1) effects of pesticides, dredging, dumping, sludge, and petroleum hydrocarbons; and (2) diseases and tissue abnormalities. A list of 441 references is also presented. (HM)

  6. Water Pollution Control Industry

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1974

    1974-01-01

    A special report on the state of the water pollution control industry reveals that due to forthcoming federal requirements, sales and the backlogs should increase; problems may ensue because of shortages of materials and inflation. Included are reports from various individual companies. (MLB)

  7. Sulfur Dioxide Pollution Monitor.

    ERIC Educational Resources Information Center

    National Bureau of Standards (DOC), Washington, DC.

    The sulfur dioxide pollution monitor described in this document is a government-owed invention that is available for licensing. The background of the invention is outlined, and drawings of the monitor together with a detailed description of its function are provided. A sample stream of air, smokestack gas or the like is flowed through a…

  8. Pollution from pipelines

    SciTech Connect

    Not Available

    1991-01-01

    During the 1980s, over 3,900 spills from land-based pipelines released nearly 20 million gallons of oil into U.S. waters-almost twice as much as was released by the March 1989 Exxon Valdez oil spill. Although the Department of Transportation is responsible for preventing water pollution from petroleum pipelines, GAO found that it has not established a program to prevent such pollution. DOT has instead delegated this responsibility to the Coast Guard, which has a program to stop water pollution from ships, but not from pipelines. This paper reports that, in the absence of any federal program to prevent water pollution from pipelines, both the Coast Guard and the Environmental Protection Agency have taken steps to plan for and respond to oil spills, including those from pipelines, as required by the Clean Water Act. The Coast Guard cannot, however, adequately plan for or ensure a timely response to pipeline spills because it generally is unaware of specific locations and operators of pipelines.

  9. Investigating Ocean Pollution.

    ERIC Educational Resources Information Center

    LeBeau, Sue

    1998-01-01

    Describes a fifth-grade class project to investigate two major forms of ocean pollution: plastics and oil. Students work in groups and read, discuss, speculate, offer opinions, and participate in activities such as keeping a plastics journal, testing the biodegradability of plastics, and simulating oil spills. Activities culminate in…

  10. AIR POLLUTION AND HUMMINGBIRDS

    EPA Science Inventory

    A multidisciplinary team of EPA-RTP ORD pulmonary toxicologists, engineers, ecologists, and statisticians have designed a study of how ground-level ozone and other air pollutants may influence feeding activity of the ruby-throated hummingbird (Archilochus colubris). Be...

  11. Controlling Population with Pollution

    ERIC Educational Resources Information Center

    Browne, Joseph

    2010-01-01

    Population models are often discussed in algebra, calculus, and differential equations courses. In this article we will use the human population of the world as our application. After quick looks at two common models we'll investigate more deeply a model which incorporates the negative effect that accumulated pollution may have on population.

  12. Fecal Pollution of Water.

    EPA Science Inventory

    Fecal pollution of water from a health point of view is the contamination of water with disease-causing organisms (pathogens) that may inhabit the gastrointestinal tract of mammals, but with particular attention to human fecal sources as the most relevant source of human illnesse...

  13. POLLUTION PREVENTION RESEARCH STRATEGY

    EPA Science Inventory

    One of the strategic goals of the U.S. Environmental Protection Agency (EPA) is to prevent pollution and reduce risk in communities, homes, workplaces, and ecosystems. This goal must be based in large part on the application of the best available science and technology associat...

  14. Fecal Pollution of Water

    EPA Science Inventory

    Fecal pollution of water from a health point of view is the contamination of water with disease-causing organisms (pathogens) that may inhabit the gastrointestinal tract of mammals, but with particular attention to human fecal sources as the most relevant source of human illnesse...

  15. Measuring River Pollution

    ERIC Educational Resources Information Center

    Ayyavoo, Gabriel

    2004-01-01

    The Don River watershed is located within Canada's most highly urbanized area--metropolitan Toronto. Many residential and commercial uses, including alterations to the river's course with bridges, have had a significant impact on the Don's fauna and flora. Pollutants have degraded the river's water quality, a situation exacerbated by the…

  16. Noise pollution resources compendium

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

  17. China's international trade and air pollution: 2000 - 2009

    NASA Astrophysics Data System (ADS)

    Yan, Y.; Ni, R.; Lin, J.; Pan, D.; Wang, J.; Zhang, Q.

    2015-12-01

    As the world's top trading country, China is now one of the most polluted regions worldwide. Much attention has been paid to the global impacts of Chinese pollution via atmospheric transport processes. However, a large portion of pollution produced in China is associated with its production of goods for foreign consumption via international trade. International trade allows for separation of regions producing and consuming the products, altering the spatial distribution of associated emissions and leading to substantial changes in regional air pollution and global transport. Along with China's rapid economic growth in recent years, its economic-trade structure and volume has been changing all the time, resulting in large changes in total emissions and the shares of trade-related emissions. Our previous work has shown considerable variability in the contributions of export-related emissions to Chinese total emissions from 2000 to 2009. Here, we attempt to assess the influence of China's changing total and export-related emissions between 2000 and 2009 on its atmospheric pollution loadings and global impacts, by exploiting simulations of a global chemical transport model. Given the distinctive contributions of different economic sectors to pollutant emissions, we also attempt to investigate the sectoral contributions to pollution loadings and transport. Our study will help understand the role of international trade in the trends and variability of Chinese pollution.

  18. Australians are not equally protected from industrial air pollution

    NASA Astrophysics Data System (ADS)

    Dobbie, B.; Green, D.

    2015-05-01

    Australian air pollution standards are set at national and state levels for a number of chemicals harmful to human health. However, these standards do not need to be met when ad hoc pollution licences are issued by state environment agencies. This situation results in a highly unequal distribution of air pollution between towns and cities, and across the country. This paper examines these pollution regulations through two case studies, specifically considering the ability of the regulatory regime to protect human health from lead and sulphur dioxide pollution in the communities located around smelters. It also considers how the proposed National Clean Air Agreement, once enacted, might serve to reduce this pollution equity problem. Through the case studies we show that there are at least three discrete concerns relating to the current licencing system. They are: non-onerous emission thresholds for polluting industry; temporal averaging thresholds masking emission spikes; and ineffective penalties for breaching licence agreements. In conclusion, we propose a set of new, legally-binding national minimum standards for industrial air pollutants must be developed and enforced, which can only be modified by more (not less) stringent state licence arrangements.

  19. Plants as bioassay systems for monitoring atmospheric pollutants

    PubMed Central

    Feder, William A.

    1978-01-01

    Plant species act as natural bioindicators of atmospheric pollutants. Plants can be used as bioassay systems for monitoring atmospheric pollutants. Plant injury symptoms, altered growth and reproductive pattern, changes in yield and/or productivity, and changes in species distribution can be used singly or in combination as monitoring devices. The results must be accepted as semiquantitative, but within that constraint, air quality can be sufficiently well defined to enable the setting of air quality standards. Genetic variability of higher plant species has yielded cultivars which display a range of tolerance to gaseous and particulate atmospheric pollutants. Asexual propagation of these cultivars provides pollutant-sensitive and pollutant-tolerant plant material which can be grown on selected sites for observation. Gymnosperm and Angiosperm species as well as species of lichens and mosses have been used to establish field monitoring networks in Europe, Canada, and the United States. White pine, shade tobacco, mosses, and lichens have proven particularly useful as bioassay tools. Pollen from pollutant-sensitive and pollutant-tolerant plant cultivars has also been used as a sensitive laboratory bioassay tool for studying air quality. Epiphytic mosses are particularly efficient as monitors of particulate pollutants, especially heavy metals, some of which may act as chemical mutagens. The cost, complexity, and lack of reliability of instrumented systems for air quality monitoring make imperative the need to develop successful plant bioassay systems for monitoring air quality. PMID:738233

  20. Impact of estuarine pollution on birds

    USGS Publications Warehouse

    Blus, L.J.; Wiemeyer, Stanley N.; Kerwin, J.A.; Stendell, R.C.; Ohlendorf, H.M.; Stickel, L.F.

    1977-01-01

    Pollution of estuaries affects bird populations indirectly through changes in habitat and food supply. The multi-factor pollution of Chesapeake Bay has resulted in diminution of submerged aquatic plants and consequent change in food habits of the canvasback duck. Although dredge-spoil operations can improve wildlife habitat, they often result in its demise. Pollution of estuaries also affects birds directly, through chemical toxication, which may result in outright mortality or in reproductive impairment. Lead from industrial sources and roadways enters the estuaries and is accumulated in tissues of birds. Lead pellets deposited in estuaries as a result of hunting are consumed by ducks with sufficient frequency .to result m large annual die-offs from lead poisoning. Fish in certain areas, usually near industrial sources, may contain levels of mercury high enough to be hazardous to birds that consume them. Other heavy metals are present in estuarine birds, but their significance is poorly known. Oil exerts lethal or sublethal effects on birds by oiling their feathers, oiling eggs and young by contaminated parents, and by ingestion of oil-contaminated food. Organochlorine chemicals, of both agricultural and industrial origin, travel through the food chains and reach harmful levels in susceptible species of birds in certain estuarine ecosystems. Both outright mortality and reproductive impairment have occurred.