Science.gov

Sample records for early-cluster chemical pollution

  1. Microorganisms and Chemical Pollution

    ERIC Educational Resources Information Center

    Alexander, M.

    1973-01-01

    Discusses the importance of microorganisms in chemical pollution and pollution abatement. Selected chemical pollutants are chosen to illustrate that microorganisms synthesize hazardous substances from reasonably innocuous precursors, while others act as excellent environmental decontaminating agents by removing undesirable natural and synthetic…

  2. Microorganisms and Chemical Pollution

    ERIC Educational Resources Information Center

    Alexander, M.

    1973-01-01

    Discusses the importance of microorganisms in chemical pollution and pollution abatement. Selected chemical pollutants are chosen to illustrate that microorganisms synthesize hazardous substances from reasonably innocuous precursors, while others act as excellent environmental decontaminating agents by removing undesirable natural and synthetic…

  3. Chemical Pollution from Transportation Vehicles

    PubMed Central

    Starkman, Ernest S.

    1969-01-01

    Recent publicity on electrically powered vehicles notwithstanding, the gasoline engine will probably be the principal power plant for passenger cars for at least the next decade. Chemical pollutants discharged by the gasoline engine are now under partial control. Motor cars of 1968 and 1969 model discharge only about 30 percent as much carbon monoxide and unburned hydrocarbons as do older models. In theory, carbon monoxide, unburned hydrocarbons and oxides of nitrogen ultimately can be completely removed from gasoline engine exhaust. In order to accomplish this it would be necessary to modify cars to operate satisfactorily on a lean mixture and perhaps to use a catalyst in the exhaust system. Present designs of gas turbines for aircraft and for future projected application to ground vehicles yield pollutants (except for smoke) at levels below those of gasoline engines for a decade to come. It has also been shown possible to eliminate smoke as well as odor from the gas turbine. Thus with proper effort it is feasible to reduce pollution of the atmosphere due to transportation to an acceptable level, even if electrically or alternatively powered vehicles cannot be developed for a decade. PMID:4183827

  4. Exploring the planetary boundary for chemical pollution.

    PubMed

    Diamond, Miriam L; de Wit, Cynthia A; Molander, Sverker; Scheringer, Martin; Backhaus, Thomas; Lohmann, Rainer; Arvidsson, Rickard; Bergman, Åke; Hauschild, Michael; Holoubek, Ivan; Persson, Linn; Suzuki, Noriyuki; Vighi, Marco; Zetzsch, Cornelius

    2015-05-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social

  5. Chemical air pollutants and otorhinolaryngeal toxicity

    SciTech Connect

    Bisesi, M.S.; Rubin, A.M. . Occupational Health and Otolaryngology)

    1994-03-01

    Air pollution and the specific issue regarding the impact of airborne chemical agents to human health are familiar topics to most members of the environmental health science and environmental medicine communities. Some aspects, however, have received relatively less attention. Much has been published regarding the impact of air pollutants on the human upper and lower respiratory system, including interaction with the rhinologic (nasal) system. Relatively fewer data have been published, however, regarding the potential impact of air pollutants in reference specifically to the otologic (auditory and vestibular) and the laryngeal (larynx) system. Adverse impact to the ears, nose and throat, referred to as the otorhinolaryngeal system'', warrants attention as an important environmental health issue. Toxic interactions from exposure to many chemical air pollutants not only causes potential respiratory irritation and lung disease, but can also result in impaired hearing, balance, sense of smell, taste, and speech due to interaction with related target systems. This may be significant to environmental health risk assessment of chemical air pollutants if multi-target site models are considered.

  6. [Chemical pollution and breast milk: Taking positions].

    PubMed

    Díaz-Gómez, N M; Ares, S; Hernández-Aguilar, M T; Ortega-García, J A; Paricio-Talayero, J M; Landa-Rivera, L

    2013-12-01

    Chemical pollution affects all ecosystems of our planet. Human milk has been used as a biomarker of environmental pollution as, due to bioaccumulation processes in fat tissue, many chemical compounds reach measurable concentrations that can be readily tested in breast milk. Quite frequently information about the presence of contaminants in breast milk appears in the media, leading to misunderstanding among parents and health professionals, and in some cases breastfeeding the child is stopped. In this article, the Breastfeeding Committee of the Spanish Association of Paediatrics stresses the importance of promoting breastfeeding as the healthiest option, because its benefits clearly outweigh any health risks associated with chemical contaminants in breast milk. Breast milk contains protective factors that counteract the potential effects related to prenatal exposure to environmental pollutants. This article summarises the key recommendations to reduce the level of chemical contaminants in breast milk. It also highlights the importance of government involvement in the development of programs to eliminate or reduce chemical contamination of food and the environment. In this way, the negative effects on child health resulting from exposure to these toxic compounds through the placenta and breast milk may be prevented.

  7. A POLLUTION REDUCTION METHODOLOGY FOR CHEMICAL PROCESS SIMULATORS

    EPA Science Inventory

    A pollution minimization methodology was developed for chemical process design using computer simulation. It is based on a pollution balance that at steady state is used to define a pollution index with units of mass of pollution per mass of products. The pollution balance has be...

  8. A POLLUTION REDUCTION METHODOLOGY FOR CHEMICAL PROCESS SIMULATORS

    EPA Science Inventory

    A pollution minimization methodology was developed for chemical process design using computer simulation. It is based on a pollution balance that at steady state is used to define a pollution index with units of mass of pollution per mass of products. The pollution balance has be...

  9. Chemical Biomarkers of Human Breast Milk Pollution

    PubMed Central

    Massart, Francesco; Gherarducci, Giulia; Marchi, Benedetta; Saggese, Giuseppe

    2008-01-01

    Human milk is, without question, the best source of nutrition for infants containing the optimal balance of fats, carbohydrates and proteins for developing babies. Breastfeeding provides a range of benefits for growth, immunity and development building a powerful bond between mother and her child. Recognition of the manifold benefits of breast milk has led to the adoption of breast-feeding policies by numerous health and professional organizations such as the World Health Organization and American Academy of Pediatrics. In industrially developed as well as in developing nations, human milk contamination by toxic chemicals such as heavy metals, dioxins and organohalogen compounds, however, is widespread and is the consequence of decades of inadequately controlled pollution. Through breastfeeding, the mother may transfer to the suckling infant potentially toxic chemicals to which the mother has previously been exposed. In the present review, environmental exposure, acquisition and current levels of old and emerging classes of breast milk pollutants are systematically presented. Although scientific evidences indicated that the advantages of breast-feeding outweigh any risks from contaminants, it is important to identify contaminant trends, to locate disproportionately exposed populations, and to take public health measures to improve chemical BM pollution as possible. PMID:19578503

  10. Protection of plants against air pollutants: Role of chemical protectants

    SciTech Connect

    Pandey, J.; Agrawal, M. )

    1993-03-01

    The protection of plants against air pollution damage can best be achieved either by developing pollution-tolerant cultivars or by using chemical protectants. Use of chemical protectants such as pesticides, growth regulators, anti-oxidants, fertilizers, etc. is a short-term solution to reduce the risk of air pollution damage. In addition, these protectants help in understanding the mechanism of air pollution toxicity and provide a scientific basis for assessing crop losses in field conditions. 95 refs.

  11. Latin American protected areas: Protected from chemical pollution?

    PubMed

    Rodríguez-Jorquera, Ignacio A; Siroski, Pablo; Espejo, Winfred; Nimptsch, Jorge; Choueri, Paloma Gusso; Choueri, Rodrigo Brasil; Moraga, Claudio A; Mora, Miguel; Toor, Gurpal S

    2017-03-01

    Protected areas (PAs) are critically important means to preserve species and maintain natural ecosystems. However, the potential impacts of chemical pollution on PAs are seldom mentioned in the scientific literature. Research on the extent of the occurrence of chemical pollution inside PAs and in-depth assessments of how chemical contaminants may adversely affect the maintenance of species abundance, species survival, and ecosystem functions are scarce to nonexistent. We investigated 1) the occurrence of chemical contaminants inside 119 PAs in Latin America from publically available databases, and 2) reviewed case studies of chemical contaminants and pollution in 4 Latin American PAs. Cases of chemical pollution and contamination inside Latin American PAs mostly originated from sources such as mining, oil, and gas extraction. To date, the focus of the research on chemical pollution research inside Latin American PAs has been primarily on the detection of contamination, typically limited to trace metals. Where management actions have occurred, they have been reactive rather than proactive. Protected areas established in wetlands are the most affected by chemical pollution. Based on the information from the pollution and/or contamination occurrence and the case studies analyzed, Latin American PAs are not well safeguarded from chemical pollution, resulting in both challenges and opportunities to conserve biodiversity and ecosystems. Integr Environ Assess Manag 2017;13:360-370. © 2016 SETAC. © 2016 SETAC.

  12. A pollution reduction methodology for chemical process simulators

    SciTech Connect

    Mallick, S.K.; Cabezas, H.; Bare, J.C.; Sikdar, S.K.

    1996-11-01

    A pollution minimization methodology was developed for chemical process design using computer simulation. It is based on a pollution balance that at steady state is used to define a pollution index with units of mass of pollution per mass of products. The pollution balance has been modified by weighing the mass flowrate of each pollutant by its potential environmental impact score. This converts the mass balance into an environmental impact balance. This balance defines an impact index with units of environmental impact per mass of products. The impact index measures the potential environmental effects of process wastes. Three different schemes for chemical ranking were considered: (1) no ranking, (2) simple ranking from 0 to 3, and (3) ranking by a scientifically derived measure of human health and environmental effects. Use of the methodology is illustrated with two examples from the production of (1) methyl ethyl ketone and (2) synthetic ammonia.

  13. SYSTEMS CHEMICAL ANALYSIS OF PETROLEUM POLLUTANTS

    EPA Science Inventory

    The application of an established mathematical treatment useful for the characterization and identification of petroleum pollutants is described. Using discriminant analysis of relevant infrared spectrophotometric data, 99% of numerous known and unknown oil samples have been corr...

  14. Sheep dip chemicals and water pollution.

    PubMed

    Virtue, W A; Clayton, J W

    1997-02-24

    The Tweed River Purification Board's objective of reducing the numbers and significance of water pollution incidents by a proactive approach based on persuasion and education is described. This has consisted of prioritising potential pollutant sources which have then been investigated in detail followed by discussion and agreement with dischargers as to remedial measures. The paper describes in detail the Board's investigation of pollution from the organophosphate (OP) sheep dips, Diazinon and Propetamphos, and their effects on surface waters throughout its area. Examination of historical incidents and a preliminary survey of sheep farms in the Ettrick Water catchment in 1989 confirmed the potential for serious pollution. Comparison of OP concentrations in the Ettrick with strategic sites throughout the catchment confirmed the widespread nature of the problem and led to visits to every sheep farmer in the Board's area in 1990 and 1991, when 795 dippers were investigated. The study involved risk assessments of the location of dippers and the spent dip disposal practice which confirmed that poor siting, inadequate disposal and particularly poor management of the dipping operation were responsible for the pollution problems observed. Practical advice on the management of dipping and disposal of spent dip was given individually to farmers. The success of the project in reducing pollution is reflected in a significant and sustained reduction in OP concentrations in environmental samples. The future of ectoparasitic treatments for sheep, the potential for antidotes to spent sheep dip and legal obligations relating to its safe disposal is also considered.

  15. Linking chemical contamination to biological effects in coastal pollution monitoring.

    PubMed

    Beiras, Ricardo; Durán, Iria; Parra, Santiago; Urrutia, Miren B; Besada, Victoria; Bellas, Juan; Viñas, Lucía; Sánchez-Marín, Paula; González-Quijano, Amelia; Franco, María A; Nieto, Óscar; González, Juan J

    2012-01-01

    To establish the connection between pollutant levels and their harmful effects on living resources, coastal monitoring programmes have incorporated biological tools, such as the scope for growth (SFG) in marine mussels and benthic macrofauna community indices. Although the relation between oxygen-depleting anthropogenic inputs and the alteration of benthic communities is well described, the effects of chemical pollutants are unknown because they are not expected to favour any particular taxa. In this study, the combined efforts of five research teams involved in the investigative monitoring of marine pollution allowed the generation of a multiyear data set for Ría de Vigo (NW Iberian Peninsula). Multivariate analysis of these data allowed the identification of the chemical-matrix combinations responsible for most of the variability among sites and the construction of a chemical pollution index (CPI) that significantly (P < 0.01) correlated with biological effects at both the individual and the community levels. We report a consistent reduction in the physiological fitness of local populations of mussels as chemical pollution increases. The energy balance was more sensitive to pollution than individual physiological rates, but the reduction in the SFG was primarily due to significantly decreased clearance rates. We also found a decrease in benthic macrofauna diversity as chemical pollution increases. This diversity reduction resulted not from altered evenness, as the classic paradigm might suggest, but from a loss of species richness.

  16. Method for detecting pollutants. [through chemical reactions and heat treatment

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Richards, R. R.; Conway, E. J. (Inventor)

    1976-01-01

    A method is described for detecting and measuring trace amounts of pollutants of the group consisting of ozone, nitrogen dioxide, and carbon monoxide in a gaseous environment. A sample organic solid material that will undergo a chemical reaction with the test pollutant is exposed to the test environment and thereafter, when heated in the temperature range of 100-200 C., undergoes chemiluminescence that is measured and recorded as a function of concentration of the test pollutant. The chemiluminescence of the solid organic material is specific to the pollutant being tested.

  17. Chemical pollution, respiratory allergy and asthma: a perspective.

    PubMed

    Evans, Gareth S; Cadogan, David; Flueckiger, Andreas; Hennes, Christa; Kimber, Ian

    2008-01-01

    The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) convened a workshop in June 2005 to address the speculation that exposure to specific chemicals, and/or chemical pollutants in general, may play an important role in the increased prevalence of allergy and asthma in 'westernized' societies. This paper summarises one perspective arrived at during this workshop. It was acknowledged that certain chemicals and certain types of pollution might trigger or exacerbate asthmatic reactions in sensitised subjects. However, overall levels of pollution appear not to have had a major impact upon the prevalence of atopic allergy. Epidemiological studies suggest that pollution may in some circumstances protect from acquisition of sensitisation. Increasing exposure to household chemicals may enhance pre-existing allergies, but evidence for their causation of allergy is lacking. Other risk factors considered included societal dietary changes and exposure to endotoxins. Future research needs were identified which included epidemiological studies employing exposure and biomonitoring data, studies on domestic exposure to chemicals and their association with the incidence of allergy and asthma, and prospective birth cohort studies employing well-defined aspects of lifestyle, diet, chemical and endotoxin exposure as factors that may drive susceptibility to allergy and asthma.

  18. Definition and applications of a versatile chemical pollution footprint methodology.

    PubMed

    Zijp, Michiel C; Posthuma, Leo; van de Meent, Dik

    2014-09-16

    Because of the great variety in behavior and modes of action of chemicals, impact assessment of multiple substances is complex, as is the communication of its results. Given calls for cumulative impact assessments, we developed a methodology that is aimed at expressing the expected cumulative impacts of mixtures of chemicals on aquatic ecosystems for a region and subsequently allows to present these results as a chemical pollution footprint, in short: a chemical footprint. Setting and using a boundary for chemical pollution is part of the methodology. Two case studies were executed to test and illustrate the methodology. The first case illustrates that the production and use of organic substances in Europe, judged with the European water volume, stays within the currently set policy boundaries for chemical pollution. The second case shows that the use of pesticides in Northwestern Europe, judged with the regional water volume, has exceeded the set boundaries, while showing a declining trend over time. The impact of mixtures of substances in the environment could be expressed as a chemical footprint, and the relative contribution of substances to that footprint could be evaluated. These features are a novel type of information to support risk management, by helping prioritization of management among chemicals and environmental compartments.

  19. Heavy metal pollutants and chemical ecology: exploring new frontiers.

    PubMed

    Boyd, Robert S

    2010-01-01

    Heavy metals are an important class of pollutants with both lethal and sublethal effects on organisms. The latter are receiving increased attention, as these may have harmful ecological outcomes. For example, recent explorations of heavy metals in freshwater habitats reveal that they can modify chemical communication between individuals, resulting in "info-disruption" that can impact ecological relationships within and between species. Info-disruption can affect animal behavior and social structure, which in turn can modify both intraspecies and interspecies interactions. In terrestrial habitats, info-disruption by metals is not well studied, but recent demonstrations of chemical signaling between plants via both roots and volatile organic molecules provide potential opportunities for info-disruption. Metals in terrestrial habitats also can form elemental plant defenses, in which they can defend a plant against natural enemies. For example, hyperaccumulation of metals by terrestrial plants has been shown to provide defensive benefits, although in almost all known cases the metals are not anthropogenic pollutants but are naturally present in soils inhabited by these plants. Info-disruption among microbes is another arena in which metal pollutants may have ecological effects, as recent discoveries regarding quorum sensing in bacteria provide an avenue for metals to affect interactions among bacteria or between bacteria and other organisms. Metal pollutants also may influence immune responses of organisms, and thus affect pathogen/host relationships. Immunomodulation (modification of immune system function) has been tied to some metal pollutants, although specific metals may boost or reduce immune system function depending on dose. Finally, the study of metal pollutants is complicated by their frequent occurrence as mixtures, either with other metals or with organic pollutants. Most studies of metal pollutants focus on single metals and therefore oversimplify complex

  20. Environmental Pollution, Toxicity Profile and Treatment Approaches for Tannery Wastewater and Its Chemical Pollutants.

    PubMed

    Saxena, Gaurav; Chandra, Ram; Bharagava, Ram Naresh

    Leather industries are key contributors in the economy of many developing countries, but unfortunately they are facing serious challenges from the public and governments due to the associated environmental pollution. There is a public outcry against the industry due to the discharge of potentially toxic wastewater having alkaline pH, dark brown colour, unpleasant odour, high biological and chemical oxygen demand, total dissolved solids and a mixture of organic and inorganic pollutants. Various environment protection agencies have prioritized several chemicals as hazardous and restricted their use in leather processing however; many of these chemicals are used and discharged in wastewater. Therefore, it is imperative to adequately treat/detoxify the tannery wastewater for environmental safety. This paper provides a detail review on the environmental pollution and toxicity profile of tannery wastewater and chemicals. Furthermore, the status and advances in the existing treatment approaches used for the treatment and/or detoxification of tannery wastewater at both laboratory and pilot/industrial scale have been reviewed. In addition, the emerging treatment approaches alone or in combination with biological treatment approaches have also been considered. Moreover, the limitations of existing and emerging treatment approaches have been summarized and potential areas for further investigations have been discussed. In addition, the clean technologies for waste minimization, control and management are also discussed. Finally, the international legislation scenario on discharge limits for tannery wastewater and chemicals has also been discussed country wise with discharge standards for pollution prevention due to tannery wastewater.

  1. New TRI data shows chemical industry remains top toxic polluter

    SciTech Connect

    Begley, R.; Rotman, D.

    1993-06-02

    Despite continued declines in emissions, the latest Toxics Release Inventory (TRI) data from the Environmental Protection Agency show the chemical industry was by far the largest emitter of toxic pollutants in 1991. DuPont headed the list of polluting companies, releasing a whopping 243 million lbs of toxic chemical-almost 100 million lbs more than number two Freeport-McMoRan. Releasing 1.55 billion lbs of toxics in 1991, chemical producers are trailed distantly by primary metals at 433 million lbs and paper manufacturing at 242 million lbs. total TRI air releases for all industries declined 13% because of reductions in industrial solvent, chlorine, and ammonia. Water releases rose 24%, primarily because of runoff from four fertilizer plants in Louisiana; and land releases dropped 9% because of decreases in phosphoric acid and metal compounds. The top three states for TRI releases are Lousiana, with 459 million lbs; Texas, with 411 million lbs; and Tennessee, with 215 million lbs.

  2. Combined chemical-biological treatment of wastewater containing refractory pollutants.

    PubMed

    Jeworski, M; Heinzle, E

    2000-01-01

    Biological processes are usually most efficient for degrading pollutants occurring in wastewater. Refractory and toxic compounds contained limit their applicability. In such cases combinations with chemical oxidation processes may improve the overall efficiency and efficacy. Most suitable oxidation processes for combination with biological treatment are wet air oxidation, ozonation, hydrogen peroxide treatment and other advanced oxidation processes. Most effective are OH-radicals produced in all these oxidation processes. Chemical oxidation produces intermediates with usually improved biodegradability. Process combinations may be serial or with recycling between chemical oxidation and biological treatment. Design criteria, control of combined processes and recent applications are reviewed.

  3. 75 FR 77799 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... AGENCY 40 CFR Part 63 National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing... Hazardous Air Pollutants for Chemical Manufacturing Area Sources. Among the provisions that EPA is... Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources on October 29, 2009. 40 CFR...

  4. Chemical climatology of air pollutants at Pico Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Owen, R. C.; Perlinger, J. A.; Val Martin, M.; Fialho, P. J.; Mazzoleni, L. R.

    2013-12-01

    Pico Mountain Observatory (PMO) was established in 2001 on top of Pico Mountain (38.47°N, 28.40°W, 2,225 m a.s.l.) in the Azores Islands. PMO frequently samples free troposphere air over the Central North Atlantic. Long-range transport from neighboring continents impacts the concentration of air pollutants at PMO, but North American outflows have the most frequent influence due to predominantly westerly wind in mid-latitude regions of the Northern Hemisphere. This study summarizes observations of gases and aerosol since the station was established and combines transport patterns simulated by FLEXPART with observations to investigate chemical signatures of transport patterns. As the first step, FLEXPART backward retroplumes released from PMO will be created for the periods covered by our observation datasets. These results will be used to determine and classify sources of the transported air for long time periods. Seasonal variations in sources and transport pathways will be examined. This information is critical to understand variations in air pollutant observations at PMO, because sources and transport trajectories define age and composition of air plumes that arrive at PMO. In the second step, transport associated with certain chemical signatures, e.g., elevated ozone combined with depressed CO, will be extracted, and transport patterns will be identified for each classified chemical signature. The analysis will reveal correlations between transport patterns and elevation of air pollutants at PMO, which will help to understand measurement datasets of multiple air pollutants. Impacts of anthropogenic and biomass burning emissions on CO concentration at PMO will also be determined through multiplying retroplumes with emission inventories. Long-term trends in impacts from both sources will be examined to find potential correlations with recently implemented air quality regulations, occurrence of wildfires, and global climate change.

  5. Chemical pollution of the environment: past, present and future.

    PubMed

    Hoffmann, M R

    1993-01-01

    In an era of 'global environmental change' people are concerned about emissions of CO2, CH4, N2O and chlorofluorocarbons (CFCs) to the atmosphere because of their direct impact on global warming and their stratospheric ozone-depleting effects. Unprecedented efforts have been made to reduce the global emissions of CFCs. Major industries, which are competing within the modern global economy, have recognized the importance of maintaining a 'green' perspective. Future operations will be designed to reduce the direct emissions of chemical by-products to air, water and soil, and to recycle and to reuse critical solvents such as water. 'Star Wars' technologies for the rapid, economical and effective elimination of industrial and domestic wastes will be developed and employed on a large scale. Advanced technologies for the control and monitoring of chemical pollutants on regional and global scales will be developed and implemented. Satellite-based instruments will be able to detect, to quantify, and to monitor a wide range of chemical pollutants. Our understanding of the fate and consequences of chemicals in the environment will increase dramatically such that we shall be able to predict the environmental, ecological and biochemical consequences of novel synthetic molecules with much greater precision.

  6. Pollution assessment software as chemical industry process simulator enhancements

    SciTech Connect

    Shonnard, D.R.; Herlevich, J. Jr.; Parikh, P.

    1996-12-31

    Commercial process flowsheet simulators (PFS) have evolved to an advanced state and provide sophisticated unit process simulation and vital material and energy balance parameters. The PFS can estimate process stream conditions and equipment capacities and costs and it essentially defines the chemical process itself. A deficiency of PFS is their inability to incorporate environmental considerations into process optimization calculations. As a result, information as to environmental impacts and pollution control costs are not available to the design engineer, and often the optimum process design, from both economic and environmental standpoints, may not be obtained. Commercial process simulator enhancement software, whose goals are to provide environmental, safety, regulatory, and economic indices to the process design engineer as well as pollution prevention heuristic guidance, can overcome many of these obstacles to clean chemical process design. The purpose of this paper is to present an overview of a new set of pollution assessment software tools being developed to provide indices to the process design engineer during flowsheet synthesis. The capabilities of each of these tools will be highlighted by applying them in a coupled fashion with process flowsheet simulator information to a case study involving power and process heat co-generation design options. 19 refs., 1 fig., 3 tabs.

  7. The Automobile and Air Pollution: A Chemical Review of the Problem

    ERIC Educational Resources Information Center

    Wildeman, Thomas R.

    1974-01-01

    Summarizes chemical principles underlying the operation of automobiles and the cause of air pollution, including concentrations of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen. Comments and opinions are made concerning present and future pollution control devices. (CC)

  8. The Automobile and Air Pollution: A Chemical Review of the Problem

    ERIC Educational Resources Information Center

    Wildeman, Thomas R.

    1974-01-01

    Summarizes chemical principles underlying the operation of automobiles and the cause of air pollution, including concentrations of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen. Comments and opinions are made concerning present and future pollution control devices. (CC)

  9. [Asthma and household chemical pollutants (with the exception of tobacco)].

    PubMed

    Krieger, P; de Blay, F; Pauli, G; Kopferschmitt, M C

    1998-02-01

    The relationship between allergens in a domestic environment and asthma has been extensively studied and it is only recently that studies have suggested the possibility of the role of chemical pollutants in the internal environment in the genesis of asthma. The pollutants studied are oxides of nitrogen (nitrogen dioxide NO2), volatile organic components (COV), formaldehyde, ozone (O3) and sulphur dioxide (SO2). The level of nitrogen dioxide in the interior of houses may be greater than those met outside. Normal values are 400 mcg per metre3 per hour and 150 mcg per metre3 in twenty four hours. In asthmatics challenge test to nitrogen dioxide and epidemiological studies suggest that internal nitrogen dioxide is capable of provoking asthmatic crises either by a direct pollutant effect or by potentialising the allergenic crises either by a direct pollutant effect or by potentialising the allergenic response of the bronchi. COV and formaldehyde are liberated by urea formaldehyde foams and by chipboard furniture. The levels of COV and formaldehyde inside a house may be up to 10 times higher than those outside. COV and formaldehyde perhaps would have an effect on the bronchi in asthmatics at significant levels which are rarely found in the domestic environment. Ozone is an external pollutant. However, from 5-80% of the external concentrations may be found inside some locations. Thus, in certain conditions which are relatively rare, the interior concentrations of dwelling places may attain levels which are capable of inducing, in healthy subjects who are sensitive to ozone, a drop in the FEV1. As regards asthmatics, only experimental work has been able to show any bronchospastic effect of ozone, either by a direct effect on the bronchi or by the potentiation of a bronchial response to allergens. It would be convenient to perform some epidemiological studies to determine if there is a relationship between exposure to ozone internally and to bronchial changes. The

  10. Tapered optical fiber sensor for chemical pollutants detection in seawater

    NASA Astrophysics Data System (ADS)

    Irigoyen, Maite; Sánchez-Martin, Jose Antonio; Bernabeu, Eusebio; Zamora, Alba

    2017-04-01

    Three tapered silica optical fibers, uncoated and coated with metallic (Al or Cu) and dielectric layers (TiO2), are employed to determine the presence of oil and Hazardous and Noxious Substances (HNS from now on) in water, by means of the measurement of their spectral transmittance. With our experimental assembly, the presence of oil and HNS spills can be detected employing the three different kinds of tapers, since the complete range of refractive indices of the pollutants (1.329-1.501) is covered with these tapers. The most suitable spectral range to detect the presence of a chemical pollutant in seawater has been identified and a complete spectral characterization of the three types of optical fiber tapers has been carried out. The results obtained show that, in general terms, these devices working together can be employed for the early detection of oil and HNS spills in seawater in a marine industrial environment. These sensors have many advantages, such as its low cost, its simplicity and versatility (with interesting properties as quick response and repeatability), and especially that they can be self-cleaned with seawater in motion.

  11. Chemical footprint: a methodological framework for bridging life cycle assessment and planetary boundaries for chemical pollution.

    PubMed

    Sala, Serenella; Goralczyk, Malgorzata

    2013-10-01

    The development and use of footprint methodologies for environmental assessment are increasingly important for both the scientific and political communities. Starting from the ecological footprint, developed at the beginning of the 1990s, several other footprints were defined, e.g., carbon and water footprint. These footprints-even though based on a different meaning of "footprint"-integrate life cycle thinking, and focus on some challenging environmental impacts including resource consumption, CO2 emission leading to climate change, and water consumption. However, they usually neglect relevant sources of impacts, as those related to the production and use of chemicals. This article presents and discusses the need and relevance of developing a methodology for assessing the chemical footprint, coupling a life cycle-based approach with methodologies developed in other contexts, such as ERA and sustainability science. Furthermore, different concepts underpin existing footprint and this could be the case also of chemical footprint. At least 2 different approaches and steps to chemical footprint could be envisaged, applicable at the micro- as well as at the meso- and macroscale. The first step (step 1) is related to the account of chemicals use and emissions along the life cycle of a product, sector, or entire economy, to assess potential impacts on ecosystems and human health. The second step (step 2) aims at assessing to which extent actual emission of chemicals harm the ecosystems above their capability to recover (carrying capacity of the system). The latter step might contribute to the wide discussion on planetary boundaries for chemical pollution: the thresholds that should not be surpassed to guarantee a sustainable use of chemicals from an environmental safety perspective. The definition of what the planetary boundaries for chemical pollution are and how the boundaries should be identified is an on-going scientific challenge for ecotoxicology and ecology. In

  12. 40 CFR 1.43 - Office of Chemical Safety and Pollution Prevention.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Prevention. 1.43 Section 1.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters § 1.43 Office of Chemical Safety and Pollution Prevention. The Assistant Administrator, Office of Chemical Safety and Pollution Prevention (OCSPP), serves as...

  13. 77 FR 65135 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-25

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 63 RIN 2060-AQ89 National Emission Standards for Hazardous Air Pollutants for Chemical... provisions in the final National Emission Standards for Hazardous Air Pollutants for Chemical...

  14. Strategies for emission reduction of air pollutants produced from a chemical plant.

    PubMed

    Lee, Byeong-Kyu; Cho, Sung-Woong

    2003-01-01

    Various air pollution control (APC) techniques were employed in order to reduce emissions of air pollutants produced from chemical plants, which have many different chemical production facilities. For an emission reduction of acid gases, this study employed a method to improve solubility of pollutants by decreasing the operating temperature of the scrubbers, increasing the surface area for effective contact of gas and liquid, and modifying processes in the acid scrubbers. To reduce emission of both amines and acid gases, pollutant gas components were first separated, then condensation and/or acid scrubbing, depending on the chemical and physical properties of pollutant components, were used. To reduce emission of solvents, condensation and activated carbon adsorption were employed. To reduce emission of a mixture gases containing acid gases and solvents, the mixed gases were passed into the first condenser, the acid scrubber, the second condenser, and the activated carbon adsorption tower in sequence. As a strategy to reduce emission of pollutants at the source, this study also employed the simple pollution prevention concept of modification of the previously operating APC control device. Finally, air emissions of pollutants produced from the chemical plants were much more reduced by applying proper APC methods, depending upon the types (physical or chemical properties) and the specific emission situations of pollutants.

  15. Assessing the effectiveness of regulatory controls on farm pollution using chemical and biological indices of water quality and pollution statistics.

    PubMed

    Foy, R H; Lennox, S D; Smith, R V

    2001-08-01

    Water quality was measured in 42 streams in the Colebrooke and Upper Bann catchments in Northern Ireland over the period 1990-1998. Despite ongoing pollution control measures, biological water quality, as determined by the invertebrate average score per taxon (ASPT) index, did not improve and there was no appreciable decline in recorded farm pollution incidents. However, the lack of decline in pollution incidents could reflect changes in detection policy, as a greater proportion of incidents were recorded from less polluting discharges such as farm-yard runoff. In contrast, there was an improvement during 1997 and 1998 in annual chemical water quality classification based on exceedence values (90th percentiles) for dissolved oxygen, ammonium and BOD concentrations. In 1998, 11.9% of streams were severely polluted compared to 26.2% in 1990, while the proportion classed as of salmonid water quality, increased from 40.5% in 1990 to 59.6% in 1998. Although water quality in 1996 did not improve relative to 1990 values, there was a notable increasing trend from 1990 in the numbers of samples taken during the summer which had good water quality with low ammonium (<0.6mgN l(-1)) and high dissolved oxygen (> 70% sat). The trend for samples with low BOD (<4 mgl(-1)) was more erratic, but an improvement was apparent from 1994. These improvements in chemical water quality suggest that point-source farm pollution declined after 1990. The fact that this was not reflected in stream biology may reflect the limited time scale for biological recovery. An important factor preventing biological recovery may be the high pollution capacity of manures and silage effluent, so that even reduced numbers of farm pollution incidents can severely perturb stream ecosystems. The intractable nature of farm pollution suggests that there is a need to consider an interactive approach to problem resolution involving both farmers and regulators.

  16. Options for modeling ground water pollution potential by dissolved chemicals

    NASA Astrophysics Data System (ADS)

    Jury, William A.; Tseng, Peng-Hsiang

    A common characteristic of virtually all forms of non-point source pollutants is that they move downward through the soil under the influence of erratic and generally unsaturated water flow. As a consequence, both soil-water flow and solute-transport properties must be known to model the event on a field or larger scale. The extensive spatial variability of these properties make deterministic modeling unfeasible at this scale, necessitating some form of approximate stochastic approach that extrapolates from limited samples of properties and input parameters. There are a number of options for exercising this strategy, but most of them involve using a local-model representation that is averaged over the spatial domain in a statistical sense, by using a number of discrete one-dimensional simulations in parallel. With this strategy, the important question becomes what type of local model to use, and how complex to make it. This paper explores options for local representation in modeling the water flow regime, ranging from full simulation using the Richards flow equation, to steady flow using only the field-capacity estimate of water content. Simulations of flow and transport to ground water are run on a hypothetical field with variable climatic data and properties generated by geometric scaling theory, using data from 20 sites averaged in parallel to represent field-scale movement to ground water for a conservative and reactive chemical pulse. Although the transient-flow model is necessary to achieve accurate representation of the position of the pulse within the profile, mass loading of ground water was represented quite accurately with a simple flow regime assuming steady-state flow and uniform, water content. The field-capacity estimate was greatly out of agreement with the other methods, however.

  17. Great Lakes Environmentalists Push for Zero Chemical Pollution.

    ERIC Educational Resources Information Center

    Heylin, Michael

    1991-01-01

    Described are the efforts of a coalition of several environmental organizations to influence federal legislation regarding water pollution in the Great Lakes region. Statements from regional legislators are included. (CW)

  18. Marine biodegradation: Chemical pollutants. (Latest citations from Oceanic abstracts). Published Search

    SciTech Connect

    Not Available

    1993-03-01

    The bibliography contains citations concerning the biological degradation of marine pollutants. The citations explore the microbial breakdown of petroleum, herbicides, pesticides, polychlorinated biphenyls and other hazardous materials. The chemical details of biotransformation, and the development of microorganisms capable of degrading pollutants are presented. (Contains a minimum of 222 citations and includes a subject term index and title list.)

  19. The legal framework to manage chemical pollution in India and the lesson from the Persistent Organic Pollutants (POPs).

    PubMed

    Sharma, Brij Mohan; Bharat, Girija K; Tayal, Shresth; Nizzetto, Luca; Larssen, Thorjørn

    2014-08-15

    India's rapid agro-economic growth has resulted into many environmental issues, especially related to chemical pollution. Environmental management and control of toxic chemicals have gained significant attention from policy makers, researchers, and enterprises in India. The present study reviews the policy and legal and non-regulatory schemes set in place in this country during the last decades to manage chemical risk and compares them with those in developed nations. India has a large and fragmented body of regulation to control and manage chemical pollution which appears to be ineffective in protecting environment and human health. The example of POPs contamination in India is proposed to support such a theory. Overlapping of jurisdictions and retrospectively approached environmental policy and risk management currently adopted in India are out of date and excluding Indian economy from the process of building and participating into new, environmentally-sustainable market spaces for chemical products. To address these issues, the introduction of a new integrated and scientifically-informed regulation and management scheme is recommended. Such scheme should acknowledge the principle of risk management rather than the current one based on risk acceptance. To this end, India should take advantage of the experience of recently introduced chemical management regulation in some developed nations.

  20. Low levels of chemical anthropogenic pollution may threaten amphibians by impairing predator recognition.

    PubMed

    Polo-Cavia, Nuria; Burraco, Pablo; Gomez-Mestre, Ivan

    2016-03-01

    Recent studies suggest that direct mortality and physiological effects caused by pollutants are major contributing factors to global amphibian decline. However, even sublethal concentrations of pollutants could be harmful if they combined with other factors to cause high mortality in amphibians. Here we show that sublethal concentrations of pollutants can disrupt the ability of amphibian larvae to recognize predators, hence increasing their risk of predation. This effect is indeed much more important since very low amounts of pollutants are ubiquitous, and environmental efforts are mostly directed towards preventing lethal spills. We analyzed the effects of two common contaminants (humic acid and ammonium nitrate) on the ability of tadpoles of the western spadefoot toad (Pelobates cultripes) to recognize chemical cues from a common predator, nymphs of the dragonfly Anax imperator. We compared the swimming activity of tadpoles in the presence and absence of water-borne chemical cues from dragonflies at different concentrations of humic acid and ammonium nitrate. Tadpoles reduced swimming activity in response to predator cues in the absence of pollutants, whereas they remained unresponsive to these cues when either humic acid or ammonium nitrate was added to the water, even at low concentrations. Moreover, changes in tadpole activity associated with the pollutants themselves were non-significant, indicating no toxic effect. Alteration of the natural chemical environment of aquatic systems by pollutants may be an important contributing cause for declines in amphibian populations, even at sublethal concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Chemicals and excess materials disposition during facility deactivation as a means of pollution prevention

    SciTech Connect

    Godfrey, S.D.

    1998-05-28

    This paper presents several innovative and common sense approaches to pollution prevention that have been employed during facility deactivation at the Hanford Site in South Central Washington. It also presents several pollution prevention principles applicable to other projects. Innovative pollution prevention ideas employed at the Hanford site during facility deactivation included: (1) Recycling more than 185,000 gallons of radioactively contaminated nitric acid by sending it to an operating nuclear fuels reprocessing facility in England; (2) Recycling millions of pounds of chemicals and excess materials to other industries for reuse; (3) Evaporating flush water at a low rate and discharging it into the facility exhaust air stream to avoid discharging thousands of gallons of liquid to the soil column; and (4) Decontaminating and disposing of thousands of gallons of radioactively contaminated organic solvent waste to a RCRA licensed, power-producing, commercial incinerator. Common sense pollution prevention ideas that were employed include recycling office furniture, recycling paper from office files, and redeploying tools and miscellaneous process equipment. Additional pollution prevention occurred as the facility liquid and gaseous discharge streams were deactivated. From the facilities deactivation experiences at Hanford and the ensuing efforts to disposition excess chemicals and materials, several key pollution prevention principles should be considered at other projects and facilities, especially during the operational periods of the facility`s mission. These principles include: Institute pollution prevention as a fundamental requirement early in the planning stage of a project or during the operational phase of a facility`s mission; Promote recognition and implementation of pollution prevention initiatives; Instill pollution prevention as a value in all participants in the project or facility work scope; Minimize the amount of chemical products and materials

  2. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants

    PubMed Central

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-01-01

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes—catalyst/oxidant concentrations, incident radiation flux, and pH—need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities. PMID:26287222

  3. Solar-Enhanced Advanced Oxidation Processes for Water Treatment: Simultaneous Removal of Pathogens and Chemical Pollutants.

    PubMed

    Tsydenova, Oyuna; Batoev, Valeriy; Batoeva, Agniya

    2015-08-14

    The review explores the feasibility of simultaneous removal of pathogens and chemical pollutants by solar-enhanced advanced oxidation processes (AOPs). The AOPs are based on in-situ generation of reactive oxygen species (ROS), most notably hydroxyl radicals •OH, that are capable of destroying both pollutant molecules and pathogen cells. The review presents evidence of simultaneous removal of pathogens and chemical pollutants by photocatalytic processes, namely TiO2 photocatalysis and photo-Fenton. Complex water matrices with high loads of pathogens and chemical pollutants negatively affect the efficiency of disinfection and pollutant removal. This is due to competition between chemical substances and pathogens for generated ROS. Other possible negative effects include light screening, competitive photon absorption, adsorption on the catalyst surface (thereby inhibiting its photocatalytic activity), etc. Besides, some matrix components may serve as nutrients for pathogens, thus hindering the disinfection process. Each type of water/wastewater would require a tailor-made approach and the variables that were shown to influence the processes-catalyst/oxidant concentrations, incident radiation flux, and pH-need to be adjusted in order to achieve the required degree of pollutant and pathogen removal. Overall, the solar-enhanced AOPs hold promise as an environmentally-friendly way to substitute or supplement conventional water/wastewater treatment, particularly in areas without access to centralized drinking water or sewage/wastewater treatment facilities.

  4. Effect of water pollutants and other chemicals upon ribonuclease activity in vitro

    SciTech Connect

    Christensen, G.M.; Olson, D.L.

    1981-12-01

    Ribonuclease was treated in vitro with 73 chemicals, many of which are environmental pollutants, including inorganic, organic, and metal-organic chemicals, pesticides and other biocides, alkyl and aryl industrial pollutants, and certain additional chemicals, to determine their effect upon enzyme activity. Palladium (II and IV) and gold (III) were the strongest inhibitors of RNase activity. Other strong inhibitors, in decreasing order of effect, were: sodium dodecyl sulfate, silver (I), EDTA, mercury (II), copper (II), thiram (fungicide), platinum (IV), malathion (pesticide), lead (II), and beryllium (II). Intermediate effects were found with other inorganic cations, many anions, and some other chemicals. A number of compounds of different chemical types caused no measureable effect. None of the chemicals tested caused a measureable activation of this enzyme.

  5. Oxidative metabolism of chemical pollutants in marine organisms: molecular and biochemical biomarkers in environmental toxicology.

    PubMed

    Benedetti, Maura; Giuliani, Maria Elisa; Regoli, Francesco

    2015-03-01

    Oxidative stress biomarkers are widely used in marine ecotoxicology. Environmental pollutants enhance intracellular formation of oxyradicals through several mechanisms, but complex oxidative interactions occur in response to chemical mixtures. Metabolism of individual classes of pollutants can be influenced by a sophisticated network of prooxidant relationships, reciprocal and cascade effects, changes of redox-sensitive signaling proteins, and transcription factors. Chemically mediated pathways can affect antioxidant responses at different levels, including pretranscriptional, transcriptional, protein, and catalytic functions; such mechanisms remain largely unexplored in marine organisms. Molecular responses of antioxidants are frequently not paralleled by expected biochemical changes or cellular effects, and caution is needed when interpreting the effects of environmental pollutants. Results on antioxidant variations can be influenced by mRNA stability and protein turnover, different timing for transcriptional and translational mechanisms, metabolic capability of tissues, posttranscriptional modifications of proteins, biphasic responses of antioxidant enzymes, and adaptation mechanisms to chronic pollution.

  6. Experimental assessment of the microbocenosis stability in chemically polluted soils

    NASA Astrophysics Data System (ADS)

    Sorokin, N. D.; Grodnitskaya, I. D.; Shapchenkova, O. A.; Evgrafova, S. Yu.

    2009-06-01

    Water solutions of fluorine and sulfur-containing salts of sodium—NaF, Na2SO3, and NaF + Na2SO3 (30, 150, and 300 MPC, respectively)—and salts of heavy metals—(Cu(NO3)2 · 3H2O, NiSO4, and Pb(NO3)2 (10, 25, and 50 MPC, respectively)—were applied as pollutants to dark gray forest soils of experimental plots (1 m2) in Siberian larch ( Larix sibirica Ledeb.) plantations once per growing period. The soil samples for the determination of the microbial biomass, respiration, and enzymatic activity (urease, protease, invertase, and catalase) were taken from the mineral soil layer (0-5 cm) at the beginning of the growing seasons before the application of the pollutants then in 14- to 18-day intervals every month. The fluorine and sulfur-containing compounds applied activated the respiration, lowered the enzymatic activity of the microorganisms, and decreased the microbial biomass by 1.3-2.2 times in the soils of the test plots as compared to the control one. The single application of Cu, Ni, and Pb increased the microbial biomass, while the changes in the basal respiration were compatible with its natural variability. Two months after the beginning of the experiment, all the parameters characterizing the functioning of the soil microbocenoses were restored.

  7. Chemical Pollution from Combustion of Modern Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.

    2013-01-01

    Fire is one of the most critical contingencies in spacecraft and any closed environment including submarines. Currently, NASA uses particle based technology to detect fires and hand-held combustion product monitors to track the clean-up and restoration of habitable cabin environment after the fire is extinguished. In the future, chemical detection could augment particle detection to eliminate frequent nuisance false alarms triggered by dust. In the interest of understanding combustion from both particulate and chemical generation, NASA Centers have been collaborating on combustion studies at White Sands Test Facility using modern spacecraft materials as fuels, and both old and new technology to measure the chemical and particulate products of combustion. The tests attempted to study smoldering pyrolysis at relatively low temperatures without ignition to flaming conditions. This paper will summarize the results of two 1-week long tests undertaken in 2012, focusing on the chemical products of combustion. The results confirm the key chemical products are carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen fluoride (HF) and hydrogen chloride (HCl), whose concentrations depend on the particular material and test conditions. For example, modern aerospace wire insulation produces significant concentration of HF, which persists in the test chamber longer than anticipated. These compounds are the analytical targets identified for the development of new tunable diode laser based hand-held monitors, to replace the aging electrochemical sensor based devices currently in use on the International Space Station.

  8. Comparison of point-source pollutant loadings to soil and groundwater for 72 chemical substances.

    PubMed

    Yu, Soonyoung; Hwang, Sang-Il; Yun, Seong-Taek; Chae, Gitak; Lee, Dongsu; Kim, Ki-Eun

    2017-09-15

    Fate and transport of 72 chemicals in soil and groundwater were assessed by using a multiphase compositional model (CompFlow Bio) because some of the chemicals are non-aqueous phase liquids or solids in the original form. One metric ton of chemicals were assumed to leak in a stylized facility. Scenarios of both surface spills and subsurface leaks were considered. Simulation results showed that the fate and transport of chemicals above the water table affected the fate and transport of chemicals below the water table, and vice versa. Surface spill scenarios caused much less concentrations than subsurface leak scenarios because leaching amounts into the subsurface environment were small (at most 6% of the 1 t spill for methylamine). Then, simulation results were applied to assess point-source pollutant loadings to soil and groundwater above and below the water table, respectively, by multiplying concentrations, impact areas, and durations. These three components correspond to the intensity of contamination, mobility, and persistency in the assessment of pollutant loading, respectively. Assessment results showed that the pollutant loadings in soil and groundwater were linearly related (r (2) = 0.64). The pollutant loadings were negatively related with zero-order and first-order decay rates in both soil (r = - 0.5 and - 0.6, respectively) and groundwater (- 1.0 and - 0.8, respectively). In addition, this study scientifically defended that the soil partitioning coefficient (K d) significantly affected the pollutant loadings in soil (r = 0.6) and the maximum masses in groundwater (r = - 0.9). However, K d was not a representative factor for chemical transportability unlike the expectation in chemical ranking systems of soil and groundwater pollutants. The pollutant loadings estimated using a physics-based hydrogeological model provided a more rational ranking for exposure assessment, compared to the summation of persistency and transportability scores in

  9. Heavy metal pollution in soils from abandoned Taizhou Chemical Industry Zone in Zhejiang province.

    PubMed

    Yu, Binbin; Zhang, Huimin; Chen, Tao; Mou, Yijun; Wu, Zucheng

    2015-01-01

    Heavy metal (HM) pollution in soils from an abandoned Taizhou Chemical Industry Zone (TCIZ) was investigated. By analysing soils, including sediments, collected from the study zone, the main pollutants were quantitatively identified and their spatial distribution patterns were clearly displayed. Eleven types of HM pollutants were obtained and the results indicated a significant correlation in most of the elements of the soil and sediment. A pollution index Pi was employed to classify the degree of contamination and characterize the main pollutant, which was controlled with the evaluation standard value instead of background one. As was characterized to be one of the main pollutants with the mean concentrations at the pollution source, in the surrounding area, and in the sediment of 603, 20.4, and 22.5 mg/kg, respectively. Our study suggested that the contaminated area of TCIZ may necessitate remediation before it can be considered for reuse. Pollution index method could be a useful tool for assessing soils quality to provide comparable criteria.

  10. Synergistic health effects between chemical pollutants and electromagnetic fields.

    PubMed

    Ledoigt, Gérard; Sta, Chaima; Goujon, Eric; Souguir, Dalila; El Ferjani, Ezzeddine

    2015-01-01

    Humans and ecosystems are exposed to highly variable and unknown cocktail of chemicals and radiations. Although individual chemicals are typically present at low concentrations, they can interact with each other resulting in additive or potentially synergistic mixture effects. This was also observed with products obtained by radiation actions such as sunlight or electromagnetic fields that can change the effects of chemicals, such as pesticides, and metal trace elements on health. Concomitant presence of various pesticides and their transformation products adds further complexity to chemical risk assessment since chronic inflammation is a key step for cancer promotion. Degradation of a parent molecule can produce several by-products which can trigger various toxic effects with different impacts on health and environment. For instance, the cocktail of sunlight irradiated sulcotrione pesticide has a greater cytotoxicity and genotoxicity than parent molecule, sulcotrione, and questions about the impact of photochemical process on environment. Adjuvants were shown to modify the biological features of pesticides. Addition of other elements, metals or biological products, can differently enhance cell toxicity of pesticides or electromagnetic radiations suggesting a synergy in living organisms. Electromagnetic fields spreading, pesticide by-products and mixtures monitoring become greater for environmental contamination evaluations.

  11. Single Particle Analysis by Combined Chemical Imaging to Study Episodic Air Pollution Events in Vienna

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Eitenberger, Elisabeth; Friedbacher, Gernot; Brenner, Florian; Hutter, Herbert; Schauer, Gerhard; Kistler, Magdalena; Greilinger, Marion; Lohninger, Hans; Lendl, Bernhard; Kasper-Giebl, Anne

    2017-04-01

    The aerosol composition of a city like Vienna is characterized by a complex interaction of local emissions and atmospheric input on a regional and continental scale. The identification of major aerosol constituents for basic source appointment and air quality issues needs a high analytical effort. Exceptional episodic air pollution events strongly change the typical aerosol composition of a city like Vienna on a time-scale of few hours to several days. Analyzing the chemistry of particulate matter from these events is often hampered by the sampling time and related sample amount necessary to apply the full range of bulk analytical methods needed for chemical characterization. Additionally, morphological and single particle features are hardly accessible. Chemical Imaging evolved to a powerful tool for image-based chemical analysis of complex samples. As a complementary technique to bulk analytical methods, chemical imaging can address a new access to study air pollution events by obtaining major aerosol constituents with single particle features at high temporal resolutions and small sample volumes. The analysis of the chemical imaging datasets is assisted by multivariate statistics with the benefit of image-based chemical structure determination for direct aerosol source appointment. A novel approach in chemical imaging is combined chemical imaging or so-called multisensor hyperspectral imaging, involving elemental imaging (electron microscopy-based energy dispersive X-ray imaging), vibrational imaging (Raman micro-spectroscopy) and mass spectrometric imaging (Time-of-Flight Secondary Ion Mass Spectrometry) with subsequent combined multivariate analytics. Combined chemical imaging of precipitated aerosol particles will be demonstrated by the following examples of air pollution events in Vienna: Exceptional episodic events like the transformation of Saharan dust by the impact of the city of Vienna will be discussed and compared to samples obtained at a high alpine

  12. Detection of chemical pollutants by passive LWIR hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Lavoie, Hugo; Thériault, Jean-Marc; Bouffard, François; Puckrin, Eldon; Dubé, Denis

    2012-09-01

    Toxic industrial chemicals (TICs) represent a major threat to public health and security. Their detection constitutes a real challenge to security and first responder's communities. One promising detection method is based on the passive standoff identification of chemical vapors emanating from the laboratory under surveillance. To investigate this method, the Department of National Defense and Public Safety Canada have mandated Defense Research and Development Canada (DRDC) - Valcartier to develop and test passive Long Wave Infrared (LWIR) hyperspectral imaging (HSI) sensors for standoff detection. The initial effort was focused to address the standoff detection and identification of toxic industrial chemicals (TICs) and precursors. Sensors such as the Multi-option Differential Detection and Imaging Fourier Spectrometer (MoDDIFS) and the Improved Compact ATmospheric Sounding Interferometer (iCATSI) were developed for this application. This paper describes the sensor developments and presents initial results of standoff detection and identification of TICs and precursors. The standoff sensors are based on the differential Fourier-transform infrared (FTIR) radiometric technology and are able to detect, spectrally resolve and identify small leak plumes at ranges in excess of 1 km. Results from a series of trials in asymmetric threat type scenarios will be presented. These results will serve to establish the potential of the method for standoff detection of TICs precursors and surrogates.

  13. [Characteristic of toxic risks of air pollution by chemical admixtures aboard the piloted orbital stations].

    PubMed

    Mukhamedieva, L N; Bogomolov, V V

    2009-01-01

    Trends in the chemical composition of air revealed by the sanitary-chemical and toxicological investigations in multifactorial ground-based tests and long-term space flights aboard the Salyut- 6, 7, Mir and the International space station have been used to deduce the chemical characteristic and to substantiate methods to and criteria for evaluation of toxic risks to space crews from air chemical pollution. Of particular concern were the toxic risks and crew protection during the first ingress to modules on the stage of station assembly in orbit, in the course of long-term missions, and in the event of acute exposure in off-nominal and emergency conditions.

  14. Pollution

    ERIC Educational Resources Information Center

    Rowbotham, N.

    1973-01-01

    Presents the material given in one class period in a course on Environmental Studies at Chesterfield School, England. The topics covered include air pollution, water pollution, fertilizers, and insecticides. (JR)

  15. Pollution

    ERIC Educational Resources Information Center

    Rowbotham, N.

    1973-01-01

    Presents the material given in one class period in a course on Environmental Studies at Chesterfield School, England. The topics covered include air pollution, water pollution, fertilizers, and insecticides. (JR)

  16. 40 CFR Table 1 to Subpart Vvvvvv... - Hazardous Air Pollutants Used To Determine Applicability of Chemical Manufacturing Operations

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 15 2013-07-01 2013-07-01 false Hazardous Air Pollutants Used To... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources Pt. 63, Subpt. VVVVVV, Table...

  17. 40 CFR Table 1 to Subpart Vvvvvv... - Hazardous Air Pollutants Used To Determine Applicability of Chemical Manufacturing Operations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Hazardous Air Pollutants Used To... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources Pt. 63, Subpt. VVVVVV, Table...

  18. Chemical composition of needles and cambial activity of stems of Scots pine trees affected by air pollutants in Polish forests

    Treesearch

    Wojciech Dmuchowski; Ewa U. Kurczynska; Wieslaw Wloch

    1998-01-01

    The impact of environmental pollution is defined for the chemical composition of Scots pine (Pinus sylvestris L.) needles and cambial activity in the tree stems in Polish forests. The research investigated 20-year-old trees growing in two areas in significantly different levels of pollution. The highly polluted area was located near the Warsaw...

  19. [Monitoring of the chemical composition of snow cover pollution in the Moscow region].

    PubMed

    Ermakov, A A; Karpova, E A; Malysheva, A G; Mikhaylova, R I; Ryzhova, I N

    2014-01-01

    Monitoring of snow cover pollution as an indicator of ambient air pollution in 20 districts in the Moscow region during 2009-2013 was performed. The identification with a quantitative assessment of a wide array of organic compounds and the control of the main physical and chemical and inorganic indices of snow water pollution were carried out. More than 60 organic substances for most of which there are no the hygienic standards were established. The assessment of pollution levels of basic inorganic indices was given by means of the comparing them with the average values in the snow cover in the European territory of Russia and natural content in areas not been exposed to human impact.

  20. Synergistic Pollutants Removal of the Pre-denitrification Chemical and Biological Flocculation Process

    NASA Astrophysics Data System (ADS)

    Liu, Hong-bo; Xia, Si-qing

    2010-11-01

    Based on previous studies on the chemical and biological flocculation (CBF) process and the post suspended-carrier-bed CBF process, a pre-denitrification CBF process was proposed and optimized. Pollutant removing mechanisms of the process were investigated based on COD, TN, and TP removal. Nitrogen transformation in the process was investigated and particle size distributions of influent and effluent were analyzed. Operation results show that concentrations of main pollutants such as COD, TP and NH4+-N in effluent can meet the Discharging Standards for Chinese Urban WWTPs (GB18918-2002) first grade (B) stably with a total process hydraulic retention time (HRT) as short as 6hr and poly ferric sulphate (PFS, ferrous content 18.5%) dosage amount as low as 70 mgL-1. Synergistic chemical and biological pollutants removal mechanisms of the process were also discussed.

  1. [Attempt at quantitative estimation of genetic effects of chemical pollution of atmospheric air in urban populations].

    PubMed

    Antypenko, Ie M; Kohut, N M; Oleksiienko, P L

    1992-01-01

    Epidemiological investigation of spontaneous abortions and congenital anomalies in three towns of Ukraine has shown that mutation rate in Mariupol, the most contaminated town, as compared with relatively clean town is essentially higher. Genetical consequences due to environmental chemical pollution in Mariupol proved to be equivalent to the chronic influence of ionizing radiation for 30 years in the dose of 230 REM.

  2. The Chemical Characterization of Pollutants in Waste Water from Volunteer Army Ammunition Plant.

    DTIC Science & Technology

    1981-08-01

    Ammunition Plant Charlestown, IN 47111 Commander Holston Army Ammunition Plant Kingsport , TN 37660 Commander Lone Star Army Ammunition Plant ATTN... Army Ammunition Plant (VAAP) in Tennessee . The major effort in this study was concentrated on separation and identification of dissolved organic species...PERIOD COVERED The Chemical Characterization of Pollutants Final in Waste Water from Volunteer Army

  3. POLLUTION PREVENTION IN THE DESIGN OF CHEMICAL PROCESSES USING HIERARCHICAL DESIGN AND SIMULATION

    EPA Science Inventory

    The design of chemical processes is normally an interactive process of synthesis and analysis. When one also desires or needs to limit the amount of pollution generated by the process the difficulty of the task can increase substantially. In this work, we show how combining hier...

  4. CFD modeling of reactive pollutant dispersion in simplified urban configurations with different chemical mechanisms

    NASA Astrophysics Data System (ADS)

    Sanchez, Beatriz; Santiago, Jose-Luis; Martilli, Alberto; Palacios, Magdalena; Kirchner, Frank

    2016-09-01

    An accurate understanding of urban air quality requires considering a coupled behavior between the dispersion of reactive pollutants and atmospheric dynamics. Currently, urban air pollution is mostly dominated by traffic emission, where nitrogen oxides (NOx) and volatile organic compounds (VOCs) are the primary emitted pollutants. However, modeling reactive pollutants with a large set of chemical reactions, using a computational fluid dynamic (CFD) model, requires a large amount of computational (CPU) time. In this sense, the selection of the chemical reactions needed in different atmospheric conditions becomes essential in finding the best compromise between CPU time and accuracy. The purpose of this work is to assess the differences in NO and NO2 concentrations by considering three chemical approaches: (a) passive tracers (non-reactive), (b) the NOx-O3 photostationary state and (c) a reduced complex chemical mechanism based on 23 species and 25 reactions. The appraisal of the effects of chemical reactions focuses on studying the NO and NO2 dispersion in comparison with the tracer behavior within the street. In turn, the effect of including VOC reactions is also analyzed taking into account several VOC / NOx ratios of traffic emission. Given that the NO and NO2 dispersion can also be affected by atmospheric conditions, such as wind flow or the background concentration from season-dependent pollutants, in this work the influence of wind speeds and background O3 concentrations are studied. The results show that the presence of ozone in the street plays an important role in NO and NO2 concentrations. Therefore, greater differences linked to the chemical approach used are found with higher O3 concentrations and faster wind speeds. This bears relation to the vertical flux as a function of ambient wind speed since it increases the pollutant exchange between the street and the overlying air. This detailed study allows one to ascertain under which atmospheric conditions

  5. An expanded conceptual framework for solution-focused management of chemical pollution in European waters.

    PubMed

    Munthe, John; Brorström-Lundén, Eva; Rahmberg, Magnus; Posthuma, Leo; Altenburger, Rolf; Brack, Werner; Bunke, Dirk; Engelen, Guy; Gawlik, Bernd Manfred; van Gils, Jos; Herráez, David López; Rydberg, Tomas; Slobodnik, Jaroslav; van Wezel, Annemarie

    2017-01-01

    This paper describes a conceptual framework for solutions-focused management of chemical contaminants built on novel and systematic approaches for identifying, quantifying and reducing risks of these substances. The conceptual framework was developed in interaction with stakeholders representing relevant authorities and organisations responsible for managing environmental quality of water bodies. Stakeholder needs were compiled via a survey and dialogue. The content of the conceptual framework was thereafter developed with inputs from relevant scientific disciplines. The conceptual framework consists of four access points: Chemicals, Environment, Abatement and Society, representing different aspects and approaches to engaging in the issue of chemical contamination of surface waters. It widens the scope for assessment and management of chemicals in comparison to a traditional (mostly) perchemical risk assessment approaches by including abatement- and societal approaches as optional solutions. The solution-focused approach implies an identification of abatement- and policy options upfront in the risk assessment process. The conceptual framework was designed for use in current and future chemical pollution assessments for the aquatic environment, including the specific challenges encountered in prioritising individual chemicals and mixtures, and is applicable for the development of approaches for safe chemical management in a broader sense. The four access points of the conceptual framework are interlinked by four key topics representing the main scientific challenges that need to be addressed, i.e.: identifying and prioritising hazardous chemicals at different scales; selecting relevant and efficient abatement options; providing regulatory support for chemicals management; predicting and prioritising future chemical risks. The conceptual framework aligns current challenges in the safe production and use of chemicals. The current state of knowledge and implementation

  6. Toxicity testing of organic chemicals in groundwater polluted with landfill leachate

    SciTech Connect

    Baun, A.; Kloeft, L.; Bjerg, P.L.; Nyholm, N.

    1999-09-01

    A method for assessment of toxicity of nonvolatile organic chemicals contaminants in groundwater polluted with landfill leachate has been evaluated. The biotests utilized were composed of an algal growth inhibition test (Selenastrum capricornutum), a daphnia immobilization test (Daphnia magna), and a bacterial genotoxicity test (umuC, Salmonella typhimurium). The feasibility of the selected biotests was investigated for a series of groundwater samples collected along pollution gradients downstreams of two landfills in Jutland, Denmark. Two different approaches were used, direct toxicity testing of whole groundwater samples, and toxicity testing of concentrates obtained by solid-phase extraction. Direct testing of whole groundwater samples produced toxic responses, but the complex sample matrix masked the toxicity of the organic chemical contaminants of interest. Solid-phase extraction was used successfully as an on-site method that eliminated ion toxicity and produced biotest responses that reflected the toxicity of the nonvolatile organic chemical contaminants in the groundwater.

  7. Soil features in rookeries of Antarctic penguins reveal sea to land biotransport of chemical pollutants.

    PubMed

    Santamans, Anna C; Boluda, Rafael; Picazo, Antonio; Gil, Carlos; Ramos-Miras, Joaquín; Tejedo, Pablo; Pertierra, Luis R; Benayas, Javier; Camacho, Antonio

    2017-01-01

    The main soil physical-chemical features, the concentrations of a set of pollutants, and the soil microbiota linked to penguin rookeries have been studied in 10 selected sites located at the South Shetland Islands and the Antarctic Peninsula (Maritime Antarctica). This study aims to test the hypothesis that biotransport by penguins increases the concentration of pollutants, especially heavy metals, in Antarctic soils, and alters its microbiota. Our results show that penguins do transport certain chemical elements and thus cause accumulation in land areas through their excreta. Overall, a higher penguin activity is associated with higher organic carbon content and with higher concentrations of certain pollutants in soils, especially cadmium, cooper and arsenic, as well as zinc and selenium. In contrast, in soils that are less affected by penguins' faecal depositions, the concentrations of elements of geochemical origin, such as iron and cobalt, increase their relative weighted contribution, whereas the above-mentioned pollutants maintain very low levels. The concentrations of pollutants are far higher in those penguin rookeries that are more exposed to ship traffic. In addition, the soil microbiota of penguin-influenced soils was studied by molecular methods. Heavily penguin-affected soils have a massive presence of enteric bacteria, whose relative dominance can be taken as an indicator of penguin influence. Faecal bacteria are present in addition to typical soil taxa, the former becoming dominant in the microbiota of penguin-affected soils, whereas typical soil bacteria, such as Actinomycetales, co-dominate the microbiota of less affected soils. Results indicate that the continuous supply by penguin faeces, and not the selectivity by increased pollutant concentrations is the main factor shaping the soil bacterial community. Overall, massive penguin influence results in increased concentrations of certain pollutants and in a strong change in taxa dominance in the

  8. Soil features in rookeries of Antarctic penguins reveal sea to land biotransport of chemical pollutants

    PubMed Central

    Santamans, Anna C.; Boluda, Rafael; Picazo, Antonio; Gil, Carlos; Ramos-Miras, Joaquín; Tejedo, Pablo; Pertierra, Luis R.; Benayas, Javier

    2017-01-01

    The main soil physical-chemical features, the concentrations of a set of pollutants, and the soil microbiota linked to penguin rookeries have been studied in 10 selected sites located at the South Shetland Islands and the Antarctic Peninsula (Maritime Antarctica). This study aims to test the hypothesis that biotransport by penguins increases the concentration of pollutants, especially heavy metals, in Antarctic soils, and alters its microbiota. Our results show that penguins do transport certain chemical elements and thus cause accumulation in land areas through their excreta. Overall, a higher penguin activity is associated with higher organic carbon content and with higher concentrations of certain pollutants in soils, especially cadmium, cooper and arsenic, as well as zinc and selenium. In contrast, in soils that are less affected by penguins’ faecal depositions, the concentrations of elements of geochemical origin, such as iron and cobalt, increase their relative weighted contribution, whereas the above-mentioned pollutants maintain very low levels. The concentrations of pollutants are far higher in those penguin rookeries that are more exposed to ship traffic. In addition, the soil microbiota of penguin-influenced soils was studied by molecular methods. Heavily penguin-affected soils have a massive presence of enteric bacteria, whose relative dominance can be taken as an indicator of penguin influence. Faecal bacteria are present in addition to typical soil taxa, the former becoming dominant in the microbiota of penguin-affected soils, whereas typical soil bacteria, such as Actinomycetales, co-dominate the microbiota of less affected soils. Results indicate that the continuous supply by penguin faeces, and not the selectivity by increased pollutant concentrations is the main factor shaping the soil bacterial community. Overall, massive penguin influence results in increased concentrations of certain pollutants and in a strong change in taxa dominance in the

  9. Bringing the Polluters Back In: Environmental Inequality and the Organization of Chemical Production

    PubMed Central

    Grant, Don; Trautner, Mary Nell; Downey, Liam; Thiebaud, Lisa

    2011-01-01

    Environmental justice scholars have suggested that because chemical plants and other hazardous facilities emit more pollutants where they face the least resistance, disadvantaged communities face a special health risk. In trying to determine whether race or income has the bigger impact on a neighborhood’s exposure to pollution, however, scholars tend to overlook the facilities themselves and the effect of their characteristics on emissions. In particular, how do the characteristics of facilities and their surrounding communities jointly shape pollution outcomes? We propose a new line of environmental justice research that focuses on facilities and how their features combine with communities’ features to create dangerous emissions. Using novel fuzzy-set analysis techniques and the EPA’s newly developed Risk-Screening Environmental Indicators, we test the influence of facility and community factors on chemical plants’ health-threatening emissions. Contrary to the idea that community characteristics have singular, linear effects, findings show that facility and community factors combine in a variety of ways to produce risky emissions. We speculate that as chemical firms experiment with different ways of producing goods and externalizing pollution costs, new “recipes of risk” are likely to emerge. The question, then, will no longer be whether race or income matters most, but in which of these recipes do they matter and how. PMID:21921966

  10. 77 FR 4522 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ...On October 29, 2009, the EPA promulgated national emission standards for the control of hazardous air pollutants for nine area source categories in the chemical manufacturing sector: Agricultural Chemicals and Pesticides Manufacturing, Cyclic Crude and Intermediate Production, Industrial Inorganic Chemical Manufacturing, Industrial Organic Chemical Manufacturing, Inorganic Pigments Manufacturing, Miscellaneous Organic Chemical Manufacturing, Plastic Materials and Resins Manufacturing, Pharmaceutical Production and Synthetic Rubber Manufacturing. Following that action, the Administrator received a petition for reconsideration. In response to the petition, the EPA is reconsidering and requesting comment on several provisions of the final rule. The EPA is also proposing certain revisions to its approach for addressing malfunctions and taking comment on those revisions. The EPA is further soliciting comment on the standards applicable during startup and shutdown periods, as set forth in the final rule. Additionally, the EPA is proposing amendments and technical corrections to the final rule to clarify applicability and compliance issues raised by stakeholders subject to the final rule.

  11. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators

    USGS Publications Warehouse

    Haack, S.K.; Duris, J.W.; Fogarty, L.R.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Meyer, M.T.

    2009-01-01

    The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL-1, human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  12. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators.

    PubMed

    Haack, Sheridan K; Duris, Joseph W; Fogarty, Lisa R; Kolpin, Dana W; Focazio, Michael J; Furlong, Edward T; Meyer, Michael T

    2009-01-01

    The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL(-1), human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions.

  13. Metagenomic Insights into Effects of Chemical Pollutants on Microbial Community Composition and Function in Estuarine Sediments Receiving Polluted River Water.

    PubMed

    Lu, Xiao-Ming; Chen, Chang; Zheng, Tian-Ling

    2017-05-01

    Pyrosequencing and metagenomic profiling were used to assess the phylogenetic and functional characteristics of microbial communities residing in sediments collected from the estuaries of Rivers Oujiang (OS) and Jiaojiang (JS) in the western region of the East China Sea. Another sediment sample was obtained from near the shore far from estuaries, used for contrast (CS). Characterization of estuary sediment bacterial communities showed that toxic chemicals potentially reduced the natural variability in microbial communities, while they increased the microbial metabolic enzymes and pathways. Polycyclic aromatic hydrocarbons (PAHs) and nitrobenzene were negatively correlated with the bacterial community variation. The dominant class in the sediments was Gammaproteobacteria. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) enzyme profiles, dominant enzymes were found in estuarine sediments, which increased greatly, such as 2-oxoglutarate synthase, acetolactate synthase, inorganic diphosphatase, and aconitate hydratase. In KEGG pathway profiles, most of the pathways were also dominated by specific metabolism in these sediments and showed a marked increase, for instance alanine, aspartate, and glutamate metabolism, carbon fixation pathways in prokaryotes, and aminoacyl-tRNA biosynthesis. The estuarine sediment bacterial diversity varied with the polluted river water inputs. In the estuary receiving river water from the more seriously polluted River Oujiang, the sediment bacterial community function was more severely affected.

  14. Integrated Risk Index of Chemical Aquatic Pollution (IRICAP): case studies in Iberian rivers.

    PubMed

    Fàbrega, Francesc; Marquès, Montse; Ginebreda, Antoni; Kuzmanovic, Maja; Barceló, Damià; Schuhmacher, Marta; Domingo, José L; Nadal, Martí

    2013-12-15

    The hazard of chemical compounds can be prioritized according to their PBT (persistence, bioaccumulation, toxicity) properties by using Self-Organizing Maps (SOM). The objective of the present study was to develop an Integrated Risk Index of Chemical Aquatic Pollution (IRICAP), useful to evaluate the risk associated to the exposure of chemical mixtures contained in river waters. Four Spanish river basins were considered as case-studies: Llobregat, Ebro, Jucar and Guadalquivir. A SOM-based hazard index (HI) was estimated for 205 organic compounds. IRICAP was calculated as the product of the HI by the concentration of each pollutant, and the results of all substances were aggregated. Finally, Pareto distribution was applied to the ranked lists of compounds in each site to prioritize those chemicals with the most significant incidence on the IRICAP. According to the HI outcomes, perfluoroalkyl substances, as well as specific illicit drugs and UV filters, were among the most hazardous compounds. Xylazine was identified as one of the chemicals with the highest contribution to the total IRICAP value in the different river basins, together with other pharmaceutical products such as loratadine and azaperol. These organic compounds should be proposed as target chemicals in the implementation of monitoring programs by regulatory organizations.

  15. Chemical hazard identification and assessment tool for evaluation of stormwater priority pollutants.

    PubMed

    Eriksson, E; Baun, A; Mikkelsen, P S; Ledin, A

    2005-01-01

    Assessment of chemical hazards is a critical issue, which have to be dealt with when evaluating different strategies for sustainable handling of stormwater. In the present study, a methodology for identifying the most critical and representative chemical pollutants was developed. A list of selected stormwater priority pollutants (SSPP-list) is the out-put from the procedure. Two different strategies for handling of stormwater were considered; discharge into a surface water recipient and infiltration. However, the same methodology can be used for other types of wastewater and other strategies for handling and treatment. A literature survey revealed that at least 656 xenobiotic organic compounds (XOCs) could be present in stormwater. In the next step, 233 XOCs were evaluated with respect to the potential for being hazardous towards either aquatic living organisms or humans, or causing technical or aesthetical problems. 121 XOCs were found have at least one of these negative effects, while 26 XOCs could not be assessed due to the lack of data. The hazard assessment showed that 40 XOCs had a PEC/PNEC ratio above one., e.g. they should be considered as priority pollutants. The final step is the expert judgement, which resulted in a final SSPP-list containing 16 selected priority pollutants.

  16. Homogenization of the transport behavior of nonlinearly adsorbing pollutants in physically and chemically heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Attinger, Sabine; Dimitrova, Jiva; Kinzelbach, Wolfgang

    2009-05-01

    This paper addresses the question of how spatial variability in the hydraulic and chemical properties of groundwater systems affects the transport and sorption behavior of pollutants at the field scale. In this paper, we limit our investigations on pollutants that adsorb according to an equilibrium controlled nonlinear Freundlich sorption isotherm. The new contribution of this paper is take into account not only spatially variable Freundlich distribution coefficients KS but spatially variable Freundlich nonlinearity parameters p as well. Using a homogenization theory approach, we shortly review the impact of spatially variable hydraulic properties on the transport and extend the theory to spatially variable chemical properties. We show that spatially variable Freundlich exponents cause a very different field scale transport and sorption behavior than spatial variations in the distribution coefficients only since in the first case field scale Freundlich parameters and field scale dispersion coefficients become concentration dependent. In particular, field scale retardation is much larger than small-scale retardation.

  17. Chemical Pollutants Sorbed to Ingested Microbeads from Personal Care Products Accumulate in Fish.

    PubMed

    Wardrop, Peter; Shimeta, Jeff; Nugegoda, Dayanthi; Morrison, Paul D; Miranda, Ana; Tang, Min; Clarke, Bradley O

    2016-04-05

    The prevalence of microplastics (<5 mm) in natural environments has become a widely recognized global problem. Microplastics have been shown to sorb chemical pollutants from their surrounding environment, thus raising concern as to their role in the movement of these pollutants through the food chain. This experiment investigated whether organic pollutants sorbed to microbeads (MBs) from personal care products were assimilated by fish following particle ingestion. Rainbow fish (Melanotaenia fluviatilis) were exposed to MBs with sorbed polybrominated diphenyl ethers (PBDEs; BDE-28, -47, -100, -99, -153, -154, -183, 200 ng g(-1); BDE-209, 2000 ng g(-1)) and sampled at 0, 21, 42, and 63 days along with two control treatments (food only and food + clean MBs). Exposed fish had significantly higher Σ8PBDE concentrations than both control treatments after just 21 days, and continued exposure resulted in increased accumulation of the pollutants over the experiment (ca. 115 pg g(-1) ww d(-1)). Lower brominated congeners showed the highest assimilation whereas higher brominated congeners did not appear to transfer, indicating they may be too strongly sorbed to the plastic or unable to be assimilated by the fish due to large molecular size or other factors. Seemingly against this trend, however, BDE-99 did not appear to bioaccumulate in the fish, which may be due to partitioning from the MBs or it being metabolized in vivo. This work provides evidence that MBs from personal care products are capable of transferring sorbed pollutants to fish that ingest them.

  18. Active moss biomonitoring for extensive screening of urban air pollution: Magnetic and chemical analyses.

    PubMed

    Vuković, Gordana; Urošević, Mira Aničić; Goryainova, Zoya; Pergal, Miodrag; Škrivanj, Sandra; Samson, Roeland; Popović, Aleksandar

    2015-07-15

    In this study, active magnetic biomonitoring of moss for particulate air pollution and an assessment of heavy metals and polycyclic aromatic hydrocarbons (PAHs) were performed for the entire metropolitan area of Belgrade. Two mosses, Sphagnum girgensohnii (a species of the most recommended biomonitoring moss genus) and Hypnum cupressiforme (a common moss in the study area), were used. During the summer of 2013, moss bags were exposed at 153 sampling sites, forming a dense network of sites. A type II regression model was applied to test the interchangeable use of the two moss species. Significantly higher levels of all measured pollutants were recorded by S. girgensohnii in comparison with H. cupressiforme. Based on the results, the mosses could not be interchangeably used in urban areas, except for the biomonitoring of Cu. Nevertheless, according to the relative accumulation factors obtained for both moss species, similar city zones related to high, moderate and low levels of air pollution were distinguished. Moreover, new pollution hotspots, omitted by regulatory monitoring, were identified. The results demonstrate that moss magnetic analysis represents an effective first step for obtaining an overview of particulate air pollution before more expensive chemical analyses. Active moss biomonitoring could be applied as a pragmatic approach for optimizing the representativeness of regulatory monitoring networks.

  19. Emergency multiple sclerosis hospital admissions attributable to chemical and acoustic pollution: Madrid (Spain), 2001-2009.

    PubMed

    Carmona, Rocío; Linares, Cristina; Recio, Alberto; Ortiz, Cristina; Díaz, Julio

    2017-08-25

    Multiple sclerosis (MS) is the most prevalent neurological disease among young adults in Spain. A number of recent studies have linked traffic-related pollution, both chemical and acoustic, to the aetiology and exacerbation of neurodegenerative diseases. To analyse the existence of a significant short-term association between daily emergency MS hospital admissions and chemical and acoustic pollution caused by traffic in Madrid. We conducted a longitudinal ecological time series study, in which the dependent variable was the number of daily emergency MS hospital admissions (ICD-9: 340) registered in Madrid from 1 January 2001 to 31 December 2009. The independent variables were daily mean concentrations (μg/m(3)) of PM2.5, PM10, O3 and NO2. Equivalent diurnal (Leqd), nocturnal (Leqn) and daily equivalent noise levels (Leq24) were also considered. In addition, we controlled for linear trends, seasonality and the autoregressive nature of the series itself. Day of the week was also added as a covariate. Significant environmental variables were determined using Poisson GLM models. Relative risk (RR) and attributable risk (AR) values were calculated for increases of 10μg/m(3) in the case of chemical pollutants and 1dB(A) in noise levels. While there was no association between chemical pollutants caused by traffic and MS admissions, such an association was in evidence for Leqd at lag zero. This association is linear without a threshold, with there being a level above 67dB(A) from which this effect is more pronounced. The RRs were as follows: for all Leqd values, 1.21 (95% CI: 1.16, 1.26); and for Leqd >67dB(A), 1.62 (95% CI: 1.24, 2.13). The above results indicate that traffic noise can exacerbate MS symptoms, leading to hospital admissions due to this cause. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cellular RNA is chemically modified by exposure to air pollution mixtures.

    PubMed

    Baldridge, Kevin C; Zavala, Jose; Surratt, Jason; Sexton, Kenneth G; Contreras, Lydia M

    2015-01-01

    RNAs are more susceptible to modifications than DNA, and chemical modifications in RNA have an effect on their structure and function. This study aimed to characterize chemical effects on total RNA in human A549 lung cells after exposure to elevated levels of major secondary air pollutants commonly found in urban locations, including ozone (O3), acrolein (ACR) and methacrolein (MACR). Enzyme-linked immunosorbent assays (ELISA) were used to measure levels of interleukin (IL)-8 in the growth media and 8-oxoguanine (8OG) levels in total cellular RNA, and lactate dehydrogenase (LDH) in the growth media was measured by a coupled enzymatic assay. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure levels of microRNA 10b (miR-10b). The study found that 1-h exposure to all tested pollutant mixtures consistently caused significant increases in the levels of 8OG in total RNA. In the case of 4 ppm O3 exposures, measured levels of IL-8, LDH and miR-10b each showed consistent trends between two independent trials, but varied among these three targets. After 1-h exposures to an ACR+MACR mixture, measured levels of IL-8, LDH and miR-10b showed variable results. For mixtures of O3+ACR+MACR, IL-8 measurements showed no change; miR-10b and LDH showed variable results. The results indicate that short-term high-concentration exposures to air pollution can cause RNA chemical modifications. Chemical modifications in RNAs could represent more consistent markers of cellular stress relative to other inflammation markers, such as IL-8 and LDH, and provide a new biomarker endpoint for mechanistic studies in toxicity of air pollution exposure.

  1. Transgenerational exposures: persistent chemical pollutants in the environment and breast milk.

    PubMed

    Thundiyil, Josef G; Solomon, Gina M; Miller, Mark D

    2007-02-01

    Persistent organic pollutants (POPs) are anthropogenic chemicals that are poorly biodegradable and have the potential for adverse human health effects. Although national regulations and an international treaty have resulted in the gradual decline of many POPs in human blood and breast milk, the levels of other POPs continue to rise. Children and developing fetuses are sensitive to health effects from these substances. This article reviews the health risks posed by the POPs that have been largely banned or regulated and the potential for health effects from a variety of other chemicals in widespread use today.

  2. Rapid assessment of marine pollution using multiple biomarkers and chemical immunoassays.

    PubMed

    Galloway, Tamara S; Sanger, Ross C; Smith, Karen L; Fillmann, Gilberto; Readman, James W; Ford, Timothy E; Depledge, Michael H

    2002-05-15

    To fully assess the impact of pollutant releases into the environment, it is necessary to determine both the concentration of chemicals accumulating in biota and the biological effects they give rise to. Owing to time, expertise, and cost constraints, this is, however, rarely achieved. Here, quick, simple to perform, and inexpensive biomarkers and chemical immunoassays were combined in a rapid assessment approach to measure exposure to and effects of organic and metal pollutants on the ribbed mussel (Geukensia demmissa) from New Bedford Harbor, MA. Significant differences in polychlorinated biphenyl (PCB) and polyaromatic hydrocarbon (PAH) tissue residue concentrations were detected among sites using RaPID immunoassay. Selected analyses were verified using GC/MS. No significant differences were observed in metal concentrations (Cu, Cd, Pb, As, Hg, Ni) throughout the area. While causality cannot be attributed, multivariate canonical correlation analysis indicated that PCB and PAH concentrations were strongly associated with the induction of biomarkers of genotoxicity (micronucleus formation), immunotoxicity (spontaneous cytotoxicity), and physiological impairment (heart rate). It is concluded thatthe incorporation of chemical immunoassays with biological monitoring tools into routine management procedures is clearly viable and valuable as a means of identifying toxic impacts of pollutants on biota in situ.

  3. Remediation of electronic waste polluted soil using a combination of persulfate oxidation and chemical washing.

    PubMed

    Chen, Fu; Luo, Zhanbin; Liu, Gangjun; Yang, Yongjun; Zhang, Shaoliang; Ma, Jing

    2017-09-04

    Laboratory experiments were conducted to investigate the efficiency of a simultaneous chemical extraction and oxidation for removing persistent organic pollutants (POPs) and toxic metals from an actual soil polluted by the recycling activity of electronic waste. Various chemicals, including hydroxypropyl-β-cyclodextrin (HPCD), citric acid (CA) and sodium persulfate (SP) were applied synchronously with Fe(2+) activated oxidation to enhance the co-removal of both types of pollutants. It is found that the addition of HPCD can enhance POPs removal through solubilization of POPs and iron chelation; while the CA-chelated Fe(2+) activation process is effective for extracting metals and degrading residual POPs. Under the optimized reagent conditions, 69.4% Cu, 78.1% Pb, 74.6% Ni, 97.1% polychlorinated biphenyls, 93.8% polycyclic aromatic hydrocarbons, and 96.4% polybrominated diphenylethers were removed after the sequential application of SP-HPCD-Fe(2+) and SP-CA-Fe(2+) processes with a duration of 180 and 240 min, respectively. A high dehalogenation efficiency (84.8% bromine and 86.2% chlorine) is observed, suggesting the low accumulation of halogen-containing organic intermediates. The remediated soil can satisfy the national soil quality standard of China. Collectively, co-contaminated soil can be remediated with reasonable time and capital costs through simultaneous application of persulfate oxidation and chemical extraction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Investigation of chemical properties and transport phenomena associated with pollutants in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Holmes, Heather A.

    Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on

  5. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    NASA Astrophysics Data System (ADS)

    Lakey, Pascale S. J.; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M.; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-09-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.

  6. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    PubMed Central

    Lakey, Pascale S. J.; Berkemeier, Thomas; Tong, Haijie; Arangio, Andrea M.; Lucas, Kurt; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-01-01

    Air pollution can cause oxidative stress and adverse health effects such as asthma and other respiratory diseases, but the underlying chemical processes are not well characterized. Here we present chemical exposure-response relations between ambient concentrations of air pollutants and the production rates and concentrations of reactive oxygen species (ROS) in the epithelial lining fluid (ELF) of the human respiratory tract. In highly polluted environments, fine particulate matter (PM2.5) containing redox-active transition metals, quinones, and secondary organic aerosols can increase ROS concentrations in the ELF to levels characteristic for respiratory diseases. Ambient ozone readily saturates the ELF and can enhance oxidative stress by depleting antioxidants and surfactants. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air. PMID:27605301

  7. A multivariate/chemical mass balance model for air pollution in China: A hybrid methodology

    SciTech Connect

    Zelenka, M.P.

    1992-01-01

    This research explores the possibility of using a two step method of identifying and quantifying air pollution emissions in an urban environment. The procedure uses a mathematical model called Target Transformation Factor Analysis (TTFA) to estimate source profiles using ambient trace element air concentration data. A source profile is analogous to a fingerprint since it is unique to each source of air pollution. It is important to use source profiles that are measured or estimated for the specific location under study. The profiles estimated by TTFA are then employed in a Chemical Mass Balance (CMB) source apportionment analysis for the airshed. Other known sources are estimated using source signatures from the literature. Applying the TTFA and CMB models in this fashion is called receptor modeling. Generically, a receptor model is the combination of measured air pollution concentration data with a numerical technique which apportions the measured air pollution among distinct source types. The results show that TTFA can be used to provide quantitative estimates of air pollution source profiles for an urban center in China. The number of profiles for unique source types was limited for this data set since emissions from certain types of sources co-varied during each sampling day. Consequently, the CMB analyses that applied the TTFA source profiles needed to be supplemented with standard US EPA source profiles. The application of TTFA for estimating source profiles from ambient data and the subsequent use of those profiles in CMB analyses with source profiles obtained from the EPA's source library can improve the statistical quality of the source apportionment analysis. TTFA can identify source categories of airborne pollution for specific cities, as well as give quantitative data on the composition of the emissions from those source types.

  8. Effects of water scarcity and chemical pollution in aquatic ecosystems: State of the art.

    PubMed

    Arenas-Sánchez, Alba; Rico, Andreu; Vighi, Marco

    2016-12-01

    Water scarcity is an expanding climate and human related condition, which drives and interacts with other stressors in freshwater ecosystems such as chemical pollution. In this study we provide an overview of the existing knowledge regarding the chemical fate, biological dynamics and the ecological risks of chemicals under water scarcity conditions. We evaluated a total of 15 studies dealing with the combined effects of chemicals and water scarcity under laboratory conditions and in the field. The results of these studies have been elaborated in order to evaluate additive, synergistic or antagonistic responses of the studied endpoints. As a general rule, it can be concluded that, in situations of water scarcity, the impacts of extreme water fluctuations are much more relevant than those of an additional chemical stressor. Nevertheless, the presence of chemical pollution may result in exacerbated ecological risks in some particular cases. We conclude that further investigations on this topic would take advantage on the focus on some specific issues. Experimental (laboratory and model ecosystem) studies should be performed on different biota groups and life stages (diapausing eggs, immature stages), with particular attention to those including traits relevant for the adaptation to water scarcity. More knowledge on species adaptations and recovery capacity is essential to predict community responses to multiple stressors and to assess the community vulnerability. Field studies should be performed at different scales, particularly in lotic systems, in order to integrate different functional dynamics of the river ecosystem. Combining field monitoring and experimental studies would be the best option to reach more conclusive, causal relationships on the effects of co-occurring stressors. Contribution of these studies to develop ecological models and scenarios is also suggested as an improvement for the prospective aquatic risk assessment of chemicals in (semi-)arid areas.

  9. Integrated assessment of oil pollution using biological monitoring and chemical fingerprinting.

    PubMed

    Lewis, Ceri; Guitart, Carlos; Pook, Chris; Scarlett, Alan; Readman, James W; Galloway, Tamara S

    2010-06-01

    A full assessment of the impact of oil and chemical spills at sea requires the identification of both the polluting chemicals and the biological effects they cause. Here, a combination of chemical fingerprinting of surface oils, tissue residue analysis, and biological effects measures was used to explore the relationship between spilled oil and biological impact following the grounding of the MSC Napoli container ship in Lyme Bay, England in January 2007. Initially, oil contamination remained restricted to a surface slick in the vicinity of the wreck, and there was no chemical evidence to link biological impairment of animals (the common limpet, Patella vulgata) on the shore adjacent to the oil spill. Secondary oil contamination associated with salvage activities in July 2007 was also assessed. Chemical analyses of aliphatic hydrocarbons and terpanes in shell swabs taken from limpet shells provided an unequivocal match with the fuel oil carried by the ship. Corresponding chemical analysis of limpet tissues revealed increased concentrations of polycyclic aromatic hydrocarbons (PAHs) dominated by phenanthrene and C1 to C3 phenanthrenes with smaller contributions from heavier molecular weight PAHs. Concurrent ecotoxicological tests indicated impairment of cellular viability (p < 0.001), reduced immune function (p < 0.001), and damage to DNA (Comet assay, p < 0.001) in these animals, whereas antioxidant defenses were elevated relative to un-oiled animals. These results illustrate the value of combining biological monitoring with chemical fingerprinting for the rapid identification of spilled oils and their sublethal impacts on biota in situ.

  10. Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra, Ghana

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng; Dionisio, Kathie L.; Verissimo, Thiago G.; Kerr, Americo S.; Coull, Brent; Arku, Raphael E.; Koutrakis, Petros; Spengler, John D.; Hughes, Allison F.; Vallarino, Jose; Agyei-Mensah, Samuel; Ezzati, Majid

    2013-12-01

    The highest levels of air pollution in the world now occur in developing country cities, where air pollution sources differ from high-income countries. We analyzed particulate matter (PM) chemical composition and estimated the contributions of various sources to particle pollution in poor and affluent neighborhoods of Accra, Ghana. Elements from earth’s crust were most abundant during the seasonal Harmattan period between late December and late January when Saharan dust is carried to coastal West Africa. During Harmattan, crustal particles accounted for 55 μg m-3 (37%) of fine particle (PM2.5) mass and 128 μg m-3 (42%) of PM10 mass. Outside Harmattan, biomass combustion, which was associated with higher black carbon, potassium, and sulfur, accounted for between 10.6 and 21.3 μg m-3 of fine particle mass in different neighborhoods, with its contribution largest in the poorest neighborhood. Other sources were sea salt, vehicle emissions, tire and brake wear, road dust, and solid waste burning. Reducing air pollution in African cities requires policies related to energy, transportation and urban planning, and forestry and agriculture, with explicit attention to impacts of each strategy in poor communities. Such cross-sectoral integration requires emphasis on urban environment and urban poverty in the post-2015 Development Agenda.

  11. An novel identification method of the environmental risk sources for surface water pollution accidents in chemical industrial parks.

    PubMed

    Peng, Jianfeng; Song, Yonghui; Yuan, Peng; Xiao, Shuhu; Han, Lu

    2013-07-01

    The chemical industry is a major source of various pollution accidents. Improving the management level of risk sources for pollution accidents has become an urgent demand for most industrialized countries. In pollution accidents, the released chemicals harm the receptors to some extent depending on their sensitivity or susceptibility. Therefore, identifying the potential risk sources from such a large number of chemical enterprises has become pressingly urgent. Based on the simulation of the whole accident process, a novel and expandable identification method for risk sources causing water pollution accidents is presented. The newly developed approach, by analyzing and stimulating the whole process of a pollution accident between sources and receptors, can be applied to identify risk sources, especially on the nationwide scale. Three major types of losses, such as social, economic and ecological losses, were normalized, analyzed and used for overall consequence modeling. A specific case study area, located in a chemical industry park (CIP) along the Yangtze River in Jiangsu Province, China, was selected to test the potential of the identification method. The results showed that there were four risk sources for pollution accidents in this CIP. Aniline leakage in the HS Chemical Plant would lead to the most serious impact on the surrounding water environment. This potential accident would severely damage the ecosystem up to 3.8 km downstream of Yangtze River, and lead to pollution over a distance stretching to 73.7 km downstream. The proposed method is easily extended to the nationwide identification of potential risk sources.

  12. Prediction of Toxic Pollution Resulting From Warfare Chemical Munitions Dumped In The Sea

    NASA Astrophysics Data System (ADS)

    Korotenko, K. A.

    A 3-D high-resolution Hydrodynamic/Transport model was developed to predict chemical pollution in marine environment with a special reference to warfare chem- icals dumped in the Baltic Sea. The Flow module was developed on the basis of the Princeton Ocean Model (POM). The grid step is chosen at 1/15Deg and 1/30/Deg along x- and y-axes (that is, about 4.0 km and 3.7 km, respectively). The model grid covers the Baltic from 9.3 to 24.6E and from 53.0 to 60.2N. The Transport module of the model takes the predetermined velocity field and uses the random walk technique to predict the motion of individual particles, the sum of which constitutes a consid- ered chemical agent. Several different approaches for modeling are used for different kind of chemical agents. Basic processes affecting the chemicals to be modeled are hydrolysis, solubility, and microbiological destruction. All available toxicity data re- garding the chemical warfare agents of primary concern and the expected degradation products in the Baltic environment were gathered and summarized. This information was used to compare the toxicities of the different agents and their degradation prod- ucts and to decide which chemicals may represent a toxic threat to the environment. The model was adapted to be used for chemical agents with various characteristics and behavior (as Sarin, Lewsite, Musturd, etc.) in seawaters. Special algorithms are developed to describe nonlinear reactions producing toxic and nontoxic products in result of the warfare agent destruction. Sources of chemical pollution in the sea are considered as steady state (chronic) point and/or distributed releases because princi- pally different two methods were used in dumping CW: 1) concentrated dumping of containers, shells, and bombs together with ships; 2) dispersed dumping of individual containers, shells and aircraft bombs from moving vessels. The model was run with four most recurrent climatic wind fields for the Bornholm and Gotland

  13. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China.

    PubMed

    Duan, Weili; He, Bin

    2015-07-10

    In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs) is a significant issue in China. An emergency response system (ERS) was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP) was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency.

  14. Emergency Response System for Pollution Accidents in Chemical Industrial Parks, China

    PubMed Central

    Duan, Weili; He, Bin

    2015-01-01

    In addition to property damage and loss of lives, environment pollution, such as water pollution and air pollution caused by accidents in chemical industrial parks (CIPs) is a significant issue in China. An emergency response system (ERS) was therefore planned to properly and proactively cope with safety incidents including fire and explosions occurring in the CIPs in this study. Using a scenario analysis, the stages of emergency response were divided into three levels, after introducing the domino effect, and fundamental requirements of ERS design were confirmed. The framework of ERS was composed mainly of a monitoring system, an emergency command center, an action system, and a supporting system. On this basis, six main emergency rescue steps containing alarm receipt, emergency evaluation, launched corresponding emergency plans, emergency rescue actions, emergency recovery, and result evaluation and feedback were determined. Finally, an example from the XiaoHu Chemical Industrial Park (XHCIP) was presented to check on the integrality, reliability, and maneuverability of the ERS, and the result of the first emergency drill with this ERS indicated that the developed ERS can reduce delays, improve usage efficiency of resources, and raise emergency rescue efficiency. PMID:26184260

  15. Exploring the effects of seasonality and chemical pollution on the hepatopancreas transcriptome of the Manila clam.

    PubMed

    Milan, Massimo; Ferraresso, Serena; Ciofi, Claudio; Chelazzi, Guido; Carrer, Claudio; Ferrari, Giorgio; Pavan, Lino; Patarnello, Tomaso; Bargelloni, Luca

    2013-04-01

    The assessment of marine environmental health is a complex but fundamental task both for ecosystem conservation and food safety related to the human consumption of marine products. Manila clams inhabiting the Venice Lagoon constitute an excellent case study for evaluating the effects of complex mixtures of industrial and urban effluents on aquatic organisms. Clams were collected in different seasons at four locations within the Venice Lagoon. The sampling sites were characterized by a range of pollutant concentrations and included Porto Marghera, a highly polluted industrial area where clam harvesting for human consumption is strictly forbidden. Pooled soft tissues were subjected to mass spectroscopy analysis to measure the concentrations of PCDDs/PCDFs/PCBs-DL, PCBs, PBDEs, HCB and PAHs, and pooled digestive gland samples were used for gene expression profiling. While seasonal variation was found to be responsible for the largest proportion of transcriptional changes, significance analysis of microarrays quantitative correlation analysis identified 162 transcripts that were correlated with at least one class of chemicals measured in the samples from the four different sampling sites. Prediction Analysis of Microarrays (PAM) identified a minimal set of seven genes that correctly assigned samples collected in the restricted polluted area (Porto Marghera), independent of the season in which they were collected. An integrated approach combining transcriptomics and chemical analyses of the Manila clam provided a global picture of how Manila clams respond to complex mixtures of xenobiotics and their interplay with other biotic and abiotic factors. We were also able to identify gene expression signatures for different classes of chemicals and a set of robust biomarkers of exposure to these chemicals.

  16. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  17. Water Pollution

    ERIC Educational Resources Information Center

    Bowen, H. J. M.

    1975-01-01

    Deals with water pollution in the following categories: a global view, self purification, local pollution, difficulties in chemical analysis, and remedies for water pollution. Emphasizes the extent to which man's activities have modified the cycles of certain elements. (GS)

  18. Water Pollution

    ERIC Educational Resources Information Center

    Bowen, H. J. M.

    1975-01-01

    Deals with water pollution in the following categories: a global view, self purification, local pollution, difficulties in chemical analysis, and remedies for water pollution. Emphasizes the extent to which man's activities have modified the cycles of certain elements. (GS)

  19. Pollution Comes Home and Gets Personal: Women's Experience of Household Chemical Exposure*

    PubMed Central

    Altman, Rebecca Gasior; Morello-Frosch, Rachel; Brody, Julia Green; Rudel, Ruthann; Brown, Phil; Averick, Mara

    2009-01-01

    We report on interviews conducted with participants in a novel study about environmental chemicals in body fluids and household air and dust. Interviews reveal how personal and collective environmental history influence the interpretation of exposure data, and how participants fashion an emergent understanding of environmental health problems from the articulation of science and experience. To the illness experience literature, we contribute a framework for analyzing a new category of embodied narratives—“exposure experience”—that examines the mediating role of science. We update social scientific knowledge about social responses to toxic chemicals during a period in which science alters public understanding of chemical pollution. This article is among the first published accounts of participants' responses to learning personal exposure data, research identified as critical to environmental science and public health. Our findings raise the importance of reporting even uncertain science and underscore the value of a community-based reporting strategy. PMID:19181047

  20. Pollution comes home and gets personal: women's experience of household chemical exposure.

    PubMed

    Altman, Rebecca Gasior; Morello-Frosch, Rachel; Brody, Julia Green; Rudel, Ruthann; Brown, Phil; Averick, Mara

    2008-12-01

    We report on interviews conducted with participants in a novel study about environmental chemicals in body fluids and household air and dust. Interviews reveal how personal and collective environmental history influence the interpretation of exposure data, and how participants fashion an emergent understanding of environmental health problems from the articulation of science and experience. To the illness experience literature, we contribute a framework for analyzing a new category of embodied narratives--"exposure experience"--that examines the mediating role of science. We update social scientific knowledge about social responses to toxic chemicals during a period in which science alters public understanding of chemical pollution. This article is among the first published accounts of participants' responses to learning personal exposure data, research identified as critical to environmental science and public health. Our findings raise the importance of reporting even uncertain science and underscore the value of a community-based reporting strategy

  1. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects.

    PubMed

    Wang, Tao; Xue, Likun; Brimblecombe, Peter; Lam, Yun Fat; Li, Li; Zhang, Li

    2017-01-01

    High concentrations of ozone in urban and industrial regions worldwide have long been a major air quality issue. With the rapid increase in fossil fuel consumption in China over the past three decades, the emission of chemical precursors to ozone-nitrogen oxides and volatile organic compounds-has increased sharply, surpassing that of North America and Europe and raising concerns about worsening ozone pollution in China. Historically, research and control have prioritized acid rain, particulate matter, and more recently fine particulate matter (PM2.5). In contrast, less is known about ozone pollution, partly due to a lack of monitoring of atmospheric ozone and its precursors until recently. This review summarizes the main findings from published papers on the characteristics and sources and processes of ozone and ozone precursors in the boundary layer of urban and rural areas of China, including concentration levels, seasonal variation, meteorology conducive to photochemistry and pollution transport, key production and loss processes, ozone dependence on nitrogen oxides and volatile organic compounds, and the effects of ozone on crops and human health. Ozone concentrations exceeding the ambient air quality standard by 100-200% have been observed in China's major urban centers such as Jing-Jin-Ji, the Yangtze River delta, and the Pearl River delta, and limited studies suggest harmful effect of ozone on human health and agricultural corps; key chemical precursors and meteorological conditions conductive to ozone pollution have been investigated, and inter-city/region transport of ozone is significant. Several recommendations are given for future research and policy development on ground-level ozone. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Screening chemicals for the potential to be persistent organic pollutants: a case study of Arctic contaminants.

    PubMed

    Brown, Trevor N; Wania, Frank

    2008-07-15

    A large and ever-increasing number of chemicals are used in commerce, and researchers and regulators have struggled to ascertain that these chemicals do not threaten human health or cause environmental or ecological damage. The presence of persistent organic pollutants (POPs) in remote environments such as the Arctic is of special concern and has international regulatory implications. Responding to the need for a way to identify chemicals of high concern, a methodology has been developed which compares experimentally measured properties, or values predicted from chemical structure alone, to a set of screening criteria. These criteria include partitioning properties that allow for accumulation in the physical Arctic environment and in the Arctic human food chain, and resistance to atmospheric oxidation. Atthe same time we quantify the extent of structural resemblance to a group of known Arctic contaminants. Comparison of the substances that are identified by a mechanistic description of the processes that lead to Arctic contamination with those substances that are structurally similar to known Arctic contaminants reveals the strengths and limitations of either approach. Within a data set of more than 100,000 distinct industrial chemicals, the methodology identifies 120 high production volume chemicals which are structurally similarto known Arctic contaminants and/or have partitioning properties that suggest they are potential Arctic contaminants.

  3. Efficiency of stepwise magnetic-chemical site assessment for fly ash derived heavy metal pollution

    NASA Astrophysics Data System (ADS)

    Cao, Liwan; Appel, Erwin; Rösler, Wolfgang; Magiera, Tadeusz

    2015-11-01

    Previous works revealed a close relationship between magnetic susceptibility (MS) and heavy metal (HM) contents originating from industrial sources. However, despite general statements on the usefulness of magnetic mapping, the benefit of this procedure for geochemistry was not quantified yet. We present a study on fly ash pollution in soil around a coal-burning power plant complex and simulate a stepwise approach of magnetic pre-screening and subsequent targeted sampling for chemical analysis. The aim of this study is not to discuss correlations between MS and HM, but to show that a combined stepwise magnetic-chemical approach is the most efficient way for outlining HM contamination. In order to provide quantitative evidence, we explored map similarities of spatial HM distributions based on magnetochemical data and chemical data only. We determined 3-D triangular planes defined by categorized HM values at the sampling coordinates and calculated the average dihedral angle of the normal vectors as a similarity result. The study shows that the `Targeted' HM map (selection of 30 sites based magnetic pre-screening) has a higher similarity with the `True' Pollution HM map (85 sites) than HM maps resulting from site selections (30 sites) without using magnetic pre-screening information.

  4. Virtual screening for environmental pollutants: structure-activity relationships applied to a database of industrial chemicals.

    PubMed

    Oberg, Tomas

    2006-04-01

    The current risk paradigm calls for individual consideration and evaluation of each separate environmental pollutant, but this does not reflect accurately the cumulative impact of anthropogenic chemicals. In the present study, previously validated structure-activity relationships were used to estimate simultaneously the baseline toxicity and atmospheric persistence of approximately 50,000 compounds. The results from this virtual screening indicate fairly stable statistical distributions among small anthropogenic compounds. The baseline toxicity was not changed much by halogen substitution, but a distinct increase seemed to occur in the environmental persistence with increased halogenation. The ratio of the atmospheric half-lives to the median lethal concentrations provides a continuous scale with which to rank and summarize the incremental environmental impacts in a mixture-exposure situation. Halogenated compounds as a group obtained a high ranking in this data set, with well-known pollutants at the very top: DDT metabolites and derivatives, polychlorinated biphenyls, diphenyl ethers and dibenzofurans, chlorinated paraffins, chlorinated benzenes and derivatives, hydrochlorofluorocarbons, and dichlorononylphenol. Environmentally friendly chemicals that obtained the lowest rank are nearly all hydroxylated and water-soluble. Virtual screening can assist with "green chemistry" in designing safe and degradable products and enable assessment of the efficiency in chemicals risk management.

  5. Atmospheric pollution history at Linfen (China) uncovered by magnetic and chemical parameters of sediments from a water reservoir.

    PubMed

    Ma, Mingming; Hu, Shouyun; Cao, Liwan; Appel, Erwin; Wang, Longsheng

    2015-09-01

    We studied magnetic and chemical parameters of sediments from sediments of a water reservoir at Linfen (China) in order to quantitatively reconstruct the atmospheric pollution history in this region. The results show that the main magnetic phases are magnetite and maghemite originating from the surrounding catchment and from anthropogenic activities, and there is a significant positive relationship between magnetic concentration parameters and heavy metals concentrations, indicating that magnetic proxies can be used to monitor the anthropogenic pollution. In order to uncover the atmospheric pollution history, we combined the known events of environmental improvement with variations of magnetic susceptibility (χ) and heavy metals along the cores to obtain a detailed chronological framework. In addition, air comprehensive pollution index (ACPI) was reconstructed from regression equation among magnetic and chemical parameters as well as atmospheric monitoring data. Based on these results, the atmospheric pollution history was successfully reconstructed.

  6. Helminths and protozoans of aquatic organisms as bioindicators of chemical pollution.

    PubMed

    Vidal Martínez, V M

    2007-09-01

    There is no doubt that the aquatic environments receive large quantities of chemicals as consequence of human activities and that those substances have a detrimental effect on human health. Despite the obvious need for effective disposal of these substances, we need to understand and prevent the outcome of harmful environmental exposures. Thus, we need biomarkers and bioindicators to advance our understanding to these harmful exposures and their biological effects. In the last three decades a large number of publications has suggested that aquatic organisms and their parasites (mainly helminths and ciliate protozoans) are useful bioindicators of chemical pollution. However, the main weakness of this approach is that after exposure the population size of these parasites can increase or decrease without a consistent pattern. I suggest that this is in part due to the lack of focus on the correct spatial or temporal scales at which the environment is acting over our study object. Thus, I propose to use spatially explicit (= georeferenced) data for determining whether there is spatial structure in our study area. Spatial structure is the tendency of nearby samples to have attribute values more similar than those farther apart. These attributes are shaped by environmental variables acting at specific spatial and temporal scales. Thus, I suggest to consider these tools for determining the correct spatial or temporal scales of study, but also to record pollutant concentrations, bioindicators, biomarkers and parasites at individual host level. Combining this information with long-term monitoring programs is likely to improve our understanding of the effects of chemical pollutants over the aquatic environments.

  7. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.

    PubMed

    Wang, Hao; Jiang, Dengling; Yang, Yong; Cao, Guoping

    2013-01-01

    Four subsurface constructed wetlands were built to treat the secondary effluent of a wastewater treatment plant in Tangshan, China. The chemical pollutant indexes of chemical oxygen demand (COD) were analyzed to evaluate the removal efficiency of organic pollutants from the secondary effluent of the wastewater treatment plant. In all cases, the subsurface constructed wetlands were efficient in treating organic pollutants. Under the same hydraulic loading condition, the horizontal flow wetlands exhibited better efficiency of COD removal than vertical flow wetlands: the removal rates in horizontal flow wetlands could be maintained at 68.4 ± 2.42% to 92.2 ± 1.61%, compared with 63.8 ± 1.19% to 85.0 ± 1.25% in the vertical flow wetlands. Meanwhile, the chemical reaction kinetics of organic pollutants was analyzed, and the results showed that the degradation courses of the four subsurface wetlands all corresponded with the first order reaction kinetics to a large extent.

  8. Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution.

    PubMed

    Kwon, Bum Gun; Koizumi, Koshiro; Chung, Seon-Yong; Kodera, Yoichi; Kim, Jong-Oh; Saido, Katsuhiko

    2015-12-30

    Polystyrene (PS) plastic marine pollution is an environmental concern. However, a reliable and objective assessment of the scope of this problem, which can lead to persistent organic contaminants, has yet to be performed. Here, we show that anthropogenic styrene oligomers (SOs), a possible indicator of PS pollution in the ocean, are found globally at concentrations that are higher than those expected based on the stability of PS. SOs appear to persist to varying degrees in the seawater and sand samples collected from beaches around the world. The most persistent forms are styrene monomer, styrene dimer, and styrene trimer. Sand samples from beaches, which are commonly recreation sites, are particularly polluted with these high SOs concentrations. This finding is of interest from both scientific and public perspectives because SOs may pose potential long-term risks to the environment in combination with other endocrine disrupting chemicals. From SOs monitoring results, this study proposes a flow diagram for SOs leaching from PS cycle. Using this flow diagram, we conclude that SOs are global contaminants in sandy beaches around the world due to their broad spatial distribution.

  9. [HEALTH LOSSES FROM MYOCARDIAL INFARCTION CAUSED BY AIR CHEMICAL POLLUTION OF THE INDUSTRIAL CENTRE].

    PubMed

    Artamonova, G V; Maksimov, S A; Tabakaev, M V; Shapovalova, E B

    2015-01-01

    Losses of health from myocardial infarction in the city of Kemerovo were estimated accordingly to the disability-adjusted life year (DALY) index, as well as its compartments: YLL (years lost due to premature death) and YLD (years lost disability). When ranking districts of the city of Kemerovo both in terms of chemicals exposure and the value of the DALY index there was revealed the opposite direction of these indices. The performance of the correlation analysis of health losses with concentrations of chemical contaminants allowed to reveal a feedback between them among the elderly patients (60 years and older) and direct--in young (up to 45 years old) cases. This fact probably may attest to the significant contribution of the environmental pollution in the process of development and progression of atherosclerotic changes in the young population.

  10. Pollution control in pulp and paper industrial effluents using integrated chemical-biological treatment sequences.

    PubMed

    El-Bestawy, Ebtesam; El-Sokkary, Ibrahim; Hussein, Hany; Keela, Alaa Farouk Abu

    2008-11-01

    The main objective of the present study was to improve the quality of pulp and paper industrial wastewater of two local mills RAKTA and El-Ahlia, Alexandria, Egypt, and to bring their pollutant contents to safe discharge levels. Quality improvement was carried out using integrated chemical and biological treatment approaches after their optimization. Chemical treatment (alum, lime, and ferric chloride) was followed by oxidation using hydrogen peroxide and finally biological treatment using activated sludge (90 min for RAKTA and 60 min for El-Ahlia effluents). Chemical coagulation produced low-quality effluents, while pH adjustment during coagulation treatment did not enhance the quality of the effluents. Maximum removal of the tested pollutants was achieved using the integrated treatment and the pollutants recorded residual concentrations (RCs) of 34.67, 17.33, 0.13, and 0.43 mg/l and 15.0, 11.0, 0.0, and 0.13 mg/l for chemical oxygen demand (COD), biochemical oxygen demand (BOD5), tannin and lignin, and silica in RAKTA and El-Ahlia effluents, respectively, all of which were below their maximum permissible limits (MPLs) for the safe discharge into water courses. Specific oxygen uptake rate (SOUR) and sludge volume index (SVI) values reflect good conditions and healthy activated sludge. Based on the previous results, optimized conditions were applied as bench scale on the raw effluents of RAKTA and El-Ahlia via the batch chemical and the biological treatment sequences proposed. For RAKTA effluents, the sequence was as follows: (1) coagulation with 375 mg/l FeCl3, (2) oxidation with 50 mg/l hydrogen peroxide, and (3) biological treatment using activated sludge with 2,000 mg/l initial concentration and 90 min hydraulic retention time (HRT), while for El-Ahlia raw effluents, the sequence was (1) coagulation with 250 mg/l FeCl3, (2) oxidation with 45 mg/l hydrogen peroxide, and (3) biological treatment using activated sludge with 2,000 mg/l initial concentration and 60

  11. Diagnosis of Chemical Reactivity and Pollution Sources from Particulate Trace Metal Distributions in Estuaries

    NASA Astrophysics Data System (ADS)

    Turner, A.

    1999-02-01

    A simple approach is outlined for the diagnosis of chemical reactivity and pollution sources from distributions of suspended particulate constituents in estuaries of low turbidity and limited bed-water column particle exchange. The approach is demonstrated using acetic acid-extractable particulate trace metal data for the Clyde Estuary, where water and particle mixing in the vertical is restricted by a strong pycnocline, resuspension is limited by slow subsurface currents and internal sediment cycling is inhibited by the topography of the outer estuary. The salinity distributions of particulate Fe and Mn result from end-member particle mixing, modified by the geochemical mechanisms controlling their particle-water exchange (salt-induced flocculation of riverine, Fe-bearing colloidal material and autocatalytic oxidation-sorption of dissolved Mn). The axial distributions of particulate Cu, Cr, Pb and Zn are, additionally, affected by external inputs to the tidal estuary. The magnitudes of internal (e.g. particle-water exchange) or external (e.g. pollution) sources are calculated from the deviation of metal concentrations from a theoretical dilution line adjoining estuarine end-members, via chemical mass balances and empirical equations defining particle-water partitioning as a function of salinity. Calculated particle-water exchanges of Fe and Mn are compatible with independent dissolved metal measurements in the Clyde Estuary. Calculated external sources of Cu and Pb are in reasonable agreement with monitored trace metal input data to the estuary, but discrepancies exist between calculated and monitored external sources of Cr and Zn because of the significance of unmonitored inputs and chemical reactivity for these metals. Although suspended particulate trace metal concentrations in the Clyde are among the highest of industrialized estuaries in the U.K., it is argued that this, in part, reflects the inability of the Clyde to buffer pollution inputs because of the

  12. Pollution-Induced Community Tolerance To Diagnose Hazardous Chemicals in Multiple Contaminated Aquatic Systems.

    PubMed

    Rotter, Stefanie; Gunold, Roman; Mothes, Sibylle; Paschke, Albrecht; Brack, Werner; Altenburger, Rolf; Schmitt-Jansen, Mechthild

    2015-08-18

    Aquatic ecosystems are often contaminated with large numbers of chemicals, which cannot be sufficiently addressed by chemical target analyses. Effect-directed analysis (EDA) enables the identification of toxicants in complex contaminated environmental samples. This study suggests pollution-induced community tolerance (PICT) as a confirmation tool for EDA to identify contaminants which actually impact on local communities. The effects of three phytotoxic compounds local periphyton communities, cultivated at a reference (R-site) and a polluted site (P-site), were assessed to confirm the findings of a former EDA study on sediments. The sensitivities of R- and P-communities to prometryn, tributyltin (TBT) and N-phenyl-2-naphthylamine (PNA) were quantified in short-term toxicity tests and exposure concentrations were determined. Prometryn and PNA concentrations were significantly higher at the P-site, whereas TBT concentrations were in the same range at both sites. Periphyton communities differed in biomass, but algal class composition and diatom diversity were similar. Community tolerance of P-communities was significantly enhanced for prometryn, but not for PNA and TBT, confirming site-specific effects on local periphyton for prometryn only. Thus, PICT enables in situ effect confirmation of phytotoxic compounds at the community level and seems to be suitable to support confirmation and enhance ecological realism of EDA.

  13. Chemical pollutants in field-collected canvasback tissues, eggs, and food materials

    USGS Publications Warehouse

    White, D.H.; Dieter, M.P.; Stendell, R.C.

    1976-01-01

    In 1972 studies began on the levels of environmental pollutants in canvasback tissues, eggs, and food items. The purpose of the studies were to determine if the levels of toxic chemicals found in canvasbacks were of the magnitude to cause problems affecting reproduction and survival. Overall, levels of organochlorine pesticides and PCB's were low in canvasbacks and their eggs. Some individual birds, however, laid eggs with elevated residues of DDE (12.1 ppm) or PCB's (28.6 ppm). There was no significant difference between eggshell thicknesses of 1972-73 and pre-1946 collections. About 12% of the canvasbacks analyzed had elevated levels of blood lead with reduced ALAD enzyme activity. Adult canvasbacks collected from the Chesapeake Bay in 1975 had moderate to high levels of cadmium in their kidneys. Cadmium, in excessive amounts is very toxic and can curtail spermatogenesis in male birds. Although no single toxic chemical found in wild canvasbacks appears to be a major factor in population declines, the cumulative effects of sublethal levels of all the pollutants may render birds susceptible to disease, hunting pressure or predation.

  14. Particle size and chemical constituents of ambient particulate pollution associated with cardiovascular mortality in Guangzhou, China.

    PubMed

    Lin, Hualiang; Tao, Jun; Du, Yaodong; Liu, Tao; Qian, Zhengmin; Tian, Linwei; Di, Qian; Rutherford, Shannon; Guo, Lingchuan; Zeng, Weilin; Xiao, Jianpeng; Li, Xing; He, Zhihui; Xu, Yanjun; Ma, Wenjun

    2016-01-01

    Though significant associations between particulate matter (PM) air pollution and cardiovascular diseases have been widely reported, it remains unclear what characteristics, such as particle size and chemical constituents, may be responsible for the effects. A time-series model was applied to examine the cardiovascular effects of particle size (for the period of 2009-2011) and chemical constituents (2007-2010) in Guangzhou, we controlled for potential confounders in the model, such as time trends, day of the week, public holidays, meteorological factors and influenza epidemic. We found significant associations of cardiovascular mortality with PM10, PM2.5 and PM1; the excess risk (ER) was 6.10% (95% CI: 1.76%, 10.64%), 6.11% (95% CI: 1.76%, 10.64%) and 6.48% (95% CI: 2.10%, 11.06%) for per IQR increase in PM10, PM2.5 and PM1 at moving averages for the current day and the previous 3 days (lag03), respectively. We did not find significant effects of PM2.5-10 and PM1-2.5. For PM2.5 constituents, we found that organic carbon, elemental carbon, sulfate, nitrate and ammonium were significantly associated with cardiovascular mortality, the corresponding ER for an IQR concentration increase at lag03 was 1.13% (95% CI: 0.10%, 2.17%), 2.77% (95% CI: 0.72%, 4.86%), 2.21% (95% CI: 1.05%, 3.38%), 1.98% (95% CI: 0.54%, 3.44%), and 3.38% (95% CI: 1.56%, 5.23%), respectively. These results were robust to adjustment of other air pollutants and they remained consistent in various sensitivity analyses by changing model parameters. Our study suggests that PM1 and constituents from combustion and secondary aerosols might be important characteristics of PM pollution associated with cardiovascular mortality in Guangzhou.

  15. Joint actions of environmental nonionizing electromagnetic fields and chemical pollution in cancer promotion.

    PubMed Central

    Adey, W R

    1990-01-01

    Studies of environmental electromagnetic (EM) field interactions in tissues have contributed to a new understanding of both normal growth and the biology of cancer in cell growth. From cancer research comes a floodtide of new knowledge about the disruption of communication by cancer-promoting chemicals with an onset of unregulated growth. Bioelectromagnetic research reveals clear evidence of joint actions at cell membranes of chemical cancer promoters and environmental electromagnetic fields. The union of these two disciplines has resulted in the first major new approach to tumor formation in 75 years, directing attention to dysfunctions in inward and outward streams of signals at cell membranes, rather than to damage DNA in cell nuclei, and to synergic actions of chemical pollutants and environmental electromagnetic fields. We are witnesses and, in great measure, participants in one of the great revolutions in the history of biology. In little more than a century, we have moved from organs, to tissues, to cells, and finally to the molecules that are the elegant fabric of living tissues. Today, we stand at a new frontier. It may be more difficult to comprehend, but it is far more significant; for it is at the atomic level, rather than the molecular, that physical, rather than chemical, processes appear to shape the flow of signals that are at the essence of living matter. To pursue these problems in the environment and in the laboratory, our needs for further research with appropriate budgets are great.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2205491

  16. Joint actions of environmental nonionizing electromagnetic fields and chemical pollution in cancer promotion.

    PubMed

    Adey, W R

    1990-06-01

    Studies of environmental electromagnetic (EM) field interactions in tissues have contributed to a new understanding of both normal growth and the biology of cancer in cell growth. From cancer research comes a floodtide of new knowledge about the disruption of communication by cancer-promoting chemicals with an onset of unregulated growth. Bioelectromagnetic research reveals clear evidence of joint actions at cell membranes of chemical cancer promoters and environmental electromagnetic fields. The union of these two disciplines has resulted in the first major new approach to tumor formation in 75 years, directing attention to dysfunctions in inward and outward streams of signals at cell membranes, rather than to damage DNA in cell nuclei, and to synergic actions of chemical pollutants and environmental electromagnetic fields. We are witnesses and, in great measure, participants in one of the great revolutions in the history of biology. In little more than a century, we have moved from organs, to tissues, to cells, and finally to the molecules that are the elegant fabric of living tissues. Today, we stand at a new frontier. It may be more difficult to comprehend, but it is far more significant; for it is at the atomic level, rather than the molecular, that physical, rather than chemical, processes appear to shape the flow of signals that are at the essence of living matter. To pursue these problems in the environment and in the laboratory, our needs for further research with appropriate budgets are great.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. The Numerical Simulation of Coupling Behavior of Soil with Chemical Pollutant Effects

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Li, X. K.; Tang, L. Q.

    2010-05-01

    The coupling behavior of clay plays a role in the integrity of clay barriers used in landfills. The clay barriers are subjected to mechanical and thermal effects coupled with hydraulic behavior, also, if the leachates become in contact with the clay liner, chemical effects may lead to some drastic changes in the properties of the clay. A numerical method to simulate the coupling behavior of soil with chemical pollutant effects is presented. Within the framework of Gens-Alonso model describing the constitutive behavior of unsaturated clay presented in reference[1], basing on the work of Wu[2] and Hueckel[3], a constitutive model describing the chemo-thermo-hydro-mechanical(CTHM) coupling behavior of clays in contact with a single organic contaminant is presented. The thermical softening and chemical softening is considered in the presented model. The strain arising in the material due to chemical and thermical effects can be decomposed into two parts: elastic expansion and plastic compaction. The chemical effects are described in terms of the mass concentration of the contaminant. The increases in temperature and contaminant concentration cause decreases of the pre-consolidation pressure and the cohesion. The mechanisms are called thermical softening and chemical softening. The presented coupled CTHM constitutive model has been integrated into the coupled thermo-hydro-mechanical mathematical model including contaminant transport in porous media. To solve the equilibrium equations, the grogram of finite element methods is developed with a stagger algorithm. The mechanisms taking place due to the coupling behaviour of the clay with a single contaminant solute are analysed with the presented numerical method.

  18. [AOX Pollution in Wastewater Treatment Process of Dyeing and Dyestuff Chemical Industries].

    PubMed

    Shen, Yang-yang; Liu, Rui; Xu, Can-can; Shu, Xiao-ming; Xu, Jiang-jun; Lan, Ya-qiong; Chen, Lü-jun

    2015-09-01

    Selecting six large-scale dyeing factories and four large-scale dyestuff chemical factories in the well-developed Yangtze River Delta region, this study aimed to investigate the AOX pollution status in the raw wastewater as well as in the activated sludge treatment system. The components of AOX were characterized by GC-MS. Results showed that AOX concentration was low in wastewater from the six dyeing enterprises, ranging 0. 15-1. 62 mg.L-1 in the raw wastewater and 0. 06-1. 30 mg.L-1 in the biologically treated effluent. All the biologically treated effluent met the emission limits of 8 mg.L-1 in the Discharge Standard of Water Pollutants for Dyeing and Finishing of Textile Industry. Sludge in five factories with AOX was below 621 mg.kg-1, only one factory was with high AOX concentration of 3 280 mg.kg-1. By comparison, AOX concentration greatly varied between the wastewater from dyestuff chemical factories, was 1. 70 mg.L-1 to 78. 72 mg.L-1 in the raw wastewater and was 1. 88 mg.L-1 to 33. 11 mg.L-1 in the biologically treated effluent. AOX concentration in the activated sludge was as high as 960-2,297 mg.kg-1. Chlorobenzenes, chloronitrobenzenes, chloroanilines, chlorine nitroanilines and halophenols were typical TOX components detectable in the dyestuff chemical wastewater. Halophenols and chlorine nitroanilines could be efficiently removed. Single chloroanilines and single chloronitrobenzenes seemed to be easier removable than polychlorinated anilines and polychlorinated nitrobenzenes. Polychlorinated benzenes were also easily removal but the products chlorobenzene was hard to remove.

  19. Aircraft measurements over Europe of an air pollution plume from Southeast Asia - aerosol and chemical characterization

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Huntrieser, H.; Mannstein, H.; McMillan, W. W.; Petzold, A.; Schlager, H.; Weinzierl, B.

    2007-02-01

    An air pollution plume from Southern and Eastern Asia, including regions in India and China, was predicted by the FLEXPART particle dispersion model to arrive in the upper troposphere over Europe on 24-25 March 2006. According to the model, the plume was exported from Southeast Asia six days earlier, transported into the upper troposphere by a warm conveyor belt, and travelled to Europe in a fast zonal flow. This is confirmed by the retrievals of carbon monoxide (CO) from AIRS satellite measurements, which are in excellent agreement with the model results over the entire transport history. The research aircraft DLR Falcon was sent into this plume west of Spain on 24 March and over Southern Europe on 25 March. On both days, the pollution plume was found close to the predicted locations and, thus, the measurements taken allowed the first detailed characterization of the aerosol content and chemical composition of an anthropogenic pollution plume after a nearly hemispheric transport event. The mixing ratios of CO, reactive nitrogen (NOy) and ozone (O3) measured in the Asian plume were all clearly elevated over a background that was itself likely elevated by Asian emissions: CO by 17-34 ppbv on average (maximum 60 ppbv) and O3 by 2-9 ppbv (maximum 22 ppbv). Positive correlations existed between these species, and a ΔO3/ΔCO slope of 0.25 shows that ozone was formed in this plume, albeit with moderate efficiency. Nucleation mode and Aitken particles were suppressed in the Asian plume, whereas accumulation mode aerosols were strongly elevated and correlated with CO. The suppression of the nucleation mode was likely due to the large pre-existing aerosol surface of the transported larger particles. Super-micron particles, likely desert dust, were found in part of the Asian pollution plume and also in surrounding cleaner air. The aerosol light absorption coefficient was enhanced in the plume (average values for individual plume encounters 0.25-0.70 Mm-1), as was the

  20. Aircraft measurements over Europe of an air pollution plume from Southeast Asia - aerosol and chemical characterization

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Forster, C.; Huntrieser, H.; Mannstein, H.; McMillan, W. W.; Petzold, A.; Schlager, H.; Weinzierl, B.

    2006-12-01

    An air pollution plume from Southern and Eastern Asia, including regions in India and China, was predicted by the FLEXPART particle dispersion model to arrive in the upper troposphere over Europe on 24-25 March 2006. According to the model, the plume was exported from Southeast Asia only six days earlier, transported into the upper troposphere by a warm conveyor belt, and travelled to Europe in a fast zonal flow. This is confirmed by the retrievals of carbon monoxide (CO) from AIRS satellite measurements, which are in excellent agreement with the model results over the entire transport history. The research aircraft DLR Falcon was sent into this plume west of Spain on 24 March and over Southern Europe on 25 March. On both days, the pollution plume was indeed found close to the predicted locations and, thus, the measurements taken allowed the first detailed characterization of the aerosol content and chemical composition of an anthropogenic pollution plume after a nearly hemispheric transport event. The mixing ratios of CO, reactive nitrogen (NOy) and ozone (O3) measured in the Asian plume were all clearly elevated over a background that was itself likely elevated by Asian emissions: CO by 17-34 ppbv on average (maximum 60 ppbv) and O3 by 2-9 ppbv (maximum 22 ppbv). Positive correlations existed between these species, and a ΔO3/ΔCO slope of 0.25 shows that ozone was formed in this plume, albeit with moderate efficiency. Nucleation mode and Aitken particles were suppressed in the Asian plume, whereas accumulation mode aerosols were strongly elevated and correlated with CO. The suppression of the nucleation mode was likely due to the large pre-existing aerosol surface due to the transported larger particles. Super-micron particles, likely desert dust, were found in part of the Asian pollution plume and also in surrounding cleaner air. The aerosol light absorption coefficient was enhanced in the plume (average values for individual plume encounters 0.25-0.70 Mm-1

  1. The impact of chemical pollution on the resilience of soils under multiple stresses: A conceptual framework for future research.

    PubMed

    Schaeffer, Andreas; Amelung, Wulf; Hollert, Henner; Kaestner, Matthias; Kandeler, Ellen; Kruse, Jens; Miltner, Anja; Ottermanns, Richard; Pagel, Holger; Peth, Stephan; Poll, Christian; Rambold, Gerhard; Schloter, Michael; Schulz, Stefanie; Streck, Thilo; Roß-Nickoll, Martina

    2016-10-15

    Soils are faced with man-made chemical stress factors, such as the input of organic or metal-containing pesticides, in combination with non-chemical stressors like soil compaction and natural disturbance like drought. Although multiple stress factors are typically co-occurring in soil ecosystems, research in soil sciences on this aspect is limited and focuses mostly on single structural or functional endpoints. A mechanistic understanding of the reaction of soils to multiple stressors is currently lacking. Based on a review of resilience theory, we introduce a new concept for research on the ability of polluted soil (xenobiotics or other chemical pollutants as one stressor) to resist further natural or anthropogenic stress and to retain its functions and structure. There is strong indication that pollution as a primary stressor will change the system reaction of soil, i.e., its resilience, stability and resistance. It can be expected that pollution affects the physiological adaption of organisms and the functional redundancy of the soil to further stress. We hypothesize that the recovery of organisms and chemical-physical properties after impact of a follow-up stressor is faster in polluted soil than in non-polluted soil, i.e., polluted soil has a higher dynamical stability (dynamical stability=1/recovery time), whereas resilience of the contaminated soil is lower compared to that of not or less contaminated soil. Thus, a polluted soil might be more prone to change into another system regime after occurrence of further stress. We highlight this issue by compiling the literature exemplarily for the effects of Cu contamination and compaction on soil functions and structure. We propose to intensify research on effects of combined stresses involving a multidisciplinary team of experts and provide suggestions for corresponding experiments. Our concept offers thus a framework for system level analysis of soils paving the way to enhance ecological theory.

  2. Characteristics of aerosol size distributions and chemical compositions during wintertime pollution episodes in Beijing

    NASA Astrophysics Data System (ADS)

    Liu, Zirui; Hu, Bo; Zhang, Junke; Yu, Yangchun; Wang, Yuesi

    2016-02-01

    To characterize the features of particle pollution, continuous measurements of particle number size distributions and chemical compositions were performed at an urban site in Beijing in January 2013. The particle number and volume concentration from 14 nm to 1000 nm were (37.4 ± 15.3) × 103 cm- 3 and (85.2 ± 65.6) μm3 cm- 3, respectively. N-Ait (Aitken mode) particles dominated the number concentration, whereas N-Acc (accumulation mode) particles dominated the volume concentration. Submicron particles were generally characterized by a high content of organics and SO42 -, and a low level of NO3- and Cl-. Two types of pollution episodes were observed, characterized by the "explosive growth" (EXP) and "sustained growth" (SUS) of PM2.5. Fine particles greater than 100 nm dominated the volume concentration during the ends of these pollution episodes, shifting the maximum of the number size distribution from 60 nm to greater than 100 nm in a few hours (EXP) or a few days (SUS). Secondary transformation is the main reason for the pollution episodes; SO42 -, NO3- and NH4+ (SNA) accounted for approximately 42% (EXP) and greater than 60% (SUS) of the N-Acc particle mass increase. The size distributions of particulate organics and SNA varied on timescales of hours to days, the characteristics of which changed from bimodal to unimodal during the evolution of haze episodes. The accumulation mode (peaking at approximately 500-700 nm) was dominated by organics that appeared to be internally mixed with nitrate or sulfate. The sulfate was most likely formed via heterogeneous reactions, because the SOR was constant under dry conditions (RH < 50%) and began to increase when RH > 50%, suggesting an important contribution from heterogeneous reactions with abundant aerosol water under wet conditions. Finally, the correlations between [NO3-]/[SO42 -] and [NH4+]/[SO42 -] suggest that the homogenous reaction between HNO3 and NH3 dominated the formation of nitrate under conditions of

  3. Chemical, biological, and ecotoxicological assessment of pesticides and persistent organic pollutants in the Bahlui River, Romania.

    PubMed

    Neamtu, Mariana; Ciumasu, Ioan M; Costica, Naela; Costica, Mihai; Bobu, Magda; Nicoara, Mircea N; Catrinescu, Cezar; van Slooten, Kristin Becker; De Alencastro, Luiz F

    2009-08-01

    Current knowledge on environmental impacts of industrial activities in Romania, particularly persistent organic pollutants (POPs), indicates that environmental standards of the European Union are not systematically met. In our study area, additional sources of POPs are agriculture and domestic wastes. Very scarce information is available upon environmental contaminations and effects. In the present study, we investigated the chemical pollution and their eventual impact on the ecosystem by measuring POPs and by using biological indicators of pollution. The survey was carried out at six main sample sites along the Bahlui River. Sediments were chemically analysed for their content in polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs)-hexachlorocyclohexanes (HCHs) isomers and the dichlorodiphenyl trichloroethane (DDT) family. River water was biologically monitored at the level of phytoplankton and benthic invertebrates' communities. Water samples from six locations have been analyzed for algal species composition and correspondence to various water quality indices. Biological samples have been taken from the same locations so as to calculate the macroinvertebrate indices. In the most polluted areas, as revealed by previous methods, toxicity was tested by exposing the green alga Pseudokirchneriella subcapitata and the cladoceran Daphnia magna to various dilutions of water sample. Important concentrations of POPs were identified only in sediments at river mouths (sites S5 and S6). Along the year, the sum of PCB concentrations ranged between 3 and 10 ng/g dw (S5), and between 4 and 26 ng/g dw (S6). Concentration of HCHs ranged between 0.4 and 3 ng/g dw (both S5 and S6) with a higher contribution of the gamma-HCH (30-70%), followed by beta-HCH (20-50%). The beta-HCH isomer was found at lower concentrations or even not detected in outer city sites. DDTs were found at higher concentrations than HCHs and ranged

  4. Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grindsted, Denmark)

    SciTech Connect

    Baun, A.; Jensen, S.D.; Bjerg, P.L.; Christensen, T.H.; Nyholm, N.

    2000-05-01

    The aim of the present study was to describe the occurrence and distribution of toxicity related to organic chemical contaminants in the leachate plume downgradient of the Grindsted Landfill (Denmark). A total of 27 groundwater samples were preconcentrated by solid-phase extraction (SPE) using XAD-2 as the resin material. This treatment effectively eliminated sample matrix toxicity caused by inorganic salts and natural organic compounds and produced an aqueous concentrate of the nonvolatile chemical contaminants. The SPE extracts were tested in a battery of standardized short-term aquatic toxicity tests with luminescent bacteria (Vibrio fischeri), algae (Selenastrum capricornutum), and crustaceans (Daphnia magna). Additional genotoxicity tests were made using the umuC test (Salmonella typhimurium). Biotests with algae and luminescent bacteria were the most sensitive tests. On the basis of results with these two bioassays, it was concluded that SPE extracts of groundwater collected close to the landfill were toxic. The toxicity decreased with the distance from the landfill. At distances greater than 80 m from the border of the landfill, the groundwater toxicity was not significantly different from the background toxicity. SPE extracts were not toxic to Daphnia, and no genotoxicity was observed in the umuC test. The overall findings indicate that a battery of biotests applied on preconcentrated groundwater samples can be a useful tool for toxicity characterization and hazard ranking of groundwater polluted with complex chemical mixtures, such as landfill leachates.

  5. Chemical and biological pollution contribute to the immunological profiles of free-ranging harbor seals.

    PubMed

    Mos, Lizzy; Morsey, Brenda; Jeffries, Steven J; Yunker, Mark B; Raverty, Stephen; De Guise, Sylvain; Ross, Peter S

    2006-12-01

    Polychlorinated biphenyls and other persistent organic pollutants have been associated with immunotoxicity and outbreaks of (infectious) disease in marine mammals by rendering them vulnerable to infection by pathogens such as viruses and bacteria. In an immunotoxicological study of free-ranging harbor seals (Phoca vitulina), we obtained samples of blood and blubber from seal pups that were live-captured from two remote and two near-urban sites in British Columbia, Canada, and Washington state, USA. Using these samples, we quantified hematology, innate immune function, adaptive immune function, and polychlorinated biphenyl accumulation. While controlling for confounding factors (age, sex, and condition), univariate correlations between phagocytosis (r2 = 0.30, p = 0.002), respiratory burst (r2 =0.45, p= 0.000), T-lymphocyte function (r2 = 0.16, p = 0.028), lymphocyte signaling (r2 = 0.17, p = 0.025), and lymphocyte counts (r2 = 0.29, p = 0.002), and polychlorinated biphenyl concentrations suggested chemical-associated immunotoxicity. Principal component analysis of immunological endpoints provided additional evidence of immunotoxic effects in seals. However, principal component analysis also identified a noncontaminant-related factor by distinguishing between seals inhabiting urban versus remote sites, with results being consistent with increased pathogen exposure. Elevated fecal coliform concentrations in water, and observations of terrestrial spill-over pathogens in local seals, further support the notion of biological pollution at these sites. Although our study highlights the role that environmental contaminants might play in rendering marine mammal populations vulnerable to disease through immunotoxicity, it also suggests that biological pollution represents an emerging conservation concern.

  6. Vitellogenin assay by enzyme-linked immunosorbant assay as a biomarker of endocrine disruptor chemicals pollution.

    PubMed

    Ebrahimi, Mansour

    2007-09-15

    Research is ongoing to develop screening and testing programmes for endocrine disrupting effects of new chemicals and in the focus of this development are the fish test species common carp (Cyprinus carpio). In this study we have developed quantitative enzyme linked immunosorbent assays (ELISA) for VTS in common carp. The working range of the ELISA was 11.25 to 2000 ng mL(-1) (75-25% specific binding/maximum antibody binding [B/B0]) with a 50% B/B0 intra- and interassay variation of 3.9% (n=10) and 12.5% (n=30), respectively. This ELISA is capable of detecting VTG as low as 6 ng mL(-1) and can accurately detect VTG in even 10 microL of plasma. The ELISA was applied to measurement of VTG production by male carp (Cyprinous carpio, Cyprinidae) fish exposure to ethynylestradiol. The results showed that the amount of VTG produced in plasma of exposed fish increased in logaritmic order comparing to the control group and the ELISA described here could be used as an indicator of water pollution to estrogenic pollutants.

  7. Chemical stabilization of air pollution control residues from municipal solid waste incineration.

    PubMed

    Quina, Margarida J; Bordado, João C M; Quinta-Ferreira, Rosa M

    2010-07-15

    The by-products of the municipal solid waste incineration (MSWI) generally contain hazardous pollutants, with particular relevance to air pollution control (APC) residues. This waste may be harmful to health and detrimental to the environmental condition, mainly due to soluble salts, toxic heavy metals and trace organic compounds. Solidification/stabilization (S/S) with binders is a common industrial technology for treating such residues, involving however, a significant increase in the final mass that is landfilled. In our work, the chemical stabilization of APC residues by using NaHS x xH(2)O, H(3)PO(4), Na(2)CO(3), C(5)H(10)NNaS(2) x 3 H(2)O, Na(2)O x SiO(2) was investigated, and it was possible to conclude that all these additives lead to an improvement of the stabilization process of the most problematic heavy metals. Indeed, compliance leaching tests showed that after the stabilization treatment the waste becomes non-hazardous with respect to heavy metals. Chromium revealed to be a problematic metal, mainly when H(3)PO(4), Na(2)CO(3) and Na(2)O x SiO(2) were used for stabilization. Nevertheless, soluble phosphates are the most efficient additives for stabilizing the overall metals. The effect of the additives tested on the elements associated with soluble salts (K, Na, Cl(-)) is almost negligible, and therefore, the soluble fraction is hardly reduced without further treatment, such as pre-washing.

  8. Chemical Diversity and Defence Metabolism: How Plants Cope with Pathogens and Ozone Pollution

    PubMed Central

    Iriti, Marcello; Faoro, Franco

    2009-01-01

    Chemical defences represent a main trait of the plant innate immune system. Besides regulating the relationship between plants and their ecosystems, phytochemicals are involved both in resistance against pathogens and in tolerance towards abiotic stresses, such as atmospheric pollution. Plant defence metabolites arise from the main secondary metabolic routes, the phenylpropanoid, the isoprenoid and the alkaloid pathways. In plants, antibiotic compounds can be both preformed (phytoanticipins) and inducible (phytoalexins), the former including saponins, cyanogenic glycosides and glucosinolates. Chronic exposure to tropospheric ozone (O3) stimulates the carbon fluxes from the primary to the secondary metabolic pathways to a great extent, inducing a shift of the available resources in favour of the synthesis of secondary products. In some cases, the plant defence responses against pathogens and environmental pollutants may overlap, leading to the unspecific synthesis of similar molecules, such as phenylpropanoids. Exposure to ozone can also modify the pattern of biogenic volatile organic compounds (BVOC), emitted from plant in response to herbivore feeding, thus altering the tritrophic interaction among plant, phytophagy and their natural enemies. Finally, the synthesis of ethylene and polyamines can be regulated by ozone at level of S-adenosylmethionine (SAM), the biosynthetic precursor of both classes of hormones, which can, therefore, mutually inhibit their own biosynthesis with consequence on plant phenotype. PMID:20111684

  9. Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution.

    PubMed

    Iriti, Marcello; Faoro, Franco

    2009-07-30

    Chemical defences represent a main trait of the plant innate immune system. Besides regulating the relationship between plants and their ecosystems, phytochemicals are involved both in resistance against pathogens and in tolerance towards abiotic stresses, such as atmospheric pollution. Plant defence metabolites arise from the main secondary metabolic routes, the phenylpropanoid, the isoprenoid and the alkaloid pathways. In plants, antibiotic compounds can be both preformed (phytoanticipins) and inducible (phytoalexins), the former including saponins, cyanogenic glycosides and glucosinolates. Chronic exposure to tropospheric ozone (O(3)) stimulates the carbon fluxes from the primary to the secondary metabolic pathways to a great extent, inducing a shift of the available resources in favour of the synthesis of secondary products. In some cases, the plant defence responses against pathogens and environmental pollutants may overlap, leading to the unspecific synthesis of similar molecules, such as phenylpropanoids. Exposure to ozone can also modify the pattern of biogenic volatile organic compounds (BVOC), emitted from plant in response to herbivore feeding, thus altering the tritrophic interaction among plant, phytophagy and their natural enemies. Finally, the synthesis of ethylene and polyamines can be regulated by ozone at level of S-adenosylmethionine (SAM), the biosynthetic precursor of both classes of hormones, which can, therefore, mutually inhibit their own biosynthesis with consequence on plant phenotype.

  10. Aerosol physical, chemical and optical properties observed in the ambient atmosphere during haze pollution conditions

    NASA Astrophysics Data System (ADS)

    Li, Zhengqiang; Xie, Yisong; Li, Donghui; Li, Kaitao; Zhang, Ying; Li, Li; Lv, Yang; Qie, Lili; Xu, Hua

    Aerosol’s properties in the ambient atmosphere may differ significantly from sampling results due to containing of abundant water content. We performed sun-sky radiometer measurements in Beijing during 2011 and 2012 winter to obtain distribution of spectral and angular sky radiance. The measurements are then used to retrieve aerosol physical, chemical and optical properties, including single scattering albedo, size distribution, complex refractive indices and aerosol component fractions identified as black carbon, brown carbon, mineral dust, ammonium sulfate-like components and water content inside particle matters. We found that during winter haze condition aerosol is dominated by fine particles with center radius of about 0.2 micron. Fine particles contribute about 93% to total aerosol extinction of solar light, and result in serious decrease of atmospheric visibility during haze condition. The percentage of light absorption of haze aerosol can up to about 10% among its total extinction, much higher than that of unpolluted conditions, that causes significant radiative cooling effects suppressing atmospheric convection and dispersion of pollutants. Moreover, the average water content occupies about one third of the ambient aerosol in volume which suggests the important effect of ambient humidity in the formation of haze pollution.

  11. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract

    NASA Astrophysics Data System (ADS)

    Lakey, P. S. J.; Berkemeier, T.; Tong, H.; Arangio, A. M.; Lucas, K.; Poeschl, U.; Shiraiwa, M.

    2016-12-01

    The inhalation of air pollutants such as O3 and particulate matter can lead to the formation of reactive oxygen species (ROS) which can cause damage to biosurfaces such as the lung epithelium unless they are effectively scavenged. Although the chemical processes that lead to ROS formation within the ELF upon inhalation of pollutants are well understood qualitatively, ROS concentrations within the ELF have hardly been quantified so far. The kinetic multi-layer model of surface and bulk chemistry in the epithelial lining fluid (KM-SUB-ELF) has been developed to describe chemical reactions and mass transport and to quantify ROS production rates and concentrations within the epithelial lining fluid. KM-SUB-ELF simulations suggest that O3 will rapidly saturate the ELF whereas antioxidants and surfactant species are effective scavengers of OH. High ambient concentrations of O3 can lead to the depletion of surfactants and antioxidants within the ELF, potentially leading to oxidative stress. KM-SUB-ELF reproduced measurements for the formation of H2O2 and OH due to the presence of iron, copper and quinones in surrogate lung lining fluid. This enabled ROS production rates and concentrations in the ELF to be quantified. We found that in polluted megacities the ROS concentration in the ELF due to inhalation of pollutants was at least as high as the concentrations in the ELF of patients suffering from respiratory diseases. Cu and Fe are found to be the most important redox-active aerosol components for ROS production upon inhalation of PM2.5 in polluted regions. Therefore, a reduction in the emission of Cu and Fe should be major targets of air pollution control. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.

  12. Chemical speciation of inorganic pollutants in river-estuary-sea water systems.

    PubMed

    Tepavitcharova, Stefka; Todorov, Tihomir; Rabadjieva, Diana; Dassenakis, Manos; Paraskevopoulou, Vasiliki

    2009-02-01

    Monitoring studies and thermodynamic modeling were used to reveal the changes of inorganic chemical species of some water pollutants (nutrients and trace metals such as Fe, Mn, Zn, Cu, Cd and Pb) inthe river-estuary-sea water system. The case studies were two rivers, Kamchiya and Ropotamo, representing part of the Bulgarian Black Sea water catchment area, and having different flow characteristics. There were no major differences in inorganic chemical species of the two river systems. NO3(-) and NO2(-) chemical species showed no changes along the river-estuary-sea water system. Concerning phosphates six different species were calculated and differences between the three parts of the systems were established. The HPO4(2-) and H2PO4(-) species were found to be dominant in river waters. The H2PO4(-) species quickly decreased at the expense of HPO4(2-) and Ca, Mg and Na phosphate complexes in estuary and seawater. Trace metals showed a great variety of chemical species. Fe(OH)2(+) species prevailed in river waters, and Fe(OH)3(0) species--in sea waters. Me2+ and MeCO3(0) (Me = Cu, Pb) and PbHCO3(+) were dominant in river waters, while Cu(CO3)2(2-) and PbCl(-) species appear also in sea waters. Cd2+ species prevailed in river and estuary waters, and CdCln(2-n) (n = 1-3) species, in seawater. Free Zn2+ species predominated in all systems but downstream their percentage decreased at the expense of Zn phosphates, carbonates,sulfates and chlorides complexes. Only free Mn2+ species were dominant along the systems.

  13. Chemical characteristics of atmospheric PM2.5 loads during air pollution episodes in Giza, Egypt

    NASA Astrophysics Data System (ADS)

    Hassan, Salwa K.; Khoder, Mamdouh I.

    2017-02-01

    Several types of pollution episodes, including dust storm (DSs), haze dust (HDs), straw rice combustions (SRCs) are common phenomena and represent severe environmental hazard in Egypt. This study provides the first comprehensive analysis of the chemical characteristics of aerosol during air pollution episodes at an urban area in Giza, Egypt. PM2.5 samples during various PM episodes during 2013-2014 were collected and analyzed. Results indicate that the highest PM2.5 mass concentrations were found during DSs (250 μg/m3), followed by HDs (130 μg/m3) and SRCs (103 μg/m3). Average PM2.5 mass concentrations were 1.91, 3.68 and 1.68 times higher than on normal days (NDs) during HDs, DSs and SRCs, respectively. The highest total water-soluble ions concentration was 61.1 μg/m3 during HDs, followed by SRCs (41.9 μg/m3) and DSs (35.2 μg/m3). SO42- is the most abundant chemical components on the three PM episodes. Secondary inorganic ions (NO3-, SO42-, and NH4+) were enriched during HDs. The total secondary inorganic ions concentrations were 3.17, 1.39 and 1.75 times higher than NDs during HDs days, DSs days and SRCs days, respectively. PM from SRCs showed high K+ and Cl-. SO42-/K+, NO3-/SO42- and Cl-/K+ ratios proved effective as indicators for different pollution episodes. A Ca2+/Al ratio indicates that soil dust was dominant during DSs. Ion balance calculations indicated that PM2.5 from HDs was acidic, while the DSs and SRCs particles were alkaline and the NDs particle's was nearly neutral. The total crustal and anthropogenic metals concentrations were higher in DSs than other PM episodes and normal days. The enrichment factors values in PM episodes and normal days indicate that Fe and Mn in NDs, HDs, DSs and SRCs as well as Cr and Ni in DSs come mainly from crustal sources, whereas Cr, Ni, Co, Cu, Zn, Pb and Cd in PM episodes and NDs are anthropogenic.

  14. Smog events over Athens during winter 2013-2014: Pollution measurements and chemical characterization

    NASA Astrophysics Data System (ADS)

    Gerasopoulos, Evangelos; Liakakou, Eleni; Psiloglou, Vassilis; Stavroulas, Jason; Fourtziou, Luciana; Roukounakis, Nikolaos; Lianou, Maria; Kappos, Nikolaos; Zarmpas, Pavlos; Kambezidis, Harry; Sciare, Jean; Mihalopoulos, Nikolaos

    2014-05-01

    Smog due to wood burning has evolved to a major pollution problem affecting the most populated Greek cities during winter time. The economic crisis and the subsequent increase in the price of heating oil, has led people to look for alternative ways for domestic heating. Wood burning appeared to be the most common option, resulting to a rapid increase of pollution levels during nighttime, with emphasis on particulate matter. Taking into account the fact that highly populated cities such as Athens are also overloaded with traffic pollution, the need for specialized air quality measurements for the evaluation of the newly emerged problem was an imperative. Measurements of smog related pollution components in Athens took place during winter 2013-2014, at the premises of the National Observatory of Athens in Thissio (city center). The site was selected as representative of the average situation in Athens, while most of wood burning activities take place in Athens' suburban areas. For the chemical characterization of the smog particles, on line chemistry monitoring was performed by an Aerosol Chemical Speciation Monitor (ACSM, with 30 minutes resolution for the determination of organics, ammonium, sulfate, nitrate and chloride) and a Particle Into Liquid Sampler coupled with an Ionic Chromatograph (PILS, with 15 minutes resolution for the determination of ammonium and potassium). Additionally, aerosol samples were collected on 12-hour basis using a sequential dichotomous sampler for the sampling of PM2.5, PM2.5-10and PM10 fractions of aerosols on quartz filters, for further analyses, while a beta attenuation PM monitor was also deployed. Gas analyzers were installed for continuous NOx (NO, NO2), SO2, CO and O3 monitoring on 1-minute resolution. Finally, black carbon (BC) measurements were conducted with: a Particle Soot Absorption Photometer, a portable Aethalometer and two Multi Angle Absorption Photometers. The meteorological conditions were recorded during the whole

  15. Cadmium chemical speciation and absorption in plant in a polluted soil

    NASA Astrophysics Data System (ADS)

    Gigliotti, Giovanni; Massaccesi, Luisa

    2013-04-01

    Cadmium is a very toxic heavy metal presents in nature in small amounts, with an average content of 0.2 mg kg-1 in the geosphere. Nonetheless, anthropogenic activities such as industrial processes, large use of phosphate fertilizers and sewage sludge disposals may determine a massive accumulation of Cd in soil. Cd is considered a particularly interesting heavy metal as it can be accumulated by plants to levels that can be toxic to humans and animals, when consumed even in minor amounts. The aim of the present work was to study in a soil polluted with Cd for a long time i) the distribution of Cd in different chemical fractions by means of a sequential extraction procedure; ii) the adsorption of Cd by plants grown in this polluted soil; iii) the change in the distribution of Cd in the soil fractions possibly due to root exudates after plant growing. The chemical fractionation procedure used involved the following forms: a) exchangeable, b) bound to carbonates, c) bound to Fe-Mn oxides and hydroxides, d) bound to organic matter, e) residual part. The following reagents and extraction times were applied: a) 1 M CH3COONa (1:10, w/v; pH 8.2) for 16 h at room temperature; b) 0,1 M CH3COOH for 16 h at room temperature; c) 0,1 M NH2OH•HCl (1:10, w/v; adjusted to pH 2.0 with HNO3) for 16 h at room temperature; d) 30% H2O2 (adjusted to pH 2.0 with HNO3) at 85 °C, followed by extraction with 1 M CH3COONH4 (1:10, w/v; adjusted to pH 2.0 with HNO3) for 16 h at room temperature; e) acid digestion with concentrated HNO3 and 30% H2O2 for residue fraction. Festuca seeds were germinated in the contaminated soil in plastic flats and non-contaminated soil. After two days the seedling were submitted to day/night conditions. The seedlings were collected 6 weeks after seeding and divided in roots and shoots and analysed for Cd concentration. The polluted soil has average Cd content of 200 mg kg-1, instead, the Cd content in the same unpolluted soil was about 0.44 mg kg-1. The

  16. Method for Fusing Observational Data and Chemical Transport Model Simulations To Estimate Spatiotemporally Resolved Ambient Air Pollution.

    PubMed

    Friberg, Mariel D; Zhai, Xinxin; Holmes, Heather A; Chang, Howard H; Strickland, Matthew J; Sarnat, Stefanie Ebelt; Tolbert, Paige E; Russell, Armistead G; Mulholland, James A

    2016-04-05

    Investigations of ambient air pollution health effects rely on complete and accurate spatiotemporal air pollutant estimates. Three methods are developed for fusing ambient monitor measurements and 12 km resolution chemical transport model (CMAQ) simulations to estimate daily air pollutant concentrations across Georgia. Temporal variance is determined by observations in one method, with the annual mean CMAQ field providing spatial structure. A second method involves scaling daily CMAQ simulated fields using mean observations to reduce bias. Finally, a weighted average of these results based on prediction of temporal variance provides optimized daily estimates for each 12 × 12 km grid. These methods were applied to daily metrics of 12 pollutants (CO, NO2, NOx, O3, SO2, PM10, PM2.5, and five PM2.5 components) over the state of Georgia for a seven-year period (2002-2008). Cross-validation demonstrates a wide range in optimized model performance across pollutants, with SO2 predicted most poorly due to limitations in coal combustion plume monitoring and modeling. For the other pollutants studied, 54-88% of the spatiotemporal variance (Pearson R(2) from cross-validation) was captured, with ozone and PM2.5 predicted best. The optimized fusion approach developed provides daily spatial field estimates of air pollutant concentrations and uncertainties that are consistent with observations, emissions, and meteorology.

  17. Investigating groundwater pollution from different sources with combined biological and chemical methods.

    PubMed

    Michaelidou, S C; Akkelidou, D; Ziegler, P

    1995-10-27

    This paper reviews groundwater pollution caused by the disposal of untreated effluents of a dye factory located 20 km to the west of Nicosia (Cyprus). The task of the work was to investigate the nature of the pollution and differentiate it from other possible pollution sources in the area. It focused on toxicity testing and biofractionation in order to address the most toxic pollutants and, on the evaluation of GC/FID profiles for investigating the connection between groundwater pollution and the effluents. This connection was successful due to a multiple comparison amongst the GC/FID profiles resulting from the polluted groundwater, the water from the reference areas and the dye effluents.

  18. 40 CFR Table 1 to Subpart Vvvvvv... - Hazardous Air Pollutants Used To Determine Applicability of Chemical Manufacturing Operations

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 15 2014-07-01 2014-07-01 false Hazardous Air Pollutants Used To Determine Applicability of Chemical Manufacturing Operations 1 Table 1 to Subpart VVVVVV of Part 63... chloride 75092 h. Quinoline 91225 2. Metal compounds a. Arsenic compounds b. Cadmium compounds c....

  19. Indoor Air Pollution (Environmental Health Student Portal)

    MedlinePlus

    ... Gases Impact on Weather Health Effects Take Action Water Pollution Water Pollution Home Chemicals and Pollutants Natural Disasters Drinking Water ... Gases Impact on Weather Health Effects Take Action Water Pollution Water Pollution Home Chemicals and Pollutants Natural Disasters ...

  20. Environmental Pollution

    ERIC Educational Resources Information Center

    Breitbeil, Fred W., III

    1973-01-01

    Presents a thorough overview of the many factors contributing to air and water pollution, outlines the chemical reactions involved in producing toxic end-products, and describes some of the consequences of pollutants on human health and ecosystems. (JR)

  1. Water Pollution

    MedlinePlus

    ... adjust the font size, or print this page. Water Pollution Table of Contents What is NIEHS Doing? Further Reading For Educators Introduction Water pollution is any contamination of water with chemicals ...

  2. Chemical Characterization of the Indoor Air Quality of a University Hospital: Penetration of Outdoor Air Pollutants

    PubMed Central

    Scheepers, Paul T. J.; Van Wel, Luuk; Beckmann, Gwendolyn; Anzion, Rob B. M.

    2017-01-01

    For healthcare centers, local outdoor sources of air pollution represent a potential threat to indoor air quality (IAQ). The aim of this study was to study the impact of local outdoor sources of air pollution on the IAQ of a university hospital. IAQ was characterized at thirteen indoor and two outdoor locations and source samples were collected from a helicopter and an emergency power supply. Volatile organic compounds (VOC), acrolein, formaldehyde, nitrogen dioxide (NO2), respirable particulate matter (PM-4.0 and PM-2.5) and their respective benz(a)pyrene contents were determined over a period of two weeks. Time-weighted average concentrations of NO2 (4.9–17.4 μg/m3) and formaldehyde (2.5–6.4 μg/m3) were similar on all indoor and outdoor locations. The median concentration VOC in indoor air was 119 μg/m3 (range: 33.1–2450 μg/m3) and was fivefold higher in laboratories (316 μg/m3) compared to offices (57.0 μg/m3). PM-4.0 and benzo(a)pyrene concentration were lower in buildings serviced by a >99.95% efficiency particle filter, compared to buildings using a standard 80–90% efficiency filter (p < 0.01). No indications were found that support a significant contribution of known local sources such as fuels or combustion engines to any of the IAQ parameters measured in this study. Chemical IAQ was primarily driven by known indoor sources and activities. PMID:28481324

  3. EPA'S APPROACH TO POLLUTION PREVENTION REF: CHEMICAL ENGINEERING PROCESS, PP. 53-58, JUNE 1989

    EPA Science Inventory

    EPA'S adoption of pollution prevention as the cornerstone of its future efforts on environmental protection is described as are the roles of the Pollution Prevention Office and the Waste Minimization Branch. Copy of paper available at NTIS as PB89236418.

  4. Combined effects of aerobiological pollutants, chemical pollutants and meteorological conditions on asthma admissions and A & E attendances in Derbyshire UK, 1993-96.

    PubMed

    Lewis, S A; Corden, J M; Forster, G E; Newlands, M

    2000-12-01

    The effect of outdoor aeroallergen exposure in asthma may be enhanced by air pollutants, including ozone, nitrogen dioxide and particulates, and by certain weather conditions. It is not yet established whether these interactions are important in determining asthma morbidity at the population level. We have investigated the joint effects of aeroallergens, rainfall, thunderstorms and outdoor air pollutants on daily asthma admissions and Accident and Emergency (A & E) attendance using routinely collected data between 1993 and 1996 from Derby in central England. Daily counts during the aeroallergen season of grass and birch pollen, basidiospores, Didymella, Alternaria and Cladosporium, maximum 1 hour ozone and nitrogen dioxide and daily average black smoke measurements, all made in the vicinity of the city centre, were categorized in tertiles. Rainfall was classified as dry, light ( 2 mm). The modifying effect of outdoor pollutant levels, and rainfall or the occurrence of a thunderstorm, upon the effects of individual aeroallergens on asthma admissions and A & E attendance were investigated by fitting appropriate interactions in log linear autoregression models with adjustment for potential confounders. We found a significant interaction between the effects of grass pollen and weather conditions upon A & E attendance, such that the increase with grass pollen count was most marked on days of light rainfall (adjusted rate ratio for >/= 50 vs < 10 grains/m3 at lag 2 days = 2.1, 95% CI 1.4, 3.3). Asthma admissions increased with Cladosporium count. We found no statistically significant interactions between effects of any individual aeroallergen and outdoor air pollutant upon either measure of asthma morbidity. Rainfall and thunderstorms are important effect modifiers in the relation between grass pollen and measures of acute asthma morbidity. Interactions between ambient levels of aeroallergens and chemical pollutants in the Derby area do not play a

  5. Construction of a technique plan repository and evaluation system based on AHP group decision-making for emergency treatment and disposal in chemical pollution accidents.

    PubMed

    Shi, Shenggang; Cao, Jingcan; Feng, Li; Liang, Wenyan; Zhang, Liqiu

    2014-07-15

    The environmental pollution resulting from chemical accidents has caused increasingly serious concerns. Therefore, it is very important to be able to determine in advance the appropriate emergency treatment and disposal technology for different types of chemical accidents. However, the formulation of an emergency plan for chemical pollution accidents is considerably difficult due to the substantial uncertainty and complexity of such accidents. This paper explains how the event tree method was used to create 54 different scenarios for chemical pollution accidents, based on the polluted medium, dangerous characteristics and properties of chemicals involved. For each type of chemical accident, feasible emergency treatment and disposal technology schemes were established, considering the areas of pollution source control, pollutant non-proliferation, contaminant elimination and waste disposal. Meanwhile, in order to obtain the optimum emergency disposal technology schemes as soon as the chemical pollution accident occurs from the plan repository, the technique evaluation index system was developed based on group decision-improved analytical hierarchy process (AHP), and has been tested by using a sudden aniline pollution accident that occurred in a river in December 2012. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Can persistent organic pollutants and plastic-associated chemicals cause cardiovascular disease?

    PubMed

    Lind, L; Lind, P M

    2012-06-01

    During the last decade, associations between persistent organic pollutants (POPs), such as polychlorinated biphenyls, dioxins and pesticides, and cardiovascular (CV) risk factors and overt CV disease (CVD) have been reported in humans. Recently, associations between plastic-associated chemicals (PACs), such as bisphenol A and phthalates, and CVD have also begun to emerge. Several approaches to evaluating such associations have been used: accidents with a high level of exposure, occupational exposure studies, geographical studies of subjects living near a contaminated area and traditional case-control or cohort studies with measurements of circulating levels of different environmental contaminants in the general population. Exposure to POPs has consistently been associated with diabetes using all the approaches described above, including prospective studies. The evidence regarding associations between exposure to POPs and other CV risk factors, such as hypertension, obesity and lipids, is less strong and is mainly based on cross-sectional data. Associations between overt CVD and POPs have been reported using all the above approaches, but prospective data from population-based studies are still lacking to provide firm evidence of an important and independent role of POP exposure in the pathogenesis of CVD. Nevertheless, taken together, current evidence suggests that further longitudinal and experimental studies should be conducted to investigate the effect of exposure to both POPs and PACs, such as bisphenol A and phthalates.

  7. Transcriptomic effects-based monitoring for endocrine active chemicals: Assessing relative contribution of treated wastewater to downstream pollution

    USGS Publications Warehouse

    Martinovic-Weigelt, Dalma; Mehinto, Alvine C.; Ankley, Gerald T.; Denslow, Nancy D.; Barber, Larry B.; Lee, Kathy E.; King, Ryan J.; Schoenfuss, Heiko L.; Schroeder, Anthony L.; Villeneuve, Daniel L.

    2014-01-01

    The present study investigated whether a combination of targeted analytical chemistry information with unsupervised, data-rich biological methodology (i.e., transcriptomics) could be utilized to evaluate relative contributions of wastewater treatment plant (WWTP) effluents to biological effects. The effects of WWTP effluents on fish exposed to ambient, receiving waters were studied at three locations with distinct WWTP and watershed characteristics. At each location, 4 d exposures of male fathead minnows to the WWTP effluent and upstream and downstream ambient waters were conducted. Transcriptomic analyses were performed on livers using 15 000 feature microarrays, followed by a canonical pathway and gene set enrichment analyses. Enrichment of gene sets indicative of teleost brain–pituitary–gonadal–hepatic (BPGH) axis function indicated that WWTPs serve as an important source of endocrine active chemicals (EACs) that affect the BPGH axis (e.g., cholesterol and steroid metabolism were altered). The results indicated that transcriptomics may even pinpoint pertinent adverse outcomes (i.e., liver vacuolization) and groups of chemicals that preselected chemical analytes may miss. Transcriptomic Effects-Based monitoring was capable of distinguishing sites, and it reflected chemical pollution gradients, thus holding promise for assessment of relative contributions of point sources to pollution and the efficacy of pollution remediation.

  8. Transcriptomic effects-based monitoring for endocrine active chemicals: assessing relative contribution of treated wastewater to downstream pollution.

    PubMed

    Martinović-Weigelt, Dalma; Mehinto, Alvine C; Ankley, Gerald T; Denslow, Nancy D; Barber, Larry B; Lee, Kathy E; King, Ryan J; Schoenfuss, Heiko L; Schroeder, Anthony L; Villeneuve, Daniel L

    2014-02-18

    The present study investigated whether a combination of targeted analytical chemistry information with unsupervised, data-rich biological methodology (i.e., transcriptomics) could be utilized to evaluate relative contributions of wastewater treatment plant (WWTP) effluents to biological effects. The effects of WWTP effluents on fish exposed to ambient, receiving waters were studied at three locations with distinct WWTP and watershed characteristics. At each location, 4 d exposures of male fathead minnows to the WWTP effluent and upstream and downstream ambient waters were conducted. Transcriptomic analyses were performed on livers using 15,000 feature microarrays, followed by a canonical pathway and gene set enrichment analyses. Enrichment of gene sets indicative of teleost brain-pituitary-gonadal-hepatic (BPGH) axis function indicated that WWTPs serve as an important source of endocrine active chemicals (EACs) that affect the BPGH axis (e.g., cholesterol and steroid metabolism were altered). The results indicated that transcriptomics may even pinpoint pertinent adverse outcomes (i.e., liver vacuolization) and groups of chemicals that preselected chemical analytes may miss. Transcriptomic Effects-Based monitoring was capable of distinguishing sites, and it reflected chemical pollution gradients, thus holding promise for assessment of relative contributions of point sources to pollution and the efficacy of pollution remediation.

  9. Association of allergic rhinitis or asthma with pollen and chemical pollutants in Szeged, Hungary, 1999-2007

    NASA Astrophysics Data System (ADS)

    Makra, László; Matyasovszky, István; Bálint, Beatrix; Csépe, Zoltán

    2014-07-01

    The effect of biological (pollen) and chemical air pollutants on respiratory hospital admissions for the Szeged region in Southern Hungary is analysed. A 9-year (1999-2007) database includes—besides daily number of respiratory hospital admissions—daily mean concentrations of CO, PM10, NO, NO2, O3 and SO2. Two pollen variables ( Ambrosia and total pollen excluding Ambrosia) are also included. The analysis was performed for patients with chronic respiratory complaints (allergic rhinitis or asthma bronchiale) for two age categories (adults and the elderly) of males and females. Factor analysis was performed to clarify the relative importance of the pollutant variables affecting respiratory complaints. Using selected low and high quantiles corresponding to probability distributions of respiratory hospital admissions, averages of two data sets of each air pollutant variable were evaluated. Elements of these data sets were chosen according to whether actual daily patient numbers were below or above their quantile value. A nonparametric regression technique was applied to discriminate between extreme and non-extreme numbers of respiratory admissions using pollen and chemical pollutants as explanatory variables. The strongest correlations between extreme patient numbers and pollutants can be observed during the pollen season of Ambrosia, while the pollen-free period exhibits the weakest relationships. The elderly group with asthma bronchiale is characterised by lower correlations between extreme patient numbers and pollutants compared to adults and allergic rhinitis, respectively. The ratio of the number of correct decisions on the exceedance of a quantile resulted in similar conclusions as those obtained by using multiple correlations.

  10. Association of allergic rhinitis or asthma with pollen and chemical pollutants in Szeged, Hungary, 1999-2007.

    PubMed

    Makra, László; Matyasovszky, István; Bálint, Beatrix; Csépe, Zoltán

    2014-07-01

    The effect of biological (pollen) and chemical air pollutants on respiratory hospital admissions for the Szeged region in Southern Hungary is analysed. A 9-year (1999-2007) database includes--besides daily number of respiratory hospital admissions--daily mean concentrations of CO, PM10, NO, NO2, O3 and SO2. Two pollen variables (Ambrosia and total pollen excluding Ambrosia) are also included. The analysis was performed for patients with chronic respiratory complaints (allergic rhinitis or asthma bronchiale) for two age categories (adults and the elderly) of males and females. Factor analysis was performed to clarify the relative importance of the pollutant variables affecting respiratory complaints. Using selected low and high quantiles corresponding to probability distributions of respiratory hospital admissions, averages of two data sets of each air pollutant variable were evaluated. Elements of these data sets were chosen according to whether actual daily patient numbers were below or above their quantile value. A nonparametric regression technique was applied to discriminate between extreme and non-extreme numbers of respiratory admissions using pollen and chemical pollutants as explanatory variables. The strongest correlations between extreme patient numbers and pollutants can be observed during the pollen season of Ambrosia, while the pollen-free period exhibits the weakest relationships. The elderly group with asthma bronchiale is characterised by lower correlations between extreme patient numbers and pollutants compared to adults and allergic rhinitis, respectively. The ratio of the number of correct decisions on the exceedance of a quantile resulted in similar conclusions as those obtained by using multiple correlations.

  11. The checkered puffer (Spheroides testudineus) and its helminths as bioindicators of chemical pollution in Yucatan coastal lagoons.

    PubMed

    Pech, Daniel; Vidal-Martínez, Víctor M; Aguirre-Macedo, M Leopoldina; Gold-Bouchot, Gerardo; Herrera-Silveira, Jorge; Zapata-Pérez, Omar; Marcogliese, David J

    2009-03-15

    The suitability of using helminth communities as bioindicators of environmental quality of the Yucatan coastal lagoons status was tested on the checkered puffer (Spheroides testudineus) in four coastal lagoons along the Yucatan coast. The concentration of chemical pollutants in sediments, water quality parameters, helminth infracommunity characteristics, as well as fish physiological biomarkers, including EROD (7-ethoxyresorufin-O-deethylase) and catalase activities, were measured. Results from sediment analyses demonstrated the presence of hydrocarbons, organochlorine pesticides and polychlorinated biphenyls at varying concentrations, some of which exceeded the Probability Effect Level (PEL). Significant negative associations among organochlorine pesticides, infracommunity characteristics and fish physiological responses were observed in most of the lagoons. Results suggest that EROD activity and parasite infracommunity characteristics could be useful tools to evaluate the effects of chemical pollutants on the fish host and in the environment. Importantly, certain parasites appear to influence biomarker measurements, indicating that parasites should be considered in ecotoxicological studies.

  12. The pink shrimp Farfantepenaeus duorarum, its symbionts and helminths as bioindicators of chemical pollution in Campeche Sound, Mexico.

    PubMed

    Vidal-Martínez, V M; Aguirre-Macedo, M L; Del Rio-Rodríguez, R; Gold-Bouchot, G; Rendón-von Osten, J; Miranda-Rosas, G A

    2006-06-01

    The pink shrimp Farfantepenaeus duorarum may acquire pollutants, helminths and symbionts from their environment. Statistical associations were studied between the symbionts and helminths of F. duorarum and pollutants in sediments, water and shrimps in Campeche Sound, Mexico. The study area spatially overlapped between offshore oil platforms and natural shrimp mating grounds. Spatial autocorrelation of data was controlled with spatial analysis using distance indices (SADIE) which identifies parasite or pollutant patches (high levels) and gaps (low levels), expressing them as clustering indices compared at each point to produce a measure of spatial association. Symbionts included the peritrich ciliates Epistylis sp. and Zoothamnium penaei and all symbionts were pooled. Helminths included Hysterothylacium sp., Opecoeloides fimbriatus, Prochristianella penaei and an unidentified cestode. Thirty-five pollutants were identified, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides and heavy metals. The PAHs (2-3 ring) in water, unresolved complex mixture (UCM), Ni and V in sediments, and Zn, Cr and heptachlor in shrimps were significantly clustered. The remaining pollutants were randomly distributed in the study area. Juvenile shrimps acquired pesticides, PAHs (2-3 rings) and Zn, while adults acquired PAHs (4-5 rings), Cu and V. Results suggest natural PAH spillovers, and continental runoff of dichlorodiphenyltrichloroethane (DDT), PCBs and PAHs (2-3 ring). There were no significant associations between pollutants and helminths. However, there were significant negative associations of pesticides, UCM and PCBs with symbiont numbers after controlling shrimp size and spatial autocorrelation. Shrimps and their symbionts appear to be promising bioindicators of organic chemical pollution in Campeche Sound.

  13. The origin and evolution of assessment criteria for persistent, bioaccumulative and toxic (PBT) chemicals and persistent organic pollutants (POPs).

    PubMed

    Matthies, Michael; Solomon, Keith; Vighi, Marco; Gilman, Andy; Tarazona, Jose V

    2016-09-14

    General public concern over the effects of persistent chemicals began in the early 1960s. Since then, significant scientific advances have increased our understanding of persistent, bioaccumulative, and toxic (PBT) chemicals and the properties and processes that influence their fates in, and adverse effects on, human health and the environment. In addition to the scientific advances, a number of legislations and agreements for national, international, and global identification and control of PBT chemicals have been adopted. However, some of the rationales and thoughts that were relied upon when the first criteria were developed to identify and categorize PBT chemicals and then POPs (persistent organic pollutants) have not been carried forward. Criteria have been based upon available data of neutral hydrophobic substances as reference chemicals, derived under laboratory conditions. They evolved over the last decades due to the diversification of the protection aims under various national regulatory frameworks and international agreements, advances in methods for estimation of physical/chemical properties, and the identification of chemicals which are non-traditional POPs. Criteria are not defined purely by science; they also are subject to the aims of policy. This paper offers a historical perspective on the development of criteria for PBT chemicals and POPs. It also offers suggestions for rationalization of protection goals, describes some emerging procedures for identification of compounds of concern, and proposes information that needs to be considered when applying criteria to screening and/or evaluation of new chemicals.

  14. Aquamicrobium terrae sp. nov., isolated from the polluted soil near a chemical factory.

    PubMed

    Wu, Zhi-Guo; Wang, Fang; Gu, Cheng-Gang; Zhang, Yin-Ping; Yang, Zong-Zheng; Wu, Xiao-Wei; Jiang, Xin

    2014-06-01

    A Gram-negative, aerobic, non-motile bacterial strain hun6(T) isolated from the polluted soil near a chemical factory in northern Nanjing, China was investigated to clarify its taxonomic position. Growth of strain hun6(T) occurred between 10 and 45 °C (optimum, 30 °C) and between pH 6.0 and 8.0 (optimum, pH 7.0). No growth occurred at NaCl concentrations greater than 5 % (w/v). The 16S rRNA gene sequence analysis indicated that strain hun6(T) belongs to the genus Aquamicrobium. The sequence similarities of strain hun6(T) to other type strains of Aquamicrobium genus were all below 98.5 %. The presence of ubiquinone-10, the predominant fatty acid summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) and C19:0 cyclo ω8c, a polar lipid pattern with phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, phosphatidylethanolamine and phophatidylmonomethylethanoamine were in accord with the characteristics of the genus Aquamicrobium. The G+C content of the genomic DNA was determined to be 63.5 mol%. The results of DNA-DNA hybridization, physiological and biochemical tests and chemotaxonomic properties allowed genotypic and phenotypic differentiation of strain hun6(T) from all known Aquamicrobium species. Therefore, strain hun6(T) can be assigned to a new species of this genus for which the name Aquamicrobium terrae sp. nov. is proposed. The type strain is hun6(T) (= CICC 10733(T) = DSM 27865(T)).

  15. A new technology for harnessing the dye polluted water and dye collection in a chemical factory.

    PubMed

    Pu, J P; Pu, P M; Hu, C H; Qian, J L; Pu, J X; Hua, J K

    2001-04-01

    A new technology for harnessing the dye polluted water and dye collection was developed. It is based on the enhanced evaporation by using solar, wind and air temperature energy and additional heat-electric energy. It consists of four parts: (1) evaporation carrier system (evaporation carrier and frame for evaporation carrier) for polluted water; (2) polluted water circulating system (pumping-spraying-collecting); (3) heating system; (4) workshop with polluted water reservoir-tanks and rainfall prevention roof. The polluted water was (heated in case necessary) sprayed to the evaporation carrier system and the water was evaporated when it moved in the space and downward along the carrier mainly by using natural (solar, wind and air temperature energy). In case, when there is no roof for the carrier system, the polluted water can be stored in the reservoirs (storage volume for about 20 days). The first 10-25 mm rainfall also need to be stored in the reservoirs to meet the state standard for discharging wastewater. The dye may be collected at the surface in the reservoir-tanks and the crystallized salt may be collected at the bottom plate. The black-color wastewater released by the factory is no more discharged to the surface water system of Taihu Lake Basin. About 2 kg dye and 200 kg industrial salt may be collected from each tone of the polluted water. The non-pollution production of dye may be realized by using this technology with environmental, economical and social benefits.

  16. Waste water treatment: Chemical industry. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-05-01

    The bibliography contains citations concerning wastewater treatment of industrial pollutants. The use and effectiveness of biological treatments and carbon additives are examined. References also discuss problems and recommendations for the removal of mercury and its compounds, fertilizers, and pesticides from polluted waste water. (Contains 250 citations and includes a subject term index and title list.)

  17. Wastewater treatment: Chemical industry. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    Not Available

    1994-12-01

    The bibliography contains citations concerning wastewater treatment of industrial pollutants. The use and effectiveness of biological treatments and carbon additives are examined. References also discuss problems and recommendations for the removal of mercury and its compounds, fertilizers, and pesticides from polluted waste water. (Contains 250 citations and includes a subject term index and title list.)

  18. Wastewater treatment: Chemical industry. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning wastewater treatment of industrial pollutants. The use and effectiveness of biological treatments and carbon additives are examined. References also discuss problems and recommendations for the removal of mercury and its compounds, fertilizers, and pesticides from polluted waste water. (Contains 250 citations and includes a subject term index and title list.)

  19. Non-chemical stressors and cumulative risk assessment: an overview of current initiatives and potential air pollutant interactions.

    PubMed

    Lewis, Ari S; Sax, Sonja N; Wason, Susan C; Campleman, Sharan L

    2011-06-01

    Regulatory agencies are under increased pressure to consider broader public health concerns that extend to multiple pollutant exposures, multiple exposure pathways, and vulnerable populations. Specifically, cumulative risk assessment initiatives have stressed the importance of considering both chemical and non-chemical stressors, such as socioeconomic status (SES) and related psychosocial stress, in evaluating health risks. The integration of non-chemical stressors into a cumulative risk assessment framework has been largely driven by evidence of health disparities across different segments of society that may also bear a disproportionate risk from chemical exposures. This review will discuss current efforts to advance the field of cumulative risk assessment, highlighting some of the major challenges, discussed within the construct of the traditional risk assessment paradigm. Additionally, we present a summary of studies of potential interactions between social stressors and air pollutants on health as an example of current research that supports the incorporation of non-chemical stressors into risk assessment. The results from these studies, while suggestive of possible interactions, are mixed and hindered by inconsistent application of social stress indicators. Overall, while there have been significant advances, further developments across all of the risk assessment stages (i.e., hazard identification, exposure assessment, dose-response, and risk characterization) are necessary to provide a scientific basis for regulatory actions and effective community interventions, particularly when considering non-chemical stressors. A better understanding of the biological underpinnings of social stress on disease and implications for chemical-based dose-response relationships is needed. Furthermore, when considering non-chemical stressors, an appropriate metric, or series of metrics, for risk characterization is also needed. Cumulative risk assessment research will benefit

  20. Non-Chemical Stressors and Cumulative Risk Assessment: An Overview of Current Initiatives and Potential Air Pollutant Interactions

    PubMed Central

    Lewis, Ari S.; Sax, Sonja N.; Wason, Susan C.; Campleman, Sharan L.

    2011-01-01

    Regulatory agencies are under increased pressure to consider broader public health concerns that extend to multiple pollutant exposures, multiple exposure pathways, and vulnerable populations. Specifically, cumulative risk assessment initiatives have stressed the importance of considering both chemical and non-chemical stressors, such as socioeconomic status (SES) and related psychosocial stress, in evaluating health risks. The integration of non-chemical stressors into a cumulative risk assessment framework has been largely driven by evidence of health disparities across different segments of society that may also bear a disproportionate risk from chemical exposures. This review will discuss current efforts to advance the field of cumulative risk assessment, highlighting some of the major challenges, discussed within the construct of the traditional risk assessment paradigm. Additionally, we present a summary of studies of potential interactions between social stressors and air pollutants on health as an example of current research that supports the incorporation of non-chemical stressors into risk assessment. The results from these studies, while suggestive of possible interactions, are mixed and hindered by inconsistent application of social stress indicators. Overall, while there have been significant advances, further developments across all of the risk assessment stages (i.e., hazard identification, exposure assessment, dose-response, and risk characterization) are necessary to provide a scientific basis for regulatory actions and effective community interventions, particularly when considering non-chemical stressors. A better understanding of the biological underpinnings of social stress on disease and implications for chemical-based dose-response relationships is needed. Furthermore, when considering non-chemical stressors, an appropriate metric, or series of metrics, for risk characterization is also needed. Cumulative risk assessment research will benefit

  1. PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events.

    PubMed

    Ming, Lili; Jin, Ling; Li, Jun; Fu, Pingqing; Yang, Wenyi; Liu, Di; Zhang, Gan; Wang, Zifa; Li, Xiangdong

    2017-04-01

    Fine particle (PM2.5) samples were collected simultaneously at three urban sites (Shanghai, Nanjing, and Hangzhou) and one rural site near Ningbo in the Yangtze River Delta (YRD) region, China, on a weekly basis from September 2013 to August 2014. In addition, high-frequency daily sampling was conducted in Shanghai and Nanjing for one month during each season. Severe regional PM2.5 pollution episodes were frequently observed in the YRD, with annual mean concentrations of 94.6 ± 55.9, 97.8 ± 40.5, 134 ± 54.3, and 94.0 ± 57.6 μg m(-3) in Shanghai, Nanjing, Hangzhou, and Ningbo, respectively. The concentrations of PM2.5 and ambient trace metals at the four sites showed clear seasonal trends, with higher concentrations in winter and lower concentrations in summer. In Shanghai, similar seasonal patterns were found for organic carbon (OC), elemental carbon (EC), and water-soluble inorganic ions (K(+), NH4(+), Cl(-), NO3(-), and SO4(2-)). Air mass backward trajectory and potential source contribution function (PSCF) analyses implied that areas of central and northern China contributed significantly to the concentration and chemical compositions of PM2.5 in Shanghai during winter. Three heavy pollution events in Shanghai were observed during autumn and winter. The modelling results of the Nested Air Quality Prediction Modeling System (NAQPMS) showed the sources and transport of PM2.5 in the YRD during the three pollution processes. The contribution of secondary species (SOC, NH4(+), NO3(-), and SO4(2-)) in pollution event (PE) periods was much higher than in BPE (before pollution event) and APE (after pollution event) periods, suggesting the importance of secondary aerosol formation during the three pollution events. Furthermore, the bioavailability of Cu, and Zn in the wintertime PM2.5 samples from Shanghai was much higher during the pollution days than during the non-pollution days.

  2. Impact of urban environmental pollution on growth, leaf damage, and chemical constituents of Warsaw urban trees

    Treesearch

    Waldemar Chmielewski; Wojciech Dmuchowski; Stanislaw Suplat

    1998-01-01

    In the last 10 years, 3.5 percent of the tree population died annually in PolandÕs largest and most polluted cities, which is a problem of economic importance. Dieback of streetside trees in Warsaw is a long term process. It is an effect of biological reactions of trees to unfavorable conditions in the urban environment, particularly air and soil pollution and water...

  3. Epiphytic lichenosynusia under conditions of chemical pollution: Dose-effect dependencies

    SciTech Connect

    Mikhailova, I.N.; Vorobeichik, E.L.

    1995-11-01

    The dose-effect dependencies, which characterize response of the epiphytic lichenosynusia of southern taiga in the Middle Urals to pollution by discharges of a copper-smelting plant, are substantially non-linear and, in most cases, have an S-shaped form. A transition from background to impact state is very sharp and begins when the background level of pollution is exceeded by 1.5 - 2.3 times.

  4. Incorporation of endocrine disruption into chemical hazard scoring for pollution prevention and current list of endocrine disrupting chemicals.

    PubMed

    Whaley, D A; Keyes, D; Khorrami, B

    2001-11-01

    Research continues to support the theory of endocrine disruption. Endocrine disruption is defined as the ability of a chemical contaminating the workplace or the environment to interfere with homeostasis, development, reproduction, and/or behavior in a living organism or it's offspring. Certain classes of environmentally persistent chemicals such as polychlorinated biphenyls (PCBs), dioxins, furans, and some pesticides can adversely effect the endocrine systems of aquatic life and terrestrial wildlife. The University of Tennessee, Knoxville (UTN), developed a method for hazard scoring chemicals for the aquatic ecosystem. The Indiana Clean Manufacturing Technology and Safe Materials Institute at Purdue University (CMTI) later expanded the scoring system to include terms for worker hazard as well as terms for contamination of soil and air quality, and for stratospheric ozone depletion. We call the CMTI chemical hazard score the Purdue score. At West Virginia University, two improvements of the Purdue chemical hazard score are developed, a normalizing of the term for soil contamination, and addition of hazard score terms for ecosystem endocrine disruption. The results of incorporating endocrine disruption terms into the hazard scoring equations resulted in increased hazard rankings, often substantially increased, for 26 endocrine disrupting chemicals (EDCs) among 200 Superfund chemicals. Because data suggesting human endocrine disruption from such chemicals is still controversial, no endocrine disruptor term has been added to the human toxicity portions of the chemical hazard scoring system at this time. The third product of this work is assembly of a current consolidated list of (1) established or probable, mostly synthetic, industrial chemical and medication EDCs and (2) suspect (less certain) synthetic and natural (phytoestrogen) possible endocrine disrupting chemicals, with the goal of contributing to future development of quantitative structure activity

  5. How chemical pollution becomes a social problem. Risk communication and assessment through regional newspapers during the management of PCB pollutions of the Rhône River (France).

    PubMed

    Comby, Emeline; Le Lay, Yves-François; Piégay, Hervé

    2014-06-01

    The case study of the polychlorinated biphenyl (PCB) pollutions of the Rhône River (France) offers the possibility of studying criteria for the construction of social problems that result from chemical pollution (2005-2010). We investigated the dynamics of competition that create and define pollution as a social problem and entail its decline. News outlets are crucial for determining how an environmental issue emerges locally or nationally; this study used newspapers to highlight the potential of new outlets as a data source to analyze discourse variability, science-policy-media connections and the hydrosphere. Media coverage was based on a content analysis and textual data analysis of 75 articles. Analytical frameworks such as the Downs Model and the Public Arena Model (Hilgartner and Bosk, 1988) that consider time and stakeholders were tested to determine how human alteration of the hydrosphere can become a social problem and to analyze different communication strategies held by stakeholders. In terms of management, we described the temporal dynamics of the social problem based on the case study and considered an explanation of the selections. We considered the organization of particular stakeholders who define the social problem from its beginning to end by focusing on their discourses, relationships, decision-making and political choices, and scientific studies. Despite some biases, newspapers are useful for retrospectively evaluating the emergence of a social problem in the public arena by describing it through discourse and then understanding the temporal patterns of information. Despite uncertainties and information flow, decisions are made and science is translated to the public. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: the Healthy Volunteer Natural Relocation study.

    PubMed

    Wu, Shaowei; Deng, Furong; Hao, Yu; Shima, Masayuki; Wang, Xin; Zheng, Chanjuan; Wei, Hongying; Lv, Haibo; Lu, Xiuling; Huang, Jing; Qin, Yu; Guo, Xinbiao

    2013-09-15

    The study examined the associations of 32 chemical constituents of particulate matter with an aerodynamic diameter ≤2.5 μm (PM₂.₅) with pulmonary function in a panel of 21 college students. Study subjects relocated from a suburban area to an urban area with changing ambient air pollution levels and contents in Beijing, China, and provided daily morning/evening peak expiratory flow (PEF) and forced expiratory volume in 1s (FEV₂₁) measurements over 6 months in three study periods. There were significant reductions in evening PEF and morning/evening FEV₂₁ associated with various air pollutants and PM₂.₅ constituents. Four PM₂.₅ constituents (copper, cadmium, arsenic and stannum) were found to be most consistently associated with the reductions in these pulmonary function measures. These findings provide clues for the respiratory effects of specific particulate chemical constituents in the context of urban air pollution. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Size-resolved aerosol chemical analysis of extreme haze pollution events during early 2013 in urban Beijing, China.

    PubMed

    Tian, Shili; Pan, Yuepeng; Liu, Zirui; Wen, Tianxue; Wang, Yuesi

    2014-08-30

    Using size-resolved filter sampling and chemical characterization, high concentrations of water-soluble ions, carbonaceous species and heavy metals were found in both fine (PM2.1) and coarse (PM2.1-9) particles in Beijing during haze events in early 2013. Even on clear days, average mass concentration of submicron particles (PM1.1) was several times higher than that previously measured in most of abroad urban areas. A high concentration of particulate matter on haze days weakens the incident solar radiation, which reduces the generation rate of secondary organic carbon in PM1.1. We show that the peak mass concentration of particles shifted from 0.43-0.65μm on clear days to 0.65-1.1μm on lightly polluted days and to 1.1-2.1μm on heavily polluted days. The peak shifts were also found for the following species: organic carbon, elemental carbon, NH4(+), SO4(2-), NO3(-), K, Cu, Zn, Cd and Pb. Our findings demonstrate that secondary inorganic aerosols (36%) and organic matter (26%) dominated the fine particle mass on heavily polluted days, while their contribution reduced to 29% and 18%, respectively, on clear days. Besides fine particles, anthropogenic chemical species also substantially accumulated in the coarse mode, which suggests that particles with aerodynamic diameter larger than 2.1μm cannot be neglected during severe haze events.

  8. Construction of a chemical ranking system of soil pollution substances for screening of priority soil contaminants in Korea.

    PubMed

    Jeong, Seung-Woo; An, Youn-Joo

    2012-04-01

    The Korean government recently proposed expanding the number of soil-quality standards to 30 by 2015. The objectives of our study were to construct a reasonable protocol for screening priority soil contaminants for inclusion in the planned soil quality standard expansion. The chemical ranking system of soil pollution substances (CROSS) was first developed to serve as an analytical tool in chemical scoring and ranking of possible soil pollution substances. CROSS incorporates important parameters commonly used in several previous chemical ranking and scoring systems and the new soil pollution parameters. CROSS uses soil-related parameters in its algorithm, including information related to the soil environment, such as soil ecotoxicological data, the soil toxic release inventory (TRI), and soil partitioning coefficients. Soil TRI and monitoring data were incorporated as local specific parameters. In addition, CROSS scores the transportability of chemicals in soil because soil contamination may result in groundwater contamination. Dermal toxicity was used in CROSS only to consider contact with soil. CROSS uses a certainty score to incorporate data uncertainty. CROSS scores the importance of each candidate substance and assigns rankings on the basis of total scores. Cadmium was the most highly ranked. Generally, metals were ranked higher than other substances. Pentachlorophenol, phenol, dieldrin, and methyl tert-butyl ether were ranked the highest among chlorinated compounds, aromatic compounds, pesticides, and others, respectively. The priority substance list generated from CROSS will be used in selecting substances for possible inclusion in the Korean soil quality standard expansion; it will also provide important information for designing a soil-environment management scheme.

  9. Ecotoxicological risk assessment of chemical pollution in four Iberian river basins and its relationship with the aquatic macroinvertebrate community status.

    PubMed

    Kuzmanović, Maja; López-Doval, Julio C; De Castro-Català, Núria; Guasch, Helena; Petrović, Mira; Muñoz, Isabel; Ginebreda, Antoni; Barceló, Damià

    2016-01-01

    Ecotoxicological risk assessment of chemical pollution in four Iberian river basins (Llobregat, Ebro, Júcar and Guadalquivir) was performed. The data set included more than 200 emerging and priority compounds measured at 77 sampling sites along four river basins studied. The toxic units (TU) approach was used to assess the risk of individual compounds and the concentration addition model (CA) to assess the site specific risk. Link between chemical pollution and aquatic macroinvertebrate communities in situ was examined by using four biological indexes; SPEAR ("Species at Risk Index") as the indicator of decline of sensitive species in relation to general organic (SPEARorganic) and pesticides (SPEARpesticides) pollution; and Shannon and Margalef biodiversity indexes. The results of the study suggested that organic chemicals posed the risk of acute effects at 42% of the sampling sites and the risk of chronic effects at all the sites. Metals posed the acute risk at 44% of the sites. The main drivers of the risk were mainly pesticides and metals. However, several emerging contaminants (e.g. the antidepressant drug sertraline and the disinfectant triclosan) were contributing to the chronic effects risk. When risk associated with metals and organic chemicals was compared, the latter dominated in 2010, mainly due to the presence of highly toxic pesticides, while metals did in 2011. Compounds that are not regulated on the European level were posing the risk of chronic effects at 23% of the sites. The decline of sensitive macroinvertebrate taxa expressed in terms of SPEAR index was correlated with the increase of toxic stress related to organic compounds Biodiversity indexes were negatively correlated with the metals and the urban land use type in the catchment. Copyright © 2015. Published by Elsevier B.V.

  10. Using magnetic and chemical measurements to detect atmospherically-derived metal pollution in artificial soils and metal uptake in plants.

    PubMed

    Sapkota, B; Cioppa, M T

    2012-11-01

    Quantification of potential effects of ambient atmospheric pollution on magnetic and chemical properties of soils and plants requires precise experimental studies. A controlled growth experiment assessing magnetic and chemical parameters was conducted within (controls) and outside (exposed) a greenhouse setting. Magnetic susceptibility (MS) measurements showed that while initial MS values were similar for the sample sets, the overall MS value of exposed soil was significantly greater than in controls, suggesting an additional input of Fe-containing particles. Scanning electron microscope images of the exposed soils revealed numerous angular magnetic particles and magnetic spherules typical of vehicular exhaust and combustion processes, respectively. Similarly, chemical analysis of plant roots showed that plants grown in the exposed soil had higher concentrations of Fe and heavy (toxic) metals than controls. This evidence suggests that atmospheric deposition contributed to the MS increase in exposed soils and increased metal uptake by plants grown in this soil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Pollutant sensitivity of the endangered Tar River Spinymussel as assessed by single chemical and effluent toxicity tests

    USGS Publications Warehouse

    Augspurger, Thomas P.; Wang, Ning; Kunz, James L.; Ingersoll, Christopher G.

    2014-01-01

    The federally endangered Tar River spinymussel (Elliptio steinstansana) is endemic to the Tar River and Neuse River systems in North Carolina. The extent to which water quality limits Tar River spinymussels’ recovery is important to establish, and one aspect of that is understanding the species’ pollutant sensitivity. The primary objectives of this study were to 1) develop captive propagation and culture methods for Tar River spinymussels; 2) determine the pollutant sensitivity of captively propagated Tar River spinymussels; 3) examine the utility of the non-endangered yellow lance (Elliptio lanceolata), yellow lampmussel (Lampsilis cariosa) and notched rainbow (Villosa constricta) as surrogates for the Tar River spinymussels’ chemical sensitivity; 4) develop a 7-d method for conducting effluent toxicity tests starting with newly transformed mussels; 5) assess the toxicity of municipal wastewater effluents discharged into the Tar River spinymussels’ current and historic habitat; and, 6) evaluate the protection afforded by existing effluent toxicity test requirements.

  12. Effects of chitosan on growth of an aquatic plant (Hydrilla verticillata) in polluted waters with different chemical oxygen demands.

    PubMed

    Xu, Qiu-jin; Nian, Yue-gang; Jin, Xiang-can; Yan, Chang-zhou; Liu, Jin; Jiang, Gao-ming

    2007-01-01

    Effects of chitosan on a submersed plant, Hydrilla verticillata, were investigated. Results indicated that H. verticillata could prevent ultrastructure phytotoxicities and oxidativereaction from polluted water with high chemical oxygen demand (COD). Superoxide dismutase (SOD) activity and malondialdehyde (MDA) contents in H. verticillata treated with 0.1% chitosan in wastewater increased with high COD (980 mg/L) and decreased with low COD (63 mg/L), respectively. Ultrastructural analysis showed that the stroma and grana of chloroplast basically remained normal. However, plant cells from the control experiment (untreated with chitosan) were vacuolated and the cell interval increased. The relict of protoplast moved to the center, with cells tending to disjoint. Our findings indicate that wastewater with high COD concentration can cause a substantial damage to submersed plant, nevertheless, chitosan probably could alleviate the membrane lipid peroxidization and ultrastructure phytotoxicities, and protect plant cells from stress of high COD concentration polluted water.

  13. Blood pressure changes and chemical constituents of particulate air pollution: results from the healthy volunteer natural relocation (HVNR) study.

    PubMed

    Wu, Shaowei; Deng, Furong; Huang, Jing; Wang, Hongyi; Shima, Masayuki; Wang, Xin; Qin, Yu; Zheng, Chanjuan; Wei, Hongying; Hao, Yu; Lv, Haibo; Lu, Xiuling; Guo, Xinbiao

    2013-01-01

    Elevated blood pressure (BP) has been associated with particulate matter (PM) air pollution, but associations with PM chemical constituents are still uncertain. We investigated associations of BP with various chemical constituents of fine PM (PM2.5) during 460 repeated visits among a panel of 39 university students. Resting BP was measured using standardized methods before and after the university students relocated from a suburban campus to an urban campus with different air pollution contents in Beijing, China. Air pollution data were obtained from central monitors close to student residences. We used mixed-effects models to estimate associations of various PM2.5 constituents with systolic BP (SBP), diastolic BP (DBP), and pulse pressure. An interquartile range increase of 51.2 μg/m3 in PM2.5 was associated with a 1.08-mmHg (95% CI: 0.17, 1.99) increase in SBP and a 0.96-mmHg (95% CI: 0.31, 1.61) increase in DBP on the following day. A subset of PM2.5 constituents, including carbonaceous fractions (organic carbon and elemental carbon), ions (chloride and fluoride), and metals/metalloid elements (nickel, zinc, magnesium, lead, and arsenic), were found to have robust positive associations with different BP variables, though robust negative associations of manganese, chromium, and molybdenum with SBP or DBP also were observed. Our results support relationships between specific PM2.5 constituents and BP. These findings have potential implications for the development of pollution abatement strategies that maximize public health benefits.

  14. Blood Pressure Changes and Chemical Constituents of Particulate Air Pollution: Results from the Healthy Volunteer Natural Relocation (HVNR) Study

    PubMed Central

    Wu, Shaowei; Deng, Furong; Huang, Jing; Wang, Hongyi; Shima, Masayuki; Wang, Xin; Qin, Yu; Zheng, Chanjuan; Wei, Hongying; Hao, Yu; Lv, Haibo; Lu, Xiuling

    2012-01-01

    Background: Elevated blood pressure (BP) has been associated with particulate matter (PM) air pollution, but associations with PM chemical constituents are still uncertain. Objectives: We investigated associations of BP with various chemical constituents of fine PM (PM2.5) during 460 repeated visits among a panel of 39 university students. Methods: Resting BP was measured using standardized methods before and after the university students relocated from a suburban campus to an urban campus with different air pollution contents in Beijing, China. Air pollution data were obtained from central monitors close to student residences. We used mixed-effects models to estimate associations of various PM2.5 constituents with systolic BP (SBP), diastolic BP (DBP), and pulse pressure. Results: An interquartile range increase of 51.2 μg/m3 in PM2.5 was associated with a 1.08-mmHg (95% CI: 0.17, 1.99) increase in SBP and a 0.96-mmHg (95% CI: 0.31, 1.61) increase in DBP on the following day. A subset of PM2.5 constituents, including carbonaceous fractions (organic carbon and elemental carbon), ions (chloride and fluoride), and metals/metalloid elements (nickel, zinc, magnesium, lead, and arsenic), were found to have robust positive associations with different BP variables, though robust negative associations of manganese, chromium, and molybdenum with SBP or DBP also were observed. Conclusions: Our results support relationships between specific PM2.5 constituents and BP. These findings have potential implications for the development of pollution abatement strategies that maximize public health benefits. PMID:23086577

  15. Multiple stressor effects in Chlamydomonas reinhardtii--toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants.

    PubMed

    Korkaric, Muris; Behra, Renata; Fischer, Beat B; Junghans, Marion; Eggen, Rik I L

    2015-05-01

    The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are discussed.

  16. Characterization of rainwater chemical composition after a Southeast Asia haze event: insight of transboundary pollutant transport during the northeast monsoon.

    PubMed

    Nadzir, Mohd Shahrul Mohd; Lin, Chin Yik; Khan, Md Firoz; Latif, Mohd Talib; Dominick, Doreena; Hamid, Haris Hafizal Abdul; Mohamad, Noorlin; Maulud, Khairul Nizam Abdul; Wahab, Muhammad Ikram Abdul; Kamaludin, Nurul Farahana; Lazim, Mohamad Azwani Shah Mat

    2017-06-01

    Open biomass burning in Peninsula Malaysia, Sumatra, and parts of the Indochinese region is a major source of transboundary haze pollution in the Southeast Asia. To study the influence of haze on rainwater chemistry, a short-term investigation was carried out during the occurrence of a severe haze episode from March to April 2014. Rainwater samples were collected after a prolonged drought and analyzed for heavy metals and major ion concentrations using inductively coupled plasma mass spectroscopy (ICP-MS) and ion chromatography (IC), respectively. The chemical composition and morphology of the solid particulates suspended in rainwater were examined using a scanning electron microscope coupled with energy-dispersive X-ray spectroscopy (SEM-EDS). The dataset was further interpreted using enrichment factors (EF), statistical analysis, and a back trajectory (BT) model to find the possible sources of the particulates and pollutants. The results show a drop in rainwater pH from near neutral (pH 6.54) to acidic (pollutants transported from the mainland of Indo-China and the marine region in the South China Sea were responsible for the high pollution event in the study area. These findings can be useful in identifying contributions of pollutants from single or multiple sources in rainwater samples during haze episodes.

  17. Chemical characterization of particulate air pollutants Case studies on indoor air quality, cultural heritage and the marine environment

    NASA Astrophysics Data System (ADS)

    Horemans, Benjamin

    When attempting to discuss the effects of airborne particulate matter (PM), it is important to address both physical and chemical aspects of this pollutant. This work reports on the results of three separate case studies, each approaching a specific problem of air pollution by evaluating the chemical composition of PM. 1. In the US and Europe, office workers often complain about work-related health symptoms. These symptoms are collectively referred as the 'sick building syndrome'. This work could be considered as one of the largest data collections on particulate pollutants in Belgian offices. It helps to understand the sources as well as the behavior and fate of PM at our workplace environments. Especially the chemical information on PM makes the results unique, since it enables a better evaluation of the health risks connected to office dust. 2. The Alhambra and Generalife bring every year more than 3 million people to Granada in Southern Spain. Recently, the increasing urbanization of Granada and the immense pressure of mass tourism form a threat for this heritage. Despite the fact that atmospheric pollutants are known to he potentially aggressive for our cultural patrimony. this case study is the first to assess the effects of environmental aerosols on the Alhambra monument. The results of this study could help decision-makers at the Alhambra and the city of Granada with the formulation of preventive conservation measures. They show how local vehicular traffic is the main source for atmospheric pollution in and around the Alhambra monument. Targeted strategies are necessary in order to maximally preserve these monuments and their UNESCO world cultural heritage label. 3. Excessive input of nitrogen-containing atmospheric nutrients via dry and wet deposition can cause entrophication of marine regions, which is also a common, seasonal phenomenon along the coasts of the North Sea. This study is the first to give a complete quantitative description of the

  18. The physical and chemical characteristics of long-lasting trans-boundary mixed pollutants over East Asia

    NASA Astrophysics Data System (ADS)

    Hara, Y.; Uno, I.; Kobayashi, H.; Itahashi, S.; PAN, X.; Nishizawa, T.; Shimizu, A.; Matsui, I.; Sugimoto, N.

    2014-12-01

    Trans-boundary air pollution lasted about 1 week over East Asia from late May to early June 2014. Daily averaged PM2.5 and PM10 exceeded respectively 35μg/m3 and 100μg/m3 during this episode at Fukuoka, southeastern city of Japan. The continuous aerosol plumes were constructed by Asian dust and anthropogenic pollutants, and observed by many aerosol measurements, such as ground-based lidar, space-born lidar, Aerosol Chemical Speciation Analyzer (ACSA) and Polarization Optical Particle Counter (POPC). Regional chemical transport model was used to clarify the meteorological condition forming long-lasting aerosol plumes and the 3D structure. The continuous aerosol plume was made by 2 sequential low pressure systems passing over desert area, and subsequently generated blocking high pressure system over Japan. The averaged aerosol depolarization ratio derived by ground-based lidar and POPC at around 0.5μm during this episode were 0.11 and 0.146, these values were very low for dust case. ACSA data at Fukuoka also showed that coarse model nitrate and fine mode sulfate concentration was very high (3~6μg/m3 for coarse mode nitrate, 5-15 μg/m3 for fine mode sulfate) during this episode. These results suggested that transport of anthropogenic aerosols were occurred during this event together with dust plume. Coarse mode nitrate might be made by internal mixing between dust particles and nitrate. Numerical chemical transport model could not reproduced high concentration of coarse mode nitrate because model did not consider the process of internal mixing between dust particles and nitrate. Further vertical structure and mixing state during long-lasting trans-boundary pollution are clarified.

  19. Chemical activity and distribution of emerging pollutants: Insights from a multi-compartment analysis of a freshwater system.

    PubMed

    Inostroza, Pedro A; Massei, Riccardo; Wild, Romy; Krauss, Martin; Brack, Werner

    2017-08-12

    Emerging pollutants are ubiquitous in the aquatic system and may pose risks to aquatic ecosystems. The quantification and prediction of environmental partitioning of these chemicals in aquatic systems between water, sediment and biota is an important step in the comprehensive assessment of their sources and final fates in the environment. In this multi-compartment field study, we applied equilibrium partitioning theory and chemical activity estimates to investigate the predictability of concentrations in Gammarus pulex as a model invertebrate from water and sediment in a typical small central European river. Furthermore, KOW-based and LSER approaches were assessed for the calculation of sediment organic carbon-, lipid-, and protein-water partitioning coefficients and activity ratios between the different compartments. Gammarid-water activity ratios close to unity have been observed for many chemicals, while sediment-water and sediment-biota chemical activity ratios exceeded unity by up to six orders of magnitudes. Causes may be: disequilibrium due to slow desorption kinetics and/or an underestimation of partition coefficients due to the presence of strongly adsorbing phases in the sediments. Water concentrations, particularly when using LSER for prediction of partition coefficients were good predictors of internal concentrations in gammarids for most emerging pollutants. Some hydrophilic chemicals such as the neonicotinoid imidacloprid tend to accumulate more in G. pulex than expected from equilibrium partitioning. This conclusion holds both for KOW as well as for LSER-based predictions and suggests previously unidentified mechanisms of bio-accumulation which may include binding to specific protein structures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Detection of human and animal sources of pollution by microbial and chemical methods

    USDA-ARS?s Scientific Manuscript database

    A multi-indicator approach comprising Enterococcus, bacterial source tracking (BST), and sterol analysis was tested for pollution source identification. Fecal contamination was detected in 100% of surface water sites tested. Enterococcus faecium was the dominant species in aged litter samples from p...

  1. CASE STUDY. MERCURY POLLUTION NEAR A CHEMICAL PLANT IN NORTHERN KAZAKHSTAN

    EPA Science Inventory

    In northern Kazakhstan, there is a serious case of mercury pollution near Pavlodar City from an old mercury cell chlor-alkali plant. The soil, sediment, and water are contaminated with more than a thousand tons of mercury and mercury compounds as a result of the operation of the ...

  2. CASE STUDY. MERCURY POLLUTION NEAR A CHEMICAL PLANT IN NORTHERN KAZAKHSTAN

    EPA Science Inventory

    In northern Kazakhstan, there is a serious case of mercury pollution near Pavlodar City from an old mercury cell chlor-alkali plant. The soil, sediment, and water are contaminated with more than a thousand tons of mercury and mercury compounds as a result of the operation of the ...

  3. CHANGES TO THE CHEMICAL MECHANISMS FOR HAZARDOUS AIR POLLUTANTS IN CMAQ VERSION 4.6

    EPA Science Inventory

    The extended abstract describes a presentation to the 2006 conference of the Community Modeling and Analysis System. The presentation introduces two new mechanisms for the atmospheric photochemistry of Hazardous Air Pollutants (HAPs) to be used in regional air quality models. It ...

  4. CHANGES TO THE CHEMICAL MECHANISMS FOR HAZARDOUS AIR POLLUTANTS IN CMAQ VERSION 4.6

    EPA Science Inventory

    The extended abstract describes a presentation to the 2006 conference of the Community Modeling and Analysis System. The presentation introduces two new mechanisms for the atmospheric photochemistry of Hazardous Air Pollutants (HAPs) to be used in regional air quality models. It ...

  5. Long-term environmental monitoring of persistent organic pollutants and metals in a chemical/petrochemical area: human health risks.

    PubMed

    Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2011-07-01

    Organic pollutants such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs) and polycyclic aromatic hydrocarbons (PAHs), as well as some metals are periodically monitored in soil and vegetation samples collected in Tarragona County (Spain). We here report the temporal trends of the concentrations of the above pollutants between the initial survey (2002) and that recently (2009) performed. The area under evaluation was divided into 4 sections (chemical, petrochemical, urban/residential and unpolluted). In general terms, urban soils presented the highest concentrations of PCDD/Fs, PCNs and PAHs, confirming that traffic is a very important emission source of these pollutants. In addition, substantially higher levels of PAHs and some metals were found in vegetation samples from the petrochemical complex. The assessment of health risks of these contaminants indicated that the current concentrations of micropollutants did not mean additional non-carcinogenic or cancer risks for the population living in the zone. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Raman Microscopic Studies of the Physical and Chemical Properties of Particulate Matter in one of the World's Most Polluted Cities

    NASA Astrophysics Data System (ADS)

    Tolbert, M.; Hasenkopf, C. A.; Schill, G.

    2013-05-01

    Due to frequent wintertime temperature inversions and smoke emitted from individual stoves and coal-fired power plants to meet high heating demands during the sub-arctic winter, the annual average PM10 concentration in Ulaanbaatar, Mongolia is one of the highest in the world. With winter daily PM10 averages reaching as high as 4000 micrograms per cubic meter, the pollution has had devastating health effects for the 1.3 million living in Ulaanbaatar, with some studies estimating 25% of deaths in Ulaanbaatar are attributable to the high PM10 levels. At present, there is little information on particulate levels, the chemical and physical characteristics of the particles, or their ice-nucleating ability. Here we examine individual particles from Ulaanbaatar using optical and Raman microscopy. Particles are analyzed for size, shape, composition and mixing state. We also probe the ice nucleating ability of the particles using an environmental cell coupled to the microscope. Ice nucleation on the Ulaanbaatar particles is compared to ice nucleation on other solid particles such as mineral dust and volcanic ash. These studies aim to provide new insight into the chemical and physical properties of particulate matter in a highly polluted, yet understudied, city.

  7. Equilibrium sampling of environmental pollutants in fish: comparison with lipid-normalized concentrations and homogenization effects on chemical activity.

    PubMed

    Jahnke, Annika; Mayer, Philipp; Adolfsson-Erici, Margaretha; McLachlan, Michael S

    2011-07-01

    Equilibrium sampling of organic pollutants into the silicone polydimethylsiloxane (PDMS) has recently been applied in biological tissues including fish. Pollutant concentrations in PDMS can then be multiplied with lipid/PDMS distribution coefficients (D(Lipid,PDMS) ) to obtain concentrations in fish lipids. In the present study, PDMS thin films were used for equilibrium sampling of polychlorinated biphenyls (PCBs) in intact tissue of two eels and one salmon. A classical exhaustive extraction technique to determine lipid-normalized PCB concentrations, which assigns the body burden of the chemical to the lipid fraction of the fish, was additionally applied. Lipid-based PCB concentrations obtained by equilibrium sampling were 85 to 106% (Norwegian Atlantic salmon), 108 to 128% (Baltic Sea eel), and 51 to 83% (Finnish lake eel) of those determined using total extraction. This supports the validity of the equilibrium sampling technique, while at the same time confirming that the fugacity capacity of these lipid-rich tissues for PCBs was dominated by the lipid fraction. Equilibrium sampling was also applied to homogenates of the same fish tissues. The PCB concentrations in the PDMS were 1.2 to 2.0 times higher in the homogenates (statistically significant in 18 of 21 cases, p < 0.05), indicating that homogenization increased the chemical activity of the PCBs and decreased the fugacity capacity of the tissue. This observation has implications for equilibrium sampling and partition coefficients determined using tissue homogenates.

  8. Cardiovascular Outcomes and the Physical and Chemical Properties of Metal Ions Found in Particulate Matter Air Pollution: A QICAR Study

    PubMed Central

    Meng, Qingyu; Lu, Shou-En; Buckley, Barbara; Welsh, William J.; Whitsel, Eric A.; Hanna, Adel; Yeatts, Karin B.; Warren, Joshua; Herring, Amy H.; Xiu, Aijun

    2013-01-01

    Background: This paper presents an application of quantitative ion character–activity relationships (QICAR) to estimate associations of human cardiovascular (CV) diseases (CVDs) with a set of metal ion properties commonly observed in ambient air pollutants. QICAR has previously been used to predict ecotoxicity of inorganic metal ions based on ion properties. Objectives: The objective of this work was to examine potential associations of biological end points with a set of physical and chemical properties describing inorganic metal ions present in exposures using QICAR. Methods: Chemical and physical properties of 17 metal ions were obtained from peer-reviewed publications. Associations of cardiac arrhythmia, myocardial ischemia, myocardial infarction, stroke, and thrombosis with exposures to metal ions (measured as inference scores) were obtained from the Comparative Toxicogenomics Database (CTD). Robust regressions were applied to estimate the associations of CVDs with ion properties. Results: CVD was statistically significantly associated (Bonferroni-adjusted significance level of 0.003) with many ion properties reflecting ion size, solubility, oxidation potential, and abilities to form covalent and ionic bonds. The properties are relevant for reactive oxygen species (ROS) generation, which has been identified as a possible mechanism leading to CVDs. Conclusion: QICAR has the potential to complement existing epidemiologic methods for estimating associations between CVDs and air pollutant exposures by providing clues about the underlying mechanisms that may explain these associations. PMID:23462649

  9. The relationship between chemical elements in soil and whole blood, and fluorosis induced by coal-fired pollution.

    PubMed

    Wang, Hao; Mu, Lihong; Jiang, Miao; Wang, Yingxiong; Yan, Wei; Jiao, Yongzhuo

    2014-04-01

    To study the relationship between chemical elements in soil and whole blood, and fluorosis induced by coal-fired pollution, ecological and case-control studies were carried out. We determined the concentrations of 11 chemical elements and pH values in soil in two fluorosis-affected counties in Chongqing, China, and analyzed the correlation between these values and prevalence of dental fluorosis. Ni, I, F, Hg, and pH values positively correlated with fluorosis prevalence (P < 0.05); these soil parameters may be related to coal-fired pollution fluorosis. Cu, Zn, Ca, Mg, and Fe concentrations in whole blood, and fluoride levels in urine of residents in epidemic and non-epidemic areas were determined. Cu, Zn, Mg, and Fe levels of the children in the case group were lower than those of the children in the external control group; urine fluoride level in the children in the case group was higher than that of the children in the internal and external control groups (P < 0.05). The levels of Mg, Fe, and urine fluoride were higher in the case adult group than in the internal adult control group (P < 0.05). Anti-fluoride elements were deficient in endemic areas.

  10. Decrease in fluctuating asymmetry among house mice in territories polluted with chemical and radioactive mutagens

    SciTech Connect

    Gileva, E.A.; Kosareva, N.L.

    1995-01-01

    The authors evaluated fluctuating asymmetry of the width of partial bones, and the lengths of frontal bones, nasal bones, and the incesive foramen in populations of house mouse living at five populated points in the Central Urals with different degrees of technogenic pollution and displaying increased frequency of cells with chromosome disorders. As the stressing action intensified, fluctuating asymmetry of the lengths of frontal and nasal bones decreased, remaining unchanged in the case of the other two traits.

  11. The effects of chemical pollution on the bioturbation potential of estuarine intertidal mudflats

    NASA Astrophysics Data System (ADS)

    Mazik, K.; Elliott, M.

    2000-07-01

    Bioturbation by benthic infauna has important implications for the fate of contaminants as well as for changes to the sediment structure, chemistry and transport characteristics. There is an extensive literature dealing with the influence of sedimentary variables on the structure and function of infaunal marine and estuarine organisms but less is known of the converse, the influence of biota on sedimentary structure. Although some work has been carried out regarding spatial and temporal patterns of bioturbation, little attention has been given to the effects of pollution. The paper gives a framework of animal sediment relationships in an intertidal environment and discusses the general role of macrofauna in structuring and modifying sedimentary features. A brief outline of the various techniques used for quantifying the degree of bioturbation is given and some of these techniques have then been used to demonstrate the effect of a petrochemical discharge on the bioturbation potential of intertidal communities in the Humber estuary, eastern England. These studies indicate an increase in bioturbation with increasing distance from the source of pollution, not only because of differences in abundance, animal size and depth of activity but also because of the difference in species composition between the communities. As a means of interpreting the responses, the species present have been broadly classified in terms of their feeding strategy and sediment modification potential. The paper concludes by discussing the potential impact, in terms of effect on sediment transport, of selectively removing the different guilds (by pollution).

  12. Alterations of chemical composition, construction cost and payback time in needles of Masson pine (Pinus massoniana L.) trees grown under pollution.

    PubMed

    Liu, Nan; Guan, Lan-Lan; Sun, Fang-Fang; Wen, Da-Zhi

    2014-07-01

    Previous studies show that Masson pine (Pinus massoniana L.) stands grown at the industrially-polluted site have experienced unprecedented growth decline, but the causal mechanisms are poorly understood. In this study, to understand the mechanisms of growth decline of Mason pine strands under pollution stresses, we determined the reactive oxygen species levels and chemical composition of the current-year (C) and one-year-old (C + 1) needles, and calculated the needle construction costs (CCmass) of Masson pine trees grown at an industrially-polluted site and an unpolluted remote site. Pine trees grown at the polluted site had significantly higher levels of hydroxyl radical and superoxide anion in their needles than those grown at the unpolluted site, and the former trees eventually exhibited needle early senescence. The contents of lipids, soluble phenolics and lignins in C and C + 1 needles were significantly higher at the polluted site than at the unpolluted site, but the total amounts of non-construction carbohydrates were lower in non-polluted needles than in polluted needles. Elevated levels of the reactive oxygen species and early senescence in polluted needles together led to significant increases in CCmass and a longer payback time. We infer that the lengthened payback time and needle early senescence under pollution stress may reduce the Masson pine tree growth and consequently accelerate tree decline.

  13. 77 FR 75739 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ...(c)(3) and 112(k)(3)(B). The nine area source categories are Agricultural Chemicals and Pesticides... environment and human health* * *.'' In any judicial or administrative proceeding, the Administrator may...

  14. Investigating long-range transport of pollution to the Arctic troposphere using aircraft observations and a global chemical transport model

    NASA Astrophysics Data System (ADS)

    Monks, S.; Arnold, S.; Chipperfield, M.; Turquety, S.; Ancellet, G.; Law, K.; Schlager, H.

    2009-04-01

    Surface temperatures in the Arctic have increased more than in any other region over the past few decades. A better understanding of the processes governing this warming, including the role of short-lived greenhouse gases, is therefore urgently required. During summer 2008, the POLARCAT campaign aimed to collect an extensive gas-phase and aerosol dataset within the Arctic troposphere, which will aid the evaluation of our understanding of oxidant photochemistry and aerosol processing in the region. Previous comparisons of global chemical transport models have shown that they exhibit large variability in their Arctic chemical budgets, indicating that the processes controlling Arctic tropospheric composition are not well understood or represented within models. Here, we will use new trace-gas observations from the French ATR and German DLR Falcon aircraft during the POLARCAT experiment to evaluate the ability of a global chemical transport model (TOMCAT) to simulate the summertime transport of pollutants to the Arctic, and their impact on oxidant budgets. In particular, we aim to quantify the impact of anthropogenic and biomass burning sources on the Arctic tropospheric ozone budget. Initial results show that the model underestimates observed concentrations of CO which has led to a re-evaluation of the different sources of CO to the region. Model performance in the Arctic is highly sensitive to the treatment of boreal biomass burning emissions. Boreal biomass burning plumes were sampled frequently over the course of the campaign therefore accurate representation of emission injection heights and fire locations is essential. Model CO is improved with real-time satellite derived daily biomass burning emissions, however large uncertainties in these emissions result in large variability in the Arctic CO budget. We will also present results on the ability of the model to capture pollution transport pathways to the Arctic and contributions to the oxidant and NOy budgets

  15. Environmental implementation plan: Chapter 5, Chemical management, pollution prevention and other compliance programs. Draft revision

    SciTech Connect

    Peterson, G.L.

    1993-11-18

    Compliance with environmental regulations and US Department of Energy Orders (DOE) relating to environmental protection is an important part of SRS`s program. Over the past few years, the number of environmental regulations has increased. The strategy to comply with new and existing environmental regulations and DOE orders is described in chapter two. In this chapter, the following environmental programs are described: Toxic Substances Control Act (TSCA); Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA); Emergency Planning and Community Right-to-Know Act (EPCRA); and SPCC/BMP/Pollution Prevention Plans;The implementation section identifies issues and those responsible to achieve defined objectives.

  16. Exposure to Endocrine-Disrupting Chemicals during Pregnancy and Weight at 7 Years of Age: A Multi-pollutant Approach

    PubMed Central

    Agay-Shay, Keren; Martinez, David; Valvi, Damaskini; Garcia-Esteban, Raquel; Basagaña, Xavier; Robinson, Oliver; Casas, Maribel; Sunyer, Jordi

    2015-01-01

    Background Prenatal exposure to endocrine-disrupting chemicals (EDCs) may induce weight gain and obesity in children, but the obesogenic effects of mixtures have not been studied. Objective We evaluated the associations between pre- and perinatal biomarker concentrations of 27 EDCs and child weight status at 7 years of age. Methods In pregnant women enrolled in a Spanish birth cohort study between 2004 and 2006, we measured the concentrations of 10 phthalate metabolites, bisphenol A, cadmium, arsenic, and lead in two maternal pregnancy urine samples; 6 organochlorine compounds in maternal pregnancy serum; mercury in cord blood; and 6 polybrominated diphenyl ether congeners in colostrum. Among 470 children at 7 years, body mass index (BMI) z-scores were calculated, and overweight was defined as BMI > 85th percentile. We estimated associations with EDCs in single-pollutant models and applied principal-component analysis (PCA) on the 27 pollutant concentrations. Results In single-pollutant models, HCB (hexachlorobenzene), βHCH (β-hexachlorocyclohexane), and polychlorinated biphenyl (PCB) congeners 138 and 180 were associated with increased child BMI z-scores; and HCB, βHCH, PCB-138, and DDE (dichlorodiphenyldichloroethylene) with overweight risk. PCA generated four factors that accounted for 43.4% of the total variance. The organochlorine factor was positively associated with BMI z-scores and with overweight (adjusted RR, tertile 3 vs. 1: 2.59; 95% CI: 1.19, 5.63), and these associations were robust to adjustment for other EDCs. Exposure in the second tertile of the phthalate factor was inversely associated with overweight. Conclusions Prenatal exposure to organochlorines was positively associated with overweight at age 7 years in our study population. Other EDCs exposures did not confound this association. Citation Agay-Shay K, Martinez D, Valvi D, Garcia-Esteban R, Basagaña X, Robinson O, Casas M, Sunyer J, Vrijheid M. 2015. Exposure to endocrine

  17. Integrated environmental risk assessment of chemical pollution in a Mediterranean floodplain by combining chemical and biological methods.

    PubMed

    Rivetti, Claudia; López-Perea, Jhon J; Laguna, Celia; Piña, Benjamín; Mateo, Rafael; Eljarrat, Ethel; Barceló, Damià; Barata, Carlos

    2017-04-01

    The Tablas de Daimiel National Park (TDNP) is a unique floodplain ecosystem in central Spain, serving as permanent resting and breeding areas for many waterbird species. In the last decades, this biodiversity hotspot has been severely endangered by poorly treated wastewater discharges from upstream urban communities arriving through its two major contributors, the Cigüela and Guadiana rivers. In this work, we analysed the potential risk of this constant input of micropollutants (estrogens, dioxin-like compounds and other endocrine disruptors) for the resident wildlife. We sampled 12 locations in TDNP and in the nearby Navaseca Pond during 2013, and performed a series of in-vivo and in-vitro bioassays, including Daphnia magna post-exposure feeding inhibition and recombinant yeast-based assays for dioxin-like and estrogenic activities. These results were then compared with the chemical composition of the samples, analysed by GC-MS/MS and LC-MS/MS, and evaluated according to their toxic potential as toxic equivalents or TEQ. The Navaseca Pond, heavily impacted by wastewater from the town of Daimiel, showed the highest levels of toxic compounds, estrogenic activity, and Daphnia toxicity. Conversely, the less impacted TDNP sites showed low residue levels of contaminants, low estrogenicity and dioxin-like activity and negligible toxicity. The results indicates that the current good chemical status of TDNP is menaced by both the inflow of wastewater treatment plants effluents from Guadiana and Cigüela rivers into TDNP tributaries and, as it occurs in the Navaseca Pond, by direct sewage discharges. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Chemical treatment response to variations in non-point pollution water quality: results of a factorial design experiment.

    PubMed

    Heiderscheidt, Elisangela; Leiviskä, Tiina; Kløve, Bjørn

    2015-03-01

    Chemical treatment of non-point derived pollution often suffers from undesirable oscillations in purification efficiency due to variations in runoff water quality. This study examined the response of the chemical purification process to variations in water quality using a 2(k) factorial design for runoff water rich in humic substances. The four k factors evaluated and the levels applied were: organic matter as dissolved organic carbon (DOC) (20-70 mg/L), suspended solids (SS) (10-60 mg/L), initial water pH (4.5-7), and applied coagulant dosage (ferric sulphate) (35-100 mg/L). Indicators of purification efficiency were residual concentration of DOC, SS and total phosphorus (tot-P). Analysis of variance and factor effect calculations showed that the initial DOC concentration in raw water samples and its interactions with the coagulant dosage applied exerted the most significant influence on the chemical purification process, substantially affecting the residual concentration of DOC, SS and tot-P. The variations applied to the factors SS and pH only slightly affected purification efficiency. The results can be used in the design of purification systems with high organic matter load variation, e.g. peat extraction runoff.

  19. Mussel watch - measurements of chemical pollutants in bivalves as one indicator of coastal environmental quality

    SciTech Connect

    Farrington, J.W.; Davis, A.C.; Tripp, B.W.; Phelps, D.K.; Galloway, W.B.

    1987-01-01

    The utility of the bivalve sentinel organism approach to monitoring for some chemicals of environmental concern in coastal and estuarine areas has been evaluated by regional and national programs and by smaller-scale research efforts during the past 15 years. The extent and severity of coastal contamination by chemicals such as polychlorinated biphenyls, chlorinated pesticides, trace metals, and plutonium was assessed in several bivalve sentinel organism programs. Advantages and limitations of this approach are presented and discussed briefly within the context of both national and international efforts.

  20. The chemical composition of red giants in 47 Tucanae. II. Magnesium isotopes and pollution scenarios

    NASA Astrophysics Data System (ADS)

    Thygesen, A. O.; Sbordone, L.; Ludwig, H.-G.; Ventura, P.; Yong, D.; Collet, R.; Christlieb, N.; Melendez, J.; Zaggia, S.

    2016-04-01

    Context. The phenomenon of multiple populations in globular clusters is still far from understood, with several proposed mechanisms to explain the observed behaviour. The study of elemental and isotopic abundance patterns are crucial for investigating the differences among candidate pollution mechanisms. Aims: We derive magnesium isotopic ratios for 13 stars in the globular cluster 47 Tucanae (NGC 104) to provide new, detailed information about the nucleosynthesis that has occurred within the cluster. For the first time, the impact of 3D model stellar atmospheres on the derived Mg isotopic ratios is investigated. Methods: Using both tailored 1D atmospheric models and 3D hydrodynamical models, we derive magnesium isotopic ratios from four features of MgH near 5135 Å in 13 giants near the tip of the red giant branch, using high signal-to-noise, high-resolution spectra. Results: We derive the magnesium isotopic ratios for all stars and find no significant offset of the isotopic distribution between the pristine and the polluted populations. Furthermore, we do not detect any statistically significant differences in the spread in the Mg isotopes in either population. No trends were found between the Mg isotopes and [Al/Fe]. The inclusion of 3D atmospheres has a significant impact on the derived 25Mg/24Mg ratio, increasing it by a factor of up to 2.5, compared to 1D. The 26Mg/24Mg ratio, on the other hand, essentially remains unchanged. Conclusions: We confirm the results seen from other globular clusters, where no strong variation in the isotopic ratios is observed between stellar populations, for observed ranges in [Al/Fe]. We see no evidence for any significant activation of the Mg-Al burning chain. The use of 3D atmospheres causes an increase of a factor of up to 2.5 in the fraction of 25Mg, resolving part of the discrepancy between the observed isotopic fraction and the predictions from pollution models. Based on observations made with the ESO Very Large Telescope

  1. Chemical pollution in inland shallow lakes in the Mediterranean region (NW Spain): PAHs, insecticides and herbicides in water and sediments.

    PubMed

    Hijosa-Valsero, María; Bécares, Eloy; Fernández-Aláez, Camino; Fernández-Aláez, Margarita; Mayo, Rebeca; Jiménez, Juan José

    2016-02-15

    The possible effect of land uses and human-related geographic patterns (presence of roads and urban settlements) on chemical pollution was evaluated in the waters and sediments of fifty-three Mediterranean shallow lakes. The presence of fifty-nine pollutants (belonging to PAHs, insecticides and herbicides groups) was analysed in these lakes by GC-MS. The studied lakes had similar pollutant concentrations to other lakes worldwide. The distribution of the compounds between water and sediment compartments was strongly influenced by log K(ow) values (an average of 3.61 for compounds found in water and of 4.69 for compounds found in sediments). A multivariate analysis suggested that the concentration of PAHs in water could be related to agricultural activities and not related to local road traffic. When assessing nutrient levels in the lakes, it was observed that eutrophicated lakes [>300 μg L(-1) total phosphorus (TP)] appeared in areas affected by urban or industrial use (at least 2% urban use in a 1-km radius around the lake), whilst lakes with lower TP concentrations were placed in forest areas (60% of forest use in a 1-km radius); in addition, the aqueous concentrations of Σ(PAH) were lower in lakes with higher TP concentrations (>150 μg L(-1) TP), which could be related to the adsorption capacity of PAHs onto suspended matter which is present in mesotrophic and eutrophic lakes, thus being removed from the aqueous phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. [Influence of chemical pollutants on stability of forest soil microbiocenoses (natural model experiments)].

    PubMed

    Grodnitskaia, I D; Syrtsov, S N; Sorokin, N D

    2011-01-01

    The influence of different concentrations (10, 30, 50, 100, 150, 300) of the maximum permissible concentrations of fluoride and sulfide pollutants (Na2SO4, NaF and Na2SO3 + NaF) on highly buffered soils of larch forest of Pogorelskii pine wood in Krasnoyarsk forest-steppe was studied. As a result of the influence of treatment with high concentrations of fluoride and sulfide compounds, the intensity of respiration of microorganisms and values of the microbe metabolic coefficient increased, and the biomass of microorganisms and enzymatic activity decreased compared to the control by 1.3-2.7 times. By the end of vegetation, the ecophysiological condition of microbiocenoses of the studied regions had stabilized.

  3. Chemical fingerprinting applied to the evaluation of marine oil pollution in the coasts of Canary Islands (Spain).

    PubMed

    Peña-Méndez, E M; Astorga-España, M S; García-Montelongo, F J

    2001-01-01

    Chemical fingerprinting approach to environmental assessment is illustrated in the evaluation of marine oil pollution in the coasts using two limpet species as bioindicator organisms, and based on profiles and concentrations of n-alkanes and aromatic hydrocarbons in their tissues. Accidental and chronic releases of hydrocarbons can contaminate the marine environment of the Canary Islands not only because of their geographical situation but also because of the very dense tanker traffic around. This situation affects coastal areas, fishing activities, tourism resort, etc. Concentrations of n-alkanes and aromatic hydrocarbons (polycyclic aromatic hydrocarbons and methyl-polycyclic aromatic hydrocarbons) in the soft tissues of the marine intertidal and subtidal limpets, Patella crenata and Patella ullysiponensis aspera, were evaluated. Limpet samples were collected at monthly intervals, at three locations on the southeast coast of Tenerife over a 3-year period (1991-93). Levels of hydrocarbons found in limpets are similar to concentrations found in unpolluted areas around the world. From application of principal component analysis, the interpretation of variable loading plots gives information on variable correlation and can be used to distinguish among potential sources of pollution and the ability of studied molluscs to be used as bioindicator organisms.

  4. Pollution Comes Home and Gets Personal: Women's Experience of Household Chemical Exposure

    ERIC Educational Resources Information Center

    Altman, Rebecca Gasior; Morello-Frosch, Rachel; Brody, Julia Green; Rudel, Ruthann; Brown, Phil; Averick, Mara

    2008-01-01

    We report on interviews conducted with participants in a novel study about environmental chemicals in body fluids and household air and dust. Interviews reveal how personal and collective environmental history influence the interpretation of exposure data, and how participants fashion an emergent understanding of environmental health problems from…

  5. Pollution Comes Home and Gets Personal: Women's Experience of Household Chemical Exposure

    ERIC Educational Resources Information Center

    Altman, Rebecca Gasior; Morello-Frosch, Rachel; Brody, Julia Green; Rudel, Ruthann; Brown, Phil; Averick, Mara

    2008-01-01

    We report on interviews conducted with participants in a novel study about environmental chemicals in body fluids and household air and dust. Interviews reveal how personal and collective environmental history influence the interpretation of exposure data, and how participants fashion an emergent understanding of environmental health problems from…

  6. Multivariate analysis of respiratory problems and their connection with meteorological parameters and the main biological and chemical air pollutants

    NASA Astrophysics Data System (ADS)

    Matyasovszky, István; Makra, László; Bálint, Beatrix; Guba, Zoltán; Sümeghy, Zoltán

    2011-08-01

    The aim of the study is to analyse the joint effect of biological (pollen) and chemical air pollutants, as well as meteorological variables, on the hospital admissions of respiratory problems for the Szeged region in Southern Hungary. The data set used covers a nine-year period (1999-2007) and is unique in the sense that it includes—besides the daily number of respiratory hospital admissions—not just the hourly mean concentrations of CO, PM 10, NO, NO 2, O 3 and SO 2 with meteorological variables (temperature, global solar flux, relative humidity, air pressure and wind speed), but two pollen variables ( Ambrosia and total pollen excluding Ambrosia) as well. The analysis was performed using three age categories for the pollen season of Ambrosia and the pollen-free season. Meteorological elements and air pollutants are clustered in order to define optimum environmental conditions of high patient numbers. ANOVA was then used to determine whether cluster-related mean patient numbers differ significantly. Furthermore, two novel procedures are applied here: factor analysis including a special transformation and a time-varying multivariate linear regression that makes it possible to determine the rank of importance of the influencing variables in respiratory hospital admissions, and also compute the relative importance of the parameters affecting respiratory disorders. Both techniques revealed that Ambrosia pollen is an important variable that influences hospital admissions (an increase of 10 pollen grains m -3 can imply an increase of around 24% in patient numbers). The role of chemical and meteorological parameters is also significant, but their weights vary according to the seasons and the methods. Clearer results are obtained for the pollination season of Ambrosia. Here, a 10 μg m -3 increase in O 3 implies a patient number response from -17% to +11%. Wind speed is a surprisingly important variable, where a 1 m s -1 rise may result in a hospital admission

  7. Particulate pollution in urban Chongqing of southwest China: Historical trends of variation, chemical characteristics and source apportionment.

    PubMed

    Chen, Yuan; Xie, Shao-Dong; Luo, Bin; Zhai, Chong-Zhi

    2017-04-15

    Chongqing, the largest megacity in southwest China, faces serious aerosol pollution but lacks information on particle characteristics and its sources. Official data released by Chongqing Environmental Protection Bureau demonstrated that urban PM10 concentrations decreased remarkably from 150μgm(-3) in 2000 to 90μgm(-3) in 2012. However, only several peer-reviewed studies paid attention to local fine particle (PM2.5) pollution. In the study, PM2.5 samples were obtained and subjected to chemical analysis in an urban site of the city during 2012 to 2013. The annual mean PM10 and PM2.5 concentrations in urban Chongqing were 103.9±52.5 and 75.4±42.2μgm(-3), respectively. PM2.5 showed a distinct seasonality of high concentration in winter and similar levels in other seasons. The average OC/EC (organic carbon/element carbon) ratio was 3.7 with more high-OC/EC ratio sources contribution in autumn and winter. The varying sources and formation mechanisms resulted in SO4(2-) and NH4(+) peaks in both summer and winter, whereas high nitrate concentration was only observed in winter. In the average mass closure, PM2.5 was composed of 23.0% SO4(2-), 11.7% NO3(-), 10.9% NH4(+), 30.8% OM (organic matter), 5.2% EC, 8.2% mineral dust, 0.6% TEO (trace elements), 1.0% Cl(-) and 1.1% K(+), while exhibiting large seasonal variability. Using positive matrix factorization (PMF), six sources were apportioned in PM2.5: secondary inorganic aerosols, coal combustion, other industrial pollution, soil dust, vehicular emission, and metallurgical industry. The annual mean contribution of above sources to PM2.5 was 37.5, 22.0, 17.5, 11.0, 9.8 and 2.2%, respectively. Coal combustion was identified by As tracer and dominated the primary sources of PM2.5, while the two different industrial sources were characterized by Cr and Mo, Co, Ni, and Se, respectively. The study is of great importance in characterizing the historical trends, current chemical characteristics and sources of fine particles in

  8. Scents and scents-ability: pollution disrupts chemical social recognition and shoaling in fish.

    PubMed

    Ward, Ashley J W; Duff, Alison J; Horsfall, Jennifer S; Currie, Suzanne

    2008-01-07

    Chemical cues are of enormous importance in mediating the behaviour of animals, enabling them to navigate throughout their habitats, to detect the presence of predators or prey and for social recognition-identifying and discriminating between conspecifics. In many species of freshwater fish, social recognition is known to be based primarily on chemical cues. Such recognition mechanisms are vulnerable to disruption by the presence of anthropogenic contaminants in the aquatic environment. Here we show that acute exposure to low, environmentally relevant dosages of the ubiquitous contaminant, 4-nonylphenol, can seriously affect social recognition and ultimately social organization in fishes. A 1 hour 0.5 microgl-1 dose was sufficient to alter the response of members of a shoaling fish species (juvenile banded killifish, Fundulus diaphanus) to conspecific chemical cues. Dosages of 1-2 microgl-1 caused killifish to orient away from dosed conspecifics, in both a flow channel and an arena. Given the overall importance of shoaling as an adaptive strategy against predators and for locating food, it is likely that its disruption by anthropogenic contaminants would have serious implications for fishes' fitness.

  9. Association of chemical constituents and pollution sources of ambient fine particulate air pollution and biomarkers of oxidative stress associated with atherosclerosis: A panel study among young adults in Beijing, China.

    PubMed

    Wu, Shaowei; Yang, Di; Wei, Hongying; Wang, Bin; Huang, Jing; Li, Hongyu; Shima, Masayuki; Deng, Furong; Guo, Xinbiao

    2015-09-01

    Ambient particulate air pollution has been associated with increased oxidative stress and atherosclerosis, but the chemical constituents and pollution sources behind the association are unclear. We investigated the associations of various chemical constituents and pollution sources of ambient fine particles (PM2.5) with biomarkers of oxidative stress in a panel of 40 healthy university students. Study participants underwent repeated blood collections for 12 times before and after relocating from a suburban campus to an urban campus with high air pollution levels in Beijing, China. Air pollution data were obtained from central air-monitoring stations, and plasma levels of oxidized low-density lipoprotein (Ox-LDL) and soluble CD36 (sCD36) were determined in the laboratory (n=464). Linear mixed-effects models were used to estimate the changes in biomarkers in association with exposure variables. PM2.5 iron and nickel were positively associated with Ox-LDL (p<0.05). For each interquartile range increase in iron (1-day, 0.51 μg/m(3)) and nickel (2-day, 2.5 ng/m(3)), there were a 1.9% [95% confidence interval (CI): 0.2%, 3.7%] increase and a 1.8% (95% CI: 0.2%, 3.4%) increase in Ox-LDL, respectively. We also found that each interquartile range increase in calcium (1-day, 0.7 μg/m(3)) was associated with a 4.8% (95% CI: 0.7%, 9.1%) increase in sCD36. Among the pollution sources, PM2.5 from traffic emissions and coal combustion were suggestively and positively associated with Ox-LDL. Our findings suggest that a subset of metals in airborne particles may be the major air pollution components that contribute to the increased oxidative stress associated with atherosclerosis.

  10. Correlation of field-measured toxicity with chemical concentration and pollutant availability.

    PubMed

    Mowat, F S; Bundy, K J

    2001-12-01

    Direct field toxicity tests were performed in two Louisiana waterways, Bayous Trepagnier and St. John, on sediments containing organic/heavy metal mixtures. Our approach involved bioluminescent bacterial toxicity assays (using DeltaTox, which qualitatively identifies polluted areas, and Microtox, which quantifies toxicity). Samples were more completely analyzed in our laboratory using inductively coupled plasma atomic emission spectroscopy (ICP-AES) and gas chromatography/mass spectrometry (GC/MS). Results indicate that lead is the primary toxic metal at the sites examined, though concentrations of metals fluctuate due to spatial variation and the dynamic nature of the waterways. Polycyclic aromatic hydrocarbons (PAHs) are the most abundant group of organics measured and appear to contribute to the overall toxic response. DeltaTox located toxic hotspots where there was an average light loss of 53-100%. Toxicity results from both assays agree but are well correlated with concentration measurements only for certain sediment fractions. Overall, the DeltaTox/Microtox approach appears to be rapid and cost effective for on-site hotspot identification, and may increase understanding of hazards associated with heavy metal and organic contaminants in these waterways.

  11. The sea urchin Paracentrotus lividus immunological response to chemical pollution exposure: The case of lindane.

    PubMed

    Stabili, Loredana; Pagliara, Patrizia

    2015-09-01

    In the marine environment organochlorine insecticides can be broadly detected in water, sediments, and biota. These pollutants may have major ecological consequences since they may affect marine organisms and endanger organismal growth, reproduction or survival. In this study we investigated the modification of some sea urchin immunological parameters in response to subchronic lindane (γ-HCH) exposure. Adult specimens of the sea urchin Paracentrotus lividus were exposed to two different concentrations (0.1 and 0.5 mg L(-1)) of lindane. After 24 and 48h of treatment, we examined the lindane influence on coelomocytes vitality and enumeration as well on some humoral parameters. Our results showed that the presence of the pesticide affected both cellular and humoral components of the immune system. In particular, P. lividus coelomocytes vitality did not change but a decrease of the total cell number and an increase of the red cells was recorded. Haemolytic and lysozyme-like activities as well as antibacterial activity on Vibrio alginolyticus of treated animals decreased. Sea urchin immunological competence modifications might represent a tool for monitoring disease susceptibility thus providing biological criteria for the implementation of water quality standards to protect marine organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Soil microcosm for testing the effects of chemical pollutants on soil fauna communities and trophic structure

    SciTech Connect

    Parmelee, R.W. . Dept. of Entomology); Wentsel, R.S.; Phillips, C.T.; Checkai, R.T. ); Simini, M. )

    1993-08-01

    A microcosm technique is presented that uses community and trophic-level analysis of soil nematodes and microarthropods to determine the effects of chemicals on soil systems. Forest soil was treated with either copper, p-nitrophenol, or trinitrotoluene. Nematodes were sorted into bacterivore, fungivore, herbivore, and omnivore-predator trophic groups, and a hatchling category. Microarthropods were sorted to the acarine suborders Prostigmata, Mesostigmata, and Oribatida; the insectan order Collembola; and a miscellaneous group. Omnivore-predator nematodes and meso-stigmatid and oribatid mites were the groups most sensitive to copper and were significantly reduced at levels as low as 100 [mu]g g[sup [minus]1] copper. Total nematode and microarthropod numbers declined above 200 [mu]g g[sup [minus]1] copper. Trophic structure analysis suggested that high sensitivity of nematode predators to intermediate levels of copper reduced predation on herbivore nematodes and resulted in greater numbers of nematodes compared to controls. p-Nitrophenol was very toxic to the nematode community, and all trophic groups were significantly reduced above 20 [mu]g g[sup [minus]1]. However, there was no effect of p-nitrophenol on microarthropods. Trinitrotoluene had no significant negative effect on total abundance of either groups of soil fauna, but oribatids were significantly reduced at 200 [mu]g g[sup [minus]1]. The results demonstrated that soil nematodes and microarthropods were sensitive indicators of environmental contaminants and that trophic-structure and community analysis has the potential to detect more subtle indirect effects of chemicals on soil food-web structure. The authors conclude that microcosms with field communities of soil microfauna offer high resolution of the ecotoxicological effects of chemicals in complex soil systems.

  13. Eco-economic approach to evaluation of agricultural lands polluted by chemicals and radionuclides

    NASA Astrophysics Data System (ADS)

    Tsvetnov, E. V.; Shcheglov, A. I.; Tsvetnova, O. B.

    2009-03-01

    A comparative analysis of the existing methods of land evaluation has shown that none of them ensures a comprehensive assessment of the diverse economic and ecological functions of soils. An original methodology developed by the authors includes the evaluation of the soil ecological quality in addition to the traditional cost assessment of land plots, and adequate correction coefficients accounting for the chemical and radioactive contamination of soils are suggested. The effect of changes in the market price of the land on the inflation processes is analyzed.

  14. Chemical characterization and sources apportionment of fine particulate pollution in a mining town of Vietnam

    NASA Astrophysics Data System (ADS)

    Hang, Nguyen Thanh; Kim Oanh, Nguyen Thi

    2014-08-01

    Monitoring for PM2.5 was conducted in a mining town in Northern Vietnam in both dry and wet seasons from 2009 to 2010. Levels and compositions of PM were characterized at two sites representing two separate air bubbles; an industrial site in Mong Duong (MD) and a reference rural site in Cam Hai (CH). Two MiniVol samplers were collocated to collect 24 h PM2.5 samples for about 30 days at each site in a season, simultaneously with meteorological data recording. All samples were analyzed for mass, black carbon (BC), water soluble ions and elements, while selected samples were also analyzed for OC (organic carbon) and EC (element carbon). Higher PM2.5 levels were observed in the dry season than the wet season at both sites in spite of abnormal rainfall occurrences observed on some days during the dry season. In both seasons, higher PM2.5 levels were observed in the industrial site than the reference rural site. The differences in PM, BC or EC and OC levels between two sites and between two seasons at one site, respectively, were all statistically significant except for that in OC between two sites, and BC between two seasons at MD. The reconstructed PM2.5 mass indicated major contributing groups being organic matter, secondary inorganic particles, crustal and soot in both seasons. Higher values of K-Smoke in the dry season suggested more contribution from biomass burning. The PMF results revealed the largest contribution to PM2.5 mass from secondary PM (35-40%); followed by biomass burning, ship and road traffic (diesel) each had a share of 15-22%; and a small contribution from miscellaneous sources such as industry and construction activities (3-8%). Analysis of HYSPLIT backward trajectory patterns showed a high potential contribution of the long range transport (LRT) pollution when air masses had long continental pathways before arriving at the study area.

  15. Mixtures of Chemical Pollutants at European Legislation Safety Concentrations: How Safe Are They?

    PubMed Central

    Carvalho, Raquel N.; Arukwe, Augustine; Ait-Aissa, Selim; Bado-Nilles, Anne; Balzamo, Stefania; Baun, Anders; Belkin, Shimshon; Blaha, Ludek; Brion, François; Conti, Daniela; Creusot, Nicolas; Essig, Yona; Ferrero, Valentina E. V.; Flander-Putrle, Vesna; Fürhacker, Maria; Grillari-Voglauer, Regina; Hogstrand, Christer; Jonáš, Adam; Kharlyngdoh, Joubert B.; Loos, Robert; Lundebye, Anne-Katrine; Modig, Carina; Olsson, Per-Erik; Pillai, Smitha; Polak, Natasa; Potalivo, Monica; Sanchez, Wilfried; Schifferli, Andrea; Schirmer, Kristin; Sforzini, Susanna; Stürzenbaum, Stephen R.; Søfteland, Liv; Turk, Valentina; Viarengo, Aldo; Werner, Inge; Yagur-Kroll, Sharon; Zounková, Radka; Lettieri, Teresa

    2014-01-01

    The risk posed by complex chemical mixtures in the environment to wildlife and humans is increasingly debated, but has been rarely tested under environmentally relevant scenarios. To address this issue, two mixtures of 14 or 19 substances of concern (pesticides, pharmaceuticals, heavy metals, polyaromatic hydrocarbons, a surfactant, and a plasticizer), each present at its safety limit concentration imposed by the European legislation, were prepared and tested for their toxic effects. The effects of the mixtures were assessed in 35 bioassays, based on 11 organisms representing different trophic levels. A consortium of 16 laboratories was involved in performing the bioassays. The mixtures elicited quantifiable toxic effects on some of the test systems employed, including i) changes in marine microbial composition, ii) microalgae toxicity, iii) immobilization in the crustacean Daphnia magna, iv) fish embryo toxicity, v) impaired frog embryo development, and vi) increased expression on oxidative stress-linked reporter genes. Estrogenic activity close to regulatory safety limit concentrations was uncovered by receptor-binding assays. The results highlight the need of precautionary actions on the assessment of chemical mixtures even in cases where individual toxicants are present at seemingly harmless concentrations. PMID:24958932

  16. Assessment of pollution in the Bizerte lagoon (Tunisia) by the combined use of chemical and biochemical markers in mussels, Mytilus galloprovincialis.

    PubMed

    Barhoumi, Badreddine; Le Menach, Karyn; Clérandeau, Christelle; Ameur, Walid Ben; Budzinski, Hélène; Driss, Mohamed Ridha; Cachot, Jérôme

    2014-07-15

    In order to assess the environmental quality of the Bizerte lagoon (Tunisia), biomarker and contaminant levels were measured in Mediterranean mussels (Mytilus galloprovincialis) from five selected sites. Persistent organic pollutants (POPs) were quantified in whole body and enzyme activities such as acetylcholinesterase (AChE), catalase (CAT) and glutathione S-transferase (GST) in gills. Despite the relatively low levels of organic contaminants, the selected biomarkers responded differently according to the pollution level at the different sites. GST and AChE activities were correlated with the amount of DDTs in mussel tissues. These two enzymatic activities were also correlated to temperature and pH. No significant difference was observed for CAT activity. Principal component analysis showed a clear separation of sampling sites in three different assemblages which is consistent with POP body burden in mussels. Our results confirmed the usefulness of combining biomarker and chemical analyses in mussels to assess chemical pollution in the Bizerte lagoon.

  17. Chemically Bonded Phases for the Analysis of Trace Amounts of Organic Pollutants

    PubMed Central

    Rykowska, I.; Wasiak, W.; Szymański, A.; Szyrwińska, K.; Lulek, J.

    2008-01-01

    This work describes some results of identification and determination of bisphenol A (BPA) in powdered milk by applying the gas chromatography. To determine BPA contents in the milk and to reduce the matrix interference associated with the constituents of the powdered milk, we performed the following activities. First, we ultra-centrifuged the dissolved milk solutions. Next, we preconcentrated the analyte in the supernatant using a C18 and new sorbent with chemically bonded ketoimine group solid phase extraction column. Finally, we used gas chromatography for the determination of BPA in the samples under study. A recovery of bisphenol A from spiked milk samples was also performed, with recovery result located at 91% ± 3%/94% ± 2%. PMID:19710916

  18. Chemical characterization of iron oxide precipitates from wetlands constructed to treat polluted mine drainage

    SciTech Connect

    Fish, C.L.; Partezana, J.M.; Hedin, R.S.

    1996-12-31

    The passive treatment of abandoned mine drainage using wetlands will produce a significant amount of iron rich sludge which will require costly removal and disposal. An alternative to disposal may be the use of this iron oxide material as pigments which could defray some of these costs. In this research, iron deposits from five alkaline mine drainage wetlands were collected and a series of standard tests were run. The tests included loss on ignition, moisture, pH, acid soluble metals, oil absorption, and water soluble matter. The results of these tests were compared to those achieved using commercially available natural and synthetic iron oxides. The results indicate that iron oxides from constructed wetlands have chemical properties that are intermediate to those of natural and synthetic iron oxide products.

  19. [Study on the association between environmental chemical elements and fluorosis caused by coal-fire pollution].

    PubMed

    Jiao, Yong-zhuo; Mu, Li-hong; Wang, Ying-xiong; Yan, Wei; Zhong, Zhao-hui; Li, Li

    2012-12-01

    To understand the distribution of chemical elements in soil. To investigate the differences between patients under different state of fluorosis and normal population after preventive measurement was implemented to get rid of some chemical elements and to lower the urine fluoride levels so as to illustrate the pathogenesis of the disease. Both ecological and comparative studies had been used to analyze the rates and levels of chemical elements. Teeth and skeletal from the patients with fluorosis and controls were taken and florin ion-selective-electrode method was used to determine urine the content of fluorine. Atomic Absorption Spectrometry was used to determine the copper, zinc, calcium, magnesium and iron contents in the whole blood. Differences of contents were analyzed. In Wushan county, the soil contents of nickel (r = 0.553, P = 0.050), iodine (r = 0.571, P = 0.041), fluorine (r = 0.303, P = 0.005), pH value (r = 0.304, P = 0.005) and the rates of fluorosis showed weaker positive relationship. In Fengjie county, the soil contents of mercury (r = 0.285, P = 0.001), nickel (r = 0.212, P = 0.00) and the rates of fluorosis also showed weaker positive relationship. In Wushan county, the urine fluoride level in the patients group [(0.64 ± 0.34) mg/L] was higher than that in the control group [(0.44 ± 0.59) mg/L], (P < 0.05). In Fengjie county, copper [(29.63 ± 3.32) µmol/L] and urine fluoride [(0.83 ± 0.37) mg/L] levels in the patients group showed higher than that in the control group [(26.76 ± 3.63) µmol/L, (0.53 ± 0.23) mg/L], (P < 0.05). zinc (Zn) [(76.13 ± 11.24) µmol/L], calcium (Ca) [(1.87 ± 0.25) mmol/L], magnesium (Mg) [(1.41 ± 0.18) mmol/L] and fluoride[(0.83 ± 0.37) mg/L]levels in urine of the patients in children were higher in Fengjie than that in Wushan [(71.95 ± 7.53) µmol/L, (1.43 ± 1.34) mmol/L, (1.34 ± 0.15) mmol/L, (0.64 ± 0.34) mg/L], (P < 0.05). Mg [(1.56 ± 1.96) mmol/L], ferrum [(8.15 ± 1.00) mmol/L] and fluoride [(2.17

  20. Size- and time-resolved chemical particle characterization during CAREBeijing-2006: Different pollution regimes and diurnal profiles

    NASA Astrophysics Data System (ADS)

    van Pinxteren, D.; Brüggemann, E.; Gnauk, T.; Iinuma, Y.; Müller, K.; Nowak, A.; Achtert, P.; Wiedensohler, A.; Herrmann, H.

    2009-01-01

    Beijing, the capital of China, faces severe air pollution problems, resulting from a steep economic growth during the past decades. To better characterize the processes leading to the frequently observed high concentrations of air pollutants on a regional scale, the international field campaign "Campaigns of Air Quality Research in Beijing and Surrounding Region 2006" (CAREBeijing-2006) was conducted in summer 2006. In this contribution, we present chemical data of size-resolved particles, obtained by a five-stage Berner impactor during 3 weeks at both an urban and suburban site in the area of Beijing, China. The samples were analyzed for inorganic ions (Cl-, SO42-, NO3-, NH4+, K+, Ca2+, Na+, and Mg2+), carbon sum parameters (OC, EC, and WSOC), and a variety of organic compounds such as dicarboxylic acids, alkanes, PAHs, and, for the first time in China, nitrooxy-organosulfates. On average, the observed PM10 (where PM is particulate matter) mass concentrations were 133 μg m-3 and 112 μg m-3 at the urban and suburban site, respectively. A high influence of meteorology on the PM pollution was observed and is discussed. The highest concentrations of both PM mass and particle constituents were observed when sampled air masses originated south of Beijing and moved over the area with low wind speeds. During such periods, a strong increase of daytime concentrations of the secondary ions sulfate, nitrate, ammonium, and also some dicarboxylic acids could be observed. A strong diurnal variation of particle sulfate concentration with increasing values from morning to afternoon was observed during an intensive period, which could be attributed to regional production. Similar observations were made for oxalic acid. Generally, water-soluble organic carbon concentrations were enhanced by a factor of 2 in fine particles during the studied period of intense photochemistry. Elemental carbon, alkanes, and PAHs showed clear nighttime concentration maxima obviously due to enhanced

  1. Airborne measurements of spectral direct aerosol radiative forcing in the Intercontinental chemical Transport Experiment/Intercontinental Transport and Chemical Transformation of anthropogenic pollution, 2004

    NASA Astrophysics Data System (ADS)

    Redemann, Jens; Pilewskie, Peter; Russell, Philip B.; Livingston, John M.; Howard, Steve; Schmid, Beat; Pommier, John; Gore, Warren; Eilers, James; Wendisch, Manfred

    2006-07-01

    As part of the INTEX-NA (Intercontinental chemical Transport Experiment-North America) and ITCT (Intercontinental Transport and Chemical Transformation of anthropogenic pollution) field studies, the NASA Ames 14-channel Airborne Tracking Sunphotometer (AATS-14) and a pair of Solar Spectral Flux Radiometers (SSFR) took measurements from aboard a Sky Research Jet stream 31 (J31) aircraft during 19 science flights over the Gulf of Maine during 12 July to 8 August 2004. The combination of coincident AATS-14 and SSFR measurements yields plots of net (downwelling minus upwelling) spectral irradiance as a function of aerosol optical depth (AOD) as measured along horizontal flight legs. By definition, the slope of these plots yields the instantaneous change in net irradiance per unit AOD change and is referred to as the instantaneous spectral aerosol radiative forcing efficiency, Ei (W m-2 nm-1). Numerical integration over a given spectral range yields the instantaneous broadband aerosol radiative forcing efficiency (W m-2). This technique for deriving Ei is called the aerosol gradient method. Within 10 case studies considered suitable for our analysis we found a high variability in the derived instantaneous aerosol forcing efficiencies for the visible wavelength range (350-700 nm), with a mean of -79.6 W m-2 and a standard deviation of 21.8 W m-2 (27%). An analytical conversion of the instantaneous forcing efficiencies to 24-hour-average values yielded -45.8 ± 13.1 W m-2 (mean ± std). We present spectrally resolved aerosol forcing efficiencies between 350 and 1670 nm, estimates of the midvisible aerosol single scattering albedo and a comparison of observed broadband forcing efficiencies to previously reported values.

  2. Chemical studies on polyaniline titanotungstate and its uses to reduction cesium from solutions and polluted milk.

    PubMed

    El-Naggar, I M; Zakaria, E S; Ali, I M; Khalil, M; El-Shahat, M F

    2012-10-01

    Polyaniline titanotungstate (PATiW) was synthesized by the sol-gel method. Adsorption isotherm studies of Cs(+) from aqueous solution are described. Elemental Composition, chemical solubility, ion-exchange capacity (IEC) and pH-titration curve are studied. Distribution coefficients (K(d)) for 10 metal ions were determined. It was found that the polyaniline titanotungstate is highly selective to Cs(+) and the selectivity order is Cs(+)>Zr(4+)>Mo(6+)>V(5+)>As(5+)>Cr(3+)>Co(2+)>Cu(2+)>Zn(2+)>Cd(2+). The adsorbent capacity was determined using the Freundlich and Langmuir adsorption isotherm models. The Cs(+) adsorption isotherm data fit best to the Freundlich isotherm model. The maximum Cs(+) uptake of polyaniline titanotungstate was found to be 217 mg g(-1). Column tests were performed to determine the breakthrough curves with varying bed depths and flow rates in different solutions. The results showed that the half breakthrough time increases proportionally with increasing bed depths. Kinetic studies for removal of cesium from milk were also investigated using a scintillation detector head (NaI). Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. The ionized gas at the centre of IC 10: a possible localized chemical pollution by Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Á. R.; Mesa-Delgado, A.; López-Martín, L.; Esteban, C.

    2011-03-01

    We present results from integral field spectroscopy with the Potsdam Multi-Aperture Spectrograph at the 3.5-m telescope at Calar Alto Observatory of the intense star-forming region [HL90] 111 at the centre of the starburst galaxy IC 10. We have obtained maps with a spatial sampling of 1 × 1 arcsec2= 3.9× 3.9 pc2 of different emission lines and analysed the extinction, physical conditions, nature of the ionization and chemical abundances of the ionized gas, as well determined locally the age of the most recent star formation event. By defining several apertures, we study the main integrated properties of some regions within [HL90] 111. Two contiguous spaxels show an unambiguous detection of the broad He IIλ4686 emission line, this feature seems to be produced by a single late-type WN star. We also report a probable N and He enrichment in the precise spaxels where the Wolf-Rayet (WR) features are detected. The enrichment pattern is roughly consistent with that expected for the pollution of the ejecta of a single or a very small number of WR stars. Furthermore, this chemical pollution is very localized (˜2 arcsec ˜7.8 pc) and it should be difficult to detect in star-forming galaxies beyond the Local Volume. We also discuss the use of the most common empirical calibrations to estimate the oxygen abundances of the ionized gas in nearby galaxies from 2D spectroscopic data. The ionization degree of the gas plays an important role when applying these empirical methods, as they tend to give lower oxygen abundances with increasing ionization degree. Based on observations collected at the Centro Astrónomico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Plank Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Visiting Astronomer at the Instituto de Astrofísica de Canarias.

  4. The Dart estuary, Devon, UK: a case study of chemical dynamics and pollutant mobility

    NASA Astrophysics Data System (ADS)

    Schuwerack, P.-M. M.; Neal, M.; Neal, C.

    2007-01-01

    Water, sediments and gill and digestive gland tissues of adult common shore crab (Carcinus maenas), collected at Noss Marina, Sandquay (Britannia Royal Naval College), the Dartmouth Pier, Warfleet Cove and Sugary Cove in the Dart estuary, Devon, UK, were analysed for major, minor and trace elements in spring 2004. Total acid-available measurements analysed included the truly dissolved component and acid-available sediments. Trace metal concentrations are associated largely with particulate and micro-particulate/colloidal phases, the latter being able to pass through standard filter papers. Wide ranges of chemical concentrations were found in the water, sediments and tissues at all the locations. In the water column, 48% of the variance is linked to the sea-salt component (Cl, Na, K, Ca, Mg, B, Li and Sr) and the sediment-associated acid-available fractions are linked to Fe-rich lithogenous materials (Ba, Co, Cu, Fe, Mn, V and Zn). In the sediments, trace elements of Cd, Co, Cr, Fe, Pb, Mn, Ni and V are correlated with the sea salts and associated with the fraction of fine sediments within the total sediment. In the gills and the digestive gland tissues of crabs, high concentrations of Al, Cu and Fe are found and there are correlations between acid-available trace metals of Cu, Cr, Fe, Mn, Ni, Sr and Zn. The relationships between trace metal contaminants, their site-specific concentrations, their temporal and spatial variability and the effects of human activities, such as moorland/agriculture with historic mining and recreational activities in the lower Dart estuary, are discussed.

  5. Combined use of chemical, biochemical and physiological variables in mussels for the assessment of marine pollution along the N-NW Spanish coast.

    PubMed

    Bellas, Juan; Albentosa, Marina; Vidal-Liñán, Leticia; Besada, Victoria; Franco, M Ángeles; Fumega, José; González-Quijano, Amelia; Viñas, Lucía; Beiras, Ricardo

    2014-05-01

    This study undertakes an overall assessment of pollution in a large region (over 2500 km of coastline) of the N-NW Spanish coast, by combining the use of biochemical (AChE, GST, GPx) and physiological (SFG) responses to pollution, with chemical analyses in wild mussel populations (Mytilus galloprovincialis). The application of chemical analysis and biological techniques identified polluted sites and quantified the level of toxicity. High levels of pollutants were found in mussel populations located close to major cities and industrialized areas and, in general, average concentrations were higher in the Cantabrian than in the Iberian Atlantic coast. AChE activities ranged between 5.8 and 27.1 nmol/min/mg prot, showing inhibition in 12 sampling sites, according to available ecotoxicological criteria. GST activities ranged between 29.5 and 112.7 nmol/min/mg prot, and extreme variability was observed in GPx, showing activities between 2.6 and 64.5 nmol/min/mg prot. Regarding SFG, only 5 sites showed 'moderate stress' (SFG value below 20 J/g/h), and most sites presented a 'high potential growth' (>35 J/g/h) corresponding to a 'healthy state'. Multivariate statistical techniques applied to the chemical and biological data identified PCBs, organochlorine pesticides and BDEs as the main responsible of the observed toxicity. However, the alteration of biological responses caused by pollutants seems to be, in general, masked by biological variables, namely age and mussel condition, which have an effect on the mussels' response to pollutant exposure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Design of Laser Based Monitoring Systems for Compliance Management of Odorous and Hazardous Air Pollutants in Selected Chemical Industrial Estates at Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Sudhakar, P.; Kalavathi, P.; Ramakrishna Rao, D.; Satyanarayna, M.

    2014-12-01

    Industrialization can no longer sustain without internalization of the concerns of the receiving environment and land-use. Increased awareness and public pressure, coupled with regulatory instruments and bodies exert constant pressure on industries to control their emissions to a level acceptable to the receiving environment. However, when a group of industries come-up together as an industrial estate, the cumulative impacts of all the industries together often challenges the expected/desired quality of receiving environment, requiring stringent pollution control and monitoring measures. Laser remote sensing techniques provide powerful tools for environmental monitoring. These methods provide range resolved measurements of concentrations of various gaseous pollutants and suspended particulate matter (SPM) not only in the path of the beam but over the entire area. A three dimensional mapping of the pollutants and their dispersal can be estimated using the laser remote sensing methods on a continuous basis. Laser Radar (Lidar) systems are the measurements technology used in the laser remote sensing methods. Differential absorption lidar (DIAL) and Raman Lidar technologies have proved to be very useful for remote sensing of air pollutants. DIAL and Raman lidar systems can be applied for range resolved measurements of molecules like SO2, NO2, O3 Hg, CO, C2H4, H2O, CH4, hydrocarbons etc. in real time on a continuous basis. This paper describes the design details of the DAIL and Raman lidar techniques for measurement of various hazardous air pollutants which are being released into the atmosphere by the chemical industries operating in the Bachupally industrial Estate area at Hyderabad, India. The relative merits of the two techniques have been studied and the minimum concentration of pollutants that can be measured using these systems are presented. A dispersion model of the air pollutants in the selected chemical industrial estates at Hyderabad has been developed.

  7. Assessment of full-scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico.

    PubMed

    Estrada-Arriaga, Edson Baltazar; Cortés-Muñoz, Juana Enriqueta; González-Herrera, Arturo; Calderón-Mólgora, César Guillermo; de Lourdes Rivera-Huerta, Ma; Ramírez-Camperos, Esperanza; Montellano-Palacios, Leticia; Gelover-Santiago, Silvia Lucila; Pérez-Castrejón, Sara; Cardoso-Vigueros, Lina; Martín-Domínguez, Alejandra; García-Sánchez, Liliana

    2016-11-15

    Two full-scale biological nutrient removal systems upgraded with three physico-chemical processes (coagulation, chemical precipitation, and neutral Fenton) were evaluated in order to determine the removal of emerging pollutants (EPs) present in municipal wastewater from Mexico. Between 41 and 55 EPs were detected in the influents of two wastewater treatment plants (WWTPs), including personal care products (PPCPs), antibiotics, analgesics, antiepileptics, antilipidemics, antihypertensives, antiseptics, stimulants, and hormones. Emerging pollutants were detected at concentrations ranging from 0.69ng/L to 94,600ng/L. High concentrations of emerging pollutants were found during dry season. WWTP 1, integrated by oxidation ditches and UV light lamps, showed removal efficiencies of EPs between 20% and 22%. On the other hand, WWTP 2 consisted of anaerobic/anoxic/aerobic tanks coupled with two disinfection processes; chlorine dioxide and UV light lamps, for which the removal of EPs was significant (up to 80%). The concentrations of emerging pollutants in WWTP 1 effluent was found within a rangepollutants in the effluent were below 210ng/L. WWTP 2 showed high emerging pollutant removals, compared to those of WWTP 1, due to a greater activity of the simultaneous nitrification-denitrification processes, hydraulic retention time, and solids retention time. The compounds that were more persistent with removals below 50% in both effluents were: carbamazepine, dehydronifedipine, meprobamate, sertraline, propranolol, propoxyphene, norverapamil, diazepam, alprazolam, sulfamethoxazole, metoprolol, ofloxacin, norfloxacin, fluoxetine, erythromycin-H2O, diphenhydramine, dehydronifedipine, clarithromycin, hydrochlorothiazide, and albuterol. The application of neutral Fenton reaction as post-treatment for the two effluents from the WWTPs is promising for the removal of emerging pollutants (up to 100

  8. Effects of a chemically polluted discharge on the relationship between fecundity and parasitic infections in the chub (Leuciscus cephalus) from a river in southern England.

    PubMed

    Morley, N J; Costa, H H; Lewis, J W

    2010-04-01

    In fish there is a close association between endocrine and immune function that during seasonal changes in reproductive status can affect the fishes susceptibility to parasitic infection. The effects of endocrine-disrupting pollution on this association are not known. The present study investigates the effects of a chemically polluted (ammoniacal nitrogen, zinc, bromide) discharge in Cranleigh Waters, a river in southern England, on the fecundity and parasitism of chub, Leuciscus cephalus, over an 18-month period. In the polluted site, the gonado-somatic index (GSI) of fish was lower in females and higher in males compared to an unpolluted upstream site, indicating an androgenic effect on reproduction. Parasite species richness, especially the intestinal helminths Proteocephalus torulosus and Pomphorynchus laevis, was increased in fish in the polluted site. However, the occurrence of the two most common parasite species in the river-Myxobulus sp. 1, a gill myxozoan, and Diplostomum sp., a trematode found in the eye-was unchanged between polluted and unpolluted river sites. Nevertheless, there was a significant relationship between GSI and the prevalence of these two parasite species in the unpolluted site but not the polluted site suggesting that endocrine disruption of reproduction did not lead to an increase in host susceptibility. The reasons for this are discussed.

  9. Chemical characteristics and causes of airborne particulate pollution in warm seasons in Wuhan, central China

    NASA Astrophysics Data System (ADS)

    Lyu, Xiaopu; Chen, Nan; Guo, Hai; Zeng, Lewei; Zhang, Weihao; Shen, Fan; Quan, Jihong; Wang, Nan

    2016-08-01

    Continuous measurements of airborne particles and their chemical compositions were conducted in May, June, October, and November 2014 at an urban site in Wuhan, central China. The results indicate that particle concentrations remained at a relatively high level in Wuhan, with averages of 135.1 ± 4.4 (mean ± 95 % confidence interval) and 118.9 ± 3.7 µg m-3 for PM10 and 81.2 ± 2.6 and 85.3 ± 2.6 µg m-3 for PM2.5 in summer and autumn, respectively. Moreover, PM2.5 levels frequently exceeded the National Standard Level II (i.e., daily average of 75 µg m-3), and six PM2.5 episodes (i.e., daily PM2.5 averages above 75 µg m-3 for 3 or more consecutive days) were captured during the sampling campaign. Potassium was the most abundant element in PM2.5, with an average concentration of 2060.7 ± 82.3 ng m-3; this finding indicates intensive biomass burning in and around Wuhan during the study period, because almost no correlation was found between potassium and mineral elements (iron and calcium). The source apportionment results confirm that biomass burning was the main cause of episodes 1, 3, and 4, with contributions to PM2.5 of 46.6 % ± 3.0 %, 50.8 % ± 1.2 %, and 44.8 % ± 2.6%, respectively, whereas fugitive dust was the leading factor in episode 2. Episodes 5 and 6 resulted mainly from increases in vehicular emissions and secondary inorganic aerosols, and the mass and proportion of NO3- both peaked during episode 6. The high levels of NOx and NH3 and the low temperature during episode 6 were responsible for the increase of NO3-. Moreover, the formation of secondary organic carbon was found to be dominated by aromatics and isoprene in autumn, and the contribution of aromatics to secondary organic carbon increased during the episodes.

  10. The Effects of Chronic Lifelong Activation of the AHR Pathway by Industrial Chemical Pollutants on Female Human Reproduction.

    PubMed

    Cavallini, Aldo; Lippolis, Catia; Vacca, Margherita; Nardelli, Claudia; Castegna, Alessandra; Arnesano, Fabio; Carella, Nicola; Depalo, Raffaella

    2016-01-01

    Environmental chemicals, such as heavy metals, affect female reproductive function. A biological sensor of the signals of many toxic chemical compounds seems to be the aryl hydrocarbon receptor (AHR). Previous studies demonstrated the environmental of heavy metals in Taranto city (Italy), an area that has been influenced by anthropogenic factors such as industrial activities and waste treatments since 1986. However, the impact of these elements on female fertility in this geographic area has never been analyzed. Thus, in the present study, we evaluated the AHR pathway, sex steroid receptor pattern and apoptotic process in granulosa cells (GCs) retrieved from 30 women, born and living in Taranto, and 30 women who are living in non-contaminated areas (control group), who were undergoing in vitro fertilization (IVF) protocol. In follicular fluids (FFs) of both groups the toxic and essential heavy metals, such as chromiun (Cr), Manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), were also analyzed. Higher levels of Cr, Fe, Zn and Pb were found in the FFs of the women from Taranto as compared to the control group, as were the levels of AHR and AHR-dependent cytochrome P450 1A1 and 1B1; while CYP19A1 expression was decreased. The anti-apoptotic process found in the GCs of women fromTaranto was associated with the highest levels of progesterone receptor membrane component 1 (PGRMC1), a novel progesterone receptor, the expression of which is subjected to AHR activated by its highest affinity ligands (e.g., dioxins) or indirectly by other environmental pollutants, such as heavy metals. In conclusion, decreased production of estradiol and decreased number of retrieved mature oocytes found in women from Taranto could be due to chronic exposure to heavy metals, in particular to Cr and Pb.

  11. [Pollution status of phenolic compounds in the soil and sediment from a chemical industrial park along the Yangtze River].

    PubMed

    Chen, Jiexia; Wei, Enze; Xian, Qiming

    2014-08-01

    A determination method of 12 phenolic compounds in soil and sediment samples by gas chromatography-mass spectrometry (GC-MS) analysis coupled with accelerated solvent extraction (ASE) and gel permeation chromatography (GPC) for clean-up was developed. The method detection limits (MDLs) varied from 0. 410 μg/kg to 13. 1 μg/kg (dry weight), and the average recoveries ranged from 70. 7% to 122% with the relative standard deviations (RSDs) of 1. 2% to 16%. Based on this method, the levels of 12 phenolic compounds were investigated in 17 soil surrounding a chemical industrial park along the Yangtze River and seven sediment samples collected in the river. It was found that 11 of the 12 phenolic compounds were detected in all of the 24 samples, and only hydroquinone was below the MDL. The contents of the total 12 phenolic compounds were 10. 16-30. 66 mg/kg in the soil and 18. 00-29. 83 mg/kg in the sediment, with the average contents of 18. 26 and 22. 51 mg/kg respectively. It showed that 4-nitro- phenol, 4-chloro-3-methylphenol, 2-chlorohydroquinone, 2-methyl-4,6-dinitrophenol and 2,4,6- trichlorophenol were five major phenolic contaminants in the soil and sediment in this study. The pollution levels of the 12 phenolic compounds were low in the soil of the chemical industrial park as well as in the sediment of the Yangtze River, which implied a comparatively low risk for the environment.

  12. The Effects of Chronic Lifelong Activation of the AHR Pathway by Industrial Chemical Pollutants on Female Human Reproduction

    PubMed Central

    Vacca, Margherita; Nardelli, Claudia; Castegna, Alessandra; Arnesano, Fabio; Carella, Nicola; Depalo, Raffaella

    2016-01-01

    Environmental chemicals, such as heavy metals, affect female reproductive function. A biological sensor of the signals of many toxic chemical compounds seems to be the aryl hydrocarbon receptor (AHR). Previous studies demonstrated the environmental of heavy metals in Taranto city (Italy), an area that has been influenced by anthropogenic factors such as industrial activities and waste treatments since 1986. However, the impact of these elements on female fertility in this geographic area has never been analyzed. Thus, in the present study, we evaluated the AHR pathway, sex steroid receptor pattern and apoptotic process in granulosa cells (GCs) retrieved from 30 women, born and living in Taranto, and 30 women who are living in non-contaminated areas (control group), who were undergoing in vitro fertilization (IVF) protocol. In follicular fluids (FFs) of both groups the toxic and essential heavy metals, such as chromiun (Cr), Manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), were also analyzed. Higher levels of Cr, Fe, Zn and Pb were found in the FFs of the women from Taranto as compared to the control group, as were the levels of AHR and AHR-dependent cytochrome P450 1A1 and 1B1; while CYP19A1 expression was decreased. The anti-apoptotic process found in the GCs of women fromTaranto was associated with the highest levels of progesterone receptor membrane component 1 (PGRMC1), a novel progesterone receptor, the expression of which is subjected to AHR activated by its highest affinity ligands (e.g., dioxins) or indirectly by other environmental pollutants, such as heavy metals. In conclusion, decreased production of estradiol and decreased number of retrieved mature oocytes found in women from Taranto could be due to chronic exposure to heavy metals, in particular to Cr and Pb. PMID:27008165

  13. Time matters: A stock-pollution approach to authorisation decision-making for PBT/vPvB chemicals under REACH.

    PubMed

    Gabbert, Silke; Hilber, Isabel

    2016-12-01

    A core aim of the European chemicals legislation REACH is to ensure that the risks caused by substances of very high concern (SVHC) are adequately controlled. Authorisation - i.e. the formal approval of certain uses of SVHC for a limited time - is a key regulatory instrument in order to achieve this goal. For SVHC which are, in addition to their toxicity, (very) persistent and/or (very) bioaccumulative (PBT/vPvB chemicals), decision-making on the authorisation is conditional on a socio-economic analysis (SEA). In a SEA companies must demonstrate that the gains from keeping a chemical in use outweigh expected damage costs for society. The current setup of the REACH authorisation process, including existing guidance on performing a SEA, ignores that PBT/vPvB chemicals are stock pollutants. This paper explores the implications of incorporating stock pollution effects of these chemicals into a SEA on authorisation decision-making. We develop a cost-benefit approach which includes stock dynamics of PBT/vPvB chemicals. This allows identifying the decision rules for granting or refusing an authorisation. Furthermore, we generalize the model to an entire set of damage functions. We show that ignoring stock pollution effects in a SEA may lead to erroneous decisions on the use of PBT/vPvB chemicals because long-term impacts are not adequately captured. Using a historic case of DDT soil contamination as an illustrative example we discuss information requirements and challenges for authorisation decisions on the use of PBT/vPvB chemicals under REACH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The identification of readily bioavailable pollutants in Lake Shkodra/Skadar using semipermeable membrane devices (SPMDs), bioassays and chemical analysis.

    PubMed

    Rastall, Andrew C; Neziri, Anila; Vukovic, Zeljko; Jung, Christine; Mijovic, Slavoljub; Hollert, Henner; Nikcevic, Svetlana; Erdinger, Lothar

    2004-01-01

    Lake Shkodra/Skadar is the largest lake in the Balkans region and located on the border between Albania to the south and Montenegro to the north. Because of the wide range of endemic, rare or endangered plant and animal species it supports, Lake Shkodra/Skadar and its extensive associated wetlands are internationally recognised as a site of significance and importance (Ramsar site). In recent years, social and economic changes in both Albania and Montenegro have lead to unprecedented levels of urban and industrial effluent entering the lake. Of particular concern is the increasing input of toxic hydrophobic organic pollutants (HOPs) into the lake and the degree to which these compounds are available for uptake by aquatic biota. Semipermeable membrane devices (SPMDs) have been shown to sample the readily bioavailable fraction (dissolved phase) of waterborne HOPs and in doing so provide relevant data for exposure assessment. The aim of the current study was to use SPMD-based sampling in conjunction with appropriate bioassays and chemical analysis to identify readily bioavailable HOPs in the lake. SPMDs were constructed and deployed at three sites in the Albanian sector and three sites in the Montenegrin sector of Lake Skadar/Shkodra for 21 days. Following the dialytic recovery of target analytes and size exclusion chromatographic clean-up, aliquots of SPMD samples were subjected to GC-MS scan analysis for major components, GC-MS SIM analysis for 16 priority pollutant polycyclic aromatic hydrocarbons (PP-PAHs) and assayed for EROD-inducing, estrogenic and mutagenic potential using rainbow trout liver cells (RTL-W1), the yeast estrogen screen (YES) and the Ames Test, respectively. A total of 39 compounds were tentatively identified in SPMD samples from the six sampling sites. Alkylated PAHs were the most abundant and ubiquitous compounds present along with various sterols and sterol derivatives. Numerous other compounds remain unidentified. 15 of the 16 targeted PP

  15. Chemical pollution and toxicity of water samples from stream receiving leachate from controlled municipal solid waste (MSW) landfill.

    PubMed

    Melnyk, A; Kuklińska, K; Wolska, L; Namieśnik, J

    2014-11-01

    The present study was aimed to determine the impact of municipal waste landfill on the pollution level of surface waters, and to investigate whether the choice and number of physical and chemical parameters monitored are sufficient for determining the actual risk related to bioavailability and mobility of contaminants. In 2007-2012, water samples were collected from the stream flowing through the site at two sampling locations, i.e. before the stream׳s entry to the landfill, and at the stream outlet from the landfill. The impact of leachate on the quality of stream water was observed in all samples. In 2007-2010, high values of TOC and conductivity in samples collected down the stream from the landfill were observed; the toxicity of these samples was much greater than that of samples collected up the stream from the landfill. In 2010-2012, a significant decrease of conductivity and TOC was observed, which may be related to the modernization of the landfill. Three tests were used to evaluate the toxicity of sampled water. As a novelty the application of Phytotoxkit F™ for determining water toxicity should be considered. Microtox(®) showed the lowest sensitivity of evaluating the toxicity of water samples, while Phytotoxkit F™ showed the highest. High mortality rates of Thamnocephalus platyurus in Thamnotoxkit F™ test can be caused by high conductivity, high concentration of TOC or the presence of compounds which are not accounted for in the water quality monitoring program. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. An ionic liquid tolerant cellulase derived from chemically polluted microhabitats and its application in in situ saccharification of rice straw.

    PubMed

    Xu, Jiaxing; He, Bingfang; Wu, Bin; Wang, Bin; Wang, Chenghua; Hu, Lei

    2014-04-01

    A cellulase-producing fungus was isolated from chemically polluted microhabitats by [Amim][Cl] enrichment and identified as Aspergillus fumigatus. The maximum activity of the cellulase in 30% (v/v) ionic liquids (ILs) was detected in [Emim][DMP], [Amim][Cl] and [Emim][MA] as 127%, 111% and 109%, respectively, of its activity in buffer, suggesting its superior performance in high concentration ILs. Strikingly, although its initial activity varied in each IL, its half-life was longer in most ILs than in buffer, evidence of a high conformational stability of the enzyme that is essential for maintaining the remaining activity in relevant media. It noteworthy that 1-3M NaCl can activate the cellulase somewhat. More gratifyingly, a compatible IL-cellulase system based on the cellulase was developed, and its use significantly improved the saccharification rate of rice straw from 53% to 88% versus the control, demonstrating its potential for efficient transformation of lignocellulose to glucose in a single-step process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Simulating the transport and chemical evolution of biomass burning pollutants originating from Southeast Asia during 7-SEAS/2010 Dongsha experiment

    NASA Astrophysics Data System (ADS)

    Chuang, Ming-Tung; Fu, Joshua S.; Lin, Neng-Huei; Lee, Chung-Te; Gao, Yang; Wang, Sheng-Hsiang; Sheu, Guey-Rong; Hsiao, Ta-Chih; Wang, Jia-Lin; Yen, Ming-Cheng; Lin, Tang-Huang; Thongboonchoo, Narisara; Chen, Wei-Chen

    2015-07-01

    This study aimed to simulate the transport of biomass burning (BB) aerosol originating from Southeast Asia (SEA) during the Dongsha Experiment conducted from March 2010 to April 2010. Transport pathways were reanalyzed and steering flow in the mid-latitude areas and anticyclones in low-latitude areas were found to control the transport of BB plume after it was injected to a high atmosphere. For the 12 simulated and observed events at Mt. Lulin (2862 m MSL; 23°28‧07″ N, 120°52‧25″ E), the 72 h backward trajectories were all tracked back to southern China and northern Indochina, which were the locations of the largest BB fire activities in SEA. Chemical evolutions of BB pollutants along the moving trajectories showed that organic matter was always the dominant component in PM2.5, consistent with the observations at both near-source regions and Mt. Lulin. For nitrogen species, nearly all NOx molecules oxidized into HNO3, NO3-, PAN, and PANX in fires or near fires. The synchronic consumption of NOx, SO2, and NH3 explained the production of the major components of inorganic salts. In the moving BB plume, sulfate concentration increased with decreased nitrate concentration. Ratios of ammonium to PM2.5 and elemental carbon to PM2.5 remained nearly constant because additional sources were lacking.

  18. Large scale air pollution estimation method combining land use regression and chemical transport modeling in a geostatistical framework.

    PubMed

    Akita, Yasuyuki; Baldasano, Jose M; Beelen, Rob; Cirach, Marta; de Hoogh, Kees; Hoek, Gerard; Nieuwenhuijsen, Mark; Serre, Marc L; de Nazelle, Audrey

    2014-04-15

    In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also need to handle large study populations distributed over large geographic domains. Even though several modeling approaches have been introduced, a consistent modeling framework capturing within-city exposure variability and applicable to large geographic domains is still missing. To address these needs, we proposed a modeling framework based on the Bayesian Maximum Entropy method that integrates monitoring data and outputs from existing air quality models based on Land Use Regression (LUR) and Chemical Transport Models (CTM). The framework was applied to estimate the yearly average NO2 concentrations over the region of Catalunya in Spain. By jointly accounting for the global scale variability in the concentration from the output of CTM and the intraurban scale variability through LUR model output, the proposed framework outperformed more conventional approaches.

  19. Chemical dynamics of acidity and heavy metals in a mine water-polluted soil during decontamination using clean water.

    PubMed

    Chen, A; Lin, C; Lu, W; Ma, Y; Bai, Y; Chen, H; Li, J

    2010-03-15

    A column leaching experiment was conducted to investigate the chemical dynamics of the percolating water and washed soil during decontamination of an acidic mine water-polluted soil. The results show that leaching of the contaminated soil with clean water rapidly reduced soluble acidity and ion concentrations in the soils. However, only <20% of the total actual acidity in the soil column was eliminated after 30 leaching cycles. It is likely that the stored acidity continues to be released to the percolating water over a long period of time. During the column leaching, dissolved Cu and Pb were rapidly leached out, followed by mobilization of colloidal Cu and Pb from the exchangeable and the oxide-bound fractions as a result of reduced ionic strength in the soil solution. The soluble Fe contained in the soil was rare, probably because the soil pH was not sufficiently low; marked mobility of colloidal Fe took place after the ionic strength of the percolating water was weakened and the mobilized Fe was mainly derived from iron oxides. In contrast with Cu, Pb and Fe, the concentration of leachate Zn and Mn showed a continuously decreasing trend during the entire period of the experiment.

  20. Chemical constituents of ambient particulate air pollution and biomarkers of inflammation, coagulation and homocysteine in healthy adults: A prospective panel study

    PubMed Central

    2012-01-01

    Background Ambient air pollution has been associated with activation of systemic inflammation and hypercoagulability and increased plasma homocysteine, but the chemical constituents behind the association are not well understood. We examined the relations of various chemical constituents of fine particles (PM2.5) and biomarkers of inflammation, coagulation and homocysteine in the context of traffic-related air pollution. Methods A panel of 40 healthy college students underwent biweekly blood collection for 12 times before and after their relocation from a suburban campus to an urban campus with changing air pollution contents in Beijing. Blood samples were measured for circulatory biomarkers of high-sensitivity C reactive protein (hs-CRP), tumor necrosis factor alpha (TNF-α), fibrinogen, plasminogen activator inhibitor type 1 (PAI-1), tissue-type plasminogen activator (t-PA), von Willebrand factor (vWF), soluble platelet selectin (sP-selectin), and total homocysteine (tHcy). Various air pollutants were measured in a central air-monitoring station in each campus and 32 PM2.5 chemical constituents were determined in the laboratory. We used three different mixed-effects models (single-constituent model, constituent-PM2.5 joint model and constituent residual model) controlling for potential confounders to estimate the effects of PM2.5 chemical constituents on circulatory biomarkers. Results We found consistent positive associations between the following biomarkers and PM2.5 chemical constituents across different models: TNF-α with secondary organic carbon, chloride, zinc, molybdenum and stannum; fibrinogen with magnesium, iron, titanium, cobalt and cadmium; PAI-1 with titanium, cobalt and manganese; t-PA with cadmium and selenium; vWF with aluminum. We also found consistent inverse associations of vWF with nitrate, chloride and sodium, and sP-selectin with manganese. Two positive associations of zinc with TNF-α and of cobalt with fibrinogen, and two inverse

  1. Size-segregated aerosol in a hot-spot pollution urban area: Chemical composition and three-way source apportionment.

    PubMed

    Bernardoni, V; Elser, M; Valli, G; Valentini, S; Bigi, A; Fermo, P; Piazzalunga, A; Vecchi, R

    2017-08-24

    In this work, a comprehensive characterisation and source apportionment of size-segregated aerosol collected using a multistage cascade impactor was performed. The samples were collected during wintertime in Milan (Italy), which is located in the Po Valley, one of the main pollution hot-spot areas in Europe. For every sampling, size-segregated mass concentration, elemental and ionic composition, and levoglucosan concentration were determined. Size-segregated data were inverted using the program MICRON to identify and quantify modal contributions of all the measured components. The detailed chemical characterisation allowed the application of a three-way (3-D) receptor model (implemented using Multilinear Engine) for size-segregated source apportionment and chemical profiles identification. It is noteworthy that - as far as we know - this is the first time that three-way source apportionment is attempted using data of aerosol collected by traditional cascade impactors. Seven factors were identified: wood burning, industry, resuspended dust, regional aerosol, construction works, traffic 1, and traffic 2. Further insights into size-segregated factor profiles suggested that the traffic 1 factor can be associated to diesel vehicles and traffic 2 to gasoline vehicles. The regional aerosol factor resulted to be the main contributor (nearly 50%) to the droplet mode (accumulation sub-mode with modal diameter in the range 0.5-1 μm), whereas the overall contribution from the two factors related to traffic was the most important one in the other size modes (34-41%). The results showed that applying a 3-D receptor model to size-segregated samples allows identifying factors of local and regional origin while receptor modelling on integrated PM fractions usually singles out factors characterised by primary (e.g. industry, traffic, soil dust) and secondary (e.g. ammonium sulphate and nitrate) origin. Furthermore, the results suggested that the information on size

  2. Organic and inorganic amendment application on mercury-polluted soils: effects on soil chemical and biochemical properties.

    PubMed

    García-Sánchez, Mercedes; Klouza, Martin; Holečková, Zlata; Tlustoš, Pavel; Száková, Jiřina

    2016-07-01

    On the basis of a previous study performed in our laboratory, the use of organic and inorganic amendments can significantly modify the Hg mobility in soil. We have compared the effectiveness of organic and inorganic amendments such as digestate and fly ash, respectively, reducing the Hg mobility in Chernozem and Luvisol soils differing in their physicochemical properties. Hence, the aim of this work was to compare the impact of digestate and fly ash application on the chemical and biochemical parameters in these two mercury-contaminated soils in a model batch experiment. Chernozem and Luvisol soils were artificially contaminated with Hg and then incubated under controlled conditions for 21 days. Digestate and fly ash were applied to both soils in a dose of 10 and 1.5 %, respectively, and soil samples were collected after 1, 7, 14, and 21 days of incubation. The presence of Hg in both soils negatively affected to processes such as nitrification, provoked a decline in the soil microbial biomass C (soil microbial biomass C (MBC)), and the microbial activities (arylsulfatase, and β-glucosaminidase) in both soils. Meanwhile, the digestate addition to Chernozem and Luvisol soils contaminated with Hg improved the soil chemical properties (pH, dissolved organic carbon (DOC), N (Ntot), inorganic-N forms (N-NH4 (+) and N-NO3 (-))), as consequence of high content in C and N contained in digestate. Likewise, the soil MBC and soil microbial activities (dehydrogenase, arylsulfatase, and β-glucosaminidase) were greatly enhanced by the digestate application in both soils. In contrast, fly ash application did not have a remarkable positive effect when compared to digestate in Chernozem and Luvisol soil contaminated with mercury. These results may indicate that the use of organic amendments such as digestate considerably improved the soil health in Chernozem and Luvisol compared with fly ash, alleviating the detrimental impact of Hg. Probably, the chemical properties present in

  3. Commandant's international technical series. Volume 9. International regulations on the prevention of pollution from ships carrying hazardous chemicals in bulk. Final report

    SciTech Connect

    Not Available

    1985-12-01

    MARPOL was developed to minimize accidental and operational pollution from ships carrying noxious liquid substances in bulk. Accidental pollution could result from a collision, a grounding, or an overflow of a cargo tank. Operational pollution results from the disposal of cargo tank washings. Major amendments were made to the original Annex II by the International Maritime Organization. The United States and other States party to MARPOL will implement Annex II, as amended, on April 7, 1987. Implementation will affect seagoing ships transporting noxious liquid substances to and from such ships. The attached documents contain internationally agreed requirements, interpretations, and guidelines necessary for the implementation of Annex II. The documents attached include: (1) MARPOL Annex II as amended by amendments adopted by the twenty-second session of the IMO Marine Environment Protection Committee; (2) Unified Interpretations of Annex II; (3) Standards for the Procedures and Arrangements for the Discharge of Noxious Liquid Substances; (4) Ammendments to the Bulk Chemical Code and the International Bulk Chemical Code to include marine pollution concerns; (5) Guidelines on the Provision of Adequate Reception Facilities in Ports, Part II (Noxious Liquid Substances). The contents of these documents are being placed in regulations. The purpose of this document is to give members of the interested public advance notification of impending regulations.

  4. An indicator to map diffuse chemical river pollution considering buffer capacity of riparian vegetation--a pan-European case study on pesticides.

    PubMed

    Weissteiner, Christof J; Pistocchi, Alberto; Marinov, Dimitar; Bouraoui, Fayçal; Sala, Serenella

    2014-06-15

    Vegetated riparian areas alongside streams are thought to be effective at intercepting and controlling chemical loads from diffuse agricultural sources entering water bodies. Based on a recently compiled European map of riparian zones and a simplified soil chemical balance model, we propose a new indicator at a continental scale. QuBES (Qualitative indicator of Buffered Emissions to Streams) allows a qualitative assessment of European rivers exposed to pesticide input. The indicator consists of normalised pesticide loads to streams computed through a simplified steady-state fate model that distinguishes various chemical groups according to physico-chemical behaviour (solubility and persistence). The retention of pollutants in the buffer zone is modelled according to buffer width and sorption properties. While the indicator may be applied for the study of a generic emission pattern and for a chemical of generic properties, we demonstrate it to the case of agricultural emissions of pesticides. Due to missing geo-spatial data of pesticide emissions, a total pesticide emission scenario is assumed. The QuBES indicator is easy to calculate and requires far less input data and parameterisation than typical chemical-specific models. At the same time, it allows mapping of (i) riparian buffer permeability, (ii) chemical runoff from soils, and (iii) the buffered load of chemicals to the stream network. When the purpose of modelling is limited to identifying chemical pollution patterns and understanding the relative importance of emissions and natural attenuation in soils and stream buffer strips, the indicator may be suggested as a screening level, cost-effective alternative to spatially distributed models of higher complexity. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Source apportionment of air pollution in China: Extending the usefulness of receptor modeling by combining multivariate and chemical mass balance models

    SciTech Connect

    Zelenka, M.P.; Wilson, W.E.; Lioy, P.J.

    1993-01-01

    The research explores the possibility of using a two step method of identifying and quantifying air pollution emissions in an urban environment. The procedures uses a mathematical model called Target Transformation Factor Analysis (TTFA) to estimate source profiles using ambient trace element air concentration data. A source profile is analogous to a fingerprint since it is unique to each source of air pollution. The profiles estimated by TTFA are then employed in a Chemical Mass Balance (CMB) source apportionment analysis for the air shed. Other known sources are estimated using source signatures from the literature. Applying the TTFA and CMB models in this fashion is called receptor modeling. Generically, a receptor model is the combination of measured air pollution concentration data with a numerical technique which apportions the measured air pollution among distinct source types. The results show that TTFA can be used to provide quantitative estimates of air pollution source profiles for an urban center in China. The number of profiles for unique source types was limited for the data set since emissions from certain types of sources co-varied during each sampling day. Consequently, the CMB analyses that applied the TTFA source profiles needed to be supplemented with standard U.S. EPA source profiles.

  6. Valuation of characteristics of water purity. IV. Classification of pollution of waters based on norms of microbiological, hydrobiological and chemical characteristics determined by numerical methods.

    PubMed

    Ostrowski, M

    1976-01-01

    Norms of microbiological (coliform titre, nitrification titre, urea hydrolysis titre, number of bacteria, BOD2 and BOD5), hydrobiological (intensity of photosynthesis, saprobic index, number of algae) and chemical (oxidability, DMDT content) characteristics, determining the ecological quality of water, are suggested. Their taxonomic value has been appraised with the use of numerical methods: centrifugal correlation and principle components, used for the classification of a collection of sites with respect to pollution.

  7. A quantitative proteomic approach to highlight Phragmites sp. adaptation mechanisms to chemical stress induced by a textile dyeing pollutant.

    PubMed

    Ferreira, R A; Roma-Rodrigues, C; Davies, L C; Sá-Correia, I; Martins-Dias, S

    2016-12-15

    Phragmites sp. is present worldwide in treatment wetlands though the mechanisms involved in the phytoremediation remain unclear. In this study a quantitative proteomic approach was used to study the prompt response and adaptation of Phragmites to the textile dyeing pollutant, Acid Orange 7 (AO7). Previously, it was demonstrated that AO7 could be successfully removed from wastewater and mineralized in a constructed wetland planted with Phragmites sp. This azo dye is readily taken up by roots and transported to the plant aerial part by the xylem. Phragmites leaf samples were collected from a pilot scale vertical flow constructed wetland after 0.25, 3.25 and 24.25h exposure to AO7 (400mgL(-1)) immediately after a watering cycle used as control. Leaf soluble protein extraction yielded an average of 1560 proteins in a broad pI range (pH3-10) by two-dimensional gel electrophoresis. A time course comparative analysis of leaf proteome revealed that 40 proteins had a differential abundance compared to control (p<0.05) within a 3.25h period. After 24.25h in contact with AO7, leaf proteome was similar to control. Adaptation to AO7 involved proteins related with cellular signalling (calreticulin, Ras-related protein Rab11D and 20S proteasome), energy production and conversion (adenosine triphosphate synthase beta subunit) carbohydrate transport and metabolism (phosphoglucose isomerase, fructose-bisphosphate aldolase, monodehydroascorbate reductase, frutockinase-1 and Hypothetical protein POPTR_0003s12000g and the Uncharacterized protein LOC100272772) and photosynthesis (sedoheptulose-1,7-bisphosphatase and ferredoxin-NADP(+) reductase). Therefore, the quantitative proteomic approach used in this work indicates that mechanisms associated with stress cell signalling, energy production, carbohydrate transport and metabolism as well as proteins related with photosynthesis are key players in the initial chemical stress response in the phytoremediation process of AO7. Copyright

  8. Cichlidogyrus sclerosus (Monogenea: Ancyrocephalinae) and its host, the Nile tilapia (Oreochromis niloticus), as bioindicators of chemical pollution.

    PubMed

    Sanchez-Ramirez, Claudia; Vidal-Martinez, Victor M; Aguirre-Macedo, Maria L; Rodriguez-Canul, Rossanna P; Gold-Bouchot, Gerardo; Sures, Bernd

    2007-10-01

    Experimental results showed that the gill monogenean Cichlidogyrus sclerosus and its host, the Nile tilapia Oreochromis niloticus, exhibited significant numerical and physiological responses after exposure to sediments polluted with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, and heavy metals in comparison with control fishes. After 15 days of exposure, C. sclerosus abundance significantly increased in treatments with low to fairly high sediment pollutant concentrations, but declined at high sediment pollutant concentrations. Hypertrophy and hyperplasia in secondary gill lamellae and the spleen melanomacrophage centers were significantly higher at extremely high sediment pollutant concentrations compared with the controls. Spleen lymphocyte and monocyte counts were significantly lower at extremely high sediment pollutant concentrations and were significantly correlated with high fluorescent aromatic compound concentrations measured as PAH exposure indicators. A multivariate redundancy analysis showed significant statistical association between sediment pollutant concentration, C. sclerosus abundance, and tilapia physiological variables. The polluted sediments negatively affected monogenean abundance and induced immunosuppression in hosts, consequently increasing histological damage in hosts and allowing persistent C. sclerosus infection. This study documents evidence suggesting that C. sclerosus and its host are indeed excellent models to test environmental quality in tropical freshwater ecosystems.

  9. Variation of particle number size distributions and chemical compositions at the urban and downwind regional sites in the Pearl River Delta during summertime pollution episodes

    NASA Astrophysics Data System (ADS)

    Yue, D. L.; Hu, M.; Wu, Z. J.; Guo, S.; Wen, M. T.; Nowak, A.; Wehner, B.; Wiedensohler, A.; Takegawa, N.; Kondo, Y.; Wang, X. S.; Li, Y. P.; Zeng, L. M.; Zhang, Y. H.

    2010-06-01

    In order to characterize the features of particulate pollution in the Pearl River Delta (PRD) in the summer, continuous measurements of particle number size distributions and chemical compositions were simultaneously performed at Guangzhou urban site (GZ) and Back-garden downwind regional site (BG) in July 2006. Particle number concentration from 20 nm to 10 μm at BG was (1.7±0.8)×104 cm-3, about 40% lower than that at GZ, (2.9±1.1)×104 cm-3 with intensive traffic emissions. The total particle volume concentration at BG was 94±34 μm3 cm-3, similar to that at GZ, 96±43 μm3 cm-3. More 20-100 nm particles, significantly affected by the traffic emissions, were observed at GZ, while 100-660 nm particle number concentrations were similar at both sites as they are more regional. PM2.5 values were also similar at GZ (69±43 μg m-3) and BG (69±58 μg m-3), indicating the fine particulate pollution in the PRD region to be regional. Two kinds of pollution episodes, the accumulation pollution episode and the regional transport pollution episode, were observed. Fine particles over 100 nm dominated both number and volume concentrations of total particles during the late periods of these pollution episodes. Accumulation and secondary transformations are two main reasons for the nighttime accumulation pollution episode. SO4-2, NO3-, and NH4+ accounted for about 60% in 100-660 nm particle mass and PM2.5. When south or south-southeast wind prevailed in the PRD region, regional transport of pollutants takes place. Regional transport contributed about 30% to fine particulate pollution at BG during a regional transport case. Secondary transformation played an important role during regional transport, causing higher increase rates of secondary ions in PM1.0 than other species and shifting the peaks of sulfate and ammonium mass size distributions to larger sizes. SO4-2, NO3-, and NH4+ accounted for about 70% and 40% of PM1.0 and PM2.5, respectively.

  10. Variation of particle number size distributions and chemical compositions at the urban and downwind regional sites in the Pearl River Delta during summertime pollution episodes

    NASA Astrophysics Data System (ADS)

    Yue, D. L.; Hu, M.; Wu, Z. J.; Guo, S.; Wen, M. T.; Nowak, A.; Wehner, B.; Wiedensohler, A.; Takegawa, N.; Kondo, Y.; Wang, X. S.; Li, Y. P.; Zeng, L. M.; Zhang, Y. H.

    2010-10-01

    In order to characterize the features of particulate pollution in the Pearl River Delta (PRD) in the summer, continuous measurements of particle number size distributions and chemical compositions were simultaneously performed at Guangzhou urban site (GZ) and Back-garden downwind regional site (BG) in July 2006. Particle number concentration from 20 nm to 10 μm at BG was (1.7±0.8)×104 cm-3, about 40% lower than that at GZ, (2.9±1.1)×104 cm-3. The total particle volume concentration at BG was 94±34 μm3 cm-3, similar to that at GZ, 96±43 μm3 cm-3. More 20-100 nm particles, significantly affected by the traffic emissions, were observed at GZ, while 100-660 nm particle number concentrations were similar at both sites as they are more regional. PM2.5 values were similar at GZ (69±43 μg m-3) and BG (69±58 μg m-3) with R2 of 0.71 for the daily average PM2.5 at these two sites, indicating the fine particulate pollution in the PRD region to be regional. Two kinds of pollution episodes, the accumulation pollution episode and the regional transport pollution episode, were observed. Fine particles over 100 nm dominated both number and volume concentrations of total particles during the late periods of these pollution episodes. Accumulation and secondary transformation are the main reasons for the nighttime accumulation pollution episode. SO42-, NO3- accounted for about 60% in 100-660 nm particle mass and PM2.5 increase. When south or southeast wind prevailed in the PRD region, regional transport of pollutants took place. Regional transport contributed about 30% to fine particulate pollution at BG during a regional transport case. Secondary transformation played an important role during regional transport, causing higher increase rates of secondary ions in PM1.0 than other species and shifting the peaks of sulfate and ammonium mass size distributions to larger sizes. SO42-, NO3-, and NH4+ accounted for about 70% and 40% of PM1.0 and PM2.5, respectively.

  11. Ash pests: A guide to major insects, diseases, air pollution injury, and chemical injury. Forest Service general technical report

    SciTech Connect

    Solomon, J.D.; Leininger, T.D.; Wilson, A.D.; Anderson, R.L.; Thompson, L.C.

    1993-09-01

    The ashes (Fraxinus spp.) are one of the authors' more valuable hardwood resources--some 275 million board feet of ash lumber are sawn annually in the United States. Insects, diseases, and pollutants are continuing problems for the ashes, but few actually threaten their widespread use. Disease, simply stated, is a condition of abnormal growth resulting from infection by a biotic agent (fungus, bacterium, or virus), or induced by an abiotic stress such as drought or air pollution.

  12. [On the problem of the study of the chemical air pollution with chlororganic hydrocarbons at productions of polyvinyl chloride and epichlorohydrin].

    PubMed

    Taranenko, N A; Meshakova, N M; Zhurba, O M; Telezhkin, V V

    2014-01-01

    Hygienic assessment of working conditions at the chemical productions of polyvinyl chloride (PVC) and epichlorohydrin (EPCH) in East Siberia has shown that the employees are exposed to the chlororganic hydrocarbons of hazard category 1-2, out of them there were found to be more toxical pollutants such as vinyl chloride, 1.2-dicloroethane in the production of polyvinyl chloride; allyl chloride and epichlorohydrin in the production of epichlorohydrin. Multistageness of the technological processes, the absence of the isolation of main stages of the technological processes as well as the heating microclimate contribute to the chemical pollution of the air environment. In spite of the significant improvement of the hygienic situation at the productions mentioned in the recent 10 years according to the chemical factor due to the introduction of the complex of curative measures, the working conditions of the employees still belonged to the harmful category. According to the content of the harmful chemical substances in the air of the working zone and the parameters of microclimate, the working conditions of the employees working at the production of epichlorohydrin and in the shop of vinyl chloride production must be qualified as the harmful ones of the first category of the hazard and danger (Class 3.1), in the production shop for PVC- as the harmful ones which correspond to the second category of the hazard and danger (Class 3.2).

  13. Fate of pollutants

    SciTech Connect

    Chapta, S.C.; Boyer, J.M. )

    1990-06-01

    A literature review is presented of the fate of pollutants in sediment and water systems. Topics of discussion include the following: modeling, observations, and general studies; chlorinated xenobiotic chemicals; nonchlorinated xenobiotic chemicals; pesticides; heavy metals; and radionuclides.

  14. A systematic review of the physical and chemical characteristics of pollutants from biomass burning and combustion of fossil fuels and health effects in Brazil.

    PubMed

    Oliveira, Beatriz Fátima Alves de; Ignotti, Eliane; Hacon, Sandra S

    2011-09-01

    The aim of this study was to carry out a review of scientific literature published in Brazil between 2000 and 2009 on the characteristics of air pollutants from different emission sources, especially particulate matter (PM) and its effects on respiratory health. Using electronic databases, a systematic literature review was performed of all research related to air pollutant emissions. Publications were analyzed to identify the physical and chemical characteristics of pollutants from different emission sources and their related effects on the respiratory system. The PM2.5 is composed predominantly of organic compounds with 20% of inorganic elements. Higher concentrations of metals were detected in metropolitan areas than in biomass burning regions. The relative risk of hospital admissions due to respiratory diseases in children was higher than in the elderly population. The results of studies of health effects of air pollution are specific to the region where the emissions occurred and should not be used to depict the situation in other areas with different emission sources.

  15. Removal of pollutants and reduction of bio-toxicity in a full scale chemical coagulation and reverse osmosis leachate treatment system.

    PubMed

    Theepharaksapan, S; Chiemchaisri, C; Chiemchaisri, W; Yamamoto, K

    2011-05-01

    Removals of pollutants and toxic organic compounds and reduction in bio-toxicity of leachate along an operating full-scale leachate treatment system utilizing chemical coagulation, sand filtration, microfiltration (MF) and reverse osmosis (RO) membrane were evaluated. High pollutant removals were achieved mainly by coagulation and sand filtration. Major toxic organic pollutants, i.e. DEHP, DBP and bisphenol A were removed by 100%, 99.6% and 98.0%. Acute toxicity test using water flea, Nile Tilapia and common carp and genotoxicity (Comet assay) were conducted to determine toxicity reduction in leachate along the treatment. Ammonia was found to be the main acute toxic compounds in leachate as determined by LC(50) but the effect of organic substances was also observed. DNA damage in fish exposed to diluted raw leachate (10% of LC(50)) was found to be 8.9-24.3% and it was subsequently decreased along the treatment. Correlation between pollutants and its bio-toxicity was established using multivariable analyses. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Chemical and bioassay analysis of estrogen pollution in the surface water of the Tiaoxi River, the source river for Taihu Lake.

    PubMed

    Tang, Xianjin; Ullah, Naveed; Yu, Chunna; Qin, Zhihui; Huang, Ronglang; Zhu, Xiaolou; Shen, Chaofeng; Chen, Yingxu

    2012-10-01

    The estrogen pollution in the Tiaoxi River, which is the main source river for Taihu Lake, was investigated by chemical and bioassay analysis. Most estrogens species, except estrone, were not detected by the chemical analysis using liquid chromatography coupled with tandem mass spectrometry. The concentration of estrone in the samples ranged from ND (below the detection limit) to 17.25 ng/L. The estrogen activity in most water samples was also determined by the yeast estrogen screen. The 17β-estradiol equivalent in the intake of Taihu Lake was 17.60 ng/L and was present in all water samples. This study demonstrates that combining chemical and bioassay analysis is an effective way to detect environmental contamination by estrogen species. Furthermore, the results indicate that the risk of estrogen contamination in the Tiaoxi River should not be ignored.

  17. Country-specific chemical signatures of persistent organic pollutants (POPs) in breast milk of French, Danish and Finnish women.

    PubMed

    Antignac, J P; Main, K M; Virtanen, H E; Boquien, C Y; Marchand, P; Venisseau, A; Guiffard, I; Bichon, E; Wohlfahrt-Veje, C; Legrand, A; Boscher, C; Skakkebæk, Niels E; Toppari, J; Le Bizec, B

    2016-11-01

    The present study compares concentrations and chemical profiles of an extended range of persistent organic pollutants (dioxins, polychlorobiphenyls, brominated flame retardants and organochlorine pesticides) in breast milk samples from French (n = 96), Danish (n = 438) and Finnish (n = 22) women. Median exposure levels observed in French women (WHO-TEQ2005 PCDD/F = 6.1 pg/g l.w., WHO-TEQ2005 dl-PCB = 4.3 pg/g l.w., sum of 6 ndl-PCB = 85.2 ng/g l.w., sum of 7 i-PBDE = 1.5 ng/g l.w.) appeared overall lower than in Danish and Finnish women for all examined POPs, except for α-HBCD (2-fold higher level at 0.6 ng/g l.w.). Furthermore, the observed exposure levels of dioxins and PCBs were higher in Danish women (WHO-TEQ2005 PCDD/F = 13.2 pg/g l.w., WHO-TEQ2005 dl-PCB = 6.6 pg/g l.w., sum of 6 ndl-PCB = 162.8 ng/g l.w.) compared to Finnish women (WHO-TEQ2005 PCDD/F = 9.0 pg/g l.w., WHO-TEQ2005 dl-PCB = 4.6 pg/g l.w., sum of 6 ndl-PCB = 104.0 ng/g l.w.), whereas the concentrations of PBDEs were similar for Danish and Finnish women (sum of 7 i-PBDE = 4.9 and 5.2 ng/g l.w. respectively). The organochlorine (OC) pesticide contamination profile, determined in a subset of French samples, was dominated by p,p'-DDE (56.6%), followed by β-HCH (14.2%), HCB (9.7%) and dieldrin (5.2%), while other compounds were only minor contributors (<5%). The three countries appeared to be discriminated by the observed contamination patterns of the PCDD/F versus PCB, and the 1,2,3,6,7,8-HxCDD versus 1,2,3,4,7,8-HxCDD ratios, in addition to the relative contributions of specific congeners to the contamination profile (PCBs #118 and #156, PBDEs #28, #47, #99 and #153). In conclusion, unique chemical signatures were observed for each country on the basis of some POP congeners. Future biomonitoring studies will need to consider the high variability of individual exposure profiles in relation to multiple exposure sources but also physiological and metabolic

  18. Effect of chemical pollution on forms of 137Cs, 90Sr and 239,240Pu in arctic soil studied by sequential extraction.

    PubMed

    Puhakainen, M; Riekkinen, I; Heikkinen, T; Jaakkola, T; Steinnes, E; Rissanen, K; Suomela, M; Thørring, H

    2001-01-01

    The aim of the present study was to determine the forms of 137Cs, 90Sr and 239,240Pu occurring in different soil horizons using sequential extraction of samples taken from four sites located along a pollution gradient from the copper-nickel smelter at Monchegorsk in the Kola Peninsula, Russia, and from a reference site in Finnish Lapland in 1997. A selective sequential-leaching procedure was employed using a modification of the method of Tessier, Cambell and Bisson ((1979). Analytical Chemistry, 51, 844-851). For 137Cs the organic (O) and uppermost mineral (E1) layer were studied, for 90Sr and 239,240Pu only the uppermost organic layer (Of). The fraction of 137Cs occurring in readily exchangeable form in the organic layer was about 50% at the reference site and decreased as a function of pollution, being 15% at the most polluted site in the Kola Peninsula. There was a clear positive correlation in the O layer between the distance from the smelter and the percentage of 137Cs extracted in the readily exchangeable fraction (Spearman correlation rsp = 0.7805, p = 0.0001), whereas in the E1 layer no correlation was evident. The distribution of 90Sr in the Of layer was similar at all sites, with the highest amounts occurring in exchangeable form and bound to organic matter, whereas stable Sr showed a somewhat different distribution with the highest amount in the oxide fraction. Most of the 239,240Pu was bound to organic matter. Chemical pollution affected the exchangeable fraction of 239,240Pu, which was about 1% at the most polluted site and 4-6% at the other sites.

  19. Coupling chemical oxidation and biostimulation: Effects on the natural attenuation capacity and resilience of the native microbial community in alkylbenzene-polluted soil.

    PubMed

    Martínez-Pascual, Eulàlia; Grotenhuis, Tim; Solanas, Anna M; Viñas, Marc

    2015-12-30

    Coupling chemical oxidation with bioremediation could be a cost-effective system to cope with soil and groundwater pollution. However, the effects of chemical oxidation on autochthonous microbial communities are scarcely known. A detailed analysis that considers both the efficiency of the two technologies and the response of the microbial communities was performed on a linear alkylbenzene-polluted soil and groundwater samples. The impacts of a modified Fenton's reaction (MFR) at various dosages and of permanganate on the microbiota over 4 weeks were assessed. The permanganate and MFR negatively affected microbial abundance and activity. However, the resilience of certain microbial populations was observed, with a final increase in potential hydrocarbon-degrading populations as determined by both the alkB gene abundance and the predominance of well-known hydrocarbon-degrading phylotypes such as Rhodococcus, Ochrobactrum, Acinetobacter and Cupriavidus genera as determined by 16S rRNA-based DGGE fingerprinting. The assessment of the chemical oxidant impact on autochthonous microbiota should be considered for the optimization of coupled field remediation technologies.

  20. Atmospheric deposition of selected chemicals and their effect on nonpoint-source pollution in the Twin Cities Metropolitan Area, Minnesota

    USGS Publications Warehouse

    Brown, R.G.

    1984-01-01

    The atmospheric contribution to nonpoint-source-runoff pollution of nitrogen, in the form of nitrite-plus-nitrate, and lead was extremely high contributing as much as 84 percent of the runoff load. In contrast, phosphorus and chloride inputs were low averaging of 6 percent of the total runoff load. Future investigations of nonpoint-source pollution in runoff might include collection of data on atmospheric deposition of nitrite-plus-nitrate nitrogen and lead because of the importance of that source of these constituents in runoff.

  1. Urban pollution.

    PubMed

    Sancini, Angela; Tomei, Francesco; Tomei, Gianfranco; Caciari, Tiziana; Di Giorgio, Valeria; André, Jean-Claude; Palermo, Paola; Andreozzi, Giorgia; Nardone, Nadia; Schifano, Maria Pia; Fiaschetti, Maria; Cetica, Carlotta; Ciarrocca, Manuela

    2012-01-01

    Air pollution represents a health risk for people living in urban environment. Urban air consists in a complex mixture of chemicals and carcinogens and its effects on health can be summarized in acute respiratory effects, neoplastic nonneoplastic (e.g. chronic bronchitis) chronic respiratory effects, and effects on other organs and systems. Air pollution may be defined according to origin of the phenomena that determine it: natural causes (natural fumes, decomposition, volcanic ash) or anthropogenic causes which are the result of human activities (industrial and civil emissions). Transport is the sector that more than others contributes to the deterioration of air quality in cities. In this context, in recent years, governments of the territory were asked to advance policies aimed at solving problems related to pollution. In consideration of the many effects on health caused by pollution it becomes necessary to know the risks from exposure to various environmental pollutants and to limit and control their effects. Many are the categories of "outdoor" workers, who daily serve the in urban environment: police, drivers, newsagents, etc.

  2. Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Fu, Xiao; Wang, Shuxiao; Zhao, Bin; Xing, Jia; Cheng, Zhen; Liu, Huan; Hao, Jiming

    2013-05-01

    We developed a high-resolution emission inventory of primary air pollutants for Yangtze River Delta (YRD) region, which included Shanghai plus 24 cities in the provinces of Jiangsu and Zhejiang. The emissions of SO2, NOX, PM10, PM2.5, NMVOCs and NH3 in the year of 2010 were estimated as 2147 kt, 2776 kt, 1006 kt, 643 kt, 3822 kt and 1439 kt, respectively. Power plants are the largest emission sources for SO2 and NOX, which contributes 44.1% and 37.3% of total SO2 and NOX emissions. Emissions from industrial process accounted for 26.9%, 28.9% and 33.7% of the total PM10, PM2.5 and NMVOCs respectively. Besides, 37.3% of NMVOCs emissions were contributed by solvent use. Livestock and fertilizer application contribute over 90% of NH3 emissions. High emission densities are visible in Shanghai and the area around Tai Lake. This emission inventory includes the speciation of PM2.5 for the YRD region for the first time, which is important to source apportionment and secondary-pollution analysis. In 2010, emissions of three major PM2.5 species, namely OC, EC and sulfate, are 136.9 kt, 75.0 kt and 76.2 kt, respectively. Aromatics and alkanes are the main NMVOC species, accounting for 30.4% and 20.3% of total VOCs. Non-road transportation and biomass burning were main uncertain sources because of a lack of proper activity and emission factor data. Compared with other pollutants, NMVOCs and NH3 have higher uncertainty. From 2000 to 2010, emissions of all pollutants have changed significantly, suggesting that the newly updated and high-resolution emission inventory will be useful for the identification of air pollution sources in YRD.

  3. Strategic of Applying Free Chemical Usage In Purified Water System For Pharmaceutical Industry Toward CPOB (Cara Pembuatan Obat yang Baik) Indonesia To Reducing Environmental Pollution

    NASA Astrophysics Data System (ADS)

    Kartono, R.; Basuki, Y. T.

    2014-03-01

    The purpose of this paper is to examine the sets of model and literature review to prove that strategy of applying free chemical usage in purified water system for pharmaceutical industry would be help the existing and new pharmaceutical companies to comply with part of Natioanal Agency of Drug and Food Control / Badan Pengawas Obat dan Makanan (NADFC/BPOM) regulation in order to achieve "Cara Pembuatan Obat yang Baik" (CPOB) of Indonesia pharmaceutical industry. One of the main reasons is when we figured out the number of Indonesian pharmaceutical industries in 2012 are kept reducing compare to the increasing numbers of Indonesian population growth. This strategy concept also might help the industries to reducing environmental pollution, and operational cost in pharmaceutical industries, by reducing of the chemical usage for water treatment process in floculation and cougulation and chlorination for sterillization. This new model is free usage of chemicals for purified water generation system process and sterilization. The concept offering of using membrane technology- Reverse Osmosis (RO) membrane base treatment to replace traditional chemical base treatment, following enhance Electrodeionization (EDI) as final polisher for controlling conductivity, and finally Ultra Violet (UV) disinfectant technology as final guard for bacteria controls instead of chemical base system in purified water generation system.

  4. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications

    NASA Astrophysics Data System (ADS)

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  5. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications.

    PubMed

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  6. Exploitation of deep-sea resources: the urgent need to understand the role of high pressure in the toxicity of chemical pollutants to deep-sea organisms.

    PubMed

    Mestre, Nélia C; Calado, Ricardo; Soares, Amadeu M V M

    2014-02-01

    The advent of industrial activities in the deep sea will inevitably expose deep-sea organisms to potentially toxic compounds. Although international regulations require environmental risk assessment prior to exploitation activities, toxicity tests remain focused on shallow-water model species. Moreover, current tests overlook potential synergies that may arise from the interaction of chemicals with natural stressors, such as the high pressures prevailing in the deep sea. As pressure affects chemical reactions and the physiology of marine organisms, it will certainly affect the toxicity of pollutants arising from the exploitation of deep-sea resources. We emphasize the need for environmental risk assessments based on information generated from ecotoxicological trials that mimic, as close as possible, the deep-sea environment, with emphasis to a key environmental factor - high hydrostatic pressure.

  7. Pollution evaluation in the Shahrood River: Do physico-chemical and macroinvertebrate-based indices indicate same responses to anthropogenic activities?

    PubMed

    Sharifinia, Moslem; Mahmoudifard, Abbas; Imanpour Namin, Javid; Ramezanpour, Zohreh; Yap, Chee Kong

    2016-09-01

    This study evaluates the impact of anthropogenic activities on the Shahrood River using water physico-chemical variables and macroinvertebrates data sets obtained over a period of 12 months between February 2012 and February 2013 at 8 sampling sites. Biotic indices i.e. FBI and BMWP based on macroinvertebrates and physico-chemical indices (MPI, HPI and NSF-WQI) were employed to evaluate the water quality status in connection with natural- and human-induced pressures. Based on physico-chemical indices, water quality was categorized as low polluted level and it is suitable for drinking purposes. The water quality based on biotic indices was related to the anthropic activities; a clear deterioration of the water quality was observed from upstream to downstream sites. The water quality along the river changed from very good (class I; reference sites) to good (class II; midstream sites) and turned into moderate (class III) and poor (class IV) quality (downstream sites). These findings indicate that biotic indices are more powerful indicators in assessing water quality than physico-chemical indices. Allocapnia, Glossosoma and Hesperoperla were exclusively related to least disturbed sites, and Naididae, Orthocladiinae and Ecdyonurus were found in sites showing notable degradation. Our results recommended that the use of macroinvertebrates could be employed as a cost-effective tool for biomonitoring and controlling of polluted riverine ecosystems in the Middle East. Finally, the results from this study may be useful not only for developing countries, but also for any organization struggling to use macroinvertebrate based indices with restricted financial resources and knowledge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils: implication for chemical stabilization of metals and metalloids.

    PubMed

    Ettler, Vojtěch; Tomášová, Zdeňka; Komárek, Michael; Mihaljevič, Martin; Šebek, Ondřej; Michálková, Zuzana

    2015-04-09

    An amorphous manganese oxide (AMO) and a Pb smelter-polluted agricultural soil amended with the AMO and incubated for 2 and 6 months were subjected to a pH-static leaching procedure (pH 3-8) to verify the chemical stabilization effect on metals and metalloids. The AMO stability in pure water was pH-dependent with the highest Mn release at pH 3 (47% dissolved) and the lowest at pH 8 (0.14% dissolved). Secondary rhodochrosite (MnCO3) was formed at the AMO surfaces at pH>5. The AMO dissolved significantly less after 6 months of incubation. Sequential extraction analysis indicated that "labile" fraction of As, Pb and Sb in soil significantly decreased after AMO amendment. The pH-static experiments indicated that no effect on leaching was observed for Cd and Zn after AMO treatments, whereas the leaching of As, Cu, Pb and Sb decreased down to 20%, 35%, 7% and 11% of the control, respectively. The remediation efficiency was more pronounced under acidic conditions and the time of incubation generally led to increased retention of the targeted contaminants. The AMO was found to be a promising agent for the chemical stabilization of polluted soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Potential interactions between metazoan parasites of the Mayan catfish Ariopsis assimilis and chemical pollution in Chetumal Bay, Mexico.

    PubMed

    Vidal-Martínez, V M; Aguirre-Macedo, M L; Noreña-Barroso, E; Gold-Bouchot, G; Caballero-Pinzón, P I

    2003-06-01

    The effect of pollutants on the intensity of infection of metazoan parasites in the Mayan catfish, Ariopsis assimilis was investigated. Data were collected on pollutants and metazoan parasites from 76 catfish from five localities in Chetumal Bay in October, 1996. Nineteen pollutants (pesticides, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs)) were found in the catfish livers. Heavy metal content was not determined. Nineteen metazoan parasite species were recovered. After controlling for fish length and sampling station, there was a significant negative linear relationship between the intensity of the larval digenean Mesostephanus appendiculatoides and 1,1,1,-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) concentrations. This negative relationship may be explained either by the effect of the pesticide on the mortality of (i) free-living larval forms, (ii) metacercariae in the fish, (iii) infected fish or (iv) intermediate host snails. There were significant differences between fish parasitized and not parasitized with M. appendiculatoides with respect to their DDT concentrations. There were also significant differences between the variances of the mean Clark's coefficient of condition values between catfish parasitized and not parasitized by M. appendiculatoides, with the variance of non-parasitized catfish being significantly larger. The results provided statistical evidence that DDT has a detrimental effect on M. appendiculatoides infection intensity. Furthermore, the significantly larger variance value of Clark's coefficient for non-parasitized fish suggested that DDT affects both the parasite and general host condition.

  10. Ecotoxicological assessment of soils polluted with chemical waste from lindane production: Use of bacterial communities and earthworms as bioremediation tools.

    PubMed

    Muñiz, Selene; Gonzalvo, Pilar; Valdehita, Ana; Molina-Molina, José Manuel; Navas, José María; Olea, Nicolás; Fernández-Cascán, Jesús; Navarro, Enrique

    2017-11-01

    An ecotoxicological survey of soils that were polluted with wastes from lindane (γ-HCH) production assessed the effects of organochlorine compounds on the metabolism of microbial communities and the toxicity of these compounds to a native earthworm (Allolobophora chlorotica). Furthermore, the bioremediation role of earthworms as facilitators of soil washing and the microbial degradation of these organic pollutants were also studied. Soil samples that presented the highest concentrations of ε-HCH, 2,4,6-trichlorophenol, pentachlorobenzene and γ-HCH were extremely toxic to earthworms in the short term, causing the death of almost half of the population. In addition, these soils inhibited the heterotrophic metabolic activity of the microbial community. These highly polluted samples also presented substances that were able to activate cellular detoxification mechanisms (measured as EROD and BFCOD activities), as well as compounds that were able to cause endocrine disruption. A few days of earthworm activity increased the extractability of HCH isomers (e.g., γ-HCH), facilitating the biodegradation of organochlorine compounds and reducing the intensity of endocrine disruption in soils that had low or medium contamination levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer.

    PubMed

    Li, Adela J; Leung, Priscilla T Y; Bao, Vivien W W; Yi, Andy X L; Leung, Kenneth M Y

    2014-10-01

    We hypothesize that chemical toxicity to marine ectotherms is the lowest at an optimum temperature (OT) and it exacerbates with increasing or decreasing temperature from the OT. This study aimed to verify this hypothetical temperature-dependent chemical toxicity (TDCT) model through laboratory experiments. Acute toxicity over a range of temperatures was tested on four commonly used chemicals to three marine ectotherms. Our results confirmed that toxicities, in terms of 96-h LC50 (median lethal concentration; for the marine medaka fish Oryzias melastigma and the copepod Tigriopus japonicus) and 24-h LC50 (for the rotifer Brachionus koreanus), were highly temperature-dependent, and varied between test species and between study chemicals. The LC50 value of the fish peaked at 20 °C for copper (II) sulphate pentahydrate and triphenyltin chloride, and at 25 °C for dichlorophenyltrichloroethane and copper pyrithione, and decreased with temperature increase or decrease from the peak (i.e., OT). However, LC50 values of the copepod and the rotifer generally showed a negative relationship with temperature across all test chemicals. Both copepod and rotifer entered dormancy at the lowest temperature of 4 °C. Such metabolic depression responses in these zooplanktons could reduce their uptake of the chemical and hence minimize the chemical toxicity at low temperatures. Our TDCT model is supported by the fish data only, whereas a simple linear model fits better to the zooplankton data. Such species-specific TDCT patterns may be jointly ascribed to temperature-mediated changes in (1) the physiological response and susceptibility of the marine ectotherms to the chemical, (2) speciation and bioavailability of the chemical, and (3) toxicokinetics of the chemical in the organisms.

  12. A synthetic method for atmospheric diffusion simulation and environmental impact assessment of accidental pollution in the chemical industry in a WEBGIS context.

    PubMed

    Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang

    2014-09-05

    The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents.

  13. A Synthetic Method for Atmospheric Diffusion Simulation and Environmental Impact Assessment of Accidental Pollution in the Chemical Industry in a WEBGIS Context

    PubMed Central

    Ni, Haochen; Rui, Yikang; Wang, Jiechen; Cheng, Liang

    2014-01-01

    The chemical industry poses a potential security risk to factory personnel and neighboring residents. In order to mitigate prospective damage, a synthetic method must be developed for an emergency response. With the development of environmental numeric simulation models, model integration methods, and modern information technology, many Decision Support Systems (DSSs) have been established. However, existing systems still have limitations, in terms of synthetic simulation and network interoperation. In order to resolve these limitations, the matured simulation model for chemical accidents was integrated into the WEB Geographic Information System (WEBGIS) platform. The complete workflow of the emergency response, including raw data (meteorology information, and accident information) management, numeric simulation of different kinds of accidents, environmental impact assessments, and representation of the simulation results were achieved. This allowed comprehensive and real-time simulation of acute accidents in the chemical industry. The main contribution of this paper is that an organizational mechanism of the model set, based on the accident type and pollutant substance; a scheduling mechanism for the parallel processing of multi-accident-type, multi-accident-substance, and multi-simulation-model; and finally a presentation method for scalar and vector data on the web browser on the integration of a WEB Geographic Information System (WEBGIS) platform. The outcomes demonstrated that this method could provide effective support for deciding emergency responses of acute chemical accidents. PMID:25198686

  14. Remote measurement of pollution

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A summary of the major conclusions and recommendations developed by the panels on gaseous air pollution, water pollution, and particulate air pollution is presented. It becomes evident that many of the trace gases are amenable to remote sensing; that certain water pollutants can be measured by remote techniques, but their number is limited; and that a similar approach to the remote measurement of specific particulate pollutants will follow only after understanding of their physical, chemical, and radiative properties is improved. It is also clear that remote sensing can provide essential information in all three categories that can not be obtained by any other means.

  15. CHEMFILE: an in-house information system for the chemical indexing of Abstracts on Health Effects of Environmental Pollutants (HEEP).

    PubMed

    Graham, W

    1977-11-01

    The inclusion of a Chemical Abstracts Service (CAS) Registry Number index in HEEP has led to the need for a special database designed to link substance names with their appropriate CAS chemical compound Registry Numbers. Begun in 1968 as a tape record with batch mode updates and few record modification capabilities, the information system, which we call CHEMFILE, has evolved to its current form of disk storage with on-line access for file maintenance.

  16. Decision-tree-model identification of nitrate pollution activities in groundwater: A combination of a dual isotope approach and chemical ions.

    PubMed

    Xue, Dongmei; Pang, Fengmei; Meng, Fanqiao; Wang, Zhongliang; Wu, Wenliang

    2015-09-01

    To develop management practices for agricultural crops to protect against NO3(-) contamination in groundwater, dominant pollution activities require reliable classification. In this study, we (1) classified potential NO3(-) pollution activities via an unsupervised learning algorithm based on δ(15)N- and δ(18)O-NO3(-) and physico-chemical properties of groundwater at 55 sampling locations; and (2) determined which water quality parameters could be used to identify the sources of NO3(-) contamination via a decision tree model. When a combination of δ(15)N-, δ(18)O-NO3(-) and physico-chemical properties of groundwater was used as an input for the k-means clustering algorithm, it allowed for a reliable clustering of the 55 sampling locations into 4 corresponding agricultural activities: well irrigated agriculture (28 sampling locations), sewage irrigated agriculture (16 sampling locations), a combination of sewage irrigated agriculture, farm and industry (5 sampling locations) and a combination of well irrigated agriculture and farm (6 sampling locations). A decision tree model with 97.5% classification success was developed based on SO4(2-) and Cl(-) variables. The NO3(-) and the δ(15)N- and δ(18)O-NO3(-) variables demonstrated limitation in developing a decision tree model as multiple N sources and fractionation processes both resulted in difficulties of discriminating NO3(-) concentrations and isotopic values. Although only the SO4(2-) and Cl(-) were selected as important discriminating variables, concentration data alone could not identify the specific NO3(-) sources responsible for groundwater contamination. This is a result of comprehensive analysis. To further reduce NO3(-) contamination, an integrated approach should be set-up by combining N and O isotopes of NO3(-) with land-uses and physico-chemical properties, especially in areas with complex agricultural activities. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    NASA Technical Reports Server (NTRS)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  18. Exploring chemical variables in Ligustrum lucidum Ait. F. tricolor (rehd.) Rehd. in relation to air pollutants and environmental conditions

    SciTech Connect

    Pignata, M.L.; Canas, M.S.; Carreras, H.A.; Orellana, L.

    1997-09-01

    A diagnostic study was done on Ligustrum lucidum Ait. f. tricolor (Rehd.) Rehd. in relation to atmospheric pollutants in Cordoba city, Argentina. The study area receives regional Pollutants and was categorized taking into account traffic level, industrial density, type of industry, location of the sample point in relation to the street corner, treeless condition, and topographic level. Dried weight/fresh weight ratio (DW/FW) and specific leaf area (SLA) were calculated, and concentrations of chlorophylls, carotenoids, total sulfur, soluble proteins, malondialdehyde (MDA), and hydroperoxy conjugated dienes (HPCD) were determined in leaf samples. Sulfur content correlates positively with traffic density and SLA correlates negatively with some combinations of the categorical variables; MDA correlates positively with topographic level and total protein concentration correlates negatively with treeless condition. On the basis of our results, traffic, location of trees, type of industry, situation of a tree with respect to others, and topographic level are the environmental variables to bear in mind when selecting analogous sampling points in a passive monitoring program. An approximation to predict tree injury may be obtained by measuring DW/FW ratio, proteins, pigments, HPCD, and MDA as they are responsible for the major variability of data.

  19. Integrating long-term water and sediment pollution data, in assessing chemical status within the European Water Framework Directive.

    PubMed

    Tueros, Itziar; Borja, Angel; Larreta, Joana; Rodríguez, J Germán; Valencia, Victoriano; Millán, Esmeralda

    2009-09-01

    The European Water Framework Directive (WFD) establishes a framework for the protection and improvement of estuarine (transitional) and coastal waters, attempting to achieve good water status by 2015; this includes, within the assessment, biological and chemical elements. The European Commission has proposed a list of priority dangerous substances (including metals such as Cd, Hg, Ni and Pb), with the corresponding list of environmental quality standards (EQS), to assess chemical status, but only for waters. In this contribution, a long-term (1995-2007) dataset of transitional and coastal water and sediment trace elements concentrations, from the Basque Country (northern Spain), has been used to investigate the response of these systems to water treatment programmes. Moreover, the approach proposed in the WFD, for assessing water chemical status (the 'one out, all out' approach), is compared with the integration of water and sediment data, into a unique assessment. For this exercise, background levels are used as reference conditions, identifying the boundary between high and good chemical status. EQS are used as the boundary between good and moderate chemical status. This contribution reveals that the first approach can lead to misclassification, with the second approach representing the pattern shown by the long-term data trends. Finally, the management implications, using each approach are discussed.

  20. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    SciTech Connect

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  1. Concentrations of persistent organic pollutants in maternal and cord blood from the maternal-infant research on environmental chemicals (MIREC) cohort study.

    PubMed

    Fisher, Mandy; Arbuckle, Tye E; Liang, Chun Lei; LeBlanc, Alain; Gaudreau, Eric; Foster, Warren G; Haines, Douglas; Davis, Karelyn; Fraser, William D

    2016-05-04

    Pregnant women are an especially important population to monitor for environmental exposures given the vulnerability of the developing fetus. During pregnancy and lactation chemical body burdens may change due to the significant physiological changes that occur. Developmental exposures to some persistent organic pollutants (POPs) have been linked with adverse health outcomes. First trimester maternal and cord blood plasma concentrations of several POPs including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCs), polybrominated diphenyl ethers (PBDE)s and perfluoroalkyl substances (PFASs) were measured in samples from 1983 pregnant women enrolled in the Maternal-Infant Research on Environmental Chemicals (MIREC) cohort. Predictors of exposure were also identified. In maternal plasma, there was >90 % detection for the perfluoroalkyl substances (PFASs) perfluorooctanoic acid (PFOA), perfluoroctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), and dichlorodiphenyldichloroethylene (DDE), oxychlordane and PCB 138 and 153. Cord blood plasma had much lower detection rates with low or very limited detection for most PCBs and PBDEs. The PFASs were the most frequently detected (23-64 %) chemical class in cord plasma. In a subset of 1st and 3rd trimester paired samples, PFAS concentrations were found to be strongly correlated and had ICCs ranging from 0.64 (PFOA) to 0.83 (PFHxS). The cord:maternal plasma concentration ratios ranged from 0.14 (PFOS) to 0.87 (oxychlordane, lipid adjusted). Similar to other studies, we found parity, maternal age, income, education, smoking status, pre-pregnancy BMI and fish consumption to be significant predictors for most chemicals. Those participants who were foreign-born had significantly higher concentrations of organochlorinated pesticides and PCBs. In the MIREC study, multiple chemical contaminants were quantified in the plasma of pregnant women. In cord plasma PFOA had the highest detection rate. However, compared

  2. Ranking of chemical substances based on the Japanese Pollutant Release and Transfer Register using partial order theory and random linear extensions.

    PubMed

    Lerche, Dorte; Matsuzaki, Sanae Y; Sørensen, Peter B; Carlsen, Lars; Nielsen, Ole John

    2004-05-01

    In 1997 a Pollutant Release and Transfer Register (PRTR) pilot project was initiated in Japan. In 1998 the project was expanded and in 1999 a law concerning the establishment of a national PRTR was adopted. Data on the emissions of chemical substances are therefore now being reported on a continuous base. In relation to the PRTR project data on toxicity have been collected. In order to make efficient use of the collected information on emission and toxicity it is useful to group or rank the chemical substances according to the impact on human health and the environment. It has recently been argued that partial order theory (POT) in combination with the use of linear extensions (LE) may be the most objective way to create a linear rank. The methodology has been further expanded to handle larger data sets by the use of random linear extensions (RLE). In this paper the Japanese PRTR data are ranked using the POT/RLE methodology. An average rank is established for chemical substances in the 1998 and 1999 PRTR in Japan. The top 10 chemical substances in the 1998 PRTR are: dichlorvos, inorganic arsenic compounds, cobalt compounds, beryllium compounds, fenitrothion, disulfoton, parathion, diazinon, 4,4'-diamino-3,3'-dichlorodiphenylmethane and antimony compounds. The top 10 chemical substances from the 1999 PRTR are PCBs, lead compounds, fenitrothion, dichlorvos, disulfoton, inorganic arsenic compounds, chlorothalonil, thiobencarb, chromium and HCFC-141b. The descriptor having the highest influence on the ranking of the 1998 PRTR data is the production volume, which, however, is not given in the 1999 PRTR. Further, the disagreement between the ranking with the lack of toxicity data substituted with mean and maximum values, respectively, strongly indicates a general need for further toxicological investigations.

  3. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment.

    PubMed

    Rochman, Chelsea M; Kurobe, Tomofumi; Flores, Ida; Teh, Swee J

    2014-09-15

    Plastic debris is associated with several chemical pollutants known to disrupt the functioning of the endocrine system. To determine if the exposure to plastic debris and associated chemicals promotes endocrine-disrupting effects in fish, we conducted a chronic two-month dietary exposure using Japanese medaka (Oryzias latipes) and environmentally relevant concentrations of microplastic (<1mm) and associated chemicals. We exposed fish to three treatments: a no-plastic (i.e. negative control), virgin-plastic (i.e. virgin polyethylene pre-production pellets) and marine-plastic treatment (i.e. polyethylene pellets deployed in San Diego Bay, CA for 3 months). Altered gene expression was observed in male fish exposed to the marine-plastic treatment, whereas altered gene expression was observed in female fish exposed to both the marine- and virgin-plastic treatment. Significant down-regulation of choriogenin (Chg H) gene expression was observed in males and significant down-regulation of vitellogenin (Vtg I), Chg H and the estrogen receptor (ERα) gene expression was observed in females. In addition, histological observation revealed abnormal proliferation of germ cells in one male fish from the marine-plastic treatment. Overall, our study suggests that the ingestion of plastic debris at environmentally relevant concentrations may alter endocrine system function in adult fish and warrants further research. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Air pollution.

    PubMed

    Le, Nhu D; Sun, Li; Zidek, James V

    2010-01-01

    Toxic air pollutants are continuously released into the air supply. Various pollutants come from chemical facilities and small businesses, such as automobile service stations and dry cleaning establishments. Others, such as nitrogen oxides, carbon monoxide and other volatile organic chemicals, arise primarily from the incomplete combustion of fossil fuels (coal and petroleum) and are emitted from sources that include car exhausts, home heating and industrial power plants. Pollutants in the atmosphere also result from photochemical transformations; for example, ozone is formed when molecular oxygen or nitrogen interacts with ultraviolet radiation. An association between air pollution exposure and lung cancer has been observed in several studies. The evidence for other cancers is far less conclusive. Estimates of the population attributable risk of cancer has varied substantially over the last 40 years, reflecting the limitations of studies; these include insufficient information on confounders, difficulties in characterizing associations due to a likely lengthy latency interval, and exposure misclassification. Although earlier estimates were less than one percent, recent cohort studies that have taken into account some confounding factors, such as smoking and education amongst others, suggest that approximately 3.6% of lung cancer in the European Union could be due to air pollution exposure, particularly to sulphate and fine particulates. A separate cohort study estimated 5-7% of lung cancers in European never smokers and ex-smokers could be due to air pollution exposure. Therefore, while cigarette smoking remains the predominant risk factor, the proportion of lung cancers attributable to air pollution may be higher than previously thought. Overall, major weaknesses in all air-pollution-and-cancer studies to date have been inadequate characterization of long-term air pollution exposure and imprecise or no measurements of covariates. It has only been in the last

  5. Pollution biomonitoring in the Bizerte lagoon (Tunisia), using combined chemical and biomarker analyses in grass goby, Zosterisessor ophiocephalus (Teleostei, Gobiidae).

    PubMed

    Barhoumi, Badreddine; Clérandeau, Christelle; Gourves, Pierre-Yves; Le Menach, Karyn; El Megdiche, Yassine; Peluhet, Laurent; Budzinski, Hélène; Baudrimont, Magalie; Driss, Mohamed Ridha; Cachot, Jérôme

    2014-10-01

    In this study, biological responses and contaminant levels in biological tissues were investigated in grass goby fish specimens (Zosterisessor ophiocephalus) collected from five stations in a moderately polluted ecosystem, namely the Bizerte lagoon on the north coast of Tunisia. The following biomarkers were measured: muscular acetylcholinesterase (AChE), hepatic ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), catalase (CAT), lipoperoxidation (TBARS), condition factor (CF), and hepatosomatic index (HSI). These measurements were taken in parallel with the content of Organochlorine pesticides (OCPs), Polychlorinated biphenyls (PCBs), Polycyclic aromatic hydrocarbons (PAHs) and trace metals (As, Cr, Cu, Mn, Pb, V, Zn, Ag, Cd, Co and Ni) in muscle tissue. Total PAH concentrations ranged from 20.09 ± 0.68 to 105.77 ± 42.58 ng g(-1) dw, PCB from 33.19 ± 6.25 to 126.28 ± 7.37 ng g(-1) dw, OCP from 11.26 ± 1.62 to 19.17 ± 2.06 ng g(-1) dw, and metals from 107.83 ± 1.83 to 187.21 ± 2.00 mg/kg dw. The highest levels of pollutants and biomarkers were observed at station S1, located in the Bizerte channel. Elevated EROD, GST and CAT activities, as well as TBARS levels in liver were positively correlated with tissue contaminant levels at station S1. Significant negative correlations were also found between hexachlorobenzene (HCB) and dichlorodiphenyltrichloroethane (DDTs) body burden with AChE activity in muscle at station S2. The integration of biological responses and contaminant tissue content indicated that certain areas of the Bizerte lagoon, notably station S1, are significantly impacted by various human activities, which likely represent a threat for aquatic wildlife. On the basis of these results, and due to its ecological characteristics, the grass goby appears a suitable indicator species for pollution biomonitoring in coastal marine areas along the Mediterranean Sea. Copyright © 2014 Elsevier Ltd. All rights

  6. Chemical mechanisms of photocatalytic de-soiling and de-polluting processes in indoor environments and urban surfaces

    NASA Astrophysics Data System (ADS)

    Sleiman, M.; Rosseler, O.; Montesinos, N.; Litter, M.; Bikiel, D.; Kirchstetter, T.; Bluhm, H.; Ahmed, M.; Salmeron, M.; Destaillats, H.

    2013-12-01

    Photocatalysis has been postulated as a promising approach for the de-pollution of indoor air and urban atmospheres, and for self-cleaning surfaces. Building materials and coatings containing nano-sized TiO2 photocatalytic functionalities are gaining market share, including self-cleaning building envelope materials (coatings, mortar, plaster, architectural fabrics and tiles) and indoor air purifiers. While many studies have reported good performance of photocatalysis in the removal of organic pollutants from indoor air, more information is needed to understand secondary emissions of potentially harmful byproducts from photocatalytic air cleaners. This presentation will describe analytical methods and experimental results from room-sized chamber experiments using a realistic challenge VOC mixture at low ppb levels. We will also present results from separate studies that used synchrotron-based surface spectroscopic and mass spectrometric methods to better understand the photocatalytic mechanisms that regulate the de-soiling and de-polluting activity. Two photocatalytic processes were studied: de-noxification (NOx removal) and de-soiling (removal of deposited black carbon or soot). Ambient pressure XPS was used to study surface and gas-phase species formed during adsorption of NO2 on TiO2 and subsequent UV irradiation at λ = 365 nm. The results illustrate how NOx chemistry on TiO2 surfaces can be affected by the presence of water vapor, heteroatoms present as impurities, and carbonaceous soiling. The reactivity of NOx and NO3- on surfaces leads to reduced adsorbed and gas-phase nitrogenated species. These processes need to be considered in the engineering of depolluting materials and incorporated into atmospheric models. De-soiling properties were investigated by analyzing soot oxidation on TiO2 surfaces. Model soot samples were used as surrogates of urban grime. Using laser desorption coupled with time-of-flight (TOF) mass spectrometry synchrotron ionization, we

  7. Industrial waste pollution

    NASA Technical Reports Server (NTRS)

    Jensen, L. D.

    1972-01-01

    The characteristics and effects of industrial waste pollution in the Chesapeake Bay are discussed. The sources of inorganic and organic pollution entering the bay are described. The four types of pollutants are defined as: (1) inorganic chemical wastes, (2) naturally occurring organic wastes, (3) synthetic organic wastes (exotics) and (4) thermal effluents. The ecological behavior of industrial wastes in the surface waters is analyzed with respect to surface film phenomena, interfacial phenomena, and benthis phenomena

  8. Noise Pollution

    MedlinePlus

    ... attention as other types of pollution, such as air pollution, or water pollution. The air around us is ... Air Act Overview Home Progress Cleaning the Air Air Pollution Challenges Requirements and History Role of Science and ...

  9. Pollutant Types

    EPA Pesticide Factsheets

    Describes the types of air pollutants, including common or criteria pollutants, and hazardous air pollutants and links to additional information. Also links to resources on other air pollution issues.

  10. Effects of Pollution on Freshwater Fish.

    ERIC Educational Resources Information Center

    Brungs, W. A.; And Others

    1978-01-01

    Presents a literature review of the effects of pollution on freshwater fish, covering publications of 1976-77. This review includes: (1) water quality; (2) pesticide pollutants; (3) chemical pollutants; (4) miscellaneous pollutants; and (5) physical factors of pollution on freshwater fish. A list of 338 references is also presented. (HM)

  11. Effects of Pollution on Freshwater Fish.

    ERIC Educational Resources Information Center

    Brungs, W. A.; And Others

    1978-01-01

    Presents a literature review of the effects of pollution on freshwater fish, covering publications of 1976-77. This review includes: (1) water quality; (2) pesticide pollutants; (3) chemical pollutants; (4) miscellaneous pollutants; and (5) physical factors of pollution on freshwater fish. A list of 338 references is also presented. (HM)

  12. Interaction of the indoor air pollutant acetone with Degussa P25 TiO2 studied by chemical ionization mass spectrometry.

    PubMed

    Schmidt, Catherine M; Weitz, Eric; Geiger, Franz M

    2006-11-07

    Preventing a build-up of indoor pollutant concentrations has emerged as a major goal in environmental chemistry. Here, we have applied chemical ionization mass spectrometry to study the interaction of acetone, a common indoor air pollutant, with Degussa P25 TiO2, an inexpensive catalyst that is widely used for the degradation of volatile organic compounds into CO2 and water. To better understand the adsorption of acetone onto Degussa P25, the necessary first step for its degradation, the experiments were carried out at room temperature in the absence of UV light. This allowed for the deconvolution of the nonreactive and reactive thermal binding processes on Degussa P25 at acetone partial pressures (10(-7)-10(-4) Torr) commonly found in indoor environments. On average, 30% of the adsorbed acetone is bound irreversibly, resulting in a surface coverage of irreversibly bound acetone of approximately 1 x 10(12) molecules/cm2 at 3-4 x 10(-5) Torr. Equilibrium and dynamic experiments yield a sticking coefficient of approximately 1 x 10(-4) that is independent of the acetone partial pressures examined here. Equilibrium binding constants and free energies of adsorption are reported.

  13. Surface runoff pollution by cattle slurry and inorganic fertilizer spreading: chemical oxygen demand, ortho-phosphates, and electrical conductivity levels for different buffer strip lengths.

    PubMed

    Núñez-Delgado, A; López-Periago, E; Quiroga-Lago, F; Díaz-Fierros Viqueira, F

    2001-01-01

    As a way of dealing with the removal of pollutants from farming practices generated wastewater in the EU, we investigate the effect of spreading cattle slurry and inorganic fertiliser on 8 x 5 m2 and 8 x 3 m2 areas, referred to surface runoff chemical oxygen demand (COD), ortho-phosphates (o-P) and electrical conductivity (EC) levels, and the efficiency of grass buffer strips of various lengths in removing pollutants from runoff. The experimental plot was a 15% sloped Lolium perenne pasture. Surface runoff was generated by means of a rainfall simulator working at 47 mm h-1 rainfall intensity. Runoff was sampled by using Gerlach-type troughs situated 2, 4, 6 and 8 m downslope from the amended areas. During the first rainfall simulation, COD, o-P and EC levels were consistently higher in the slurry zone, more evidently in the larger amended area. During the second and third rainfall simulations, concentration and mass levels show a downslope drift into the buffer zones, with no clear buffer strip length attenuation. Correlation between runoff and mass drift is clearly higher in the slurry zone. Percentage attenuation in COD and o-P levels, referred to initial slurry concentrations--including rainfall dilution--were higher than 98%, and higher than 90% for EC.

  14. Accuracy of different sensors for the estimation of pollutant concentrations (total suspended solids, total and dissolved chemical oxygen demand) in wastewater and stormwater.

    PubMed

    Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

    2013-01-01

    Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.

  15. Gas exchange, growth, and chemical parameters in a native Atlantic forest tree species in polluted areas of Cubatão, Brazil.

    PubMed

    Moraes, R M; Delitti, W B C; Moraes, J A P V

    2003-03-01

    The Atlantic forest species near the industrial complex of Cubatão, Brazil have been subjected to heavy air pollution for decades. In this study, we used some physiological parameters (gas exchange, growth and chemical contents) to biomonitor the effects of air pollution on Tibouchina pulchra, one of the most common tree species in this forest. Under standardized conditions, saplings were exposed to the environment from April to July and from July to September of 1998, at three different sites in the vicinity of the industrial complex: the Valley of Pilões River (VP), the control area; the Valley of Mogi River (VM), near fertilizer, metallurgical, and cement industries sustaining high concentrations of fluorides, N and S oxides, and particulate materials; and Caminho do Mar (CM), near petrochemical industries under N and S oxides, photooxidants, and organic compounds. Plants exposed to CM and VM conditions presented visible injuries, reductions in net photosynthesis, growth parameters, and ascorbate concentrations, and increased F, N, and S foliar concentrations. These results indicate that the environmental conditions around these industries are still harmful to plants.

  16. The role of acoustic screens in distribution of technogenic magnetic particles and chemical pollution in roadside soil

    NASA Astrophysics Data System (ADS)

    Wawer, Małgorzata; Magiera, Tadeusz; Szuszkiewicz, Marcin

    2015-04-01

    Roads constructed nowadays should by all means be functional for their motorized users but at the same time their effect on the environment ought to be limited to the minimum. Despite the existence of various methods for preventing from negative influence of roads on the environment, there is still lack of adequate techniques to monitor and reduce the spreading of roadside pollution in the air and soils. The aim of the study was to assess the influence of acoustic screens on spreading and deposition of solid pollutants deriving from car emissions, based on their quantitative and qualitative analysis. During this study, measurements of magnetic susceptibility and analyses of heavy metals as well as Pt and Rh contents in soil and plant samples (Taraxacum officinale, Plantago major, Parthenocissus quinquefolia) collected near different kinds of acoustic screens ("green walls", Plexiglass, sawdust concrete, steel panels and earth embankments) have been done. Previous investigations showed showed that most of traffic emission is deposited in the close vicinity of the roads (up to 10 m) and the level of contamination decreased with increasing distance from the road edge. However, the results of this project indicate that, in the area where the acoustic screens are located, this distribution is disturbed and the additional enrichment of heavy metals in soil about 10 - 15 m behind screens is observed. Spatial distribution of heavy metal contents in soil samples corresponds to its magnetic susceptibility values. High contents of Fe, Zn, Mn and Pb was observed next to acoustic screens made of sawdust concrete and steel panels. Additionally, concentration of Zn in soil samples collected close to these screens exceeded threshold value. Analyses of plants showed that the highest content of examined elements and highest values of magnetic susceptibility were recorded near road edge. What is more, samples of Parthenocissus quinquefolia collected at height 0.2 m were characterized

  17. Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico-chemical properties.

    PubMed

    Laurent, F; Cébron, A; Schwartz, C; Leyval, C

    2012-02-01

    A batch experiment was conducted to assess the impact of chemical oxidation using modified Fenton reaction on PAH content and on physico-chemical and biological parameters of an industrial PAH contaminated soil in unsaturated condition. Two levels of oxidant (H(2)O(2), 6 and 65 g kg(-1)) and FeSO(4) were applied. Agronomic parameters, bacterial and fungal density, microbial activity, seed germination and ryegrass growth were assessed. Partial removal of PAHs (14% and 22%) was obtained with the addition of oxidant. The impact of chemical oxidation on PAH removal and soil physico-chemical and biological parameters differed depending on the level of reagent. The treatment with the highest concentration of oxidant decreased soil pH, cation exchange capacity and extractable phosphorus content. Bacterial, fungal, and PAH degrading bacteria densities were also lower in oxidized soil. However a rebound of microbial populations and an increased microbial activity in oxidized soil were measured after 5 weeks of incubation. Plant growth on soil treated by the highest level of oxidant was negatively affected. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Photochemistry of the indoor air pollutant acetone on Degussa P25 TiO2 studied by chemical ionization mass spectrometry.

    PubMed

    Schmidt, Catherine M; Buchbinder, Avram M; Weitz, Eric; Geiger, Franz M

    2007-12-20

    We have used chemical ionization mass spectrometry (CIMS) to study the adsorption and photochemistry of several oxygenated organic species adsorbed to Degussa P25 TiO2, an inexpensive catalyst that can be used to mineralize volatile organic compounds. The molecules examined in this work include the common indoor air pollutant acetone and several of its homologs and possible oxidation and condensation products that may be formed during the adsorption and/or photocatalytic degradation of acetone on titanium dioxide catalysts. We report nonreactive uptake coefficients for acetone, formic acid, acetic acid, mesityl oxide, and diacetone alcohol, and results from photochemical studies that quantify, on a per-molecule basis, the room-temperature photocatalytic conversion of the species under investigation to CO2 and related oxidation products. The data presented here imply that catalytic surfaces that enhance formate and acetate production from acetone precursors will facilitate the photocatalytic remediation of acetone in indoor environments, even at room temperature.

  19. An integrated chemical-biological study using caged mussels (Mytilus trossulus) along a pollution gradient in the Archipelago Sea (SW Finland, Baltic Sea).

    PubMed

    Lehtonen, Kari K; Turja, Raisa; Budzinski, Hélène; Devier, Marie-Hélène

    2016-08-01

    Mussels (Mytilus trossulus) were caged along a known pollution gradient in the inner Archipelago Sea (northern Baltic Sea) and retrieved after 71 and 121 d for the measurement of selected chemical contaminants in tissues and biological endpoints including biochemical biomarkers and growth. Additional samples were collected during the growth season from a native mussel population at an alleged reference site. Elevated concentrations of numerous contaminants (e.g., PAH) were observed in spring, apparently due to the loss of tissue mass during the winter, while also the levels of many biomarkers (e.g., glutathione S-transferase activity) were elevated. Spatial and temporal changes in the accumulation of contaminants and biological parameters were observed with some of them (e.g., growth) linked to seasonal changes in environmental factors. The results underline the importance of understanding the effects of seasonal natural factors on the growth dynamics and general condition of mussels when assessing tissue concentrations of contaminants and biological effects.

  20. Air Pollution Surveillance Systems

    ERIC Educational Resources Information Center

    Morgan, George B.; And Others

    1970-01-01

    Describes atmospheric data monitoring as part of total airpollution control effort. Summarizes types of gaseous, liquid and solid pollutants and their sources; contrast between urban and rural environmental air quality; instrumentation to identify pollutants; and anticipated new non-wet chemical physical and physiochemical techniques tor cetection…

  1. Air Pollution Surveillance Systems

    ERIC Educational Resources Information Center

    Morgan, George B.; And Others

    1970-01-01

    Describes atmospheric data monitoring as part of total airpollution control effort. Summarizes types of gaseous, liquid and solid pollutants and their sources; contrast between urban and rural environmental air quality; instrumentation to identify pollutants; and anticipated new non-wet chemical physical and physiochemical techniques tor cetection…

  2. Air Pollution and Industry.

    ERIC Educational Resources Information Center

    Ross, R. D., Ed.

    This book is an authoritative reference and practical guide designed to help the plant engineer identify and solve industrial air pollution problems in order to be able to meet current air pollution regulations. Prepared under the editorial supervision of an experienced chemical engineer, with each chapter contributed by an expert in his field,…

  3. Eutrophication. [Water pollution

    SciTech Connect

    Medine, A.J.; Porcella, D.B.

    1982-06-01

    A literature review dealing with the process of eutrophication with respect to the sources and transport of pollutants is presented. Topics include the mathematical modeling of nutrient loading, eutrophication, and aquatic ecosystems. Biological and environmental indicators of eutrophication are reviewed, and the interactions between various chemical and biological pollutants are considered. Several lake management projects are discussed. (KRM)

  4. Air Pollution and Industry.

    ERIC Educational Resources Information Center

    Ross, R. D., Ed.

    This book is an authoritative reference and practical guide designed to help the plant engineer identify and solve industrial air pollution problems in order to be able to meet current air pollution regulations. Prepared under the editorial supervision of an experienced chemical engineer, with each chapter contributed by an expert in his field,…

  5. The Effect of Chemical Amendments Used for Phosphorus Abatement on Greenhouse Gas and Ammonia Emissions from Dairy Cattle Slurry: Synergies and Pollution Swapping

    PubMed Central

    Brennan, Raymond B.; Healy, Mark G.; Fenton, Owen; Lanigan, Gary J.

    2015-01-01

    Land application of cattle slurry can result in incidental and chronic phosphorus (P) loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-called ‘pollution swapping’ potential) and therefore the feasibility of using such amendments has not been examined to date. The aim of this laboratory scale study was to determine how the chemical amendment of slurry affects losses of NH3, CH4, N2O, and CO2. Alum, FeCl2, Polyaluminium chloride (PAC)- and biochar reduced NH3 emissions by 92, 54, 65 and 77% compared to the slurry control, while lime increased emissions by 114%. Cumulative N2O emissions of cattle slurry increased when amended with alum and FeCl2 by 202% and 154% compared to the slurry only treatment. Lime, PAC and biochar resulted in a reduction of 44, 29 and 63% in cumulative N2O loss compared to the slurry only treatment. Addition of amendments to slurry did not significantly affect soil CO2 release during the study while CH4 emissions followed a similar trend for all of the amended slurries applied, with an initial increase in losses followed by a rapid decrease for the duration of the study. All of the amendments examined reduced the initial peak in CH4 emissions compared to the slurry only treatment. There was no significant effect of slurry amendments on global warming potential (GWP) caused by slurry land application, with the exception of biochar. After considering pollution swapping in conjunction with amendment effectiveness, the amendments recommended for further field study are PAC, alum and lime. This study has also shown that biochar has potential to reduce GHG losses arising from slurry application. PMID:26053923

  6. The Effect of Chemical Amendments Used for Phosphorus Abatement on Greenhouse Gas and Ammonia Emissions from Dairy Cattle Slurry: Synergies and Pollution Swapping.

    PubMed

    Brennan, Raymond B; Healy, Mark G; Fenton, Owen; Lanigan, Gary J

    2015-01-01

    Land application of cattle slurry can result in incidental and chronic phosphorus (P) loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-called 'pollution swapping' potential) and therefore the feasibility of using such amendments has not been examined to date. The aim of this laboratory scale study was to determine how the chemical amendment of slurry affects losses of NH3, CH4, N2O, and CO2. Alum, FeCl2, Polyaluminium chloride (PAC)- and biochar reduced NH3 emissions by 92, 54, 65 and 77% compared to the slurry control, while lime increased emissions by 114%. Cumulative N2O emissions of cattle slurry increased when amended with alum and FeCl2 by 202% and 154% compared to the slurry only treatment. Lime, PAC and biochar resulted in a reduction of 44, 29 and 63% in cumulative N2O loss compared to the slurry only treatment. Addition of amendments to slurry did not significantly affect soil CO2 release during the study while CH4 emissions followed a similar trend for all of the amended slurries applied, with an initial increase in losses followed by a rapid decrease for the duration of the study. All of the amendments examined reduced the initial peak in CH4 emissions compared to the slurry only treatment. There was no significant effect of slurry amendments on global warming potential (GWP) caused by slurry land application, with the exception of biochar. After considering pollution swapping in conjunction with amendment effectiveness, the amendments recommended for further field study are PAC, alum and lime. This study has also shown that biochar has potential to reduce GHG losses arising from slurry application.

  7. Day and night variation in chemical composition and toxicological responses of size segregated urban air PM samples in a high air pollution situation

    NASA Astrophysics Data System (ADS)

    Jalava, P. I.; Wang, Q.; Kuuspalo, K.; Ruusunen, J.; Hao, L.; Fang, D.; Väisänen, O.; Ruuskanen, A.; Sippula, O.; Happo, M. S.; Uski, O.; Kasurinen, S.; Torvela, T.; Koponen, H.; Lehtinen, K. E. J.; Komppula, M.; Gu, C.; Jokiniemi, J.; Hirvonen, M.-R.

    2015-11-01

    Urban air particulate pollution is a known cause for adverse human health effects worldwide. China has encountered air quality problems in recent years due to rapid industrialization. Toxicological effects induced by particulate air pollution vary with particle sizes and season. However, it is not known how distinctively different photochemical activity and different emission sources during the day and the night affect the chemical composition of the PM size ranges and subsequently how it is reflected to the toxicological properties of the PM exposures. The particulate matter (PM) samples were collected in four different size ranges (PM10-2.5; PM2.5-1; PM1-0.2 and PM0.2) with a high volume cascade impactor. The PM samples were extracted with methanol, dried and thereafter used in the chemical and toxicological analyses. RAW264.7 macrophages were exposed to the particulate samples in four different doses for 24 h. Cytotoxicity, inflammatory parameters, cell cycle and genotoxicity were measured after exposure of the cells to particulate samples. Particles were characterized for their chemical composition, including ions, element and PAH compounds, and transmission electron microscopy (TEM) was used to take images of the PM samples. Chemical composition and the induced toxicological responses of the size segregated PM samples showed considerable size dependent differences as well as day to night variation. The PM10-2.5 and the PM0.2 samples had the highest inflammatory potency among the size ranges. Instead, almost all the PM samples were equally cytotoxic and only minor differences were seen in genotoxicity and cell cycle effects. Overall, the PM0.2 samples had the highest toxic potential among the different size ranges in many parameters. PAH compounds in the samples and were generally more abundant during the night than the day, indicating possible photo-oxidation of the PAH compounds due to solar radiation. This was reflected to different toxicity in the PM

  8. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  9. Controlling Indoor Air Pollution.

    ERIC Educational Resources Information Center

    Nero, Anthony V, Jr.

    1988-01-01

    Discusses the health risks posed by indoor air pollutants, such as airborne combustion products, toxic chemicals, and radioactivity. Questions as to how indoor air might be regulated. Calls for new approaches to environmental protection. (TW)

  10. Chemical Speciation and Quantitative Evaluation of Heavy Metal Pollution Hazards in Two Army Shooting Range Backstop Soils.

    PubMed

    Islam, Mohammad Nazrul; Nguyen, Xuan Phuc; Jung, Ho-Young; Park, Jeong-Hun

    2016-02-01

    The chemical speciation and ecological risk assessment of heavy metals in two shooting range backstop soils in Korea were studied. Both soils were highly contaminated with Cd, Cu, Pb, and Sb. The chemical speciation of heavy metals reflected the present status of contamination, which could help in promoting management practices. We-rye soil had a higher proportion of exchangeable and carbonate bound metals and water-extractable Cd and Sb than the Cho-do soil. Bioavailable Pb represented 42 % of the total Pb content in both soils. A significant amount of Sb was found in the two most bioavailable fractions, amounting to ~32 % in the soil samples, in good agreement with the batch leaching test using water. Based on the values of ecological risk indices, both soils showed extremely high potential risk and may represent serious environmental problems.

  11. DEVELOPMENT OF ANALYTICAL METHODS FOR THE QUANTIFICATION OF THE CHEMICAL FORMS OF MERCURY AND OTHER TARGET POLLUTANTS IN COAL-FIRED BOILER FLUE GAS

    SciTech Connect

    Terence J. McManus, Ph.D.

    1999-06-30

    Since approximately 55% of the electrical power produced in the U. S. is generated by coal-based power utility plants, there is serious concern about the massive amounts of coal combustion products emitted into the atmosphere annually. Furthermore, Title III of the 1990 Clean Air Act Amendments (CAAA) requires the measurement and inventory of a possible 189 hazardous air pollutants (HAPs) from any stationary source producing more than 10 tons per year of any one pollutant or more than 25 tons per year of total pollutants. Although power utilities are not presently included on the list of source categories, the CAAA requires the U. S. Environmental Protection Agency to carry out a study of emissions from electricity generation using fossil fuels. Since many of these HAPs are known to be present in coal derived flue gas, coal-fired electric power utilities may be subject to regulation following these studies if Congress considers it necessary. In a cooperative effort with the U. S. Environmental Protection Agency (EPA), the U. S. Department of Energy (DOE) through its Federal Energy Technology Center (FETC) initiated such a study in 1991. DOE-FETC commissioned five primary contractors to conduct emission studies at eight different coal-fired electric utilities. The eight sites represented a cross section of feed coal type, boiler designs, and particulate and gaseous pollutant control technologies. The major goal of these studies was to determine the sampling and analytical methodologies that could be used efficiently to perform these emission tests while producing representative and reliable emission data. The successful methodology could then be recommended to the EPA for use in compliance testing in the event the regulation of air toxic emissions from coal-fired power plants is implemented. A secondary purpose of the testing was to determine the effectiveness of the control technologies in reducing target hazardous air pollutants. Advanced Technology Systems, Inc

  12. Levels, sources and chemical fate of persistent organic pollutants in the atmosphere and snow along the western Antarctic Peninsula.

    PubMed

    Khairy, Mohammed A; Luek, Jenna L; Dickhut, Rebecca; Lohmann, Rainer

    2016-09-01

    The Antarctic continent is among the most pristine regions; yet various organic contaminants have been measured there routinely. Air and snow samples were collected during the austral spring (October-November, 2010) along the western Antarctic Peninsula and analyzed for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) to assess the relative importance of long-range transport versus local primary or secondary emissions. Highest concentrations of PCBs, PBDEs and DDTs were observed in the glacier's snow sample, highlighting the importance of melting glaciers as a possible secondary source of legacy pollutants to the Antarctic. In the atmosphere, contaminants were mainly found in the vapor phase (>65%). Hexachlorobenzene (33.6 pg/m(3)), PCBs (11.6 pg/m(3)), heptachlor (5.64 pg/m(3)), PBDEs (4.22 pg/m(3)) and cis-chlordane (2.43 pg/m(3)) were the most abundant contaminants. In contrast to other compounds, PBDEs seem to have originated from local sources, possibly the research station itself. Gas-particle partitioning for analytes were better predicted using the adsorption partitioning model than an octanol-based absorption approach. Diffusive flux calculations indicated that net deposition is the dominant pathway for PBDEs and chlordanes, whereas re-volatilization from snow (during melting or metamorphosis) was observed for PCBs and some OCPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The role of boron nitride nanotube as a new chemical sensor and potential reservoir for hydrogen halides environmental pollutants

    NASA Astrophysics Data System (ADS)

    Yoosefian, Mehdi; Etminan, Nazanin; Moghani, Maryam Zeraati; Mirzaei, Samaneh; Abbasi, Shima

    2016-10-01

    Density functional theory (DFT) studies on the interaction of hydrogen halides (HX) environmental pollutants and the boron nitride nanotubes (BNNTs) have been reported. To exploit the possibility of BNNTs as gas sensors, the adsorption of hydrogen fluoride (HF), hydrogen chloride (HCl) and hydrogen bromide (HBr) on the side wall of armchair (5,5) boron nitride nanotubes have been investigated. B3LYP/6-31G (d) level were used to analyze the structural and electronic properties of investigate sensor. The adsorption process were interpreted by highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO), quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO) and molecular electrostatic potential (MEP) analysis. Topological parameters of bond critical points have been used to calculate as measure of hydrogen bond (HB) strength. Stronger binding energy, larger charge transfer and charge density illustrate that HF gas possesses chemisorbed adsorption process. The obtained results also show the strongest HB in HF/BNNT complex. We expect that results could provide helpful information for the design of new BNNTs based sensing devices.

  14. Assessing PAHs pollution in Qingdao coastal area (China) by the combination of chemical and biochemical responses in scallops, Chlamys farreri.

    PubMed

    Jin, Qian; Pan, Luqing; Liu, Dong; Hu, Fengxiao; Xiu, Meng

    2014-12-15

    The PAHs concentrations in seawater and tissues from the scallop Chlamys farreri were detected in three sites in Qingdao, China in 2011. The PAHs concentrations in seawater ranged from 25.32 ng/L to 314.62 ng/L. There were significant differences (p<0.05) between the residual levels among scallop tissues. The highest concentrations of PAHs in seawater and tissues were found in S2. The ethoxyresorufin-O-deethylase (EROD) activity of the digestive gland and the malondialdehyde (MDA) contents of the digestive gland and gill were sensitive to PAHs (p<0.05). This study integrated the PAHs concentrations in seawater, residual levels, the variation of biochemical response and the correlation coefficient analysis, and concluded that Qingdao is a medium PAH-contaminated area on a global scale. The highest PAHs were accumulated in the digestive gland followed by the gill, soft tissue and adductor muscle. The EROD activity of the digestive gland and the MDA contents of the digestive gland and gill could be applied to assess the PAHs pollution status in Qingdao, China.

  15. Pollution of modern metalworking fluids containing biocides by pathogenic bacteria in France. Reexamination of chemical treatments accuracy.

    PubMed

    Chazal, P M

    1995-02-01

    Pollution by pathogenic bacteria was examined in 150 French metalworking fluid samples. Gram-negative micro-organisms such as Salmonella spp., Shigella spp., and Vibrio spp. as well as Gram-positive cocci were never isolated. Nevertheless opportunistic pathogens such as Pseudomonas aeruginosa and Klebsiella pneumoniae still contaminated these fluids with an isolation frequency of 17% of samples for each. These two micro-organisms failed to grow or even survive in vitro in sterile cutting fluids protected by biocides. Preliminary growth of other micro-organisms such as Pseudomonas putida or Pseudomonas fluorescens, which are the major part of the indigenous microflora, seemed to be a prerequisite for their growth. These former two Pseudomonas could resist three different classes of biocides and, at least in the case of formaldehyde-releasers, adaptation was followed by biocide deterioration. Resistance magnification was observed in the presence of the three different types of biocides and, in the case of formaldehyde releasers the resistance and deterioration levels were close to those recommended by the manufacturers. This is probably the reason why the preliminary growth of Pseudomonas putida allowed in vitro differed growth of Klebsiella pneumoniae and Pseudomonas aeruginosa. Due to relatively high isolation frequencies of opportunistic pathogens (17% of samples) periodical microbiological examination of cutting fluids should be carried out in order to evaluate risks for human health. Wearing masks and gloves is still recommended, at least in France.

  16. Petroleum pollution in surface sediments of Daya Bay, South China, revealed by chemical fingerprinting of aliphatic and alicyclic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Gao, Xuelu; Chen, Shaoyong

    2008-10-01

    Nine surface sediments collected from Daya Bay have been Soxhlet-extracted with 2:1 (v/v) dichloromethane-methanol. The non-aromatic hydrocarbon (NAH) fraction of solvent extractable organic matter (EOM) and some bulk geochemical parameters have been analyzed to determine petroleum pollution of the bay. The NAH content varies from 32 to 276 μg g -1 (average 104 μg g -1) dry sediment and accounts for 5.8-64.1% (average 41.6%) of the EOM. n-Alkanes with carbon number ranging from 15 to 35 are identified to be derived from both biogenic and petrogenic sources in varying proportions. The contribution of marine authigenic input to the sedimentary n-alkanes is lower than the allochthonous input based on the average n-C 31/ n-C 19 alkane ratio. 25.6-46.5% of the n-alkanes, with a mean of 35.6%, are contributed by vascular plant wax. Results of unresolved complex mixture, isoprenoid hydrocarbons, hopanes and steranes also suggest possible petroleum contamination. There is strong evidence of a common petroleum contamination source in the bay.

  17. CHEMICAL ABUNDANCES IN THE EXTERNALLY POLLUTED WHITE DWARF GD 40: EVIDENCE OF A ROCKY EXTRASOLAR MINOR PLANET

    SciTech Connect

    Klein, B.; Jura, M.; Zuckerman, B.; Melis, C.; Koester, D. E-mail: jura@astro.ucla.ed E-mail: cmelis@ucsd.ed

    2010-02-01

    We present Keck/High Resolution Echelle Spectrometer data with model atmosphere analysis of the helium-dominated polluted white dwarf GD 40, in which we measure atmospheric abundances relative to helium of nine elements: H, O, Mg, Si, Ca, Ti, Cr, Mn, and Fe. Apart from hydrogen, whose association with the other contaminants is uncertain, this material most likely accreted from GD 40's circumstellar dust disk whose existence is demonstrated by excess infrared emission. The data are best explained by accretion of rocky planetary material, in which heavy elements are largely contained within oxides, derived from a tidally disrupted minor planet at least the mass of Juno, and probably as massive as Vesta. The relatively low hydrogen abundance sets an upper limit of 10% water by mass in the inferred parent body, and the relatively high abundances of refractory elements, Ca and Ti, may indicate high-temperature processing. While the overall constitution of the parent body is similar to the bulk Earth being over 85% by mass composed of oxygen, magnesium, silicon, and iron, we find n(Si)/n(Mg) = 0.30 +- 0.11, significantly smaller than the ratio near unity for the bulk Earth, chondrites, the Sun, and nearby stars. This result suggests that differentiation occurred within the parent body.

  18. Partitionable-space enhanced coagulation (PEC) reactor and its working mechanism: a new prospective chemical technology for phosphorus pollution control.

    PubMed

    Zhang, Meng; Zheng, Ping; Abbas, Ghulam; Chen, Xiaoguang

    2014-02-01

    Phosphorus pollution control and phosphorus recycling, simultaneously, are focus of attention in the wastewater treatment. In this work, a novel reactor named partitionable-space enhanced coagulation (PEC) was invented for phosphorus control. The working performance and process mechanism of PEC reactor were investigated. The results showed that the PEC technology was highly efficient and cost-effective. The volumetric removal rate (VRR) reached up to 2.86 ± 0.04 kg P/(m(3) d) with a phosphorus removal rate of over 97%. The precipitant consumption was reduced to 2.60-2.76 kg Fe(II)/kg P with low operational cost of $ 0.632-0.673/kg P. The peak phosphorus content in precipitate was up to 30.44% by P2O5, which reveal the benefit of the recycling phosphorus resource. The excellent performance of PEC technology was mainly attributed to the partitionable-space and 'flocculation filter'. The partition limited the trans-regional back-mixing of reagents along the reactor, which promoted the precipitation reaction. The 'flocculation filter' retained the microflocs, enhancing the flocculation process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Pollution tolerant protozoa in polluted wetland.

    PubMed

    Li, Yi-Di; Chen, Ying; Wang, Li; Yao, Lin; Pan, Xu-Ming; Lee, Duu-Jong

    2017-02-16

    This study for the first time confirmed that eight dominating protozoan species, Cryptomonas erosa, Euglena axyuris, Euglena caudate, Euglena gasterosteus, Euglena acus, Vorticella campanula, Vorticella convallaria and Epistylis lacustris, were the pollution tolerant species at chemical oxygen demand 54-104mg/L. These species cannot be used as indicator for clean water quality as commonly believed. The protozoa can be actively participating in the energy transfer chain between nano-planktonic and higher plants in polluted wetlands.

  20. A high-pressure premixed flat-flame burner for chemical process studies. [of pollutant formation in hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.

    1978-01-01

    A premixed flat-flame burner was designed and tested with methane-air mixtures at pressures from 1.1 to 20 atm and equivalence ratios from 0.7 to 1.1. Reactant velocity in the burner mixing chamber was used to characterize the range of stable flames at each pressure-equivalence-ratio condition. Color photographs of the flames were used to determine flame zone thickness and flame height. The results show that this burner can be used for chemical process studies in premixed high pressure methane-air flames up to 20 atm.

  1. Ion trap LC/MS characterisation of toxic polar organic pollutants in colour photographic wastewaters and monitoring of their chemical degradation.

    PubMed

    Lunar, L; Rubio, S; Pérez-Bendito, D

    2004-02-01

    Liquid chromatography/electrospray ionisation-ion trap mass spectrometry (LC/ESI-ITMS) with positive mode of operation was successfully applied to the characterisation of aromatic amines and chelating agents in colour photographic wastewaters. In addition to residual ingredients, monomers and dimers of sulphonated aromatic amines were the main toxic polar organic pollutants found. Oxidation of wastewater components by the Fenton-like reagent (Fe3+ + H2O2) was investigated by continuously pumping a solution of hydrogen peroxide. Iron concentration, present in the wastewater as ferric carboxylate complexes, was typically above 1 g l(-1), and therefore addition of Fe3+ was not necessary for treatment. Operating variables like reagent feeding concentration and flowrate, temperature and pH were studied. The overall chemical oxygen demand (COD) removal reached 90% after 7.5 h of treatment when the dosage of hydrogen peroxide was 230 g per litre of effluent, the pH was about 4 and the temperature was 60 degrees C. The absence of toxics in the treated effluents was confirmed by the Photobacterium phosphoreum luminescence reduction test. Monitoring of the chemical degradation of aromatic amines and chelating agents by LC/ESI-ITMS proved that the Fenton's like reagent was effective in degrading them. Propylenediamine tetraacetic acid (PDTA) was found to be the more recalcitrant compound, however about 97% of degradation was achieved after 7.5 hours of treatment.

  2. A NEW NON-DESTRUCTIVE METHOD FOR CHEMICAL ANALYSIS OF PARTICULATE MATTER FILTERS: THE CASE OF MANGANESE AIR POLLUTION IN VALLECAMONICA (ITALY)

    PubMed Central

    Borgese, Laura; Zacco, Annalisa; Pal, Sudipto; Bontempi, Elza; Lucchini, Roberto; Zimmerman, Neil; Depero, Laura E.

    2011-01-01

    Total Reflection X-ray Fluorescence (TXRF) is a well-established technique for chemical analysis, but it is mainly employed for quality control in the electronics semiconductor industry. The capability to analyze liquid and uniformly thin solid samples makes this technique suitable for other applications, and especially in the very critical field of environmental analysis. Comparison with standard methods like Inductively Coupled Plasma (ICP) and Atomic Absorption Spectroscopy (AAS) show that TXRF is a practical, accurate, and reliable technique in occupational settings. Due to the greater sensitivity necessary in trace heavy metal detection, TXRF is also suitable for environmental chemical analysis. In this paper we show that based on appropriate standards, TXRF can be considered for non-destructive routine quantitative analysis of environmental matrices such as air filters. This work has been developed in the frame of the EU-FP6 PHIME (Public Health Impact of long-term, low-level Mixed element Exposure in susceptible population strata) Integrated Project (www.phime.org). The aim of this work was to investigate Mn air pollution in the area of Vallecamonica (Italy). PMID:21315919

  3. Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran

    NASA Astrophysics Data System (ADS)

    Keshavarzi, Behnam; Tazarvi, Zahra; Rajabzadeh, Mohammad Ali; Najmeddin, Ali

    2015-10-01

    The distribution, pollution level, sources and health risk of Hg, As, Cd, Cu, Cr, Ni, Mn, Fe, Pb, Sb and Zn in urban street dust were investigated. X-ray diffraction analysis of dust samples shows that the mineralogy of airborne dusts is dominated by calcite, dolomite and quartz. The total concentration of trace elements across the sampling sites ranged from 36.8 to 234.3 mg kg-1 for Pb, 0.004-4.504 mg kg-1 for Hg, 160.9-778.3 mg kg-1 for Zn, 245-652 mg kg-1 for Mn, 39.4-117.9 mg kg-1 for Ni, 31.6-105.9 mg kg-1 for Cr, 49.8-232.5 mg kg-1 for Cu, 5.3-8.6 mg kg-1 for As, 0.31-0.85 mg kg-1 for Cd, 0.76-9.45 mg kg-1 for Sb, and 16,300-24,900 mg kg-1 for Fe. The enrichment factor results reveal the following order: Cu > Hg > Sb > Zn > Pb > Ni > Cr > As > Mn > Cd > Fe. Among the measured elements, the highest mobility factor belongs to Pb (79.2%), Hg (74.6%), Zn (64.1%) and Mn (56.4%). According to the calculated Hazard Quotient (HQ) and Hazard Index (HI), special attention should be paid to Hg, Pb, Zn, and Mn in the street dusts of Shiraz. Multivariate statistics indicate that traffic, natural soil particles and industrial activities are likely to be the main sources of heavy metals in Shiraz street dusts.

  4. Onset of industrial pollution recorded in Mumbai mudflat sediments, using integrated magnetic, chemical, 210Pb dating, and microscopic methods.

    PubMed

    Blaha, U; Basavaiah, N; Deenadayalan, K; Borole, D V; Mohite, R D

    2011-01-15

    The onset and rise of urban and industrial pollution in the Mumbai region was reconstructed from an anthropogenically contaminated mudflat sediment profile from the adjacent Thane creek using magnetic parameters, polycyclic aromatic hydrocarbon (PAH) data, metal contents, and the (210)Pb dating technique. The 1.8 m vertical section at Airoli (Navi Mumbai) reveals an increase of magnetic susceptibility (χ) from background values of (20-50) to (75-100) × 10(-8) [m(3) kg(-1)] in the anthropogenically affected zone above ∼93 cm. A sharp rise of χ from (75-100) to (130-215) × 10(-8) [m(3) kg(-1)] subdivides the anthropogenically affected zone at a depth of ∼63 cm. Characterization with rock magnetic parameters (SIRM, Soft IRM, and S-ratio) reveals a significant contribution of ferri(o)magnetic phases in the upper zone. Based on the magnetic classification sampling intervals for cost-intensive PAH and metal analyses were determined. Steadily increasing contents of PAH and metals of anthropogenic origin are observed above the boundary depth at ∼93 cm. A sediment accumulation rate of 1.2 ± 0.3 cm/yr provided by (210)Pb dating dates the ∼63 cm boundary to 1951. Increasing industrial activity, including the establishment of a coal-fired power plant in 1956, and refineries between 1955 and 1960, correlates well with the substantial increase of χ, PAH, and metal contents. Scanning electron microscopy (SEM) investigation on magnetic extracts from the contaminated zone reveals the presence of magnetic spherules derived from industrial high-temperature processes.

  5. Effects of organohalogen pollutants on haematological and urine clinical-chemical parameters in Greenland sledge dogs (Canis familiaris).

    PubMed

    Sonne, Christian; Dietz, Rune; Kirkegaard, Maja; Letcher, Robert J; Shahmiri, Soheila; Andersen, Steen; Møller, Per; Olsen, Aage Kristian; Jensen, Asger L

    2008-03-01

    Seven West Greenland sledge dog bitches (Canis familiaris) and their three pups were fed 50-200 g of contaminated West Greenland minke whale (Balaenoptera acutorostrata) blubber, and in a control cohort eight sister bitches and their five pups were fed a similar amount pork fat. Blood plasma and urine clinical-chemical parameters were measured and compared between the bitches and pups form the control and exposed cohorts. Based on existing reference intervals, Arctic mammals may have blood clinical-chemical endpoint levels that differ from comparable species at lower latitudes. The cortisol:creatinine ratio, protein:creatinine ratio, alkaline phosphatase, cholesterol and inorganic phosphate were significantly highest (ANCOVA: all p<0.05) in the pup generation. The cortisol:creatinine ratio, cholesterol, lactate dehydrogenase and creatinine kinase were significantly higher (ANCOVA: all p<0.05) in the control group, while glucose was significantly highest (ANCOVA: p<0.05) in the exposed group. Furthermore, the blood cholesterol levels indicate that exposure via the diet to marine mammal blubber has a preventive effect on the development of cardiovascular diseases. We therefore suggest that the consumption of contaminated Arctic marine blubber impacted liver and kidney function in adult and pup sledge dogs.

  6. [Effect of physico-chemical characteristics of activated carbon on the adsorption of organic pollutants in natural water].

    PubMed

    Zhang, Jing-Yi; Shi, Bao-You; Xie, Jian-Kun; Yuan, Hong-Lin; Wang, Dong-Sheng

    2011-02-01

    In this paper, the adsorption characteristics of two synthetic organic compounds (SOCs), i. e., methyl parathion(MP) and trichloroethylene (TCE), and natural organic matter (NOM) on powdered activated carbons (PAC) in natural water were studied. On the basis of fully characterizing the physical and chemical characteristics of PAC, the effect of physical and chemical properties of PAC on the adsorption of low molecular weight SOCs in natural water was studied by correlation analysis. The effect of molecular weight fractionation on the adsorption of NOM on PAC was investigated using high performance size exclusion chromatography (HPSEC). It was found that, compared to the surface chemistry, the physical property (pore properties) of PAC was the critical factor to determine its adsorption capacity of MP and TCE in natural water. The adsorption of the low molecular weight SOC and NOM with apparent molecular weight (AMW) < 500 on PAC was primarily impacted by the micropore surface area, and that of NOM with 500 < AMW < 3 000 was affected by the mesopore surface area combined with the mesopore size distribution.

  7. Examining the Temperature Dependence of E85 Versus Gasoline Emissions on Air Pollution With a Near-Explicit Chemical Mechanism

    NASA Astrophysics Data System (ADS)

    Ginnebaugh, D.; Livingstone, P.; Jacobson, M.

    2008-12-01

    The increased use of ethanol in transportation fuels warrants an investigation of its consequences. An important component of such an investigation is the temperature-dependence of ethanol and gasoline exhaust chemistry. We use the near-explicit Master Chemical Mechanism (MCM, version 3.1, LEEDS University) with the SMVGEAR II chemical ordinary differential solver to provide the speed necessary to simulate explicit chemistry. The MCM has over 13,500 organic reactions and 4,600 species. SMVGEAR II is a sparse-matrix vectorized Gear solver that reduces the computation time significantly while maintaining any specified accuracy. We use species-resolved tailpipe emissions data for E85 and gasoline vehicles to compare the impact of each on ozone and carcinogenic organic species as a function of ambient temperature and backgound concentrations. We find that, in most cases, an increase in temperature increases ozone more with E85 than with gasoline. Also, average ozone concentrations through the range of temperatures tested are higher with E85 than with gasoline.

  8. Monitoring and sustainable management of oil polluting wrecks and chemical munitions dump sites in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hassellöv, Ida-Maja; Tengberg, Anders

    2017-04-01

    The Baltic Sea region contains a dark legacy of about 100 000 tons of dumped chemical warfare agents. As time passes the gun shells corrode and the risks of release of contaminants increase. A major goal of the EU-flagship project Daimon is to support governmental organisations with case-to-case adapted methods for sustainable management of dumped toxic munitions. At the Chalmers University of Technology, a partner of Daimon, a unique ISO 31000 adapted method was developed to provide decision support regarding potentially oilpolluting shipwrecks. The method is called VRAKA and is based on probability calculations. It includes site-specific information as well as expert knowledge. VRAKA is now being adapted to dumped chemical munitions. To estimate corrosion potential of gun shells and ship wrecks along with sediment re-suspension and transport multiparameter instruments are deployed at dump sites. Parameters measured include Currents, Salinity, Temperature, Oxygen, Depth, Waves and Suspended particles. These measurements have revealed how trawling at dump sites seems to have large implications in spreading toxic substances (Arsenic) over larger areas. This presentation will shortly describe the decision support model, the used instrumentation and discuss some of the obtain results.

  9. A modified BAF system configuring synergistic denitrification and chemical phosphorus precipitation: Examination on pollutants removal and clogging development.

    PubMed

    Wang, Hongjie; Dong, Wengyi; Li, Ting; Liu, Tongzhou

    2015-01-01

    The performance of a BAF system configuring simultaneous chemical phosphorus precipitation in the pre-denitrification stage was examined using a continuously operated setup to treat real domestic wastewater. The effects of using no chemical, dosing sole Fe(2+), and dosing combined Fe(2+), PAM, and NaHCO3 in the pre-denitrification tank were assessed by monitoring COD, nitrogen, and phosphorus removal and hydraulic headloss development in the BAF column. Though dosing sole Fe(2+) significantly enhanced phosphorus removal, it would consume alkalinity through hydrolysis and form smaller-sized sludge flocs in the pre-denitrification tank, and hence resulted in affected NH4(+)-N, insoluble COD, and SS removal in the BAF. Dosing combined Fe(2+), PAM, and NaHCO3 can enhance sludge flocculation to form larger flocs and compensate alkalinity consumption. It exhibited sound performance on COD, nitrogen, and phosphorus removal, and led to less frequent BAF backwashing by slowing clogging development in the BAF filter layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. In Search of Air Pollution

    ERIC Educational Resources Information Center

    Beckendorf, Kirk

    2006-01-01

    Air pollution is no longer just a local issue; it is a global problem. The atmosphere is a very dynamic system. Pollution not only changes in chemical composition after it is emitted, but also is transported on local and global air systems hundreds and even thousands of miles away. Some of the pollutants that are major health concerns are not even…

  11. In Search of Air Pollution

    ERIC Educational Resources Information Center

    Beckendorf, Kirk

    2006-01-01

    Air pollution is no longer just a local issue; it is a global problem. The atmosphere is a very dynamic system. Pollution not only changes in chemical composition after it is emitted, but also is transported on local and global air systems hundreds and even thousands of miles away. Some of the pollutants that are major health concerns are not even…

  12. Chemical contaminants (trace metals, persistent organic pollutants) in albacore tuna from western Indian and south-eastern Atlantic Oceans: Trophic influence and potential as tracers of populations.

    PubMed

    Chouvelon, Tiphaine; Brach-Papa, Christophe; Auger, Dominique; Bodin, Nathalie; Bruzac, Sandrine; Crochet, Sylvette; Degroote, Maxime; Hollanda, Stephanie J; Hubert, Clarisse; Knoery, Joël; Munschy, Catherine; Puech, Alexis; Rozuel, Emmanuelle; Thomas, Bastien; West, Wendy; Bourjea, Jérôme; Nikolic, Natacha

    2017-10-15

    Albacore tuna (Thunnus alalunga) is a highly commercial fish species harvested in the world's Oceans. Identifying the potential links between populations is one of the key tools that can improve the current management across fisheries areas. In addition to characterising populations' contamination state, chemical compounds can help refine foraging areas, individual flows and populations' structure, especially when combined with other intrinsic biogeochemical (trophic) markers such as carbon and nitrogen stable isotopes. This study investigated the bioaccumulation of seven selected trace metals - chromium, nickel, copper (Cu), zinc (Zn), cadmium (Cd), mercury (Hg) and lead - in the muscle of 443 albacore tunas, collected over two seasons and/or years in the western Indian Ocean (WIO: Reunion Island and Seychelles) and in the south-eastern Atlantic Ocean (SEAO: South Africa). The main factor that explained metal concentration variability was the geographic origin of fish, rather than the size and the sex of individuals, or the season/year of sampling. The elements Cu, Zn, Cd and Hg indicated a segregation of the geographic groups most clearly. For similar sized-individuals, tunas from SEAO had significantly higher concentrations in Cu, Zn and Cd, but lower Hg concentrations than those from WIO. Information inferred from the analysis of trophic markers (δ(13)C, δ(15)N) and selected persistent organic pollutants, as well as information on stomach contents, corroborated the geographical differences obtained by trace metals. It also highlighted the influence of trophic ecology on metal bioaccumulation. Finally, this study evidenced the potential of metals and chemical contaminants in general as tracers, by segregating groups of individuals using different food webs or habitats, to better understand spatial connectivity at the population scale. Limited flows of individuals between the SEAO and the WIO are suggested. Albacore as predatory fish also provided some

  13. Integrated single particle-bulk chemical approach for the characterization of local and long range sources of particulate pollutants

    NASA Astrophysics Data System (ADS)

    Moroni, Beatrice; Cappelletti, David; Marmottini, Fabio; Scardazza, Francesco; Ferrero, Luca; Bolzacchini, Ezio

    2012-04-01

    The feasibility of an integrated approach based on multivariate statistical analysis and individual particle micro-analyses to characterize airborne particulate matter (PM) sampled at urban and regional background sites was tested. The proposed methodology encompasses data from ICP-AES, GC-MS and SEM-EDS analyses on ground and vertical profile PM samples. Source apportionment analysis of bulk chemical data allowed the identification and quantification of five distinct source categories for the fine and coarse particle size ranges. Results of quantitative phase analysis were included in the statistical investigation in order to correlate type and relevance of PM sources with relative abundance and texture of particles at ground level. Results were finally evaluated in the light of back-trajectory calculations and atmospheric vertical profile measurements. This approach allowed to discriminate between local from Saharan dust crustal contributions, and urban from regional secondary aerosol anthropogenic inputs.

  14. Characterizing ozone pollution in a petrochemical industrial area in Beijing, China: a case study using a chemical reaction model.

    PubMed

    Wei, Wei; Lv, Zhaofeng; Cheng, Shuiyuan; Wang, Lili; Ji, Dongsheng; Zhou, Ying; Han, Lihui; Wang, Litao

    2015-06-01

    This study selected a petrochemical industrial complex in Beijing, China, to understand the characteristics of surface ozone (O3) in this industrial area through the on-site measurement campaign during the July-August of 2010 and 2011, and to reveal the response of local O3 to its precursors' emissions through the NCAR-Master Mechanism model (NCAR-MM) simulation. Measurement results showed that the O3 concentration in this industrial area was significantly higher, with the mean daily average of 124.6 μg/m(3) and mean daily maximum of 236.8 μg/m(3), which are, respectively, 90.9 and 50.6 % higher than those in Beijing urban area. Moreover, the diurnal O3 peak generally started up early in 11:00-12:00 and usually remained for 5-6 h, greatly different with the normal diurnal pattern of urban O3. Then, we used NCAR-MM to simulate the average diurnal variation of photochemical O3 in sunny days of August 2010 in both industrial and urban areas. A good agreement in O3 diurnal variation pattern and in O3 relative level was obtained for both areas. For example of O3 daily maximum, the calculated value in the industrial area was about 51 % higher than in the urban area, while measured value in the industrial area was approximately 60 % higher than in the urban area. Finally, the sensitivity analysis of photochemical O3 to its precursors was conducted based on a set of VOCs/NOx emissions cases. Simulation results implied that in the industrial area, the response of O3 to VOCs was negative and to NOx was positive under the current conditions, with the sensitivity coefficients of -0.16~-0.43 and +0.04~+0.06, respectively. By contrast, the urban area was within the VOCs-limitation regime, where ozone enhancement in response to increasing VOCs emissions and to decreasing NOx emission. So, we think that the VOCs emissions control for this petrochemical industrial complex will increase the potential risk of local ozone pollution aggravation, but will be helpful to inhibit the

  15. Marine pollution

    SciTech Connect

    Albaiges, J. )

    1989-01-01

    This book covers the following topics: Transport of marine pollutants; Transformation of pollutants in the marine environment; Biological effects of marine pollutants; Sources and transport of oil pollutants in the Persian Gulf; Trace metals and hydrocarbons in Syrian coastal waters; and Techniques for analysis of trace pollutants.

  16. Integrated approach of nutritional and molecular epidemiology, mineralogical and chemical pollutant characterisation: the protocol of a cross-sectional study in women

    PubMed Central

    Barchitta, Martina; Quattrocchi, Annalisa; Maugeri, Andrea; Barone, Germana; Mazzoleni, Paolo; Catalfo, Alfio; De Guidi, Guido; Iemmolo, Maria; Crimi, Nunzio; Agodi, Antonella

    2017-01-01

    Introduction Environmentally-related health and disease are the result of the exposome, the totality of a person's environmental exposures, from all sources and routes, across their lifespan. Epigenetic phenomena, including DNA methylation, can be potentially modified by environmental and lifestyle factors, and result in environmental reprogramming of the genome for exposed individuals and for future generations of offspring. Objective The objective of the project is to evaluate the risk of DNA hypomethylation due to air pollution, Mediterranean diet adherence, folate intake, and demographic and socioeconomic factors, in healthy women living in the metropolitan area of Catania, Italy. Methods and analysis Non-pregnant healthy women will be enrolled in a cross-sectional study. Sociodemographic, lifestyle and dietary intake information will be collected. LINE-1 methylation will be measured by pyrosequencing. The participants' home addresses will be geocoded and each woman will be assigned to the closest monitoring station for particulate matter (PM) exposure assessment. Mineralogical-chemical characterisation of PM and cellular model assays will be performed. An integrated approach will be designed to estimate the combined possible effect of air pollution, Mediterranean diet adherence, folate intake and other lifestyle characteristics on LINE-1 methylation levels. Ethics and dissemination The project has been approved by the ethics committees of the involved institution and funded by the University of Catania (Finanziamento della Ricerca, FIR 2014). All participants will be fully informed of the purpose and procedures of the study, and signed written consents will be obtained. All the data collected will be treated confidentially and analysed in an aggregate and anonymous way. The results will be published in peer-reviewed journals and communicated to local public health agencies, in order to provide essential information for timely and effective public health action

  17. Integrated approach of nutritional and molecular epidemiology, mineralogical and chemical pollutant characterisation: the protocol of a cross-sectional study in women.

    PubMed

    Barchitta, Martina; Quattrocchi, Annalisa; Maugeri, Andrea; Barone, Germana; Mazzoleni, Paolo; Catalfo, Alfio; De Guidi, Guido; Iemmolo, Maria; Crimi, Nunzio; Agodi, Antonella

    2017-04-04

    Environmentally-related health and disease are the result of the exposome, the totality of a person's environmental exposures, from all sources and routes, across their lifespan. Epigenetic phenomena, including DNA methylation, can be potentially modified by environmental and lifestyle factors, and result in environmental reprogramming of the genome for exposed individuals and for future generations of offspring. The objective of the project is to evaluate the risk of DNA hypomethylation due to air pollution, Mediterranean diet adherence, folate intake, and demographic and socioeconomic factors, in healthy women living in the metropolitan area of Catania, Italy. Non-pregnant healthy women will be enrolled in a cross-sectional study. Sociodemographic, lifestyle and dietary intake information will be collected. LINE-1 methylation will be measured by pyrosequencing. The participants' home addresses will be geocoded and each woman will be assigned to the closest monitoring station for particulate matter (PM) exposure assessment. Mineralogical-chemical characterisation of PM and cellular model assays will be performed. An integrated approach will be designed to estimate the combined possible effect of air pollution, Mediterranean diet adherence, folate intake and other lifestyle characteristics on LINE-1 methylation levels. The project has been approved by the ethics committees of the involved institution and funded by the University of Catania (Finanziamento della Ricerca, FIR 2014). All participants will be fully informed of the purpose and procedures of the study, and signed written consents will be obtained. All the data collected will be treated confidentially and analysed in an aggregate and anonymous way. The results will be published in peer-reviewed journals and communicated to local public health agencies, in order to provide essential information for timely and effective public health action. Published by the BMJ Publishing Group Limited. For permission to

  18. Chemical composition and source apportionment of PM2.5 during Chinese Spring Festival at Xinxiang, a heavily polluted city in North China: Fireworks and health risks

    NASA Astrophysics Data System (ADS)

    Feng, Jinglan; Yu, Hao; Su, Xianfa; Liu, Shuhui; Li, Yi; Pan, Yuepeng; Sun, Jian-Hui

    2016-12-01

    Twenty-four PM2.5 samples were collected at a suburban site of Xinxiang during Chinese Spring Festival (SF) in 2015. 10 water-soluble ions, 19 trace elements and 8 fractions of carbonaceous species in PM2.5 were analyzed. Potential sources of PM2.5 were quantitatively apportioned using principal component analysis (PCA)-multivariate linear regressions (MLR). The threat of heavy metals in PM2.5 was assessed using incremental lifetime cancer risk (ILCR). During the whole period, serious regional haze pollution persisted, the average concentration of PM2.5 was 111 ± 54 μg m- 3, with 95.8% and 79.2% of the daily samples exhibiting higher PM2.5 concentrations than the national air quality standard I and II. Chemical species declined due to holiday effect with the exception of K, Fe, Mg, Al and K+, Cl-, which increased on Chinese New Year (CNY)'s Eve and Lantern Festival in 2015, indicating the injection of firework burning particles in certain short period. PM2.5 mass closure showed that secondary inorganic species were the dominant fractions of PM2.5 over the entire sampling (37.3%). 72-hour backward trajectory clusters indicated that most serious air pollution occurred when air masses transported from the Inner Mongolia, Shanxi and Zhengzhou. Health risk assessment revealed that noncancerous effects of heavy metals in PM2.5 of Xinxiang were unlikely happened, while lifetime cancer risks of heavy metals obviously exceeded the threshold, which might have a cancer risk for residents in Xinxiang. This study provided detailed composition data and first comprehensive analysis of PM2.5 during the Spring Festival period in Xinxiang.

  19. Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: compound prioritization, mixture characterization and relationships with biological descriptors.

    PubMed

    Ginebreda, Antoni; Kuzmanovic, Maja; Guasch, Helena; de Alda, Miren López; López-Doval, Julio C; Muñoz, Isabel; Ricart, Marta; Romaní, Anna M; Sabater, Sergi; Barceló, Damià

    2014-01-15

    Chemical pollution is typically characterized by exposure to multiple rather than to single or a limited number of compounds. Parent compounds, transformation products and other non-targeted compounds yield mixtures whose composition can only be partially identified by monitoring, while a substantial proportion remains unknown. In this context, risk assessment based on the application of additive ecotoxicity models, such as concentration addition (CA), is rendered somewhat misleading. Here, we show that ecotoxicity risk information can be better understood upon consideration of the probabilistic distribution of risk among the different compounds. Toxic units of the compounds identified in a sample fit a lognormal probability distribution. The parameters characterizing this distribution (mean and standard deviation) provide information which can be tentatively interpreted as a measure of the toxic load and its apportionment among the constituents in the mixture (here interpreted as mixture complexity). Furthermore, they provide information for compound prioritization tailored to each site and enable prediction of some of the functional and structural biological variables associated with the receiving ecosystem. The proposed approach was tested in the Llobregat River basin (NE Spain) using exposure and toxicity data (algae and Daphnia) corresponding to 29 pharmaceuticals and 22 pesticides, and 5 structural and functional biological descriptors related to benthic macroinvertebrates (diversity, biomass) and biofilm metrics (diatom quality, chlorophyll-a content and photosynthetic capacity). Aggregated toxic units based on Daphnia and algae bioassays provided a good indication of the pollution pattern of the Llobregat River basin. Relative contribution of pesticides and pharmaceuticals to total toxic load was variable and highly site dependent, the latter group tending to increase its contribution in urban areas. Contaminated sites' toxic load was typically dominated by

  20. Pollution of the marine environment

    SciTech Connect

    Malins, D.C.

    1980-01-01

    An interdisciplinary approach to identifying chemical pollution in the marine environment and assessing the effects of such pollution on living marine resources is described. Such a study requires knowing: what pollutants organisms are exposed to, which pollutants are accumulated; the fate of pollutants taken up by organisms, and biological changes caused by the pollutants. Analytical limitations of such studies are noted. Examples of specific interdisciplinary laboratory and field investigations are presented, for instance, the finding of liver tumors in flatfish that accumulated sediment-bound naphthalene.

  1. Multi-model study of chemical and physical controls on transport of anthropogenic and biomass burning pollution to the Arctic

    NASA Astrophysics Data System (ADS)

    Monks, S. A.; Arnold, S. R.; Emmons, L. K.; Law, K. S.; Turquety, S.; Duncan, B. N.; Flemming, J.; Huijnen, V.; Tilmes, S.; Langner, J.; Mao, J.; Long, Y.; Thomas, J. L.; Steenrod, S. D.; Raut, J. C.; Wilson, C.; Chipperfield, M. P.; Schlager, H.; Ancellet, G.

    2014-10-01

    model variability at the Barrow. Unlike transport, inter-model variability in OH similarly affects all regional tracers at Barrow. Comparisons of fixed lifetime and OH-loss idealised CO-like tracers throughout the Arctic troposphere show that OH differences are a much larger source of inter-model variability than transport differences. The concentration of OH in the models is found to be correlated with inter-model differences in H2O, suggesting it to be an important driver of differences in simulated concentrations of CO and OH at high latitudes in these simulations. Despite inter-model differences in transport and OH, the relative contributions from the different source regions (North America, Europe and Asia) and different source types (anthropogenic and biomass burning) are comparable across the models. Fire emissions from the boreal regions in 2008 contribute 33, 43 and 19% to the total Arctic CO-like tracer in spring, summer and autumn, respectively, highlighting the importance of boreal fire emissions in controlling pollutant burdens in the Arctic.

  2. Multi-model study of chemical and physical controls on transport of anthropogenic and biomass burning pollution to the Arctic

    NASA Astrophysics Data System (ADS)

    Monks, S. A.; Arnold, S. R.; Emmons, L. K.; Law, K. S.; Turquety, S.; Duncan, B. N.; Flemming, J.; Huijnen, V.; Tilmes, S.; Langner, J.; Mao, J.; Long, Y.; Thomas, J. L.; Steenrod, S. D.; Raut, J. C.; Wilson, C.; Chipperfield, M. P.; Diskin, G. S.; Weinheimer, A.; Schlager, H.; Ancellet, G.

    2015-03-01

    sources of model variability at Barrow. Unlike transport, inter-model variability in OH similarly affects all regional tracers at Barrow. Comparisons of fixed-lifetime and OH-loss idealised CO-like tracers throughout the Arctic troposphere show that OH differences are a much larger source of inter-model variability than transport differences. Model OH concentrations are correlated with H2O concentrations, suggesting water vapour concentrations are linked to differences in simulated concentrations of CO and OH at high latitudes in these simulations. Despite inter-model differences in transport and OH, the relative contributions from the different source regions (North America, Europe and Asia) and different source types (anthropogenic and biomass burning) are comparable across the models. Fire emissions from the boreal regions in 2008 contribute 33, 43 and 19% to the total Arctic CO-like tracer in spring, summer and autumn, respectively, highlighting the importance of boreal fire emissions in controlling pollutant burdens in the Arctic.

  3. Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine.

    PubMed

    McCormick, R L; Graboski, M S; Alleman, T L; Herring, A M; Tyson, K S

    2001-05-01

    Biodiesel is an oxygenated diesel fuel made from vegetable oils and animal fats by conversion of the triglyceride fats to esters via transesterification. In this study we examined biodiesels produced from a variety of real-world feedstocks as well as pure (technical grade) fatty acid methyl and ethyl esters for emissions performance in a heavy-duty truck engine. The objective was to understand the impact of biodiesel chemical structure, specifically fatty acid chain length and number of double bonds, on emissions of NOx and particulate matter (PM). A group of seven biodiesels produced from real-world feedstocks and 14 produced from pure fatty acids were tested in a heavy-duty truck engine using the U.S. heavy-duty federal test procedure (transient test). It was found that the molecular structure of biodiesel can have a substantial impact on emissions. The properties of density, cetane number, and iodine number were found to be highly correlated with one another. For neat biodiesels, PM emissions were essentially constant at about 0.07 g/bhp-h for all biodiesels as long as density was less than 0.89 g/cm3 or cetane number was greater than about 45. NOx emissions increased with increasing fuel density or decreasing fuel cetane number. Increasing the number of double bonds, quantified as iodine number, correlated with increasing emissions of NOx. Thus the increased NOx observed for some fuels cannot be explained by the NOx/PM tradeoff and is therefore not driven by thermal NO formation. For fully saturated fatty acid chains the NOx emission increased with decreasing chain length for tests using 18, 16, and 12 carbon chain molecules. Additionally, there was no significant difference in NOx or PM emissions for the methyl and ethyl esters of identical fatty acids.

  4. Impact of urban chemical pollution on water quality in small, rural and effluent-dominated Mediterranean streams and rivers.

    PubMed

    Mandaric, Ladislav; Mor, Jordi-René; Sabater, Sergi; Petrovic, Mira

    2017-09-19

    The impact and occurrence of wastewater (treated and untreated) derived pharmaceutically active compounds (PhACs) have been investigated in small, rural and effluent-dominated tributaries of the lower Ebro River located in the North-Eastern Spain (Catalonia). We have observed the predominant effect of stream flow and consequently dilution factor on the concentration levels of detected PhACs that combined with the absence of wastewater treatment plants (WWTP) resulted in 12 times higher concentrations in streams with direct discharge of untreated wastewater. Non-steroidal anti-inflammatory drugs (NSAIDs) were the most ubiquitous compounds, in terms of both individual concentration and frequency of detection. In the sites impacted by raw wastewater, acetaminophen and ibuprofen showed the highest concentrations among all analyzed PhACs, reaching concentrations up to 7.78μgL(-1) and 2.66μgL(-1), respectively. However, PhACs detected in the sites impacted by treated wastewater showed generally lower concentration levels and frequencies of detection. Also, effluent-dominated streams showed higher concentration levels of PhACs due to a generally lower stream flows and small dilution factors. However, concentration levels of detected PhACs were dependent on the hydraulic travel time and distance from the discharge point and related with the in-stream attenuation. As a result, this study highlights the combined impact of hydrological and chemical stressors on the water quality of the rural Mediterranean aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Chemical and toxicological evaluation of an emerging pollutant (enrofloxacin) by catalytic wet air oxidation and ozonation in aqueous solution.

    PubMed

    Li, Yan; Zhang, Feifang; Liang, Xinmiao; Yediler, Ayfer

    2013-01-01

    This study evaluates the degradation efficiency of enrofloxacin (ENR) by catalytic wet air oxidation (CWAO) and ozonation. Results obtained by CWAO experiments show that 99.5% degradation, 37.0% chemical oxidation demand (COD) removal and 51.0% total organic carbon (TOC) conversion were obtained when 100 mol% FeCl(3) and 25 mol% NaNO(2) at 150 °C under 0.5 MPa oxygen pressure after 120 min are used. The degradation products are identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC). The oxidation end products, F(-), NO(3)(-) and NH(4)(+) were determined by IC. The BOD(5)/COD ratio as a measure of the biodegradability of the parent compound increased from 0.01 to 0.12 after 120 min of reaction time, indicating an improved biodegradability of the parent compound. The inhibition of bioluminescence of the marine bacteria V. fischeri decreased from 43% to 12% demonstrating a loss in toxicity of ENR during CWAO. Ozonation of 0.2 mM ENR was carried out with an ozone concentration of 7.3 g m(-3) at pH 7. ENR decomposition with a degradation rate of 87% was obtained corresponding to the reaction time. Moderate changes in COD (18%) and TOC (17%) removal has been observed. The bioluminescence inhibition increased from 8% to 50%, due to the generation of toxic degradation products during ozonation. In comparison to the widely use of well developed method of ozonation CWAO exhibits better performance in terms of COD, TOC removals and generates less toxic products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Sewage pollution in urban stormwater runoff as evident from the widespread presence of multiple microbial and chemical source tracking markers.

    PubMed

    Sidhu, J P S; Ahmed, W; Gernjak, W; Aryal, R; McCarthy, D; Palmer, A; Kolotelo, P; Toze, S

    2013-10-01

    The concurrence of human sewage contamination in urban stormwater runoff (n=23) from six urban catchments across Australia was assessed by using both microbial source tracking (MST) and chemical source tracking (CST) markers. Out of 23 stormwater samples human adenovirus (HAv), human polyomavirus (HPv) and the sewage-associated markers; Methanobrevibacter smithii nifH and Bacteroides HF183 were detected in 91%, 56%, 43% and 96% of samples, respectively. Similarly, CST markers paracetamol (87%), salicylic acid (78%) acesulfame (96%) and caffeine (91%) were frequently detected. Twenty one samples (91%) were positive for six to eight sewage related MST and CST markers and remaining two samples were positive for five and four markers, respectively. A very good consensus (>91%) observed between the concurrence of the HF183, HAv, acesulfame and caffeine suggests good predictability of the presence of HAv in samples positive for one of the three markers. High prevalence of HAv (91%) also suggests that other enteric viruses may also be present in the stormwater samples which may pose significant health risks. This study underscores the benefits of employing a set of MST and CST markers which could include monitoring for HF183, adenovirus, caffeine and paracetamol to accurately detect human sewage contamination along with credible information on the presence of human enteric viruses, which could be used for more reliable public health risk assessments. Based on the results obtained in this study, it is recommended that some degree of treatment of captured stormwater would be required if it were to be used for non-potable purposes. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  7. Extreme haze pollution in Beijing during January 2013: chemical characteristics, formation mechanism and role of fog processing

    NASA Astrophysics Data System (ADS)

    Huang, K.; Zhuang, G.; Wang, Q.; Fu, J. S.; Lin, Y.; Liu, T.; Han, L.; Deng, C.

    2014-03-01

    Severe haze hovered over large areas of China in January 2013 right after the public release of PM2.5 data of major cities in China at the very first time. This historical severe haze emerged over the northern China with monthly average concentrations of PM2.5, SO2, and NO2 exceeding 225, 200, and 80 μg m-3, respectively. Surface aerosol mean concentration of Beijing in January 2013 reached record high (only slightly lower than 2006) compared to historical data from 2003-2012, but with the largest daily fluctuation. Anomalous meteorological conditions in 2013 compared to the mean climatology from 2007-2012 were especially favorable for the formation of haze, such as higher humidity, lower temperature, lower PBL height, lower wind speed, and the high frequency of fog occurrences. The field campaign in Beijing showed an extremely high PM2.5 average concentration of 299.2 ± 79.1μg m-3 with extremely low visibility of 0.92 ± 0.82 km during an episode of high relative humidity with fog events. High AOD (Aerosol Optical Depth) was observed during fog days but with relatively low Angstrom exponent (< 1.0), suggesting the modification of fog processing on the particle size. Major aerosol chemical species, such as SO42-, NO3-, NH4+, Cl-, K+, and C2O42- presented an explicit exponential growth relationship with relative humidity, suggesting the significant impact of aerosol hygroscopicity on the visibility impairment. SO42- increased ∼5 folds while NO3-, NH4+, and C2O42- increased ∼3 folds in the fog days compared to the non-fog days. Aerosol in fog days was much more acidic than that in non-fog days. The in situ aerosol pH ranged from -0.78 to 0.14 in fog days based on the E-AIM model simulation. Bisulfate (HSO42-) accounted for 52% of the total sulfate and free hydrogen ion (H+Aq) accounted for 27% of the total acids in average. Enhanced coal combustion during the winter heating season along with traffic and industrial emissions were recognized to be the major

  8. Effects of chemical oxygen demand (COD)/N ratios on pollutants removal in the subsurface wastewater infiltration systems with/without intermittent aeration.

    PubMed

    Song, Siyu; Pan, Jing; Wu, Shiwei; Guo, Yijing; Yu, Jingxiao; Shan, Qingchi

    2016-01-01

    The matrix oxidation reduction potential level, organic pollutants and nitrogen removal performances of eight subsurface wastewater infiltration systems (SWISs) (four with intermittent aeration, four without intermittent aeration) fed with influent chemical oxygen demand (COD)/N ratio of 3, 6, 12 and 18 were investigated. Nitrification of non-aerated SWISs was poor due to oxygen deficiency while higher COD/N ratios further led to lower COD and nitrogen removal rate. Intermittent aeration achieved almost complete nitrification, which successfully created aerobic conditions in the depth of 50 cm and did not change anoxic or anaerobic conditions in the depth of 80 and 110 cm. The sufficient carbon source in high COD/N ratio influent greatly promoted denitrification in SWISs with intermittent aeration. High average removal rates of COD (95.68%), ammonia nitrogen (NH4(+)-N) (99.32%) and total nitrogen (TN) (89.65%) were obtained with influent COD/N ratio of 12 in aerated SWISs. The results suggest that intermittent aeration was a reliable option to achieve high nitrogen removal in SWISs, especially with high COD/N ratio wastewater.

  9. Field assessment of the mid winter mass kills of trophic fishes at Mariotteya stream, Egypt: chemical and biological pollution synergistic model.

    PubMed

    Eissa, A E; Tharwat, N A; Zaki, M M

    2013-01-01

    Pathogenic Candida albicans was isolated from water and fish samples collected during an emergent event of mass mortalities among the juvenile Nile tilapia (Oreochromis niloticus), Sharp toothed catfish (Clarias gariepinus) along the stream of Mariotteya drainage. Investigations indicated that fish mortalities were confined to the area of Shubramant and Aboul Noumros (North to Sakara 7 drainage). C. albicans was isolated from the lesions associated with multiple skin ulcers in both Nile tilapia juveniles and Sharp toothed catfish. Assessment of the field and laboratory data has indicated that Mariotteya environmental disaster was a multifactorial problem. The fish mass kills were initially flared up through the dumping of the improperly treated nasty organic and inorganic chemicals from Elhawamdia sugar factory and municipal sewage. The physical stagnation of the stream, high levels of ammonia, phenol and polycyclic aromatic hydrocarbons (PAHs) and low levels of dissolved oxygen (DO) were all incriminated as the initial stimulus behind biological invasion of pathogenic bacteria (Pseudomonas fluorescence) and yeast (C. albicans). Pathologically, fishes were dying from both respiratory and osmoregulatory failure induced by the severe damage of both gills and skin. It has been implied that such environmental pollutants have direct damaging effects on gills, skin and fins with consequent suppression of the skin's natural innate components. The adversely confronted immunological barriers were further exacerbated by the possible synergistic interactions of P. fluorescence dermotropic toxins followed by the secondary invasion of the pathogenic C. albicans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Canadian National Air Pollution Surveillance (NAPS) PM 2.5 speciation program: Methodology and PM 2.5 chemical composition for the years 2003-2008

    NASA Astrophysics Data System (ADS)

    Dabek-Zlotorzynska, Ewa; Dann, Tom F.; Kalyani Martinelango, P.; Celo, Valbona; Brook, Jeffrey R.; Mathieu, David; Ding, Luyi; Austin, Claire C.

    2011-01-01

    The Canadian National Air Pollution Surveillance (NAPS) network, monitoring criteria gases (CO, O 3, NO x, and SO 2), PM 2.5, PM 10, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and particle chemical mass and composition, has been in operation for over 40 years. Since 1984 both fine (<2.5 μm - PM 2.5) and coarse (2.5-10 μm - PM 10-2.5) particle mass measurements have been made at NAPS network sites using dichotomous samplers. In January 2003, the NAPS PM 2.5 speciation program was initiated with the purpose of measuring all major components of PM 2.5, including ammonium nitrate, ammonium sulphate, metals, and organic and elemental carbon. The present paper describes the improved sampling (e.g. Teflon/Nylon filter packs for nitrate loss, and an active blank for each and every sample in the determination of positive organic carbon artifacts), and analytical methods used in the Canadian NAPS PM 2.5 speciation program. A detailed dataset was then analyzed for seasonal and geographical variations in the major components of 24-h time integrated PM 2.5 samples collected at eight urban and three rural measurement sites across Canada (2003-2008). Chemical mass reconstruction was used for assessment of the adequacy of selected sampling and chemical parameters as well as for the determination of the relative contributions of different compound classes to PM 2.5 mass. The highest frequency of PM 2.5 episodes exceeding 30 μg m -3 were observed in Ontario and southern Quebec. In general, the most important contributions to PM 2.5 mass were secondary aerosol sulphate and nitrate (38-63% for western sites and 3-44% for eastern sites), depending on the season. Organic matter (OM) was found to be the second most important component (21-45%), while particle-bound water (PBW) accounted for 6-12% of the PM 2.5 mass. Golden B.C. was an exception, exhibiting high levels of OM (60-70%) and low levels of PBW (˜3%).

  11. Pollution Probe.

    ERIC Educational Resources Information Center

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  12. Pollution Probe.

    ERIC Educational Resources Information Center

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  13. Use of criteria pollutants, active and passive mercury sampling, and receptor modeling to understand the chemical forms of gaseous oxidized mercury in Florida

    NASA Astrophysics Data System (ADS)

    Huang, J.; Miller, M. B.; Edgerton, E.; Gustin, M. S.

    2015-04-01

    The highest mercury (Hg) wet deposition in the United States (US) occurs along the Gulf of Mexico, and in the southern and central Mississippi River Valley. Gaseous oxidized Hg (GOM) is thought to be a major contributor due to its high water solubility and reactivity. Therefore, it is critical to understand the concentrations, potential for wet and dry deposition, and GOM compounds present in the air. Concentrations and dry deposition fluxes of GOM were measured at Outlying Landing Field (OLF), Florida, using a Tekran® 2537/1130/1135, and active and passive samplers using cation-exchange and nylon membranes. Relationships with Tekran® derived data must be interpreted with caution, since GOM concentrations can be biased low depending on the chemical compounds in air, and interferences with water vapor and ozone. Only gaseous elemental Hg and GOM are discussed here since the PBM measurement uncertainties are higher. Criteria air pollutants were concurrently measured and Tekran® data were assessed along with these using Principal Component Analysis to identify associations among air pollutants. Based on the diel pattern, high GOM concentrations at this site were associated with fossil fuel combustion and gas phase oxidation during the day, and gas phase oxidation and transport in the free troposphere. The ratio of GEM/CO at OLF (0.008 ng m-3 ppbv-1) was much higher than the numbers reported for the Western United States and central New York for domestic emissions or biomass burning (0.001 ng m-3 ppbv-1), which we suggest is indicative of a marine boundary layer source. Results from nylon membranes with thermal desorption analyses suggest five potential GOM compounds exist in this area, including HgBr2, HgO, Hg(NO3)2, HgSO4, and an unknown compound. This indicates that the site is influenced by different gaseous phase reactions and sources. A~high GOM event related to high CO but average SO2 suggests the air parcels moved from the free troposphere and

  14. Nurses join pollution fight.

    PubMed

    Sadler, Catharine

    2016-08-10

    Most of us are aware of outdoor air pollution: spend time in any traffic-clogged street, and you can taste the chemicals. Even spring days in the countryside can be spoiled by ozone haze. But a report published earlier this year by the Royal College of Physicians (RCP) and the Royal College of Paediatrics and Child Health (RCPCH) revealed that air pollution is much more than an inconvenience - it is a major health risk.

  15. Marine pollution data services

    SciTech Connect

    Abram, R.J.

    1980-09-01

    The Nat'l Oceanographic Data Center of NOAA is responsible for building and maintaining a global data base on the physical, chemical, and biological properties of world oceans. Data relevant to pollution studies, primarily those associated with oil spills, are included. Inventory and retrieval systems utilized are described. International programs provide extensive data for this marine pollution information service. (1 diagram, 1 map, 2 photos)

  16. Chemical and isotopical characterisation of atmospheric pollution from urban and rural environments of the Rhine Valley (PCBs, trace elements and Sr-, Nd- and Pb- isotope determinations)

    NASA Astrophysics Data System (ADS)

    Guéguen, F.; Stille, P.; Millet, M.; Dietze, V.; Gieré, R.

    2010-05-01

    Atmosheric samples (gas and particulate matter (PM)) have been collected in the urban environment of the cities of Strasbourg and Kehl and in the rural environment of the Vosges mountains. For sampling of gas phase pollutants and particles two different passive sampler devices have been applied (PAS and Sigma-2, respectively). The PAS has been used for gas phase Polychlorinated Biphenyls (PCBs) sampling and is based on the passive adsorption of gas phase pollutants onto XAD-2 resin. The Sigma-2 sampler is based on the sedimentation principle (Stoke's law), collects particles in the size range 2.5-100 μm and allows the calculation of ambient air concentration. The sampler is mainly used for routine air quality measurements in German health and recreation resorts and in this field study the first time for collection of samples for subsequent trace element and isotope analysis. The collection time for the Sigma-2 and PAS are four and two weeks, respectively. Major and trace elements have been analyzed by ICP-MS and the Sr, Nd and Pb isotope ratios by a sector field MC-ICP-MS (Neptune) while PCBs were ASE extracted and analysed by GC-ECD. The aerosol data are compared with those from tree barks which have previously been used successfully as biomonitors of atmospheric pollution (Lahd Geagea et al. 2008)1. The outer 1 mm thick part of the bark has been analyzed corresponding to about 2 to 8 years of accumulation. Some of the trace elements (Cr, Ni and Mo) of the aerosol samples are strongly (up to 1000 times) enriched compared to average 'upper continental crust (UCC)'. Normalization to a « natural » sample with an atmospheric baseline composition allows to identify industrial contributions: transition metals (Cr, Mn, Fe, Co, Ni, Zn, Mo, Cd), Ba and Pb appear to be important elements in steel plant and incinerator (chemical waste) emissions. Similarly enrichment in light rare earth elements (La, Pr, Nd) is observable. The enrichments increase with decreasing distance

  17. Coupling between Chemical and Meteorological Processes under Persistent Cold-Air Pool Conditions: Evolution of Wintertime PM2.5 Pollution Events and N2O5 Observations in Utah's Salt Lake Valley.

    PubMed

    Baasandorj, Munkhbayar; Hoch, Sebastian W; Bares, Ryan; Lin, John C; Brown, Steven S; Millet, Dylan B; Martin, Randal; Kelly, Kerry; Zarzana, Kyle J; Whiteman, C David; Dube, William P; Tonnesen, Gail; Jaramillo, Isabel Cristina; Sohl, John

    2017-06-06

    The Salt Lake Valley experiences severe fine particulate matter pollution episodes in winter during persistent cold-air pools (PCAPs). We employ measurements throughout an entire winter from different elevations to examine the chemical and dynamical processes driving these episodes. Whereas primary pollutants such as NOx and CO were enhanced twofold during PCAPs, O3 concentrations were approximately threefold lower. Atmospheric composition varies strongly with altitude within a PCAP at night with lower NOx and higher oxidants (O3) and oxidized reactive nitrogen (N2O5) aloft. We present observations of N2O5 during PCAPs that provide evidence for its role in cold-pool nitrate formation. Our observations suggest that nighttime and early morning chemistry in the upper levels of a PCAP plays an important role in aerosol nitrate formation. Subsequent daytime mixing enhances surface PM2.5 by dispersing the aerosol throughout the PCAP. As pollutants accumulate and deplete oxidants, nitrate chemistry becomes less active during the later stages of the pollution episodes. This leads to distinct stages of PM2.5 pollution episodes, starting with a period of PM2.5 buildup and followed by a period with plateauing concentrations. We discuss the implications of these findings for mitigation strategies.

  18. Dissolved Organic In Natural and Polluted Waters: Methodology and Results of Running Control of Chemical Oxygen Demand (cod) For The Inland and Marine Aquatic System

    NASA Astrophysics Data System (ADS)

    Melentyev, K. V.; Worontsov, A. M.

    Current control of dissolved organic matter in natural and waste waters is the definition traditionally of chemical oxygen demand (COD) -- one of the basic parameters of quality of water. According to the International Standard (ISO 6060), it requires not less than one hour, while in many cases the operative information about amount of dissolved organic matter in aquatic environments have importance for prevention of an emergency. The standard method is applicable to waters with meaning of COD above 30 mg O2/l and, as the chloride ion prevents, it could be difficult for assessment of organic matter in sea water. Besides it is based on dichromate oxidation of the sum of organic substances in strong acid conditions at the presence of silver and mercury, that resulted in formation toxic pollutants. Till now attempts of automation of the COD definition in aquatic system were limited, basically, to duplication of the technology submitted the above standard (automatic COD analyzers "SERES Co."-- France, or "Tsvet Co." - Russia). The system of ozone-chemiluminescence automatic control of organic matter in water (CS COD) is offered and designed. Its based on the ozone oxidation of these substances in flowing water system and measurement arising from luminescent effects. CS COD works in real time. An instrument uses for reaction the atmospheric air, doesn't require fill of reagents and doesn't make new toxic pollutants. The system was tested in laboratory, and biochemical control of organic matter in water samples gathered from the river Neva and other polluted inland water areas and basins in St. Petersburg region was fulfilled (distilled water was used as "zero" media). The results of systematization of these measurements are presented. The new special ozone generator and flowing reactor for real-time running control of different waters in natural conditions were developed, and several series of large - scale field experiments onboard research ship were provided

  19. How EPA Assesses Chemical Safety

    EPA Pesticide Factsheets

    EPA's existing chemicals programs address pollution prevention, risk assessment, hazard and exposure assessment and/or characterization, and risk management for chemicals substances in commercial use.

  20. Current Chemical Risk Reduction Activities

    EPA Pesticide Factsheets

    EPA's existing chemicals programs address pollution prevention, risk assessment, hazard and exposure assessment and/or characterization, and risk management for chemicals substances in commercial use.

  1. Temporal trends of persistent organic pollutants in dated sediment cores: Chemical fingerprinting of the anthropogenic impacts in the Seine River basin, Paris.

    PubMed

    Lorgeoux, C; Moilleron, R; Gasperi, J; Ayrault, S; Bonté, P; Lefèvre, I; Tassin, B

    2016-01-15

    Persistent organic pollutants (POPs) were extensively produced and used throughout the last century. In the early 1980s, a rising concern on the environmental impact of these chemicals has led to the establishment of regulations and changes of use including bans. Long term monitoring of the environmental impacts of these emissions and regulations is a challenge because regular monitoring was not mandatory at the beginning of the first emissions. Moreover, the analytical methods have been strongly improved over the decades. To overcome the lack of monitoring and accurate data, sediment cores are powerful tools to construct contamination records. In this study, a high resolution record was constructed for four POPs families (13 polycyclic aromatic hydrocarbons (PAHs), 15 polychlorinated biphenyls (PCBs), 3 alkylphenols (APs) and 8 polybromodiphenyl ethers (PBDEs)) to establish their historical trends in a long-term urbanized and industrialized environment: the Seine River basin, France. These specific families were selected because they had different sources, uses and histories. The results showed concentrations up to 90 mg/kg for ∑PAHs, 2.3mg/kg for ∑PCB, 1.2mg/kg for ∑APs and 0.06 mg/kg for ∑PBDE. The vertical distribution profiles were different from one family to another and presented a good correlation with uses (e.g. transition from coal to natural gas for PAHs), and regulation implementation (e.g., AP ban after "OSPAR Convention" in 1992). The study of compounds distribution provided original information on sources, e.g. temporal variations in PAH uses. This study demonstrates the usefulness and accuracy of sedimentary archives in floodplain to assess the fate of POPs through time in continental hydrosystems. These first results give a comprehensive overview of the contamination in the Seine River basin downstream of Paris Megacity. They were in good agreement with previous studies dedicated to European areas and highlighted specificities of this basin

  2. Vitellogenin gene expression in the intertidal blenny Lipophrys pholis: a new sentinel species for estrogenic chemical pollution monitoring in the European Atlantic coast?

    PubMed

    Ferreira, F; Santos, M M; Castro, L Filipe C; Reis-Henriques, M A; Lima, D; Vieira, M N; Monteiro, N M

    2009-01-01

    The presence of estrogenic chemicals (ECs) in the aquatic environment is a growing problem. While most attention was initially given to fresh water and estuarine ecosystems, it is now evident that coastal marine areas are also vulnerable to these pollutants. The use of vitellogenin induction in male fish, a specific biomarker of EC exposure, has been the most widely applied methodology. However, in some occasions, the high mobility and migratory behaviour of common sentinel fish species makes data interpretation difficult. Hence, there is the need to validate new sentinel marine fish species which should display, among other features, a strong homing behaviour. The shanny, Lipophrys pholis, is an intertidal fish that combines many of the required characteristics for a sentinel species: abundance and easy of catch, wide geographical distribution and restricted home range. Thus, in order to evaluate, in the field, the species sensitivity to ECs, L. pholis males were collected at two sites reflecting different degrees of anthropogenic contamination. The vitellogenin II gene (VTGII) was isolated and its liver expression evaluated by RT-PCR in the field samples. A significant induction of gene expression was observed in the specimens collected in the urban area, if compared to the reference site, which suggests exposure to ECs. Moreover, a 21-days laboratory exposure to environmental relevant concentrations of ethinylestradiol (EE2) was also performed. A significant induction of L. pholis VTGII gene in EE2 exposed males was observed suggesting similar sensitivity to that of other marine/estuarine fishes. Even though further validation is currently in progress, the available data indicates that L. pholis is responsive to ECs, thus favouring its future integration in monitoring programmes designed to evaluate the presence of ECs in European marine ecosystems.

  3. Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe.

    PubMed

    Happo, Mikko S; Hirvonen, Maija-Riitta; Halinen, Arja I; Jalava, Pasi I; Pennanen, Arto S; Sillanpaa, Markus; Hillamo, Risto; Salonen, Raimo O

    2008-11-01

    Inflammation is regarded as an important mechanism in mortality and morbidity associated with exposures of cardiorespiratory patients to urban air particulate matter. We investigated the association of the chemical composition and sources of urban air fine (PM(2.5-0.2)) and coarse (PM(10-2.5)) particulate samples with the inflammatory activity in the mouse lung. The particulate samples were collected during selected seasons in six European cities using a high-volume cascade impactor. Healthy C57BL/6J mice were intratracheally instilled with a single dose (10 mg/kg) of the particulate samples. At 4, 12, and 24 h after the exposure, the lungs were lavaged and the bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation and tissue damage: cell number, total protein, and cytokines (tumor necrosis factor [TNF]-alpha, interleukin [IL]-6, and KC). Dicarboxylic acids and transition metals, especially Ni and V, in PM(2.5-0.2) correlated positively and some secondary inorganic ions (NO3(-), NH4(+)) negatively with the inflammatory activity. Total organic matter and SO4(2-) had no consistent correlations. In addition, the soil-derived constituents (Ca2+, Al, Fe, Si) showed positive correlations with the PM(2.5-0.2)-induced inflammatory activity, but their role in PM(10-2.5) remained obscure, possibly due to largely undefined biogenic material. Markers of poor biomass and coal combustion, i.e., monosaccharide anhydrides and As, were associated with elevated PAH contents in PM(2.5-0.2) and a consistent immunosuppressive effect. Overall, our results support epidemiological findings that the local sources of incomplete combustion and resuspended road dust are important in urban air particulate pollution-related health effects.

  4. Selecting the best AOP for isoxazolyl penicillins degradation as a function of water characteristics: Effects of pH, chemical nature of additives and pollutant concentration.

    PubMed

    Villegas-Guzman, Paola; Silva-Agredo, Javier; Florez, Oscar; Giraldo-Aguirre, Ana L; Pulgarin, Cesar; Torres-Palma, Ricardo A

    2017-04-01

    To provide new insights toward the selection of the most suitable AOP for isoxazolyl penicillins elimination, the degradation of dicloxacillin, a isoxazolyl penicillin model, was studied using different advanced oxidation processes (AOPs): ultrasound (US), photo-Fenton (UV/H2O2/Fe(2+)) and TiO2 photocatalysis (UV/TiO2). Although all processes achieved total removal of the antibiotic and antimicrobial activity, and increased the biodegradability level of the solutions, significant differences concerning the mineralization extend, the pH of the solution, the pollutant concentration and the chemical nature of additives were found. UV/TiO2 reached almost complete mineralization; while ∼10% mineralization was obtained for UV/H2O2/Fe(2+) and practically zero for US. Effect of initial pH, mineral natural water and the presence of organic (glucose, 2-propanol and oxalic acid) were then investigated. UV/H2O2/Fe(2+) and US processes were improved in acidic media, while natural pH favored UV/TiO2 system. According to both the nature of the added organic compound and the process, inhibition, no effect or enhancement of the degradation rate was observed. The degradation in natural mineral water showed contrasting results according to the antibiotic concentration: US process was enhanced at low concentration of dicloxacillin followed by detrimental effects at high substrate concentrations. A contrary effect was observed during photo-Fenton, while UV/TiO2 was inhibited in all of cases. Finally, a schema illustrating the enhancement or inhibiting effects of water matrix is proposed as a tool for selecting the best process for isoxazolyl penicillins degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ecological restoration of a copper polluted vineyard: Long-term impact of farmland abandonment on soil bio-chemical properties and microbial communities.

    PubMed

    Cavani, Luciano; Manici, Luisa M; Caputo, Francesco; Peruzzi, Elisabetta; Ciavatta, Claudio

    2016-11-01

    This study aimed at investigating the degree of interference of high soil copper (Cu) contamination when an old vineyard is converted into a protected area. This study was performed within an intensive agricultural system; it was organized into a two-factorial nested design to analyze the impact of management (conventional vs re-naturalized orchard) and position within each orchard (tree-rows and strips). Chemical and biochemical properties along with bacterial and fungal communities, evaluated with PCR-DGGE starting from total soil DNA, were analyzed. Total Cu was localized in tree rows in the old vineyard at 1000 mg kg(-1) of soil, whereas it did not exceed 80 mg kg(-1) soil in the other treatments. Total organic carbon and all biochemical properties significantly improved in re-naturalized compared to conventionally cultivated site, while no significant differences were observed between tree row and strip. Moreover, a higher extractable carbon-extractable nitrogen (Cext-to-Next) ratio in the re-naturalized (19.3) site than in the conventionally managed site (10.2) indicated a shift of soil system from C-limited to N-limited, confirming a successful ecological restoration. Deep improvement of soil biochemical properties exceeded the negative impact of Cu contamination. A shift of bacterial community composition as well as increased bacterial diversity in Cu contaminated treatment indicated a bacterial response to Cu stress; to the contrary, soil fungi were less susceptible than bacteria, though an overall reduction of fungal DNA was detected. Findings suggest that ecological restoration of highly polluted agricultural soils leads to overcoming the reduction of soil functionalities linked to Cu contamination and opens interesting perspectives for mitigating Cu stress in agricultural soils with strategies based on conservative agriculture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Chromium (VI) biotransformation by beta- and gamma-Proteobacteria from natural polluted environments: a combined biological and chemical treatment for industrial wastes.

    PubMed

    Garavaglia, Luciana; Cerdeira, Silvia B; Vullo, Diana L

    2010-03-15

    The high solubility of Cr(VI) in aqueous systems, together with carcinogenic and mutagenic effects on living organisms, make industrial effluents receive specific treatments for Cr(VI) elimination. Biotreatments, based on biotransformation of Cr(VI) to Cr(III) which is immobilized as Cr(OH)(3), are the most effective methods for the removal of Cr(VI) concentrations below 2mM. The aim of our study is the application of pure or mixed bacterial cultures for Cr(VI) biotransformation followed by chemical flocculation of Cr(OH)(3) as a combined treatment for industrial wastes. Pseudomonas veronii 2E, Delftia acidovorans AR, Klebsiella oxytoca P2 and Klebsiella ornithinolytica 1P, isolated from polluted environments showed a decrease from 38.83 to 74.32%, in 0.05 mM of initial Cr(VI). As revealed DGGE experiments, P. veronii 2E and K. ornithinolytica 1P could develop together in cocultures and in these conditions a 72.88% of Cr(VI) present was removed. Although the pH of the cultures was 8, no Cr(OH)(3) sediment was detected. The results of total chromium quantification support this observation. The precipitation of Cr(III) was induced using different commercial flocculants. Best yields were obtained using Na(2)CO(3) 0.1M, which allowed the flocculation of almost 100% of Cr(III) present. This combined treatment would be an economical and ecological way to remove Cr(VI). (c) 2009 Elsevier B.V. All rights reserved.

  7. Examining the temperature dependence of ethanol (E85) versus gasoline emissions on air pollution with a largely-explicit chemical mechanism

    NASA Astrophysics Data System (ADS)

    Ginnebaugh, Diana L.; Liang, Jinyou; Jacobson, Mark Z.

    2010-03-01

    The increased use of ethanol in transportation fuels warrants an investigation of its consequences. An important component of such an investigation is the temperature dependence of ethanol and gasoline exhaust chemistry. We use the Master Chemical Mechanism (MCM, version 3.1, LEEDS University) with the SMVGEAR II chemical ordinary differential solver to provide the speed necessary to simulate complex chemistry to examine such effects. The MCM has over 13,500 organic reactions and 4600 species. SMVGEAR II is a sparse-matrix Gear solver that reduces the computation time significantly while maintaining any specified accuracy. Although we use a box model for this study, we determine and demonstrate in a separate study that the speed of the MCM with SMVGEAR II allows the MCM to be modeled in 3-dimensions. We also verified the accuracy of the model in comparison with smog chamber data. We then use the model with species-resolved tailpipe emissions data for E85 (15% gasoline, 85% ethanol fuel blend) and gasoline vehicles to compare the impact of each on nitrogen oxides, organic gases, and ozone as a function of ambient temperature and background concentrations, using Los Angeles in 2020 as a base case. We use two different emissions sets - one is a compilation of exhaust and evaporative data taken near 24 °C and the other from exhaust data taken at -7 °C - to determine how atmospheric chemistry and emissions are affected by temperature. We include diurnal effects by examining two day scenarios. We find that, accounting for chemistry and dilution alone, the average ozone concentrations through the range of temperatures tested are higher with E85 than with gasoline by ˜7 part per billion volume (ppbv) at higher temperatures (summer conditions) to ˜39 ppbv at low temperatures and low sunlight (winter conditions) for an area with a high nitrogen oxide (NOx) to non-methane organic gas (NMOG) ratio. The results suggest that E85's effect on health through ozone formation

  8. Vertical profiles of pollutant gases measured with passive DOAS in the Po Valley devoted to satellite and chemical model data comparison

    NASA Astrophysics Data System (ADS)

    Masieri, S.; Petritoli, A.; Kostadinov, I.; Bortoli, D.; Premuda, M.; Ravegnani, F.; Giovanelli, G.

    2009-04-01

    In the frame of QUITSAT Italian pilot project (Air QUality with InTegration of ground-based and SAtellite measurement and chemical Transport model), two field campaigns were made in S.Pietro Capofiume (44.65˚ N; 11.37˚ E) and Bologna (44.52˚ N; 11.34˚ E) to provide concentration of ground particular matter and gaseous pollutants, namely nitrogen dioxide (NO2), formaldehyde (HCHO), sulphur dioxide (SO2) and ozone (O3). The aim of the campaigns was to provide experimental data need for tests and improvement of algorithms developed for integration of satellite and ground-based data together with chemical transport model data in order to retrieve air quality in the QUITSAT domain. Ground based measurements were carried out within a network of in-situ analyser in the Po Valley and with a scanning multi-axis DOAS (Differential Optical Absorption Spectroscopy) spectrometer system developed at ISAC-CNR institute [1], in collaboration with Geophysics Center of Evora [2]. TropoGAS (TROPOspheric Gas Analyser Spectrometer) spectrometer permits active and passive DOAS measurements at the chosen angles: α =1,2,3,6,10,15,20,90 and another measurement was taken along the sun direction. A Xenon lamp installed at 1km of distance from spectrometer was used as a reference concentration measured in the same place, and these values shows good agreement with in-situ analyser concentration. Gas spectral absorption was evaluated with DOAS [3] algorithms from 430 to 500 nm in two different windows: first from 436 to 460 nm for NO2 retrieval; second from 460 to 500 nm for O4 (best line at 477 nm) and NO2. Air Mass Factor (AMF) was calculated using PROMSAR (PROcessing of Multi-Scattered Atmospheric Radiation) model [4], that is a backward Montecarlo Radiative Transfer Model (RTM). An apposite inversion method [5][6], was applied to retrieve profiles of the target gases from their Slant Column Densities (SCD), using advanced approaches involving measurement of the atmospheric O4

  9. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  10. Air Pollution.

    ERIC Educational Resources Information Center

    Barker, K.; And Others

    Pollution of the general environment, which exposes an entire population group for an indeterminate period of time, certainly constitutes a problem in public health. Serious aid pollution episodes have resulted in increased mortality and a possible relationship between chronic exposure to a polluted atmosphere and certain diseases has been…

  11. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  12. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  13. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  14. Economic Analysis of Costs Incurred from Chemical Exposures in the Workplace Resulting in Non-Carcinogenic Responses as Additional Justification for Pollution Prevention Projects

    DTIC Science & Technology

    1993-08-26

    The Air Force Chief of Staff, General Merrill McPeak, and the Secretary of the Air Force, Mr. Donald Rice , further emphasized pollution prevention in...studies include in vivo animal bioassays and invitro and tissue culture tests. These studies involve the actual dosing of animals or cultures to determine...and Donald B. Rice . Air Force Pollution Prevention Program. Memorandum to all Commanders. HQ USAF, Washington D.C: 13 Nov 1991. 50. Meyer, Gary. OEHL

  15. Silica- and sulfate-bearing rock coatings in smelter areas: Products of chemical weathering and atmospheric pollution I. Formation and mineralogical composition

    NASA Astrophysics Data System (ADS)

    Mantha, Nathalie M.; Schindler, Michael; Murayama, Mitsuhiro; Hochella, Michael F.

    2012-05-01

    Black rock-coatings occur in proximity to smelters and roast yards of the Greater Sudbury area, Ontario, Canada and contain information about the past interactions between surface minerals, and gaseous and particulate atmospheric components, many of which were pollutants. Rock-coatings were collected from various locations within the Sudbury area and are characterized with scanning electron microscopy, transmission electron microscopy, X-ray diffraction, electron microprobe analysis, infrared spectroscopy and X-ray photoelectron spectroscopy. Acidic fumigations and rain, the result of vast quantities of SO2 released from smelting, increased the chemical weathering rate of exposed rocks in the Sudbury area. Non-stoichiometric dissolution of the silicate minerals under acidic conditions resulted in the accumulation of silicic acid and the subsequent formation of a silica-gel type coating. The silica gel transformed overtime into amorphous silica, opal (opal C and opal-CT) and cristobalite. Dissolution of the underlying rock and also of metal-bearing particles by sulfuric acid resulted in the in situ formation of metal-sulfate-rich layers on the interfaces between the atmosphere and the silica-rich coating (atmosphere-coating interface, ACI) and between the silica-rich coating and the underlying rock (rock-coating interface, RCI). These metal-sulfate-rich layers contain nanometer aggregates of Fe-Cu-sulfate-hydroxide, goldichite, mereiterite, guildite, butlerite and antlerite. The silica-rich matrix also contains a mix of detrital grains from adjacent rocks and soils (feldspar, quartz, hematite, chlorite, montmorillonite) and non-dissolved smelter-derived nano- to micro-size particulates (metal-silicates, metal-oxides, C-spheres). The apparent disequilibrium between the embedded particles and the Fe-Cu-sulfates suggests that trapped nanoparticles were encapsulated into pores which prevented their equilibration with acidic metal-sulfate-bearing fluids. An XPS depth

  16. PHARMACEUTICALS AS UBIQUITOUS POLLUTANTS ...

    EPA Pesticide Factsheets

    Those chemical pollutants that are regulated under various international, federal, and state programs represent but a small fraction of the universe of chemicals that occur in the environment as a result of both natural processes and human influence. Although this galaxy of targeted chemicals might be minuscule compared with the universe of both known and yet-to-be identified chemicals, an implicit assumption is that these selective lists of chemicals are responsible for the most significant share of risk with respect to environmental or economic impairment or to human health. Pharmaceuticals and personal care products (PPCPs) comprise a particularly large and diverse array of unregulated pollutants that occur in the environment from the combined activities and actions of multitudes of individuals as well as from veterinary and agricultural use. Although the concentration of any individual PPCP rarely ever exceeds the sub-ppm level (if present in drinking water, concentrations of individual PPCPs are generally less than the ppt-ppb level), evidence is accumulating that these trace-Ievel pollutants are ubiquitous, they can have a continuous presence regardless of environmental half-lives ( e.g., where sanitary wastewaters enter the environment), and the numbers of distinct and varied chemical entities could be extremely large (given that thousands are in commercial use). The research focused on in the subtasks is the development and application of state-of the-ar

  17. Water Pollution: Monitoring the Source.

    ERIC Educational Resources Information Center

    Wilkes, James W.

    1980-01-01

    Described is an advanced biology class project involving study of the effects of organic pollution on an aquatic ecosystem from an sewage treatment plant overflow to evaluate the chemical quality and biological activity of the river water. (DS)

  18. Water Pollution: Monitoring the Source.

    ERIC Educational Resources Information Center

    Wilkes, James W.

    1980-01-01

    Described is an advanced biology class project involving study of the effects of organic pollution on an aquatic ecosystem from an sewage treatment plant overflow to evaluate the chemical quality and biological activity of the river water. (DS)

  19. Groundwater pollution microbiology

    SciTech Connect

    Bitton, G.; Gerba, C.P.

    1984-01-01

    This book provides a survey of available information on groundwater pollution microbiology. It is useful as a starting point for students and professionals investigating this topic. Subjects discussed include bacteria and virus movement through soils, carcinogenicity of some organic chemicals detected in groundwater, sampling techniques, and land treatment systems. Include references to the journal literature and a subject index.

  20. Chemistry for Pollution Control.

    ERIC Educational Resources Information Center

    Everson, Larry

    This booklet presents some methods of quantitative chemical analysis currently used in the field of fresh water pollution control. Only those tests that may be performed with little or no special reagents or pieces of equipment are listed. The booklet addresses the following determinations: (1) acidity; (2) alkalinity; (3) chloride; (4) hardness;…

  1. Chemistry for Pollution Control.

    ERIC Educational Resources Information Center

    Everson, Larry

    This booklet presents some methods of quantitative chemical analysis currently used in the field of fresh water pollution control. Only those tests that may be performed with little or no special reagents or pieces of equipment are listed. The booklet addresses the following determinations: (1) acidity; (2) alkalinity; (3) chloride; (4) hardness;…

  2. Aircraft borne combined measurements of the Fukushima radionuclide Xe-133 and fossil fuel combustion generated pollutants in the TIL - Implications for Cyclone induced lift and TIL physical-chemical processes

    NASA Astrophysics Data System (ADS)

    Arnold, Frank; Schlager, Hans; Simgen, Hardy; Aufmhoff, Heinfried; Baumann, Robert; Lindemann, Sigfried; Rauch, Ludwig; Kaether, Frank; Pirjolla, Liisa; Schumann, Ulrich

    2013-04-01

    The radionuclide Xe-133, released by the March 2011 nuclear disaster at Fukushima/Daiichi (hereafter FD), represents an ideal tracer for atmospheric transport. We report the, to our best knowledge, only aircraft borne measurements of FD Xe-133 in the Tropopause Inversion Layer (TIL), indicating rapid lift of Xe-133 rich planetary boundary layer air to the TIL. On the same research aircraft (FALCON), we have also conducted on-line measurements of fossil fuel combustion generated pollutant gases (SO2, NOx, HNO3,NOy), which were found to have increased concentrations in the TIL. In addition, we have conducted supporting model simulations of transport, chemical processes, and aerosol processes. Our investigations reveal a potentially important influence of East-Asian cyclone induced pollutants transport to the TIL, particularly influencing aerosol formation in the TIL.

  3. Human placental glutathione S-transferase activity and polycyclic aromatic hydrocarbon DNA adducts as biomarkers for environmental oxidative stress in placentas from pregnant women living in radioactivity- and chemically-polluted regions

    PubMed Central

    Obolenskaya, Maria Yu.; Teplyuk, Nadiya M.; Divi, Rao L.; Poirier, Miriam C.; Filimonova, Nataliya B.; Zadrozna, Monika; Pasanen, Markku J.

    2012-01-01

    This study was designed to analyze the effect of environmental oxidative stress on human placental monooxygenases, glutathione S-transferase (GST) activity and polycyclic aromatic hydrocarbon (PAH)–DNA adducts in human term placentas from radioactivity-contaminated and chemically-polluted areas of the Ukraine and Belarus, and to compare these biomarkers to the newborn’s general health status. Placental PAH–DNA adduct formation, GST activity, 7-ethoxycoumarin O-deethylase (ECOD) activity, and thiobarbituric reactive substances (TBARS), an index of lipid peroxidation, were measured in groups of women exposed to different levels of radioactivity and PAH pollution. The in vitro metabolism data, obtained from 143 human placental samples at term, were compared to indices of maternal and newborn health. The highest ECOD activity was recorded in placentas obtained from chemically-polluted areas and a radioactivity-contaminated area; the ECOD activity was 7-fold and 2-fold higher compared to the region considered to be “clean”. Newborns with the most compromised health status displayed the greatest down-regulation of GST activity (144–162 mU mg protein−1 vs. 258–395 mU mg protein−1), enhanced ECOD activity and the highest level of PAH–DNA adduct formation. The highest level of TBARS was observed in women exposed to the highest levels of radiation. The efficiency of placental detoxification negatively correlated with maternal age and the health status of the newborn. Environmental oxidative stress was related to an increase in anemia, threatened abortions, toxemia, fetal hypoxia, spontaneous abortions and fetal hypotrophy. Our data suggest that chemically- or radioactivity-induced oxidative stress enhance cytochrome P450-mediated enzymatic activities potentially resulting in increased formation of reactive metabolites. The activity of GSH-transferase is not enhanced. This imbalance in detoxification capacity can be measured as increased production of PAH

  4. Screening of pollution control and clean-up materials for river chemical spills using the multiple case-based reasoning method with a difference-driven revision strategy.

    PubMed

    Liu, Rentao; Jiang, Jiping; Guo, Liang; Shi, Bin; Liu, Jie; Du, Zhaolin; Wang, Peng

    2016-06-01

    In-depth filtering of emergency disposal technology (EDT) and materials has been required in the process of environmental pollution emergency disposal. However, an urgent problem that must be solved is how to quickly and accurately select the most appropriate materials for treating a pollution event from the existing spill control and clean-up materials (SCCM). To meet this need, the following objectives were addressed in this study. First, the material base and a case base for environment pollution emergency disposal were established to build a foundation and provide material for SCCM screening. Second, the multiple case-based reasoning model method with a difference-driven revision strategy (DDRS-MCBR) was applied to improve the original dual case-based reasoning model method system, and screening and decision-making was performed for SCCM using this model. Third, an actual environmental pollution accident from 2012 was used as a case study to verify the material base, case base, and screening model. The results demonstrated that the DDRS-MCBR method was fast, efficient, and practical. The DDRS-MCBR method changes the passive situation in which the choice of SCCM screening depends only on the subjective experience of the decision maker and offers a new approach to screening SCCM.

  5. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  6. Particle Pollution

    MedlinePlus

    ... EPA Air Quality Index (AQI) tells you when air pollution is likely to reach levels that could be ... high, take steps to limit the amount of air you breathe in while you're outside. ... pollution levels are usually lower. Choose easier outdoor activities ( ...

  7. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  8. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  9. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  10. Chemical Safety Advisory Committee (CSAC)

    EPA Pesticide Factsheets

    Chemical Safety Advisory Committee (CSAC) provides expert scientific advice, information, and recommendations to the Office of Pollution Prevention and Toxics (OPPT) on the scientific basis for risk assessments, methodologies, and pollution prevention meas

  11. The effect of Eulaliopsis binata on the physi-chemical properties, microbial biomass, and enzymatic activities in Cd-Pb polluted soil.

    PubMed

    Yu, Hui; Xiang, Yanci; Zou, Dongsheng

    2016-10-01

    Pot culture experiment using mining wasteland soil was carried out to study the effect of Eulaliopsis binata on the heavy-metal polluted soil with the growth of 90, 180, 270, and 360 days. Soil nutritional components, heavy metal, microbial biomass, and enzymatic activities were analyzed in this study, and the control group had no plants. The results showed that heavy metal contents decreased with E. binata growth, extractable Cd and Pb decreased 28 and 15 % after 1 year, but the difference was not significant compared with the control. While soil nutritional components, microbial biomass and enzymatic activities increased significantly as compared with the control. Comparing with pre-experiment, soil organic matter, N, P, K, microbial biomass C, N, P, invertase, urease, acid phosphatase, and catalase increased 0.9, 1.1, 3.0, 1.1, 0.4, 0.3, and 0.5 times, respectively. The indexes of soil nutritional components, microbial biomass, and enzymatic activities are positively correlated to each other, while they are negatively correlated to heavy metal content respectively. E. binata has positive influence on Cd-Pb pollution soil and broad application prospects in remediating heavy-metal polluted soil.

  12. Fact Sheet: Benzidine-Based Chemical Substances

    EPA Pesticide Factsheets

    EPA's existing chemicals programs address pollution prevention, risk assessment, hazard and exposure assessment and/or characterization, and risk management for chemicals substances in commercial use.

  13. Light Pollution

    ERIC Educational Resources Information Center

    Riegel, Kurt W.

    1973-01-01

    Outdoor lighting is light pollution which handicaps certain astronomical programs. Protective measures must be adopted by the government to aid observational astronomy without sacrificing legitimate outdoor lighting needs. (PS)

  14. Ozone Pollution

    EPA Pesticide Factsheets

    Known as tropospheric or ground-level ozone, this gas is harmful to human heath and the environment. Since it forms from emissions of volatile organic compounds (VOCs) and nitrogen oxides (NOx), these pollutants are regulated under air quality standards.

  15. Air Pollution

    MedlinePlus

    ... tobacco smoke. How is air pollution linked to climate change? While climate change is a global process, it ... ozone levels are also a concern. Impacts of Climate Change on Human Health in the United States: A ...

  16. Light Pollution

    ERIC Educational Resources Information Center

    Riegel, Kurt W.

    1973-01-01

    Outdoor lighting is light pollution which handicaps certain astronomical programs. Protective measures must be adopted by the government to aid observational astronomy without sacrificing legitimate outdoor lighting needs. (PS)

  17. Atmospheric pollution

    SciTech Connect

    Pickett, E.E.

    1987-01-01

    Atmospheric pollution (AP), its causes, and measures to prevent or reduce it are examined in reviews and reports presented at a workshop held in Damascus, Syria in August 1985. Topics discussed include AP and planning studies, emission sources, pollutant formation and transformation, AP effects on man and vegetation, AP control, atmospheric dispersion mechanisms and modeling, sampling and analysis techniques, air-quality monitoring, and applications. Diagrams, graphs, and tables of numerical data are provided.

  18. Estimation of atmospheric aging time of black carbon particles in the polluted atmosphere over central-eastern China using microphysical process analysis in regional chemical transport model

    NASA Astrophysics Data System (ADS)

    Chen, Xueshun; Wang, Zifa; Yu, Fangqun; Pan, Xiaole; Li, Jie; Ge, Baozhu; Wang, Zhe; Hu, Min; Yang, Wenyi; Chen, Huansheng

    2017-08-01

    Mixing state of black carbon (BC) particles has significant impacts on their radiative forcing, visibility impairment and the ability in modifying cloud formation. In this study, an aging scheme of BC particles using prognostic variables based on aerosol microphysics was incorporated into a regional atmospheric chemistry model, Nested Air Quality Prediction Modeling System with Advanced Particle Microphysics (NAQPMS + APM), to investigate the temporal and spatial variations in aging time scale of BC particles in polluted atmosphere over central-eastern China. The model results show that the aging time scale has a clear diurnal variation with a lower value in the daytime and a higher value in the nighttime. The shorter aging time scale in the daytime is due to condensation aging associated with intense photochemical reaction while the longer aging time scale in the nighttime is due to coagulation aging, which is much slower than that due to condensation. In Beijing, the aging time scale is 2 h or less in the surface layer in daytime, which is far below the fixed 1.2 days used in many models. As a result, the fraction of hydrophilic BC particles by the new scheme is larger than that by the scheme with fixed aging time scale though the mean aging time scale by the new scheme is much larger than 1.2 days. Hydrophilic fraction of BC particles increases with the increase of height. Over central-eastern China, the averaged aging time scale calculated by the new scheme is in the range from 12 h to 7 days, with higher values in regions far from the source areas. Hydrophilic fraction of BC particles is more than 90% at the higher levels in polluted atmosphere. Difference of simulated BC concentration with internal mixing and microphysical aging is within 5%, indicating that the assumption of internal mixing for BC particles to respond to in-cloud scavenging is more appropriate than the external mixing assumption in polluted atmosphere over central-eastern China.

  19. Scrubbing away pollution

    SciTech Connect

    Valenti, M.

    1996-12-01

    A grid scrubbing method that is said to consume less energy and incur less downtime for maintenance than traditional tower technologies is being used to control industrial emissions at pulp and paper plants and at other factories. The catenary-grid-scrubber system is designed to enhance mixing of flue gas with the reagent chemicals, reduce hardware size, and cut capital costs. Flue gas from an industrial process is sent to the catenary grid scrubber, where velocity and pressure create a fluidized bed of water and chemical reagent in the grid to remove pollutants.

  20. Immobilization of TiO2 nanoparticles in polymeric substrates by chemical bonding for multi-cycle photodegradation of organic pollutants.

    PubMed

    Lei, Ping; Wang, Feng; Gao, Xiaowei; Ding, Yanfen; Zhang, Shimin; Zhao, Jincai; Liu, Shaoren; Yang, Mingshu

    2012-08-15

    Nano titanium dioxide (TiO(2)) photocatalyst is generally immobilized onto the matrix through the physical absorption, hydrogen bonding or chemical bonding, which is utilized for the application of wastewater treatment. In this research, TiO(2) nanoparticles were immobilized in polyvinyl alcohol (PVA) matrix via solution-casting combined with heat-treatment method. Structure characterization indicated that Ti-O-C chemical bond formed via dehydration reaction between TiO(2) and PVA during the heat treatment process, and TiO(2) nanoparticles had been chemically immobilized in PVA matrix. Photodegradation results of methyl orange (MO) showed that the film with 10 wt% TiO(2) and treated at 140°C for 2h exhibited a remarkable ultraviolet (UV) photocatalytic activity, approximately close to the TiO(2) slurry system. This was mainly attributed to the fixation effect by Ti-O-C chemical bonds, which was indirectly confirmed by the slight loss of TiO(2) photocatalysts even after 25-cycle use. In addition, the good swelling ability of PVA matrix provided the MO molecules with more opportunities to fully contact with TiO(2), thus benefited the photocatalysis. This route to chemically immobilize TiO(2) nanoparticles is simple and cheap to prepare polymer/TiO(2) hybrid materials with high photocatalytic activity for multi-cycle use, which is of significance to the practical application of TiO(2) catalysts.

  1. Significant concentration changes of chemical components of PM1 in the Yangtze River Delta area of China and the implications for the formation mechanism of heavy haze-fog pollution.

    PubMed

    Zhang, Y W; Zhang, X Y; Zhang, Y M; Shen, X J; Sun, J Y; Ma, Q L; Yu, X M; Zhu, J L; Zhang, L; Che, H C

    2015-12-15

    Since the winter season of 2013, a number of persistent haze-fog events have occurred in central-eastern China. Continuous measurements of the chemical and physical properties of PM1 at a regional background station in the Yangtze River Delta area of China from 16 Nov. to 18 Dec., 2013 revealed several haze-fog events, among which a heavy haze-fog event occurred between 6 Dec. and 8 Dec. The mean concentration of PM1 was 212μgm(-3) in the heavy haze-fog period, which was about 10 times higher than on clean days and featured a peak mass concentration that reached 298μgm(-3). Organics were the largest contributor to the dramatic rise of PM1 on heavy haze-fog days (average mass concentration of 86μgm(-3)), followed by nitrate (58μgm(-3)), sulfate (35μgm(-3)), ammonium (29μgm(-3)), and chloride (4.0μgm(-3)). Nitrate exhibited the largest increase (~20 factors), associated with a significant increase in NOx. This was mainly attributable to increased coal combustion emissions, relative to motor vehicle emissions, and was caused by short-distance pollutant transport within surrounding areas. Low-volatility oxidized organic aerosols (OA) (LV-OOA) and biomass-burning OA (BBOA) also increased sharply on heavy haze-fog days, exhibiting an enhanced oxidation capacity of the atmosphere and increased emissions from biomass burning. The strengthening of the oxidation capacity during the heavy pollution episode, along with lower solar radiation, was probably due to increased biomass burning, which were important precursors of O3. The prevailing meteorological conditions, including low wind and high relative humidity, and short distance transported gaseous and particulate matter surrounding of the sampling site, coincided with the increased pollutant concentrations mainly from biomass-burning mentioned above to cause the persistent haze-fog event in the YRD area.

  2. Air pollution and allergens.

    PubMed

    Bartra, J; Mullol, J; del Cuvillo, A; Dávila, I; Ferrer, M; Jáuregui, I; Montoro, J; Sastre, J; Valero, A

    2007-01-01

    It is well known that the prevalence of allergic diseases has increased in recent decades in the industrialized world. Exposure to environmental pollutants may partially account for this increased prevalence. In effect, air pollution is a growing public health problem. In Europe, the main source of air pollution due to particles in suspension is represented by motor vehicles--particularly those that use diesel fuel. Diesel exhaust particles (DEPs) are composed of a carbon core upon which high-molecular weight organic chemical components and heavy metals deposit. Over 80% of all DEPs are in the ultrafine particle range (< 0.1 pm in diameter). Air pollutants not only have a direct or indirect effect upon the individual, but also exert important actions upon aeroallergens. Pollen in heavily polluted zones can express a larger amount of proteins described as being allergenic. Through physical contact with the pollen particles, DEPs can disrupt the former, leading to the release of paucimicronic particles and transporting them by air--thus facilitating their penetration of the human airways. Climate change in part gives rise to variations in the temperature pattern characterizing the different seasons of the year. Thus, plants may vary their pollination calendar, advancing and prolonging their pollination period. In addition, in the presence of high CO2 concentrations and temperatures, plants increase their pollen output. Climate change may also lead to the extinction of species, and to the consolidation of non-native species--with the subsequent risk of allergic sensitization among the exposed human population. In conclusion, there is sufficient scientific evidence on the effect of air pollution upon allergens, increasing exposure to the latter, their concentration and/or biological allergenic activity.

  3. ISOTOPIC AND CHEMICAL CHARACTERISTICS OF MERCURY IN ORGANS AND TISSUES OF FISH IN A MERCURY-POLLUTED LAKE: EVIDENCE FOR FRACTIONATION OF MERCURY ISOTOPES BY PHYSIOLOGICAL PROCESSES.

    PubMed

    Jackson, Togwell A

    2017-09-19

    Organs and tissues of whitefish and trout from mercury (Hg)-polluted Lake Ontario were analysed for Hg isotopes, methylmercury (CH3 Hg(+) ), and inorganic Hg to investigate possible mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) of Hg isotopes by physiological processes of the fish. Isotope signatures of different body parts were defined by δ-values of (198) Hg/(202) Hg, (199) Hg/(202) Hg, (200) Hg/(202) Hg, and (201) Hg/(202) Hg ratios and by Δ-values representing effects of MIF on (199) Hg/(202) Hg and (201) Hg/(202) Hg ratios. The research yielded the following evidence for MDF and MIF, including MIF of isotopes with even as well as odd mass numbers, by metabolic activities: (1) anomalously low δ-values for whitefish kidneys but not for trout kidneys; (2) widely varying differences between the δ-values of different body parts of whitefish but practically uniform differences for those of trout; (3) different relationships between Δ(199) Hg and Δ(201) Hg for whitefish than for trout; (4) non-linear correlation between δ(198) Hg and δ(200) Hg for whitefish but linear correlation for trout; (5) an inverse correlation between the δ(199) Hg values and CH3 Hg(+) concentrations of whitefish and trout; (6) an inverse correlation between the δ(201) Hg/δ(199) Hg and CH3 Hg(+) /inorganic Hg ratios of trout kidneys and gills (and lipids of trout near the sources of pollution) but a positive correlation for muscle, liver, and gut; and (7) inverse correlations between Δ(199) Hg and the CH3 Hg(+) /inorganic Hg ratio for trout liver, kidneys, and gut. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. 76 FR 57662 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Environmental protection, Air pollution control, Chemicals, Hazardous waste, Hazardous substances, Intergovernmental relations, Penalties, Reporting and recordkeeping requirements, Superfund, Water pollution control... AGENCY 40 CFR Part 300 National Oil and Hazardous Substances Pollution Contingency Plan;...

  5. 76 FR 57701 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Environmental protection, Air pollution control, Chemicals, Hazardous waste, Hazardous substances, Intergovernmental relations, Penalties, Reporting and recordkeeping requirements, Superfund, Water pollution control... AGENCY 40 CFR Part 300 National Oil and Hazardous Substances Pollution Contingency Plan;...

  6. 76 FR 57661 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... protection, Air pollution control, Chemicals, Hazardous waste, Hazardous substances, Intergovernmental relations, Penalties, Reporting and recordkeeping requirements, Superfund, Water pollution control, Water... AGENCY 40 CFR Part 300 National Oil and Hazardous Substances Pollution Contingency Plan; National...

  7. 76 FR 57702 - National Oil and Hazardous Substances Pollution Contingency Plan National Priorities List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Environmental protection, Air pollution control, Chemicals, Hazardous waste, Hazardous substances, Intergovernmental relations, Penalties, Reporting and recordkeeping requirements, Superfund, Water pollution control... AGENCY 40 CFR Part 300 National Oil and Hazardous Substances Pollution Contingency Plan National...

  8. Environmental pollutants and skin cancer.

    PubMed

    Baudouin, C; Charveron, M; Tarroux, R; Gall, Y

    2002-01-01

    We are increasingly exposed to environmental pollution. Pollutants can be inhaled, ingested or come into contact with the skin depending on the form in which they occur. On metabolization, activation, or accumulation, pollutants can become extremely toxic for the vital organs and this is often related to a strong genotoxic effect. Since the skin acts as a barrier between the organism and the environment, it is frequently directly exposed to pollution. It is very often degraded by polluting agents and acts as an inlet toward other tissues. Numerous studies in man recognize and demonstrate the carcinogenic power of certain pollutants in the digestive and respiratory tracts. The "pollutants" that react most specifically with the skin are: ultraviolet radiation, polycyclic aromatic hydrocarbons (e.g., benzo[a]pyrene), volatile organic compounds (e.g., benzene), heavy metals, and ozone. Ultraviolet radiation, a "physical" pollutant, has been described as being the factor responsible for most skin cancers in man. The genotoxicity of UV light is well documented (type of lesion or mutation, etc.) and its carcinogenic effect is clearly demonstrated in vivo in man. A few epidemiological studies describe the carcinogenicity of certain pollutants such as arsenic or lead on the skin. However, most of the evidence for the role of pollutants in skin cancers comes from in vivo animal studies or from in vitro studies (e.g., PAHs). In this report, different studies are presented to illustrate the research strategies developed to investigate the mechanism of action of "chemical" pollutants and their potential role in human skin pathology. All the study models and the associated techniques of investigation are tools for a better understanding and thus more efficient prevention of the deleterious effects caused by the environment.

  9. Microbial bioconversion of pollutants

    SciTech Connect

    Golovleva, L.A.; Aliyeva, R.M.; Naumova, R.P.; Gvozdyak, P.I. )

    1992-01-01

    Microorganisms totally detoxicate xenobiotics of various chemical structures, which are serious and, in some cases, very hazardous pollutants. At present, the efforts of a number of researchers promoted the establishment in this country of a collection of microorganisms able to degrade volatile toxic pollutants--toluene, isomeric xylenes, styrene, alpha-methylstyrene, crotonaldehyde; widely distributed xenobiotics chlorobenzoic acids; isomeric aryldicarboxylic acids; and ecologically hazardous pollutants such as aromatic nitrocompounds. The active strains-destructors are mainly representatives of the genera Pseudomonas and Rhodococcus. Research into their physiological characteristics, key enzymes, pathways of xenobiotics degradation, genetic mechanisms determining the degradation of these foreign compounds, and behaviour of the strains in a real environment made it possible to develop the theoretical principles of using these microbial cultures to purify real industrial wastes and remediate polluted areas of soil and water. Improvement of the methods of immobilizing the active xenobiotics-degrading strains on cheap and efficient carriers made it possible to significantly intensify the cleanup process of industrial wastes and eliminate a number of problems during the development of the biotechnologies for industrial waste cleanup. Successfully operated at present are the biotechnologies of the local cleanup of waste waters of terephthalate production, microbial purification of industrial waste waters in nylon-66 production from hexamethylenediamine, purification of coke production wastes from phenols, waste waters of polyisocyanate production from aromatic amines, local purification of waste waters in synthetic rubber production from alpha-methylstyrene, acetaldehyde production wastes from crotonaldehyde and mercury. 97 references.

  10. MOLD POLLUTION

    EPA Science Inventory

    Mold pollution is the growth of molds in a building resulting in a negative impact on the use of that structure. The negative impacts generally fall into two categories: destruction of the structure itself and adverse health impacts on the building's occupants. It is estimated...

  11. Pollution Solution

    ERIC Educational Resources Information Center

    Vannan, Donald A.

    1972-01-01

    Stresses briefly the need for individuals' actions for controlling the environmental pollution. A number of projects are suggested for teachers to involve children in this area. Simulated discussion groups of sellers'' and consumers, use of pictures, onion juice, and a water filtration contest are a few of the sources used. (PS)

  12. Pollution Solution

    ERIC Educational Resources Information Center

    Vannan, Donald A.

    1972-01-01

    Stresses briefly the need for individuals' actions for controlling the environmental pollution. A number of projects are suggested for teachers to involve children in this area. Simulated discussion groups of sellers'' and consumers, use of pictures, onion juice, and a water filtration contest are a few of the sources used. (PS)

  13. Water Pollution

    MedlinePlus

    We all need clean water. People need it to grow crops and to operate factories, and for drinking and recreation. Fish and wildlife depend on ... and phosphorus make algae grow and can turn water green. Bacteria, often from sewage spills, can pollute ...

  14. MOLD POLLUTION

    EPA Science Inventory

    Mold pollution is the growth of molds in a building resulting in a negative impact on the use of that structure. The negative impacts generally fall into two categories: destruction of the structure itself and adverse health impacts on the building's occupants. It is estimated...

  15. Performance Assessment of Hazardous Air Pollutant (HAP)Free Chemical Paint Strippers on Military Coatings for Validation to Federal Specification TT-R-2918A

    DTIC Science & Technology

    2016-03-01

    Strippers on Military Coatings for Validation to Federal Specification TT -R-2918A by Lindsey Blohm, Alicia Farrell, and John Kelley...Free Chemical Paint Strippers on Military Coatings for Validation to Federal Specification TT -R-2918A by Lindsey Blohm Oak Ridge Institute for...on Military Coatings for Validation to Federal Specification TT -R-2918A 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  16. Mixture effects at very low doses with combinations of anti-androgenic pesticides, antioxidants, industrial pollutant and chemicals used in personal care products.

    PubMed

    Orton, Frances; Ermler, Sibylle; Kugathas, Subramaniam; Rosivatz, Erika; Scholze, Martin; Kortenkamp, Andreas

    2014-08-01

    Many xenobiotics have been identified as in vitro androgen receptor (AR) antagonists, but information about their ability to produce combined effects at low concentrations is missing. Such data can reveal whether joint effects at the receptor are induced at low levels and may support the prioritisation of in vivo evaluations and provide orientations for the grouping of anti-androgens in cumulative risk assessment. Combinations of 30 AR antagonists from a wide range of sources and exposure routes (pesticides, antioxidants, parabens, UV-filters, synthetic musks, bisphenol-A, benzo(a)pyrene, perfluorooctane sulfonate and pentabromodiphenyl ether) were tested using a reporter gene assay (MDA-kb2). Chemicals were combined at three mixture ratios, equivalent to single components' effect concentrations that inhibit the action of dihydrotesterone by 1%, 10% or 20%. Concentration addition (CA) and independent action were used to calculate additivity expectations. We observed complete suppression of dihydrotestosterone effects when chemicals were combined at individual concentrations eliciting 1%, 10% or 20% AR antagonistic effect. Due to the large number of mixture components, the combined AR antagonistic effects occurred at very low concentrations of individual mixture components. CA slightly underestimated the combined effects at all mixture ratios. In conclusion, large numbers of AR antagonists from a wide variety of sources and exposure routes have the ability of acting together at the receptor to produce joint effects at very low concentrations. Significant mixture effects are observed when chemicals are combined at concentrations that individually do not induce observable AR antagonistic effects. Cumulative risk assessment for AR antagonists should apply grouping criteria based on effects where data are available, rather than on criteria of chemical similarity.

  17. Mixture effects at very low doses with combinations of anti-androgenic pesticides, antioxidants, industrial pollutant and chemicals used in personal care products

    SciTech Connect

    Orton, Frances; Ermler, Sibylle; Kugathas, Subramaniam; Rosivatz, Erika; Scholze, Martin; Kortenkamp, Andreas

    2014-08-01

    Many xenobiotics have been identified as in vitro androgen receptor (AR) antagonists, but information about their ability to produce combined effects at low concentrations is missing. Such data can reveal whether joint effects at the receptor are induced at low levels and may support the prioritisation of in vivo evaluations and provide orientations for the grouping of anti-androgens in cumulative risk assessment. Combinations of 30 AR antagonists from a wide range of sources and exposure routes (pesticides, antioxidants, parabens, UV-filters, synthetic musks, bisphenol-A, benzo(a)pyrene, perfluorooctane sulfonate and pentabromodiphenyl ether) were tested using a reporter gene assay (MDA-kb2). Chemicals were combined at three mixture ratios, equivalent to single components' effect concentrations that inhibit the action of dihydrotesterone by 1%, 10% or 20%. Concentration addition (CA) and independent action were used to calculate additivity expectations. We observed complete suppression of dihydrotestosterone effects when chemicals were combined at individual concentrations eliciting 1%, 10% or 20% AR antagonistic effect. Due to the large number of mixture components, the combined AR antagonistic effects occurred at very low concentrations of individual mixture components. CA slightly underestimated the combined effects at all mixture ratios. In conclusion, large numbers of AR antagonists from a wide variety of sources and exposure routes have the ability of acting together at the receptor to produce joint effects at very low concentrations. Significant mixture effects are observed when chemicals are combined at concentrations that individually do not induce observable AR antagonistic effects. Cumulative risk assessment for AR antagonists should apply grouping criteria based on effects where data are available, rather than on criteria of chemical similarity. - Highlights: • Mixtures of AR antagonists at low individual concentrations cause complete inhibition.

  18. Detailed chemical analysis of regional-scale air pollution in western Portugal using an adapted version of MCM v3.1.

    PubMed

    Pinho, P G; Lemos, L T; Pio, C A; Evtyugina, M G; Nunes, T V; Jenkin, M E

    2009-03-01

    A version of the Master Chemical Mechanism (MCM) v3.1, refined on the basis of recent chamber evaluations, has been incorporated into a Photochemical Trajectory Model (PTM) and applied to the simulation of boundary layer photochemistry in the Portuguese west coast region. Comparison of modelled concentrations of ozone and a number of other species (NO(x) and selected hydrocarbons and organic oxygenates) was carried out, using data from three connected sites on two case study days when well-defined sea breeze conditions were established. The ozone concentrations obtained through the application of the PTM are a good approximation to the measured values, the average difference being ca. 15%, indicating that the model was acceptable for evaluation of the details of the chemical processing. The detailed chemistry is examined, allowing conclusions to be drawn concerning chemical interferences in the measurements of NO(2), and in relation to the sensitivity of ozone formation to changes in ambient temperature. Three important, and comparable, contributions to the temperature sensitivity are identified and quantified, namely (i) an effect of increasing biogenic emissions with temperature; (ii) an effect of increasing ambient water vapour concentration with temperature, and its influence on radical production; and (iii) an increase in VOC oxidation chain lengths resulting from the temperature-dependence of the kinetic parameters, particularly in relation to the stability of PAN and its higher analogues. The sensitivity of the simulations to the refinements implemented into MCM v3.1 are also presented and discussed.

  19. [The chemical accident of the Hoechst AG facility 22 February 1993--1. Extent of environmental pollution and clean-up].

    PubMed

    Heudorf, U; Peters, M

    1994-06-01

    A major industrial chemical accident occurred on 22 February 1993 at Hoechst AG Frankfurt/Germany. Due to a series of errors in operational procedures approximately 11.8 tons of a chemical mixture were emitted, partly resulting in heavy contamination of a nearby housing area. The chemical mixture consisted of about 26% anorganic and 74% organic substances, mostly chlorinated nitroarenes, the most important organic contaminant being o-nitroanisol (about 27% of the total amount). Maximum earth contamination in allotment gardens was up to 8 g o-nitroanisol/m2, in the housing area 547 mg/m2. Maximum air contamination was up to 18 micrograms o-nitroanisol/m3, declining quickly during redevelopment and staying constantly below 2 micrograms/m3 from 2 March 1993 onwards. In 96% of more than 300 indoor air measurements no o-nitroanisol could be detected. Redevelopment measurements were started and completed very quickly: Removal of contaminated earth, recultivation of the gardens, cutting bushes and cutting down coniferous trees, cutting off and renewing street-surfaces, cleaning up footpaths and roofs of the houses. Four weeks after the accident, redevelopment measurements were completed, as confirmed by numerous analyses.

  20. Persistent pollutants urban rivers sediment survey: implications for pollution control.

    PubMed

    Wilson, C; Clarke, R; D'Arcy, B J; Heal, K V; Wright, P W

    2005-01-01

    The impacts of diffuse urban sources of pollution on watercourses are quantified. A survey of nine urban streams in Scotland for persistent pollutants in stream sediments is described, together with sediments from SUDS ponds. Determinands reported are: PAHs, total hydrocarbons, and toxic metals (As, Zn, Ni, Pb, Cu, Cr, Cd). Results highlight hydrocarbons as a major urban pollutant, and show significant sediment contamination by toxic metals. The metals that occurred in the highest concentrations varied across the nine streams, but Pb, Cr, Ni, Zn and Cu most frequently present exceeded sediment quality standards. The pattern of contamination by PAHs suggested that pyrolytic sources were more ubiquitous and present in greater quantities than oil spill sources in these urban catchments. Exceptions were the sites below industrial estates. The findings indicate that four levels of activity will be needed to control urban diffuse sources of pollution: reductions in quantities of toxic pollutants used by manufacturers in the motor and construction industries; housekeeping measures to minimise storage and handling risks for oil and chemicals; public engagement to minimise polluting activities such as dumping oil and chemicals, and private car use; use of SUDS technology, including retro-fits in the worst affected urban areas.

  1. High-resolution mass spectrometry associated with data mining tools for the detection of pollutants and chemical characterization of honey samples.

    PubMed

    Cotton, Jérôme; Leroux, Fanny; Broudin, Simon; Marie, Mylène; Corman, Bruno; Tabet, Jean-Claude; Ducruix, Céline; Junot, Christophe

    2014-11-19

    Analytical methods for food control are mainly focused on restricted lists of well-known contaminants. This paper shows that liquid chromatography-high-resolution mass spectrometry (LC/ESI-HRMS) associated with the data mining tools developed for metabolomics can address this issue by enabling (i) targeted analyses of pollutants, (ii) detection of untargeted and unknown xenobiotics, and (iii) detection of metabolites useful for the characterization of food matrices. A proof-of-concept study was performed on 76 honey samples. Targeted analysis indicated that 35 of 83 targeted molecules were detected in the 76 honey samples at concentrations below regulatory limits. Furthermore, untargeted metabolomic-like analyses highlighted 12 chlorinated xenobiotics, 1 of which was detected in lavender honey samples and identified as 2,6-dichlorobenzamide, a metabolite of dichlobenil, a pesticide banned in France since 2010. Lastly, multivariate statistical analyses discriminated honey samples according to their floral origin, and six discriminating metabolites were characterized thanks to the MS/MS experiments.

  2. Synthesis of gadolinium doped titanium(IV) oxide and their photocatalytic activity to decrease chemical oxygen demand (COD) value of water pollutants

    NASA Astrophysics Data System (ADS)

    Eddy, Diana Rakhmawaty; Dwiyanti, Dina; Rahayu, Iman; Hastiawan, Iwan; Bahti, Husein H.

    2017-05-01

    Pesticides are widely used for the control of plant disease. Unfortunately they are highly toxic to terraneous and aquatic life; this is a particular problem in agricultural areas. TiO2 is widely used for pesticide control because of its photocatalytic activity, but it still has inadequacy in its wide band gap. Alternatively, the wide band gap of TiO2 could be narrowed by modification with rare earth element such as gadolinium, so the photocatalytic activity of TiO2could be significantly enhanced. The purpose of this experiment is to synthesize Gd/TiO2 and its application to reduce COD of water pollutants such as carbosulfan pesticide. This experiment is done by doping gadolinium oxide into titanium tetra isopropoxide by sol-gel method. The crystal structure is characterized by using XRD, shown anatase successfully obtained with the smallest crystallite size is 37.655 nm, indicated optimum calcination time is 4 hours. SEM-EDX result shown morphology of crystal is big aggregates. Photocatalytic activity is tested to carbosulfan pesticide, obtained the COD percent decreases up to 87.88%.

  3. Comparative chemical mass closure of fine and coarse aerosols at two sites in south and west Europe: Implications for EU air pollution policies

    NASA Astrophysics Data System (ADS)

    Viana, M.; Maenhaut, W.; Chi, X.; Querol, X.; Alastuey, A.

    The chemical composition of PM10 and PM2.5 was studied during summer and winter sampling campaigns in South and West Europe (Barcelona, Spain, and Ghent, Belgium). The chemical composition of the PM10 aerosol was markedly different in the two regions, even at similar PM10 levels. The chemical composition of PM2.5 showed more similarities. The contribution of mineral matter was higher in Barcelona (on average 12% of the PM2.5 mass), whereas the contribution from sea salt was higher in Ghent (4% of PM2.5). Volatilisation of NH 4+ from the filters (negative artefact) was observed in both regions, although the extent of this artefact showed regional differences (0-4% and 22-38% of the NH 4+ mass in Ghent and Barcelona, respectively) and had no impact on the compliance with EU limit values. The number of exceedances of the PM10 limit value and an arbitrary PM2.5 limit of 25 μg m -3 was calculated by subtracting the mineral fraction (natural or anthropogenic in origin) from the bulk PM load, and this resulted in the elimination of the PM10 exceedances in Barcelona, and a reduction of one out of three exceedances in Ghent. The subtraction of sea-salt aerosol had no effect in Barcelona, and it removed one exceedance in each size fraction in Ghent. Exceedances of the PM10 daily limit value in Ghent coincided with back-trajectories originating from Eastern and Southern European regions. The origin of the exceedances in Barcelona during the campaigns was mostly local.

  4. Chemical fertilizers as a source of (238)U, (40)K, (226)Ra, (222)Rn, and trace metal pollutant of the environment in Saudi Arabia.

    PubMed

    Alshahri, Fatimh; Alqahtani, Muna

    2015-06-01

    The specific activities of (238)U, (226)Ra, (40)K, and (222)Rn in chemical fertilizers were measured using gamma ray spectrometer and Cr-39 detector. In this study, 21 chemical fertilizers were collected from Eastern Saudi Arabian markets. The specific activities of (238)U ranged from 23 ± 0.5 to 3900 ± 195 Bq kg(-1); (226)Ra ranged from 5.60 ± 2.80 to 392 ± 18 Bq kg(-1); and (40)K ranged from 18.4 ± 3 to 16,476 ± 820 Bq kg(-1). The radon concentrations and the radon exhalation rates were found to vary from 3.20 ± 1.20 to 1532 ± 160 Bq m(-3) and from 1.60 to 774 mBq m(-2) h(-1), respectively. Radium equivalent activities (Raeq) were calculated for the analyzed samples to assess the radiation hazards arising due to the use of these chemical fertilizers in the agriculture soil. The Raeq for six local samples (nitrogen, phosphorous, and potassium (NPK) and single superphosphate (SSP)) and one imported sample (Sulfate of Potash (SOP)) were greater than the acceptable value 370 Bq kg(-1). The total air absorbed doses rates in air 1 m above the ground (D) were calculated for all samples. All samples, except one imported granule sample diammonium phosphate (DAP), were higher than the estimated average global terrestrial radiation of 55 nGy h(-1). The highest annual effective dose was in triple super phosphate (TSP) fertilizers (2.1 mSv y(-1)). The results show that the local TSP, imported SOP, and local NPK (sample 13) fertilizers were unacceptable for use as fertilizers in agricultural soil. Furthermore, the toxic elements and trace metals (Pb, Cd, Cr, Co, Ni, Hg, and As) were determined using atomic absorption spectrometer. The concentrations of chromium in chemical fertilizers were higher than the global values.

  5. Aerosol chemical properties and related pollutants measured in Dongsha Island in the northern South China Sea during 7-SEAS/Dongsha Experiment

    NASA Astrophysics Data System (ADS)

    Chuang, Ming-Tung; Chang, Shuenn-Chin; Lin, Neng-Huei; Wang, Jia-Lin; Sheu, Guey-Rong; Chang, You-Jia; Lee, Chung-Te

    2013-10-01

    Aerosol observations were conducted at Dongsha Island in two batches from 19 to 23 March and 10 to 19 April 2010. Dongsha Island is located in a remote area over the northern South China Sea (SCS), distantly surrounded by southern China, Taiwan, the Philippines, and the Indochinese Peninsula. During the study period, the average PM10 and PM2.5 mass concentrations were 26.5 ± 19.4 and 12.6 ± 6.0 μg m-3, respectively. In particular, a daily PM10 concentration of 94.1 μg m-3 caused by a yellow-dust event originating from the Asian Continent was recorded on 21 March. Other than this event, the PM2.5 and PM10-2.5 daily levels were 7.1 ± 1.2 and 12.6 ± 5.0 μg m-3, respectively, on days without pollution from anthropogenic sources in the surrounding areas. Water-soluble ions (WSIs) were the predominant components that accounted for 58.7% ± 10.5% and 51.1% ± 7.2% of the PM10 and PM2.5 mass. The second most abundant component was carbonaceous content, which accounted for 9.5% ± 4.7% and 17.5% ± 5.3% of PM10 and PM2.5, respectively. SO42- was the most abundant PM2.5 WSI, whereas the Na+ and Cl- pair was the most abundant PM10-2.5 WSI. Based on the U.S. IMPROVE protocol, the resolved carbonaceous fractions were mainly distributed in PM2.5 and influenced by coal combustion, mobile vehicles, and biomass burning. Most of the resolved WSIs in particles were in the liquid phase due to the humid environment around the northern SCS.

  6. A comparative study of metal pollution and potential eco-risk in the sediment of Chaohu Lake (China) based on total concentration and chemical speciation.

    PubMed

    Liu, Enfeng; Shen, Ji

    2014-06-01

    Total and extractable concentrations of Cu, Pb, and Zn were determined in surface sediments of west Chaohu Lake (China) by HCl-HNO3-HF-HClO4 digestion and an optimized BCR sequential extraction procedure, respectively. The metal pollution was evaluated by the enrichment factor approach, and the potential eco-risk was evaluated by the sediment quality guideline (SQG) and risk assessment code (RAC) assessments. The results indicated that both total and extractable metal concentrations were highly variable and were affected by sediment properties, even though the sediments were predominantly composed of <63-μm particles (>89%). Enrichment factors of the metals based on the total and extractable concentrations all showed higher values in the northern lake area and decreasing values towards the south. This distribution indicated an input of anthropogenic metals via the Nanfei River. Anthropogenic Cu, Pb, and Zn in surface sediments showed comparable values for each metal based on the total and extractable concentrations, suggesting that anthropogenic Cu, Pb, and Zn resided predominantly in the extractable fractions. Sediment Cu had low eco-risk, and Pb and Zn had medium eco-risk by the SQG assessment, whereas the eco-risk rankings of Cu, Pb, and Zn were medium, low, and low-high, respectively, by the RAC assessment. Referencing to the labile (dilute acid soluble) metal concentrations, we deduced that the eco-risk of Cu may be largely overestimated by the RAC assessment, and the eco-risk of Pb may be largely overestimated by the SQG assessment. Overall, sediments Cu and Pb may pose low eco-risk, and Zn may pose low-high eco-risk.

  7. Light-Assisted Advanced Oxidation Processes for the Elimination of Chemical and Microbiological Pollution of Wastewaters in Developed and Developing Countries.

    PubMed

    Giannakis, Stefanos; Rtimi, Sami; Pulgarin, Cesar

    2017-06-26

    In this work, the issue of hospital and urban wastewater treatment is studied in two different contexts, in Switzerland and in developing countries (Ivory Coast and Colombia). For this purpose, the treatment of municipal wastewater effluents is studied, simulating the developed countries' context, while cheap and sustainable solutions are proposed for the developing countries, to form a barrier between effluents and receiving water bodies. In order to propose proper methods for each case, the characteristics of the matrices and the targets are described here in detail. In both contexts, the use of Advanced Oxidation Processes (AOPs) is implemented, focusing on UV-based and solar-supported ones, in the respective target areas. A list of emerging contaminants and bacteria are firstly studied to provide operational and engineering details on their removal by AOPs. Fundamental mechanistic insights are also provided on the degradation of the effluent wastewater organic matter. The use of viruses and yeasts as potential model pathogens is also accounted for, treated by the photo-Fenton process. In addition, two pharmaceutically active compound (PhAC) models of hospital and/or industrial origin are studied in wastewater and urine, treated by all accounted AOPs, as a proposed method to effectively control concentrated point-source pollution from hospital wastewaters. Their elimination was modeled and the degradation pathway was elucidated by the use of state-of-the-art analytical techniques. In conclusion, the use of light-supported AOPs was proven to be effective in degrading the respective target and further insights were provided by each application, which could facilitate their divulgation and potential application in the field.

  8. Charting environmental pollution. [by noise measurements

    NASA Technical Reports Server (NTRS)

    Halpert, E.; Bizo, F.; Karacsonyi, Z.

    1974-01-01

    It is found that areas affected by different noxious agents are within the limits traced for high noise level areas; consequently, it is suggested that high noise pressure levels should be used as the primary indication of environmental pollution. A complex methodology is reported for charting environmental pollution due to physical, chemical and biological noxious agents on the scale of an industrial district.

  9. Charting environmental pollution. [by noise measurements

    NASA Technical Reports Server (NTRS)

    Halpert, E.; Bizo, F.; Karacsonyi, Z.

    1974-01-01

    It is found that areas affected by different noxious agents are within the limits traced for high noise level areas; consequently, it is suggested that high noise pressure levels should be used as the primary indication of environmental pollution. A complex methodology is reported for charting environmental pollution due to physical, chemical and biological noxious agents on the scale of an industrial district.

  10. Water Pollution. Project COMPSEP.

    ERIC Educational Resources Information Center

    Lantz, H. B., Jr.

    This is an introductory program on water pollution. Examined are the cause and effect relationships of water pollution, sources of water pollution, and possible alternatives to effect solutions from our water pollution problems. Included is background information on water pollution, a glossary of pollution terminology, a script for a slide script…

  11. Identifying the source of petroleum pollution in sediment cores of southwest of the Caspian Sea using chemical fingerprinting of aliphatic and alicyclic hydrocarbons.

    PubMed

    Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud

    2017-02-15

    In this study, the concentration and sources of aliphatic and petroleum markers were investigated in 105 samples of Anzali, Rezvanshahr and Astara cores from the southwest of Caspian Sea. Petroleum importation was diagnosed as a main source in most depths of cores by the results of unresolved complex mixture, carbon preference index and hopanes and steranes. From the chemical diagnostic parameters, petroleum inputs in sediment of cores were determined to be different during years and the sources of hydrocarbons in some sections differed than Anzali and Turkmenistan and Azerbaijan oils. Diagenic ratios in most sediments of upper and middle sections in Astara core were determined to be highly similar to those of Azerbaijan oil, while the presence of Turkmenistan and Anzali oils were detected in a few sections of Anzali and Rezvanshahr cores and only five layers of downer section in Anzali core, respectively. Copyright © 2016. Published by Elsevier Ltd.

  12. Human health risks related to the consumption of foodstuffs of plant and animal origin produced on a site polluted by chemical munitions of the First World War.

    PubMed

    Gorecki, Sébastien; Nesslany, Fabrice; Hubé, Daniel; Mullot, Jean-Ulrich; Vasseur, Paule; Marchioni, Eric; Camel, Valérie; Noël, Laurent; Le Bizec, Bruno; Guérin, Thierry; Feidt, Cyril; Archer, Xavier; Mahe, Aurélie; Rivière, Gilles

    2017-12-01

    Shells fired during World War I exhibited different explosive compounds and some of these weapons also contained a wide variety of chemical warfare agents. At the end of the war, for safety purposes, the large quantity of weapons remaining on the former front needed to be dismantled and destroyed. A large amount of the remaining shells was destroyed in specific sites which led to the contamination of the surroundings in Belgium and France. In the 1920s, 1.5 million chemical shells and 30,000 explosive shells were destroyed in a place close to the city of Verdun, in the East of France. In this paper, the risk for human health related to the consumption of foodstuffs produced on this site was assessed. To this end, food products of plant and animal origin were sampled in 2015-2016 and contaminant analyses were conducted. Human exposure was assessed using a specifically built methodology. The contaminants considered in this study were trace elements (TEs - primarily Zn, As, Pb and Cd), nitroaromatic explosives (trinitrotoluene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-amino-4,6-dinitroluene and 4-amino-2,6-dinitrotoluene), phenylarsenic compounds including diphenylarsinic acid and triphenylarsine, perchlorate, tetrabromoethane and vinyl bromide. Depending on the compound, different approaches were used to assess the risk for both adults and children. Exposure to these contaminants through the consumption of foodstuffs produced locally on the considered site was unlikely to be a health concern. However, as for inorganic arsenic, given the presence of highly contaminated zones, it was suggested that cereals should not be grown on certain plots. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Spatial and seasonal distribution of aerosol chemical components in New York City: (2) road dust and other tracers of traffic-generated air pollution.

    PubMed

    Peltier, Richard E; Cromar, Kevin R; Ma, Yingjun; Fan, Zhi-Hua Tina; Lippmann, Morton

    2011-01-01

    We describe spatial and temporal patterns of seven chemical elements commonly observed in fine particulate matter (PM) and thought to be linked to roadway emissions that were measured at residential locations in New York City (NYC). These elements, that is, Si, Al, Ti, Fe, Ba, Br, and black carbon (BC), were found to have significant spatial and temporal variability at our 10 residential PM(2.5) sampling locations. We also describe pilot study data of near-roadway samples of both PM(10-2.5) and PM(2.5) chemical elements of roadway emissions. PM(2.5) element concentrations collected on the George Washington Bridge (GWB) connecting NYC and New Jersey were higher that similar elemental concentration measured at residential locations. Coarse-particle elements (within PM(10-2.5)) on the GWB were 10-100 times higher in concentration than their PM(2.5) counterparts. Roadway elements were well correlated with one another in both the PM(2.5) and PM(10-2.5) fractions, suggesting common sources. The same elements in the PM(2.5) collected at residential locations were less correlated, suggesting either different sources or different processing mechanisms for each element. Despite the fact that these elements are only a fraction of total PM(2.5) or PM(10-2.5) mass, the results have important implications for near-roadway exposures where elements with known causal links to health effects are shown to be at elevated concentrations in both the PM(2.5) and PM(10-2.5) size ranges.

  14. AIR POLLUTION, OXIDATIVE STRESS AND NEUROTOXICITY.

    EPA Science Inventory

    Increased incidents of classic and variant forms of neurodegenerative diseases suggest that environmental chemicals and susceptibility factors (e.g., genetics, diseased states, obesity, etc.) may be contributory. Particulate matter (PM) is a type of air pollution that is associat...

  15. Water Pollution: Appearances Can Be Deceiving

    ERIC Educational Resources Information Center

    Raloff, Janet

    1977-01-01

    Expresses concern over the amounts of toxic chemical pollutants being discharged into fresh water supplies. Analyzes the role of the Environmental Protection Agency (EPA) in establishing and enforcing water quality standards. (CP)

  16. Water Pollution: Appearances Can Be Deceiving

    ERIC Educational Resources Information Center

    Raloff, Janet

    1977-01-01

    Expresses concern over the amounts of toxic chemical pollutants being discharged into fresh water supplies. Analyzes the role of the Environmental Protection Agency (EPA) in establishing and enforcing water quality standards. (CP)

  17. AIR POLLUTION, OXIDATIVE STRESS AND NEUROTOXICITY.

    EPA Science Inventory

    Increased incidents of classic and variant forms of neurodegenerative diseases suggest that environmental chemicals and susceptibility factors (e.g., genetics, diseased states, obesity, etc.) may be contributory. Particulate matter (PM) is a type of air pollution that is associat...

  18. Health Effects of Air Pollution.

    ERIC Educational Resources Information Center

    Environmental Education Report and Newsletter, 1985

    1985-01-01

    Summarizes health hazards associated with air pollution, highlighting the difficulty in establishing acceptable thresholds of exposure. Respiratory disease, asthma, cancer, cardiovascular disease, and other problems are addressed. Indicates that a wide range of effects from any one chemical exists and that there are differences in sensitivity to…

  19. Health Effects of Air Pollution.

    ERIC Educational Resources Information Center

    Environmental Education Report and Newsletter, 1985

    1985-01-01

    Summarizes health hazards associated with air pollution, highlighting the difficulty in establishing acceptable thresholds of exposure. Respiratory disease, asthma, cancer, cardiovascular disease, and other problems are addressed. Indicates that a wide range of effects from any one chemical exists and that there are differences in sensitivity to…

  20. Method oil shale pollutant sorption/NO.sub.x reburning multi-pollutant control

    DOEpatents

    Boardman, Richard D.; Carrington, Robert A.

    2008-06-10

    A method of decreasing pollutants produced in a combustion process. The method comprises combusting coal in a combustion chamber to produce at least one pollutant selected from the group consisting of a nitrogen-containing pollutant, sulfuric acid, sulfur trioxide, carbonyl sulfide, carbon disulfide, chlorine, hydroiodic acid, iodine, hydrofluoric acid, fluorine, hydrobromic acid, bromine, phosphoric acid, phosphorous pentaoxide, elemental mercury, and mercuric chloride. Oil shale particles are introduced into the combustion chamber and are combusted to produce sorbent particulates and a reductant. The at least one pollutant is contacted with at least one of the sorbent particulates and the reductant to decrease an amount of the at least one pollutant in the combustion chamber. The reductant may chemically reduce the at least one pollutant to a benign species. The sorbent particulates may adsorb or absorb the at least one pollutant. A combustion chamber that produces decreased pollutants in a combustion process is also disclosed.

  1. [Chemical characteristics in airborne particulate matter (PM10) during a high pollution spring dust storm episode in Beijing, Tianjin and Zhangjiakou, China].

    PubMed

    Liu, Qing-Yang; Liu, Yan-Ju; Zhao, Qiang; Zhang, Ting-Ting; Zhang, Mei-Gen; Wang, Cun-Mei

    2014-08-01

    Atmospheric particulate matter (PM10) was collected at sampling locations of Beijing, Tianjin and Zhangjiakou from April 1st to May 24th, 2012. The mass concentration of PM10 and concentrations of ions, elemental carbon (EC) and organic carbon (OC) in PM10 were determined. The results showed that average mass concentration of PM10 were 233.82 microg x m(-3) for Beijing, 279.64 microg x (-3) for Tianjin and 238.13 microg x m(-3) for Zhangjiakou, respectively. Backward trajectories results confirmed dust storm events occurred from 27th to 29th April. The maximum daily mass concentrations of PM10 were 755.54 microg x m(-3) for Beijing, 831.32 microg x m(-3) for Tianjin and 582.82 microg x m(-3) for Zhangjiakou during the dust storm episodes, respectively. Water-soluble ions (Na+, NH4+, Ca2+, K+, F-, Cl-, NO3-, SO4(2-)), organic carbon (OC) and elemental carbon (EC) were major aerosol components during the dust storm episodes, and their concentrations were higher than non-dust storm days. In addition, dust storm caused increases in NO3-, SO4(2-) and enrichment of secondary organic carbon (SOC) concentration relative to OC, suggesting that chemical reaction processes involving gas-particle conversion occurred during the long-distance transport of aerosol particles.

  2. Pollution prevention by design

    SciTech Connect

    Crumpler, P.

    1997-10-01

    Waste is a common problem throughout the companies comprising the chemical process industries (CPI). It is especially a concern to those who manage solid waste, wastewater systems, hazardous waste or air-pollution-control devices--typically systems for handling end-of-the-pipe wastes. Regardless of its type, waste is almost always composed of purchased raw materials that did not become part of a final product. For example, some chemical manufacturers, such as liquid latex producers, have found that their wastewater stream is a dilute form of their primary product. Much of this waste is the result of process inefficiencies that cause entrapment and loss of raw materials. These are conventionally disposed through equipment cleaning. However, rethinking and improving process design, piping and vessel design and material-handling techniques can improve process efficiency. The result is reduced waste generation, reduced operating costs, cleaner equipment and increased profits.

  3. Evaluation of meat and bone meal combustion residue as lead immobilizing material for in situ remediation of polluted aqueous solutions and soils: "chemical and ecotoxicological studies".

    PubMed

    Deydier, E; Guilet, R; Cren, S; Pereas, V; Mouchet, F; Gauthier, L

    2007-07-19

    As a result of bovine spongiform encephalopathy (BSE) crisis, meat and bone meal (MBM) production can no longer be used to feed cattle and must be safely disposed of or transformed. MBM specific incineration remains an alternative that could offer the opportunity to achieve both thermal valorization and solid waste recovery as ashes are calcium phosphate-rich material. The aim of this work is to evaluate ashes efficiency for in situ remediation of lead-contaminated aqueous solutions and soils, and to assess the bioavailability of lead using two biological models, amphibian Xenopus laevis larvae and Nicotiana tabaccum tobacco plant. With the amphibian model, no toxic or genotoxic effects of ashes are observed with concentrations from 0.1 to 5 g of ashes/L. If toxic and genotoxic effects of lead appear at concentration higher than 1 mg Pb/L (1 ppm), addition of only 100 mg of ashes/L neutralizes lead toxicity even with lead concentration up to 10 ppm. Chemical investigations (kinetics and X-ray diffraction (XRD) analysis) reveals that lead is quickly immobilized as pyromorphite [Pb10(PO4)6(OH)2] and lead carbonate dihydrate [PbCO(3).2H2O]. Tobacco experiments are realized on contaminated soils with 50, 100, 2000 and 10000 ppm of lead with and without ashes amendment (35.3g ashes/kg of soil). Tobacco measurements show that plant elongation is bigger in an ashes-amended soil contaminated with 10000 ppm of lead than on the reference soil alone. Tobacco model points out that ashes present two beneficial actions as they do not only neutralize lead toxicity but also act as a fertilizer.

  4. Significant geographic gradients in particulate sulfate over Japan determined from multiple-site measurements and a chemical transport model: Impacts of transboundary pollution from the Asian continent

    NASA Astrophysics Data System (ADS)

    Aikawa, Masahide; Ohara, Toshimasa; Hiraki, Takatoshi; Oishi, Okihiro; Tsuji, Akihiro; Yamagami, Makiko; Murano, Kentaro; Mukai, Hitoshi

    2010-01-01

    We found a significant geographic gradient (longitudinal and latitudinal) in the sulfate (SO 42-) concentrations measured at multiple sites over the East Asian Pacific Rim region. Furthermore, the observed gradient was well reproduced by a regional chemical transport model. The observed and modeled SO 42- concentrations were higher at the sites closer to the Asian continent. The concentrations of SO 42- from China as calculated by the model also showed the fundamental features of the longitudinal/latitudinal gradient. The proportional contribution of Chinese SO 42- to the total in Japan throughout the year was above 50-70% in the control case, using data for Chinese sulfur dioxide (SO 2) emission from the Regional Emission Inventory in Asia (40-60% in the low Chinese emissions case, using Chinese SO 2 emissions data from the State Environmental Protection Administration of China), with a winter maximum of approximately 65-80%, although the actual concentrations of SO 42- from China were highest in summer. The multiple-site measurements and the model analysis strongly suggest that the SO 42- concentrations in Japan were influenced by the outflow from the Asian continent, and this influence was greatest in the areas closer to the Asian continent. In contrast, we found no longitudinal/latitudinal gradient in SO 2 concentrations; instead SO 2 concentrations were significantly correlated with local SO 2 emissions. Our results show that large amounts of particulate sulfate are transported over long distances from the East Asian Pacific Rim region, and consequently the SO 42- concentrations in Japan are controlled by the transboundary outflow from the Asian continent.

  5. Surface chemical characterization of 2.5-microm particulates (PM2.5) from air pollution in Salt Lake City using TOF-SIMS, XPS, and FTIR.

    PubMed

    Zhu, Y J; Olson, N; Beebe, T P

    2001-08-01

    Particulate matter with a diameter of 2.5 microm collected in Salt Lake City (SLC PM2.5) was studied using TOF-SIMS (time-of-flight secondary-ion mass spectrometry), XPS (X-ray photoelectron spectroscopy), and FTIR (Fourier transform infrared spectroscopy). The high spatial resolution and high surface sensitivity of TOF-SIMS allow the surfaces of individual particulates to be analyzed. The high mass-resolution of TOF-SIMS provides good separation of signals from different chemical species at the same nominal mass, and the extremely high detection sensitivity of TOF-SIMS makes the detection of trace elements possible. Metallic elements such as Li, Na, Mg, Al, K, Ca, Cr, Mn, Fe, Cu, Zn, Cs, and Bi were detected by TOF-SIMS on the surface of SLC PM25. The uranium ion U+ together with its oxide ions UO+ and UO2+ were also found. Inorganic compounds detected include oxides, hydroxides, nitrates, sulfates, silicates, borates, chlorides, etc. Organic compounds detected include hydrocarbons, alcohols, aldehydes, ethers, carboxylic acids, amines, amides, nitriles, etc. A number of polycyclic aromatic hydrocarbons (PAH) and nitrated polycyclic aromatic hydrocarbons were detected by TOF-SIMS. High-resolution XPS Cls spectrum shows functional groups such as C-O, CO2, C-CO2, C-C, and C-H and aromatic pi-pi* shake-up transitions. High-resolution XPS O 1s spectrum indicates the coexistence of different oxygen compounds on the surface of PM2.5. FTIR results confirm the presence of various organic compounds in SLC PM2.5 detected by TOF-SIMS and XPS.

  6. Groundwater chemicals desk reference

    SciTech Connect

    Montgomery, J.H.; Welkom, L.M.

    1990-01-01

    Information is compiled on more than 135 compounds that may be groundwater pollutants. The compounds profiled include all the Priority Pollutants promulgated by the US EPA under the Clean Water Act (CWA) of 1977. Many of these priority pollutants were included among the Target Compounds promulgated by the EPA under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) in 1980 and the Superfund Amendments and Reauthorization Act (SARA) of 1986. All chemicals described in the book are classified as priority pollutants and/or target compounds. For each chemical, the following information is given: (1) synonyms; (2) structural formula; (3) CAS Registry number; (4) DOT designation; (5) empirical formula; (6) formula weight; (7) RETCS number; (8) physical and chemical properties; (9) fire hazards; (10) health hazard data; and (11) manufacturing data and/or selected manufacturers.

  7. Teaching Applied Chemistry in a Pollution Control Context.

    ERIC Educational Resources Information Center

    Sell, Nancy J.

    1982-01-01

    Discusses rationale behind and content of a course (Industrial Pollution Control Techniques) combining knowledge from fields of industrial chemistry and chemical engineering and utilizing this knowledge in the context of understanding pollution problems and potential methods of pollution control. (Author/SK)

  8. A Course on the Physics and Chemistry of Pollution

    ERIC Educational Resources Information Center

    Hodges, Laurent

    1971-01-01

    Describes a course on environmental pollution which stresses physical and chemical principles. Course presents a unified discussion of air and water pollution and solid waste with special treatment of pesticides, thermal pollution, radioactivity, and electric power generation. Uses historical and current statistics extensively to set pollution…

  9. Teaching Applied Chemistry in a Pollution Control Context.

    ERIC Educational Resources Information Center

    Sell, Nancy J.

    1982-01-01

    Discusses rationale behind and content of a course (Industrial Pollution Control Techniques) combining knowledge from fields of industrial chemistry and chemical engineering and utilizing this knowledge in the context of understanding pollution problems and potential methods of pollution control. (Author/SK)

  10. A Course on the Physics and Chemistry of Pollution

    ERIC Educational Resources Information Center

    Hodges, Laurent

    1971-01-01

    Describes a course on environmental pollution which stresses physical and chemical principles. Course presents a unified discussion of air and water pollution and solid waste with special treatment of pesticides, thermal pollution, radioactivity, and electric power generation. Uses historical and current statistics extensively to set pollution…

  11. MODULATING STORM DRAIN FLOWS TO REDUCE STREAM POLLUTANT CONCENTRATIONS

    EPA Science Inventory

    Pathogen and toxic chemical concentrations above the chemical and toxicity water quality standards in creeks and rivers pose risks to human health and aquatic ecosystems. Storm drains discharging into these watercourses often contribute significantly to elevating pollutant concen...

  12. PHARMACEUTICALS & PERSONAL CARE PRODUCTS AS ENVIRONMENTAL POLLUTANTS FROM EVERYDAY ACTIVITIES

    EPA Science Inventory

    Those chemical pollutants that are regulated under various international, federal, and state programs represent but a small fraction of the universe of chemicals that occur in the environment as a result of both natural processes and human influence.

  13. MODULATING STORM DRAIN FLOWS TO REDUCE STREAM POLLUTANT CONCENTRATIONS

    EPA Science Inventory

    Pathogen and toxic chemical concentrations above the chemical and toxicity water quality standards in creeks and rivers pose risks to human health and aquatic ecosystems. Storm drains discharging into these watercourses often contribute significantly to elevating pollutant concen...

  14. PHARMACEUTICALS & PERSONAL CARE PRODUCTS AS ENVIRONMENTAL POLLUTANTS FROM EVERYDAY ACTIVITIES

    EPA Science Inventory

    Those chemical pollutants that are regulated under various international, federal, and state programs represent but a small fraction of the universe of chemicals that occur in the environment as a result of both natural processes and human influence.

  15. Photolysis Assisted Pollution Analysis (PAPA)

    SciTech Connect

    Hanst, P.L.

    1994-12-31

    Photolysis Assisted Pollution Analysis (PAPA) combines the infrared method of gas measurement with a boost of high-speed photochemical activity. PAPA goes beyond standard infrared absorption techniques by using a compound conversion process that selects reactive gases from among the non-reactive and reveals their spectra. At the same time the technique renders invisible the spectra of water and carbon dioxide. In PAPA, three infrared spectra are recorded: the first through an empty absorption cell, the second through the cell containing sample, and the third through the cell with sample, after photochemical transformation. Ozone molecules, oxygen atoms and hydroxyl radicals are formed. From the three spectra, the computer extracts the concentrations of pollutant gases. In a single experiment, many gases may be measured. In PAPA, no calibration chemicals are needed. The calibration comes from the software package, which contains a library of digitized quantitative reference spectra. The PAPA method can measure pollutant gases down to parts-per-billion concentration levels, including especially: (1) nitrogen oxides and other nitrogen-containing pollutants, (2) organic pollutant gases, including acids, aldehydes, ethers, esters, ketones, hydrocarbons, and halogenated compounds, (3) isoprene, pinenes and other reactive hydrocarbons, (4) benzene and other aromatic compounds, including halogenated species, and (5) hydrogen sulfide, carbon disulfide, mercaptans and other sulfur-containing pollutants.

  16. Methodology for monitoring air pollutants on industrial landfill sites

    SciTech Connect

    Hijazi, N.H.; Chai, R.; Nacson, S.

    1982-01-01

    A strategy is outlined to study volatile pollutants from an industrial landfill site with unknown contents. A realtime mobile mass spectrometer system was adapted to achieve the requirements for monitoring the pollutants in a step-wise fashion. (1) In situ sampling and analysis, i.e. a realtime on site monitoring of pollutants. (2) Selective monitoring of chemical classes based on the chemical functional groups. (3) Speciation of the individual chemical compounds within each chemical class. (4) Quantitation of the detected individual chemicals. 3 figures.

  17. Essential Principles for Reform of Chemicals Management Legislation

    EPA Pesticide Factsheets

    EPA's existing chemicals programs address pollution prevention, risk assessment, hazard and exposure assessment and/or characterization, and risk management for chemicals substances in commercial use.

  18. [Current situation of pollution eco-chemistry and its prospects].

    PubMed

    Zhou, Q; Sun, T

    2000-10-01

    As a new discipline, pollution eco-chemistry comes into being with the development and intersection of ecology and environmental chemistry. Main contents of the subject were summarized: 1) movement and transformation of chemical pollutants and their microcosmically eco-chemical processes; 2) ecological effects, eco-toxicology and ecological risk assessment of chemical pollutants; 3) ecological chemistry of global changes; 4) analyses and monitoring of chemical pollutants in ecosystems; 5) eco-chemistry for pollution control. Under the guidance of knowledge innovation as its scientific goal, the research on pollution eco-chemistry will be devoted to a theoretical breakthrough. While doing a through basic research, we should pay attention to related applied research, in order to implement the technological and practical goal of the discipline.

  19. Effects on health of air pollution: a narrative review.

    PubMed

    Mannucci, Pier Mannuccio; Harari, Sergio; Martinelli, Ida; Franchini, Massimo

    2015-09-01

    Air pollution is a complex and ubiquitous mixture of pollutants including particulate matter, chemical substances and biological materials. There is growing awareness of the adverse effects on health of air pollution following both acute and chronic exposure, with a rapidly expanding body of evidence linking air pollution with an increased risk of respiratory (e.g., asthma, chronic obstructive pulmonary disease, lung cancer) and cardiovascular disease (e.g., myocardial infarction, heart failure, cerebrovascular accidents). Elderly subjects, pregnant women, infants and people with prior diseases appear especially susceptible to the deleterious effects of ambient air pollution. The main diseases associated with exposure to air pollutants will be summarized in this narrative review.

  20. PHARMACEUTICALS AND PERSONAL CARE PRODUCTS (PPCPS) AS ENVIRONMENTAL POLLUTANTS: POLLUTION FROM PERSONAL ACTIONS

    EPA Science Inventory

    The occurrence of pharmaceuticals and personal care products (PPCPs) as trace environmental pollutants is a multifaceted issue whose scope of concerns continues to expand. PPCPs comprise thousands of distinct chemicals from numerous therapeutic and consumer classes. They typicall...

  1. PHARMACEUTICALS AND PERSONAL CARE PRODUCTS (PPCP'S) AS ENVIRONMENTAL POLLUTANTS: POLLUTION FROM PERSONAL ACTIONS

    EPA Science Inventory

    The occurrence of pharmaceuticals and personal care products (PPCPs) as trace environmental pollutants is a multifaceted issue whose scope of concerns continues to expand. PPCPs comprise thousands of distinct chemicals from numerous therapeutic and consumer classes. They typical...

  2. PHARMACEUTICALS AND PERSONAL CARE PRODUCTS (PPCPS) AS ENVIRONMENTAL POLLUTANTS: POLLUTION FROM PERSONAL ACTIONS

    EPA Science Inventory

    The occurrence of pharmaceuticals and personal care products (PPCPs) as trace environmental pollutants is a multifaceted issue whose scope of concerns continues to expand. PPCPs comprise thousands of distinct chemicals from numerous therapeutic and consumer classes. They typicall...

  3. PHARMACEUTICALS AND PERSONAL CARE PRODUCTS (PPCP'S) AS ENVIRONMENTAL POLLUTANTS: POLLUTION FROM PERSONAL ACTIONS

    EPA Science Inventory

    The occurrence of pharmaceuticals and personal care products (PPCPs) as trace environmental pollutants is a multifaceted issue whose scope of concerns continues to expand. PPCPs comprise thousands of distinct chemicals from numerous therapeutic and consumer classes. They typical...

  4. Lead (Pb) Air Pollution

    MedlinePlus

    ... States Environmental Protection Agency Search Search Lead (Pb) Air Pollution Share Facebook Twitter Google+ Pinterest Contact Us As ... and protect aquatic and terrestrial ecosystems. Lead (Pb) Air Pollution Lead Air Pollution Basics How does lead get ...

  5. Indoor Air Pollution

    MedlinePlus

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  6. River and Stream Pollution

    MedlinePlus

    ... Coloring Science Experiments Stories Lessons River and Stream Pollution Kids Homepage Topics Pollution River and Stream Pollution ... stream in the first place by disturbing the land as little as possible. Farmers and construction workers ...

  7. PHARMACEUTICALS AS UBIQUITOUS POLLUTANTS: SIGNIFICANCE, CONCERNS, SOLUTIONS

    EPA Science Inventory

    Those chemical pollutants that are regulated under various international, federal, and state programs represent but a small fraction of the universe of chemicals that occur in the environment as a result of both natural processes and human influence. Although this galaxy of targe...

  8. PHARMACEUTICALS AS UBIQUITOUS POLLUTANTS: SIGNIFICANCE, CONCERNS, SOLUTIONS

    EPA Science Inventory

    Those chemical pollutants that are regulated under various international, federal, and state programs represent but a small fraction of the universe of chemicals that occur in the environment as a result of both natural processes and human influence. Although this galaxy of targe...

  9. An innovative ultrasound assisted extraction micro-scale cell combined with gas chromatography/mass spectrometry in negative chemical ionization to determine persistent organic pollutants in air particulate matter.

    PubMed

    Beristain-Montiel, E; Villalobos-Pietrini, R; Arias-Loaiza, G E; Gómez-Arroyo, S L; Amador-Muñoz, O

    2016-12-16

    New clean technologies are needed to determine concentration of organic pollutants without generating more pollution. A method to extract Persistent Organic Pollutants (POPs) from airborne particulate matter was developed using a novel technology recently patented called ultrasound assisted extraction micro-scale cell (UAE-MSC). This technology extracts, filters, collects the sample, and evaporates the solvent, on-line. No sample transfer is needed. The cell minimizes sample manipulation, solvent consumption, waste generation, time, and energy; fulfilling most of the analytical green chemistry protocol. The methodology was optimized applying a centred 2(3) factorial experimental design. Optimum conditions were used to validate and determine concentration of 16 organochlorine pesticides (OCls) and 6 polybrominated diphenyl ethers (PBDEs). The best conditions achieved were 2 extractions with 5mL (each) of dichloromethane over 5min (each) at 60°C and 80% ultrasound potency. POPs were determined by gas chromatography/mass spectrometry in negative chemical ionization (GC/MS-NCI). Analytical method validation was carried out on airborne particles spiked with POPs at seven concentration levels between 0.5 and 26.9pgm(-3). This procedure was done by triplicate (N=21). Recovery, ranged between 65.5±2.3% and 107.5±3.0% for OCls and between 79.1±6.5% and 105.2±3.8% for PBDEs. Linearity (r(2)) was ≥0.94 for all compounds. Method detection limits, ranged from 0.5 to 2.7pgm(-3), while limits of quantification (LOQ), ranged from 1.7 to 9.0pgm(-3). A Bias from -18.6% to 9% for PBDEs was observed in the Standard Reference Material (SRM) 2787. SRM 2787 did not contain OCls. OCls recoveries were equivalent by UAE-MSC and Soxhlet methods UAE-MSC optimized extraction conditions reduced 30 times less solvent and decreased the extraction time from several hours to ten minutes, respect to Soxhlet. UAE-MSC was applied to 15 samples of particles less than 2.5μm (PM2.5) from three

  10. Assessments for TSCA Work Plan Chemicals

    EPA Pesticide Factsheets

    EPA's assessing and managing risk programs address pollution prevention, risk assessment, hazard and exposure assessment and/or characterization, and risk management for chemicals substances in commercial use.

  11. Air quality simulation over South Asia using Hemispheric Transport of Air Pollution version-2 (HTAP-v2) emission inventory and Model for Ozone and Related chemical Tracers (MOZART-4)

    NASA Astrophysics Data System (ADS)

    Surendran, Divya E.; Ghude, Sachin D.; Beig, G.; Emmons, L. K.; Jena, Chinmay; Kumar, Rajesh; Pfister, G. G.; Chate, D. M.

    2015-12-01

    This study presents the distribution of tropospheric ozone and related species for South Asia using the Model for Ozone and Related chemical Tracers (MOZART-4) and Hemispheric Transport of Air Pollution version-2 (HTAP-v2) emission inventory. The model present-day simulated ozone (O3), carbon monoxide (CO) and nitrogen dioxide (NO2) are evaluated against surface-based, balloon-borne and satellite-based (MOPITT and OMI) observations. The model systematically overestimates surface O3 mixing ratios (range of mean bias about: 1-30 ppbv) at different ground-based measurement sites in India. Comparison between simulated and observed vertical profiles of ozone shows a positive bias from the surface up to 600 hPa and a negative bias above 600 hPa. The simulated seasonal variation in surface CO mixing ratio is consistent with the surface observations, but has a negative bias of about 50-200 ppb which can be attributed to a large part to the coarse model resolution. In contrast to the surface evaluation, the model shows a positive bias of about 15-20 × 1017 molecules/cm2 over South Asia when compared to satellite derived CO columns from the MOPITT instrument. The model also overestimates OMI retrieved tropospheric column NO2 abundance by about 100-250 × 1013 molecules/cm2. A response to 20% reduction in all anthropogenic emissions over South Asia shows a decrease in the anuual mean O3 mixing ratios by about 3-12 ppb, CO by about 10-80 ppb and NOX by about 3-6 ppb at the surface level. During summer monsoon, O3 mixing ratios at 200 hPa show a decrease of about 6-12 ppb over South Asia and about 1-4 ppb over the remote northern hemispheric western Pacific region.

  12. EMERGING POLLUTANTS, MASS SPECTROMETRY, AND ...

    EPA Pesticide Factsheets

    Historically fundamental to amassing our understanding of environmental processes and chemical pollution is the realm of mass spectrometry (MS) - the mainstay of analytical chemistry - the workhorse that supplies definitive data that environmental scientists and engineers reply upon for identifying molecular compositions (and ultimately structures) of chemicals. While the power of MS has long been visible to the practicing environmental chemist, it borders on obscurity to the lay public and many scientists. While MS has played a long, historic (and largely invisible) role in establishing our knowledge of environmental processes and pollution, what recognition it does enjoy is usually relegated to that of a tool. It is usually the relevance or significance of the knowledge acquired from the application of the tool that has ultimate meaning to the public and science at large - not how the data were acquired. Methods (736/800): Mass Spectrometry and the

  13. Criteria air pollutants and toxic air pollutants.

    PubMed Central

    Suh, H H; Bahadori, T; Vallarino, J; Spengler, J D

    2000-01-01

    This review presents a brief overview of the health effects and exposures of two criteria pollutants--ozone and particulate matter--and two toxic air pollutants--benzene and formaldehyde. These pollutants were selected from the six criteria pollutants and from the 189 toxic air pollutants on the basis of their prevalence in the United States, their physicochemical behavior, and the magnitude of their potential health threat. The health effects data included in this review primarily include results from epidemiologic studies; however, some findings from animal studies are also discussed when no other information is available. Health effects findings for each pollutant are related in this review to corresponding information about outdoor, indoor, and personal exposures and pollutant sources. Images Figure 3 Figure 8 Figure 9 PMID:10940240

  14. Pollutant Assessments Group Procedures Manual

    SciTech Connect

    Chavarria, D.E.; Davidson, J.R.; Espegren, M.L.; Kearl, P.M.; Knott, R.R.; Pierce, G.A.; Retolaza, C.D.; Smuin, D.R.; Wilson, M.J.; Witt, D.A. ); Conklin, N.G.; Egidi, P.V.; Ertel, D.B.; Foster, D.S.; Krall, B.J.; Meredith, R.L.; Rice, J.A.; Roemer, E.K. )

    1991-02-01

    This procedures manual combines the existing procedures for radiological and chemical assessment of hazardous wastes used by the Pollutant Assessments Group at the time of manuscript completion (October 1, 1990). These procedures will be revised in an ongoing process to incorporate new developments in hazardous waste assessment technology and changes in administrative policy and support procedures. Format inconsistencies will be corrected in subsequent revisions of individual procedures.

  15. Process simulation tools for pollution prevention

    SciTech Connect

    Hilaly, A.K.; Sikdar, S.K.

    1996-02-01

    Growing environmental concerns have spurred considerable interest in pollution prevention. In most instances, pollution prevention involves introducing radical changes to the design of processes so that waste generation is minimized. Process simulators can be effective tools in achieving the objectives of pollution prevention. Here the authors look at the capabilities and limitations of existing simulators for handling pollution prevention. They discuss the new tools under development. A process simulator is a large computer program that simulates the operations of chemical and allied processes. Chemical process plants usually consist of many process units. Each of these can, in principle, be modeled mathematically. Process simulators provide an overall integration of the mathematical models of these commonly encountered process units.

  16. Towards sustainable pollution management

    NASA Astrophysics Data System (ADS)

    Jern, N. G. W.

    2017-03-01

    It is often overlooked pollution control itself may not be entirely free from adverse impact on the environment if considered from a more holistic perspective. For example mechanised wastewater treatment is energy intensive and so has a carbon footprint because of the need to move air to supply oxygen to the aerobic treatment process. The aerobic treatment process then results in excess bio-sludge which requires disposal and if such is not appropriately performed, then there is risk of surface and groundwater contamination. This presentation explores the changes which have been investigated and are beginning to be implemented in wastewater, sludge, and agro-industrial wastes management which are more environmentally benign. Three examples shall be used to illustrate the discussion. The first example uses the conventional sewage treatment system with a unit process arrangement which converts carbonaceous pollutants from soluble and colloidal forms to particulate forms with an aerobic process before attempting energy recovery with an anaerobic process. Such an arrangement does, however, result in a negative energy balance. This is not withstanding the fact there is potentially more energy in sewage than is required to treat it if that energy can be effectively harvested. The latter can be achieved by removing the carbonaceous pollutants before the aerobic process and thereby using the aerobic process for polishing instead of treating. The carbonaceous pollutants so recovered then becomes the feed for the anaerobic process. Unfortunately conventional anaerobic sludge digestion only removes 35-45% of the organic material fed. Since biogas production (and hence energy recovery) is linked to the amount of organic material which can be degraded anaerobically, the effectiveness of the anaerobic digestion process needs to be improved. Contrary to a commonly held belief wherein methanogenesis is the “bottleneck” in anaerobic processes, hydrolysis is in sludge digestion

  17. [Construction of index system for early warning of persistent organic pollutants (POPs) pollution incidents in China].

    PubMed

    Wang, Lin; Lü, Yong-Long; He, Gui-Zhen; Wang, Tie-Yu

    2014-10-01

    Early warning of pollution incidents caused by persistent organic pollutants (POPs) is urgently needed for China in the circumstances of serious POPs pollution and in increasing demand for improvement in chemical risk management. Given different categories of POPs and pollution incidents, the index system for early warning of POPs pollution accidents was built based on lifecycle theory and POPs formation mechanisms. It will be helpful for decision makers to enhance the early warning management of POPs pollution incidents in China. The index system for early warning includes two parts, early warning and mechanism for system operation. The indices include risk source indicators, warning indicators and warning level indicators. To ensure the effective implementation of this system, the mechanisms for response and policy guarantee were also formulated. These mechanisms contain dynamic inventory management and periodical assessment of risk sources, timely and effective report of warning conditions, as well as coordination and cooperation among the relevant departments.

  18. Chemical Engineering in the Spectrum of Knowledge.

    ERIC Educational Resources Information Center

    Sutija, Davor P.; Prausnitz, John M.

    1990-01-01

    Provides three classroom examples showing students how chemical engineering techniques can supply partial answers to social questions, such as environmental issues. Examples are depletion of the ozone layer, nuclear winter, and air pollution by chemical solvents. (YP)

  19. Chemical Engineering in the Spectrum of Knowledge.

    ERIC Educational Resources Information Center

    Sutija, Davor P.; Prausnitz, John M.

    1990-01-01

    Provides three classroom examples showing students how chemical engineering techniques can supply partial answers to social questions, such as environmental issues. Examples are depletion of the ozone layer, nuclear winter, and air pollution by chemical solvents. (YP)

  20. 76 FR 77457 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... of Subjects in 40 CFR Part 300 Environmental protection, Air pollution control, Chemicals, Hazardous... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 300 National Oil and Hazardous Substances Pollution Contingency Plan;...

  1. [Current data on atmospheric pollutions].

    PubMed

    Festy, B; Petit-Coviaux, F; Le Moullec, Y

    1991-01-01

    Atmospheric pollutions (AP) are very important for human health and ecological equilibrium. They may be natural or anthropogenic and in this later case they can appear outdoor or indoor. Urban air pollution is the most known form of AP. Its main sources are industries, individual and collective heating and now mainly automobile traffic in most cities. Classical AP indicators are SO2, particles, NOx, CO and Pb measured in networks. Important factors of AP are amounts of pollutants emitted and local climatic and meteorological characteristics. Health effects of AP peaks and of AP background levels are not well known. But generally, mean AP levels of SO2 and particles decreased in the last years in most towns as the consequence of collective actions on the three main sources of AP and on fuels, emission and immission levels; but more is wanted about motor-cars. Progress are necessary for limitation of three major ecological risks: "acid-rain" (SO2 and NOx derivatives, ozone,...) which participates in lake and forest attacks; "green house" effects whose air CO2 concentration increase is the main responsible, and stratospheric ozone depletion mainly due to freons (CFC); the consequences of these two last phenomena are not well known but ecological and health risk exist. Besides, indoor air pollution (IAP) is very important because we live more than 20 h a day indoor. IAP may be occupational (a lot of chemical or biological agents) or not. In the later case air pollutants are very various: CO, NOx and particles from heating or cooking, formaldehyde from wood glue, plywood or urea-formol foams, radon and derivatives in some granitic countries, odd jobs products, cosmetics, aero-allergens of chemical or biological origins, microbes,... Environmental tobacco smoke (ETS) is also an important pollutant complex. Risks of IAP are real or potential: acute risk is obvious for CO, aero-allergens, formaldehyde, NOx,...); irritations are produced by ETS, formaldehyde, solvants

  2. Automobiles and pollution

    SciTech Connect

    Degobert, P.

    1995-12-31

    This book explores the impact automobile emissions have on air pollution, focusing objectively on the share of pollution that can actually be attributed to the use of vehicles. Automobiles and Pollution begins with a presentation of general information on atmospheric pollution, including its regulatory aspects. The book`s focus then shifts to a more in-depth analysis of how pollutants can be eliminated from car exhaust emissions. Automobiles and Pollution will serve as a thorough and up-to-date reference for the specialist, and an informative primer to the nonspecialist needing an objective opinion on the subject.

  3. Optimal pollution trading without pollution reductions

    EPA Science Inventory

    Many kinds of water pollution occur in pulses, e.g., agricultural and urban runoff. Ecosystems, such as wetlands, can serve to regulate these pulses and smooth pollution distributions over time. This smoothing reduces total environmental damages when “instantaneous” damages are m...

  4. Optimal pollution trading without pollution reductions

    EPA Science Inventory

    Many kinds of water pollution occur in pulses, e.g., agricultural and urban runoff. Ecosystems, such as wetlands, can serve to regulate these pulses and smooth pollution distributions over time. This smoothing reduces total environmental damages when “instantaneous” damages are m...

  5. Regional air pollution over Malaysia

    NASA Astrophysics Data System (ADS)

    Krysztofiak, G.; Catoire, V.; Dorf, M.; Grossmann, K.; Hamer, P. D.; Marécal, V.; Reiter, A.; Schlager, H.; Eckhardt, S.; Jurkat, T.; Oram, D.; Quack, B.; Atlas, E.; Pfeilsticker, K.

    2012-12-01

    During the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) campaign in Nov. and Dec. 2011 a number of polluted air masses were observed in the marine and terrestrial boundary layer (0 - 2 km) and in the free troposphere (2 - 12 km) over Borneo/Malaysia. The measurements include isoprene, CO, CO2, CH4, N2O, NO2, SO2 as primary pollutants, O3 and HCHO as secondary pollutants, and meteorological parameters. This set of trace gases can be used to fingerprint different sources of local and regional air pollution (e.g., biomass burning and fossil fuel burning, gas flaring on oil rigs, emission of ships and from urban areas, volcanic emissions, and biogenic emissions). Individual sources and location can be identified when the measurements are combined with a nested-grid regional scale chemical and meteorological model and lagrangian particle dispersion model (e.g., CCATT-BRAMS and FLEXPART). In the case of the former, emission inventories of the primary pollutants provide the basis for the trace gas simulations. In this region, the anthropogenic influence on air pollution seems to dominate over natural causes. For example, CO2 and CH4 often show strong correlations with CO, suggesting biomass burning or urban fossil fuel combustion dominates the combustion sources. The study of the CO/CO2 and CH4/CO ratios can help separate anthropogenic combustion from biomass burning pollution sources. In addition, these ratios can be used as a measure of combustion efficiency to help place the type of biomass burning particular to this region within the wider context of fire types found globally. On several occasions, CH4 enhancements are observed near the ocean surface, which are not directly correlated with CO enhancements thus indicating a non-combustion-related CH4 source. Positive correlations between SO2 and CO show the anthropogenic influence of oil rigs located in the South China Sea. Furthermore, SO2 enhancements are observed without any increase in CO

  6. The Pollution Solution.

    ERIC Educational Resources Information Center

    Stephens, Lillian

    1981-01-01

    Presented are methods to help teachers continue the environmental awareness programs they have already started by providing up-to-date information and activities dealing with air pollution, water pollution, and solid waste disposal. (Author/KC)

  7. Exploring Oil Pollution

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1974-01-01

    Discusses damages of oil tanker spillage to the marine organisms and scientists' research in oil pollution removal techniques. Included is a list of learning activities concerning the causes and effects of oil pollution and methods of solving the problem. (CC)

  8. Kookaburras and Polluted Streams.

    ERIC Educational Resources Information Center

    Clark, Julie; Harrison, Terry

    2000-01-01

    Discusses the role of teachers in environmental education. Presents two simulations on water pollution in order to explore pollution of the environment and investigate the life and ecology of a native bird or investigate predator/prey relationships. (ASK)

  9. Kookaburras and Polluted Streams.

    ERIC Educational Resources Information Center

    Clark, Julie; Harrison, Terry

    2000-01-01

    Discusses the role of teachers in environmental education. Presents two simulations on water pollution in order to explore pollution of the environment and investigate the life and ecology of a native bird or investigate predator/prey relationships. (ASK)

  10. Pollution of Florida's rivers.

    PubMed

    Cromartie, R S

    1991-12-01

    Pollution of Florida's waterways is a serious problem. Sources of pollution include sewage, storm water runoff, faulty septic tanks, improperly constructed landfills, and obstruction by causeway bridges. Some of the major causes and solutions are discussed.

  11. Exploring Oil Pollution

    ERIC Educational Resources Information Center

    Rillo, Thomas J.

    1974-01-01

    Discusses damages of oil tanker spillage to the marine organisms and scientists' research in oil pollution removal techniques. Included is a list of learning activities concerning the causes and effects of oil pollution and methods of solving the problem. (CC)

  12. The Pollution Solution.

    ERIC Educational Resources Information Center

    Stephens, Lillian

    1981-01-01

    Presented are methods to help teachers continue the environmental awareness programs they have already started by providing up-to-date information and activities dealing with air pollution, water pollution, and solid waste disposal. (Author/KC)

  13. Particulate Matter (PM) Pollution

    MedlinePlus

    ... Environmental Protection Agency Search Search Particulate Matter (PM) Pollution Contact Us Share Most PM particles form in ... and cause serious health effects. Particulate Matter (PM) Pollution PM Basics What is PM, and how does ...

  14. Labor and pollution prevention in Canada.

    PubMed

    Bennett, Dave

    2012-01-01

    This article gives an account of Canadian Chemicals Policy over the past three decades, including the project for the "virtual elimination" of toxic chemicals and the federal government's Chemical Management Plan. The latter is what remained when the virtual elimination program achieved few results. The article then embarks on its central theme: explaining how the labor movement introduced the concept and the practice of Pollution Prevention (P2) to Canada, as well as its impact on legislation and policies over the use reduction of chemical pesticides. The Appendix is a glossary of terms and concepts used in the article.

  15. Pollution prevention drives membrane technologies

    SciTech Connect

    Cartwright, P.

    1994-09-01

    Currently, such membrane technologies as crossflow micro-, ultra-, and nanofiltration, reverse osmosis, electrodialysis and pervaporation offer interesting possibilities, each tackling a specific aspect of pollution control. Although none of these methods can, on its own, alter or break down pollutants, each has the ability to separate, fractionate and concentrate contaminants. In addition, they: permit continuous, uninterrupted processing via automatic control; use far less energy than traditional treatment methods; require only minimal temperature changes and no chemical additives; exert no impact on contaminants, and keep them physically separated from the stream; and are easy to install, either alone or combined with other treatment systems, since they are modular and contain few moving parts. The paper discusses the benefits and disadvantages of membrane technology and recommends thorough testing.

  16. Air Pollution, Teachers' Edition.

    ERIC Educational Resources Information Center

    Lavaroni, Charles W.; O'Donnell, Patrick A.

    One of three in a series about pollution, this teacher's guide for a unit on air pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of ai