Sample records for early-stage mismatch-repair proficient

  1. Blockade of LAG3 enhances responses of tumor-infiltrating T cells in mismatch repair-proficient liver metastases of colorectal cancer

    PubMed Central

    Noordam, Lisanne; Sprengers, Dave; Boor, Patrick P. C.; Mancham, Shanta; Menon, Anand G.; Lange, Johan F.; Burger, Pim J. W. A.; Brandt, Alexandra; Galjart, Boris; Kwekkeboom, Jaap; Bruno, Marco J.

    2018-01-01

    ABSTRACT Purpose: Liver metastasis develops in >50% of patients with colorectal cancer (CRC), and is a leading cause of CRC-related mortality. We aimed to identify which inhibitory immune checkpoint pathways can be targeted to enhance functionality of intra-tumoral T-cells in mismatch repair-proficient liver metastases of colorectal cancer (LM-CRC). Methodology: Intra-tumoral expression of multiple inhibitory molecules was compared among mismatch repair-proficient LM-CRC, peritoneal metastases of colorectal cancer (PM-CRC) and primary CRC. Expression of inhibitory molecules was also analyzed on leukocytes isolated from paired resected metastatic liver tumors, tumor-free liver tissues, and blood of patients with mismatch repair-proficient LM-CRC. The effects of blocking inhibitory pathways on tumor-infiltrating T-cell responses were studied in ex vivo functional assays. Results: Mismatch repair-proficient LM-CRC showed higher expression of inhibitory receptors on intra-tumoral T-cells and contained higher proportions of CD8+ T-cells, dendritic cells and monocytes than mismatch repair-proficient primary CRC and/or PM-CRC. Inhibitory receptors LAG3, PD-1, TIM3 and CTLA4 were higher expressed on CD8+ T-cells, CD4+ T-helper and/or regulatory T-cells in LM-CRC tumors compared with tumor-free liver and blood. Antibody blockade of LAG3 or PD-L1 increased proliferation and effector cytokine production of intra-tumoral T-cells isolated from LM-CRC in response to both polyclonal and autologous tumor-specific stimulations. Higher LAG3 expression on intra-tumoral CD8+ T-cells associated with longer progression-free survival of LM-CRC patients. Conclusion: Mismatch repair-proficient LM-CRC may be more sensitive to immune checkpoint inhibitors than mismatch repair-proficient primary CRC. Blocking LAG3 enhances tumor-infiltrating T-cell responses of mismatch repair-proficient LM-CRC, and therefore may be a new promising immunotherapeutic target for LM-CRC.

  2. Clinicopathogenomic analysis of mismatch repair proficient colorectal adenocarcinoma uncovers novel prognostic subgroups with differing patterns of genetic evolution.

    PubMed

    Braxton, David R; Zhang, Ray; Morrissette, Jennifer D; Loaiza-Bonilla, Arturo; Furth, Emma E

    2016-10-01

    Cancer somatic genetic evolution is a direct contributor to heterogeneity at the clonal and molecular level in colorectal adenocarcinoma (COAD). We sought to determine the extent to which genetic evolution may be detected in COAD in routinely obtained single clinical specimens and establish clinical significance with regard to clinicopathologic and outcome data. One hundred and twenty three cases of routinely collected mismatch repair proficient COAD were sequenced on the Illumina Truseq Amplicon assay. Measures of intratumoral heterogeneity and the preferential timing of mutational events were assessed and compared to clinicopathologic data. Survival subanalysis was performed on 55 patients. Patient age (p = 0.013) and specimen percent tumor (p = 0.033) was associated with clonal diversity, and biopsy (p = 0.044) and metastasis (p = 0.044) returned fewer mutations per case. APC and TP53 mutations preferentially occurred early while alterations in FBXW7, FLT3, SMAD4, GNAS and PTEN preferentially occurred as late events. Temporal heterogeneity was evident in KRAS and PIK3CA mutations. Hierarchical clustering revealed a TP53 mutant subtype and a MAPK-PIK3CA subtype with differing patterns of late mutational events. Survival subanalysis showed a decreased median progression free survival for the MAPK-PIK3CA subtype (8 months vs. 13 months; univariate logrank p = 0.0380, cox model p= 0.018). Neoadjuvant therapy associated mutations were found for ERBB2 (p = 0.0481) and FBXW7 (p = 0.015). Our data indicate novel molecular subtypes of mismatch repair proficient COAD display differing patterns of genetic evolution which correlate with clinical outcomes. Furthermore, we report treatment acquired and/or selected mutations in ERBB2 and FBXW7. © 2016 UICC.

  3. Efficient engineering of chromosomal ribosome binding site libraries in mismatch repair proficient Escherichia coli.

    PubMed

    Oesterle, Sabine; Gerngross, Daniel; Schmitt, Steven; Roberts, Tania Michelle; Panke, Sven

    2017-09-26

    Multiplexed gene expression optimization via modulation of gene translation efficiency through ribosome binding site (RBS) engineering is a valuable approach for optimizing artificial properties in bacteria, ranging from genetic circuits to production pathways. Established algorithms design smart RBS-libraries based on a single partially-degenerate sequence that efficiently samples the entire space of translation initiation rates. However, the sequence space that is accessible when integrating the library by CRISPR/Cas9-based genome editing is severely restricted by DNA mismatch repair (MMR) systems. MMR efficiency depends on the type and length of the mismatch and thus effectively removes potential library members from the pool. Rather than working in MMR-deficient strains, which accumulate off-target mutations, or depending on temporary MMR inactivation, which requires additional steps, we eliminate this limitation by developing a pre-selection rule of genome-library-optimized-sequences (GLOS) that enables introducing large functional diversity into MMR-proficient strains with sequences that are no longer subject to MMR-processing. We implement several GLOS-libraries in Escherichia coli and show that GLOS-libraries indeed retain diversity during genome editing and that such libraries can be used in complex genome editing operations such as concomitant deletions. We argue that this approach allows for stable and efficient fine tuning of chromosomal functions with minimal effort.

  4. An Inducible, Isogenic Cancer Cell Line System for Targeting the State of Mismatch Repair Deficiency

    PubMed Central

    Bailis, Julie M.; Gordon, Marcia L.; Gurgel, Jesse L.; Komor, Alexis C.; Barton, Jacqueline K.; Kirsch, Ilan R.

    2013-01-01

    The DNA mismatch repair system (MMR) maintains genome stability through recognition and repair of single-base mismatches and small insertion-deletion loops. Inactivation of the MMR pathway causes microsatellite instability and the accumulation of genomic mutations that can cause or contribute to cancer. In fact, 10-20% of certain solid and hematologic cancers are MMR-deficient. MMR-deficient cancers do not respond to some standard of care chemotherapeutics because of presumed increased tolerance of DNA damage, highlighting the need for novel therapeutic drugs. Toward this goal, we generated isogenic cancer cell lines for direct comparison of MMR-proficient and MMR-deficient cells. We engineered NCI-H23 lung adenocarcinoma cells to contain a doxycycline-inducible shRNA designed to suppress the expression of the mismatch repair gene MLH1, and compared single cell subclones that were uninduced (MLH1-proficient) versus induced for the MLH1 shRNA (MLH1-deficient). Here we present the characterization of these MMR-inducible cell lines and validate a novel class of rhodium metalloinsertor compounds that differentially inhibit the proliferation of MMR-deficient cancer cells. PMID:24205301

  5. Selective Cytotoxicity of Rhodium Metalloinsertors in Mismatch Repair-Deficient Cells†

    PubMed Central

    Ernst, Russell J.; Komor, Alexis C.; Barton, Jacqueline K.

    2011-01-01

    Mismatches in DNA occur naturally during replication and as a result of endogenous DNA damaging agents, but the mismatch repair (MMR) pathway acts to correct mismatches before subsequent rounds of replication. Rhodium metalloinsertors bind to DNA mismatches with high affinity and specificity and represent a promising strategy to target mismatches in cells. Here we examine the biological fate of rhodium metalloinsertors bearing dipyridylamine ancillary ligands in cells deficient in MMR versus those that are MMR-proficient. These complexes are shown to exhibit accelerated cellular uptake which permits the observation of various cellular responses, including disruption of the cell cycle, monitored by flow cytometry assays, and induction of necrosis, monitored by dye exclusion and caspase inhibition assays, that occur preferentially in the MMR-deficient cell line. These cellular responses provide insight into the mechanisms underlying the selective activity of this novel class of targeted anti-cancer agents. PMID:22103240

  6. DNA mismatch-specific targeting and hypersensitivity of mismatch-repair-deficient cells to bulky rhodium(III) intercalators

    PubMed Central

    Hart, Jonathan R.; Glebov, Oleg; Ernst, Russell J.; Kirsch, Ilan R.; Barton, Jacqueline K.

    2006-01-01

    Mismatch repair (MMR) is critical to maintaining the integrity of the genome, and deficiencies in MMR are correlated with cancerous transformations. Bulky rhodium intercalators target DNA base mismatches with high specificity. Here we describe the application of bulky rhodium intercalators to inhibit cellular proliferation differentially in MMR-deficient cells compared with cells that are MMR-proficient. Preferential inhibition by the rhodium complexes associated with MMR deficiency is seen both in a human colon cancer cell line and in normal mouse fibroblast cells; the inhibition of cellular proliferation depends strictly on the MMR deficiency of the cell. Furthermore, our assay of cellular proliferation is found to correlate with DNA mismatch targeting by the bulky metallointercalators. It is the Δ-isomer that is active both in targeting base mismatches and in inhibiting DNA synthesis. Additionally, the rhodium intercalators promote strand cleavage at the mismatch site with photoactivation, and we observe that the cellular response is enhanced with photoactivation. Targeting DNA mismatches may therefore provide a cell-selective strategy for chemotherapeutic design. PMID:17030786

  7. Homozygous germ-line mutation of the PMS2 mismatch repair gene: a unique case report of constitutional mismatch repair deficiency (CMMRD).

    PubMed

    Ramchander, N C; Ryan, N A J; Crosbie, E J; Evans, D G

    2017-04-05

    Constitutional mismatch repair deficiency syndrome results from bi-allelic inheritance of mutations affecting the key DNA mismatch repair genes: MLH1, MSH2, MSH6 or PMS2. Individuals with bi-allelic mutations have a dysfunctional mismatch repair system from birth; as a result, constitutional mismatch repair deficiency syndrome is characterised by early onset malignancies. Fewer than 150 cases have been reported in the literature over the past 20 years. This is the first report of the founder PMS2 mutation - NM_000535.5:c.1500del (p.Val501TrpfsTer94) in exon 11 and its associated cancers in this family. The proband is 30 years old and is alive today. She is of Pakistani ethnic origin and a product of consanguinity. She initially presented aged 24 with painless bleeding per-rectum from colorectal polyps and was referred to clinical genetics. Clinical examination revealed two café-au-lait lesions, lichen planus, and a dermoid cyst. Her sister had been diagnosed in childhood with an aggressive brain tumour followed by colorectal cancer. During follow up, the proband developed 37 colorectal adenomatous polyps, synchronous ovarian and endometrial adenocarcinomas, and ultimately a metachronous gastric adenocarcinoma. DNA sequencing of peripheral lymphocytes revealed a bi-allelic inheritance of the PMS2 mutation NM_000535.5:c.1500del (p.Val501TrpfsTer94) in exon 11. Ovarian tumour tissue demonstrated low microsatellite instability. To date, she has had a total abdominal hysterectomy, bilateral salpingo-oophorectomy, and a total gastrectomy. Aspirin and oestrogen-only hormone replacement therapy provide some chemoprophylaxis and manage postmenopausal symptoms, respectively. An 18-monthly colonoscopy surveillance programme has led to the excision of three high-grade dysplastic colorectal tubular adenomatous polyps. The proband's family pedigree displays multiple relatives with cancers including a likely case of 'true' Turcot syndrome. Constitutional mismatch repair

  8. Prognostic value of MACC1 and proficient mismatch repair status for recurrence risk prediction in stage II colon cancer patients: the BIOGRID studies.

    PubMed

    Rohr, U-P; Herrmann, P; Ilm, K; Zhang, H; Lohmann, S; Reiser, A; Muranyi, A; Smith, J; Burock, S; Osterland, M; Leith, K; Singh, S; Brunhoeber, P; Bowermaster, R; Tie, J; Christie, M; Wong, H-L; Waring, P; Shanmugam, K; Gibbs, P; Stein, U

    2017-08-01

    We assessed the novel MACC1 gene to further stratify stage II colon cancer patients with proficient mismatch repair (pMMR). Four cohorts with 596 patients were analyzed: Charité 1 discovery cohort was assayed for MACC1 mRNA expression and MMR in cryo-preserved tumors. Charité 2 comparison cohort was used to translate MACC1 qRT-PCR analyses to FFPE samples. In the BIOGRID 1 training cohort MACC1 mRNA levels were related to MACC1 protein levels from immunohistochemistry in FFPE sections; also analyzed for MMR. Chemotherapy-naïve pMMR patients were stratified by MACC1 mRNA and protein expression to establish risk groups based on recurrence-free survival (RFS). Risk stratification from BIOGRID 1 was confirmed in the BIOGRID 2 validation cohort. Pooled BIOGRID datasets produced a best effect-size estimate. In BIOGRID 1, using qRT-PCR and immunohistochemistry for MACC1 detection, pMMR/MACC1-low patients had a lower recurrence probability versus pMMR/MACC1-high patients (5-year RFS of 92% and 67% versus 100% and 68%, respectively). In BIOGRID 2, longer RFS was confirmed for pMMR/MACC1-low versus pMMR/MACC1-high patients (5-year RFS of 100% versus 90%, respectively). In the pooled dataset, 6.5% of patients were pMMR/MACC1-low with no disease recurrence, resulting in a 17% higher 5-year RFS [95% confidence interval (CI) (12.6%-21.3%)] versus pMMR/MACC1-high patients (P = 0.037). Outcomes were similar for pMMR/MACC1-low and deficient MMR (dMMR) patients (5-year RFS of 100% and 96%, respectively). MACC1 expression stratifies colon cancer patients with unfavorable pMMR status. Stage II colon cancer patients with pMMR/MACC1-low tumors have a similar favorable prognosis to those with dMMR with potential implications for the role of adjuvant therapy. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Cytosine-based nucleoside analogs are selectively lethal to DNA mismatch repair-deficient tumour cells by enhancing levels of intracellular oxidative stress

    PubMed Central

    Hewish, M; Martin, S A; Elliott, R; Cunningham, D; Lord, C J; Ashworth, A

    2013-01-01

    Background: DNA mismatch repair deficiency is present in a significant proportion of a number of solid tumours and is associated with distinct clinical behaviour. Methods: To identify the therapeutic agents that might show selectivity for mismatch repair-deficient tumour cells, we screened a pair of isogenic MLH1-deficient and MLH1-proficient tumour cell lines with a library of clinically used drugs. To test the generality of hits in the screen, selective agents were retested in cells deficient in the MSH2 mismatch repair gene. Results: We identified cytarabine and other related cytosine-based nucleoside analogues as being selectively toxic to MLH1 and MSH2-deficient tumour cells. The selective cytotoxicity we observed was likely caused by increased levels of cellular oxidative stress, as it could be abrogated by antioxidants. Conclusion: We propose that cytarabine-based chemotherapy regimens may represent a tumour-selective treatment strategy for mismatch repair-deficient cancers. PMID:23361057

  10. Topoisomerase-1 and -2A gene copy numbers are elevated in mismatch repair-proficient colorectal cancers.

    PubMed

    Sønderstrup, Ida Marie Heeholm; Nygård, Sune Boris; Poulsen, Tim Svenstrup; Linnemann, Dorte; Stenvang, Jan; Nielsen, Hans Jørgen; Bartek, Jiri; Brünner, Nils; Nørgaard, Peter; Riis, Lene

    2015-06-01

    Topoisomerase 1 (TOP1) and 2A (TOP2A) are potential predictive biomarkers for irinotecan and anthracycline treatment, respectively, in colorectal cancer (CRC), and we have recently reported a high frequency of gene gain of the TOP1 and TOP2A genes in CRC. Furthermore, Mismatch Repair (MMR) subtypes of CRC have been associated with benefit from adjuvant chemotherapy of primary CRC. Given the involvement of the topoisomerase enzymes in DNA replication and repair, we raised the hypothesis that an association may exist between TOP gene copy numbers and MMR proficiency/deficiency in CRC. Test cohort: FISH analysis with an in-house TOP1/CEN20 probe mix and a commercially available TOP2A/CEN17 (Dako, Glostrup, Denmark) probe mix was performed on archival formalin fixed paraffin embedded (FFPE) tissue samples from 18 patients with proficient MMR (pMMR) CRC and 18 patients with deficient MMR (dMMR) CRC. TOP1 and TOP2A gene copy numbers and their ratios per nucleus were correlated with MMR status using the Mann-Whitney test. Validation cohort: FFPE samples from 154 patients with primary stage III CRC (originally included in the RANX05 study) were classified according to MMR status by immunohistochemical analysis using validated antibodies for MLH1, MLH2, MSH6 and PMS2, and information on TOP1, CEN20, TOP2A and CEN17 status was previously published for this cohort. The observed TOP1 gene copy numbers in the 36 CRC test cohort were significantly greater (p < 0.01) in the pMMR subgroup (mean: 3.84, SD: 2.03) than in the dMMR subgroup (mean: 1.50, SD: 0.12). Similarly, the TOP2A copy numbers were significantly greater (p < 0.01) in the pMMR subgroup (mean: 1.99, SD: 0.52) than in the dMMR subgroup (mean: 1.52, SD: 0.10). These findings were confirmed in the validation cohort, where in the pMMR subgroup 51% had ≥2 extra TOP1 copies per cell, while all tumors classified as dMMR had diploid TOP1 status and mean TOP2A copy numbers were 2.30 (SD: 1.36) and 1.80 (SD: 0.31) (p = 0

  11. Characterization of the immunological microenvironment of tumour buds and its impact on prognosis in mismatch repair-proficient and -deficient colorectal cancers.

    PubMed

    Zlobec, Inti; Minoo, Parham; Terracciano, Luigi; Baker, Kristi; Lugli, Alessandro

    2011-09-01

    Tumour budding in colorectal cancer is established as a poor prognostic factor. The inverse correlation of tumour buds with peritumoural lymphocytic inflammation suggests an interaction with specific immune responses. The aims of this study were to characterize the immunological microenvironment of tumour buds and its impact on prognosis in mismatch repair (MMR)-proficient and -deficient colorectal cancers. A total of 297 colorectal cancers were double-immunostained for CK22 plus one of the following: CD138, CD16, CD20, CD21, CD56, CD68, CD8, forkhead box P2 (FoxP3), granzyme B, mast cell tryptase, CD3 or T cell intracellular antigen-1 (TIA)-1. Tumour buds and immune cells within the region of densest budding were evaluated [×40 high-power field (HPF)] simultaneously. In both MMR-proficient and -deficient cancers, CD8(+), FoxP3(+) and CD68(+) cells were observed most frequently (>40 cells/HPF) and were independent prognostic factors. A combined prognostic score of tumour budding and CD8(+), FoxP3(+) and CD68(+) distinctly identified patients with low-, moderate- or high-risk colorectal cancers with 5-year survival rates of 75.2% [confidence interval 95% (CI): 66-83], 56.3% (95% CI: 43-68) and 25.2% (95% CI: 14-38), respectively, in MMR-proficient and -deficient cancers. The combined assessment of tumour budding with CD8, FoxP3 and CD68 lymphocytes could represent a basis for a prognostic score similar to the Bloom Richardson grade (BRE) and Gleason scores for breast and prostatic cancers. © 2011 Blackwell Publishing Limited.

  12. Clinical Management and Tumor Surveillance Recommendations of Inherited Mismatch Repair Deficiency in Childhood.

    PubMed

    Tabori, Uri; Hansford, Jordan R; Achatz, Maria Isabel; Kratz, Christian P; Plon, Sharon E; Frebourg, Thierry; Brugières, Laurence

    2017-06-01

    Replication proofreading is crucial to avoid mutation accumulation in dividing cells. In humans, proofreading and replication repair is maintained by the exonuclease domains of DNA polymerases and the mismatch repair system. Individuals harboring germline mutations in genes involved in this process are at increased risk of early cancers from multiple organs. Biallelic mutations in any of the four mismatch repair genes MSH2, MSH6, MLH1 , and PMS2 result in one of the most aggressive childhood cancer predisposition syndromes, termed constitutional mismatch repair deficiency or constitutional mismatch repair deficiency syndrome (CMMRD). Data gathered in the last decade allow us to better define the clinical manifestations, tumor spectrum, and diagnostic algorithms for CMMRD. In this article, we summarize this information and present a comprehensive consensus surveillance protocol for these individuals. Ongoing research will allow for further definition of replication repair-deficient cancer syndromes, assessing the cost-effectiveness of such surveillance protocols and potential therapeutic interventions for these children and families. Clin Cancer Res; 23(11); e32-e37. ©2017 AACR See all articles in the online-only CCR Pediatric Oncology Series. ©2017 American Association for Cancer Research.

  13. XPD polymorphisms: effects on DNA repair proficiency.

    PubMed

    Lunn, R M; Helzlsouer, K J; Parshad, R; Umbach, D M; Harris, E L; Sanford, K K; Bell, D A

    2000-04-01

    XPD codes for a DNA helicase involved in transcription and nucleotide excision repair. Rare XPD mutations diminish nucleotide excision repair resulting in hypersensitivity to UV light and increased risk of skin cancer. Several polymorphisms in this gene have been identified but their impact on DNA repair is not known. We compared XPD genotypes at codons 312 and 751 with DNA repair proficiency in 31 women. XPD genotypes were measured by PCR-RFLP. DNA repair proficiency was assessed using a cytogenetic assay that detects X-ray induced chromatid aberrations (breaks and gaps). Chromatid aberrations were scored per 100 metaphase cells following incubation at 37 degrees C (1.5 h after irradiation) to allow for repair of DNA damage. Individuals with the Lys/Lys codon 751 XPD genotype had a higher number of chromatid aberrations (132/100 metaphase cells) than those having a 751Gln allele (34/100 metaphase cells). Individuals having greater than 60 chromatid breaks plus gaps were categorized as having sub-optimal repair. Possessing a Lys/Lys751 genotype increased the risk of sub-optimal DNA repair (odds ratio = 7.2, 95% confidence interval = 1.01-87.7). The Asp312Asn XPD polymorphism did not appear to affect DNA repair proficiency. These results suggest that the Lys751 (common) allele may alter the XPD protein product resulting in sub-optimal repair of X-ray-induced DNA damage.

  14. Removal of N-6-methyladenine by the nucleotide excision repair pathway triggers the repair of mismatches in yeast gap-repair intermediates.

    PubMed

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-12-01

    Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the collateral

  15. Removal of N-6-methyladenine by the nucleotide excision repair pathway triggers the repair of mismatches in yeast gap-repair intermediates

    PubMed Central

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-01-01

    Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the cillateral

  16. [Expression of DNA mismatch repair protein in endometrial carcinomas and its correlation with clinicopathologic features].

    PubMed

    Bi, R; Tu, X Y; Xiao, Y X; Shan, B E; Wang, H Y; Cai, X; Zhou, X Y; Yang, W T

    2016-05-08

    To study the expression of mismatch repair protein in a series of endometrial carcinomas and its correlation with clinicopathologic features. The clinical data of 150 consecutive cases of endometrial carcinoma were collected during the period from December, 2014 to August, 2015 in Fudan University Cancer Center. Morphologic features including tumor infiltrating lymphocytes (TIL), peritumoral lymphocytes and tumor heterogeneity were reviewed. Immunohistochemistry for expression of mismatch repair proteins was performed. The correlation with clinicopathologic features was analyzed. Loss of mismatch repair protein expression was observed in 43 cases (28.7%), including loss of MLH1/PMS2 in 27 cases (18%), loss of MSH2/MSH6 in 7 cases (4.7%), loss of MSH6 in 6 cases (4%) and loss of PMS2 in 3 cases (2%). There were 23.3% and 27.1% of mismatch repair protein-deficient endometrial carcinomas in women under and above 50 years of age, respectively, which was not statistically significant. Amongst the 12 cases with family history of tumors, 4 of the 6 mismatch repair protein-deficient cases were under 50 years of age, which was higher than that in the 6 cases with mismatch repair protein expression (P=0.014). The mismatch repair protein-deficient group showed significantly more prominent TIL and peritumoral lymphocytes than protein-expression group (P=0.033 and <0.001). Moreover, there were also significant differences in depth of myometrial invasion and occurrence of synchronous malignancy (2 cases of ovarian clear cell carcinoma and 1 case of colonic carcinoma) between the two groups (P=0.039 and 0.022). However, there were no significant differences in lymph node metastasis, tumor heterogeneity, lower uterine segment involvement and tumor stage between the two groups. Prominent TIL and peritumoral lymphocytes characteristically occur in mismatch repair protein-deficient endometrial carcinomas. Patient age does not significantly correlate with the loss of mismatch repair

  17. A novel germline POLE mutation causes an early onset cancer prone syndrome mimicking constitutional mismatch repair deficiency.

    PubMed

    Wimmer, Katharina; Beilken, Andreas; Nustede, Rainer; Ripperger, Tim; Lamottke, Britta; Ure, Benno; Steinmann, Diana; Reineke-Plaass, Tanja; Lehmann, Ulrich; Zschocke, Johannes; Valle, Laura; Fauth, Christine; Kratz, Christian P

    2017-01-01

    In a 14-year-old boy with polyposis and rectosigmoid carcinoma, we identified a novel POLE germline mutation, p.(Val411Leu), previously found as recurrent somatic mutation in 'ultramutated' sporadic cancers. This is the youngest reported cancer patient with polymerase proofreading-associated polyposis indicating that POLE mutation p.(Val411Leu) may confer a more severe phenotype than previously reported POLE and POLD1 germline mutations. The patient had multiple café-au-lait macules and a pilomatricoma mimicking the clinical phenotype of constitutional mismatch repair deficiency. We hypothesize that these skin features may be common to different types of constitutional DNA repair defects associated with polyposis and early-onset cancer.

  18. Effective oligonucleotide-mediated gene disruption in ES cells lacking the mismatch repair protein MSH3.

    PubMed

    Dekker, M; Brouwers, C; Aarts, M; van der Torre, J; de Vries, S; van de Vrugt, H; te Riele, H

    2006-04-01

    We have previously demonstrated that site-specific insertion, deletion or substitution of one or two nucleotides in mouse embryonic stem cells (ES cells) by single-stranded deoxyribo-oligonucleotides is several hundred-fold suppressed by DNA mismatch repair (MMR) activity. Here, we have investigated whether compound mismatches and larger insertions escape detection by the MMR machinery and can be effectively introduced in MMR-proficient cells. We identified several compound mismatches that escaped detection by the MMR machinery to some extent, but could not define general rules predicting the efficacy of complex base-pair substitutions. In contrast, we found that four-nucleotide insertions were largely subject to suppression by the MSH2/MSH3 branch of MMR and could be effectively introduced in Msh3-deficient cells. As these cells have no overt mutator phenotype and Msh3-deficient mice do not develop cancer, Msh3-deficient ES cells can be used for oligonucleotide-mediated gene disruption. As an example, we present disruption of the Fanconi anemia gene Fancf.

  19. [Constitutional mismatch repair deficiency syndrome].

    PubMed

    Jongmans, Marjolijn C; Gidding, Corrie E; Loeffen, Jan; Wesseling, Pieter; Mensenkamp, Arjen; Hoogerbrugge, Nicoline

    2015-01-01

    Constitutional mismatch repair deficiency (CMMR-D) syndrome is characterised by a significantly increased risk for developing cancer in childhood. It arises when both parents have a mutation in the same mismatch repair gene and pass it on to their child. An 8-year-old girl was diagnosed with CMMR-D syndrome after she developed a brain tumour at the age of 4 and a T-cell non-Hodgkin lymphoma at the age of 6. She had multiple hyperpigmented skin lesions and died of myelodysplastic syndrome at the age of 11. In children with cancer CMMR-D syndrome can be recognized particularly if there are multiple primary malignancies and skin hyperpigmentations and hypopigmentations. The parents of these children are at high risk for colorectal and endometrial cancer (Lynch syndrome), amongst others.

  20. Interdependence of DNA mismatch repair proteins MLH1 and MSH2 in apoptosis in human colorectal carcinoma cell lines.

    PubMed

    Hassen, Samar; Ali, Akhtar A; Kilaparty, Surya P; Al-Anbaky, Qudes A; Majeed, Waqar; Boman, Bruce M; Fields, Jeremy Z; Ali, Nawab

    2016-01-01

    The mammalian DNA mismatch repair (MMR) system consists of a number of proteins that play important roles in repair of base pair mismatch mutations and in maintenance of genomic integrity. A defect in this system can cause genetic instability, which can lead to carcinogenesis. For instance, a germline mutation in one of the mismatch repair proteins, especially MLH1 or MSH2, is responsible for hereditary non-polyposis colorectal cancer. These MMR proteins also play an important role in the induction of apoptosis. Accordingly, altered expression of or a defect in MLH1 or MSH2 may confer resistance to anti-cancer drugs used in chemotherapy. We hypothesized that the ability of these two MMR proteins to regulate apoptosis are interdependent. Moreover, a defect in either one may confer resistance to chemotherapy by an inability to trigger apoptosis. To this end, we studied three cell lines-SW480, LoVo, and HTC116. These cell lines were selected based on their differential expression of MLH1 and MSH2 proteins. SW480 expresses both MLH1 and MSH2; LoVo expresses only MLH1 but not MSH2; HCT116 expresses only MSH2 but not MLH1 protein. MTT assays, a measure of cytotoxicity, showed that there were different cytotoxic effects of an anti-cancer drug, etoposide, on these cell lines, effects that were correlated with the MMR status of the cells. Cells that are deficient in MLH1 protein (HCT116 cells) were resistant to the drug. Cells that express both MLH1 and MSH2 proteins (SW480 cells) showed caspase-3 cleavage, an indicator of apoptosis. Cells that lack MLH1 (HCT116 cells) did not show any caspase-3 cleavage. Expression of full-length MLH1 protein was decreased in MMR proficient (SW480) cells during apoptosis; it remained unchanged in cells that lack MSH2 (LoVo cells). The expression of MSH2 protein remained unchanged during apoptosis both in MMR proficient (SW480) and deficient (HCT116) cells. Studies on translocation of MLH1 protein from nucleus to cytosolic fraction, an

  1. Construction and characterization of mismatch-containing circular DNA molecules competent for assessment of nick-directed human mismatch repair in vitro.

    PubMed

    Larson, Erik D; Nickens, David; Drummond, James T

    2002-02-01

    The ability of cell-free extracts to correct DNA mismatches has been demonstrated in both prokaryotes and eukaryotes. Such an assay requires a template containing both a mismatch and a strand discrimination signal, and the multi-step construction process can be technically difficult. We have developed a three-step procedure for preparing DNA heteroduplexes containing a site-specific nick. The mismatch composition, sequence context, distance to the strand signal, and the means for assessing repair in each strand are adjustable features built into a synthetic oligonucleotide. Controlled ligation events involving three of the four DNA strands incorporate the oligonucleotide into a circular template and generate the repair-directing nick. Mismatch correction in either strand of a prototype G.T mismatch was achieved by placing a nick 10-40 bp away from the targeted base. This proximity of nick and mismatch represents a setting where repair has not been well characterized, but the presence of a nick was shown to be essential, as was the MSH2/MSH6 heterodimer, although low levels of repair occurred in extract defective in each protein. All repair events were inhibited by a peptide that interacts with proliferating cell nuclear antigen and inhibits both mismatch repair and long-patch replication.

  2. Tumor Budding and PDC Grade Are Stage Independent Predictors of Clinical Outcome in Mismatch Repair Deficient Colorectal Cancer.

    PubMed

    Ryan, Éanna; Khaw, Yi Ling; Creavin, Ben; Geraghty, Robert; Ryan, Elizabeth J; Gibbons, David; Hanly, Ann; Martin, Sean T; O'Connell, P Ronan; Winter, Desmond C; Sheahan, Kieran

    2018-01-01

    Mismatch repair deficient (dMMR) colorectal cancer (CRC) despite its association with poor histologic grade often has improved prognosis compared with MMR proficient CRC. Tumor budding and poorly differentiated clusters (PDCs) may predict metastatic potential of colorectal adenocarcinoma (CRC). In addition, their assessment may be more reproducible than the evaluation of other histopathologic parameters. Therefore, we wished to determine their potential as prognostic indicators in a cohort of dMMR CRC patients relative to histologic grade. We investigated the predictive value of conventional WHO grade, budding, PDC grade and other histopathologic parameters on the presence of lymph node metastasis (LNM) and clinical outcome in 238 dMMR CRCs. MMR status was determined by immunohistochemistry for the mismatch repair proteins hMLH1, hMSH2, hMSH6, and hPMS2. Tumor budding and PDCs were highly correlated (r=0.701; P<0.000). Both budding and PDC grade were associated with WHO grade, perineural invasion, lympho-vascular invasion, and extramural vascular invasion, and the presence of LNM in dMMR CRC (P<0.009). Independent predictors of LNM were PDC grade (odds ratio, 4.12; 95% confidence interval [CI], 1.69-10.04; P=0.011) and EMVI (odds ratio, 3.81; 95% CI, 1.56-9.19; P<0.000). Only pTstage (hazard ratio [HR], 4.11; 95% CI, 1.48-11.36; P=0.007) and tumor budding (HR, 2.99; 95% CI, 1.72-5.19; P<0.000) were independently associated with worse disease-free survival (DFS). If tumor budding was excluded from the model, PDC grade became significant for DFS (HR, 2.34; 95% CI, 1.34-4.09; P=0.003). WHO Grade does not independently correlate with clinical outcome in dMMR CRC. PDC grade and extramural vascular invasion are independent predictors of LNM. Tumor budding and pTstage are the best predictors of DFS. If tumor budding cannot be assessed, PDC grade may be used as a prognostic surrogate.

  3. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiae by cell-free nuclear extracts.

    PubMed

    Yuan, Fenghua; Lai, Fangfang; Gu, Liya; Zhou, Wen; El Hokayem, Jimmy; Zhang, Yanbin

    2009-05-01

    Mismatch repair corrects biosynthetic errors generated during DNA replication, whose deficiency causes a mutator phenotype and directly underlies hereditary non-polyposis colorectal cancer and sporadic cancers. Because of remarkably high conservation of the mismatch repair machinery between the budding yeast (Saccharomyces cerevisiae) and humans, the study of mismatch repair in yeast has provided tremendous insights into the mechanisms of this repair pathway in humans. In addition, yeast cells possess an unbeatable advantage over human cells in terms of the easy genetic manipulation, the availability of whole genome deletion strains, and the relatively low cost for setting up the system. Although many components of eukaryotic mismatch repair have been identified, it remains unclear if additional factors, such as DNA helicase(s) and redundant nuclease(s) besides EXO1, participate in eukaryotic mismatch repair. To facilitate the discovery of novel mismatch repair factors, we developed a straightforward in vitro cell-free repair system. Here, we describe the practical protocols for preparation of yeast cell-free nuclear extracts and DNA mismatch substrates, and the in vitro mismatch repair assay. The validity of the cell-free system was confirmed by the mismatch repair deficient yeast strain (Deltamsh2) and the complementation assay with purified yeast MSH2-MSH6.

  4. Complete Remission Following Pembrolizumab in a Woman with Mismatch Repair-Deficient Endometrial Cancer and a Germline BRCA1 Mutation.

    PubMed

    Dizon, Don S; Dias-Santagata, Dora; Bregar, Amy; Sullivan, Laura; Filipi, Jennifer; DiTavi, Elizabeth; Miller, Lucy; Ellisen, Leif; Birrer, Michael; DelCarmen, Marcela

    2018-02-22

    Endometrial cancer is the most common gynecologic malignancy in the U.S. and, although the majority of cases present at an early stage and can be treated with curative intent, those who present with advanced disease, or develop metastatic or recurrent disease, have a poorer prognosis. A subset of endometrial cancers exhibit mismatch repair (MMR) deficiency. It is now recognized that MMR-deficient cancers are particularly susceptible to programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors, and in a landmark judgement in 2017, the U.S. Food and Drug Administration granted accelerated approval to pembrolizumab for these tumors, the first tumor-agnostic approval of a drug. However, less is known about the sensitivity to PD-1 blockade among patients with known mutations in double-strand break DNA repair pathways involving homologous recombination, such as those in BRCA1 or BRCA2 . Here we report a case of a patient with an aggressive somatic MMR-deficient endometrial cancer and a germline BRCA1 who experienced a rapid complete remission to pembrolizumab. Endometrial cancers, and in particular endometrioid carcinomas, should undergo immunohistochemical testing for mismatch repair proteins.Uterine cancers with documented mismatch repair deficiency are candidates for treatment with programmed cell death protein 1 inhibition.Genomic testing of recurrent, advanced, or metastatic tumors may be useful to determine whether patients are candidates for precision therapies. © AlphaMed Press 2018.

  5. Rhabdomyosarcoma in patients with constitutional mismatch-repair-deficiency syndrome.

    PubMed

    Kratz, C P; Holter, S; Etzler, J; Lauten, M; Pollett, A; Niemeyer, C M; Gallinger, S; Wimmer, K

    2009-06-01

    Biallelic germline mutations in the mismatch repair genes MLH1, MSH2, MSH6 or PMS2 cause a recessive childhood cancer syndrome characterised by early-onset malignancies and signs reminiscent of neurofibromatosis type 1 (NF1). Alluding to the underlying genetic defect, we refer to this syndrome as constitutional mismatch repair-deficiency (CMMR-D) syndrome. The tumour spectrum of CMMR-D syndrome includes haematological neoplasias, brain tumours and Lynch syndrome-associated tumours. Other tumours, such as neuroblastoma, Wilm tumour, ovarian neuroectodermal tumour or infantile myofibromatosis, have so far been found only in individual cases. We analysed two consanguineous families that had members with suspected CMMR-D syndrome who developed rhabdomyosarcoma among other neoplasias. In the first family, we identified a pathogenic PMS2 mutation for which the affected patient was homozygous. In family 2, immunohistochemistry analysis showed isolated loss of PMS2 expression in all tumours in the affected patients, including rhabdomyosarcoma itself and the surrounding normal tissue. Together with the family history and microsatellite instability observed in one tumour this strongly suggests an underlying PMS2 alteration in family 2 also. Together, these two new cases show that rhabdomyosarcoma and possibly other embryonic tumours, such as neuroblastoma and Wilm tumour, belong to the tumour spectrum of CMMR-D syndrome. Given the clinical overlap of CMMR-D syndrome with NF1, we suggest careful examination of the family history in patients with embryonic tumours and signs of NF1 as well as analysis of the tumours for loss of one of the mismatch repair genes and microsatellite instability. Subsequent mutation analysis will lead to a definitive diagnosis of the underlying disorder.

  6. Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3.

    PubMed

    Habraken, Y; Sung, P; Prakash, L; Prakash, S

    1996-09-01

    DNA-mismatch repair removes mismatches from the newly replicated DNA strand. In humans, mutations in the mismatch repair genes hMSH2, hMLH1, hPMS1 and hPMS2 result in hereditary non-polyposis colorectal cancer (HNPCC) [1-8]. The hMSH2 (MSH for MutS homologue) protein forms a complex with a 160 kDa protein, and this heterodimer, hMutSalpha, has high affinity for a G/T mismatch [9,10]. Cell lines in which the 160 kDa subunit of hMutSalpha is mutated are specifically defective in the repair of base-base and single-nucleotide insertion/deletion mismatches [9,11]. Genetic studies in S. cerevisiae have suggested that MSH2 functions with either MSH3 or MSH6 in mismatch repair, and, in the absence of the latter two genes, MSH2 is inactive [12,13]. MSH6 encodes the yeast counterpart of the 160 kDa subunit of hMutSalpha [12,13]. As in humans, yeast MSH6 forms a complex with MSH2, and the MSH2-MSH6 heterodimer binds a G/T mismatch [14]. Here, we find that MSH2 and MSH3 form another stable heterodimer, and we purify this heterodimer to near homogeneity. We show that MSH2-MSH3 has low affinity for a G/T mismatch but binds to insertion/deletion mismatches with high specificity, unlike MSH2-MSH6.

  7. Relationship among mismatch repair deficiency, CDX2 loss, p53 and E-cadherin in colon carcinoma and suitability of using a double panel of mismatch repair proteins by immunohistochemistry.

    PubMed

    Sayar, Ilyas; Akbas, Emin Murat; Isik, Arda; Gokce, Aysun; Peker, Kemal; Demirtas, Levent; Gürbüzel, Mehmet

    2015-09-01

    Biomarkers such as mismatch repair proteins, CDX2, p53, and E-cadherin are blamed for colon cancers, but the relationships of these biomarkers with each other and with pathological risk factors in colon carcinoma are still not clear. The aim of this study was to evaluate the association of these biomarkers with each other by using immunohistochemical staining and to compare their expression with pathological risk factors for colonic adenocarcinoma. We also aimed to study the usability of a double panel of mismatch repair proteins. One hundred and eleven cases with colonic adenocarcinoma were examined. There was a statistically significant relationship between tumor histological differentiation and perineural invasion, vascular invasion, mismatch repair deficiency, p53, CDX2, and E-cadherin (p < 0.05). PMS2 and MSH6 loss covered 100% of cases with mismatch repair deficiency. Mismatch repair deficiency was correlated with CDX2 loss and E-cadherin expression (p < 0.05). It was also observed that cases with PMS2 loss covered all the cases with CDX2 loss. In conclusion, this double panel may be used instead of a quadruple panel for detecting mismatch repair deficiency. Association of CDX2 and PMS2 in the present study is necessary to conduct further genetic and pathological studies focusing on these two markers together.

  8. Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium.

    PubMed

    Bakry, Doua; Aronson, Melyssa; Durno, Carol; Rimawi, Hala; Farah, Roula; Alharbi, Qasim Kholaif; Alharbi, Musa; Shamvil, Ashraf; Ben-Shachar, Shay; Mistry, Matthew; Constantini, Shlomi; Dvir, Rina; Qaddoumi, Ibrahim; Gallinger, Steven; Lerner-Ellis, Jordan; Pollett, Aaron; Stephens, Derek; Kelies, Steve; Chao, Elizabeth; Malkin, David; Bouffet, Eric; Hawkins, Cynthia; Tabori, Uri

    2014-03-01

    Constitutional mismatch repair deficiency (CMMRD) is a devastating cancer predisposition syndrome for which data regarding clinical manifestations, molecular screening tools and management are limited. We established an international CMMRD consortium and collected comprehensive clinical and genetic data. Molecular diagnosis of tumour and germline biospecimens was performed. A surveillance protocol was developed and implemented. Overall, 22/23 (96%) of children with CMMRD developed 40 different tumours. While childhood CMMRD related tumours were observed in all families, Lynch related tumours in adults were observed in only 2/14 families (p=0.0007). All children with CMMRD had café-au-lait spots and 11/14 came from consanguineous families. Brain tumours were the most common cancers reported (48%) followed by gastrointestinal (32%) and haematological malignancies (15%). Importantly, 12 (30%) of these were low grade and resectable cancers. Tumour immunohistochemistry was 100% sensitive and specific in diagnosing mismatch repair (MMR) deficiency of the corresponding gene while microsatellite instability was neither sensitive nor specific as a diagnostic tool (p<0.0001). Furthermore, screening of normal tissue by immunohistochemistry correlated with genetic confirmation of CMMRD. The surveillance protocol detected 39 lesions which included asymptomatic malignant gliomas and gastrointestinal carcinomas. All tumours were amenable to complete resection and all patients undergoing surveillance are alive. CMMRD is a highly penetrant syndrome where family history of cancer may not be contributory. Screening tumours and normal tissues using immunohistochemistry for abnormal expression of MMR gene products may help in diagnosis and early implementation of surveillance for these children. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Long-term survival of patients with mismatch repair protein-deficient, high-stage ovarian clear cell carcinoma.

    PubMed

    Stewart, Colin J R; Bowtell, David D L; Doherty, Dorota A; Leung, Yee C

    2017-01-01

    Gynaecological cancer patients with germline mutations appear to have a better prognosis than those with sporadic malignancies. Following the observation of long-term survival in a patient with stage III ovarian clear cell carcinoma (CCC) and possible Lynch syndrome (LS), DNA mismatch repair (MMR) protein immunohistochemistry was performed in a series of high-stage CCC and correlated with patient outcomes. Thirty-two consecutive cases of stage III/IV ovarian CCCs accessioned between 1992 and 2015 were examined. The tumours from two patients (6%), including the index case, showed loss of MSH2/MSH6 expression while MLH1/PMS2 staining was retained. The index patient subsequently developed colonic and rectal carcinomas that were also MSH2/MSH6-deficient, while the second patient had a genetically confirmed germline MSH2 mutation. All other tumours showed retained expression of the four MMR proteins. The two patients with MMR protein-deficient tumours were alive 160 months and 124 months following surgery, whereas the median survival of patients with MMR protein-intact CCCs was 11.8 months (75th and 25th percentiles of 8.1 months and 39.3 months, respectively), with 21 patients deceased due to tumour. Larger studies are required but high-stage, MMR protein-deficient CCCs may have a relatively favourable prognosis. © 2016 John Wiley & Sons Ltd.

  10. Dependence of the cytotoxicity of DNA-damaging agents on the mismatch repair status of human cells.

    PubMed

    Papouli, Efterpi; Cejka, Petr; Jiricny, Josef

    2004-05-15

    Mismatch repair (MMR) deficiency was reported to increase resistance of mammalian cells to killing by several genotoxic substances. However, although MMR-deficient cells are approximately 100-fold more resistant to killing by S(N)1 type methylating agents than MMR-proficient controls, the sensitivity differences reported for the other agents were typically <2-fold. To test whether these differences were linked to factors other than MMR status, we studied the cytotoxicities of mitomycin C, chloroethylcyclohexyl nitrosourea, melphalan, psoralen-UVA, etoposide, camptothecin, ionizing radiation, and cis-dichlorodiaminoplatinum (cisplatin) in a strictly isogenic system. We now report that MMR deficiency reproducibly desensitized cells solely to cisplatin.

  11. Constitutional mismatch repair deficiency syndrome: Do we know it?

    PubMed

    Ramachandra, C; Challa, Vasu Reddy; Shetty, Rachan

    2014-04-01

    Constitutional mismatch repair deficiency syndrome is a rare autosomal recessive syndrome caused by homozygous mutations in mismatch repair genes. This is characterized by the childhood onset of brain tumors, colorectal cancers, cutaneous manifestations of neurofibromatosis-1 like café au lait spots, hematological malignancies, and occasionally other rare malignancies. Here, we would like to present a family in which the sibling had glioblastoma, and the present case had acute lymphoblastic lymphoma and colorectal cancer. We would like to present this case because of its rarity and would add to literature.

  12. Interaction of proliferating cell nuclear antigen with PMS2 is required for MutLα activation and function in mismatch repair

    PubMed Central

    Genschel, Jochen; Kadyrova, Lyudmila Y.; Iyer, Ravi R.; Dahal, Basanta K.; Kadyrov, Farid A.; Modrich, Paul

    2017-01-01

    Eukaryotic MutLα (mammalian MLH1–PMS2 heterodimer; MLH1–PMS1 in yeast) functions in early steps of mismatch repair as a latent endonuclease that requires a mismatch, MutSα/β, and DNA-loaded proliferating cell nuclear antigen (PCNA) for activation. We show here that human PCNA and MutLα interact specifically but weakly in solution to form a complex of approximately 1:1 stoichiometry that depends on PCNA interaction with the C-terminal endonuclease domain of the MutLα PMS2 subunit. Amino acid substitution mutations within a PMS2 C-terminal 721QRLIAP motif attenuate or abolish human MutLα interaction with PCNA, as well as PCNA-dependent activation of MutLα endonuclease, PCNA- and DNA-dependent activation of MutLα ATPase, and MutLα function in in vitro mismatch repair. Amino acid substitution mutations within the corresponding yeast PMS1 motif (723QKLIIP) reduce or abolish mismatch repair in vivo. Coupling of a weak allele within this motif (723AKLIIP) with an exo1Δ null mutation, which individually confer only weak mutator phenotypes, inactivates mismatch repair in the yeast cell. PMID:28439008

  13. Interaction of proliferating cell nuclear antigen with PMS2 is required for MutLα activation and function in mismatch repair.

    PubMed

    Genschel, Jochen; Kadyrova, Lyudmila Y; Iyer, Ravi R; Dahal, Basanta K; Kadyrov, Farid A; Modrich, Paul

    2017-05-09

    Eukaryotic MutLα (mammalian MLH1-PMS2 heterodimer; MLH1-PMS1 in yeast) functions in early steps of mismatch repair as a latent endonuclease that requires a mismatch, MutSα/β, and DNA-loaded proliferating cell nuclear antigen (PCNA) for activation. We show here that human PCNA and MutLα interact specifically but weakly in solution to form a complex of approximately 1:1 stoichiometry that depends on PCNA interaction with the C-terminal endonuclease domain of the MutLα PMS2 subunit. Amino acid substitution mutations within a PMS2 C-terminal 721 QRLIAP motif attenuate or abolish human MutLα interaction with PCNA, as well as PCNA-dependent activation of MutLα endonuclease, PCNA- and DNA-dependent activation of MutLα ATPase, and MutLα function in in vitro mismatch repair. Amino acid substitution mutations within the corresponding yeast PMS1 motif ( 723 QKLIIP) reduce or abolish mismatch repair in vivo. Coupling of a weak allele within this motif ( 723 AKLIIP) with an exo1 Δ null mutation, which individually confer only weak mutator phenotypes, inactivates mismatch repair in the yeast cell.

  14. Analysis of in vivo correction of defined mismatches in the DNA mismatch repair mutants msh2, msh3 and msh6 of Saccharomyces cerevisiae.

    PubMed

    Lühr, B; Scheller, J; Meyer, P; Kramer, W

    1998-02-01

    We have analysed the correction of defined mismatches in wild-type and msh2, msh3, msh6 and msh3 msh6 mutants of Saccharomyces cerevisiae in two different yeast strain backgrounds by transformation with plasmid heteroduplex DNA constructs. Ten different base/base mismatches, two single-nucleotide loops and a 38-nucleotide loop were tested. Repair of all types of mismatches was severely impaired in msh2 and msh3 msh6 mutants. In msh6 mutants, repair efficiency of most base/base mismatches was reduced to a similar extent as in msh3 msh6 double mutants. G/T and A/C mismatches, however, displayed residual repair in msh6 mutants in one strain background, implying a role for Msh3p in recognition of base/base mismatches. Furthermore, the efficiency of repair of base/base mismatches was considerably reduced in msh3 mutants in one strain background, indicating a requirement for MSH3 for fully efficient mismatch correction. Also the efficiency of repair of the 38-nucleotide loop was reduced in msh3 mutants, and to a lesser extent in msh6 mutants. The single-nucleotide loop with an unpaired A was less efficiently repaired in msh3 mutants and that with an unpaired T was less efficiently corrected in msh6 mutants, indicating non-redundant functions for the two proteins in the recognition of single-nucleotide loops.

  15. Pembrolizumab, Capecitabine, and Radiation Therapy in Treating Patients With Mismatch-Repair Deficient and Epstein-Barr Virus Positive Gastric Cancer

    ClinicalTrials.gov

    2017-11-15

    Epstein-Barr Virus Positive; Gastric Adenocarcinoma; Mismatch Repair Protein Deficiency; Stage IB Gastric Cancer AJCC v7; Stage II Gastric Cancer AJCC v7; Stage IIA Gastric Cancer AJCC v7; Stage IIB Gastric Cancer AJCC v7; Stage III Gastric Cancer AJCC v7; Stage IIIA Gastric Cancer AJCC v7; Stage IIIB Gastric Cancer AJCC v7; Stage IIIC Gastric Cancer AJCC v7

  16. Clinicopathologic implications of DNA mismatch repair status in endometrial carcinomas.

    PubMed

    Shikama, Ayumi; Minaguchi, Takeo; Matsumoto, Koji; Akiyama-Abe, Azusa; Nakamura, Yuko; Michikami, Hiroo; Nakao, Sari; Sakurai, Manabu; Ochi, Hiroyuki; Onuki, Mamiko; Satoh, Toyomi; Oki, Akinori; Yoshikawa, Hiroyuki

    2016-02-01

    Endometrial carcinoma is the most common malignancy in women with Lynch syndrome caused by mismatch repair (MMR) deficiency. We investigated the clinicopathologic significance of deficient MMR and Lynch syndrome presumed by MMR analyses in unselected endometrial carcinomas. We analyzed immunohistochemistry of MMR proteins (MLH1/MSH2/MSH6/PMS2) and MLH1 promoter methylation in primary endometrial carcinomas from 221 consecutive patients. Based on these results, tumors were categorized as sporadic or probable Lynch syndrome (PLS). Clinicopathologic variables and prognosis were compared according to MMR status and sporadic/PLS classification. Deficient MMR showed only trends towards favorable overall survival (OS) compared with intact MMR (p=0.13), whereas PLS showed significantly better OS than sporadic (p=0.038). Sporadic was significantly associated with older age, obesity, deep myometrial invasion, and advanced stage (p=0.008, 0.01, 0.02 and 0.03), while PLS was significantly associated with early stage and Lynch syndrome-associated multiple cancer (p=0.04 and 0.001). The trend towards favorable OS of PLS was stronger in advanced stage than in early stage (hazard ratio, 0.044 [95% CI 0-25.6] vs. 0.49 [0.063-3.8]). In the subset receiving adjuvant therapies, PLS showed trends towards favorable disease-free survival compared to sporadic by contrast with patients receiving no adjuvant therapies showing no such trend (hazard ratio, 0.045 [95% CI 0-20.3] vs. 0.81 [0.095-7.0]). The current findings suggest that analyzing MMR status and searching for Lynch syndrome may identify a subset of patients with favorable survival and high sensitivity to adjuvant therapies, providing novel and useful implications for formulating the precision medicine in endometrial carcinoma. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Upper tract urothelial carcinomas: frequency of association with mismatch repair protein loss and lynch syndrome.

    PubMed

    Harper, Holly L; McKenney, Jesse K; Heald, Brandie; Stephenson, Andrew; Campbell, Steven C; Plesec, Thomas; Magi-Galluzzi, Cristina

    2017-01-01

    Increased risk for upper tract urothelial carcinoma is described in patients with Lynch syndrome, caused by germline mutations in mismatch repair genes. We aimed to identify the frequency of mismatch repair protein loss in upper tract urothelial carcinoma and its potential for identifying an association with Lynch syndrome. We queried our database to identify upper tract urothelial carcinomas. Patients were cross-referenced for history of colorectal carcinoma or other common Lynch syndrome-associated neoplasms to enrich for potential Lynch syndrome cases. Tumor histopathologic characteristics were reviewed and each case was analyzed for loss of mismatch repair proteins, MLH1, MSH2, MSH6, and PMS2, by immunohistochemistry. Of 444 patients with upper tract urothelial carcinoma, a subset of 215 (encompassing 30 with upper tract urothelial carcinoma and another common Lynch syndrome-associated neoplasm) was analyzed for loss of mismatch repair protein expression. Of 30 patients with Lynch syndrome-associated neoplasms, six had documented Lynch syndrome, including two with Muir-Torre syndrome. Mismatch repair protein loss was identified in 7% of total upper tract urothelial carcinomas and 30% of patients with Lynch syndrome-associated neoplasms (including all patients with Lynch syndrome/Muir-Torre syndrome). Of patients without history of Lynch syndrome-associated neoplasms, 5 of 184 (2.7%) had loss of mismatch repair protein expression. Twelve cases with mismatch repair protein loss demonstrated loss of MSH2 and MSH6, and 2 had isolated loss of MSH6. MLH1 and PMS2 expression were consistently retained. Although increased intratumoral lymphocytes, inverted growth, pushing tumor-stromal interface, and lack of nuclear pleomorphism were more commonly seen in cases with mismatch repair protein loss, only intratumoral lymphocytes and presence of pushing borders were statistically significant. MLH1 and PMS2 testing appear to have little utility in upper tract urothelial

  18. Mismatch repair deficiency commonly precedes adenoma formation in Lynch Syndrome-Associated colorectal tumorigenesis.

    PubMed

    Sekine, Shigeki; Mori, Taisuke; Ogawa, Reiko; Tanaka, Masahiro; Yoshida, Hiroshi; Taniguchi, Hirokazu; Nakajima, Takeshi; Sugano, Kokichi; Yoshida, Teruhiko; Kato, Mamoru; Furukawa, Eisaku; Ochiai, Atsushi; Hiraoka, Nobuyoshi

    2017-08-01

    Lynch syndrome is a cancer predisposition syndrome caused by germline mutations in mismatch repair (MMR) genes. MMR deficiency is a ubiquitous feature of Lynch syndrome-associated colorectal adenocarcinomas; however, it remains unclear when the MMR-deficient phenotype is acquired during tumorigenesis. To probe this issue, the present study examined genetic alterations and MMR statuses in Lynch syndrome-associated colorectal adenomas and adenocarcinomas, in comparison with sporadic adenomas. Among the Lynch syndrome-associated colorectal tumors, 68 of 86 adenomas (79%) and all adenocarcinomas were MMR-deficient, whereas all the sporadic adenomas were MMR-proficient, as determined by microsatellite instability testing and immunohistochemistry for MMR proteins. Sequencing analyses identified APC or CTNNB1 mutations in the majority of sporadic adenomas (58/84, 69%) and MMR-proficient Lynch syndrome-associated adenomas (13/18, 72%). However, MMR-deficient Lynch syndrome-associated adenomas had less APC or CTNNB1 mutations (25/68, 37%) and frequent frameshift RNF43 mutations involving mononucleotide repeats (45/68, 66%). Furthermore, frameshift mutations affecting repeat sequences constituted 14 of 26 APC mutations (54%) in MMR-deficient adenomas whereas these frameshift mutations were rare in MMR-proficient adenomas in patients with Lynch syndrome (1/12, 8%) and in sporadic adenomas (3/52, 6%). Lynch syndrome-associated adenocarcinomas exhibited mutation profiles similar to those of MMR-deficient adenomas. Considering that WNT pathway activation sufficiently drives colorectal adenoma formation, the distinct mutation profiles of WNT pathway genes in Lynch syndrome-associated adenomas suggest that MMR deficiency commonly precedes adenoma formation.

  19. Repair of naturally occurring mismatches can induce mutations in flanking DNA

    PubMed Central

    Chen, Jia; Miller, Brendan F; Furano, Anthony V

    2014-01-01

    ‘Normal’ genomic DNA contains hundreds of mismatches that are generated daily by the spontaneous deamination of C (U/G) and methyl-C (T/G). Thus, a mutagenic effect of their repair could constitute a serious genetic burden. We show here that while mismatches introduced into human cells on an SV40-based episome were invariably repaired, this process induced mutations in flanking DNA at a significantly higher rate than no mismatch controls. Most mutations involved the C of TpC, the substrate of some single strand-specific APOBEC cytidine deaminases, similar to the mutations that can typify the ‘mutator phenotype’ of numerous tumors. siRNA knockdowns and chromatin immunoprecipitation showed that TpC preferring APOBECs mediate the mutagenesis, and siRNA knockdowns showed that both the base excision and mismatch repair pathways are involved. That naturally occurring mispairs can be converted to mutators, represents an heretofore unsuspected source of genetic changes that could underlie disease, aging, and evolutionary change. DOI: http://dx.doi.org/10.7554/eLife.02001.001 PMID:24843013

  20. Mismatch repair polymorphisms and the risk of colorectal cancer.

    PubMed

    Berndt, Sonja I; Platz, Elizabeth A; Fallin, M Daniele; Thuita, Lucy W; Hoffman, Sandra C; Helzlsouer, Kathy J

    2007-04-01

    Rare germline variants in mismatch repair genes have been linked to hereditary nonpolyposis colorectal cancer; however, it is unknown whether common polymorphisms in these genes alter the risk of colorectal cancer. To examine the association between common variants in mismatch repair genes and colorectal cancer, we conducted a case-cohort study within the CLUE II cohort. Four single nucleotide polymorphisms in 3 mismatch repair genes (MSH3 R940Q, MSH3 T1036A, MSH6 G39E and MLH1 I219V) were genotyped in 237 colorectal cancer cases and a subcohort of 2,189 participants. Incidence rate ratios (RRs) and 95% confidence intervals (95% CIs) for each polymorphism were estimated. The MSH3 1036A variant was found to be associated with an increased risk of colorectal cancer (RR=1.28, 95% CI: 0.94-1.74 and RR=1.65, 95% CI: 1.01-2.70 for the AT and TT genotypes, respectively, with p(trend)=0.02), particularly proximal colon cancer. Although the MSH3 940Q variant was only weakly associated with colorectal cancer overall (p(trend)=0.07), it was associated with a significant increased risk of proximal colon cancer (RR=1.69, 95% CI: 1.10-2.61 and RR=2.68, 95% CI: 0.96-7.47 for the RQ and QQ genotypes, respectively with p(trend)=0.005). Processed meat intake appeared to modify the association between the MSH3 polymorphisms and colorectal cancer (p(interaction) < 0.10 for both). No association was observed with the MSH6 and MLH1 polymorphisms overall. This study suggests that common polymorphisms in the mismatch repair gene, MSH3, may increase the risk of colorectal cancer, especially proximal colon cancer. (c) 2006 Wiley-Liss, Inc.

  1. A multigene prognostic assay for selection of adjuvant chemotherapy in patients with T3, stage II colon cancer: impact on quality-adjusted life expectancy and costs.

    PubMed

    Hornberger, John; Lyman, Gary H; Chien, Rebecca; Meropol, Neal J

    2012-12-01

    Uncertainty exists regarding appropriate and affordable use of adjuvant chemotherapy in stage II colon cancer (T3, proficient DNA mismatch repair). This study aimed to estimate the effectiveness and costs from a US societal perspective of a multigene recurrence score (RS) assay for patients recently diagnosed with stage II colon cancer (T3, proficient DNA mismatch repair) eligible for adjuvant chemotherapy. RS was compared with guideline-recommended clinicopathological factors (tumor stage, lymph nodes examined, tumor grade, and lymphovascular invasion) by using a state-transition (Markov) lifetime model. Data were obtained from published literature, a randomized controlled trial (QUick And Simple And Reliable) of adjuvant chemotherapy, and rates of chemotherapy use from the National Cooperative Cancer Network Colon/Rectum Cancer Outcomes study. Life-years, quality-adjusted life expectancy, and lifetime costs were examined. The RS is projected to reduce adjuvant chemotherapy use by 17% compared with current treatment patterns and to increase quality-adjusted life expectancy by an average of 0.035 years. Direct medical costs are expected to decrease by an average of $2971 per patient. The assay was cost saving for all subgroups of patients stratified by clinicopathologic factors. The most influential variables affecting treatment decisions were projected years of life remaining, recurrence score, and patients' disutilities associated with adjuvant chemotherapy. Use of the multigene RS to assess recurrence risk after surgery in stage II colon cancer (T3, proficient DNA mismatch repair) may reduce the use of adjuvant chemotherapy without decreasing quality-adjusted life expectancy and be cost saving from a societal perspective. These findings need to be validated in additional cohorts, including studies of clinical practice as assay use diffuses into nonacademic settings. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR

  2. Bacterial genes mutL, mutS, and dcm participate in repair of mismatches at 5-methylcytosine sites.

    PubMed Central

    Lieb, M

    1987-01-01

    Certain amber mutations in the cI gene of bacteriophage lambda appear to recombine very frequently with nearby mutations. The aberrant mutations included C-to-T transitions at the second cytosine in 5'CC(A/T)GG sequences (which are subject to methylation by bacterial cytosine methylase) and in 5'CCAG and 5'CAGG sequences. Excess cI+ recombinants arising in crosses that utilize these mutations are attributable to the correction of mismatches by a bacterial very-short-patch (VSP) mismatch repair system. In the present study I found that two genes required for methyladenine-directed (long-patch) mismatch repair, mutL and mutS, also functioned in VSP mismatch repair; mutH and mutU (uvrD) were dispensable. VSP mismatch repair was greatly reduced in a dcm Escherichia coli mutant, in which 5-methylcytosine was not methylated. However, mismatches in heteroduplexes prepared from lambda DNA lacking 5-methylcytosine were repaired in dcm+ bacteria. These results indicate that the product of gene dcm has a repair function in addition to its methylase activity. PMID:2959653

  3. Preoperative diagnosis of Lynch syndrome with DNA mismatch repair immunohistochemistry on a diagnostic biopsy.

    PubMed

    Warrier, S K; Trainer, A H; Lynch, A C; Mitchell, C; Hiscock, R; Sawyer, S; Boussioutas, A; Heriot, A G

    2011-12-01

    DNA mismatch repair immunohistochemistry on tumor tissue is a simple, readily available, and cost-effective method of identifying patients with Lynch syndrome in the postoperative setting. The aim of the study was to assess whether the mismatch repair status of a colorectal cancer can be confirmed by mismatch repair immunohistochemistry on preoperative biopsy. Germline positive patients with Lynch syndrome were identified from a prospectively collected Familial Cancer Clinic database. Preoperative colorectal cancer biopsy specimens were obtained from the source pathology provider to generate a cohort of matched preoperative and postoperative specimens. The specimens were sectioned and stained for 4 mismatch repair proteins (MLH1, MSH2, MSH6, PMS2). An age-matched cohort to compare specimens was selected from Bethesda positive but mismatch repair immunohistochemistry negative patients. All slides were reviewed by a single blinded pathologist. The Wilson method was used to calculate a true underlying proportion of patients for whom the preoperative result matched the postoperative test result with a 95% confidence interval. Of 128 germline positive mutation carriers, 40 patients (mean age 41, SD 11.3) had colorectal resections. Thirty-three preoperative specimens were retrievable and were matched with biopsies from 33 controls. The germline mutations included in the study were 8 MLH1, 19 MSH2, 3 MSH6, and 2 PMS2. In patients where germline positive status was known, sensitivity was 100% (95% CI 89.2-100) and specificity was 100% (95% CI 89.2-100). Identical sensitivity and specificity were observed in 33 age-matched patients. The sensitivity of the endoscopic biopsy in predicting germline status was 94.9% (95% CI 80.4-98.3). The mismatch repair disease status of a colorectal cancer can be reliably confirmed by mismatch repair immunohistochemistry on a diagnostic colorectal cancer biopsy sample before definitive surgery. Ascertaining a diagnosis of Lynch syndrome

  4. Clinicopathological characteristics of patients with upper urinary tract urothelial cancer with loss of immunohistochemical expression of the DNA mismatch repair proteins in universal screening.

    PubMed

    Urakami, Shinji; Inoshita, Naoko; Oka, Suguru; Miyama, Yu; Nomura, Sachio; Arai, Masami; Sakaguchi, Kazushige; Kurosawa, Kazuhiro; Okaneya, Toshikazu

    2018-02-01

    To assess the detection rate of putative Lynch syndrome-associated upper urinary tract urothelial cancer among all upper urinary tract urothelial cancers and to examine its clinicopathological characteristics. A total of 143 patients with upper urinary tract urothelial cancer who had received total nephroureterectomy were immunohistochemically stained for the expression of mismatch repair proteins MLH1, PMS2, MSH2 and MSH6. For all suspected mismatch repair-deficient cases, MMR genetic testing was recommended and clinicopathological features were examined. Loss of mismatch repair proteins was found in seven patients (5%) who were thus categorized as putative Lynch syndrome-associated upper urinary tract urothelial cancer. Five of these patients showed dual loss of MSH2/MSH6. Two patients were confirmed to be MSH2 germline mutation carriers. Histologically, all seven tumors were low-grade atypical urothelial carcinoma and showed its unique histological features, such as an inverted papilloma-like growth pattern and a villous to papillary structure with mild stratification of tumor cells. Six tumors had no invasion of the muscularis propria. No recurrence or cancer-related deaths were reported in these seven patients. Just three patients met the revised Amsterdam criteria. This is the first report that universally examined mismatch repair immunohistochemical screening for upper urinary tract urothelial cancers. The prevalence (5%) of putative Lynch syndrome-associated upper urinary tract urothelial cancers is much higher than we had expected. We ascertained that putative Lynch syndrome-associated upper urinary tract urothelial cancers were clinically in the early stage and histologically classified into low-grade malignancy with its characteristic pathological features. The clinicopathological characteristics that we found in the present study could become additional possible markers in the diagnosis of Lynch syndrome-associated upper urinary tract urothelial cancers

  5. A 30-Year-Old Man with Three Primary Malignancies: A Case of Constitutional Mismatch Repair Deficiency.

    PubMed

    Rengifo-Cam, William; Jasperson, Kory; Garrido-Laguna, Ignacio; Colman, Howard; Scaife, Courtney; Samowitz, Wade; Samadder, N Jewel

    2017-01-01

    Constitutional mismatch repair deficiency (CMMRD) is a devastating cancer predisposition syndrome for which clinical manifestations, genetic screening, and cancer prevention strategies are limited. We report a case of CMMRD presenting with metachronous colorectal cancer and brain cancer. Oncologists and gastroenterologists should be aware of the CMMRD syndrome as a rare cause of very early-onset colorectal cancer.

  6. Mutation spectrum of MSH3-deficient HHUA/chr.2 cells reflects in vivo activity of the MSH3 gene product in mismatch repair.

    PubMed

    Tauchi, H; Komatsu, K; Ishizaki, K; Yatagai, F; Kato, T

    2000-02-14

    The endometrial tumor cell line HHUA carries mutations in two mismatch repair (MMR) genes MSH3 and MSH6. We have established an MSH3-deficient HHUA/chr.2 cell line by introducing human chromosome 2, which carries wild-type MSH6 and MSH2 genes, to HHUA cells. Introduction of chromosome 2 to HHUA cells partially restored G:G MMR activity to the cell extract and reduced the frequency of mutation at the hypoxanthine-guanine phosphoribosyltransferase (hprt*) locus to about 3% that of the parental HHUA cells, which is five-fold the frequency in MMR-proficient cells, indicating that the residual mutator activity in HHUA/chr.2 is due to an MSH3-deficiency in these cells. The spectrum of mutations occurring at the HPRT locus of HHUA/chr.2 was determined with 71 spontaneous 6TG(r) clones. Base substitutions and +/-1 bp frameshifts were the major mutational events constituting, respectively, 54% and 42% of the total mutations, and more than 70% of them occurred at A:T sites. A possible explanation for the apparent bias of mutations to A:T sites in HHUA/chr.2 is haploinsufficiency of the MSH6 gene on the transferred chromosome 2. Comparison of the mutation spectra of HHUA/chr.2 with that of the MSH6-deficient HCT-15 cell line [S. Ohzeki, A. Tachibana, K. Tatsumi, T. Kato, Carcinogenesis 18 (1997) 1127-1133.] suggests that in vivo the MutSalpha (MSH2:MSH6) efficiently repairs both mismatch and unpaired extrahelical bases, whereas MutSbeta (MSH2:MSH3) efficiently repairs extrahelical bases and repairs mismatch bases to a limited extent.

  7. A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition

    PubMed Central

    Junicke, Henrik; Hart, Jonathan R.; Kisko, Jennifer; Glebov, Oleg; Kirsch, Ilan R.; Barton, Jacqueline K.

    2003-01-01

    A rhodium(III) complex, rac-[Rh(bpy)2phzi]3+ (bpy, 2,2′-bipyridine; phzi, benzo[a]phenazine-5,6-quinone diimine) has been designed as a sterically demanding intercalator targeted to destabilized mismatched sites in double-helical DNA. The complex is readily synthesized by condensation of the phenazine quinone with the corresponding diammine complex. Upon photoactivation, the complex promotes direct strand scission at single-base mismatch sites within the DNA duplex. As with the parent mismatch-specific reagent, [Rh(bpy)2(chrysi)]3+ [chrysene-5,6-quinone diimine (chrysi)], mismatch selectivity depends on the helix destabilization associated with mispairing. Unlike the parent chrysi complex, the phzi analogue binds and cleaves with high affinity and efficiency. The specific binding constants for CA, CC, and CT mismatches within a 31-mer oligonucleotide duplex are 0.3, 1, and 6 × 107 M−1, respectively; site-specific photocleavage is evident at nanomolar concentrations. Moreover, the specificity, defined as the ratio in binding affinities for mispaired vs. well paired sites, is maintained. The increase in affinity is attributed to greater stability in the mismatched site associated with stacking by the heterocyclic aromatic ligand. The high-affinity complex is also applied in the differential cleavage of DNA obtained from cell lines deficient in mismatch repair vs. those proficient in mismatch repair. Agreement is found between photocleavage by the mismatch-specific probes and deficiency in mismatch repair. This mismatch-specific targeting, therefore, offers a potential strategy for new chemotherapeutic design. PMID:12610209

  8. Lymphocytic response to tumour and deficient DNA mismatch repair identify subtypes of stage II/III colorectal cancer associated with patient outcomes.

    PubMed

    Williams, David S; Mouradov, Dmitri; Jorissen, Robert N; Newman, Marsali R; Amini, Elham; Nickless, David K; Teague, Julie A; Fang, Catherine G; Palmieri, Michelle; Parsons, Marie J; Sakthianandeswaren, Anuratha; Li, Shan; Ward, Robyn L; Hawkins, Nicholas J; Faragher, Ian; Jones, Ian T; Gibbs, Peter; Sieber, Oliver M

    2018-01-30

    Tumour-infiltrating lymphocyte (TIL) response and deficient DNA mismatch repair (dMMR) are determinants of prognosis in colorectal cancer. Although highly correlated, evidence suggests that these are independent predictors of outcome. However, the prognostic significance of combined TIL/MMR classification and how this compares to the major genomic and transcriptomic subtypes remain unclear. A prospective cohort of 1265 patients with stage II/III cancer was examined for TIL/MMR status and BRAF / KRAS mutations. Consensus molecular subtype (CMS) status was determined for 142 cases. Associations with 5-year disease-free survival (DFS) were evaluated and validated in an independent cohort of 602 patients. Tumours were categorised into four subtypes based on TIL and MMR status: TIL-low/proficient-MMR (pMMR) (61.3% of cases), TIL-high/pMMR (14.8%), TIL-low/dMMR (8.6%) and TIL-high/dMMR (15.2%). Compared with TIL-high/dMMR tumours with the most favourable prognosis, both TIL-low/dMMR (HR=3.53; 95% CI=1.88 to 6.64; P multivariate <0.001) and TIL-low/pMMR tumours (HR=2.67; 95% CI=1.47 to 4.84; P multivariate =0.001) showed poor DFS. Outcomes of patients with TIL-low/dMMR and TIL-low/pMMR tumours were similar. TIL-high/pMMR tumours showed intermediate survival rates. These findings were validated in an independent cohort. TIL/MMR status was a more significant predictor of prognosis than National Comprehensive Cancer Network high-risk features and was a superior predictor of prognosis compared with genomic (dMMR, pMMR/ BRAF wt / KRAS wt , pMMR/ BRAF mut / KRAS wt , pMMR/ BRAF wt / KRAS mut ) and transcriptomic (CMS 1-4) subtypes. TIL/MMR classification identified subtypes of stage II/III colorectal cancer associated with different outcomes. Although dMMR status is generally considered a marker of good prognosis, we found this to be dependent on the presence of TILs. Prognostication based on TIL/MMR subtypes was superior compared with histopathological, genomic and

  9. Explosive mutation accumulation triggered by heterozygous human Pol ε proofreading-deficiency is driven by suppression of mismatch repair

    PubMed Central

    Campbell, Brittany B; Ungerleider, Nathan; Light, Nicholas; Wu, Tong; LeCompte, Kimberly G; Goksenin, A Yasemin; Bunnell, Bruce A; Tabori, Uri; Shlien, Adam

    2018-01-01

    Tumors defective for DNA polymerase (Pol) ε proofreading have the highest tumor mutation burden identified. A major unanswered question is whether loss of Pol ε proofreading by itself is sufficient to drive this mutagenesis, or whether additional factors are necessary. To address this, we used a combination of next generation sequencing and in vitro biochemistry on human cell lines engineered to have defects in Pol ε proofreading and mismatch repair. Absent mismatch repair, monoallelic Pol ε proofreading deficiency caused a rapid increase in a unique mutation signature, similar to that observed in tumors from patients with biallelic mismatch repair deficiency and heterozygous Pol ε mutations. Restoring mismatch repair was sufficient to suppress the explosive mutation accumulation. These results strongly suggest that concomitant suppression of mismatch repair, a hallmark of colorectal and other aggressive cancers, is a critical force for driving the explosive mutagenesis seen in tumors expressing exonuclease-deficient Pol ε. PMID:29488881

  10. Explosive mutation accumulation triggered by heterozygous human Pol ε proofreading-deficiency is driven by suppression of mismatch repair.

    PubMed

    Hodel, Karl P; de Borja, Richard; Henninger, Erin E; Campbell, Brittany B; Ungerleider, Nathan; Light, Nicholas; Wu, Tong; LeCompte, Kimberly G; Goksenin, A Yasemin; Bunnell, Bruce A; Tabori, Uri; Shlien, Adam; Pursell, Zachary F

    2018-02-28

    Tumors defective for DNA polymerase (Pol) ε proofreading have the highest tumor mutation burden identified. A major unanswered question is whether loss of Pol ε proofreading by itself is sufficient to drive this mutagenesis, or whether additional factors are necessary. To address this, we used a combination of next generation sequencing and in vitro biochemistry on human cell lines engineered to have defects in Pol ε proofreading and mismatch repair. Absent mismatch repair, monoallelic Pol ε proofreading deficiency caused a rapid increase in a unique mutation signature, similar to that observed in tumors from patients with biallelic mismatch repair deficiency and heterozygous Pol ε mutations. Restoring mismatch repair was sufficient to suppress the explosive mutation accumulation. These results strongly suggest that concomitant suppression of mismatch repair, a hallmark of colorectal and other aggressive cancers, is a critical force for driving the explosive mutagenesis seen in tumors expressing exonuclease-deficient Pol ε. © 2018, Hodel et al.

  11. Unnatural substrates reveal the importance of 8-oxoguanine for in vivo mismatch repair by MutY

    PubMed Central

    Livingston, Alison L.; O’Shea, Valerie L.; Kim, Taewoo; Kool, Eric T.; David, Sheila S.

    2009-01-01

    Escherchia coli MutY plays an important role in preventing mutations associated with the oxidative lesion 7,8-dihydro-8-oxo-2′-deoxyguanosine (OG) in DNA by excising adenines from OG:A mismatches as the first step of base excision repair. To determine the importance of specific steps in the base pair recognition and base removal process of MutY, we have evaluated the effects of modifications of the OG:A substrate on the kinetics of base removal, mismatch affinity and repair to G:C in an Escherchia coli-based assay. Surprisingly, adenine modification was tolerated in the cellular assay, while modification of OG results in minimal cellular repair. High affinity for the mismatch and efficient base removal require the presence of OG. Taken together, these results suggest that the presence of OG is a critical feature for MutY to locate OG:A mismatches and select the appropriate adenines for excision to initiate repair in vivo prior to replication. PMID:18026095

  12. Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg?

    PubMed

    Wimmer, Katharina; Etzler, Julia

    2008-09-01

    Heterozygous mutations in one of the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause the dominant adult cancer syndrome termed Lynch syndrome or hereditary non-polyposis colorectal cancer. During the past 10 years, some 35 reports have delineated the phenotype of patients with biallelic inheritance of mutations in one of these MMR genes. The patients suffer from a condition that is characterised by the development of childhood cancers, mainly haematological malignancies and/or brain tumours, as well as early-onset colorectal cancers. Almost all patients also show signs reminiscent of neurofibromatosis type 1, mainly café au lait spots. Alluding to the underlying mechanism, this condition may be termed as "constitutional mismatch repair-deficiency (CMMR-D) syndrome". To give an overview of the current knowledge and its implications of this recessively inherited cancer syndrome we summarise here the genetic, clinical and pathological findings of the so far 78 reported patients of 46 families suffering from this syndrome.

  13. Repair of Craniomaxillofacial Traumatic Soft Tissue Defects With Tissue Expansion in the Early Stage.

    PubMed

    Han, Yan; Zhao, Jianhui; Tao, Ran; Guo, Lingli; Yang, Hongyan; Zeng, Wei; Song, Baoqiang; Xia, Wensen

    2017-09-01

    Craniomaxillofacial traumatic soft tissue defects severely affect the function and appearance of the patients. The traditional skin grafting or free flap transplantation can only close the defects in the early stage of operation but cannot ensure similar color, texture, and relative aesthetic contour. In the present study, the authors have explored a novel strategy to repair craniomaxillofacial traumatic soft tissue defects by tissue expansion in the early stage and have obtained satisfactory results. Eighteen patients suffering large craniomaxillofacial traumatic soft tissue defects were treated by thorough debridement leaving the wounds unclosed or simply closed with thin split-thickness scalp grafts, adjacent expander implantation in the first stage, and expanded flap transposition in the second stage. There were 11 male patients and 7 female patients ranging in age from 3.5 to 40 years (mean, 19.4 ± 12.2 years), with average 15 months follow-up (range, 3-67 months). The average expansion time was 74.3 days (range, 53-96 days). The 18 patients with a total of 22 expanders were treated with satisfactory results. All the flaps survived and the skin color, texture, and contour well matched those of the peripheral tissue. Only 1 complication of infection happened in the 18 cases (5.56%) and the 22 expanders (4.55%), which was similar to the rate reported in the literature. No other complications related to the expanders occurred. Debridement and tissue expansion in the early stage has been proved to be a more effective strategy to repair craniomaxillofacial traumatic soft tissue defects. This strategy can not only achieve satisfactory color, unbulky and well-matched texture similar to normal, but also avoid unnecessary donor site injuries.

  14. Rhodium metalloinsertor binding generates a lesion with selective cytotoxicity for mismatch repair-deficient cells.

    PubMed

    Bailis, Julie M; Weidmann, Alyson G; Mariano, Natalie F; Barton, Jacqueline K

    2017-07-03

    The DNA mismatch repair (MMR) pathway recognizes and repairs errors in base pairing and acts to maintain genome stability. Cancers that have lost MMR function are common and comprise an important clinical subtype that is resistant to many standard of care chemotherapeutics such as cisplatin. We have identified a family of rhodium metalloinsertors that bind DNA mismatches with high specificity and are preferentially cytotoxic to MMR-deficient cells. Here, we characterize the cellular mechanism of action of the most potent and selective complex in this family, [Rh(chrysi)(phen)(PPO)] 2+ (Rh-PPO). We find that Rh-PPO binding induces a lesion that triggers the DNA damage response (DDR). DDR activation results in cell-cycle blockade and inhibition of DNA replication and transcription. Significantly, the lesion induced by Rh-PPO is not repaired in MMR-deficient cells, resulting in selective cytotoxicity. The Rh-PPO mechanism is reminiscent of DNA repair enzymes that displace mismatched bases, and is differentiated from other DNA-targeted chemotherapeutics such as cisplatin by its potency, cellular mechanism, and selectivity for MMR-deficient cells.

  15. Predictive genetic testing in children: constitutional mismatch repair deficiency cancer predisposing syndrome.

    PubMed

    Bruwer, Zandrè; Algar, Ursula; Vorster, Alvera; Fieggen, Karen; Davidson, Alan; Goldberg, Paul; Wainwright, Helen; Ramesar, Rajkumar

    2014-04-01

    Biallelic germline mutations in mismatch repair genes predispose to constitutional mismatch repair deficiency syndrome (CMMR-D). The condition is characterized by a broad spectrum of early-onset tumors, including hematological, brain and bowel and is frequently associated with features of Neurofibromatosis type 1. Few definitive screening recommendations have been suggested and no published reports have described predictive testing. We report on the first case of predictive testing for CMMR-D following the identification of two non-consanguineous parents, with the same heterozygous mutation in MLH1: c.1528C > T. The genetic counseling offered to the family, for their two at-risk daughters, is discussed with a focus on the ethical considerations of testing children for known cancer-causing variants. The challenges that are encountered when reporting on heterozygosity in a child younger than 18 years (disclosure of carrier status and risk for Lynch syndrome), when discovered during testing for homozygosity, are addressed. In addition, the identification of CMMR-D in a three year old, and the recommended clinical surveillance that was proposed for this individual is discussed. Despite predictive testing and presymptomatic screening, the sudden death of the child with CMMR-D syndrome occurred 6 months after her last surveillance MRI. This report further highlights the difficulty of developing guidelines, as a result of the rarity of cases and diversity of presentation.

  16. MSH3 mismatch repair protein regulates sensitivity to cytotoxic drugs and a histone deacetylase inhibitor in human colon carcinoma cells.

    PubMed

    Park, Jae Myung; Huang, Shengbing; Tougeron, David; Sinicrope, Frank A

    2013-01-01

    MSH3 is a DNA mismatch repair (MMR) gene that undergoes frequent somatic mutation in colorectal cancers (CRCs) with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown. We utilized isogenic HCT116 (MLH1-/MSH3-) cells where MLH1 is restored by transfer of chromosome 3 (HCT116+ch3) and also MSH3 by chromosome 5 (HCT116+3+5). We generated HCT116+3+5, SW480 (MLH1+/MSH3+) and SW48 (MLH1-/MSH3+) cells with shRNA knockdown of MSH3. Cells were treated with 5-fluorouracil (5-FU), SN-38, oxaliplatin, or the histone deacetylase (HDAC) inhibitor PCI-24781 and cell viability, clonogenic survival, DNA damage and apoptosis were analyzed. MSH3-deficient vs proficient CRC cells showed increased sensitivity to the irinotecan metabolite SN-38 and to oxaliplatin, but not 5-FU, as shown in assays for apoptosis and clonogenic survival. In contrast, suppression of MLH1 attenuated the cytotoxic effect of 5-FU, but did not alter sensitivity to SN-38 or oxaliplatin. The impact of MSH3 knockdown on chemosensitivity to SN-38 and oxaliplatin was maintained independent of MLH1 status. In MSH3-deficient vs proficient cells, SN-38 and oxaliplatin induced higher levels of phosphorylated histone H2AX and Chk2, and similar results were found in MLH1-proficient SW480 cells. MSH3-deficient vs proficient cells showed increased 53BP1 nuclear foci after irradiation, suggesting that MSH3 can regulate DNA double strand break (DSB) repair. We then utilized PCI-24781 that interferes with homologous recombination (HR) indicated by a reduction in Rad51 expression. The addition of PCI-24781 to oxaliplatin enhanced cytotoxicity to a greater extent compared to either drug alone. MSH3 status can regulate the DNA damage response and extent of apoptosis induced by chemotherapy. The ability of MSH3 to regulate chemosensitivity was independent of MLH1 status

  17. A monofunctional platinum complex coordinated to a rhodium metalloinsertor selectively binds mismatched DNA in the minor groove.

    PubMed

    Weidmann, Alyson G; Barton, Jacqueline K

    2015-10-05

    We report the synthesis and characterization of a bimetallic complex derived from a new family of potent and selective metalloinsertors containing an unusual Rh-O axial coordination. This complex incorporates a monofunctional platinum center containing only one labile site for coordination to DNA, rather than two, and coordinates DNA nonclassically through adduct formation in the minor groove. This conjugate displays bifunctional, interdependent binding of mismatched DNA via metalloinsertion at a mismatch as well as covalent platinum binding. DNA sequencing experiments revealed that the preferred site of platinum coordination is not the traditional N7-guanine site in the major groove, but rather N3-adenine in the minor groove. The complex also displays enhanced cytotoxicity in mismatch repair-deficient and mismatch repair-proficient human colorectal carcinoma cell lines compared to the chemotherapeutic cisplatin, and it triggers cell death via an apoptotic pathway, rather than the necrotic pathway induced by rhodium metalloinsertors.

  18. Epistatic role of base excision repair and mismatch repair pathways in mediating cisplatin cytotoxicity

    PubMed Central

    Kothandapani, Anbarasi; Sawant, Akshada; Dangeti, Venkata Srinivas Mohan Nimai; Sobol, Robert W.; Patrick, Steve M.

    2013-01-01

    Base excision repair (BER) and mismatch repair (MMR) pathways play an important role in modulating cis-Diamminedichloroplatinum (II) (cisplatin) cytotoxicity. In this article, we identified a novel mechanistic role of both BER and MMR pathways in mediating cellular responses to cisplatin treatment. Cells defective in BER or MMR display a cisplatin-resistant phenotype. Targeting both BER and MMR pathways resulted in no additional resistance to cisplatin, suggesting that BER and MMR play epistatic roles in mediating cisplatin cytotoxicity. Using a DNA Polymerase β (Polβ) variant deficient in polymerase activity (D256A), we demonstrate that MMR acts downstream of BER and is dependent on the polymerase activity of Polβ in mediating cisplatin cytotoxicity. MSH2 preferentially binds a cisplatin interstrand cross-link (ICL) DNA substrate containing a mismatch compared with a cisplatin ICL substrate without a mismatch, suggesting a novel mutagenic role of Polβ in activating MMR in response to cisplatin. Collectively, these results provide the first mechanistic model for BER and MMR functioning within the same pathway to mediate cisplatin sensitivity via non-productive ICL processing. In this model, MMR participation in non-productive cisplatin ICL processing is downstream of BER processing and dependent on Polβ misincorporation at cisplatin ICL sites, which results in persistent cisplatin ICLs and sensitivity to cisplatin. PMID:23761438

  19. Mismatch repair deficiency associated with overexpression of the MSH3 gene.

    PubMed

    Marra, G; Iaccarino, I; Lettieri, T; Roscilli, G; Delmastro, P; Jiricny, J

    1998-07-21

    We tested the ability of recombinant hMutSalpha (hMSH2/hMSH6) and hMutSbeta (hMSH2/hMSH3) heterodimers to complement the mismatch repair defect of HEC59, a human cancer cell line whose extracts lack all three MutS homologues. Although repair of both base/base mispairs and insertion-deletion loops was restored by hMutSalpha, only the latter substrates were addressed in extracts supplemented with hMutSbeta. hMutSalpha was also able to complement a defect in the repair of base/base mispairs in CHO R and HL60R cell extracts. In these cells, methotrexate-induced amplification of the dihydrofolate reductase (DHFR) locus, which also contains the MSH3 gene, led to an overexpression of MSH3 and thus to a dramatic change in the relative levels of MutSalpha and MutSbeta. As a rule, MSH2 is primarily complexed with MSH6. MutSalpha is thus relatively abundant in mammalian cell extracts, whereas MutSbeta levels are generally low. In contrast, in cells that overexpress MSH3, the available MSH2 protein is sequestered predominantly into MutSbeta. This leads to degradation of the partnerless MSH6 and depletion of MutSalpha. CHO R and HL60R cells therefore lack correction of base/base mispairs, whereas loop repair is maintained by MutSbeta. Consequently, frameshift mutations in CHO R are rare, whereas transitions and transversions are acquired at a rate two orders of magnitude above background. Our data thus support and extend the findings of Drummond et al. [Drummond, J. T., Genschel, J., Wolf, E. & Modrich, P. (1997) Proc. Natl. Acad. Sci. USA 94, 10144-10149] and demonstrate that mismatch repair deficiency can arise not only through mutation or transcriptional silencing of a mismatch repair gene, but also as a result of imbalance in the relative amounts of the MSH3 and MSH6 proteins.

  20. Human mismatch repair protein hMutLα is required to repair short slipped-DNAs of trinucleotide repeats.

    PubMed

    Panigrahi, Gagan B; Slean, Meghan M; Simard, Jodie P; Pearson, Christopher E

    2012-12-07

    Mismatch repair (MMR) is required for proper maintenance of the genome by protecting against mutations. The mismatch repair system has also been implicated as a driver of certain mutations, including disease-associated trinucleotide repeat instability. We recently revealed a requirement of hMutSβ in the repair of short slip-outs containing a single CTG repeat unit (1). The involvement of other MMR proteins in short trinucleotide repeat slip-out repair is unknown. Here we show that hMutLα is required for the highly efficient in vitro repair of single CTG repeat slip-outs, to the same degree as hMutSβ. HEK293T cell extracts, deficient in hMLH1, are unable to process single-repeat slip-outs, but are functional when complemented with hMutLα. The MMR-deficient hMLH1 mutant, T117M, which has a point mutation proximal to the ATP-binding domain, is defective in slip-out repair, further supporting a requirement for hMLH1 in the processing of short slip-outs and possibly the involvement of hMHL1 ATPase activity. Extracts of hPMS2-deficient HEC-1-A cells, which express hMLH1, hMLH3, and hPMS1, are only functional when complemented with hMutLα, indicating that neither hMutLβ nor hMutLγ is sufficient to repair short slip-outs. The resolution of clustered short slip-outs, which are poorly repaired, was partially dependent upon a functional hMutLα. The joint involvement of hMutSβ and hMutLα suggests that repeat instability may be the result of aberrant outcomes of repair attempts.

  1. The DNA mismatch repair genes Msh3 and Msh6 cooperate in intestinal tumor suppression.

    PubMed

    Edelmann, W; Umar, A; Yang, K; Heyer, J; Kucherlapati, M; Lia, M; Kneitz, B; Avdievich, E; Fan, K; Wong, E; Crouse, G; Kunkel, T; Lipkin, M; Kolodner, R D; Kucherlapati, R

    2000-02-15

    Repair of mismatches in DNA in mammalian cells is mediated by a complex of proteins that are members of two highly conserved families of genes referred to as MutS and MutL homologues. Germline mutations in several members of these families, MSH2, MSH6, MLH1, and PMS2, but not MSH3, are responsible for hereditary non-polyposis colorectal cancer. To examine the role of MSH3, we generated a mouse with a null mutation in this gene. Cells from Msh3-/- mice are defective in repair of insertion/ deletion mismatches but can repair base-base mismatches. Msh3-/- mice develop tumors at a late age. When the Msh3-/- and Msh6-/- mutations are combined, the tumor predisposition phenotype is indistinguishable from Msh2-/- or Mlh1-/- mice. These results suggest that MSH3 cooperates with MSH6 in tumor suppression.

  2. Indoleamine 2,3-dioxygenase in endometrial cancer: a targetable mechanism of immune resistance in mismatch repair-deficient and intact endometrial carcinomas.

    PubMed

    Mills, Anne; Zadeh, Sara; Sloan, Emily; Chinn, Zachary; Modesitt, Susan C; Ring, Kari L

    2018-03-20

    Mismatch repair-deficient endometrial carcinomas are optimal candidates for immunotherapy given their high neoantigen loads, robust lymphoid infiltrates, and frequent PD-L1 expression. However, co-opting the PD-1/PD-L1 pathway is just one mechanism that tumors can utilize to evade host immunity. Another immune modulatory molecule that has been demonstrated in endometrial carcinoma is indoleamine 2,3-dioxygenase (IDO). We herein evaluate IDO expression in 60 endometrial carcinomas and assess results in relation to PD-L1 and mismatch repair status. IDO immunohistochemistry was performed on 60 endometrial carcinomas (20 Lynch syndrome (LS)-associated, 20 MLH1 promoter hypermethylated, and 20 mismatch repair-intact). Eight-five percent of endometrial carcinomas showed IDO tumor staining in >1% of cells. Twenty-five percent were positive in >25% of tumor cells and only 7% exceeded 50% staining. Mismatch repair-deficient cancers were more likely than mismatch repair-intact cancers to be >25% IDO-positive (35% vs. 5% p = 0.024). Differences were amplified when Lynch syndrome-associated cases were evaluated in isolation (50% Lynch syndrome-associated vs. 10% mismatch repair-intact and MLH1-hypermethylated, p = 0.001). Of the four cases showing >50% staining, three were Lynch syndrome-associated and one was MLH1-hypermethylated; no mismatch repair-intact cases had >50% staining. Forty-three percent of IDO-positive tumors were also positive for PD-L1, whereas only two cases showed tumoral PD-L1 in the absence of IDO. In summary, IDO expression is prevalent in endometrial carcinomas and diffuse staining is significantly more common in mismatch repair-deficient cancers, particularly Lynch syndrome-associated cases. Given that the majority of PD-L1 positive cancers also express IDO, synergistic combination therapy with anti-IDO and anti-PD1/PD-L1 may be relevant in this tumor type. Furthermore, anti-IDO therapy may be an option for a small subset of mismatch repair

  3. A Monofunctional Platinum Complex Coordinated to a Rhodium Metalloinsertor Selectively Binds Mismatched DNA in the Minor Groove

    PubMed Central

    Weidmann, Alyson G.; Barton, Jacqueline K.

    2015-01-01

    We report the synthesis and characterization of a bimetallic complex derived from a new family of potent and selective metalloinsertors containing an unusual Rh—O axial coordination. This complex incorporates a monofunctional platinum center containing only one labile site for coordination to DNA, rather than two, and coordinates DNA non-classically through adduct formation in the minor groove. This conjugate displays bifunctional, interdependent binding of mismatched DNA via metalloinsertion at a mismatch as well as covalent platinum binding. DNA sequencing experiments revealed that the preferred site of platinum coordination is not the traditional N7-guanine site in the major groove, but rather N3-adenine in the minor groove. The complex also displays enhanced cytotoxicity in mismatch repair-deficient and mismatch repair-proficient human colorectal carcinoma cell lines compared to the chemotherapeutic cisplatin, and triggers cell death via an apoptotic pathway, rather than the necrotic pathway induced by rhodium metalloinsertors. PMID:26397309

  4. Applying NGS Data to Find Evolutionary Network Biomarkers from the Early and Late Stages of Hepatocellular Carcinoma

    PubMed Central

    Wu, Chia-Chou; Lin, Chih-Lung; Chen, Ting-Shou

    2015-01-01

    Hepatocellular carcinoma (HCC) is a major liver tumor (~80%), besides hepatoblastomas, angiosarcomas, and cholangiocarcinomas. In this study, we used a systems biology approach to construct protein-protein interaction networks (PPINs) for early-stage and late-stage liver cancer. By comparing the networks of these two stages, we found that the two networks showed some common mechanisms and some significantly different mechanisms. To obtain differential network structures between cancer and noncancer PPINs, we constructed cancer PPIN and noncancer PPIN network structures for the two stages of liver cancer by systems biology method using NGS data from cancer cells and adjacent noncancer cells. Using carcinogenesis relevance values (CRVs), we identified 43 and 80 significant proteins and their PPINs (network markers) for early-stage and late-stage liver cancer. To investigate the evolution of network biomarkers in the carcinogenesis process, a primary pathway analysis showed that common pathways of the early and late stages were those related to ordinary cancer mechanisms. A pathway specific to the early stage was the mismatch repair pathway, while pathways specific to the late stage were the spliceosome pathway, lysine degradation pathway, and progesterone-mediated oocyte maturation pathway. This study provides a new direction for cancer-targeted therapies at different stages. PMID:26366411

  5. Warthin tumors do not have microsatellite instability and express normal DNA mismatch repair proteins.

    PubMed

    Hunt, Jennifer L

    2006-01-01

    Warthin tumors are controversial entities with a poorly understood etiology. Although some investigators have suggested a neoplastic origin, others have supported a developmental anomaly. A recent study described the absence of staining for hMLH1 and hMSH2 proteins in the epithelial component of Warthin tumors, suggesting that they arise secondary to defects in the DNA mismatch repair system. To determine if Warthin tumors exhibit evidence of DNA mismatch repair defects. Immunostains for hMLH1 and hMSH2 were performed using a standard approach. Microdissection of the epithelial component was followed by DNA extraction from the tissue fragments. Polymerase chain reaction and capillary electrophoresis analyses were performed for the following 5 National Cancer Institute-recommended microsatellites: D2s123, D5s346, D17s250, BAT25, and BAT26. Twelve patients with Warthin tumors were included. The immunostains for hMLH1 and hMSH2 showed preserved expression in the nuclei of the epithelial component of all Warthin tumors. No microsatellite instability was detected, and no loss of heterozygosity was seen. These results are not concordant with previously reported results showing loss of expression of the hMLH1 and hMSH2 DNA mismatch repair enzymes in the epithelial component of Warthin tumors. Furthermore, no microsatellite instability was detected in the 5 loci tested for each tumor in this series. These data demonstrate that Warthin tumors do not have evidence of DNA mismatch repair defects at the genomic or protein expression level.

  6. Role of the mismatch repair gene, Msh6, in suppressing genome instability and radiation-induced mutations

    PubMed Central

    Barrera-Oro, Julio; Liu, Tzu-Yang; Gorden, Erin; Kucherlapati, Raju; Shao, Changshun; Tischfield, Jay A

    2008-01-01

    Mismatch repair (MMR) is critical for preserving genomic integrity. Failure of this system can accelerate somatic mutation and increase the risk of developing cancer. MSH6, in complex with MSH2, is the MMR protein that mediates DNA repair through the recognition of 1- and 2-bp mismatches. To evaluate the effects of MSH6 deficiency on genomic stability we compared the frequency of in vivo loss of heterozygosity (LOH) between MSH6-proficient and deficient, 129S2 x C57BL/6 F1 hybrid mice that were heterozygous for our reporter gene Aprt. We recovered mutant cells that had functionally lost APRT protein activity and categorized the spectrum of mutations responsible for the LOH events. We also measured the mutant frequency at the X-linked gene, Hprt, as a second reporter for point mutation. In Msh6−/−Aprt+/− mice, mutation frequency at Aprt was elevated in both T cells and fibroblasts by 2.5-fold and 5.7-fold, respectively, over Msh6+/+Aprt+/− littermate controls. While a modest increase in mitotic recombination (MR) was observed in MSH6-deficient fibroblasts compared to wild type controls, point mutation was the predominant mechanism leading to APRT deficiency in both cell types. Base substitution, consisting of multiple types of transitions, accounted for all of the point mutations identified within the Aprt coding region. We also assessed the role of MSH6 in preventing mutations caused by a common environmental mutagen, ionizing radiation (IR). In Msh6−/−Aprt+/− mice, 4 Gy of X-irradiation induced a significant increase in point mutations at both Aprt and Hprt in T cells, but not in fibroblasts. These findings indicate that MutSα reduces spontaneous and IR-induced mutation in a cell-type dependant manner. PMID:18538799

  7. Metachronous T-Lymphoblastic Lymphoma and Burkitt Lymphoma in a Child With Constitutional Mismatch Repair Deficiency Syndrome.

    PubMed

    Alexander, Thomas B; McGee, Rose B; Kaye, Erica C; McCarville, Mary Beth; Choi, John K; Cavender, Cary P; Nichols, Kim E; Sandlund, John T

    2016-08-01

    Constitutional mismatch repair deficiency (CMMRD) is a cancer predisposition syndrome associated with a high risk of developing early-onset malignancies of the blood, brain, and intestinal tract. We present the case of a patient with T-lymphoblastic lymphoma at the age of 3 years, followed by Burkitt lymphoma 10 years later. This patient also exhibited numerous nonmalignant findings including café au lait spots, lipomas, bilateral renal nodules, a nonossifying fibroma, multiple colonic adenomas, and a rapidly enlarging pilomatrixoma. The spectrum of malignant and nonmalignant neoplasms in this patient highlights the remarkable diversity, and early onset, of lesions seen in children with CMMRD. © 2016 Wiley Periodicals, Inc.

  8. MSH3 Mismatch Repair Protein Regulates Sensitivity to Cytotoxic Drugs and a Histone Deacetylase Inhibitor in Human Colon Carcinoma Cells

    PubMed Central

    Park, Jae Myung; Huang, Shengbing; Tougeron, David; Sinicrope, Frank A.

    2013-01-01

    Background MSH3 is a DNA mismatch repair (MMR) gene that undergoes frequent somatic mutation in colorectal cancers (CRCs) with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown. Methods We utilized isogenic HCT116 (MLH1−/MSH3−) cells where MLH1 is restored by transfer of chromosome 3 (HCT116+ch3) and also MSH3 by chromosome 5 (HCT116+3+5). We generated HCT116+3+5, SW480 (MLH1+/MSH3+) and SW48 (MLH1−/MSH3+) cells with shRNA knockdown of MSH3. Cells were treated with 5-fluorouracil (5-FU), SN-38, oxaliplatin, or the histone deacetylase (HDAC) inhibitor PCI-24781 and cell viability, clonogenic survival, DNA damage and apoptosis were analyzed. Results MSH3-deficient vs proficient CRC cells showed increased sensitivity to the irinotecan metabolite SN-38 and to oxaliplatin, but not 5-FU, as shown in assays for apoptosis and clonogenic survival. In contrast, suppression of MLH1 attenuated the cytotoxic effect of 5-FU, but did not alter sensitivity to SN-38 or oxaliplatin. The impact of MSH3 knockdown on chemosensitivity to SN-38 and oxaliplatin was maintained independent of MLH1 status. In MSH3-deficient vs proficient cells, SN-38 and oxaliplatin induced higher levels of phosphorylated histone H2AX and Chk2, and similar results were found in MLH1-proficient SW480 cells. MSH3-deficient vs proficient cells showed increased 53BP1 nuclear foci after irradiation, suggesting that MSH3 can regulate DNA double strand break (DSB) repair. We then utilized PCI-24781 that interferes with homologous recombination (HR) indicated by a reduction in Rad51 expression. The addition of PCI-24781 to oxaliplatin enhanced cytotoxicity to a greater extent compared to either drug alone. Conclusion MSH3 status can regulate the DNA damage response and extent of apoptosis induced by chemotherapy. The ability of MSH3 to regulate

  9. DNA Mismatch Binding and Antiproliferative Activity of Rhodium Metalloinsertors

    PubMed Central

    Ernst, Russell J.; Song, Hang; Barton, Jacqueline K.

    2009-01-01

    Deficiencies in mismatch repair (MMR) are associated with carcinogenesis. Rhodium metalloinsertors bind to DNA base mismatches with high specificity and inhibit cellular proliferation preferentially in MMR-deficient cells versus MMR-proficient cells. A family of chrysenequinone diimine complexes of rhodium with varying ancillary ligands that serve as DNA metalloinsertors has been synthesized, and both DNA mismatch binding affinities and antiproliferative activities against the human colorectal carcinoma cell lines HCT116N and HCT116O, an isogenic model system for MMR deficiency, have been determined. DNA photocleavage experiments reveal that all complexes bind to the mismatch sites with high specificities; DNA binding affinities to oligonucleotides containing single base CA and CC mismatches, obtained through photocleavage titration or competition, vary from 104 to 108 M−1 for the series of complexes. Significantly, binding affinities are found to be inversely related to ancillary ligand size and directly related to differential inhibition of the HCT116 cell lines. The observed trend in binding affinity is consistent with the metalloinsertion mode where the complex binds from the minor groove with ejection of mismatched base pairs. The correlation between binding affinity and targeting of the MMR-deficient cell line suggests that rhodium metalloinsertors exert their selective biological effects on MMR-deficient cells through mismatch binding in vivo. PMID:19175313

  10. Pembrolizumab, Capecitabine, and Bevacizumab in Treating Patients With Microsatellite Stable Colorectal Cancer That Is Locally Advanced, Metastatic, or Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2018-04-04

    Microsatellite Stable; Mismatch Repair Protein Proficient; Stage III Colorectal Cancer AJCC v7; Stage IIIB Colorectal Cancer AJCC v7; Stage IIIC Colorectal Cancer AJCC v7; Stage IV Colorectal Cancer AJCC v7; Stage IVA Colorectal Cancer AJCC v7; Stage IVB Colorectal Cancer AJCC v7

  11. Alterations in Synthesis and Repair of DNA during the Development of Loach Misgurnus fossilis

    PubMed Central

    Gening, Leonid V.; Lakhin, Andrei V.; Makarova, Irina V.; Nenasheva, Valentina V.; Andreeva, Ludmila E.; Tarantul, Vyacheslav Z.

    2016-01-01

    Using a modified radiolabeled primer extension method (we named this modification misGvA—“misincorporation of G versus A”) we have investigated the DNA synthesis and repair at early and late stages of development of loach Misgurnus fossilis. The misincorporation activity of DNA polymerase iota (Pol ι) in wild-type loach could not be detected by this method at any stage of loach development. In transgenic loach overexpressing human Pol ι we have shown that the bypassing of DNA synthesis arrest after incorporation of mismatched nucleotide by Pol ι (the T-stop) was not associated with this enzyme. Non-transgenic loach larvae are virtually lacking the capacity for error correction of DNA duplex containing a mismatched nucleotide. Such repair activity develops only in the adult fish. It appears that the initial stages of development are characterized by more intensive DNA synthesis, while in terminal stages the repair activities become more prominent. The misGvA approach clearly indicates substantial changes in the DNA synthesis intensity, although the role of particular replicative and repair DNA polymerases in this process requires further study. PMID:29615575

  12. Analysis of MSH3 in endometrial cancers with defective DNA mismatch repair.

    PubMed

    Swisher, E M; Mutch, D G; Herzog, T J; Rader, J S; Kowalski, L D; Elbendary, A; Goodfellow, P J

    1998-01-01

    To clarify the origin of defective mismatch repair (MMR) in sporadic endometrial cancers with microsatellite instability (MSI), a thorough mutation analysis was performed on the human mismatch repair gene MSH3. Twenty-eight MSI-positive endometrial cancers were investigated for mutations in the human mismatch repair gene MSH3 using single-strand conformation variant (SSCV) analysis of all 24 exons. All variants were sequenced. Loss of heterozygosity was investigated at all MSH3 polymorphisms discovered. A subset of tumors were investigated for methylation of the 5' promoter region of MSH3 using Southern blot hybridization. An identical single-base deletion (delta A) predicted to result in a truncated proteins was discovered in six tumors (21.4%). This deletion occurs in a string of eight consecutive adenosine residues (A8). Because simple repeat sequences are unstable in cells with defective MMR, the observed mutation may be an effect, rather than a cause, of MSI. Evidence of inactivation of the second MSH3 allele in tumors with the delta A mutation would strongly support a causal role for these MSH3 mutations. However, there was no evidence of a second mutation, loss of sequences, or methylation of the promoter region in any of the tumors with the delta A mutation. Although the delta A mutation is a frequent event in sporadic MSI-positive endometrial cancers, it may not be causally associated with defective DNA MMR.

  13. Relationship between PTEN, DNA mismatch repair, and tumor histotype in endometrial carcinoma: retained positive expression of PTEN preferentially identifies sporadic non-endometrioid carcinomas.

    PubMed

    Djordjevic, Bojana; Barkoh, Bedia A; Luthra, Rajyalakshmi; Broaddus, Russell R

    2013-10-01

    Loss of PTEN (phosphatase and tensin homolog) expression and microsatellite instability are two of the more common molecular alterations in endometrial carcinoma. From the published literature, it is controversial as to whether there is a relationship between these different molecular mechanisms. Therefore, a cohort of 187 pure endometrioid and non-endometrioid endometrial carcinomas, carefully characterized as to clinical and pathological features, was examined for PTEN sequence abnormalities and the immunohistochemical expression of PTEN and the DNA mismatch repair proteins MLH1, MSH2, MSH6, and PMS2. MLH1 methylation analysis was performed when tumors had loss of MLH1 protein. Mismatch repair protein loss was more frequent in endometrioid carcinomas compared with non-endometrioid carcinomas, a difference primarily attributable to the presence of MLH1 methylation in a greater proportion of endometrioid tumors. Among the non-endometrioid group, mixed endometrioid/non-endometrioid carcinomas were the histotype that most commonly had loss of a mismatch repair protein. In endometrioid tumors, the frequency of PTEN loss measured by immunohistochemistry and mutation did not differ significantly between the mismatch repair protein intact or mismatch repair protein loss groups, suggesting that PTEN loss is independent of mismatch protein repair status in this group. However, in non-endometrioid carcinomas, both intact positive PTEN immunohistochemical expression and PTEN wild type were highly associated with retained positive expression of mismatch repair proteins in the tumor. Relevant to screening endometrial cancers for Lynch Syndrome, an initial PTEN immunohistochemistry determination may be able to replace the use of four mismatch repair immunohistochemical markers in 63% of patients with non-endometrioid endometrial carcinoma. Therefore, PTEN immunohistochemistry, in combination with tumor histotype, is a useful adjunct in the clinical evaluation of endometrial

  14. Relationship between PTEN, DNA Mismatch Repair, and Tumor Histotype in Endometrial Carcinoma: Retained Positive Expression of PTEN Preferentially Identifies Sporadic Non-Endometrioid Carcinomas

    PubMed Central

    Djordjevic, Bojana; Barkoh, Bedia A.; Luthra, Rajyalakshmi; Broaddus, Russell R.

    2013-01-01

    Loss of PTEN (phosphatase and tensin homolog) expression and microsatellite instability are two of the more common molecular alterations in endometrial carcinoma. From the published literature, it is controversial as to whether there is a relationship between these different molecular mechanisms. Therefore, a cohort of 187 pure endometrioid and non-endometrioid endometrial carcinomas, carefully characterized as to clinical and pathological features, was examined for PTEN sequence abnormalities and the immunohistochemical expression of PTEN and the DNA mismatch repair proteins MLH1, MSH2, MSH6 and PMS2. MLH1 methylation analysis was performed when tumors had loss of MLH1 protein. Mismatch repair protein loss was more frequent in endometrioid carcinomas compared to non-endometrioid carcinomas, a difference primarily attributable to the presence of MLH1 methylation in a greater proportion of endometrioid tumors. Among the non-endometrioid group, mixed endometrioid/non-endometrioid carcinomas were the histotype that most commonly had loss of a mismatch repair protein. In endometrioid tumors, the frequency of PTEN loss measured by immunohistochemistry and mutation did not differ significantly between the mismatch repair protein intact or mismatch repair protein loss groups, suggesting that PTEN loss is independent of mismatch protein repair status in this group. However, in non-endometrioid carcinomas, both intact positive PTEN immunohistochemical expression and PTEN wild type were highly associated with retained positive expression of mismatch repair proteins in the tumor. Relevant to screening endometrial cancers for Lynch Syndrome, an initial PTEN immunohistochemistry determination may be able to replace the use of four mismatch repair immunohistochemical markers in 63% of patients with non-endometrioid endometrial carcinoma. Therefore, PTEN immunohistochemistry, in combination with tumor histotype, is a useful adjunct in the clinical evaluation of endometrial

  15. DNA mismatch repair protein deficient non-neoplastic colonic crypts: a novel indicator of Lynch syndrome.

    PubMed

    Pai, Rish K; Dudley, Beth; Karloski, Eve; Brand, Randall E; O'Callaghan, Neil; Rosty, Christophe; Buchanan, Daniel D; Jenkins, Mark A; Thibodeau, Stephen N; French, Amy J; Lindor, Noralane M; Pai, Reetesh K

    2018-06-08

    Lynch syndrome is the most common form of hereditary colorectal carcinoma. However, establishing the diagnosis of Lynch syndrome is challenging, and ancillary studies that distinguish between sporadic DNA mismatch repair (MMR) protein deficiency and Lynch syndrome are needed, particularly when germline mutation studies are inconclusive. The aim of this study was to determine if MMR protein-deficient non-neoplastic intestinal crypts can help distinguish between patients with and without Lynch syndrome. We evaluated the expression of MMR proteins in non-neoplastic intestinal mucosa obtained from colorectal surgical resection specimens from patients with Lynch syndrome-associated colorectal carcinoma (n = 52) and patients with colorectal carcinoma without evidence of Lynch syndrome (n = 70), including sporadic MMR protein-deficient colorectal carcinoma (n = 30), MMR protein proficient colorectal carcinoma (n = 30), and "Lynch-like" syndrome (n = 10). MMR protein-deficient non-neoplastic colonic crypts were identified in 19 of 122 (16%) patients. MMR protein-deficient colonic crypts were identified in 18 of 52 (35%) patients with Lynch syndrome compared to only 1 of 70 (1%) patients without Lynch syndrome (p < 0.001). This one patient had "Lynch-like" syndrome and harbored two MSH2-deficient non-neoplastic colonic crypts. MMR protein-deficient non-neoplastic colonic crypts were not identified in patients with sporadic MMR protein-deficient or MMR protein proficient colorectal carcinoma. Our findings suggest that MMR protein-deficient colonic crypts are a novel indicator of Lynch syndrome, and evaluation for MMR protein-deficient crypts may be a helpful addition to Lynch syndrome diagnostics.

  16. Reduced mutation rate in exons due to differential mismatch repair

    PubMed Central

    Mularoni, Loris; Muiños, Ferran; Gonzalez-Perez, Abel; López-Bigas, Núria

    2017-01-01

    While recent studies have revealed higher than anticipated heterogeneity of mutation rate across genomic regions, mutations in exons and introns are assumed to be generated at the same rate. Here we find fewer somatic mutations in exons than expected based on their sequence content, and demonstrate that this is not due to purifying selection. Moreover, we show that it is caused by higher mismatch repair activity in exonic than in intronic regions. Our findings have important implications for our understanding of mutational and DNA repair processes, our knowledge of the evolution of eukaryotic genes, and practical ramifications for the study of the evolution of both tumors and species. PMID:29106418

  17. Influence of very short patch mismatch repair on SOS inducing lesions after aminoglycoside treatment in Escherichia coli.

    PubMed

    Baharoglu, Zeynep; Mazel, Didier

    2014-01-01

    Low concentrations of aminoglycosides induce the SOS response in Vibrio cholerae but not in Escherichia coli. In order to determine whether a specific factor present in E. coli prevents this induction, we developed a genetic screen where only SOS inducing mutants are viable. We identified the vsr gene coding for the Vsr protein of the very short patch mismatch repair (VSPR) pathway. The effect of mismatch repair (MMR) mutants was also studied. We propose that lesions formed upon aminoglycoside treatment are preferentially repaired by VSPR without SOS induction in E. coli and by MMR when VSPR is impaired. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Analysis of the functional domains of the mismatch repair homologue Msh1p and its role in mitochondrial genome maintenance.

    PubMed

    Mookerjee, Shona A; Lyon, Hiram D; Sia, Elaine A

    2005-02-01

    Mitochondrial DNA (mtDNA) repair occurs in all eukaryotic organisms and is essential for the maintenance of mitochondrial function. Evidence from both humans and yeast suggests that mismatch repair is one of the pathways that functions in overall mtDNA stability. In the mitochondria of the yeast Saccharomyces cerevisiae, the presence of a homologue to the bacterial MutS mismatch repair protein, MSH1, has long been known to be essential for mitochondrial function. The mechanisms for which it is essential are unclear, however. Here, we analyze the effects of two point mutations, msh1-F105A and msh1-G776D, both predicted to be defective in mismatch repair; and we show that they are both able to maintain partial mitochondrial function. Moreover, there are significant differences in the severity of mitochondrial disruption between the two mutants that suggest multiple roles for Msh1p in addition to mismatch repair. Our overall findings suggest that these additional predicted functions of Msh1p, including recombination surveillance and heteroduplex rejection, may be primarily responsible for its essential role in mtDNA stability.

  19. Hyaluronan Tumor Cell Interactions in Prostate Cancer Growth and Survival

    DTIC Science & Technology

    2008-12-01

    different outcomes. For example, colo- rectal cancers can be grouped into DNA mismatch repair-proficient, MLH1 negative and presumed Lynch syndrome. Although...a prognostic factor in DNA-mismatch repair-proficient (MMR-proficient) and presumed Lynch syndrome forms of colorectal cancer but not in MLH1 negative

  20. Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion

    PubMed Central

    Wang, Harris H.; Xu, George; Vonner, Ashley J.; Church, George

    2011-01-01

    Genome engineering using single-stranded oligonucleotides is an efficient method for generating small chromosomal and episomal modifications in a variety of host organisms. The efficiency of this allelic replacement strategy is highly dependent on avoidance of the endogenous mismatch repair (MMR) machinery. However, global MMR inactivation generally results in significant accumulation of undesired background mutations. Here, we present a novel strategy using oligos containing chemically modified bases (2′-Fluoro-Uridine, 5-Methyl-deoxyCytidine, 2,6-Diaminopurine or Iso-deoxyGuanosine) in place of the standard T, C, A or G to avoid mismatch detection and repair, which we tested in Escherichia coli. This strategy increases transient allelic-replacement efficiencies by up to 20-fold, while maintaining a 100-fold lower background mutation level. We further show that the mismatched bases between the full length oligo and the chromosome are often not incorporated at the target site, probably due to nuclease activity at the 5′ and 3′ termini of the oligo. These results further elucidate the mechanism of oligo-mediated allelic replacement (OMAR) and enable improved methodologies for efficient, large-scale engineering of genomes. PMID:21609953

  1. Mismatch negativity as a potential neurobiological marker of early-stage Alzheimer disease and vascular dementia.

    PubMed

    Jiang, Shixiang; Yan, Chang; Qiao, Zhengxue; Yao, Haiqian; Jiang, Shiquan; Qiu, Xiaohui; Yang, Xiuxian; Fang, Deyu; Yang, Yanjie; Zhang, Limei; Wang, Lina; Zhang, Liming

    2017-04-24

    Alzheimer's disease (AD) and vascular dementia (VD) are serious, irreversible forms of cognitive impairment, which means that an early diagnosis is essential to slow down their progression. One potential neurophysiological biomarker of these diseases is the mismatch negativity (MMN) event-related potentials (ERP) component, which reflects an automatic detection mechanism at the pre-attentive stages of information processing. We evaluated the auditory MMN response in individuals from two patient groups: those in the prodromal stages of AD (P-AD) and those in the prodromal stages of VD (P-VD). Thirty patients (15 P-AD patients and 15 P-VD patients) and 30 age-matched controls were recruited to undergo electrophysiological recordings during the presentation of an auditory deviant-standard-reverse oddball paradigm that was used to elicit genuine MMN responses. We show that over the frontal-central area, the mean amplitude of the MMN was significantly reduced in both the P-AD (p=0.017) and P-VD groups (p=0.013) compared with controls. The MMN peak latency in P-VD patients was significantly shorter than in controls (p=0.027). No MMN response differences between the P-AD and P-VD were found in either the frontal-central or the temporal areas. These results indicate that P-AD and P-VD patients exhibit impaired pre-attentive information processing mechanisms as revealed by the frontal-central area MMN response, which is associated with sensory memory and cognitive deficits. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Diffusion and Binding of Mismatch Repair Protein, MSH2, in Breast Cancer Cells at Different Stages of Neoplastic Transformation

    PubMed Central

    Sigley, Justin; Jarzen, John; Scarpinato, Karin; Guthold, Martin; Pu, Tracey; Nelli, Daniel; Low, Josiah

    2017-01-01

    The interior of cells is a highly complex medium, containing numerous organelles, a matrix of different fibers and a viscous, aqueous fluid of proteins and small molecules. The interior of cells is also a highly dynamic medium, in which many components move, either by active transport or passive diffusion. The mobility and localization of proteins inside cells can provide important insights into protein function and also general cellular properties, such as viscosity. Neoplastic transformation affects numerous cellular properties, and our goal was to investigate the diffusional and binding behavior of the important mismatch repair (MMR) protein MSH2 in live human cells at various stages of neoplastic transformation. Toward this end, noncancerous, immortal, tumorigenic, and metastatic mammary epithelial cells were transfected with EGFP and EGFP-tagged MSH2. MSH2 forms two MMR proteins (MutSα and MutSβ) and we assume MSH2 is in the complex MutSα, though our results are similar in either case. Unlike the MutS complexes that bind to nuclear DNA, EGFP diffuses freely. EGFP and MutSα-EGFP diffusion coefficients were determined in the cytoplasm and nucleus of each cell type using fluorescence recovery after photobleaching. Diffusion coefficients were 14–24 μm2/s for EGFP and 3–7 μm2/s for MutSα-EGFP. EGFP diffusion increased in going from noncancerous to immortal cells, indicating a decrease in viscosity, with smaller changes in subsequent stages. MutSα produces an effective diffusion coefficient that, coupled with the free EGFP diffusion measurements, can be used to extract a pure diffusion coefficient and a pseudo-equilibrium constant K*. The MutSα nuclear K* increased sixfold in the first stage of cancer and then decreased in the more advanced stages. The ratio of nuclear to cytoplasmic K*for MutSα increased almost two orders of magnitude in going from noncancerous to immortal cells, suggesting that this quantity may be a sensitive metric for recognizing

  3. Mismatch repair proteins, meiosis, and mice: understanding the complexities of mammalian meiosis.

    PubMed

    Svetlanov, Anton; Cohen, Paula E

    2004-05-15

    Mammalian meiosis differs from that seen in lower eukaryotes in several respects, not least of which is the added complexity of dealing with chromosomal interactions across a much larger genome (12 MB over 16 chromosome pairs in Saccharomyces cerevisiae compared to 2500 MB over 19 autosome pairs in Mus musculus). Thus, the recombination machinery, while being highly conserved through eukaryotes, has evolved to accommodate such issues to preserve genome integrity and to ensure propagation of the species. One group of highly conserved meiotic regulators is the DNA mismatch repair protein family that, as their name implies, were first identified as proteins that act to repair DNA mismatches that arise primarily during DNA replication. Their function in ensuring chromosomal integrity has also translated into a critical role for this family in meiotic recombination in most sexually reproducing organisms. In mice, targeted deletion of certain family members results in severe consequences for meiotic progression and infertility. This review will focus on the studies involving these mutant mouse models, with occasional comparison to the function of these proteins in other organisms.

  4. Estrogen enhances mismatch repair by induction of MLH1 expression via estrogen receptor-β

    PubMed Central

    Lu, Jun-Yu; Jin, Peng; Gao, Wei; Wang, De-Zhi; Sheng, Jian-Qiu

    2017-01-01

    Epidemiological data demonstrated that hormone replace treatment has protective effect against colorectal cancer (CRC). Our previous studies showed that this effect may be associated with DNA mismatch repair. This study aims to investigate the mechanism of estrogen induction of MLH1, and whether colorectal tumor proliferation can be inhibited through induction of MLH1 by estrogen signal pathway. Human CRC cell lines were used to examine the regulation of MLH1 expression by over-expression and depletion of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), under the treatment with 17β-estradiol or β-Estradiol 6-(O-carboxy-methyl)oxime:BSA, followed by a real-time Q-PCR and Western blotting analysis. Luciferase reporter and chromatin immunoprecipitation assays were used to identify the estrogen response elements in the proximal promoter of MLH1 gene. Then, the influence of estrogen-induced MLH1 on CRC tumor growth were determined in vitro and in vivo. We found that mismatch repair ability and microsatellite stability of cells were enhanced by estrogen via induction of MLH1 expression, which was mediated by ERβ, through a transcriptional activation process. Furthermore, we identified that ERβ exerted an inhibitory effect on CRC tumor proliferation in vitro and in vivo, combined with 5-FU, through up-regulation of MLH1 expression. Finally, we concluded that estrogen enhances mismatch repair ability and tumor inhibition effect in vitro and in vivo, via induction of MLH1 expression mediated by ERβ. PMID:28404976

  5. Estrogen enhances mismatch repair by induction of MLH1 expression via estrogen receptor-β.

    PubMed

    Lu, Jun-Yu; Jin, Peng; Gao, Wei; Wang, De-Zhi; Sheng, Jian-Qiu

    2017-06-13

    Epidemiological data demonstrated that hormone replace treatment has protective effect against colorectal cancer (CRC). Our previous studies showed that this effect may be associated with DNA mismatch repair. This study aims to investigate the mechanism of estrogen induction of MLH1, and whether colorectal tumor proliferation can be inhibited through induction of MLH1 by estrogen signal pathway. Human CRC cell lines were used to examine the regulation of MLH1 expression by over-expression and depletion of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), under the treatment with 17β-estradiol or β-Estradiol 6-(O-carboxy-methyl)oxime:BSA, followed by a real-time Q-PCR and Western blotting analysis. Luciferase reporter and chromatin immunoprecipitation assays were used to identify the estrogen response elements in the proximal promoter of MLH1 gene. Then, the influence of estrogen-induced MLH1 on CRC tumor growth were determined in vitro and in vivo. We found that mismatch repair ability and microsatellite stability of cells were enhanced by estrogen via induction of MLH1 expression, which was mediated by ERβ, through a transcriptional activation process. Furthermore, we identified that ERβ exerted an inhibitory effect on CRC tumor proliferation in vitro and in vivo, combined with 5-FU, through up-regulation of MLH1 expression. Finally, we concluded that estrogen enhances mismatch repair ability and tumor inhibition effect in vitro and in vivo, via induction of MLH1 expression mediated by ERβ.

  6. Impact of DNA mismatch repair system alterations on human fertility and related treatments.

    PubMed

    Hu, Min-hao; Liu, Shu-yuan; Wang, Ning; Wu, Yan; Jin, Fan

    2016-01-01

    DNA mismatch repair (MMR) is one of the biological pathways, which plays a critical role in DNA homeostasis, primarily by repairing base-pair mismatches and insertion/deletion loops that occur during DNA replication. MMR also takes part in other metabolic pathways and regulates cell cycle arrest. Defects in MMR are associated with genomic instability, predisposition to certain types of cancers and resistance to certain therapeutic drugs. Moreover, genetic and epigenetic alterations in the MMR system demonstrate a significant relationship with human fertility and related treatments, which helps us to understand the etiology and susceptibility of human infertility. Alterations in the MMR system may also influence the health of offspring conceived by assisted reproductive technology in humans. However, further studies are needed to explore the specific mechanisms by which the MMR system may affect human infertility. This review addresses the physiological mechanisms of the MMR system and associations between alterations of the MMR system and human fertility and related treatments, and potential effects on the next generation.

  7. Genomic amplification of the human DHFR/MSH3 locus remodels mismatch recognition and repair activities.

    PubMed

    Drummond, J T

    1999-01-01

    Mismatch recognition in human cells is mediated by two heterodimers, MutS alpha and MutS beta. MutS alpha appears to shoulder primary responsibility for mismatch correction during replication, based on its relative abundance and ability to recognize a broad spectrum of base-base and base-insertion mismatches. Because MutS alpha and MutS beta share a common component, MSH2, conditions that influence the expression or degradation of MSH3 or MSH6 can redistribute the profile of mismatch recognition and repair. MSH3 is linked by a shared promoter with DHFR, connecting two pathways with key roles in DNA metabolism. In a classic example of gene amplification, the DHFR (and MSH3) locus can become amplified to several hundred copies in the presence of methotrexate. Under these conditions, MutS beta forms at the expense of MutS alpha, and the mutation rate in these tumor cells rises more than 100-fold. The implications for cancer chemotherapy include a potential increase in mutability when tumors are treated with methotrexate, which could increase the frequency of subsequent mutations that influence the tumor's drug sensitivity or aggressiveness. Because processing certain types of DNA damage by the mismatch repair pathway has also been implicated in tumor sensitivity to agents such as cisplatin, changes in expression at the DHFR/MSH3 locus may have further relevance to the outcome of multi-drug treatment regimens.

  8. Mismatch repair gene MSH3 polymorphism is associated with the risk of sporadic prostate cancer.

    PubMed

    Hirata, Hiroshi; Hinoda, Yuji; Kawamoto, Ken; Kikuno, Nobuyuki; Suehiro, Yutaka; Okayama, Naoko; Tanaka, Yuichiro; Dahiya, Rajvir

    2008-05-01

    The mismatch repair system is a DNA repair mechanism that corrects mispaired bases during DNA replication errors. Cancer cells deficient in MMR proteins have a 10(2) to 10(3)-fold increase in the mutation rate. Single nucleotide polymorphisms of mismatch repair genes have been shown to cause a decrease in DNA repair activity. We hypothesized that mismatch repair gene polymorphism could be a risk factor for prostate cancer and p53 Pro/Pro genotype carriers could influence MSH3 and MSH6 polymorphisms. DNA samples from 110 patients with prostate cancer and 110 healthy controls were analyzed by single strand conformational polymorphism and polymerase chain reaction-restriction fragment length polymorphism to determine the genotypic frequency of 5 polymorphic loci on 2 MMR genes (MSH3 and MSH6) and p53 codon72. The chi-square test was applied to compare genotype frequency between patients and controls. A significant increase in the G/A+A/A genotype of MSH3 Pro222Pro was observed in patients compared to controls (OR 1.87, 95% CI 1.0-3.5). The frequency of A/G + G/G genotypes of MSH3 exon23 Thr1036Ala also tended to increase in patients (OR 1.57, 95% CI 0.92-2.72). In p53 codon72 Arg/Pro + Pro/Pro carriers the frequency of the AG + GG genotype of MSH3 exon23 was significantly increased in patients compared to controls (OR 2.1, 95% CI 1.05-4.34). To our knowledge this is the first report of the association of MSH3 gene polymorphisms in prostate cancer. These results suggest that the MSH3 polymorphism may be a risk factor for prostate cancer.

  9. DNA Mismatch Repair Status Predicts Need for Future Colorectal Surgery for Metachronous Neoplasms in Young Individuals Undergoing Colorectal Cancer Resection.

    PubMed

    Aronson, Melyssa; Holter, Spring; Semotiuk, Kara; Winter, Laura; Pollett, Aaron; Gallinger, Steven; Cohen, Zane; Gryfe, Robert

    2015-07-01

    The treatment of colorectal cancer in young patients involves both management of the incident cancer and consideration of the possibility of Lynch syndrome and the development of metachronous colorectal cancers. This study aims to assess the prognostic role of DNA mismatch repair deficiency and extended colorectal resection for metachronous colorectal neoplasia risk in young patients with colorectal cancer. This is a retrospective review of 285 patients identified in our GI cancer registry with colorectal cancer diagnosed at 35 years or younger in the absence of polyposis. Using univariate and multivariate analysis, we assessed the prognostic role of mismatch repair deficiency and standard clinicopathologic characteristics, including the extent of resection, on the rate of developing metachronous colorectal neoplasia requiring resection. Mismatch repair deficiency was identified in biospecimens from 44% of patients and was significantly associated with an increased risk for metachronous colorectal neoplasia requiring resection (10-year cumulative risk, 13.5% ± 4.2%) compared with 56% of patients with mismatch repair-intact colorectal cancer (10-year cumulative risk, 5.8% ± 3.3%; p = 0.011). In multivariate analysis, mismatch repair deficiency was associated with a HR of 3.65 (95% CI, 1.44-9.21; p = 0.006) for metachronous colorectal neoplasia, whereas extended resection with ileorectal or ileosigmoid anastomosis significantly decreased the risk of metachronous colorectal neoplasia (HR, 0.21; 95% CI, 0.05-0.90; p = 0.036). This study had a retrospective design, and, therefore, recommendations for colorectal cancer surgery and screening were not fully standardized. Quality of life after colorectal cancer surgery was not assessed. Young patients with colorectal cancer with molecular hallmarks of Lynch syndrome were at significantly higher risk for the development of subsequent colorectal neoplasia. This risk was significantly reduced in those who underwent extended

  10. Constitutional mismatch repair deficiency in a healthy child: On the spot diagnosis?

    PubMed

    Suerink, M; Potjer, T P; Versluijs, A B; Ten Broeke, S W; Tops, C M; Wimmer, K; Nielsen, M

    2018-01-01

    Constitutional mismatch repair deficiency (CMMRD) is a rare, recessively inherited childhood cancer predisposition syndrome caused by biallelic germline mutations in one of the mismatch repair genes. The CMMRD phenotype overlaps with that of neurofibromatosis type 1 (NF1), since many patients have multiple café-au-lait macules (CALM) and other NF1 signs, but no germline NF1 mutations. We report of a case of a healthy 6-year-old girl who fulfilled the diagnostic criteria of NF1 with >6 CALM and freckling. Since molecular genetic testing was unable to confirm the diagnosis of NF1 or Legius syndrome and the patient was a child of consanguineous parents, we suspected CMMRD and found a homozygous PMS2 mutation that impairs MMR function. Current guidelines advise testing for CMMRD only in cancer patients. However, this case illustrates that including CMMRD in the differential diagnosis in suspected sporadic NF1 without causative NF1 or SPRED1 mutations may facilitate identification of CMMRD prior to cancer development. We discuss the advantages and potential risks of this CMMRD testing scenario. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Determinants of Base-Pair Substitution Patterns Revealed by Whole-Genome Sequencing of DNA Mismatch Repair Defective Escherichia coli.

    PubMed

    Foster, Patricia L; Niccum, Brittany A; Popodi, Ellen; Townes, Jesse P; Lee, Heewook; MohammedIsmail, Wazim; Tang, Haixu

    2018-06-15

    Mismatch repair (MMR) is a major contributor to replication fidelity, but its impact varies with sequence context and the nature of the mismatch. Mutation accumulation experiments followed by whole-genome sequencing of MMR-defective E. coli strains yielded ≈30,000 base-pair substitutions, revealing mutational patterns across the entire chromosome. The base-pair substitution spectrum was dominated by A:T > G:C transitions, which occurred predominantly at the center base of 5'N A C3'+5'G T N3' triplets. Surprisingly, growth on minimal medium or at low temperature attenuated these mutations. Mononucleotide runs were also hotspots for base-pair substitutions, and the rate at which these occurred increased with run length. Comparison with ≈2000 base-pair substitutions accumulated in MMR-proficient strains revealed that both kinds of hotspots appeared in the wild-type spectrum and so are likely to be sites of frequent replication errors. In MMR-defective strains transitions were strand biased, occurring twice as often when A and C rather than T and G were on the lagging-strand template. Loss of nucleotide diphosphate kinase increases the cellular concentration of dCTP, which resulted in increased rates of mutations due to misinsertion of C opposite A and T. In an mmr ndk double mutant strain, these mutations were more frequent when the template A and T were on the leading strand, suggesting that lagging-strand synthesis was more error-prone or less well corrected by proofreading than was leading strand synthesis. Copyright © 2018, Genetics.

  12. Conformational trapping of mismatch recognition complex MSH2/MSH3 on repair-resistant DNA loops.

    PubMed

    Lang, Walter H; Coats, Julie E; Majka, Jerzy; Hura, Greg L; Lin, Yuyen; Rasnik, Ivan; McMurray, Cynthia T

    2011-10-18

    Insertion and deletion of small heteroduplex loops are common mutations in DNA, but why some loops are prone to mutation and others are efficiently repaired is unknown. Here we report that the mismatch recognition complex, MSH2/MSH3, discriminates between a repair-competent and a repair-resistant loop by sensing the conformational dynamics of their junctions. MSH2/MSH3 binds, bends, and dissociates from repair-competent loops to signal downstream repair. Repair-resistant Cytosine-Adenine-Guanine (CAG) loops adopt a unique DNA junction that traps nucleotide-bound MSH2/MSH3, and inhibits its dissociation from the DNA. We envision that junction dynamics is an active participant and a conformational regulator of repair signaling, and governs whether a loop is removed by MSH2/MSH3 or escapes to become a precursor for mutation.

  13. Constitutional mismatch repair deficiency and Lynch syndrome among consecutive Arab Bedouins with colorectal cancer in Israel.

    PubMed

    Abu Freha, Naim; Leibovici Weissman, Yaara; Fich, Alexander; Barnes Kedar, Inbal; Halpern, Marisa; Sztarkier, Ignacio; Behar, Doron M; Arbib Sneh, Orly; Vilkin, Alex; Baris, Hagit N; Gingold, Rachel; Lejbkowicz, Flavio; Niv, Yaron; Goldberg, Yael; Levi, Zohar

    2018-01-01

    We assessed the molecular characteristics and the frequency of mutations in mismatch-repair genes among Bedouin patients with colorectal cancer (CRC) in Israel. Bedouin patients with a diagnosis of CRC at a major hospital in the southern part of Israel were deemed eligible for this study. The primary screening method was immunohistochemical staining for mismatch-repair proteins (MLH1, MSH2, MSH6, and PMS2). For subjects with abnormal immunohistochemical staining, we performed microsatellite instability (MSI) analyses, and for tumors with a loss of MLH1 expression we also performed BRAF testing. In MSI high cases we searched further for germline mutations. Of the 24 patients enrolled, four subjects (16.7%) had MSI high tumors: one subject was found to harbor a biallelic PMS2 mutation, one subject had Lynch syndrome (LS) with MSH6 mutation and two subjects had a loss of MLH1/PMS2 proteins/BRAF wild type /normal MLH1 sequence. Ten patients (41.7%) were younger than 50 at the time of diagnosis and none had first degree relatives with CRC. In conclusion, in this cohort of 24 consecutive Arab Bedouins with CRC, one patient was found to harbor a constitutional mismatch repair deficiency, one patient had LS with MSH6 mutation, and two patients had unresolved loss of MLH1/PMS2 proteins/BRAF wild type phenotype.

  14. Requirement for Msh6, but not for Swi4 (Msh3), in Msh2-dependent repair of base-base mismatches and mononucleotide loops in Schizosaccharomyces pombe.

    PubMed

    Tornier, C; Bessone, S; Varlet, I; Rudolph, C; Darmon, M; Fleck, O

    2001-05-01

    The msh6 mismatch repair gene of Schizosaccharomyces pombe was cloned, sequenced, and inactivated. Strains bearing all combinations of inactivated msh6, msh2, and swi4 (the S. pombe MSH3 ortholog) alleles were tested for their defects in mitotic and meiotic mismatch repair. Mitotic mutation rates were similarly increased in msh6 and msh2 mutants, both for reversion of a base-base substitution as well as of an insertion of one nucleotide in a mononucleotide run. Tetrad analysis and intragenic two-factor crosses revealed that meiotic mismatch repair was affected in msh6 to the same extent as in msh2 background. In contrast, loss of Swi4 likely did not cause a defect in mismatch repair, but rather resulted in reduced recombination frequency. Consistently, a mutated swi4 caused a two- to threefold reduction of recombinants in intergenic crosses, while msh2 and msh6 mutants were not significantly different from wild type. In summary, our study showed that Msh6 plays the same important role as Msh2 in the major mismatch repair pathway of S. pombe, while Swi4 rather functions in recombination.

  15. One-Stage Cleft Lip and Palate Repair in an Older Population.

    PubMed

    Guneren, Ethem; Canter, Halil Ibrahim; Yildiz, Kemalettin; Kayan, Resit Burak; Ozpur, Mustafa Aykut; Baygol, Emre Gonenc; Sagir, Haci Omer; Kuzu, Ismail Melih; Akman, Onur; Arslan, Serap

    2015-07-01

    In underdeveloped countries one-stage definitive repair of cleft lip and palate is considered for late-presenting patients. A total of 25 patients with unoperated cleft lip and palate more than 2 years of age were enrolled in this study for one-stage simultaneous repair of cleft lip and palate. According to Veau-Wardill-Kilner push-back technique, 2 flap palatoplasties were performed for palatal repairs; all of the lips were repaired with the Millard II rotation-advancement technique. The authors experienced no perioperative or postoperative life-threatening complications. With respect to the registered operation periods, longer times were required to perform these double operations, but this elongation is shorter than the sum of the periods if the 2 operations had been performed separately. Although the authors were unable to evaluate the late postoperative results because the authors could not follow-up the patients after they were discharged the day after surgery, the early results related to the success of the operation without any surgical complication were prone to meet the parents' and patients' expectations. The authors presented their experiences with many volunteer cleft lip and palate trips to third world countries; however the structure of this article is not a new hypothesis and data based to support a scientific study, but observations are objective to get a conclusion. To perform one-stage definitive repair of the cleft lip and palate in late-presented patients was the reality that they had only 1 chance to undergo these operations. According to the terms and conditions of this challenging operation, one-stage simultaneous repair of cleft lip and palate is a more demanding and time-consuming procedure than is isolated cleft lip repair or cleft palate repair. Although technically challenging, single-stage repair of the whole deformity in late-presenting patients is a feasible, reliable, successful, and safe procedure in authors' experience.

  16. Constitutional mismatch repair deficiency presenting in childhood as three simultaneous malignancies.

    PubMed

    Walter, Andrew W; Ennis, Sara; Best, Hunter; Vaughn, Cecily P; Swensen, Jeffrey J; Openshaw, Amanda; Gripp, Karen W

    2013-11-01

    A 13-year-old child presented with three simultaneous malignancies: glioblastoma multiforme, Burkitt lymphoma, and colonic adenocarcinoma. She was treated for her diseases without success and died 8 months after presentation. Genetic analysis revealed a homozygous mutation in the PMS2 gene, consistent with constitutional mismatch repair deficiency. Her siblings and parents were screened: three of four siblings and both parents were heterozygous for this mutation; the fourth sibling did not have the mutation. Copyright © 2013 Wiley Periodicals, Inc.

  17. Diagnosis of Constitutional Mismatch Repair-Deficiency Syndrome Based on Microsatellite Instability and Lymphocyte Tolerance to Methylating Agents.

    PubMed

    Bodo, Sahra; Colas, Chrystelle; Buhard, Olivier; Collura, Ada; Tinat, Julie; Lavoine, Noémie; Guilloux, Agathe; Chalastanis, Alexandra; Lafitte, Philippe; Coulet, Florence; Buisine, Marie-Pierre; Ilencikova, Denisa; Ruiz-Ponte, Clara; Kinzel, Miriam; Grandjouan, Sophie; Brems, Hilde; Lejeune, Sophie; Blanché, Hélène; Wang, Qing; Caron, Olivier; Cabaret, Odile; Svrcek, Magali; Vidaud, Dominique; Parfait, Béatrice; Verloes, Alain; Knappe, Ulrich J; Soubrier, Florent; Mortemousque, Isabelle; Leis, Alexander; Auclair-Perrossier, Jessie; Frébourg, Thierry; Fléjou, Jean-François; Entz-Werle, Natacha; Leclerc, Julie; Malka, David; Cohen-Haguenauer, Odile; Goldberg, Yael; Gerdes, Anne-Marie; Fedhila, Faten; Mathieu-Dramard, Michèle; Hamelin, Richard; Wafaa, Badre; Gauthier-Villars, Marion; Bourdeaut, Franck; Sheridan, Eamonn; Vasen, Hans; Brugières, Laurence; Wimmer, Katharina; Muleris, Martine; Duval, Alex

    2015-10-01

    Patients with bi-allelic germline mutations in mismatch repair (MMR) genes (MLH1, MSH2, MSH6, or PMS2) develop a rare but severe variant of Lynch syndrome called constitutional MMR deficiency (CMMRD). This syndrome is characterized by early-onset colorectal cancers, lymphomas or leukemias, and brain tumors. There is no satisfactory method for diagnosis of CMMRD because screens for mutations in MMR genes are noninformative for 30% of patients. MMR-deficient cancer cells are resistant to genotoxic agents and have microsatellite instability (MSI), due to accumulation of errors in repetitive DNA sequences. We investigated whether these features could be used to identify patients with CMMRD. We examined MSI by PCR analysis and tolerance to methylating or thiopurine agents (functional characteristics of MMR-deficient tumor cells) in lymphoblastoid cells (LCs) from 3 patients with CMMRD and 5 individuals with MMR-proficient LCs (controls). Using these assays, we defined experimental parameters that allowed discrimination of a series of 14 patients with CMMRD from 52 controls (training set). We then used the same parameters to assess 23 patients with clinical but not genetic features of CMMRD. In the training set, we identified parameters, based on MSI and LC tolerance to methylation, that detected patients with CMMRD vs controls with 100% sensitivity and 100% specificity. Among 23 patients suspected of having CMMRD, 6 had MSI and LC tolerance to methylation (CMMRD highly probable), 15 had neither MSI nor LC tolerance to methylation (unlikely to have CMMRD), and 2 were considered doubtful for CMMRD based on having only 1 of the 2 features. The presence of MSI and tolerance to methylation in LCs identified patients with CMMRD with 100% sensitivity and specificity. These features could be used in diagnosis of patients. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. Disease-associated repeat instability and mismatch repair.

    PubMed

    Schmidt, Monika H M; Pearson, Christopher E

    2016-02-01

    Expanded tandem repeat sequences in DNA are associated with at least 40 human genetic neurological, neurodegenerative, and neuromuscular diseases. Repeat expansion can occur during parent-to-offspring transmission, and arise at variable rates in specific tissues throughout the life of an affected individual. Since the ongoing somatic repeat expansions can affect disease age-of-onset, severity, and progression, targeting somatic expansion holds potential as a therapeutic target. Thus, understanding the factors that regulate this mutation is crucial. DNA repair, in particular mismatch repair (MMR), is the major driving force of disease-associated repeat expansions. In contrast to its anti-mutagenic roles, mammalian MMR curiously drives the expansion mutations of disease-associated (CAG)·(CTG) repeats. Recent advances have broadened our knowledge of both the MMR proteins involved in disease repeat expansions, including: MSH2, MSH3, MSH6, MLH1, PMS2, and MLH3, as well as the types of repeats affected by MMR, now including: (CAG)·(CTG), (CGG)·(CCG), and (GAA)·(TTC) repeats. Mutagenic slipped-DNA structures have been detected in patient tissues, and the size of the slip-out and their junction conformation can determine the involvement of MMR. Furthermore, the formation of other unusual DNA and R-loop structures is proposed to play a key role in MMR-mediated instability. A complex correlation is emerging between tissues showing varying amounts of repeat instability and MMR expression levels. Notably, naturally occurring polymorphic variants of DNA repair genes can have dramatic effects upon the levels of repeat instability, which may explain the variation in disease age-of-onset, progression and severity. An increasing grasp of these factors holds prognostic and therapeutic potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Immunohistochemistry for PMS2 and MSH6 alone can replace a four antibody panel for mismatch repair deficiency screening in colorectal adenocarcinoma.

    PubMed

    Hall, Geoffrey; Clarkson, Adele; Shi, Amanda; Langford, Eileen; Leung, Helen; Eckstein, Robert P; Gill, Anthony J

    2010-01-01

    Currently, testing for mismatch repair deficiency in colorectal cancers is initiated by performing immunohistochemistry with four antibodies (MLH1, PMS2, MSH2 and MSH6). If any one of these stains is negative the tumour is considered microsatellite unstable and, if clinical circumstances warrant it, the patient is offered genetic testing for Lynch's syndrome. Due to the binding properties of the mismatch repair heterodimer complexes, gene mutation and loss of MLH1 and MSH2 invariably result in the degradation of PMS2 and MSH6, respectively, but the converse is not true. We propose that staining for PMS2 and MSH6 alone will be sufficient to detect all cases of mismatch repair deficiency and should replace routine screening with all four antibodies. The electronic database of the department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia, was searched for all colorectal carcinomas on which a four panel immunohistochemical microsatellite instability screen was performed. An audit of the slides for concordant loss of MLH1-PMS2 and MSH2-MSH6 was then undertaken. Unusual or discordant cases were reviewed and, in some cases, re-stained to confirm the staining pattern. Of 344 cases of colorectal cancer which underwent four antibody immunohistochemistry, 104 displayed loss of at least one mismatch repair protein. Of these, 100 showed concordant mismatch repair loss (i.e., loss of MLH1 and PMS2 or loss of MSH2 and MSH6). The four discordant cases comprised two single negative cases (1 MSH6 negative/MSH2 positive case, 1 PMS2 negative/MLH1 positive) and two triple negative (both MLH1/PMS2/MSH6 negative). The microsatellite instability (MSI) group showed a relatively high median age (69.3 years) due to the departmental policy of testing all cases with possible MSI morphology regardless of age. The sensitivity and specificity of a two panel test comprised of PMS2 and MSH6, compared to a four panel test, is 100%. No false negatives or positives were

  20. PMS2 gene mutation results in DNA mismatch repair system failure in a case of adult granulosa cell tumor.

    PubMed

    Wang, Wen-Chung; Lee, Ya-Ting; Lai, Yen-Chein

    2017-03-27

    Granulosa cell tumors are rare ovarian malignancies. Their characteristics include unpredictable indolent growth with malignant potential and late recurrence. Approximately 95% are of adult type. Recent molecular studies have characterized the FOXL2 402C > G mutation in adult granulosa cell tumor. Our previous case report showed that unique FOXL2 402C > G mutation and defective DNA mismatch repair system are associated with the development of adult granulosa cell tumor. In this study, the DNA sequences of four genes, MSH2, MLH1, MSH6, and PMS2, in the DNA mismatch repair system were determined via direct sequencing to elucidate the exact mechanism for the development of this granulosa cell tumor. The results showed that two missense germline mutations, T485K and N775L, inactivate the PMS2 gene. The results of this case study indicated that although FOXL2 402C > G mutation determines the development of granulosa cell tumor, PMS2 mutation may be the initial driver of carcinogenesis. Immunohistochemistry-based tumor testing for mismatch repair gene expression may be necessary for granulosa cell tumors to determine their malignant potential or if they are part of Lynch syndrome.

  1. Biallelic PMS2 Mutation and Heterozygous DICER1 Mutation Presenting as Constitutional Mismatch Repair Deficiency With Corpus Callosum Agenesis: Case Report and Review of Literature.

    PubMed

    Cheyuo, Cletus; Radwan, Walid; Ahn, Janice; Gyure, Kymberly; Qaiser, Rabia; Tomboc, Patrick

    2017-10-01

    Constitutional mismatch repair deficiency syndrome is a cancer predisposition syndrome caused by autosomal recessive biallelic (homozygous) germline mutations in the mismatch repair genes (MLH1, MSH2, MSH6, and PMS2). The clinical spectrum includes neoplastic and non-neoplastic manifestations. We present the case of a 7-year-old boy who presented with T-lymphoblastic lymphoma and glioblastoma, together with non-neoplastic manifestations including corpus callosum agenesis, arachnoid cyst, developmental venous anomaly, and hydrocephalus. Gene mutation analysis revealed pathogenic biallelic mutations of PMS2 and heterozygous DICER1 variant predicted to be pathogenic. This report is the first to allude to a possible interaction of the mismatch repair system with DICER1 to cause corpus callosum agenesis.

  2. The gastrointestinal manifestation of constitutional mismatch repair deficiency syndrome: from a single adenoma to polyposis-like phenotype and early onset cancer.

    PubMed

    Levi, Z; Kariv, R; Barnes-Kedar, I; Goldberg, Y; Half, E; Morgentern, S; Eli, B; Baris, H N; Vilkin, A; Belfer, R G; Niv, Y; Elhasid, R; Dvir, R; Abu-Freha, N; Cohen, S

    2015-11-01

    Data on the clinical presentation of constitutional mismatch repair deficiency syndrome (CMMRD) is accumulating. However, as the extraintestinal manifestations are often fatal and occur at early age, data on the systematic evaluation of the gastrointestinal tract is scarce. Here we describe 11 subjects with verified biallelic carriage and who underwent colonoscopy, upper endoscopy and small bowel evaluation. Five subjects were symptomatic and in six subjects the findings were screen detected. Two subjects had colorectal cancer and few adenomatous polyps (19, 20 years), three subjects had polyposis-like phenotype (13, 14, 16 years), four subjects had few adenomatous polyps (8, 12-14 years) and two subjects had no polyps (both at age 6). Of the three subjects in the polyposis-like group, two subjects had already developed high-grade dysplasia or cancer and one subject had atypical juvenile polyps suggesting juvenile polyposis. Three out of the five subjects that underwent repeated exams had significant findings during short interval. The gastrointestinal manifestations of CMMRD are highly dependent upon age of examination and highly variable. The polyps may also resemble juvenile polyposis. Intensive surveillance according to current guidelines is mandatory. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Constitutional mismatch repair-deficiency syndrome presenting as colonic adenomatous polyposis: clues from the skin.

    PubMed

    Jasperson, K W; Samowitz, W S; Burt, R W

    2011-10-01

    Constitutional mismatch repair-deficiency (CMMR-D) syndrome is an autosomal recessive condition characterized by hematologic malignancies, brain tumors, Lynch syndrome-associated cancers and skin manifestations reminiscent of neurofibromatosis type 1 (NF1). In contrast to Lynch syndrome, CMMR-D syndrome is exceptionally rare, onset typically occurs in infancy or early childhood and, as described in this report, may also present with colonic polyposis suggestive of attenuated familial adenomatous polyposis (AFAP) or MUTYH associated polyposis (MAP). Here we describe two sisters with CMMR-D syndrome due to germline bi-allelic MSH6 mutations. Both sisters are without cancer, are older than typical for this condition, have NF1 associated features and a colonic phenotype suspicious for an attenuated polyposis syndrome. This report highlights the role of skin examinations in leading to an underlying genetic diagnosis in individuals with colonic adenomatous polyposis, but without mutations associated with AFAP or MAP. © 2010 John Wiley & Sons A/S.

  4. Correlation of immunohistochemical mismatch repair protein status between colorectal carcinoma endoscopic biopsy and resection specimens.

    PubMed

    O'Brien, Odharnaith; Ryan, Éanna; Creavin, Ben; Kelly, Michael E; Mohan, Helen M; Geraghty, Robert; Winter, Des C; Sheahan, Kieran

    2018-02-01

    Microsatellite instability is reflective of a deficient mismatch repair system (dMMR), which may be due to either sporadic or germline mutations in the relevant mismatch repair (MMR) gene. MMR status is frequently determined by immunohistochemistry (IHC) for mismatch repair proteins (MMRPs) on colorectal cancer (CRC) resection specimens. However, IHC testing performed on endoscopic biopsy may be as reliable as that performed on surgical resections. We aimed to evaluate the reliability of MMR IHC staining on preoperative CRC endoscopic biopsies compared with matched-surgical resection specimens. A retrospective search of our institution's histopathology electronic database was performed. Patients with CRC who had MMR IHC performed on both their preoperative endoscopic biopsy and subsequent resection from January 2010 to January 2016 were included. Concordance of MMR staining between biopsy and resection specimens was assessed. From 2000 to 2016, 53 patients had MMR IHC performed on both their preoperative colorectal endoscopic biopsy and resection specimens; 10 patients (18.87%) demonstrated loss of ≥1 MMRP on their initial endoscopic tumour biopsy. The remainder (81.13%) showed preservation of staining for all MMRPs. There was complete agreement in MMR IHC status between the preoperative endoscopic biopsies and corresponding resection specimens in all cases (κ=1.000, P<0.000) with a sensitivity of 100% (95% CI 69.15 to 100) and specificity of 100% (95% CI 91.78 to 100) for detection of dMMR. Endoscopic biopsies are a suitable source of tissue for MMR IHC analysis. This may provide a number of advantages to both patients and clinicians in the management of CRC. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Neural Bases of Language Switching in High and Early Proficient Bilinguals

    ERIC Educational Resources Information Center

    Garbin, G.; Costa, A.; Sanjuan, A.; Forn, C.; Rodriguez-Pujadas, A.; Ventura, N.; Belloch, V.; Hernandez, M.; Avila, C.

    2011-01-01

    The left inferior frontal cortex, the caudate and the anterior cingulate have been proposed as the neural origin of language switching, but most of the studies were conducted in low proficient bilinguals. In the present study, we investigated brain areas involved in language switching in a sample of 19 early, high-proficient Spanish-Catalan…

  6. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair.

    PubMed

    Marsischky, G T; Filosi, N; Kane, M F; Kolodner, R

    1996-02-15

    Saccharomyces cerevisiae encodes six genes, MSH1-6, which encode proteins related to the bacterial MutS protein. In this study the role of MSH2, MSH3, and MSH6 in mismatch repair has been examined by measuring the rate of accumulating mutations and mutation spectrum in strains containing different combinations of msh2, msh3, and msh6 mutations and by studying the physical interaction between the MSH2 protein and the MSH3 and MSH6 proteins. The results indicate that S. cerevisiae has two pathways of MSH2-dependent mismatch repair: one that recognized single-base mispairs and requires MSH2 and MSH6, and a second that recognizes insertion/deletion mispairs and requires a combination of either MSH2 and MSH6 or MSH2 and MSH3. The redundancy of MSH3 and MSH6 explains the greater prevalence of hmsh2 mutations in HNPCC families and suggests how the role of hmsh3 and hmsh6 mutations in cancer susceptibility could be analyzed.

  7. Use of Single-Cysteine Variants for Trapping Transient States in DNA Mismatch Repair.

    PubMed

    Friedhoff, Peter; Manelyte, Laura; Giron-Monzon, Luis; Winkler, Ines; Groothuizen, Flora S; Sixma, Titia K

    2017-01-01

    DNA mismatch repair (MMR) is necessary to prevent incorporation of polymerase errors into the newly synthesized DNA strand, as they would be mutagenic. In humans, errors in MMR cause a predisposition to cancer, called Lynch syndrome. The MMR process is performed by a set of ATPases that transmit, validate, and couple information to identify which DNA strand requires repair. To understand the individual steps in the repair process, it is useful to be able to study these large molecular machines structurally and functionally. However, the steps and states are highly transient; therefore, the methods to capture and enrich them are essential. Here, we describe how single-cysteine variants can be used for specific cross-linking and labeling approaches that allow trapping of relevant transient states. Analysis of these defined states in functional and structural studies is instrumental to elucidate the molecular mechanism of this important DNA MMR process. © 2017 Elsevier Inc. All rights reserved.

  8. Immunotherapy holds the key to cancer treatment and prevention in constitutional mismatch repair deficiency (CMMRD) syndrome.

    PubMed

    Westdorp, Harm; Kolders, Sigrid; Hoogerbrugge, Nicoline; de Vries, I Jolanda M; Jongmans, Marjolijn C J; Schreibelt, Gerty

    2017-09-10

    Monoallelic germline mutations in one of the DNA mismatch repair (MMR) genes cause Lynch syndrome, with a high lifetime risks of colorectal and endometrial cancer at adult age. Less well known, is the constitutional mismatch repair deficiency (CMMRD) syndrome caused by biallelic germline mutations in MMR genes. This syndrome is characterized by the development of childhood cancer. Patients with CMMRD are at extremely high risk of developing multiple cancers including hematological, brain and intestinal tumors. Mutations in MMR genes impair DNA repair and therefore most tumors of patients with CMMRD are hypermutated. These mutations lead to changes in the translational reading frame, which consequently result in neoantigen formation. Neoantigens are recognized as foreign by the immune system and can induce specific immune responses. The growing evidence on the clinical efficacy of immunotherapies, such as immune checkpoint inhibitors, offers the prospect for treatment of patients with CMMRD. Combining neoantigen-based vaccination strategies and immune checkpoint inhibitors could be an effective way to conquer CMMRD-related tumors. Neoantigen-based vaccines might also be a preventive treatment option in healthy biallelic MMR mutation carriers. Future studies need to reveal the safety and efficacy of immunotherapies for patients with CMMRD. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome.

    PubMed

    Ripperger, Tim; Schlegelberger, Brigitte

    2016-03-01

    Constitutional mismatch repair deficiency (CMMRD) syndrome is one of the rare diseases associated with a high risk of cancer. Causative mutations are found in DNA mismatch repair genes PMS2, MSH6, MSH2 or MLH1 that are well known in the context of Lynch syndrome. CMMRD follows an autosomal recessive inheritance trait and is characterized by childhood brain tumors and hematological malignancies as well as gastrointestinal cancer in the second and third decades of life. There is a high risk of multiple cancers, occurring synchronously and metachronously. In general, the prognosis is poor. About one third of CMMRD patients develop hematological malignancies as primary (sometimes the only) malignancy or as secondary neoplasm. T-cell non-Hodgkin lymphomas, mainly of mediastinal origin, are the most frequent hematological malignancies. Besides malignant diseases, non-neoplastic features are frequently observed, e.g. café-au-lait spots sometimes resembling neurofibromatosis type I, hypopigmented skin lesions, numerous adenomatous polyps, multiple pilomatricomas, or impaired immunoglobulin class switch recombination. Within the present review, we summarize previously published CMMRD patients with at least one hematological malignancy, provide an overview of steps necessary to substantiate the diagnosis of CMMRD, and refer to the recent most relevant literature. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Simple detection of germline microsatellite instability for diagnosis of constitutional mismatch repair cancer syndrome.

    PubMed

    Ingham, Danielle; Diggle, Christine P; Berry, Ian; Bristow, Claire A; Hayward, Bruce E; Rahman, Nazneen; Markham, Alexander F; Sheridan, Eamonn G; Bonthron, David T; Carr, Ian M

    2013-06-01

    Heterozygous mutations in DNA mismatch repair (MMR) genes result in predisposition to colorectal cancer (hereditary nonpolyposis colorectal cancer or Lynch syndrome). Patients with biallelic mutations in these genes, however, present earlier, with constitutional mismatch repair deficiency cancer syndrome (CMMRD), which is characterized by a spectrum of rare childhood malignancies and café-au-lait skin patches. The hallmark of MMR deficiency, microsatellite instability (MSI), is readily detectable in tumor DNA in Lynch syndrome, but is also present in constitutional DNA of CMMRD patients. However, detection of constitutional or germline MSI (gMSI) has hitherto relied on technically difficult assays that are not routinely applicable for clinical diagnosis. Consequently, we have developed a simple high-throughput screening methodology to detect gMSI in CMMRD patients based on the presence of stutter peaks flanking a dinucleotide repeat allele when amplified from patient blood DNA samples. Using the three different microsatellite markers, the gMSI ratio was determined in a cohort of normal individuals and 10 CMMRD patients, with biallelic germline mutations in PMS2 (seven patients), MSH2 (one patient), or MSH6 (two patients). Subjects with either PMS2 or MSH2 mutations were easily identified; however, this measure was not altered in patients with CMMRD due to MSH6 mutation. © 2013 Wiley Periodicals, Inc.

  11. Inhibition of colorectal cancer genomic copy number alterations and chromosomal fragile site tumor suppressor FHIT and WWOX deletions by DNA mismatch repair

    PubMed Central

    Gelincik, Ozkan; Blecua, Pedro; Edelmann, Winfried; Kucherlapati, Raju; Zhou, Kathy; Jasin, Maria; Gümüş, Zeynep H.; Lipkin, Steven M.

    2017-01-01

    Homologous recombination (HR) enables precise DNA repair after DNA double strand breaks (DSBs) using identical sequence templates, whereas homeologous recombination (HeR) uses only partially homologous sequences. Homeologous recombination introduces mutations through gene conversion and genomic deletions through single-strand annealing (SSA). DNA mismatch repair (MMR) inhibits HeR, but the roles of mammalian MMR MutL homologues (MLH1, PMS2 and MLH3) proteins in HeR suppression are poorly characterized. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) carrying Mlh1, Pms2, and Mlh3 mutations have higher HeR rates, by using 7,863 uniquely mapping paired direct repeat sequences (DRs) in the mouse genome as endogenous gene conversion and SSA reporters. Additionally, when DSBs are induced by gamma-radiation, Mlh1, Pms2 and Mlh3 mutant MEFs have higher DR copy number alterations (CNAs), including DR CNA hotspots previously identified in mouse MMR-deficient colorectal cancer (dMMR CRC). Analysis of The Cancer Genome Atlas CRC data revealed that dMMR CRCs have higher genome-wide DR HeR rates than MMR proficient CRCs, and that dMMR CRCs have deletion hotspots in tumor suppressors FHIT/WWOX at chromosomal fragile sites FRA3B and FRA16D (which have elevated DSB rates) flanked by paired homologous DRs and inverted repeats (IR). Overall, these data provide novel insights into the MMR-dependent HeR inhibition mechanism and its role in tumor suppression. PMID:29069730

  12. Single-stage soft tissue reconstruction and orbital fracture repair for complex facial injuries.

    PubMed

    Wu, Peng Sen; Matoo, Reshvin; Sun, Hong; Song, Li Yuan; Kikkawa, Don O; Lu, Wei

    2017-02-01

    Orbital fractures with open periorbital wounds cause significant morbidity. Timing of debridement with fracture repair and soft tissue reconstruction is controversial. This study focuses on the efficacy of early single-stage repair in combined bony and soft tissue injuries. Retrospective review. Twenty-three patients with combined open soft tissue wounds and orbital fractures were studied for single-stage orbital reconstruction and periorbital soft tissue repair. Inclusion criteria were open soft tissue wounds with clinical and radiographic evidence of orbital fractures and repair performed within 48 h after injury. Surgical complications and reconstructive outcomes were assessed over 6 months. The main outcome measures were enophthalmos, pre- and post-CT imaging of orbits, scar evaluation, presence of diplopia, and eyelid position. Enophthalmos was corrected in 16/19 cases and improved in 3/19 cases. 3D reconstruction of CT images showed markedly improved orbital alignment with objective measurements of the optic foramen to cornea distance (mm) in reconstructed orbits relative to intact orbits of 0.66, 95% confidence interval [CI] (lower 0.33, upper 0.99) mm. The mean baseline of Stony Brook Scar Evaluation Scale was 0.6, 95%CI (0.30-0.92), and for 6 months, the mean score was 3.4, 95%CI (3.05-3.73). Residual diplopia in secondary gazes was present in two patients; one patient had ectropion. Complications included one case of local wound infection. An early single-stage repair of combined soft tissue and orbital fractures yields satisfactory functional and aesthetic outcomes. Complications are low and likely related to trauma severity. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Chromosomal location and genetic mapping of the mismatch repair gene homologs MSH2, MSH3, and MSH6 in rye and wheat

    PubMed

    Korzun; Borner; Siebert; Malyshev; Hilpert; Kunze; Puchta

    1999-12-01

    The efficiency of homeologous recombination is influenced by mismatch repair genes in bacteria, yeast, and mammals. To elucidate a possible role of these genes in homeologous pairing and cross-compatibility in plants, gene probes of wheat (Triticum aestivum) specific for the mismatch repair gene homologues MSH2, MSH3, and MSH6 were used to map them to their genomic positions in rye (Secale cereale). Whereas MSH2 was mapped to the short arm of chromosome 1R, MSH3 was mapped to the long arm of chromosome 2R and MSH6 to the long arm of chromosome 5R. Southern blots with nullisomic-tetrasomic (NT) lines of wheat indicated the presence of the sequences on the respective homeologous group of wheat chromosomes. Additionally, an MSH6-specific homologue could also be detected on homoeologous group 3 of wheat. However, in the well-known, highly homoeologous pairing wheat mutant ph1b the MSH6-specific sequence is not within the deleted part of chromosome 5BL, indicating that the pairing phenotype is not due to a loss of one of the mismatch repair genes tested.

  14. [Constitutional mismatch repair-deficiency syndrome (CMMR-D) - a case report of a family with biallelic MSH6 mutation].

    PubMed

    Ilenčíková, D

    2012-01-01

    This work gives comprehensive information about new recessively inherited syndrome characterized by development of childhood malignancies. Behind this new described syndrome, called Constitutional mismatch repair-deficiency syndrome (CMMR-D), there are biallelic mutations in genes, which cause adult cancer syndrom termed Lynch syndrom (Hereditary non-polyposis cancer syndrom-HNPCC) if they are heterozygous mutations. Biallelic germline mutations of genes MLH1, MSH2, MSH6 and PMS2 in CMMR-D are characterized by increased risk of hematological malignancies, atypical brain tumors and early onset of colorectal cancers. An accompanying manifestation of the disease are skin spots with diffuse margins and irregular pigmentation reminiscent of Café au lait spots of NF1. This paper reports a case of a family with CMMR-D caused by novel homozygous MSH6 mutations leading to gliomatosis cerebri, T-ALL in an 11-year-old female and glioblastoma multiforme in her 10-year-old brother, both with rapid progression of the diseases. A literature review of brain tumors in CMMR-D families shows that they are treatment-resistant and lead to early death. Therefore, this work highlights the importance of early identification of patients with CMMR-D syndrome - in terms of initiation of a screening program for early detection of malignancies as well as early surgical intervention.

  15. Mismatch repair gene MSH3 polymorphism is associated with the risk of sporadic prostate cancer

    PubMed Central

    Hirata, Hiroshi; Hinoda, Yuji; Kawamoto, Ken; Kikuno, Nobuyuki; Suehiro, Yutaka; Okayama, Naoko; Tanaka, Yuichiro; Dahiya, Rajvir

    2014-01-01

    Purpose The mismatch repair (MMR) system is a DNA repair mechanism that corrects mispaired bases during DNA replication errors. Cancer cells deficient in the MMR proteins have a 102 –103-fold increase in the mutation rate. Single nucleotide polymorphisms (SNPs) of MMR genes have been shown to cause a reduction in DNA repair activity. We hypothesized that mismatch repair gene polymorphism could be a risk factor for prostate cancer (PC) and that p53 Pro/Pro genotype carriers could influence MSH3 and MSH6 polymorphisms. Material and Methods DNA samples from 110 cases of prostate cancer and healthy controls (n=110) were analyzed by SSCP and PCR-RFLP to determine the genotypic frequency of five different polymorphic loci on two MMR genes (MSH3 and MSH6) and p53 codon72. The chi-square test was applied to compare the genotype frequency between patients and controls. Results A significant increase in the G/A+A/A genotype of MSH3 Pro222Pro was observed in patients compared to controls (OR, 1.87; 95% CI, 1.0–3.5). The frequency of A/G + G/G genotypes of MSH3 exon23 Thr1036Ala also tended to increase in patients (OR, 1.57; 95% CI, 0.92–2.72). Among p53 codon72 Arg/Pro + Pro/Pro carriers, the frequency of the AG + GG genotype of MSH3 exon23 was significantly increased in patients compared to controls (OR = 2.1, 95% CI; 1.05–4.34). Conclusion This is the first report on the association of MSH3 gene polymorphisms in prostate cancer. These results suggest that the MSH3 polymorphism may be a risk factor for prostate cancer. PMID:18355840

  16. Enhancement of MSH2-MSH3-mediated mismatch recognition by the yeast MLH1-PMS1 complex.

    PubMed

    Habraken, Y; Sung, P; Prakash, L; Prakash, S

    1997-10-01

    DNA mismatch repair has a key role in maintaining genomic stability. Defects in mismatch repair cause elevated spontaneous mutation rates and increased instability of simple repetitive sequences, while mutations in human mismatch repair genes result in hereditary nonpolyposis colorectal cancers. Mismatch recognition represents the first critical step of mismatch repair. Genetic and biochemical studies in yeast and humans have indicated a requirement for MSH2-MSH3 and MSH2-MSH6 heterodimers in mismatch recognition. These complexes have, to some extent, overlapping mismatch binding specificities. MLH1 and PMS1 are the other essential components of mismatch repair, but how they function in this process is not known. We have purified the yeast MLH1-PMS1 heterodimer to near homogeneity, and examined its effect on MSH2-MSH3 binding to DNA mismatches. By itself, the MLH1-PMS1 complex shows no affinity for mismatched DNA, but it greatly enhances the mismatch binding ability of MSH2-MSH3.

  17. Matched and mismatched appraisals of the effectiveness of communication strategies by family caregivers of persons with Alzheimer's disease.

    PubMed

    Savundranayagam, Marie Y; Orange, J B

    2014-01-01

    Communication problems stemming from Alzheimer's disease (AD) often result in misunderstandings that can be linked with problem behaviours and increased caregiver stress. Moreover, these communication breakdowns also can result either from caregivers' use of ineffective communication strategies, which paradoxically are perceived as helpful, or can occur as a result of not using effective communication strategies that are perceived as unhelpful. The two primary aims were to determine the effectiveness of strategies used to resolve communication breakdowns and to examine whether caregivers' ratings of strategy effectiveness were consistent with evidence from video-recorded conversations and with effective communication strategies documented in the literature. Twenty-eight mealtime conversations were recorded using a sample of 15 dyads consisting of individuals with early, middle and late clinical-stage AD and their family caregivers. Conversations were analysed using the trouble-source repair paradigm to identify the communication strategies used by caregivers to resolve breakdowns. Family caregivers also rated the helpfulness of communication strategies used to resolve breakdowns. Analyses were conducted to assess the overlap or match between the use and appraisals of the helpfulness of communication strategies. Matched and mismatched appraisals of communication strategies varied across stages of AD. Matched appraisals by caregivers of persons with early-stage AD were observed for 68% of 22 communication strategies, whereas caregivers of persons with middle- and late-stage AD had matched appraisals for 45% and 55% of the strategies, respectively. Moreover, caregivers of persons with early-stage AD had matched appraisals over and above making matched appraisals by chance alone, compared with caregivers of persons in middle- and late-stage AD. Mismatches illustrate the need for communication education and training, particularly to establish empirically derived

  18. Optic pathway glioma as part of a constitutional mismatch-repair deficiency syndrome in a patient meeting the criteria for neurofibromatosis type 1.

    PubMed

    Yeung, Jacky T; Pollack, Ian F; Shah, Sapana; Jaffe, Ronald; Nikiforova, Marina; Jakacki, Regina I

    2013-01-01

    Patients with constitutional mismatch repair-deficiency (CMMR-D) caused by the biallelic deletions of mismatch repair (MMR) genes have a high likelihood of developing malignancies of the bone marrow, bowel, and brain. Affected individuals often have phenotypic features of neurofibromatosis type 1 (NF-1), including café-au-lait spots. Optic pathway gliomas (OPGs), a common manifestation of NF-1, have not been reported. We report the case of a 3-year-old male with an extensive OPG who met the diagnostic criteria for NF-1. He was subsequently found to have multiple colonic polyps and bi-allelic loss of PMS2. Testing for NF-1 was negative. Copyright © 2012 Wiley Periodicals, Inc.

  19. A mutation in EXO1 defines separable roles in DNA mismatch repair and post-replication repair

    PubMed Central

    Tran, Phuoc T.; Fey, Julien P.; Erdeniz, Naz; Gellon, Lionel; Boiteux, Serge; Liskay, R. Michael

    2007-01-01

    Replication forks stall at DNA lesions or as a result of an unfavorable replicative environment. These fork stalling events have been associated with recombination and gross chromosomal rearrangements. Recombination and fork bypass pathways are the mechanisms accountable for restart of stalled forks. An important lesion bypass mechanism is the highly conserved post-replication repair (PRR) pathway that is composed of error-prone translesion and error-free bypass branches. EXO1 codes for a Rad2p family member nuclease that has been implicated in a multitude of eukaryotic DNA metabolic pathways that include DNA repair, recombination, replication, and telomere integrity. In this report, we show EXO1 functions in the MMS2 error-free branch of the PRR pathway independent of the role of EXO1 in DNA mismatch repair (MMR). Consistent with the idea that EXO1 functions independently in two separate pathways, we defined a domain of Exo1p required for PRR distinct from those required for interaction with MMR proteins. We then generated a point mutant exo1 allele that was defective for the function of Exo1p in MMR due to disrupted interaction with Mlh1p, but still functional for PRR. Lastly, by using a compound exo1 mutant that was defective for interaction with Mlh1p and deficient for nuclease activity, we provide further evidence that Exo1p plays both structural and catalytic roles during MMR. PMID:17602897

  20. Transposition Complex with Aortic Arch Obstruction: Outcomes of One-Stage Repair Over 10 Years.

    PubMed

    Choi, Kwang Ho; Sung, Si Chan; Kim, Hyungtae; Lee, Hyung Doo; Ban, Gil Ho; Kim, Geena; Kim, Hee Young

    2016-01-01

    The surgical management of transposition complex with aortic arch obstruction remains technically demanding due to anatomic complexity. Even in the recent surgical era, there are centers that address this anomaly with a staged strategy. This report presents our experiences with a one-stage repair of transposition complexes with aortic arch obstructions more than the last 10 years. Since 2003, 19 patients with a transposition of the great arteries (TGA, 2 patients) or a double outlet of the right ventricle (DORV, 17 patients) and aortic arch obstruction have undergone one-stage repair of their anomalies. The mean age was 6.7 ± 2.3 days, and the mean body weight was 3.4 ± 0.3 kg. The 2 patients with TGA exhibited coarctation of the aorta. The 17 patients with DORV all exhibited the Taussig-Bing type. The great artery relationships were anteroposterior in 4 patients (21.1%). The coronary artery anatomies were usual (1LCx; 2R) in 8 patients (42.1%). There were 2 early deaths (10.5%). Seven patients (36.8%) required percutaneous interventions. One patient required re-operation for pulmonary valvar stenosis and left pulmonary artery patch angioplasty. The overall survival was 84.2%. The freedom from mortality was 83.5% at 5 years, and the freedom from intervention was 54.4% at 5 years. The one-stage repair of transposition complexes with aortic arch obstructions resulted in an acceptable survival rate and a relatively high incidence of postoperative catheter interventions. Postoperative catheter interventions are highly effective. Transposition complexes combined with aortic arch obstructions can be managed by one-stage repair with good early and midterm results.

  1. The MutSβ complex is a modulator of p53-driven tumorigenesis through its functions in both DNA double strand break repair and mismatch repair

    PubMed Central

    van Oers, Johanna M. M.; Edwards, Yasmin; Chahwan, Richard; Zhang, Weijia; Smith, Cameron; Pechuan, Joaquín; Schaetzlein, Sonja; Jin, Bo; Wang, Yuxun; Bergman, Aviv; Scharff, Matthew D.; Edelmann, Winfried

    2014-01-01

    Loss of the DNA mismatch repair protein MSH3 leads to the development of a variety of tumors in mice without significantly affecting survival rates, suggesting a modulating role for the MutSβ (MSH2-MSH3) complex in late onset tumorigenesis. To better study the role of MSH3 in tumor progression, we crossed Msh3−/− mice onto a tumor predisposing p53-deficient background. Survival of Msh3/p53 mice was not reduced compared to single p53 mutant mice; however, the tumor spectrum changed significantly from lymphoma to sarcoma, indicating MSH3 as a potent modulator of p53-driven tumorigenesis. Interestingly, Msh3−/− mouse embryonic fibroblasts displayed increased chromatid breaks and persistence of γH2AX foci following ionizing radiation, indicating a defect in DNA double strand break repair. Msh3/p53 tumors showed increased loss of heterozygosity, elevated genome-wide copy number variation, and a moderate microsatellite instability phenotype compared to Msh2/p53 tumors, revealing that MSH2-MSH3 suppresses tumorigenesis by maintaining chromosomal stability. Our results show that the MSH2-MSH3 complex is important for the suppression of late onset tumors due to its role in DNA double strand break repair as well as in DNA mismatch repair. Furthermore, they demonstrate that MSH2-MSH3 suppresses chromosomal instability and modulates the tumor spectrum in p53-deficient tumorigenesis, and possibly plays a role in other chromosomally unstable tumors as well. PMID:24013230

  2. Identification of Lynch syndrome mutations in the MLH1-PMS2 interface that disturb dimerization and mismatch repair

    PubMed Central

    Kosinski, Jan; Hinrichsen, Inga; Bujnicki, Janusz M.; Friedhoff, Peter; Plotz, Guido

    2010-01-01

    Missense alterations of the mismatch repair gene MLH1 have been identified in a significant proportion of individuals suspected of having Lynch syndrome, a hereditary syndrome which predisposes for cancer of colon and endometrium. The pathogenicity of many of these alterations, however, is unclear. A number of MLH1 alterations are located in the C-terminal domain (CTD) of MLH1, which is responsible for constitutive dimerization with PMS2. We analyzed which alterations may result in pathogenic effects due to interference with dimerization. We used a structural model of CTD of MLH1-PMS2 heterodimer to select 19 MLH1 alterations located inside and outside two candidate dimerization interfaces in the MLH1-CTD. Three alterations (p.Gln542Leu, p.Leu749Pro, p.Tyr750X) caused decreased co-expression of PMS2, which is unstable in the absence of interaction with MLH1, suggesting that these alterations interfere with dimerization. All three alterations are located within the dimerization interface suggested by our model. They also compromised mismatch repair, suggesting that defects in dimerization abrogate repair and confirming that all three alterations are pathogenic. Additionally, we provided biochemical evidence that four alterations with uncertain pathogenicity (p.Ala586Pro, p.Leu636Pro, p.Thr662Pro, and p.Arg755Trp) are deleterious because of poor expression or poor repair efficiency, and confirm the deleterious effect of eight further alterations. PMID:20533529

  3. Identification of Lynch syndrome mutations in the MLH1-PMS2 interface that disturb dimerization and mismatch repair.

    PubMed

    Kosinski, Jan; Hinrichsen, Inga; Bujnicki, Janusz M; Friedhoff, Peter; Plotz, Guido

    2010-08-01

    Missense alterations of the mismatch repair gene MLH1 have been identified in a significant proportion of individuals suspected of having Lynch syndrome, a hereditary syndrome that predisposes for cancer of colon and endometrium. The pathogenicity of many of these alterations, however, is unclear. A number of MLH1 alterations are located in the C-terminal domain (CTD) of MLH1, which is responsible for constitutive dimerization with PMS2. We analyzed which alterations may result in pathogenic effects due to interference with dimerization. We used a structural model of CTD of MLH1-PMS2 heterodimer to select 19 MLH1 alterations located inside and outside two candidate dimerization interfaces in the MLH1-CTD. Three alterations (p.Gln542Leu, p.Leu749Pro, p.Tyr750X) caused decreased coexpression of PMS2, which is unstable in the absence of interaction with MLH1, suggesting that these alterations interfere with dimerization. All three alterations are located within the dimerization interface suggested by our model. They also compromised mismatch repair, suggesting that defects in dimerization abrogate repair and confirming that all three alterations are pathogenic. Additionally, we provided biochemical evidence that four alterations with uncertain pathogenicity (p.Ala586Pro, p.Leu636Pro, p.Thr662Pro, and p.Arg755Trp) are deleterious because of poor expression or poor repair efficiency, and confirm the deleterious effect of eight further alterations.

  4. Role of Cell Cycle Regulation and MLH1, A Key DNA Mismatch Repair Protein, In Adaptive Survival Responses. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. Boothman

    1999-08-11

    Due to several interesting findings on both adaptive survival responses (ASRs) and DNA mismatch repair (MMR), this grant was separated into two discrete Specific Aim sets (each with their own discrete hypotheses). The described experiments were simultaneously performed.

  5. Glycosyltransferase gene expression identifies a poor prognostic colorectal cancer subtype associated with mismatch repair deficiency and incomplete glycan synthesis.

    PubMed

    Noda, Masaru; Okayama, Hirokazu; Tachibana, Kazunoshin; Sakamoto, Wataru; Saito, Katsuharu; Thar Min, Aung Kyi; Ashizawa, Mai; Nakajima, Takahiro; Aoto, Keita; Momma, Tomoyuki; Katakura, Kyoko; Ohki, Shinji; Kono, Koji

    2018-05-29

    We aimed to discover glycosyltransferase gene (glycogene)-derived molecular subtypes of colorectal cancer (CRC) associated with patient outcomes. Transcriptomic and epigenomic datasets of non-tumor, pre-cancerous, cancerous tissues and cell lines with somatic mutations, mismatch repair status, clinicopathological and survival information, were assembled (n=4223) and glycogene profiles were analyzed. Immunohistochemistry for a glycogene, GALNT6, was conducted in adenoma and carcinoma specimens (n=403). The functional role and cell surface glycan profiles were further investigated by in vitro loss-of-function assays and lectin microarray analysis. We initially developed and validated a 15-glycogene signature that can identify a poor-prognostic subtype, which closely related to deficient mismatch repair (dMMR) and GALNT6 downregulation. The association of decreased GALNT6 with dMMR was confirmed in multiple datasets of tumors and cell lines, and was further recapitulated by immunohistochemistry, where approximately 15% tumors exhibited loss of GALNT6 protein. GALNT6 mRNA and protein was expressed in premalignant/preinvasive lesions but was subsequently downregulated in a subset of carcinomas, possibly through epigenetic silencing. Decreased GALNT6 was independently associated with poor prognosis in the immunohistochemistry cohort and an additional microarray meta-cohort, by multivariate analyses, and its discriminative power of survival was particularly remarkable in stage III patients. GALNT6 silencing in SW480 cells promoted invasion, migration, chemoresistance and increased cell surface expression of a cancer-associated truncated O-glycan, Tn-antigen. The 15-glycogene signature and the expression levels of GALNT6 mRNA and protein each serve as a novel prognostic biomarker, highlighting the role of dysregulated glycogenes in cancer-associated glycan synthesis and poor prognosis. Copyright ©2018, American Association for Cancer Research.

  6. Selenium compounds activate ATM-dependent DNA damage responses via the mismatch repair protein hMLH1 in colorectal cancer cells

    USDA-ARS?s Scientific Manuscript database

    Epidemiological and animal studies indicate that selenium supplementation suppresses risk of colorectal and other cancers. The majority of colorectal cancers are characterized by a defective DNA mismatch repair (MMR) process. Here, we have employed the MMR-deficient HCT 116 colorectal cancer cells ...

  7. A rare case of Crohn's ileitis in a patient with constitutional mismatch repair deficiency.

    PubMed

    Kaimakliotis, Pavlos; Giardiello, Francis; Eze, Ogechukwu; Truta, Brindusa

    2017-01-01

    Constitutional mismatch repair deficiency (CMMRD), a variant of Lynch syndrome, is a rare disease characterized by café-au-lait spots, oligopolyposis, glioblastoma and lymphoma. A 24-year-old male, under surveillance for CMMRD, developed Crohn's ileitis after total colectomy with end ileostomy for colorectal cancer and failed to respond to oral corticosteroids. The patient underwent induction and maintenance of remission with vedolizumab infusions. We report the first patient with CMMRD developing Crohn's disease. The choice of immunosuppressive therapy in these patients is challenging and needs to be made according to their risk for malignancy.

  8. Microsatellites in the Eukaryotic DNA Mismatch Repair Genes as Modulators of Evolutionary Mutation Rate

    NASA Technical Reports Server (NTRS)

    Chang, Dong Kyung; Metzgar, David; Wills, Christopher; Boland, C. Richard

    2003-01-01

    All "minor" components of the human DNA mismatch repair (MMR) system-MSH3, MSH6, PMS2, and the recently discovered MLH3-contain mononucleotide microsatellites in their coding sequences. This intriguing finding contrasts with the situation found in the major components of the DNA MMR system-MSH2 and MLH1-and, in fact, most human genes. Although eukaryotic genomes are rich in microsatellites, non-triplet microsatellites are rare in coding regions. The recurring presence of exonal mononucleotide repeat sequences within a single family of human genes would therefore be considered exceptional.

  9. Association Between Increased Vascular Density and Loss of Protective RAS in Early-Stage NPDR

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Raghunandan, Sneha; Vyas, Ruchi J.; Vu, Amanda C.; Bryant, Douglas; Yaqian, Duan; Knecht, Brenda E.; Grant, Maria B.; Chalam, K . V.; Parsons-Wingerter, Patricia

    2016-01-01

    Our hypothesis predicts that retinal blood vessels increase in density during early-stage progression to moderate nonproliferative diabetic retinopathy (NPDR). The prevailing paradigm of NPDR progression is that vessels drop out prior to abnormal, vision-impairing regrowth at late-stage proliferative diabetic retinopathy (DR). However, surprising results for our previous preliminary study 1 with NASA's VESsel GENeration Analysis (VESGEN) software showed that vessels proliferated considerably during moderate NPDR compared to drop out at both mild and severe NPDR. Validation of our hypothesis will support development of successful early-stage regenerative therapies such as vascular repair by circulating angiogenic cells (CACs). The renin-angiotensin system (RAS)is implicated in the pathogenesis of DR and in the function of CACs, a critical bone marrow-derived population that is instrumental in vascular repair.

  10. Two new subfamilies of DNA mismatch repair proteins (MutS) specifically abundant in the marine environment

    PubMed Central

    Ogata, Hiroyuki; Ray, Jessica; Toyoda, Kensuke; Sandaa, Ruth-Anne; Nagasaki, Keizo; Bratbak, Gunnar; Claverie, Jean-Michel

    2011-01-01

    MutS proteins are ubiquitous in cellular organisms and have important roles in DNA mismatch repair or recombination. In the virus world, the amoeba-infecting Mimivirus, as well as the recently sequenced Cafeteria roenbergensis virus are known to encode a MutS related to the homologs found in octocorals and ɛ-proteobacteria. To explore the presence of MutS proteins in other viral genomes, we performed a genomic survey of four giant viruses (‘giruses') (Pyramimonas orientalis virus (PoV), Phaeocystis pouchetii virus (PpV), Chrysochromulina ericina virus (CeV) and Heterocapsa circularisquama DNA virus (HcDNAV)) that infect unicellular marine algae. Our analysis revealed the presence of a close homolog of Mimivirus MutS in all the analyzed giruses. These viral homologs possess a specific domain structure, including a C-terminal HNH-endonuclease domain, defining the new MutS7 subfamily. We confirmed the presence of conserved mismatch recognition residues in all members of the MutS7 subfamily, suggesting their role in DNA mismatch repair rather than DNA recombination. PoV and PpV were found to contain an additional type of MutS, which we propose to call MutS8. The MutS8 proteins in PoV and PpV were found to be closely related to homologs from ‘Candidatus Amoebophilus asiaticus', an obligate intracellular amoeba-symbiont belonging to the Bacteroidetes. Furthermore, our analysis revealed that MutS7 and MutS8 are abundant in marine microbial metagenomes and that a vast majority of these environmental sequences are likely of girus origin. Giruses thus seem to represent a major source of the underexplored diversity of the MutS family in the microbial world. PMID:21248859

  11. Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort.

    PubMed

    Lavoine, N; Colas, C; Muleris, M; Bodo, S; Duval, A; Entz-Werle, N; Coulet, F; Cabaret, O; Andreiuolo, F; Charpy, C; Sebille, G; Wang, Q; Lejeune, S; Buisine, M P; Leroux, D; Couillault, G; Leverger, G; Fricker, J P; Guimbaud, R; Mathieu-Dramard, M; Jedraszak, G; Cohen-Hagenauer, O; Guerrini-Rousseau, L; Bourdeaut, F; Grill, J; Caron, O; Baert-Dusermont, S; Tinat, J; Bougeard, G; Frébourg, T; Brugières, L

    2015-11-01

    Constitutional mismatch repair deficiency (CMMRD) syndrome is a childhood cancer predisposition syndrome involving biallelic germline mutations of MMR genes, poorly recognised by clinicians so far. Retrospective review of all 31 patients with CMMRD diagnosed in French genetics laboratories in order to describe the characteristics, treatment and outcome of the malignancies and biological diagnostic data. 67 tumours were diagnosed in 31 patients, 25 (37%) Lynch syndrome-associated malignancies, 22 (33%) brain tumours, 17 (25%) haematological malignancies and 3 (5%) sarcomas. The median age of onset of the first tumour was 6.9 years (1.2-33.5). Overall, 22 patients died, 9 (41%) due to the primary tumour. Median survival after the diagnosis of the primary tumour was 27 months (0.26-213.2). Failure rate seemed to be higher than expected especially for T-cell non-Hodgkin's lymphoma (progression/relapse in 6/12 patients). A familial history of Lynch syndrome was identified in 6/23 families, and consanguinity in 9/23 families. PMS2 mutations (n=18) were more frequent than other mutations (MSH6 (n=6), MLH1 (n=4) and MSH2 (n=3)). In conclusion, this unselected series of patients confirms the extreme severity of this syndrome with a high mortality rate mostly related to multiple childhood cancers, and highlights the need for its early detection in order to adapt treatment and surveillance. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Native language change during early stages of second language learning.

    PubMed

    Bice, Kinsey; Kroll, Judith F

    2015-11-11

    Research on proficient bilinguals has demonstrated that both languages are always active, even when only one is required. The coactivation of the two languages creates both competition and convergence, facilitating the processing of cognate words, but slowing lexical access when there is a requirement to engage control mechanisms to select the target language. Critically, these consequences are evident in the native language (L1) as well as in the second language (L2). The present study questioned whether L1 changes can be detected at early stages of L2 learning and how they are modulated by L2 proficiency. Native English speakers learning Spanish performed an English (L1) lexical decision task that included cognates while event-related potentials were recorded. They also performed verbal fluency, working memory, and inhibitory control tasks. A group of matched monolinguals performed the same tasks in English only. The results revealed that intermediate learners demonstrate a reduced N400 for cognates compared with noncognates in English (L1), and an emerging effect is visually present in beginning learners as well; however, no behavioral cognate effect was present for either group. In addition, slower reaction times in English (L1) are related to a larger cognate N400 magnitude in English (L1) and Spanish (L2), and to better inhibitory control for learners but not for monolinguals. The results suggest that contrary to the claim that L2 affects L1 only when L2 speakers are highly proficient, L2 learning begins to impact L1 early in the development of the L2 skill.

  13. DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break

    PubMed Central

    Harmsen, Tim; Klaasen, Sjoerd; van de Vrugt, Henri; te Riele, Hein

    2018-01-01

    Abstract Single-stranded oligodeoxyribonucleotide (ssODN)-mediated repair of CRISPR/Cas9-induced DNA double-strand breaks (DSB) can effectively be used to introduce small genomic alterations in a defined locus. Here, we reveal DNA mismatch repair (MMR) activity is crucial for efficient nucleotide substitution distal from the Cas9-induced DNA break when the substitution is instructed by the 3′ half of the ssODN. Furthermore, protecting the ssODN 3′ end with phosphorothioate linkages enhances MMR-dependent gene editing events. Our findings can be exploited to optimize efficiencies of nucleotide substitutions distal from the DSB and imply that oligonucleotide-mediated gene editing is effectuated by templated break repair. PMID:29447381

  14. Mlh1-Mlh3, a Meiotic Crossover and DNA Mismatch Repair Factor, Is a Msh2-Msh3-stimulated Endonuclease*

    PubMed Central

    Rogacheva, Maria V.; Manhart, Carol M.; Chen, Cheng; Guarne, Alba; Surtees, Jennifer; Alani, Eric

    2014-01-01

    Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair. PMID:24403070

  15. Mlh1-Mlh3, a meiotic crossover and DNA mismatch repair factor, is a Msh2-Msh3-stimulated endonuclease.

    PubMed

    Rogacheva, Maria V; Manhart, Carol M; Chen, Cheng; Guarne, Alba; Surtees, Jennifer; Alani, Eric

    2014-02-28

    Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair.

  16. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System.

    PubMed

    Smith, Catherine E; Bowen, Nikki; Graham, William J; Goellner, Eva M; Srivatsan, Anjana; Kolodner, Richard D

    2015-08-28

    Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5' nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3' nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg(2+) and Mn(2+) for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System*

    PubMed Central

    Smith, Catherine E.; Bowen, Nikki; Graham, William J.; Goellner, Eva M.; Srivatsan, Anjana; Kolodner, Richard D.

    2015-01-01

    Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5′ nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3′ nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg2+ and Mn2+ for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR. PMID:26170454

  18. Loss of DNA Mismatch Repair Protein hMSH6 in Ovarian Cancer is Histotype-Specific

    PubMed Central

    Zhai, Qihui “Jim”; Rosen, Daniel Gustavo; Lu, Karen; Liu, Jinsong

    2008-01-01

    Microsatellite instability (MSI) due to defects in DNA mismatch repair genes may be involved in the development of a subset of human ovarian carcinomas. The role of one such gene, hMSH6, in ovarian cancer is not well documented. We investigated the expression of hMSH6 protein in different histotypes of ovarian carcinoma and the associations between loss of hMSH6 protein and tumor grade, disease stage, familial history of cancer and patient survival. We stained an ovarian carcinoma tissue microarray consisting of formalin-fixed, paraffin-embedded tissue samples from 322 patients with an anti-hMSH6 antibody and scored the results semiquantitatively as negative or positive. Twelve cases were excluded owing to loss of cores during staining. Absence of hMSH6 protein was noted in 20 of 230 serous carcinomas (8.7%), in 7 of 16 clear cell carcinomas (43.7%), in 4 of 34 endometrioid carcinomas (11.7%), in 1 of 14 malignant mixed Müllerian tumors, 2 of 6 mucinous carcinomas, 0 of 2 transitional cell carcinomas and in 0 of 8 undifferentiated carcinomas. Loss of hMSH6 protein was not associated with survival, patient age, tumor grade, or disease stage but was associated with clear cell, mucinous and endometrioid carcinoma histology (P<0.007). These findings indicate that loss of hMSH6 expression in ovarian carcinoma is more common in certain histologic subtypes, particularly in clear cell, endometrioid, and mucinous carcinoma, suggesting that loss of hMSH6 function may participate in the pathogenesis of these subtypes of cancer. Loss of hMSH6 expression did not predict survival and was not associated with disease stage, tumor grade, patient age or family history of cancer. PMID:18787632

  19. Stimulating angiogenesis mitigates the unloading-induced reduction in osteogenesis in early-stage bone repair in rats

    PubMed Central

    Matsumoto, Takeshi; Sato, Shota

    2015-01-01

    Accelerating fracture healing during bed rest allows early mobilization and avoids prolonged fracture healing times. We tested the hypothesis that stimulating angiogenesis with deferoxamine (DFO) mitigates the unloading-induced reduction in early-stage bone repair. Rats aged 12 weeks were subjected to cortical drilling on their tibial diaphysis under anesthesia and treated with hindlimb unloading (HU), HU and DFO administration (DFOHU), or weight bearing (WB) for 5 or 10 days (HU5/10, DFOHU5/10, WB5/10; n = 8 per groups) until sacrifice for vascular casting with a zirconium dioxide-based contrast agent. Taking advantage of its absorption discontinuity at the K-absorption edge, vascular and bone images in the drill-hole defects were acquired by synchrotron radiation subtraction CT. Bone repair was reduced in HU rats. The bone volume fraction (B.Vf) was 88% smaller in HU5 and 42% smaller in HU10 than in WB5/10. The bone segment densities (B.Seg) were 97% smaller in HU5 and 141% larger in HU10 than in WB5/10, and bone thickness (B.Th) was 38% smaller in HU10 than in WB10. The vascular volume fraction (V.Vf) was 35% and the mean vessel diameter (V.D) was 13% smaller in HU10 than in WB10. When compared according to categorized vessel sizes, V.Vf in the diameter ranges 20–30, 30–40, and >40 μm were smaller in HU10 than in WB10, and V.Seg in the diameter range >40 μm was smaller in HU10 than in WB10. In contrast, there was no difference in B.Vf between DFOHU5/10 and WB5/10 and in V.Vf between DFOHU10 and WB10, though B.Seg remained 86% smaller in DFOHU5 and 94% larger in DFOHU10 than in WB5/10, and B.Th and V.D were 23% and 14% lower in DFOHU10 than in WB10. Vessel size-specific V.Vf in the diameter ranges 10–20 and 20–30 μm was larger in DFOHU5 than in HU5. In conclusion, the enhanced angiogenic ingrowth mitigates the reduction in bone repair during mechanical unloading. PMID:25780087

  20. Stimulating angiogenesis mitigates the unloading-induced reduction in osteogenesis in early-stage bone repair in rats.

    PubMed

    Matsumoto, Takeshi; Sato, Shota

    2015-03-01

    Accelerating fracture healing during bed rest allows early mobilization and avoids prolonged fracture healing times. We tested the hypothesis that stimulating angiogenesis with deferoxamine (DFO) mitigates the unloading-induced reduction in early-stage bone repair. Rats aged 12 weeks were subjected to cortical drilling on their tibial diaphysis under anesthesia and treated with hindlimb unloading (HU), HU and DFO administration (DFOHU), or weight bearing (WB) for 5 or 10 days (HU5/10, DFOHU5/10, WB5/10; n = 8 per groups) until sacrifice for vascular casting with a zirconium dioxide-based contrast agent. Taking advantage of its absorption discontinuity at the K-absorption edge, vascular and bone images in the drill-hole defects were acquired by synchrotron radiation subtraction CT. Bone repair was reduced in HU rats. The bone volume fraction (B.Vf) was 88% smaller in HU5 and 42% smaller in HU10 than in WB5/10. The bone segment densities (B.Seg) were 97% smaller in HU5 and 141% larger in HU10 than in WB5/10, and bone thickness (B.Th) was 38% smaller in HU10 than in WB10. The vascular volume fraction (V.Vf) was 35% and the mean vessel diameter (V.D) was 13% smaller in HU10 than in WB10. When compared according to categorized vessel sizes, V.Vf in the diameter ranges 20-30, 30-40, and >40 μm were smaller in HU10 than in WB10, and V.Seg in the diameter range >40 μm was smaller in HU10 than in WB10. In contrast, there was no difference in B.Vf between DFOHU5/10 and WB5/10 and in V.Vf between DFOHU10 and WB10, though B.Seg remained 86% smaller in DFOHU5 and 94% larger in DFOHU10 than in WB5/10, and B.Th and V.D were 23% and 14% lower in DFOHU10 than in WB10. Vessel size-specific V.Vf in the diameter ranges 10-20 and 20-30 μm was larger in DFOHU5 than in HU5. In conclusion, the enhanced angiogenic ingrowth mitigates the reduction in bone repair during mechanical unloading. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf

  1. Speech outcome in young children born with unilateral cleft lip and palate treated with one- or two-stage palatal repair and the impact of early intervention.

    PubMed

    Raud Westberg, Liisi; Höglund Santamarta, Lena; Karlsson, Jenny; Nyberg, Jill; Neovius, Erik; Lohmander, Anette

    2017-10-25

    The aim of this study was to describe speech at 1, 1;6 and 3 years of age in children born with unilateral cleft lip and palate (UCLP) and relate the findings to operation method and amount of early intervention received. A prospective trial of children born with UCLP operated with a one-stage (OS) palatal repair at 12 months or a two-stage repair (TS) with soft palate closure at 3-4 months and hard palate closure at 12 months was undertaken (Scandcleft). At 1 and 1;6 years the place and manner of articulation and number of different consonants produced in babbling were reported in 33 children. At three years of age percentage consonants correct adjusted for age (PCC-A) and cleft speech errors were assessed in 26 of the 33 children. Early intervention was not provided as part of the trial but according to the clinical routine and was extracted from patient records. At age 3, the mean PCC-A was 68% and 46% of the children produced articulation errors with no significant difference between the two groups. At one year there was a significantly higher occurrence of oral stops and anterior place consonants in the TS group. There were significant correlations between the consonant production between one and three years of age, but not with amount of early intervention received. The TS method was beneficial for consonant production at age 1, but not shown at 1;6 or 3 years. Behaviourally based early intervention still needs to be evaluated.

  2. The structural impact of DNA mismatches

    PubMed Central

    Rossetti, Giulia; Dans, Pablo D.; Gomez-Pinto, Irene; Ivani, Ivan; Gonzalez, Carlos; Orozco, Modesto

    2015-01-01

    The structure and dynamics of all the transversion and transition mismatches in three different DNA environments have been characterized by molecular dynamics simulations and NMR spectroscopy. We found that the presence of mismatches produced significant local structural alterations, especially in the case of purine transversions. Mismatched pairs often show promiscuous hydrogen bonding patterns, which interchange among each other in the nanosecond time scale. This therefore defines flexible base pairs, where breathing is frequent, and where distortions in helical parameters are strong, resulting in significant alterations in groove dimension. Even if the DNA structure is plastic enough to absorb the structural impact of the mismatch, local structural changes can be propagated far from the mismatch site, following the expected through-backbone and a previously unknown through-space mechanism. The structural changes related to the presence of mismatches help to understand the different susceptibility of mismatches to the action of repairing proteins. PMID:25820425

  3. Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome.

    PubMed

    Maletzki, Claudia; Huehns, Maja; Bauer, Ingrid; Ripperger, Tim; Mork, Maureen M; Vilar, Eduardo; Klöcking, Sabine; Zettl, Heike; Prall, Friedrich; Linnebacher, Michael

    2017-07-01

    Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis. © 2017 Wiley Periodicals, Inc.

  4. DNA mismatch repair gene MSH6 implicated in determining age at natural menopause

    PubMed Central

    Perry, John R.B.; Hsu, Yi-Hsiang; Chasman, Daniel I.; Johnson, Andrew D.; Elks, Cathy; Albrecht, Eva; Andrulis, Irene L.; Beesley, Jonathan; Berenson, Gerald S.; Bergmann, Sven; Bojesen, Stig E.; Bolla, Manjeet K.; Brown, Judith; Buring, Julie E.; Campbell, Harry; Chang-Claude, Jenny; Chenevix-Trench, Georgia; Corre, Tanguy; Couch, Fergus J.; Cox, Angela; Czene, Kamila; D'adamo, Adamo Pio; Davies, Gail; Deary, Ian J.; Dennis, Joe; Easton, Douglas F.; Engelhardt, Ellen G.; Eriksson, Johan G.; Esko, Tõnu; Fasching, Peter A.; Figueroa, Jonine D.; Flyger, Henrik; Fraser, Abigail; Garcia-Closas, Montse; Gasparini, Paolo; Gieger, Christian; Giles, Graham; Guenel, Pascal; Hägg, Sara; Hall, Per; Hayward, Caroline; Hopper, John; Ingelsson, Erik; Kardia, Sharon L.R.; Kasiman, Katherine; Knight, Julia A.; Lahti, Jari; Lawlor, Debbie A.; Magnusson, Patrik K.E.; Margolin, Sara; Marsh, Julie A.; Metspalu, Andres; Olson, Janet E.; Pennell, Craig E.; Polasek, Ozren; Rahman, Iffat; Ridker, Paul M.; Robino, Antonietta; Rudan, Igor; Rudolph, Anja; Salumets, Andres; Schmidt, Marjanka K.; Schoemaker, Minouk J.; Smith, Erin N.; Smith, Jennifer A.; Southey, Melissa; Stöckl, Doris; Swerdlow, Anthony J.; Thompson, Deborah J.; Truong, Therese; Ulivi, Sheila; Waldenberger, Melanie; Wang, Qin; Wild, Sarah; Wilson, James F; Wright, Alan F.; Zgaga, Lina; Ong, Ken K.; Murabito, Joanne M.; Karasik, David; Murray, Anna

    2014-01-01

    The length of female reproductive lifespan is associated with multiple adverse outcomes, including breast cancer, cardiovascular disease and infertility. The biological processes that govern the timing of the beginning and end of reproductive life are not well understood. Genetic variants are known to contribute to ∼50% of the variation in both age at menarche and menopause, but to date the known genes explain <15% of the genetic component. We have used genome-wide association in a bivariate meta-analysis of both traits to identify genes involved in determining reproductive lifespan. We observed significant genetic correlation between the two traits using genome-wide complex trait analysis. However, we found no robust statistical evidence for individual variants with an effect on both traits. A novel association with age at menopause was detected for a variant rs1800932 in the mismatch repair gene MSH6 (P = 1.9 × 10−9), which was also associated with altered expression levels of MSH6 mRNA in multiple tissues. This study contributes to the growing evidence that DNA repair processes play a key role in ovarian ageing and could be an important therapeutic target for infertility. PMID:24357391

  5. The contemporary role of 1 vs. 2-stage repair for proximal hypospadias

    PubMed Central

    Dason, Shawn; Wong, Nathan

    2014-01-01

    This review discusses the most commonly employed techniques in the repair of proximal hypospadias, highlighting the advantages and disadvantages of single versus staged surgical techniques. Hypospadias can have a spectrum of severity with a urethral meatus ranging from the perineum to the glans. Associated abnormalities are commonly found with proximal hypospadias and encompass a large spectrum, including ventral curvature (VC) up to 50 degrees or more, ventral skin deficiency, a flattened glans, penile torsion and penoscrotal transposition. Our contemporary understanding of hypospadiology is comprised of a foundation built by experts who have described a number of techniques and their outcomes, combined with survey data detailing practice patterns. The two largest components of hypospadias repair include repair of VC and urethroplasty. VC greater than 20 degrees is considered clinically relevant to warrant surgical correction. To repair VC, the penis is first degloved—a procedure that may reduce or remove curvature by itself in some cases. Residual curvature is then repaired with dorsal plication techniques, transection of the urethral plate, and/or ventral lengthening techniques. Urethroplasty takes the form of 1- or 2-stage repairs. One-stage options include the tubularized incised urethroplasty (TIP) or various graft or flap-based techniques. Two-stage options also include grafts or flaps, including oral mucosal and preputial skin grafting. One stage repairs are an attractive option in that they may reduce cost, hospital stay, anesthetic risks, and time to the final result. The downside is that these repairs require mastery of multiple techniques may be more complex, and—depending on technique—have higher complication rates. Two-stage repairs are preferred by the majority of surveyed hypospadiologists. The 2-stage repair is versatile and has satisfactory outcomes, but necessitates a second procedure. Given the lack of clear high-quality evidence

  6. The contemporary role of 1 vs. 2-stage repair for proximal hypospadias.

    PubMed

    Dason, Shawn; Wong, Nathan; Braga, Luis H

    2014-12-01

    This review discusses the most commonly employed techniques in the repair of proximal hypospadias, highlighting the advantages and disadvantages of single versus staged surgical techniques. Hypospadias can have a spectrum of severity with a urethral meatus ranging from the perineum to the glans. Associated abnormalities are commonly found with proximal hypospadias and encompass a large spectrum, including ventral curvature (VC) up to 50 degrees or more, ventral skin deficiency, a flattened glans, penile torsion and penoscrotal transposition. Our contemporary understanding of hypospadiology is comprised of a foundation built by experts who have described a number of techniques and their outcomes, combined with survey data detailing practice patterns. The two largest components of hypospadias repair include repair of VC and urethroplasty. VC greater than 20 degrees is considered clinically relevant to warrant surgical correction. To repair VC, the penis is first degloved-a procedure that may reduce or remove curvature by itself in some cases. Residual curvature is then repaired with dorsal plication techniques, transection of the urethral plate, and/or ventral lengthening techniques. Urethroplasty takes the form of 1- or 2-stage repairs. One-stage options include the tubularized incised urethroplasty (TIP) or various graft or flap-based techniques. Two-stage options also include grafts or flaps, including oral mucosal and preputial skin grafting. One stage repairs are an attractive option in that they may reduce cost, hospital stay, anesthetic risks, and time to the final result. The downside is that these repairs require mastery of multiple techniques may be more complex, and-depending on technique-have higher complication rates. Two-stage repairs are preferred by the majority of surveyed hypospadiologists. The 2-stage repair is versatile and has satisfactory outcomes, but necessitates a second procedure. Given the lack of clear high-quality evidence supporting the

  7. Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.

    PubMed

    Chalissery, Jisha; Jalal, Deena; Al-Natour, Zeina; Hassan, Ahmed H

    2017-03-01

    Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.

    PubMed

    Pinto, Ricardo Mouro; Dragileva, Ella; Kirby, Andrew; Lloret, Alejandro; Lopez, Edith; St Claire, Jason; Panigrahi, Gagan B; Hou, Caixia; Holloway, Kim; Gillis, Tammy; Guide, Jolene R; Cohen, Paula E; Li, Guo-Min; Pearson, Christopher E; Daly, Mark J; Wheeler, Vanessa C

    2013-10-01

    The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111) mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111) ) than on a 129 background (129.Hdh(Q111) ). Linkage mapping in (B6x129).Hdh(Q111) F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111) mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111) somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2-MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1

  9. Mismatch Repair Genes Mlh1 and Mlh3 Modify CAG Instability in Huntington's Disease Mice: Genome-Wide and Candidate Approaches

    PubMed Central

    Pinto, Ricardo Mouro; Dragileva, Ella; Kirby, Andrew; Lloret, Alejandro; Lopez, Edith; St. Claire, Jason; Panigrahi, Gagan B.; Hou, Caixia; Holloway, Kim; Gillis, Tammy; Guide, Jolene R.; Cohen, Paula E.; Li, Guo-Min; Pearson, Christopher E.; Daly, Mark J.; Wheeler, Vanessa C.

    2013-01-01

    The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease HdhQ111 mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.HdhQ111) than on a 129 background (129.HdhQ111). Linkage mapping in (B6x129).HdhQ111 F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.HdhQ111 mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. HdhQ111 somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1–MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2–MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1 protein

  10. FANCJ localization by mismatch repair is vital to maintain genomic integrity after UV irradiation.

    PubMed

    Guillemette, Shawna; Branagan, Amy; Peng, Min; Dhruva, Aashana; Schärer, Orlando D; Cantor, Sharon B

    2014-02-01

    Nucleotide excision repair (NER) is critical for the repair of DNA lesions induced by UV radiation, but its contribution in replicating cells is less clear. Here, we show that dual incision by NER endonucleases, including XPF and XPG, promotes the S-phase accumulation of the BRCA1 and Fanconi anemia-associated DNA helicase FANCJ to sites of UV-induced damage. FANCJ promotes replication protein A phosphorylation and the arrest of DNA synthesis following UV irradiation. Interaction defective mutants of FANCJ reveal that BRCA1 binding is not required for FANCJ localization, whereas interaction with the mismatch repair (MMR) protein MLH1 is essential. Correspondingly, we find that FANCJ, its direct interaction with MLH1, and the MMR protein MSH2 function in a common pathway in response to UV irradiation. FANCJ-deficient cells are not sensitive to killing by UV irradiation, yet we find that DNA mutations are significantly enhanced. Thus, we considered that FANCJ deficiency could be associated with skin cancer. Along these lines, in melanoma we found several somatic mutations in FANCJ, some of which were previously identified in hereditary breast cancer and Fanconi anemia. Given that, mutations in XPF can also lead to Fanconi anemia, we propose collaborations between Fanconi anemia, NER, and MMR are necessary to initiate checkpoint activation in replicating human cells to limit genomic instability.

  11. A Problem Still in Search of a Solution: A State Policy Roadmap for Improving Early Reading Proficiency

    ERIC Educational Resources Information Center

    Christie, Kathy; Rose, Stephanie

    2012-01-01

    Reading words and developing larger vocabularies are critical parts of reading proficiency, but these checkpoints do not have significance until young students grasp the meaning behind words. While teachers and the school culture can improve early reading proficiency, legislatures and state education agencies can support such efforts by…

  12. DNA conformations in mismatch repair probed in solution by X-ray scattering from gold nanocrystals

    PubMed Central

    Hura, Greg L.; Tsai, Chi-Lin; Claridge, Shelley A.; Mendillo, Marc L.; Smith, Jessica M.; Williams, Gareth J.; Mastroianni, Alexander J.; Alivisatos, A. Paul; Putnam, Christopher D.; Kolodner, Richard D.; Tainer, John A.

    2013-01-01

    DNA metabolism and processing frequently require transient or metastable DNA conformations that are biologically important but challenging to characterize. We use gold nanocrystal labels combined with small angle X-ray scattering to develop, test, and apply a method to follow DNA conformations acting in the Escherichia coli mismatch repair (MMR) system in solution. We developed a neutral PEG linker that allowed gold-labeled DNAs to be flash-cooled and stored without degradation in sample quality. The 1,000-fold increased gold nanocrystal scattering vs. DNA enabled investigations at much lower concentrations than otherwise possible to avoid concentration-dependent tetramerization of the MMR initiation enzyme MutS. We analyzed the correlation scattering functions for the nanocrystals to provide higher resolution interparticle distributions not convoluted by the intraparticle distribution. We determined that mispair-containing DNAs were bent more by MutS than complementary sequence DNA (csDNA), did not promote tetramer formation, and allowed MutS conversion to a sliding clamp conformation that eliminated the DNA bends. Addition of second protein responder MutL did not stabilize the MutS-bent forms of DNA. Thus, DNA distortion is only involved at the earliest mispair recognition steps of MMR: MutL does not trap bent DNA conformations, suggesting migrating MutL or MutS/MutL complexes as a conserved feature of MMR. The results promote a mechanism of mismatch DNA bending followed by straightening in initial MutS and MutL responses in MMR. We demonstrate that small angle X-ray scattering with gold labels is an enabling method to examine protein-induced DNA distortions key to the DNA repair, replication, transcription, and packaging. PMID:24101514

  13. The Impact of Major-Job Mismatch on College Graduates' Early Career Earnings: Evidence from China

    ERIC Educational Resources Information Center

    Zhu, Rong

    2014-01-01

    This paper assesses the impact of the mismatch between a college major and job on college graduates' early career earnings using a sample from China. On average, a major-job mismatched college graduate is found to suffer from an income loss that is much lower than the penalty documented in previous studies. The income losses are also found to be…

  14. Two-stage hypospadias repair: audit in a district general hospital.

    PubMed

    Price, R D; Lambe, G F; Jones, R P

    2003-12-01

    The number of techniques for hypospadias repair is testament to the challenges associated with this condition. In 1994, the senior author undertook an audit of his repairs using the van der Meulen [Plast. Reconstr. Surg. 59 (1977) 20615] technique and determined that the revision rate of 11% was unsatisfactory and the cosmetic result sub-optimal. He, therefore, retrained and began in 1995, using the two-stage technique popularised by Bracka [Br. J. Plast. Surg. 48 (1995) 345]. We undertook an audit of all corrections performed in the period from September 1995 to March 2002. The computer database in the main theatre suite was used to identify all patients on whom such a repair had been undertaken and those notes retrieved. Data was collected on a number of variables including age at operations, complications such as urinary tract infection and fistulae, and total number of corrective operations. One hundred and nineteen patients were identified, of which seven had no records available. Of the remaining 112, 81 were primary repairs, in whom the complication rate was 2.5% for stage I (graft loss) and 9.8% for stage II (fistula rate 7.4%, stenosis 1.2%, baggy urethra requiring reconstruction 1.2%). The remaining 31 patients were those with unsatisfactory single-stage repairs and in this group, graft loss was seen in three cases (10%). The fistula rate was 4/31 (12.9%) and the stenosis rate 2/31 (6.5%). These results compare favourably with a number of published series from surgeons who have super-specialised in this field. We conclude that the two-stage repair is a useful and reliable technique in the hands of a Plastic Surgeon who has a broader interest.

  15. Quantitative assessment of the dose-response of alkylating agents in DNA repair proficient and deficient ames tester strains.

    PubMed

    Tang, Leilei; Guérard, Melanie; Zeller, Andreas

    2014-01-01

    Mutagenic and clastogenic effects of some DNA damaging agents such as methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) have been demonstrated to exhibit a nonlinear or even "thresholded" dose-response in vitro and in vivo. DNA repair seems to be mainly responsible for these thresholds. To this end, we assessed several mutagenic alkylators in the Ames test with four different strains of Salmonella typhimurium: the alkyl transferases proficient strain TA1535 (Ogt+/Ada+), as well as the alkyl transferases deficient strains YG7100 (Ogt+/Ada-), YG7104 (Ogt-/Ada+) and YG7108 (Ogt-/Ada-). The known genotoxins EMS, MMS, temozolomide (TMZ), ethylnitrosourea (ENU) and methylnitrosourea (MNU) were tested in as many as 22 concentration levels. Dose-response curves were statistically fitted by the PROAST benchmark dose model and the Lutz-Lutz "hockeystick" model. These dose-response curves suggest efficient DNA-repair for lesions inflicted by all agents in strain TA1535. In the absence of Ogt, Ada is predominantly repairing methylations but not ethylations. It is concluded that the capacity of alkyl-transferases to successfully repair DNA lesions up to certain dose levels contributes to genotoxicity thresholds. Copyright © 2013 Wiley Periodicals, Inc.

  16. The unstructured linker arms of Mlh1-Pms1 are important for interactions with DNA during mismatch repair

    PubMed Central

    Plys, Aaron J.; Rogacheva, Maria V.; Greene, Eric C.; Alani, Eric

    2012-01-01

    DNA mismatch repair (MMR) models have proposed that MSH proteins identify DNA polymerase errors while interacting with the DNA replication fork. MLH proteins (primarily Mlh1-Pms1 in baker’s yeast) then survey the genome for lesion-bound MSH proteins. The resulting MSH-MLH complex formed at a DNA lesion initiates downstream steps in repair. MLH proteins act as dimers and contain long (20 – 30 nanometers) unstructured arms that connect two terminal globular domains. These arms can vary between 100 to 300 amino acids in length, are highly divergent between organisms, and are resistant to amino acid substitutions. To test the roles of the linker arms in MMR, we engineered a protease cleavage site into the Mlh1 linker arm domain of baker’s yeast Mlh1-Pms1. Cleavage of the Mlh1 linker arm in vitro resulted in a defect in Mlh1-Pms1 DNA binding activity, and in vivo proteolytic cleavage resulted in a complete defect in MMR. We then generated a series of truncation mutants bearing Mlh1 and Pms1 linker arms of varying lengths. This work revealed that MMR is greatly compromised when portions of the Mlh1 linker are removed, whereas repair is less sensitive to truncation of the Pms1 linker arm. Purified complexes containing truncations in Mlh1 and Pms1 linker arms were analyzed and found to have differential defects in DNA binding that also correlated with the ability to form a ternary complex with Msh2-Msh6 and mismatch DNA. These observations are consistent with the unstructured linker domains of MLH proteins providing distinct interactions with DNA during MMR. PMID:22659005

  17. Inactivation of DNA mismatch repair by variants of uncertain significance in the PMS2 gene.

    PubMed

    Drost, Mark; Koppejan, Hester; de Wind, Niels

    2013-11-01

    Lynch syndrome (LS) is a common cancer predisposition caused by an inactivating mutation in one of four DNA mismatch repair (MMR) genes. Frequently a variant of uncertain significance (VUS), rather than an obviously pathogenic mutation, is identified in one of these genes. The inability to define pathogenicity of such variants precludes targeted healthcare. Here, we have modified a cell-free assay to test VUS in the MMR gene PMS2 for functional activity. We have analyzed nearly all VUS in PMS2 found thus far and describe loss of MMR activity for five, suggesting the applicability of the assay for diagnosis of LS. © 2013 WILEY PERIODICALS, INC.

  18. Early postoperative repair status after rotator cuff repair cannot be accurately classified using questionnaires of patient function and isokinetic strength evaluation.

    PubMed

    Colliver, Jessica; Wang, Allan; Joss, Brendan; Ebert, Jay; Koh, Eamon; Breidahl, William; Ackland, Timothy

    2016-04-01

    This study investigated if patients with an intact tendon repair or partial-thickness retear early after rotator cuff repair display differences in clinical evaluations and whether early tendon healing can be predicted using these assessments. We prospectively evaluated 60 patients at 16 weeks after arthroscopic supraspinatus repair. Evaluation included the Oxford Shoulder Score, 11-item version of the Disabilities of the Arm, Shoulder and Hand, visual analog scale for pain, 12-item Short Form Health Survey, isokinetic strength, and magnetic resonance imaging (MRI). Independent t tests investigated clinical differences in patients based on the Sugaya MRI rotator cuff classification system (grades 1, 2, or 3). Discriminant analysis determined whether intact repairs (Sugaya grade 1) and partial-thickness retears (Sugaya grades 2 and 3) could be predicted. No differences (P < .05) existed in the clinical or strength measures. Although discriminant analysis revealed the 11-item version of the Disabilities of the Arm, Shoulder and Hand produced a 97% true-positive rate for predicting partial thickness retears, it also produced a 90% false-positive rate whereby it incorrectly predicted a retear in 90% of patients whose repair was intact. The ability to discriminate between groups was enhanced with up to 5 variables entered; however, only 87% of the partial-retear group and 36% of the intact-repair group were correctly classified. No differences in clinical scores existed between patients stratified by the Sugaya MRI classification system at 16 weeks. An intact repair or partial-thickness retear could not be accurately predicted. Our results suggest that correct classification of healing in the early postoperative stages should involve imaging. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Purification, crystallization and preliminary X-ray diffraction analysis of the human mismatch repair protein MutS[beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, Quincy; Orans, Jillian; Hast, Michael A.

    2012-03-16

    MutS{beta} is a eukaryotic mismatch repair protein that preferentially targets extrahelical unpaired nucleotides and shares partial functional redundancy with MutS{alpha} (MSH2-MSH6). Although mismatch recognition by MutS{alpha} has been shown to involve a conserved Phe-X-Glu motif, little is known about the lesion-binding mechanism of MutS{beta}. Combined MSH3/MSH6 deficiency triggers a strong predisposition to cancer in mice and defects in msh2 and msh6 account for roughly half of hereditary nonpolyposis colorectal cancer mutations. These three MutS homologs are also believed to play a role in trinucleotide repeat instability, which is a hallmark of many neurodegenerative disorders. The baculovirus overexpression and purification ofmore » recombinant human MutS{beta} and three truncation mutants are presented here. Binding assays with heteroduplex DNA were carried out for biochemical characterization. Crystallization and preliminary X-ray diffraction analysis of the protein bound to a heteroduplex DNA substrate are also reported.« less

  20. Early Childhood Reading Skills and Proficiency in NAEP Eighth-Grade Reading Assessment

    ERIC Educational Resources Information Center

    Dogan, Enis; Ogut, Burhan; Kim, Young Yee

    2015-01-01

    The relationship between reading skills in earlier grades and achieving "Proficiency" on the National Assessment of Educational Progress (NAEP) grade 8 reading assessment was examined by establishing a statistical link between NAEP and the Early Childhood Longitudinal Study (ECLS) grade 8 reading assessments using data from a common…

  1. The Construct of Language Proficiency.

    ERIC Educational Resources Information Center

    Verhoeven, Ludo, Ed.; de Jong, John H. A. L., Ed.

    A collection of essays on first and second language proficiency from the fields of psychology and linguistics includes the following: "Modeling and Assessing Language Proficiency" (John H. A. L. de Jong, Ludo Verhoeven); "The Construct of Grammar in Early Language Development" (Folkert Kuiken); "Dimensions in Grammatical Proficiency" (Wim H. J.…

  2. Two-stage repair with long channel technique for primary severe hypospadias.

    PubMed

    Yang, Tianyou; Xie, Qigen; Liang, Qifeng; Xu, Yeqing; Su, Cheng

    2014-07-01

    To introduce a 2-stage repair with long channel technique for primary severe hypospadias. Between March 2010 and November 2013, 16 children with primary severe hypospadias underwent 2-stage repair with long channel technique. The technique applied in the first stage was almost the same as Bracka 2-stage repair. The second stage was usually performed 6 months later. A small transverse skin incision, distal to the meatal opening and about 1 cm in length, was made. Dissection was carried out deep into the surface of corpora cavernosa and a plane between the subcutaneous tissue and corpora cavernosa was reached. A long channel between the subcutaneous tissue and corpora cavernosa was created from the para-meatus incision to the apex of glans. A rectangle, pedicle scrotal septal skin flap was elevated and tubularized into neourethra around a stenting tube. The neourethra was delivered through the subcutaneous channel and fixed at the apex of glans. The mean operation time of the first and second stages was 65 and 55 minutes, respectively. The mean age at the first and second operation was 28 and 36 months, respectively. The mean follow-up was 10 months. No fistula, glans dehiscence, urethral stricture, and meatal stenosis were recorded. One scrotal surgical wound infection occurred after second stage and healed successfully with antibiotics treatment. The overall cosmetic and functional outcomes after second stage were excellent. Two-stage repair with long channel technique was applicable for primary severe hypospadias, with excellent short-term outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Up-regulation of mismatch repair genes MSH6, PMS2 and MLH1 parallels development of genetic instability and is linked to tumor aggressiveness and early PSA recurrence in prostate cancer.

    PubMed

    Wilczak, Waldemar; Rashed, Semin; Hube-Magg, Claudia; Kluth, Martina; Simon, Ronald; Büscheck, Franziska; Clauditz, Till Sebastian; Grupp, Katharina; Minner, Sarah; Tsourlakis, Maria Christina; Möller-Koop, Christina; Graefen, Markus; Adam, Meike; Haese, Alexander; Wittmer, Corinna; Sauter, Guido; Izbicki, Jakob Robert; Huland, Hartwig; Schlomm, Thorsten; Steurer, Stefan; Krech, Till; Lebok, Patrick

    2017-01-01

    DNA mismatch repair (MMR) is integral to the maintenance of genetic stability. We aimed to evaluate the clinical impact of MMR gene expression in prostate cancer. The MMR genes MSH6, MLH1 and PMS2 were analyzed by immunohistochemistry on a tissue microarray containing 11152 prostate cancer specimens. Results were compared with ETS-related gene status and deletions of PTEN, 3p13, 5q21 and 6q15. MSH6, MLH1 and PMS2 expression was detectable in 89.5%, 85.4% and 85.0% of cancers and was particularly strong in cancers with advanced pathological tumor stage (P < 0.0001 each), high Gleason grade (P < 0.0001 each), nodal metastasis (P ≤ 0.0083) and early biochemical recurrence (P < 0.0001). High levels of MMR gene expression paralleled features of genetic instability, such as the number of genomic deletions per cancer; strong expression of all three MMR genes was found in 24%, 29%, 30%, 33% and 42% of cancers with no, one, two, three or four to five deletions (P < 0.0001). The prognostic value of the analyzed MMR genes was largely driven by the subset of cancers lacking ERG fusion (P < 0.0001), while the prognostic impact of MMR gene overexpression was only marginal in ERG-positive cancers. Multivariate analyses suggested an independent prognostic relevance of MMR genes in ERG-negative prostate cancers when compared with prognostic parameters available at the time of initial biopsy. In conclusion, MMR overexpression is common in prostate cancer and is linked to poor outcome as well as features indicating genetic instability. ERG fusion should be analyzed along with MMR gene expression in potential clinical tests. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Language-Independent and Language-Specific Aspects of Early Literacy: An Evaluation of the Common Underlying Proficiency Model.

    PubMed

    Goodrich, J Marc; Lonigan, Christopher J

    2017-08-01

    According to the common underlying proficiency model (Cummins, 1981), as children acquire academic knowledge and skills in their first language, they also acquire language-independent information about those skills that can be applied when learning a second language. The purpose of this study was to evaluate the relevance of the common underlying proficiency model for the early literacy skills of Spanish-speaking language-minority children using confirmatory factor analysis. Eight hundred fifty-eight Spanish-speaking language-minority preschoolers (mean age = 60.83 months, 50.2% female) participated in this study. Results indicated that bifactor models that consisted of language-independent as well as language-specific early literacy factors provided the best fits to the data for children's phonological awareness and print knowledge skills. Correlated factors models that only included skills specific to Spanish and English provided the best fits to the data for children's oral language skills. Children's language-independent early literacy skills were significantly related across constructs and to language-specific aspects of early literacy. Language-specific aspects of early literacy skills were significantly related within but not across languages. These findings suggest that language-minority preschoolers have a common underlying proficiency for code-related skills but not language-related skills that may allow them to transfer knowledge across languages.

  5. SOX9 expression predicts relapse of stage II colon cancer patients.

    PubMed

    Marcker Espersen, Maiken Lise; Linnemann, Dorte; Christensen, Ib Jarle; Alamili, Mahdi; Troelsen, Jesper T; Høgdall, Estrid

    2016-06-01

    The aim of this study was to investigate if the protein expression of sex-determining region y-box 9 (SOX9) in primary tumors could predict relapse of stage II colon cancer patients. One hundred forty-four patients with stage II primary colon cancer were retrospectively enrolled in the study. SOX9 expression was evaluated by immunohistochemistry, and mismatch repair status was assessed by both immunohistochemistry and promoter hypermethylation assay. High SOX9 expression at the invasive front was significantly associated with lower risk of relapse when including the SOX9 expression as a continuous variable (from low to high expression) in univariate (hazard ratio [HR], 0.73; 95% confidence interval [CI], 0.56-0.94; P = .01) and multivariate Cox proportional hazards analyses (HR, 0.75; 95% CI, 0.58-0.96; P = .02), adjusting for mismatch repair deficiency and histopathologic risk factors. Conversely, low SOX9 expression at the invasive front was significantly associated with high risk of relapse, when including SOX9 expression as a dichotomous variable, in univariate (HR, 2.32; 95% CI, 1.14-4.69; P = .02) and multivariate analyses (HR, 2.32; 95% CI, 1.14-4.69; P = .02), adjusting for histopathologic risk factors and mismatch repair deficiency. In conclusion, high levels of SOX9 of primary stage II colon tumors predict low risk of relapse, whereas low levels of SOX9 predict high risk of relapse. SOX9 may have an important value as a biomarker when evaluating risk of relapse for personalized treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Runx2 is required for early stages of endochondral bone formation but delays final stages of bone repair in Axin2-deficient mice

    PubMed Central

    McGee-Lawrence, Meghan E.; Carpio, Lomeli R.; Bradley, Elizabeth W.; Dudakovic, Amel; Lian, Jane B.; van Wijnen, Andre J.; Kakar, Sanjeev; Hsu, Wei; Westendorf, Jennifer J.

    2014-01-01

    Runx2 and Axin2 regulate skeletal development. We recently determined that Axin2 and Runx2 molecularly interact in differentiating osteoblasts to regulate intramembranous bone formation, but the relationship between these factors in endochondral bone formation was unresolved. To address this, we examined the effects of Axin2 deficiency on the cleidocranial dysplasia (CCD) phenotype of Runx2+/− mice, focusing on skeletal defects attributed to improper endochondral bone formation. Axin2 deficiency unexpectedly exacerbated calvarial components of the CCD phenotype in the Runx2+/− mice; the endocranial layer of the frontal suture, which develops by endochondral bone formation, failed to mineralize in the Axin2−/−:Runx2+/− mice, resulting in a cartilaginous, fibrotic and larger fontanel than observed in Runx2+/− mice. Transcripts associated with cartilage development (e.g., Acan, miR140) were expressed at higher levels, whereas blood vessel morphogenesis transcripts (e.g., Slit2) were suppressed in Axin2−/−:Runx2+/− calvaria. Cartilage maturation was impaired, as primary chondrocytes from double mutant mice demonstrated delayed differentiation and produced less calcified matrix in vitro. The genetic dominance of Runx2 was also reflected during endochondral fracture repair, as both Runx2+/− and double mutant Axin2−/−:Runx2+/− mice had enlarged fracture calluses at early stages of healing. However, by the end stages of fracture healing, double mutant animals diverged from the Runx2+/− mice, showing smaller calluses and increased torsional strength indicative of more rapid end stage bone formation as seen in the Axin2−/− mice. Taken together, our data demonstrate a dominant role for Runx2 in chondrocyte maturation, but implicate Axin2 as an important modulator of the terminal stages of endochondral bone formation. PMID:24973690

  7. Influence of oxidized purine processing on strand directionality of mismatch repair.

    PubMed

    Repmann, Simone; Olivera-Harris, Maite; Jiricny, Josef

    2015-04-17

    Replicative DNA polymerases are high fidelity enzymes that misincorporate nucleotides into nascent DNA with a frequency lower than [1/10(5)], and this precision is improved to about [1/10(7)] by their proofreading activity. Because this fidelity is insufficient to replicate most genomes without error, nature evolved postreplicative mismatch repair (MMR), which improves the fidelity of DNA replication by up to 3 orders of magnitude through correcting biosynthetic errors that escaped proofreading. MMR must be able to recognize non-Watson-Crick base pairs and excise the misincorporated nucleotides from the nascent DNA strand, which carries by definition the erroneous genetic information. In eukaryotes, MMR is believed to be directed to the nascent strand by preexisting discontinuities such as gaps between Okazaki fragments in the lagging strand or breaks in the leading strand generated by the mismatch-activated endonuclease of the MutL homologs PMS1 in yeast and PMS2 in vertebrates. We recently demonstrated that the eukaryotic MMR machinery can make use also of strand breaks arising during excision of uracils or ribonucleotides from DNA. We now show that intermediates of MutY homolog-dependent excision of adenines mispaired with 8-oxoguanine (G(O)) also act as MMR initiation sites in extracts of human cells or Xenopus laevis eggs. Unexpectedly, G(O)/C pairs were not processed in these extracts and failed to affect MMR directionality, but extracts supplemented with exogenous 8-oxoguanine DNA glycosylase (OGG1) did so. Because OGG1-mediated excision of G(O) might misdirect MMR to the template strand, our findings suggest that OGG1 activity might be inhibited during MMR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators.

    PubMed

    Luján, Adela M; Maciá, María D; Yang, Liang; Molin, Søren; Oliver, Antonio; Smania, Andrea M

    2011-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF) patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.

  9. Evolution and Adaptation in Pseudomonas aeruginosa Biofilms Driven by Mismatch Repair System-Deficient Mutators

    PubMed Central

    Yang, Liang; Molin, Søren; Oliver, Antonio; Smania, Andrea M.

    2011-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF) patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities. PMID:22114708

  10. Loss of DNA mismatch repair imparts a selective advantage in planarian adult stem cells.

    PubMed

    Hollenbach, Jessica P; Resch, Alissa M; Palakodeti, Dasaradhi; Graveley, Brenton R; Heinen, Christopher D

    2011-01-01

    Lynch syndrome (LS) leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR) genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis.

  11. Loss of DNA Mismatch Repair Imparts a Selective Advantage in Planarian Adult Stem Cells

    PubMed Central

    Hollenbach, Jessica P.; Resch, Alissa M.; Palakodeti, Dasaradhi; Graveley, Brenton R.; Heinen, Christopher D.

    2011-01-01

    Lynch syndrome (LS) leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR) genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis. PMID:21747960

  12. Mismatch Repair Deficiency Testing in Patients With Colorectal Cancer and Nonadherence to Testing Guidelines in Young Adults.

    PubMed

    Shaikh, Talha; Handorf, Elizabeth A; Meyer, Joshua E; Hall, Michael J; Esnaola, Nestor F

    2018-02-08

    Mismatch repair (MMR) deficiency of DNA has been observed in up to 15% of sporadic colorectal cancers (CRCs) and is a characteristic feature of Lynch syndrome, which has a higher incidence in young adults (age, <50 years) with CRC. Mismatch repair deficiency can be due to germline mutations or epigenetic inactivation, affects prognosis and response to systemic therapy, and results in unrepaired repetitive DNA sequences, which increases the risk of multiple malignant tumors. To evaluate the utilization of MMR deficiency testing in adults with CRC and analyze nonadherence to long-standing testing guidelines in younger adults using a contemporary national data set to help identify potential risk factors for nonadherence to newly implemented universal testing guidelines. Adult (age, <30 to ≥70 years) and, of these, younger adult (<30 to 49 years) patients with invasive colorectal adenocarcinoma diagnosed between 2010 and 2012 and known MMR deficiency testing status were identified using the National Cancer Database. The study was conducted from March 16, 2016, to March 1, 2017. Patient sociodemographic, facility, tumor, and treatment characteristics. The primary outcome of interest was receipt of MMR deficiency testing. Multivariable logistic regression was used to identify independent predictors of testing in adult and/or young adult patients. A total of 152 993 adults with CRC were included in the study (78 579 [51.4%] men; mean [SD] age, 66.9 [13.9] years). Of these patients, only 43 143 (28.2%) underwent MMR deficiency testing; the proportion of patients tested increased between 2010 and 2012 (22.3% vs 33.1%; P<.001). Among 17 218 younger adult patients with CRC, only 7422 (43.1%) underwent MMR deficiency testing; the proportion tested increased between 2010 and 2012 (36.1% vs 48.0%; P < .001). Irrespective of age, higher educational level (OR, 1.38; 95% CI, 1.15-1.66), later diagnosis year (OR, 1.81; 95% CI, 1.65-1.98), early stage disease (OR, 1

  13. Distinct requirements within the Msh3 nucleotide binding pocket for mismatch and double-strand break repair.

    PubMed

    Kumar, Charanya; Williams, Gregory M; Havens, Brett; Dinicola, Michelle K; Surtees, Jennifer A

    2013-06-12

    In Saccharomyces cerevisiae, repair of insertion/deletion loops is carried out by Msh2-Msh3-mediated mismatch repair (MMR). Msh2-Msh3 is also required for 3' non-homologous tail removal (3' NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, the kinetics of the two processes appear different; MMR is likely rapid in order to coordinate with the replication fork, whereas 3' NHTR has been shown to be a slower process. To understand the molecular requirements in both repair pathways, we performed an in vivo analysis of well-conserved residues in Msh3 that are hypothesized to be required for MMR and/or 3' NHTR. These residues are predicted to be involved in either communication between the DNA-binding and ATPase domains within the complex or nucleotide binding and/or exchange within Msh2-Msh3. We identified a set of aromatic residues within the FLY motif of the predicted Msh3 nucleotide binding pocket that are essential for Msh2-Msh3-mediated MMR but are largely dispensable for 3' NHTR. In contrast, mutations in other regions gave similar phenotypes in both assays. Based on these results, we suggest that the two pathways have distinct requirements with respect to the position of the bound ATP within Msh3. We propose that the differences are related, at least in part, to the kinetics of each pathway. Proper binding and positioning of ATP is required to induce rapid conformational changes at the replication fork, but is less important when more time is available for repair, as in 3' NHTR. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Distinct requirements within the Msh3 nucleotide binding pocket for mismatch and double-strand break repair

    PubMed Central

    Kumar, Charanya; Williams, Gregory M.; Havens, Brett; Dinicola, Michelle; Surtees, Jennifer A.

    2013-01-01

    In Saccharomyces cerevisiae, repair of insertion/deletion loops is carried out by Msh2-Msh3-mediated mismatch repair (MMR). Msh2-Msh3 is also required for 3’ non-homologous tail removal (3’NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, the kinetics of the two processes appear different; MMR is likely rapid in order to coordinate with the replication fork, whereas 3’ NHTR has been shown to be a slower process. To understand the molecular requirements in both repair pathways, we performed an in vivo analysis of well conserved residues in Msh3 that are hypothesized to be required for MMR and/or 3’NHTR. These residues are predicted to be involved in either communication between the DNA-binding and ATPase domains within the complex or nucleotide binding and/or exchange within Msh2-Msh3. We identified a set of aromatic residues within the FLY motif of the predicted Msh3 nucleotide binding pocket that are essential for Msh2-Msh3-mediated MMR but are largely dispensable for 3’NHTR. In contrast, mutations in other regions gave similar phenotypes in both assays. Based on these results, we suggest the two pathways have distinct requirements with respect to the position of the bound ATP within Msh3. We propose that the differences are related, at least in part, to the kinetics of each pathway. Proper binding and positioning of ATP is required to induce rapid conformational changes at the replication fork, but is less important when more time is available for repair, as in 3’ NHTR. PMID:23458407

  15. Mismatch repair status in the prediction of benefit from adjuvant fluorouracil chemotherapy in colorectal cancer

    PubMed Central

    Jover, R; Zapater, P; Castells, A; Llor, X; Andreu, M; Cubiella, J; Piñol, V; Xicola, R M; Bujanda, L; Reñé, J M; Clofent, J; Bessa, X; Morillas, J D; Nicolás‐Pérez, D; Payá, A; Alenda, C

    2006-01-01

    Aim Some retrospective studies have shown a lack of benefit of 5‐fluorouracil (5‐FU) adjuvant chemotherapy in patients with mismatch repair (MMR) deficient colorectal cancer. Our aim was to assess if this molecular marker can predict benefit from 5‐FU adjuvant chemotherapy. A second objective was to determine if MMR status influences short term survival. Methods We included 754 patients with a median follow up of 728.5 days (range 1–1097). A total of 260 patients with stage II or III tumours received 5‐FU adjuvant chemotherapy, according to standard clinical criteria and irrespective of their MMR status. A tumour was considered MMR deficient when either BAT‐26 showed instability or there was loss of MLH1 or MSH2 protein expression. Results At the end of the follow up period, 206 patients died and 120 presented with tumour recurrence. Sixty six (8.8%) patients had MMR deficient tumours. There were no significant differences in overall survival (MMR competent 72.1%; MMR deficient 78.8%; p = 0.3) or disease free survival (MMR competent 61.3%; MMR deficient 72.3%; p = 0.08). In patients with stage II and III tumours, benefit from 5‐FU adjuvant chemotherapy was restricted to patients with MMR competent tumours (overall survival: chemotherapy 87.1%; non‐chemotherapy 73.5%; log rank, p = 0.00001). Patients with MMR deficient tumours did not benefit from adjuvant chemotherapy (overall survival: chemotherapy 89.5%; non‐chemotherapy 82.4%; log rank, p = 0.4). Conclusions Benefit from 5‐FU adjuvant chemotherapy depends on the MMR status of tumours in patients with colorectal cancer. 5‐FU adjuvant chemotherapy improves survival in patients with MMR competent tumours but this benefit from chemotherapy cannot be extended to patients with MMR deficient tumours. PMID:16299036

  16. Pitfalls in molecular analysis for mismatch repair deficiency in a family with biallelic pms2 germline mutations.

    PubMed

    Leenen, C H M; Geurts-Giele, W R R; Dubbink, H J; Reddingius, R; van den Ouweland, A M; Tops, C M J; van de Klift, H M; Kuipers, E J; van Leerdam, M E; Dinjens, W N M; Wagner, A

    2011-12-01

    Heterozygous germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause Lynch syndrome. Biallelic mutations in the MMR genes are associated with a childhood cancer syndrome [constitutional mismatch repair deficiency (CMMR-D)]. This is predominantly characterized by hematological malignancies and tumors of the bowel and brain, often associated with signs of neurofibromatosis type 1 (NF1). Diagnostic strategies for selection of patients for MMR gene analysis include analysis of microsatellite instability (MSI) and immunohistochemical (IHC) analysis of MMR proteins in tumor tissue. We report the clinical characterization and molecular analyses of tumor specimens from a family with biallelic PMS2 germline mutations. This illustrates the pitfalls of present molecular screening strategies. Tumor tissues of five family members were analyzed for MSI and IHC. MSI was observed in only one of the analyzed tissues. However, IHC analysis of brain tumor tissue of the index patient and his sister showed absence of PMS2 expression, and germline mutation analyses showed biallelic mutations in PMS2: p.Ser46IIe and p.Pro246fs. The same heterozygous mutations were confirmed in the father and mother, respectively. These data support the conclusion that in case of a clinical phenotype of CMMR-D, it is advisable to routinely combine MSI analysis with IHC analysis for the expression of MMR proteins. With inconclusive or conflicting results, germline mutation analysis of the MMR genes should be considered after thorough counselling of the patients and/or their relatives. © 2011 John Wiley & Sons A/S.

  17. Mismatch Repair Balances Leading and Lagging Strand DNA Replication Fidelity

    DTIC Science & Technology

    2012-10-11

    mismatched base stacks with a conserved phenylalanine in Msh6, and/or (iii) DNA flexibility, since MutSa-bound mismatched DNA is kinked, and a...AB, Watt DL , Watts BE, et al. (2010) Genome instability due to ribonucleotide incorporation into DNA. Nat Chem Biol 6: 774–781. 24. Poloumienko A

  18. Single nucleotide polymorphisms of DNA mismatch repair genes MSH2 and MLH1 confer susceptibility to esophageal cancer.

    PubMed

    Sun, Ming-Zhong; Ju, Hui-Xiang; Zhou, Zhong-Wei; Jin, Hao; Zhu, Rong

    2014-01-01

    Defects in DNA mismatch repair genes like MSH2 and MLH1 confer increased risk of cancers. Here, single nucleotide polymorphisms (SNPs) in MSH2 and MLH1 were investigated for their potential contribution to the risk of esophageal cancer. This study recruited 614 participants from Affiliated Yancheng Hospital, School of Medicine, Southeast University, of which 289 were patients with esophageal cancer, and the remainder was healthy individuals who served as a control group. Two SNPs, MSH2 c.2063T>G and MLH1 IVS14-19A>G, were genotyped using PCR-RFLP. Statistical analysis was performed using chi-square test and logistic regression analysis. Carriers of the MSH2 c.2063G allele were at significantly higher risk for esophageal cancer compared to individuals with the TT genotype [OR = 3.36, 95% confidence interval (CI): 1.18-11.03]. The MLH1 IVS14-19A>G allele also conferred significantly increased (1.70-fold) for esophageal cancer compared to the AA genotype (OR = 1.70, 95% CI: 1.13-5.06). Further, the variant alleles interacted such that individuals with the susceptible genotypes at both MSH2 and MLH1 had a significantly exacerbated risk for esophageal cancer (OR = 12.38, 95% CI: 3.09-63.11). In brief, SNPs in the DNA mismatch repair genes MSH2 and MLH1 increase the risk of esophageal cancer. Molecular investigations are needed to uncover the mechanism behind their interaction effect.

  19. Agenesis of the corpus callosum and gray matter heterotopia in three patients with constitutional mismatch repair deficiency syndrome

    PubMed Central

    Baas, Annette F; Gabbett, Michael; Rimac, Milan; Kansikas, Minttu; Raphael, Martine; Nievelstein, Rutger AJ; Nicholls, Wayne; Offerhaus, Johan; Bodmer, Danielle; Wernstedt, Annekatrin; Krabichler, Birgit; Strasser, Ulrich; Nyström, Minna; Zschocke, Johannes; Robertson, Stephen P; van Haelst, Mieke M; Wimmer, Katharina

    2013-01-01

    Constitutional mismatch repair deficiency (CMMR-D) syndrome is a rare inherited childhood cancer predisposition caused by biallelic germline mutations in one of the four mismatch repair (MMR)-genes, MLH1, MSH2, MSH6 or PMS2. Owing to a wide tumor spectrum, the lack of specific clinical features and the overlap with other cancer predisposing syndromes, diagnosis of CMMR-D is often delayed in pediatric cancer patients. Here, we report of three new CMMR-D patients all of whom developed more than one malignancy. The common finding in these three patients is agenesis of the corpus callosum (ACC). Gray matter heterotopia is present in two patients. One of the 57 previously reported CMMR-D patients with brain tumors (therefore all likely had cerebral imaging) also had ACC. With the present report the prevalence of cerebral malformations is at least 4/60 (6.6%). This number is well above the population birth prevalence of 0.09–0.36 live births with these cerebral malformations, suggesting that ACC and heterotopia are features of CMMR-D. Therefore, the presence of cerebral malformations in pediatric cancer patients should alert to the possible diagnosis of CMMR-D. ACC and gray matter heterotopia are the first congenital malformations described to occur at higher frequency in CMMR-D patients than in the general population. Further systematic evaluations of CMMR-D patients are needed to identify possible other malformations associated with this syndrome. PMID:22692065

  20. Agenesis of the corpus callosum and gray matter heterotopia in three patients with constitutional mismatch repair deficiency syndrome.

    PubMed

    Baas, Annette F; Gabbett, Michael; Rimac, Milan; Kansikas, Minttu; Raphael, Martine; Nievelstein, Rutger Aj; Nicholls, Wayne; Offerhaus, Johan; Bodmer, Danielle; Wernstedt, Annekatrin; Krabichler, Birgit; Strasser, Ulrich; Nyström, Minna; Zschocke, Johannes; Robertson, Stephen P; van Haelst, Mieke M; Wimmer, Katharina

    2013-01-01

    Constitutional mismatch repair deficiency (CMMR-D) syndrome is a rare inherited childhood cancer predisposition caused by biallelic germline mutations in one of the four mismatch repair (MMR)-genes, MLH1, MSH2, MSH6 or PMS2. Owing to a wide tumor spectrum, the lack of specific clinical features and the overlap with other cancer predisposing syndromes, diagnosis of CMMR-D is often delayed in pediatric cancer patients. Here, we report of three new CMMR-D patients all of whom developed more than one malignancy. The common finding in these three patients is agenesis of the corpus callosum (ACC). Gray matter heterotopia is present in two patients. One of the 57 previously reported CMMR-D patients with brain tumors (therefore all likely had cerebral imaging) also had ACC. With the present report the prevalence of cerebral malformations is at least 4/60 (6.6%). This number is well above the population birth prevalence of 0.09-0.36 live births with these cerebral malformations, suggesting that ACC and heterotopia are features of CMMR-D. Therefore, the presence of cerebral malformations in pediatric cancer patients should alert to the possible diagnosis of CMMR-D. ACC and gray matter heterotopia are the first congenital malformations described to occur at higher frequency in CMMR-D patients than in the general population. Further systematic evaluations of CMMR-D patients are needed to identify possible other malformations associated with this syndrome.

  1. Guidelines for surveillance of individuals with constitutional mismatch repair-deficiency proposed by the European Consortium "Care for CMMR-D" (C4CMMR-D).

    PubMed

    Vasen, H F A; Ghorbanoghli, Z; Bourdeaut, F; Cabaret, O; Caron, O; Duval, A; Entz-Werle, N; Goldberg, Y; Ilencikova, D; Kratz, C P; Lavoine, N; Loeffen, J; Menko, F H; Muleris, M; Sebille, G; Colas, C; Burkhardt, B; Brugieres, L; Wimmer, K

    2014-05-01

    Lynch syndrome (LS) is an autosomal dominant disorder caused by a defect in one of the DNA mismatch repair genes: MLH1, MSH2, MSH6 and PMS2. In the last 15 years, an increasing number of patients have been described with biallelic mismatch repair gene mutations causing a syndrome referred to as 'constitutional mismatch repair-deficiency' (CMMR-D). The spectrum of cancers observed in this syndrome differs from that found in LS, as about half develop brain tumours, around half develop digestive tract cancers and a third develop haematological malignancies. Brain tumours and haematological malignancies are mainly diagnosed in the first decade of life, and colorectal cancer (CRC) and small bowel cancer in the second and third decades of life. Surveillance for CRC in patients with LS is very effective. Therefore, an important question is whether surveillance for the most common CMMR-D-associated cancers will also be effective. Recently, a new European consortium was established with the aim of improving care for patients with CMMR-D. At a workshop of this group held in Paris in June 2013, one of the issues addressed was the development of surveillance guidelines. In 1968, criteria were proposed by WHO that should be met prior to the implementation of screening programmes. These criteria were used to assess surveillance in CMMR-D. The evaluation showed that surveillance for CRC is the only part of the programme that largely complies with the WHO criteria. The values of all other suggested screening protocols are unknown. In particular, it is questionable whether surveillance for haematological malignancies improves the already favourable outcome for patients with these tumours. Based on the available knowledge and the discussions at the workshop, the European consortium proposed a surveillance protocol. Prospective collection of all results of the surveillance is needed to evaluate the effectiveness of the programme.

  2. Epigenetic alteration of mismatch repair genes in the population chronically exposed to arsenic in West Bengal, India.

    PubMed

    Bhattacharjee, Pritha; Sanyal, Tamalika; Bhattacharjee, Sandip; Bhattacharjee, Pritha

    2018-05-01

    Arsenic exposure and its adverse health outcome, including the association with cancer risk are well established from several studies across the globe. The present study aims to analyze the epigenetic regulation of key mismatch repair (MMR) genes in the arsenic-exposed population. A case-control study was conducted involving two hundred twenty four (N=224) arsenic exposed [with skin lesion (WSL=110) and without skin lesion (WOSL=114)] and one hundred and two (N=102) unexposed individuals. The methylation status of key MMR genes i.e. MLH1, MSH2, and PMS2 were analyzed using methylation-specific PCR (MSP). The gene expression was studied by qRTPCR. The expression of H3K36me3, which was earlier reported to be an important regulator of MMR pathway, was assessed using ELISA. Arsenic-exposed individuals showed significant promoter hypermethylation (p < 0.0001) of MLH1 and MSH2 compared to those unexposed with consequent down-regulation in their gene expression [MLH1 (p=0.001) and MSH2 (p<0.05)]. However, no significant association was found in expression and methylation of PMS2 with arsenic exposure. We found significant down-regulation of H3K36me3 in the arsenic-exposed group, most significantly in the WSL group (p<0.0001). The expression of SETD2, the methyltransferase of an H3K36me3 moiety was found to be unaltered in arsenic exposure, suggesting the involvement of other regulatory factors yet to be identified. In summary, the epigenetic repression of DNA damage repair genes due to promoter hypermethylation of MLH1 and MSH2 and inefficient recruitment of MMR complex at the site of DNA damage owing to the reduced level of H3K36me3 impairs the mismatch repair pathway that might render the arsenic-exposed individuals more susceptible towards DNA damage and associated cancer risk. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair

    PubMed Central

    Pluciennik, Anna; Dzantiev, Leonid; Iyer, Ravi R.; Constantin, Nicoleta; Kadyrov, Farid A.; Modrich, Paul

    2010-01-01

    MutLα (MLH1–PMS2) is a latent endonuclease that is activated in a mismatch-, MutSα-, proliferating cell nuclear antigen (PCNA)-, replication factor C (RFC)-, and ATP-dependent manner, with nuclease action directed to the heteroduplex strand that contains a preexisting break. RFC depletion experiments and use of linear DNAs indicate that RFC function in endonuclease activation is limited to PCNA loading. Whereas nicked circular heteroduplex DNA is a good substrate for PCNA loading and for endonuclease activation on the incised strand, covalently closed, relaxed circular DNA is a poor substrate for both reactions. However, covalently closed supercoiled or bubble-containing relaxed heteroduplexes, which do support PCNA loading, also support MutLα activation, but in this case cleavage strand bias is largely abolished. Based on these findings we suggest that PCNA has two roles in MutLα function: The clamp is required for endonuclease activation, an effect that apparently involves interaction of the two proteins, and by virtue of its loading orientation, PCNA determines the strand direction of MutLα incision. These results also provide a potential mechanism for activation of mismatch repair on nonreplicating DNA, an effect that may have implications for the somatic phase of triplet repeat expansion. PMID:20713735

  4. The distinct spectra of tumor-associated Apc mutations in mismatch repair-deficient Apc1638N mice define the roles of MSH3 and MSH6 in DNA repair and intestinal tumorigenesis.

    PubMed

    Kuraguchi, M; Yang, K; Wong, E; Avdievich, E; Fan, K; Kolodner, R D; Lipkin, M; Brown, A M; Kucherlapati, R; Edelmann, W

    2001-11-01

    In mammalian cells, mismatch recognition has been attributed to two partially redundant heterodimeric protein complexes of MutS homologues, MSH2-MSH3 and MSH2-MSH6. We have conducted a comparative analysis of Msh3 and Msh6 deficiency in mouse intestinal tumorigenesis by generating Apc1638N mice deficient in Msh3, Msh6 or both. We have found that Apc1638N mice defective in Msh6 show reduced survival and a 6-7-fold increase in intestinal tumor multiplicity. In contrast, Msh3-deficient Apc1638N mice showed no difference in survival and intestinal tumor multiplicity as compared with Apc1638N mice. However, when Msh3 deficiency is combined with Msh6 deficiency (Msh3(-/-)Msh6(-/-)Apc1638N), the survival rate of the mice was further reduced compared to Msh6(-/-)Apc(1638N) mice because of a high multiplicity of intestinal tumors at a younger age. Almost 90% of the intestinal tumors from both Msh6(-/-)Apc1638N and Msh3(-/-)Msh6(-/-)Apc1638N mice contained truncation mutations in the wild-type Apc allele. Apc mutations in Msh6(-/-)Apc1638N mice consisted predominantly of base substitutions (93%) creating stop codons, consistent with a major role for Msh6 in the repair of base-base mismatches. However, in Msh3(-/-)Msh6(-/-)Apc1638N tumors, we observed a mixture of base substitutions (46%) and frameshifts (54%), indicating that in Msh6(-/-)Apc1638N mice frameshift mutations in the Apc gene were suppressed by Msh3. Interestingly, all except one of the Apc mutations detected in mismatch repair-deficient intestinal tumors were located upstream of the third 20-amino acid beta-catenin binding repeat and before all of the Ser-Ala-Met-Pro repeats, suggesting that there is selection for loss of multiple domains involved in beta-catenin regulation. Our analysis therefore has revealed distinct mutational spectra and clarified the roles of Msh3 and Msh6 in DNA repair and intestinal tumorigenesis.

  5. DNA Mismatch Repair Deficiency in Rectal Cancer: Benchmarking Its Impact on Prognosis, Neoadjuvant Response Prediction, and Clinical Cancer Genetics

    PubMed Central

    de Rosa, Nicole; Rodriguez-Bigas, Miguel A.; Chang, George J.; Veerapong, Jula; Borras, Ester; Krishnan, Sunil; Bednarski, Brian; Messick, Craig A.; Skibber, John M.; Feig, Barry W.; Lynch, Patrick M.; Vilar, Eduardo

    2016-01-01

    Purpose DNA mismatch repair deficiency (dMMR) hallmarks consensus molecular subtype 1 of colorectal cancer. It is being routinely tested, but little is known about dMMR rectal cancers. The efficacy of novel treatment strategies cannot be established without benchmarking the outcomes of dMMR rectal cancer with current therapy. We aimed to delineate the impact of dMMR on prognosis, the predicted response to fluoropyrimidine-based neoadjuvant therapy, and implications of germline alterations in the MMR genes in rectal cancer. Methods Between 1992 and 2012, 62 patients with dMMR rectal cancers underwent multimodality therapy. Oncologic treatment and outcomes as well as clinical genetics work-up were examined. Overall and rectal cancer–specific survival were calculated by the Kaplan-Meier method. Results The median age at diagnosis was 41 years. MMR deficiency was most commonly due to alterations in MSH2 (53%) or MSH6 (23%). After a median follow-up of 6.8 years, the 5-year rectal cancer–specific survival was 100% for stage I and II, 85.1% for stage III, and 60.0% for stage IV disease. Fluoropyrimidine-based neoadjuvant chemoradiation was associated with a complete pathologic response rate of 27.6%. The extent of surgical resection was influenced by synchronous colonic disease at presentation, tumor height, clinical stage, and pelvic radiation. An informed decision for a limited resection focusing on proctectomy did not compromise overall survival. Five of the 11 (45.5%) deaths during follow-up were due to extracolorectal malignancies. Conclusion dMMR rectal cancer had excellent prognosis and pathologic response with current multimodality therapy including an individualized surgical treatment plan. Identification of a dMMR rectal cancer should trigger germline testing, followed by lifelong surveillance for both colorectal and extracolorectal malignancies. We herein provide genotype-specific outcome benchmarks for comparison with novel interventions. PMID:27432916

  6. DNA Mismatch Repair Deficiency in Rectal Cancer: Benchmarking Its Impact on Prognosis, Neoadjuvant Response Prediction, and Clinical Cancer Genetics.

    PubMed

    de Rosa, Nicole; Rodriguez-Bigas, Miguel A; Chang, George J; Veerapong, Jula; Borras, Ester; Krishnan, Sunil; Bednarski, Brian; Messick, Craig A; Skibber, John M; Feig, Barry W; Lynch, Patrick M; Vilar, Eduardo; You, Y Nancy

    2016-09-01

    DNA mismatch repair deficiency (dMMR) hallmarks consensus molecular subtype 1 of colorectal cancer. It is being routinely tested, but little is known about dMMR rectal cancers. The efficacy of novel treatment strategies cannot be established without benchmarking the outcomes of dMMR rectal cancer with current therapy. We aimed to delineate the impact of dMMR on prognosis, the predicted response to fluoropyrimidine-based neoadjuvant therapy, and implications of germline alterations in the MMR genes in rectal cancer. Between 1992 and 2012, 62 patients with dMMR rectal cancers underwent multimodality therapy. Oncologic treatment and outcomes as well as clinical genetics work-up were examined. Overall and rectal cancer-specific survival were calculated by the Kaplan-Meier method. The median age at diagnosis was 41 years. MMR deficiency was most commonly due to alterations in MSH2 (53%) or MSH6 (23%). After a median follow-up of 6.8 years, the 5-year rectal cancer-specific survival was 100% for stage I and II, 85.1% for stage III, and 60.0% for stage IV disease. Fluoropyrimidine-based neoadjuvant chemoradiation was associated with a complete pathologic response rate of 27.6%. The extent of surgical resection was influenced by synchronous colonic disease at presentation, tumor height, clinical stage, and pelvic radiation. An informed decision for a limited resection focusing on proctectomy did not compromise overall survival. Five of the 11 (45.5%) deaths during follow-up were due to extracolorectal malignancies. dMMR rectal cancer had excellent prognosis and pathologic response with current multimodality therapy including an individualized surgical treatment plan. Identification of a dMMR rectal cancer should trigger germline testing, followed by lifelong surveillance for both colorectal and extracolorectal malignancies. We herein provide genotype-specific outcome benchmarks for comparison with novel interventions. © 2016 by American Society of Clinical Oncology.

  7. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations.

    PubMed

    Deihimi, Safoora; Lev, Avital; Slifker, Michael; Shagisultanova, Elena; Xu, Qifang; Jung, Kyungsuk; Vijayvergia, Namrata; Ross, Eric A; Xiu, Joanne; Swensen, Jeffrey; Gatalica, Zoran; Andrake, Mark; Dunbrack, Roland L; El-Deiry, Wafik S

    2017-06-20

    Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P < 0.0001) in BRCA2. Of 1104 profiled CRCs from a second cohort (COSMIC), MSH2/MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P < 0.0000001). BRCA2 mutations in MSH2/MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P < 0.0000001). Approximately 15% of EGFR mutations found may be actionable through TKI therapy, including N700D, G719D, T725M, T790M, and E884K. NTRK gene mutations were identified in MSH2/MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.

  8. An Unusual Case of Constitutional Mismatch Repair Deficiency Syndrome With Anaplastic Ganglioglioma, Colonic Adenocarcinoma, Osteosarcoma, Acute Myeloid Leukemia, and Signs of Neurofibromatosis Type 1: Case Report.

    PubMed

    Daou, Badih; Zanello, Marc; Varlet, Pascale; Brugieres, Laurence; Jabbour, Pascal; Caron, Olivier; Lavoine, Noémie; Dhermain, Frederic; Willekens, Christophe; Beuvon, Frederic; Malka, David; Lechapt-Zalcmann, Emmanuèle; Abi Lahoud, Georges

    2015-07-01

    Constitutional mismatch repair deficiency (CMMRD) syndrome is a disorder with recessive inheritance caused by biallelic mismatch repair gene mutations, in which mismatch repair defects are inherited from both parents. This syndrome is associated with multiple cancers occurring in childhood. The most common tumors observed with CMMRD include brain tumors, digestive tract tumors, and hematological malignancies. The aim of this study was to report new phenotypic expressions of CMMRD syndrome and add new insight to the existing knowledge about this disease. A review of the literature was conducted and recommendation for surveillance and follow-up in patients with CMMRD are proposed. We report for the first time in the literature, the case of a 22-year-old female patient who was diagnosed with CMMRD syndrome, with the development of 2 unusual tumors: an anaplastic ganglioglioma and an osteosarcoma. She presented initially with an anaplastic ganglioglioma and later developed several malignancies including colonic adenocarcinoma, osteosarcoma, and acute myeloid leukemia. The patient had an atypical course of her disease with development of the initial malignancy at an older age and a remarkably long survival period despite developing aggressive tumors. Many aspects of this disease are still unknown. We identified a case of CMMRD in a patient presenting with an anaplastic ganglioglioma, who underwent successful surgical resection, chemotherapy, and radiotherapy and has had one of the longest survival periods known with this disease. This case broadens the tumor spectrum observed with CMMRD syndrome with anaplastic ganglioglioma and osteosarcoma as new phenotypic expressions of this genetic defect.

  9. The mismatch repair system protects against intergenerational GAA repeat instability in a Friedreich ataxia mouse model.

    PubMed

    Ezzatizadeh, Vahid; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Sandi, Madhavi; Al-Mahdawi, Sahar; Te Riele, Hein; Pook, Mark A

    2012-04-01

    Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a dynamic GAA repeat expansion mutation within intron 1 of the FXN gene. Studies of mouse models for other trinucleotide repeat (TNR) disorders have revealed an important role of mismatch repair (MMR) proteins in TNR instability. To explore the potential role of MMR proteins on intergenerational GAA repeat instability in FRDA, we have analyzed the transmission of unstable GAA repeat expansions from FXN transgenic mice which have been crossed with mice that are deficient for Msh2, Msh3, Msh6 or Pms2. We find in all cases that absence of parental MMR protein not only maintains transmission of GAA expansions and contractions, but also increases GAA repeat mutability (expansions and/or contractions) in the offspring. This indicates that Msh2, Msh3, Msh6 and Pms2 proteins are not the cause of intergenerational GAA expansions or contractions, but act in their canonical MMR capacity to protect against GAA repeat instability. We further identified differential modes of action for the four MMR proteins. Thus, Msh2 and Msh3 protect against GAA repeat contractions, while Msh6 protects against both GAA repeat expansions and contractions, and Pms2 protects against GAA repeat expansions and also promotes contractions. Furthermore, we detected enhanced occupancy of Msh2 and Msh3 proteins downstream of the FXN expanded GAA repeat, suggesting a model in which Msh2/3 dimers are recruited to this region to repair mismatches that would otherwise produce intergenerational GAA contractions. These findings reveal substantial differences in the intergenerational dynamics of expanded GAA repeat sequences compared with expanded CAG/CTG repeats, where Msh2 and Msh3 are thought to actively promote repeat expansions. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. The mismatch repair system protects against intergenerational GAA repeat instability in a Friedreich ataxia mouse model

    PubMed Central

    Ezzatizadeh, Vahid; Pinto, Ricardo Mouro; Sandi, Chiranjeevi; Sandi, Madhavi; Al-Mahdawi, Sahar; te Riele, Hein; Pook, Mark A.

    2013-01-01

    Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by a dynamic GAA repeat expansion mutation within intron 1 of the FXN gene. Studies of mouse models for other trinucleotide repeat (TNR) disorders have revealed an important role of mismatch repair (MMR) proteins in TNR instability. To explore the potential role of MMR proteins on intergenerational GAA repeat instability in FRDA, we have analyzed the transmission of unstable GAA repeat expansions from FXN transgenic mice which have been crossed with mice that are deficient for Msh2, Msh3, Msh6 or Pms2. We find in all cases that absence of parental MMR protein not only maintains transmission of GAA expansions and contractions, but also increases GAA repeat mutability (expansions and/or contractions) in the offspring. This indicates that Msh2, Msh3, Msh6 and Pms2 proteins are not the cause of intergenerational GAA expansions or contractions, but act in their canonical MMR capacity to protect against GAA repeat instability. We further identified differential modes of action for the four MMR proteins. Thus, Msh2 and Msh3 protect against GAA repeat contractions, while Msh6 protects against both GAA repeat expansions and contractions, and Pms2 protects against GAA repeat expansions and also promotes contractions. Furthermore, we detected enhanced occupancy of Msh2 and Msh3 proteins downstream of the FXN expanded GAA repeat, suggesting a model in which Msh2/3 dimers are recruited to this region to repair mismatches that would otherwise produce intergenerational GAA contractions. These findings reveal substantial differences in the intergenerational dynamics of expanded GAA repeat sequences compared with expanded CAG/CTG repeats, where Msh2 and Msh3 are thought to actively promote repeat expansions. PMID:22289650

  11. The mouse mismatch repair protein, MSH3, is a nucleoplasmic protein that aggregates into denser nuclear bodies under conditions of stress.

    PubMed

    Holt, Ian; Thanh Lam, Le; Tomé, Stéphanie; Wansink, Derick G; Te Riele, Hein; Gourdon, Geneviève; Morris, Glenn E

    2011-06-01

    The mismatch repair protein, MSH3, together with MSH2, forms the MutSβ heterodimer which recognizes and repairs base pair mismatches and larger insertion/deletion loops in DNA. Lack of specific antibodies against mouse MSH3 has hampered studies of its expression and localization. Mouse MSH3 is not immunogenic in normal mice. This problem was overcome by immunizing msh3-knockout mice and generating a panel of ten monoclonal antibodies, two of which localize MSH3 specifically in cultured mouse cells and bind to an epitope containing amino-acids 33-37. The panel also includes two antibodies that recognise both mouse and human MSH3 and bind to a conserved epitope containing amino-acids 187-194. The mouse MSH3-specific antibodies show that MSH3 is a nuclear protein with a finely-granular nucleoplasmic distribution, largely absent from areas of condensed heterochromatin. Specificity of the localization was demonstrated by absence of immunostaining in a cell line from the msh3-knockout mouse. Furthermore, we show for the first time that stress treatment of mouse cells with ethanol or hydrogen peroxide caused the re-distribution of MSH3 into nuclear bodies containing the proliferating cell nuclear antigen (PCNA), a known binding partner of MutSβ. Copyright © 2011 Wiley-Liss, Inc.

  12. A Synthetic Lethal Screen Identifies DNA Repair Pathways that Sensitize Cancer Cells to Combined ATR Inhibition and Cisplatin Treatments

    PubMed Central

    Mohni, Kareem N.; Thompson, Petria S.; Luzwick, Jessica W.; Glick, Gloria G.; Pendleton, Christopher S.; Lehmann, Brian D.; Pietenpol, Jennifer A.; Cortez, David

    2015-01-01

    The DNA damage response kinase ATR may be a useful cancer therapeutic target. ATR inhibition synergizes with loss of ERCC1, ATM, XRCC1 and DNA damaging chemotherapy agents. Clinical trials have begun using ATR inhibitors in combination with cisplatin. Here we report the first synthetic lethality screen with a combination treatment of an ATR inhibitor (ATRi) and cisplatin. Combination treatment with ATRi/cisplatin is synthetically lethal with loss of the TLS polymerase ζ and 53BP1. Other DNA repair pathways including homologous recombination and mismatch repair do not exhibit synthetic lethal interactions with ATRi/cisplatin, even though loss of some of these repair pathways sensitizes cells to cisplatin as a single-agent. We also report that ATRi strongly synergizes with PARP inhibition, even in homologous recombination-proficient backgrounds. Lastly, ATR inhibitors were able to resensitize cisplatin-resistant cell lines to cisplatin. These data provide a comprehensive analysis of DNA repair pathways that exhibit synthetic lethality with ATR inhibitors when combined with cisplatin chemotherapy, and will help guide patient selection strategies as ATR inhibitors progress into the cancer clinic. PMID:25965342

  13. Natural mismatch repair mutations mediate phenotypic diversity and drug resistance in Cryptococcus deuterogattii.

    PubMed

    Billmyre, R Blake; Clancey, Shelly Applen; Heitman, Joseph

    2017-09-26

    Pathogenic microbes confront an evolutionary conflict between the pressure to maintain genome stability and the need to adapt to mounting external stresses. Bacteria often respond with elevated mutation rates, but little evidence exists of stable eukaryotic hypermutators in nature. Whole genome resequencing of the human fungal pathogen Cryptococcus deuterogattii identified an outbreak lineage characterized by a nonsense mutation in the mismatch repair component MSH2. This defect results in a moderate mutation rate increase in typical genes, and a larger increase in genes containing homopolymer runs. This allows facile inactivation of genes with coding homopolymer runs including FRR1 , which encodes the target of the immunosuppresive antifungal drugs FK506 and rapamycin. Our study identifies a eukaryotic hypermutator lineage spread over two continents and suggests that pathogenic eukaryotic microbes may experience similar selection pressures on mutation rate as bacterial pathogens, particularly during long periods of clonal growth or while expanding into new environments.

  14. DNA Excision Repair at Telomeres

    PubMed Central

    Jia, Pingping; Her, Chengtao; Chai, Weihang

    2015-01-01

    DNA damage is caused by either endogenous cellular metabolic processes such as hydrolysis, oxidation, alkylation, and DNA base mismatches, or exogenous sources including ultraviolet (UV) light, ionizing radiation, and chemical agents. Damaged DNA that is not properly repaired can lead to genomic instability, driving tumorigenesis. To protect genomic stability, mammalian cells have evolved highly conserved DNA repair mechanisms to remove and repair DNA lesions. Telomeres are composed of long tandem TTAGGG repeats located at the ends of chromosomes. Maintenance of functional telomeres is critical for preventing genome instability. The telomeric sequence possesses unique features that predispose telomeres to a variety of DNA damage induced by environmental genotoxins. This review briefly describes the relevance of excision repair pathways in telomere maintenance, with the focus on base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). By summarizing current knowledge on excision repair of telomere damage and outlining many unanswered questions, it is our hope to stimulate further interest in a better understanding of excision repair processes at telomeres and in how these processes contribute to telomere maintenance. PMID:26422132

  15. Association Between Increased Vascular Density and Loss of Protective RAS in Early-stage NPDR

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Raghunandan, Sneha; Vyas, Ruchi J.; Vu, Amanda C.; Bryant, Douglas; Yaqian, Duan; Knecht, Brenda E.; Grant, Maria B.; Chalam, K. V.; Parsons-Wingerter, Patricia

    2016-01-01

    Our hypothesis predicts that retinal blood vessels increase in density during early-stage progression to moderate nonproliferative diabetic retinopathy (NPDR). The renin-angiotensin system (RAS) is implicated in the pathogenesis of DR and in the function of circulating angiogenic cells (CACs), a critical bone marrow-derived population that is instrumental in vascular repair.

  16. HNPCC-like cancer predisposition in mice through simultaneous loss of Msh3 and Msh6 mismatch-repair protein functions.

    PubMed

    de Wind, N; Dekker, M; Claij, N; Jansen, L; van Klink, Y; Radman, M; Riggins, G; van der Valk, M; van't Wout, K; te Riele, H

    1999-11-01

    Cancer predisposition in hereditary non-polyposis colon cancer (HNPCC) is caused by defects in DNA mismatch repair (MMR). Mismatch recognition is attributed to two heterodimeric protein complexes: MutSalpha (refs 2, 3, 4, 5), a dimer of MutS homologues MSH2 and MSH6; and MutSbeta (refs 2,7), a dimer of MSH2 and MSH3. These complexes have specific and redundant mismatch recognition capacity. Whereas MSH2 deficiency ablates the activity of both dimers, causing strong cancer predisposition in mice and men, loss of MSH3 or MSH6 (also known as GTBP) function causes a partial MMR defect. This may explain the rarity of MSH6 and absence of MSH3 germline mutations in HNPCC families. To test this, we have inactivated the mouse genes Msh3 (formerly Rep3 ) and Msh6 (formerly Gtmbp). Msh6-deficient mice were prone to cancer; most animals developed lymphomas or epithelial tumours originating from the skin and uterus but only rarely from the intestine. Msh3 deficiency did not cause cancer predisposition, but in an Msh6 -deficient background, loss of Msh3 accelerated intestinal tumorigenesis. Lymphomagenesis was not affected. Furthermore, mismatch-directed anti-recombination and sensitivity to methylating agents required Msh2 and Msh6, but not Msh3. Thus, loss of MMR functions specific to Msh2/Msh6 is sufficient for lymphoma development in mice, whereas predisposition to intestinal cancer requires loss of function of both Msh2/Msh6 and Msh2/Msh3.

  17. Single-molecule multiparameter fluorescence spectroscopy reveals directional MutS binding to mismatched bases in DNA

    PubMed Central

    Cristóvão, Michele; Sisamakis, Evangelos; Hingorani, Manju M.; Marx, Andreas D.; Jung, Caroline P.; Rothwell, Paul J.; Seidel, Claus A. M.; Friedhoff, Peter

    2012-01-01

    Mismatch repair (MMR) corrects replication errors such as mismatched bases and loops in DNA. The evolutionarily conserved dimeric MMR protein MutS recognizes mismatches by stacking a phenylalanine of one subunit against one base of the mismatched pair. In all crystal structures of G:T mismatch-bound MutS, phenylalanine is stacked against thymine. To explore whether these structures reflect directional mismatch recognition by MutS, we monitored the orientation of Escherichia coli MutS binding to mismatches by FRET and anisotropy with steady state, pre-steady state and single-molecule multiparameter fluorescence measurements in a solution. The results confirm that specifically bound MutS bends DNA at the mismatch. We found additional MutS–mismatch complexes with distinct conformations that may have functional relevance in MMR. The analysis of individual binding events reveal significant bias in MutS orientation on asymmetric mismatches (G:T versus T:G, A:C versus C:A), but not on symmetric mismatches (G:G). When MutS is blocked from binding a mismatch in the preferred orientation by positioning asymmetric mismatches near the ends of linear DNA substrates, its ability to authorize subsequent steps of MMR, such as MutH endonuclease activation, is almost abolished. These findings shed light on prerequisites for MutS interactions with other MMR proteins for repairing the appropriate DNA strand. PMID:22367846

  18. DNA mismatch repair complex MutSβ promotes GAA·TTC repeat expansion in human cells.

    PubMed

    Halabi, Anasheh; Ditch, Scott; Wang, Jeffrey; Grabczyk, Ed

    2012-08-24

    While DNA repair has been implicated in CAG·CTG repeat expansion, its role in the GAA·TTC expansion of Friedreich ataxia (FRDA) is less clear. We have developed a human cellular model that recapitulates the DNA repeat expansion found in FRDA patient tissues. In this model, GAA·TTC repeats expand incrementally and continuously. We have previously shown that the expansion rate is linked to transcription within the repeats. Our working hypothesis is that structures formed within the GAA·TTC repeat during transcription attract DNA repair enzymes that then facilitate the expansion process. MutSβ, a heterodimer of MSH2 and MSH3, is known to have a role in CAG·CTG repeat expansion. We now show that shRNA knockdown of either MSH2 or MSH3 slowed GAA·TTC expansion in our system. We further characterized the role of MutSβ in GAA·TTC expansion using a functional assay in primary FRDA patient-derived fibroblasts. These fibroblasts have no known propensity for instability in their native state. Ectopic expression of MSH2 and MSH3 induced GAA·TTC repeat expansion in the native FXN gene. MSH2 is central to mismatch repair and its absence or reduction causes a predisposition to cancer. Thus, despite its essential role in GAA·TTC expansion, MSH2 is not an attractive therapeutic target. The absence or reduction of MSH3 is not strongly associated with cancer predisposition. Accordingly, MSH3 has been suggested as a therapeutic target for CAG·CTG repeat expansion disorders. Our results suggest that MSH3 may also serve as a therapeutic target to slow the expansion of GAA·TTC repeats in the future.

  19. DNA Mismatch Repair Complex MutSβ Promotes GAA·TTC Repeat Expansion in Human Cells*

    PubMed Central

    Halabi, Anasheh; Ditch, Scott; Wang, Jeffrey; Grabczyk, Ed

    2012-01-01

    While DNA repair has been implicated in CAG·CTG repeat expansion, its role in the GAA·TTC expansion of Friedreich ataxia (FRDA) is less clear. We have developed a human cellular model that recapitulates the DNA repeat expansion found in FRDA patient tissues. In this model, GAA·TTC repeats expand incrementally and continuously. We have previously shown that the expansion rate is linked to transcription within the repeats. Our working hypothesis is that structures formed within the GAA·TTC repeat during transcription attract DNA repair enzymes that then facilitate the expansion process. MutSβ, a heterodimer of MSH2 and MSH3, is known to have a role in CAG·CTG repeat expansion. We now show that shRNA knockdown of either MSH2 or MSH3 slowed GAA·TTC expansion in our system. We further characterized the role of MutSβ in GAA·TTC expansion using a functional assay in primary FRDA patient-derived fibroblasts. These fibroblasts have no known propensity for instability in their native state. Ectopic expression of MSH2 and MSH3 induced GAA·TTC repeat expansion in the native FXN gene. MSH2 is central to mismatch repair and its absence or reduction causes a predisposition to cancer. Thus, despite its essential role in GAA·TTC expansion, MSH2 is not an attractive therapeutic target. The absence or reduction of MSH3 is not strongly associated with cancer predisposition. Accordingly, MSH3 has been suggested as a therapeutic target for CAG·CTG repeat expansion disorders. Our results suggest that MSH3 may also serve as a therapeutic target to slow the expansion of GAA·TTC repeats in the future. PMID:22787155

  20. Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae.

    PubMed

    Saparbaev, M; Prakash, L; Prakash, S

    1996-03-01

    The RAD1 and RAD10 genes of Saccharomyces cerevisiae are required for nucleotide excision repair and they also act in mitotic recombination. The Rad1-Rad10 complex has a single-stranded DNA endonuclease activity. Here, we show that the mismatch repair genes MSH2 and MSH3 function in mitotic recombination. For both his3 and his4 duplications, and for homologous integration of a linear DNA fragment into the genome, the msh3 delta mutation has an effect on recombination similar to that of the rad1 delta and rad10 delta mutations. The msh2 delta mutation also reduces the rate of recombination of the his3 duplication and lowers the incidence of homologous integration of a linear DNA fragment. Epistasis analyses indicate that MSH2 and MSH3 function in the RAD1-RAD10 recombination pathway, and studies presented here suggest an involvement of the RAD1-RAD10 pathway in reciprocal recombination. The possible roles of Msh2, Msh3, Rad1, and Rad10 proteins in genetic recombination are discussed. Coupling of mismatch binding proteins with the recombinational machinery could be important for ensuring genetic fidelity in the recombination process.

  1. Restoration of G1 chemo/radioresistance and double-strand-break repair proficiency by wild-type but not endonuclease-deficient Artemis.

    PubMed

    Mohapatra, Susovan; Kawahara, Misako; Khan, Imran S; Yannone, Steven M; Povirk, Lawrence F

    2011-08-01

    Deficiency in Artemis is associated with lack of V(D)J recombination, sensitivity to radiation and radiomimetic drugs, and failure to repair a subset of DNA double-strand breaks (DSBs). Artemis harbors an endonuclease activity that trims both 5'- and 3'-ends of DSBs. To examine whether endonucleolytic trimming of terminally blocked DSBs by Artemis is a biologically relevant function, Artemis-deficient fibroblasts were stably complemented with either wild-type Artemis or an endonuclease-deficient D165N mutant. Wild-type Artemis completely restored resistance to γ-rays, bleomycin and neocarzinostatin, and also restored DSB-repair proficiency in G0/G1 phase as measured by pulsed-field gel electrophoresis and repair focus resolution. In contrast, cells expressing the D165N mutant, even at very high levels, remained as chemo/radiosensitive and repair deficient as the parental cells, as evidenced by persistent γ-H2AX, 53BP1 and Mre11 foci that slowly increased in size and ultimately became juxtaposed with promyelocytic leukemia protein nuclear bodies. In normal fibroblasts, overexpression of wild-type Artemis increased radioresistance, while D165N overexpression conferred partial repair deficiency following high-dose radiation. Restoration of chemo/radioresistance by wild-type, but not D165N Artemis suggests that the lack of endonucleolytic trimming of DNA ends is the principal cause of sensitivity to double-strand cleaving agents in Artemis-deficient cells.

  2. Mismatch Repair Proteins and Microsatellite Instability in Colorectal Carcinoma (MLH1, MSH2, MSH6 and PMS2): Histopathological and Immunohistochemical Study.

    PubMed

    Ismael, Nour El Hoda S; El Sheikh, Samar A; Talaat, Suzan M; Salem, Eman M

    2017-03-15

    Colorectal cancer (CRC) is one of the most common cancers worldwide. Microsatellite instability (MSI) is detected in about 15% of all colorectal cancers. CRC with MSI has particular characteristics such as improved survival rates and better prognosis. They also have a distinct sensitivity to the action of chemotherapy. The aim of the study was to detect microsatellite instability in a cohort of colorectal cancer Egyptian patients using the immunohistochemical expression of mismatch repair proteins (MLH1, MSH2, MSH6 and PMS2). Cases were divided into Microsatellite stable (MSS), Microsatellite unstable low (MSI-L) and Microsatellite unstable high (MSI-H). This Microsatellite stability status was correlated with different clinicopathological parameters. There was a statistically significant correlation between the age of cases, tumor site & grade and the microsatellite stability status. There was no statistically significant correlation between the gender of patients, tumor subtype, stage, mucoid change, necrosis, tumor borders, lymphocytic response, lymphovascular emboli and the microsatellite stability status. Testing for MSI should be done for all colorectal cancer patients, especially those younger than 50 years old, right sided and high-grade CRCs.

  3. The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans.

    PubMed

    Manhart, Carol M; Ni, Xiaodan; White, Martin A; Ortega, Joaquin; Surtees, Jennifer A; Alani, Eric

    2017-04-01

    Crossing over between homologs is initiated in meiotic prophase by the formation of DNA double-strand breaks that occur throughout the genome. In the major interference-responsive crossover pathway in baker's yeast, these breaks are resected to form 3' single-strand tails that participate in a homology search, ultimately forming double Holliday junctions (dHJs) that primarily include both homologs. These dHJs are resolved by endonuclease activity to form exclusively crossovers, which are critical for proper homolog segregation in Meiosis I. Recent genetic, biochemical, and molecular studies in yeast are consistent with the hypothesis of Mlh1-Mlh3 DNA mismatch repair complex acting as the major endonuclease activity that resolves dHJs into crossovers. However, the mechanism by which the Mlh1-Mlh3 endonuclease is activated is unknown. Here, we provide evidence that Mlh1-Mlh3 does not behave like a structure-specific endonuclease but forms polymers required to generate nicks in DNA. This conclusion is supported by DNA binding studies performed with different-sized substrates that contain or lack polymerization barriers and endonuclease assays performed with varying ratios of endonuclease-deficient and endonuclease-proficient Mlh1-Mlh3. In addition, Mlh1-Mlh3 can generate religatable double-strand breaks and form an active nucleoprotein complex that can nick DNA substrates in trans. Together these observations argue that Mlh1-Mlh3 may not act like a canonical, RuvC-like Holliday junction resolvase and support a novel model in which Mlh1-Mlh3 is loaded onto DNA to form an activated polymer that cleaves DNA.

  4. E. coli mismatch repair enhances AT-to-GC mutagenesis caused by alkylating agents.

    PubMed

    Nakano, Kota; Yamada, Yoko; Takahashi, Eizo; Arimoto, Sakae; Okamoto, Keinosuke; Negishi, Kazuo; Negishi, Tomoe

    2017-03-01

    Alkylating agents are known to induce the formation of O 6 -alkylguanine (O 6 -alkG) and O 4 -alkylthymine (O 4 -alkT) in DNA. These lesions have been widely investigated as major sources of mutations. We previously showed that mismatch repair (MMR) facilitates the suppression of GC-to-AT mutations caused by O 6 -methylguanine more efficiently than the suppression of GC-to-AT mutations caused by O 6 -ethylguanine. However, the manner by which O 4 -alkyT lesions are repaired remains unclear. In the present study, we investigated the repair pathway involved in the repair of O 4 -alkT. The E. coli CC106 strain, which harbors Δprolac in its genomic DNA and carries the F'CC106 episome, can be used to detect AT-to-GC reverse-mutation of the gene encoding β-galactosidase. Such AT-to-GC mutations should be induced through the formation of O 4 -alkT at AT base pairs. As expected, an O 6 -alkylguanine-DNA alkyltransferase (AGT) -deficient CC106 strain, which is defective in both ada and agt genes, exhibited elevated mutant frequencies in the presence of methylating agents and ethylating agents. However, in the UvrA-deficient strain, the methylating agents were less mutagenic than in wild-type, while ethylating agents were more mutagenic than in wild-type, as observed with agents that induce O 6 -alkylguanine modifications. Unexpectedly, the mutant frequencies decreased in a MutS-deficient strain, and a similar tendency was observed in MutL- or MutH-deficient strains. Thus, MMR appears to promote mutation at AT base pairs. Similar results were obtained in experiments employing double-mutant strains harboring defects in both MMR and AGT, or MMR and NER. E. coli MMR enhances AT-to-GC mutagenesis, such as that caused by O 4 -alkylthymine. We hypothesize that the MutS protein recognizes the O 4 -alkT:A base pair more efficiently than O 4 -alkT:G. Such a distinction would result in misincorporation of G at the O 4 -alkT site, followed by higher mutation frequencies in wild

  5. DNA mismatch repair deficiency and hereditary syndromes in Latino patients with colorectal cancer.

    PubMed

    Ricker, Charité N; Hanna, Diana L; Peng, Cheng; Nguyen, Nathalie T; Stern, Mariana C; Schmit, Stephanie L; Idos, Greg E; Patel, Ravi; Tsai, Steven; Ramirez, Veronica; Lin, Sonia; Shamasunadara, Vinay; Barzi, Afsaneh; Lenz, Heinz-Josef; Figueiredo, Jane C

    2017-10-01

    The landscape of hereditary syndromes and clinicopathologic characteristics among US Latino/Hispanic individuals with colorectal cancer (CRC) remains poorly understood. A total of 265 patients with CRC who were enrolled in the Hispanic Colorectal Cancer Study were included in the current study. Information regarding CRC risk factors was elicited through interviews, and treatment and survival data were abstracted from clinical charts. Tumor studies and germline genetic testing results were collected from medical records or performed using standard molecular methods. The mean age of the patients at the time of diagnosis was 53.7 years (standard deviation, 10.3 years), and 48.3% were female. Overall, 21.2% of patients reported a first-degree or second-degree relative with CRC; 3.4% met Amsterdam I/II criteria. With respect to Bethesda guidelines, 38.5% of patients met at least 1 criterion. Of the 161 individuals who had immunohistochemistry and/or microsatellite instability testing performed, 21 (13.0%) had mismatch repair (MMR)-deficient (dMMR) tumors. dMMR tumors were associated with female sex (61.9%), earlier age at the time of diagnosis (50.4 ± 12.4 years), proximal location (61.9%), and first-degree (23.8%) or second-degree (9.5%) family history of CRC. Among individuals with dMMR tumors, 13 (61.9%) had a germline MMR mutation (MutL homolog 1 [MLH1] in 6 patients; MutS homolog 2 [MSH2] in 4 patients; MutS homolog 6 [MHS6] in 2 patients; and PMS1 homolog 2, mismatch repair system component [PMS2] in 1 patient). The authors identified 2 additional MLH1 mutation carriers by genetic testing who had not received immunohistochemistry/microsatellite instability testing. In total, 5.7% of the entire cohort were confirmed to have Lynch syndrome. In addition, 6 individuals (2.3%) had a polyposis phenotype. The percentage of dMMR tumors noted among Latino individuals (13%) is similar to estimates in non-Hispanic white individuals. In the current study, the majority of

  6. Wounded cells drive rapid epidermal repair in the early Drosophila embryo

    PubMed Central

    Fernandez-Gonzalez, Rodrigo; Zallen, Jennifer A.

    2013-01-01

    Epithelial tissues are protective barriers that display a remarkable ability to repair wounds. Wound repair is often associated with an accumulation of actin and nonmuscle myosin II around the wound, forming a purse string. The role of actomyosin networks in generating mechanical force during wound repair is not well understood. Here we investigate the mechanisms of force generation during wound repair in the epidermis of early and late Drosophila embryos. We find that wound closure is faster in early embryos, where, in addition to a purse string around the wound, actomyosin networks at the medial cortex of the wounded cells contribute to rapid wound repair. Laser ablation demonstrates that both medial and purse-string actomyosin networks generate contractile force. Quantitative analysis of protein localization dynamics during wound closure indicates that the rapid contraction of medial actomyosin structures during wound repair in early embryos involves disassembly of the actomyosin network. By contrast, actomyosin purse strings in late embryos contract more slowly in a mechanism that involves network condensation. We propose that the combined action of two force-generating structures—a medial actomyosin network and an actomyosin purse string—contributes to the increased efficiency of wound repair in the early embryo. PMID:23985320

  7. Combined mismatch repair and POLE/POLD1 defects explain unresolved suspected Lynch syndrome cancers

    PubMed Central

    Jansen, Anne ML; van Wezel, Tom; van den Akker, Brendy EWM; Ventayol Garcia, Marina; Ruano, Dina; Tops, Carli MJ; Wagner, Anja; Letteboer, Tom GW; Gómez-García, Encarna B; Devilee, Peter; Wijnen, Juul T; Hes, Frederik J; Morreau, Hans

    2016-01-01

    Many suspected Lynch Syndrome (sLS) patients who lack mismatch repair (MMR) germline gene variants and MLH1 or MSH2 hypermethylation are currently explained by somatic MMR gene variants or, occasionally, by germline POLE variants. To further investigate unexplained sLS patients, we analyzed leukocyte and tumor DNA of 62 sLS patients using gene panel sequencing including the POLE, POLD1 and MMR genes. Forty tumors showed either one, two or more somatic MMR variants predicted to affect function. Nine sLS tumors showed a likely ultramutated phenotype and were found to carry germline (n=2) or somatic variants (n=7) in the POLE/POLD1 exonuclease domain (EDM). Six of these POLE/POLD1-EDM mutated tumors also carried somatic MMR variants. Our findings suggest that faulty proofreading may result in loss of MMR and thereby in microsatellite instability. PMID:26648449

  8. Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination.

    PubMed

    Surtees, Jennifer A; Alani, Eric

    2006-07-14

    Genetic studies in Saccharomyces cerevisiae predict that the mismatch repair (MMR) factor MSH2-MSH3 binds and stabilizes branched recombination intermediates that form during single strand annealing and gene conversion. To test this model, we constructed a series of DNA substrates that are predicted to form during these recombination events. We show in an electrophoretic mobility shift assay that S. cerevisiae MSH2-MSH3 specifically binds branched DNA substrates containing 3' single-stranded DNA and that ATP stimulates its release from these substrates. Chemical footprinting analyses indicate that MSH2-MSH3 specifically binds at the double-strand/single-strand junction of branched substrates, alters its conformation and opens up the junction. Therefore, MSH2-MSH3 binding to its substrates creates a unique nucleoprotein structure that may signal downstream steps in repair that include interactions with MMR and nucleotide excision repair factors.

  9. Nurturing Reading Proficiency of Pupils through Phonics: Entrepreneurial Opportunities for Early Childhood Educators in Nigeria

    ERIC Educational Resources Information Center

    Shoaga, Opeyemi; Akintola, Olugbenga Adeyanju; Okpor, Christiana Isiwat

    2017-01-01

    Nurturing reading proficiency among the Nigerian children has become pivotal to a functional and development-oriented education. The place of phonics in achieving this strategic goal seems unquestionable with attendant entrepreneurial opportunities for early childhood educators. This study therefore, investigates the influence of phonics in…

  10. LORETA current source density for duration mismatch negativity and neuropsychological assessment in early schizophrenia.

    PubMed

    Miyanishi, Tomohiro; Sumiyoshi, Tomiki; Higuchi, Yuko; Seo, Tomonori; Suzuki, Michio

    2013-01-01

    Patients with schizophrenia elicit cognitive decline from the early phase of the illness. Mismatch negativity (MMN) has been shown to be associated with cognitive function. We investigated the current source density of duration mismatch negativity (dMMN), by using low-resolution brain electromagnetic tomography (LORETA), and neuropsychological performance in subjects with early schizophrenia. Data were obtained from 20 patients meeting DSM-IV criteria for schizophrenia or schizophreniform disorder, and 20 healthy control (HC) subjects. An auditory odd-ball paradigm was used to measure dMMN. Neuropsychological performance was evaluated by the brief assessment of cognition in schizophrenia Japanese version (BACS-J). Patients showed smaller dMMN amplitudes than those in the HC subjects. LORETA current density for dMMN was significantly lower in patients compared to HC subjects, especially in the temporal lobes. dMMN current density in the frontal lobe was positively correlated with working memory performance in patients. This is the first study to identify brain regions showing smaller dMMN current density in early schizophrenia. Further, poor working memory was associated with decreased dMMN current density in patients. These results are likely to help understand the neural basis for cognitive impairment of schizophrenia.

  11. Teachers' perceptions of students' mathematics proficiency may exacerbate early gender gaps in achievement.

    PubMed

    Robinson-Cimpian, Joseph P; Lubienski, Sarah Theule; Ganley, Colleen M; Copur-Gencturk, Yasemin

    2014-04-01

    A recent wave of research suggests that teachers overrate the performance of girls relative to boys and hold more positive attitudes toward girls' mathematics abilities. However, these prior estimates of teachers' supposed female bias are potentially misleading because these estimates (and teachers themselves) confound achievement with teachers' perceptions of behavior and effort. Using data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-1999 (ECLS-K), Study 1 demonstrates that teachers actually rate boys' mathematics proficiency higher than that of girls when conditioning on both teachers' ratings of behavior and approaches to learning as well as past and current test scores. In other words, on average girls are only perceived to be as mathematically competent as similarly achieving boys when the girls are also seen as working harder, behaving better, and being more eager to learn. Study 2 uses mediation analysis with an instrumental-variables approach, as well as a matching strategy, to explore the extent to which this conditional underrating of girls may explain the widening gender gap in mathematics in early elementary school. We find robust evidence suggesting that underrating girls' mathematics proficiency accounts for a substantial portion of the development of the mathematics achievement gap between similarly performing and behaving boys and girls in the early grades. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  12. Early Development of Emerging and English-Proficient Bilingual Children at School Entry in an Australian Population Cohort

    ERIC Educational Resources Information Center

    Goldfeld, Sharon; O'Connor, Meredith; Mithen, Johanna; Sayers, Mary; Brinkman, Sally

    2014-01-01

    Children who enter school with limited proficiency in the language of instruction face a range of challenges in negotiating this new context, yet limited data have been available to describe the early developmental outcomes of this subpopulation in the Australian context. The Australian Early Development Index (AEDI) is a teacher-rated checklist…

  13. Inactivation of the Mismatch Repair System in Pseudomonas aeruginosa Attenuates Virulence but Favors Persistence of Oropharyngeal Colonization in Cystic Fibrosis Mice▿

    PubMed Central

    Mena, Ana; Maciá, María D.; Borrell, Nuria; Moya, Bartolomé; de Francisco, Teresa; Pérez, José L.; Oliver, Antonio

    2007-01-01

    The inactivation of the mismatch repair (MMR) system of Pseudomonas aeruginosa modestly reduced in vitro fitness, attenuated virulence in murine models of acute systemic and respiratory infections, and decreased the initial oropharyngeal colonization potential. In contrast, the inactivation of the MMR system favored long-term persistence of oropharyngeal colonization in cystic fibrosis mice. These results may help in understanding the reasons for the low and high prevalences, respectively, of hypermutable P. aeruginosa strains in acute and chronic infections. PMID:17307847

  14. Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 complexes display distinct requirements for DNA binding Domain I in mismatch recognition.

    PubMed Central

    Lee, Susan D.; Surtees, Jennifer A.; Alani, Eric

    2007-01-01

    In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. In this study we showed that the msh2Δ1 mutation, containing a complete deletion of the conserved mismatch recognition Domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Δ1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of Domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that Domain I in MSH2 contributed a non-specific DNA binding activity while Domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA-binding. These observations reveal distinct requirements for the MSH2 DNA binding Domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding. PMID:17157869

  15. Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 complexes display distinct requirements for DNA binding domain I in mismatch recognition.

    PubMed

    Lee, Susan D; Surtees, Jennifer A; Alani, Eric

    2007-02-09

    In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. Here, we show that the msh2Delta1 mutation, containing a complete deletion of the conserved mismatch recognition domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Delta1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that domain I in MSH2 contributed a non-specific DNA binding activity while domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA binding. These observations reveal distinct requirements for the MSH2 DNA binding domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding.

  16. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers.

    PubMed

    Shlien, Adam; Campbell, Brittany B; de Borja, Richard; Alexandrov, Ludmil B; Merico, Daniele; Wedge, David; Van Loo, Peter; Tarpey, Patrick S; Coupland, Paul; Behjati, Sam; Pollett, Aaron; Lipman, Tatiana; Heidari, Abolfazl; Deshmukh, Shriya; Avitzur, Na'ama; Meier, Bettina; Gerstung, Moritz; Hong, Ye; Merino, Diana M; Ramakrishna, Manasa; Remke, Marc; Arnold, Roland; Panigrahi, Gagan B; Thakkar, Neha P; Hodel, Karl P; Henninger, Erin E; Göksenin, A Yasemin; Bakry, Doua; Charames, George S; Druker, Harriet; Lerner-Ellis, Jordan; Mistry, Matthew; Dvir, Rina; Grant, Ronald; Elhasid, Ronit; Farah, Roula; Taylor, Glenn P; Nathan, Paul C; Alexander, Sarah; Ben-Shachar, Shay; Ling, Simon C; Gallinger, Steven; Constantini, Shlomi; Dirks, Peter; Huang, Annie; Scherer, Stephen W; Grundy, Richard G; Durno, Carol; Aronson, Melyssa; Gartner, Anton; Meyn, M Stephen; Taylor, Michael D; Pursell, Zachary F; Pearson, Christopher E; Malkin, David; Futreal, P Andrew; Stratton, Michael R; Bouffet, Eric; Hawkins, Cynthia; Campbell, Peter J; Tabori, Uri

    2015-03-01

    DNA replication-associated mutations are repaired by two components: polymerase proofreading and mismatch repair. The mutation consequences of disruption to both repair components in humans are not well studied. We sequenced cancer genomes from children with inherited biallelic mismatch repair deficiency (bMMRD). High-grade bMMRD brain tumors exhibited massive numbers of substitution mutations (>250/Mb), which was greater than all childhood and most cancers (>7,000 analyzed). All ultra-hypermutated bMMRD cancers acquired early somatic driver mutations in DNA polymerase ɛ or δ. The ensuing mutation signatures and numbers are unique and diagnostic of childhood germ-line bMMRD (P < 10(-13)). Sequential tumor biopsy analysis revealed that bMMRD/polymerase-mutant cancers rapidly amass an excess of simultaneous mutations (∼600 mutations/cell division), reaching but not exceeding ∼20,000 exonic mutations in <6 months. This implies a threshold compatible with cancer-cell survival. We suggest a new mechanism of cancer progression in which mutations develop in a rapid burst after ablation of replication repair.

  17. Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saparbaev, M.; Prakash, L.; Prakash, S.

    1996-03-01

    The RAD1 and RAD10 genes of Saccharomyces cerevisiae are required for nucleotide excision repair and they also act in mitotic recombination. The Rad1-Rad10 complex has a single-stranded DNA endonuclease activity. Here, we show that the mismatch repair genes MSH2 and MSH3 function in mitotic recombination. For both his3 and his4 duplications, and for homologous integration of a linear DNA fragment into the genome, the msh3-A mutation has an effect on recombination similar to that of the rad1{Delta} and rad10{Delta} mutations. The msh2{Delta} mutation also reduces the rate of recombination of the his3 duplication and lowers the incidence of homologous integrationmore » of a linear DNA fragment. Epistasis analyses indicate that MSH2 and MSH3 function in the RAD1-RAD10 recombination pathway, and studies presented here suggest an involvement of the RAM-RAD10 pathway in reciprocal recombination. The possible roles of Msh2, Msh3, Rad1, and Rad10 proteins in genetic recombination are discussed. Coupling of mismatch binding proteins with the recombinational machinery could be important for ensuring genetic fidelity in the recombination process. 59 refs., 2 figs., 7 tabs.« less

  18. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome.

    PubMed

    van der Klift, Heleen M; Mensenkamp, Arjen R; Drost, Mark; Bik, Elsa C; Vos, Yvonne J; Gille, Hans J J P; Redeker, Bert E J W; Tiersma, Yvonne; Zonneveld, José B M; García, Encarna Gómez; Letteboer, Tom G W; Olderode-Berends, Maran J W; van Hest, Liselotte P; van Os, Theo A; Verhoef, Senno; Wagner, Anja; van Asperen, Christi J; Ten Broeke, Sanne W; Hes, Frederik J; de Wind, Niels; Nielsen, Maartje; Devilee, Peter; Ligtenberg, Marjolijn J L; Wijnen, Juul T; Tops, Carli M J

    2016-11-01

    Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are applied to overcome problematic PMS2 mutation analysis due to the presence of pseudogenes and frequent gene conversion events. Here, we determined PMS2 mutation detection yield and mutation spectrum in a nationwide cohort of 396 probands. Furthermore, we studied concordance between tumor IHC/MSI (immunohistochemistry/microsatellite instability) profile and mutation carrier state. Overall, we found 52 different pathogenic PMS2 variants explaining 121 Lynch syndrome and nine CMMRD patients. In vitro mismatch repair assays suggested pathogenicity for three missense variants. Ninety-one PMS2 mutation carriers (70%) showed isolated loss of PMS2 in their tumors, for 31 (24%) no or inconclusive IHC was available, and eight carriers (6%) showed discordant IHC (presence of PMS2 or loss of both MLH1 and PMS2). Ten cases with isolated PMS2 loss (10%; 10/97) harbored MLH1 mutations. We confirmed that recently improved mutation analysis provides a high yield of PMS2 mutations in patients with isolated loss of PMS2 expression. Application of universal tumor prescreening methods will however miss some PMS2 germline mutation carriers. © 2016 WILEY PERIODICALS, INC.

  19. LORETA Current Source Density for Duration Mismatch Negativity and Neuropsychological Assessment in Early Schizophrenia

    PubMed Central

    Miyanishi, Tomohiro; Sumiyoshi, Tomiki; Higuchi, Yuko; Seo, Tomonori; Suzuki, Michio

    2013-01-01

    Introduction Patients with schizophrenia elicit cognitive decline from the early phase of the illness. Mismatch negativity (MMN) has been shown to be associated with cognitive function. We investigated the current source density of duration mismatch negativity (dMMN), by using low-resolution brain electromagnetic tomography (LORETA), and neuropsychological performance in subjects with early schizophrenia. Methods Data were obtained from 20 patients meeting DSM-IV criteria for schizophrenia or schizophreniform disorder, and 20 healthy control (HC) subjects. An auditory odd-ball paradigm was used to measure dMMN. Neuropsychological performance was evaluated by the brief assessment of cognition in schizophrenia Japanese version (BACS-J). Results Patients showed smaller dMMN amplitudes than those in the HC subjects. LORETA current density for dMMN was significantly lower in patients compared to HC subjects, especially in the temporal lobes. dMMN current density in the frontal lobe was positively correlated with working memory performance in patients. Conclusions This is the first study to identify brain regions showing smaller dMMN current density in early schizophrenia. Further, poor working memory was associated with decreased dMMN current density in patients. These results are likely to help understand the neural basis for cognitive impairment of schizophrenia. PMID:23577204

  20. The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans

    PubMed Central

    Manhart, Carol M.; Ni, Xiaodan; White, Martin A.; Ortega, Joaquin; Surtees, Jennifer A.

    2017-01-01

    Crossing over between homologs is initiated in meiotic prophase by the formation of DNA double-strand breaks that occur throughout the genome. In the major interference-responsive crossover pathway in baker’s yeast, these breaks are resected to form 3' single-strand tails that participate in a homology search, ultimately forming double Holliday junctions (dHJs) that primarily include both homologs. These dHJs are resolved by endonuclease activity to form exclusively crossovers, which are critical for proper homolog segregation in Meiosis I. Recent genetic, biochemical, and molecular studies in yeast are consistent with the hypothesis of Mlh1-Mlh3 DNA mismatch repair complex acting as the major endonuclease activity that resolves dHJs into crossovers. However, the mechanism by which the Mlh1-Mlh3 endonuclease is activated is unknown. Here, we provide evidence that Mlh1-Mlh3 does not behave like a structure-specific endonuclease but forms polymers required to generate nicks in DNA. This conclusion is supported by DNA binding studies performed with different-sized substrates that contain or lack polymerization barriers and endonuclease assays performed with varying ratios of endonuclease-deficient and endonuclease-proficient Mlh1-Mlh3. In addition, Mlh1-Mlh3 can generate religatable double-strand breaks and form an active nucleoprotein complex that can nick DNA substrates in trans. Together these observations argue that Mlh1-Mlh3 may not act like a canonical, RuvC-like Holliday junction resolvase and support a novel model in which Mlh1-Mlh3 is loaded onto DNA to form an activated polymer that cleaves DNA. PMID:28453523

  1. One-stage dorsal lingual mucosal graft urethroplasty for the treatment of failed hypospadias repair.

    PubMed

    Li, Hong-Bin; Xu, Yue-Min; Fu, Qiang; Sa, Ying-Long; Zhang, Jiong; Xie, Hong

    2016-01-01

    The aim of this study was to retrospectively investigate the outcomes of patients who underwent one-stage onlay or inlay urethroplasty using a lingual mucosal graft (LMG) after failed hypospadias repairs. Inclusion criteria included a history of failed hypospadias repair, insufficiency of the local skin that made a reoperation with skin flaps difficult, and necessity of an oral mucosal graft urethroplasty. Patients were excluded if they had undergone a failed hypospadias repair using the foreskin or a multistage repair urethroplasty. Between January 2008 and December 2012, 110 patients with failed hypospadias repairs were treated in our center. Of these patients, 56 underwent a one-stage onlay or inlay urethroplasty using LMG. The median age was 21.8 years (range: 4-45 years). Of the 56 patients, one-stage onlay LMG urethroplasty was performed in 42 patients (group 1), and a modified Snodgrass technique using one-stage inlay LMG urethroplasty was performed in 14 (group 2). The median LMG urethroplasty length was 5.6 ± 1.6 cm (range: 4-13 cm). The mean follow-up was 34.7 months (range: 10-58 months), and complications developed in 12 of 56 patients (21.4%), including urethrocutaneous fistulas in 7 (6 in group 1, 1 in group 2) and neourethral strictures in 5 (4 in group 1, 1 in group 2). The total success rate was 78.6%. Our survey suggests that one-stage onlay or inlay urethroplasty with LMG may be an effective option to treat the patients with less available skin after failed hypospadias repairs; LMG harvesting is easy and safe, irrespective of the patient's age.

  2. Enhanced spontaneous DNA twisting/bending fluctuations unveiled by fluorescence lifetime distributions promote mismatch recognition by the Rad4 nucleotide excision repair complex

    PubMed Central

    Chakraborty, Sagnik; Steinbach, Peter J; Paul, Debamita; Mu, Hong; Broyde, Suse

    2018-01-01

    Abstract Rad4/XPC recognizes diverse DNA lesions including ultraviolet-photolesions and carcinogen-DNA adducts, initiating nucleotide excision repair. Studies have suggested that Rad4/XPC senses lesion-induced helix-destabilization to flip out nucleotides from damaged DNA sites. However, characterizing how DNA deformability and/or distortions impact recognition has been challenging. Here, using fluorescence lifetime measurements empowered by a maximum entropy algorithm, we mapped the conformational heterogeneities of artificially destabilized mismatched DNA substrates of varying Rad4-binding specificities. The conformational distributions, as probed by FRET between a cytosine-analog pair exquisitely sensitive to DNA twisting/bending, reveal a direct connection between intrinsic DNA deformability and Rad4 recognition. High-specificity CCC/CCC mismatch, free in solution, sampled a strikingly broad range of conformations from B-DNA-like to highly distorted conformations that resembled those observed with Rad4 bound; the extent of these distortions increased with bound Rad4 and with temperature. Conversely, the non-specific TAT/TAT mismatch had a homogeneous, B-DNA-like conformation. Molecular dynamics simulations also revealed a wide distribution of conformations for CCC/CCC, complementing experimental findings. We propose that intrinsic deformability promotes Rad4 damage recognition, perhaps by stalling a diffusing protein and/or facilitating ‘conformational capture’ of pre-distorted damaged sites. Surprisingly, even mismatched DNA specifically bound to Rad4 remains highly dynamic, a feature that may reflect the versatility of Rad4/XPC to recognize many structurally dissimilar lesions. PMID:29267981

  3. Connections between constitutional mismatch repair deficiency syndrome and neurofibromatosis type 1.

    PubMed

    Wimmer, K; Rosenbaum, T; Messiaen, L

    2017-04-01

    Constitutional mismatch repair (MMR) deficiency (CMMRD) is a rare childhood cancer susceptibility syndrome resulting from biallelic germline loss-of-function mutations in one of the MMR genes. Individuals with CMMRD have high risk to develop a broad spectrum of malignancies and frequently display features reminiscent of neurofibromatosis type 1 (NF1). Evaluation of the clinical findings of genetically proven CMMRD patients shows that not only multiple café-au-lait macules but also any of the diagnostic features of NF1 may be present in a CMMRD patient. This phenotypic overlap may lead to misdiagnosis of CMMRD patients as having NF1, which impedes adequate management of the patients and their families. The spectrum of CMMRD-associated childhood malignancies includes high-grade glioma, acute myeloid leukaemia or rhabdomyosarcoma, also reported as associated with NF1. Reported associations between NF1 and these malignancies are to a large extent based on studies that neither proved the presence of an NF1 germline mutation nor ruled-out CMMRD in the affected. Hence, these associations are challenged by our current knowledge of the phenotypic overlap between NF1 and CMMRD and should be re-evaluated in future studies. Recent advances in the diagnostics of CMMRD should render it possible to definitely state or refute this diagnosis in these individuals. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. C-Terminal Fluorescent Labeling Impairs Functionality of DNA Mismatch Repair Proteins

    PubMed Central

    Brieger, Angela; Plotz, Guido; Hinrichsen, Inga; Passmann, Sandra; Adam, Ronja; Zeuzem, Stefan

    2012-01-01

    The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency. PMID:22348133

  5. Early versus delayed rehabilitation following arthroscopic rotator cuff repair: A systematic review.

    PubMed

    Gallagher, Brian P; Bishop, Meghan E; Tjoumakaris, Fotios P; Freedman, Kevin B

    2015-05-01

    Early passive range of motion (ROM) following arthroscopic cuff repair is thought to decrease postoperative stiffness and improve functionality. However, early aggressive rehabilitation may compromise repair integrity. Our purpose was to perform a systematic review to determine if there are differences between early and delayed rehabilitation after arthroscopic rotator cuff repair in terms of clinical outcomes and healing. We performed a literature search with the terms 'arthroscopic rotator cuff', 'immobilization', 'early', 'delayed', 'late', and 'rehabilitation' using PubMed, Cochrane Central Register of Controlled Trials, and EMBASE. Selection criteria included: level I/II evidence ≤ 6 months in duration, comparing early versus delayed rehabilitation following arthroscopic repair. Data regarding demographics, sample sizes, duration, cuff pathology, surgery, rehabilitation, functional outcomes, pain, ROM and anatomic assessment of healing were analyzed. PRIMSA criteria were followed. We identified six articles matching our criteria. Three reported significantly increased functional scores within the first 3-6 months with early rehabilitation compared to the delayed group, only one of which continued to observe a difference at a final follow-up of 15 months. Four articles showed improved ROM in the first 3-6 months post-operatively with early rehabilitation. One noted transient differences in pain scores. Only one study noted significant differences in ROM at final follow-up. No study reported any significant difference in rates of rotator cuff re-tear. However, two studies noted a trend towards increased re-tear with early rehabilitation that did not reach significance. This was more pronounced in studies including medium-large tears. Early rehabilitation after arthroscopic cuff repair is associated with some initial improvements in ROM and function. Ultimately, similar clinical and anatomical outcomes between groups existed at 1 year. While there was no

  6. Clustering of Lynch syndrome malignancies with no evidence for a role of DNA Mismatch Repair

    PubMed Central

    Case, Ashley S.; Zighelboim, Israel; Mutch, David G.; Babb, Sheri A.; Schmidt, Amy P.; Whelan, Alison J.; Thibodeau, Stephen N.; Goodfellow, Paul J.

    2010-01-01

    Objectives We ascertained a large kindred with an excess of Lynch syndrome-associated cancers. Our objective was to determine if a defect in one of the DNA mismatch repair (DMMR) genes was the probable cause of cancer susceptibility as microsatellite instability (MSI) and immunohistochemical (IHC) analysis of the probands' tumors did not provide a clear indication. Methods A detailed history and review of medical records was undertaken to construct a four-generation pedigree. Blood samples were obtained for analysis of germline DNA. Polymorphic repeats from the MLH1, MSH2, MSH6, and PMS2 loci were genotyped and the co-segregation of markers and disease was assessed. DMMR gene expression for all available tumors was evaluated by IHC. Combined bisulfite restriction analysis (COBRA) of MLH1 was utilized to test for germline epimutation. Results Four gynecologic carcinomas, 3 colon carcinomas, and 13 cases of adenomatous polyps were identified. The family met Amsterdam II criteria. The mean age of cancer diagnosis in the kindred was 63 years (range 44-82). DNA marker analyses excluded linkage to MLH1, MSH2, MSH6, and PMS2. Furthermore, MSI and IHC analysis of tumors did not suggest a role for DMMR. Methylation of the MLH1 promoter was identified in the peripheral blood leukocytes (PBLs) of a family member with an early onset colon cancer. Conclusions We identified a large family with multiple Lynch malignancies and no evidence for an inherited defect in DMMR. This family represents an important but poorly understood form of autosomal dominant inherited cancer susceptibility. Aberrant MLH1 promoter methylation in normal tissues may be a marker for cancer susceptibility in families such as this. PMID:18022218

  7. Constitutional Mismatch Repair Deficiency in Israel: High Proportion of Founder Mutations in MMR Genes and Consanguinity.

    PubMed

    Baris, Hagit N; Barnes-Kedar, Inbal; Toledano, Helen; Halpern, Marisa; Hershkovitz, Dov; Lossos, Alexander; Lerer, Israela; Peretz, Tamar; Kariv, Revital; Cohen, Shlomi; Half, Elizabeth E; Magal, Nurit; Drasinover, Valerie; Wimmer, Katharina; Goldberg, Yael; Bercovich, Dani; Levi, Zohar

    2016-03-01

    Heterozygous germline mutations in any of the mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2, cause Lynch syndrome (LS), an autosomal dominant cancer predisposition syndrome conferring a high risk of colorectal, endometrial, and other cancers in adulthood. Offspring of couples where both spouses have LS have a 1:4 risk of inheriting biallelic MMR gene mutations. These cause constitutional MMR deficiency (CMMRD) syndrome, a severe recessively inherited cancer syndrome with a broad tumor spectrum including mainly hematological malignancies, brain tumors, and colon cancer in childhood and adolescence. Many CMMRD children also present with café au lait spots and axillary freckling mimicking neurofibromatosis type 1. We describe our experience in seven CMMRD families demonstrating the role and importance of founder mutations and consanguinity on its prevalence. Clinical presentations included brain tumors, colon cancer, lymphoma, and small bowel cancer. In children from two nonconsanguineous Ashkenazi Jewish (AJ) families, the common Ashkenazi founder mutations were detected; these were homozygous in one family and compound heterozygous in the other. In four consanguineous families of various ancestries, different homozygous mutations were identified. In a nonconsanguineous Caucasus/AJ family, lack of PMS2 was demonstrated in tumor and normal tissues; however, mutations were not identified. CMMRD is rare, but, especially in areas where founder mutations for LS and consanguinity are common, pediatricians should be aware of it since they are the first to encounter these children. Early diagnosis will enable tailored cancer surveillance in the entire family and a discussion regarding prenatal genetic diagnosis. © 2015 Wiley Periodicals, Inc.

  8. Association between mismatch repair gene MSH3 codons 1036 and 222 polymorphisms and sporadic prostate cancer in the Iranian population.

    PubMed

    Jafary, Fariba; Salehi, Mansoor; Sedghi, Maryam; Nouri, Nayereh; Jafary, Farzaneh; Sadeghi, Farzaneh; Motamedi, Shima; Talebi, Maede

    2012-01-01

    The mismatch repair system (MMR) is a post-replicative DNA repair mechanism whose defects can lead to cancer. The MSH3 protein is an essential component of the system. We postulated that MSH3 gene polymorphisms might therefore be associated with prostate cancer (PC). We studied MSH3 codon 222 and MSH3 codon 1036 polymorphisms in a group of Iranian sporadic PC patients. A total of 60 controls and 18 patients were assessed using the polymerase chain reaction and single strand conformational polymorphism. For comparing the genotype frequencies of patients and controls the chi-square test was applied. The obtained result indicated that there was significantly association between G/A genotype of MSH3 codon 222 and G/G genotype of MSH3 codon 1036 with an increased PC risk (P=0.012 and P=0.02 respectively). Our results demonstrated that MSH3 codon 222 and MSH3 codon 1036 polymorphisms may be risk factors for sporadic prostate cancer in the Iranian population.

  9. Early neurophysiological indices of second language morphosyntax learning

    PubMed Central

    Hanna, Jeff; Shtyrov, Yury; Williams, John; Pulvermüller, Friedemann

    2016-01-01

    Humans show variable degrees of success in acquiring a second language (L2). In many cases, morphological and syntactic knowledge remain deficient, although some learners succeed in reaching nativelike levels, even if they begin acquiring their L2 relatively late. In this study, we use psycholinguistic, online language proficiency tests and a neurophysiological index of syntactic processing, the syntactic mismatch negativity (sMMN) to local agreement violations, to compare behavioural and neurophysiological markers of grammar processing between native speakers (NS) of English and non-native speakers (NNS). Variable grammar proficiency was measured by psycholinguistic tests. When NS heard ungrammatical word sequences lacking agreement between subject and verb (e.g. *we kicks), the MMN was enhanced compared with syntactically legal sentences (e.g. he kicks). More proficient NNS also showed this difference, but less proficient NNS did not. The main cortical sources of the MMN responses were localised in bilateral superior temporal areas, where, crucially, source strength of grammar-related neuronal activity correlated significantly with grammatical proficiency of individual L2 speakers as revealed by the psycholinguistic tests. As our results show similar, early MMN indices to morpho-syntactic agreement violations among both native speakers and non-native speakers with high grammar proficiency, they appear consistent with the use of similar brain mechanisms for at least certain aspects of L1 and L2 grammars. PMID:26752451

  10. [Promoter hypermethylation status of the mismatch repair gene hMLH1 in patients with sporadic renal cell carcinoma].

    PubMed

    Salinas-Sánchez, Antonio S; Rubio-del-Campo, Antonio; Sánchez-Sánchez, Francisco; Giménez-Bachs, José M; Donate-Moreno, María J; García-Olmo, Dolores C; Escribano-Martínez, Julio

    2006-04-01

    Epigenetic inactivation is a gene function abnormality that produces no changes in the DNA sequence, with the most frequent epigenetic alteration being hypermethylation of CpG islands in the promoter regions of the genes. Based on recent indications of a potential relationship between mismatch repair genes and renal cell carcinoma (RCC), we were interested in investigating the existence of promoter hypermethylation of the hMLH1 gene in tumor DNA samples from patients with sporadic RCC. Sixty-five tumor tissue specimens were collected consecutively. The DNA was first obtained and purified, then digested with the restriction enzymes Hpa II and Msp I, followed by polimerase chain reaction amplification of 3 promoter regions of the hMLH1 gene, agarose gel electrophoresis, and densitometric analysis of the images of the amplified bands. Mean patient age was 63.7 years. The most frequent cell type was clear cell carcinoma (67.7%). 73.9% of tumors were diagnosed in stages below pT2, 9.3% had gland involvement and 20%, distant metastasis. No somatic hypermethylation was detected in the promoter region of the hMLH1 gene in any of the patients studied. Our data indicate that promoter hypermethylation of the hMLH1 gene is not implicated in the pathogenesis of sporadic RCC, and therefore the existence of another type of mutation, microsatellite instability and/or loss of heterozygosity should be examined to determine the possible role of this gene in sporadic RCC.

  11. Epigenetic silencing of MLH1 in endometrial cancers is associated with larger tumor volume, increased rate of lymph node positivity and reduced recurrence-free survival.

    PubMed

    Cosgrove, Casey M; Cohn, David E; Hampel, Heather; Frankel, Wendy L; Jones, Dan; McElroy, Joseph P; Suarez, Adrian A; Zhao, Weiqiang; Chen, Wei; Salani, Ritu; Copeland, Larry J; O'Malley, David M; Fowler, Jeffrey M; Yilmaz, Ahmet; Chassen, Alexis S; Pearlman, Rachel; Goodfellow, Paul J; Backes, Floor J

    2017-09-01

    To determine the relationship between mismatch repair (MMR) classification and clinicopathologic features including tumor volume, and explore outcomes by MMR class in a contemporary cohort. Single institution cohort evaluating MMR classification for endometrial cancers (EC). MMR immunohistochemistry (IHC)±microsatellite instability (MSI) testing and reflex MLH1 methylation testing was performed. Tumors with MMR abnormalities by IHC or MSI and MLH1 methylation were classified as epigenetic MMR deficiency while those without MLH1 methylation were classified as probable MMR mutations. Clinicopathologic characteristics were analyzed. 466 endometrial cancers were classified; 75% as MMR proficient, 20% epigenetic MMR defects, and 5% as probable MMR mutations. Epigenetic MMR defects were associated with advanced stage, higher grade, presence of lymphovascular space invasion, and older age. MMR class was significantly associated with tumor volume, an association not previously reported. The epigenetic MMR defect tumors median volume was 10,220mm 3 compared to 3321mm 3 and 2,846mm 3 , for MMR proficient and probable MMR mutations respectively (P<0.0001). Higher tumor volume was associated with lymph node involvement. Endometrioid EC cases with epigenetic MMR defects had significantly reduced recurrence-free survival (RFS). Among advanced stage (III/IV) endometrioid EC the epigenetic MMR defect group was more likely to recur compared to the MMR proficient group (47.7% vs 3.4%) despite receiving similar adjuvant therapy. In contrast, there was no difference in the number of early stage recurrences for the different MMR classes. MMR testing that includes MLH1 methylation analysis defines a subset of tumors that have worse prognostic features and reduced RFS. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Identification of a novel PMS2 alteration c.505C>G (R169G) in trans with a PMS2 pathogenic mutation in a patient with constitutional mismatch repair deficiency.

    PubMed

    Mork, Maureen E; Borras, Ester; Taggart, Melissa W; Cuddy, Amanda; Bannon, Sarah A; You, Y Nancy; Lynch, Patrick M; Ramirez, Pedro T; Rodriguez-Bigas, Miguel A; Vilar, Eduardo

    2016-10-01

    Constitutional mismatch repair deficiency syndrome (CMMRD) is a rare autosomal recessive predisposition to colorectal polyposis and other malignancies, often childhood-onset, that is caused by biallelic inheritance of mutations in the same mismatch repair gene. Here, we describe a patient with a clinical diagnosis of CMMRD based on colorectal polyposis and young-onset endometrial cancer who was identified to have two alterations in trans in PMS2: one known pathogenic mutation (c.1831insA; p.Ile611Asnfs*2) and one novel variant of uncertain significance (c.505C>G; p.Arg169Glu), a missense alteration. We describe the clinical and molecular features in the patient harboring this novel alteration c.505C>G, who meets clinical criteria for CMMRD and exhibits molecular evidence supporting a diagnosis of CMMRD. Although experimental validation is needed to confirm its pathogenicity, PMS2 c.505C>G likely has functional consequences that contributes to our patient's phenotype based on the patient's clinical presentation, tumor studies, and bioinformatics analysis.

  13. Mismatch DNA repair mRNA expression profiles in oral melanin pigmentation lesion and hamartomatous polyp of a child with Peutz-Jeghers syndrome.

    PubMed

    Vageli, Dimitra P; Doukas, Sotirios G; Markou, Andreas

    2013-10-01

    Mismatch DNA repair (MMR) mRNA expression analysis was performed on a biopsy of oral mucosa melanin pigmentation lesion, a hamartomatous polyp and peripheral blood derived from a 12-year-old child with Peutz-Jeghers Syndrome (PJS). We present a deficient MMR system, in a PJS patient, which demonstrated low mRNA levels of hMSH6 and hPMS2 and an increasing MMR deficiency from the non-dysplastic lesion to hamartomatous polyp of PJS with a high risk of cancer. Copyright © 2013 Wiley Periodicals, Inc.

  14. Management of Proximal Hypospadias with 2-Stage Repair: 20 Year Experience

    PubMed Central

    McNamara, Erin R.; Schaeffer, Anthony J.; Logvinenko, Tanya; Seager, Catherine; Rosoklija, Ilina; Nelson, Caleb P.; Retik, Alan B.; Diamond, David A.; Cendron, Marc

    2015-01-01

    Purpose To describe our experience with 2-stage proximal hypospadias repair and report outcomes. To look at patient and procedure characteristics associated with surgical complications. Materials and Methods This was a retrospective study of patients with proximal hypospadias who underwent staged repair from January 1993–December 2012. Demographics, preoperative management, and operative technique were reviewed. Complications included glans dehiscence, fistula, meatal stenosis, non-meatal stricture, urethrocele/diverticula, and residual chordee. Cox proportional hazards model was used to evaluate the associations between the time to surgery for complications and patient- and procedure level factors. Results There were 134 patients. The median age at time of first stage surgery was 8.8 months. The median age at time of second stage surgery was 17.1 months and median time between surgeries was 8 months. The median follow-up was 3.8 years. Complications were seen in 71/134 (53%), the most common being fistula in 39/134 (29.1%). Reoperation was performed in 66/134 (49%) patients. Median time from urethroplasty to surgery for complication was 14.9 months. Use of preoperative testosterone decreased risk of having surgery for complication by 27% (hazard ratio (HR)=0.73 95%CI:0.55–0.98, p=0.04). In addition, patients that identified as Hispanic had an increased risk of having surgery for complications (HR=2.40 95%CI:1.28–4.53, p=0.01). Conclusions This study reviews the largest cohort of patients undergoing 2-stage hypospadias repair at a single institution. Complications and reoperation are close to 50% in the setting of complex genital reconstruction. PMID:25963188

  15. Rapid Identification of Chemoresistance Mechanisms Using Yeast DNA Mismatch Repair Mutants

    PubMed Central

    Ojini, Irene; Gammie, Alison

    2015-01-01

    Resistance to cancer therapy is a major obstacle in the long-term treatment of cancer. A greater understanding of drug resistance mechanisms will ultimately lead to the development of effective therapeutic strategies to prevent resistance from occurring. Here, we exploit the mutator phenotype of mismatch repair defective yeast cells combined with whole genome sequencing to identify drug resistance mutations in key pathways involved in the development of chemoresistance. The utility of this approach was demonstrated via the identification of the known CAN1 and TOP1 resistance targets for two compounds, canavanine and camptothecin, respectively. We have also experimentally validated the plasma membrane transporter HNM1 as the primary drug resistance target of mechlorethamine. Furthermore, the sequencing of mitoxantrone-resistant strains identified inactivating mutations within IPT1, a gene encoding inositolphosphotransferase, an enzyme involved in sphingolipid biosynthesis. In the case of bactobolin, a promising anticancer drug, the endocytosis pathway was identified as the drug resistance target responsible for conferring resistance. Finally, we show that that rapamycin, an mTOR inhibitor previously shown to alter the fitness of the ipt1 mutant, can effectively prevent the formation of mitoxantrone resistance. The rapid and robust nature of these techniques, using Saccharomyces cerevisiae as a model organism, should accelerate the identification of drug resistance targets and guide the development of novel therapeutic combination strategies to prevent the development of chemoresistance in various cancers. PMID:26199284

  16. Café-au-lait macules and pediatric malignancy caused by biallelic mutations in the DNA mismatch repair (MMR) gene PMS2.

    PubMed

    Jackson, Carl-Christian; Holter, Spring; Pollett, Aaron; Clendenning, Mark; Chou, Shirley; Senter, Leigha; Ramphal, Raveena; Gallinger, Steven; Boycott, Kym

    2008-06-01

    A 14-year-old male presented with a T4 sigmoid adenocarcinoma, <10 colonic adenomas and multiple café-au-lait macules. Family history was not suggestive of a dominant hereditary form of colorectal cancer. Evaluation of the tumor revealed abnormal immunohistochemical staining of the PMS2 protein and high frequency microsatellite instability. Germline analysis identified biallelic PMS2 missense mutations. A new cancer syndrome caused by biallelic mutations in the mismatch repair genes, including PMS2, is now emerging and is characterized by café-au-lait macules, colonic polyps and a distinctive tumor spectrum. (c) 2007 Wiley-Liss, Inc.

  17. Electromyographic Activity of the Masseter and Temporal Muscles in Patients With Nonsyndromic Complete Unilateral Cleft Lip and Palate: 2-Stage Versus 1-Stage Palate Repair.

    PubMed

    Sabbag, Anelise; Denadai, Rafael; Raposo-Amaral, Cesar Augusto; Buzzo, Celso Luiz; Raposo-Amaral, Cassio Eduardo; Nagae, Mirian H

    2018-05-14

    To assess the electromyographic activity of the masseter and temporal muscles in cleft patients who underwent 1-stage palate repair versus 2-stage palate repair. Thirty-two patients with nonsyndromic complete unilateral cleft lip and palate operated by 2 different protocols for palate repair, 1-stage (group 1, n = 16) versus 2-stage with delayed hard palate closure (group 2, n = 16) were available in the retrospective longitudinal study. Standardized electromyographic records of the masseter and anterior portion of temporal muscles were obtained with 2 repetitions during mastication and rest. No statistically significant (all P > 0.05) differences were observed in the electromyographic data between the groups 1 and 2. There were similar electromyographic activity of masseter and temporal muscles during mastication and at rest after 1- and 2-stage palate closure.

  18. Mismatch repair genes on chromosomes 2p and 3p account for a major share of hereditary nonpolyposis colorectal cancer families evaluable by linkage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nystroem-Lahti, M.; Pylkkaenen, L.; Aaltonen, L.A.

    1994-10-01

    Two susceptibility loci for hereditary nonpolyposis colorectal cancer (HNPCC) have been identified, and each contains a mismatch repair gene: MSH2 on chromosome 2p and MLH1 on chromosome 3p. We studied the involvement of these loci in 13 large HNPCC kindreds originating from three different continents. Six families showed close linkage to the 2p locus, and a heritable mutation of the MSH2 gene was subsequently found in four. The 2p-linked kindreds included a family characterized by the lack of extracolonic manifestations (Lynch I syndrome), as well as two families with cutaneous manifestations typical of the Muir-Torre syndrome. Four families showed evidencemore » for linkage to the 3p locus, and a heritable mutation of the MLH1 gene was later detected in three. One 3p-linked kindred was of Amerindian origin. Of the remaining three families studied for linkage, one showed lod scores compatible with exclusion of both MSH2 and MLH1, while lod scores obtained in the other two families suggested exclusion of one HNPCC locus (MSH2 or MLH1) but were uninformative for markers flanking the other locus. Our results suggest that mismatch repair genes on 2p and 3p account for a major share of HNPCC in kindreds that can be evaluated by linkage analysis. 36 refs., 2 figs., 3 tabs.« less

  19. Stage-specific differences in secretory profile of mesenchymal stromal cells (MSCs) subjected to early- vs late-stage OA synovial fluid.

    PubMed

    Gómez-Aristizábal, A; Sharma, A; Bakooshli, M A; Kapoor, M; Gilbert, P M; Viswanathan, S; Gandhi, R

    2017-05-01

    Although, mesenchymal stromal cells (MSCs) are being clinically investigated for their use in osteoarthritis (OA), it is unclear whether their postulated therapeutic properties are equally effective in the early- and late-stages of OA. In this study we investigated MSC cytokine secretion post-exposure to synovial fluid (SF), obtained from early- vs late-stage knee OA patients to justify a potential patient stratification strategy to maximize MSC-mediated treatment effects. Subjects were recruited and categorized into early- [Kellgren-Lawrence (KL) grade I/II, n = 12] and late-stage (KL-III/IV, n = 12) knee OA groups. SF samples were obtained, and their proteome was tested using multiplex assays, after 3-days culture, with and without MSCs. SFs cultured without MSCs were used as a baseline to identify MSC-secreted factors into SFs cultured with MSCs. Linear mixed-effect models and non-parametric tests were used to identify alterations in the MSC secretome during exposure to OA SF (3-days). MSCs cultured for 3-days in 0.5% fetal bovine serum (FBS)-supplemented medium were used to compare SF results with culture medium. Following exposure to OA SF, the MSC secretome contained proteins that are involved in tissue repair, angiogenesis, chemotaxis, matrix remodeling and the clotting process. However, chemokine (C-X-C motif) ligand-8 (CXCL8; chemoattractant), interleukin-6 (IL6) and chemokine (C-C motif) ligand 2 (CCL2) were elevated in the MSC-secretome in response to early- vs late-stage OA SF. Early- vs late-stage OA SF samples elicit a differential MSC secretome response, arguing for stratification of OA patients to maximize MSC-mediated therapeutic effects. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  20. Early Cleft Lip Repair Revisited: A Safe and Effective Approach Utilizing a Multidisciplinary Protocol.

    PubMed

    Hammoudeh, Jeff A; Imahiyerobo, Thomas A; Liang, Fan; Fahradyan, Artur; Urbinelli, Leo; Lau, Jennifer; Matar, Marla; Magee, William; Urata, Mark

    2017-06-01

    The optimal timing for cleft lip repair has yet to be established. Advances in neonatal anesthesia, along with a growing body of literature, suggesting benefits of earlier cleft lip and nasal repair, have set the stage for a reexamination of current practices. In this prospective study, cleft lip and nasal repair occurred on average at 34.8 days (13-69 days). Nasal correction was achieved primarily through molding the nasal cartilage without the placement of nasal sutures at the time of repair. A standardized anesthetic protocol aimed at limiting neurotoxicity was utilized in all cases. Anesthetic and postoperative complications were assessed. A 3-dimensional nasal analysis compared pre- and postoperative nasal symmetry for unilateral clefts. Surveys assessed familial response to repair. Thirty-two patients were included (27 unilateral and 5 bilateral clefts). In this study, the overall complication rate was 3.1%. Anthropometric measurements taken from 3-dimensional-image models showed statistically significant improvement in ratios of nostril height (preoperative mean, 0.59; postoperative mean, 0.80), nasal base width (preoperative mean, 1.96; postoperative mean, 1.12), columella length (preoperative mean, 0.62; postoperative mean, 0.89; and columella angle (preoperative mean, 30.73; postoperative mean, 9.1). Survey data indicated that families uniformly preferred earlier repair. We present evidence that early cleft lip and nasal repair can be performed safely and is effective at improving nasal symmetry without the placement of any nasal sutures. Utilization of this protocol has the potential to be a paradigm shift in the treatment of cleft lip and nasal deformity.

  1. Update on the Treatment of Early-Stage Triple-Negative Breast Cancer.

    PubMed

    Sharma, Priyanka

    2018-04-14

    Triple-negative breast cancer (TNBC) accounts for 15% of all breast cancers and is associated with poor long-term outcomes compared to other breast cancer subtypes. Currently, chemotherapy remains the main modality of treatment for early-stage TNBC, as there is no approved targeted therapy for this subtype. The biologic heterogeneity of TNBC has hindered the development and evaluation of novel agents, but recent advancements in subclassifying TNBC have paved the way for further investigation of more effective systemic therapies, including cytotoxic and targeted agents. TNBC is enriched for germline BRCA mutation and for somatic deficiencies in homologous recombination DNA repair, the so-called "BRCAness" phenotype. Together, germline BRCA mutations and BRCAness are promising biomarkers of susceptibility to DNA-damaging therapy. Various investigational approaches are consequently being investigated in early-stage TNBC, including immune checkpoint inhibitors, platinum compounds, PI3K pathway inhibitors, and androgen receptor inhibitors. Due to the biological diversity found within TNBC, patient selection based on molecular biomarkers could aid the design of early-phase clinical trials, ultimately accelerating the clinical application of effective new agents. TNBC is an aggressive breast cancer subtype, for which multiple targeted approaches will likely be required for patient outcomes to be substantially improved.

  2. DNA mismatch repair gene MLH1 induces apoptosis in prostate cancer cells.

    PubMed

    Fukuhara, Shinichiro; Chang, Inik; Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Hirata, Hiroshi; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K; Shiina, Hiroaki; Nonomura, Norio; Dahiya, Rajvir; Tanaka, Yuichiro

    2014-11-30

    Mismatch repair (MMR) enzymes have been shown to be deficient in prostate cancer (PCa). MMR can influence the regulation of tumor development in various cancers but their role on PCa has not been investigated. The aim of the present study was to determine the functional effects of the mutL-homolog 1 (MLH1) gene on growth of PCa cells. The DU145 cell line has been established as MLH1-deficient and thus, this cell line was utilized to determine effects of MLH1 by gene expression. Lack of MLH1 protein expression was confirmed by Western blotting in DU145 cells whereas levels were high in normal PWR-1E and RWPE-1 prostatic cells. MLH1-expressing stable transfectant DU145 cells were then created to characterize the effects this MMR gene has on various growth properties. Expression of MLH1 resulted in decreased cell proliferation, migration and invasion properties. Lack of cell growth in vivo also indicated a tumor suppressive effect by MLH1. Interestingly, MLH1 caused an increase in apoptosis along with phosphorylated c-Abl, and treatment with MLH1 siRNAs countered this effect. Furthermore, inhibition of c-Abl with STI571 also abrogated the effect on apoptosis caused by MLH1. These results demonstrate MLH1 protects against PCa development by inducing c-Abl-mediated apoptosis.

  3. DNA mismatch repair gene MLH1 induces apoptosis in prostate cancer cells

    PubMed Central

    Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Hirata, Hiroshi; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K.; Shiina, Hiroaki; Nonomura, Norio; Dahiya, Rajvir; Tanaka, Yuichiro

    2014-01-01

    Mismatch repair (MMR) enzymes have been shown to be deficient in prostate cancer (PCa). MMR can influence the regulation of tumor development in various cancers but their role on PCa has not been investigated. The aim of the present study was to determine the functional effects of the mutL-homolog 1 (MLH1) gene on growth of PCa cells. The DU145 cell line has been established as MLH1-deficient and thus, this cell line was utilized to determine effects of MLH1 by gene expression. Lack of MLH1 protein expression was confirmed by Western blotting in DU145 cells whereas levels were high in normal PWR-1E and RWPE-1 prostatic cells. MLH1-expressing stable transfectant DU145 cells were then created to characterize the effects this MMR gene has on various growth properties. Expression of MLH1 resulted in decreased cell proliferation, migration and invasion properties. Lack of cell growth in vivo also indicated a tumor suppressive effect by MLH1. Interestingly, MLH1 caused an increase in apoptosis along with phosphorylated c-Abl, and treatment with MLH1 siRNAs countered this effect. Furthermore, inhibition of c-Abl with STI571 also abrogated the effect on apoptosis caused by MLH1. These results demonstrate MLH1 protects against PCa development by inducing c-Abl-mediated apoptosis. PMID:25526032

  4. Early neurophysiological indices of second language morphosyntax learning.

    PubMed

    Hanna, Jeff; Shtyrov, Yury; Williams, John; Pulvermüller, Friedemann

    2016-02-01

    Humans show variable degrees of success in acquiring a second language (L2). In many cases, morphological and syntactic knowledge remain deficient, although some learners succeed in reaching nativelike levels, even if they begin acquiring their L2 relatively late. In this study, we use psycholinguistic, online language proficiency tests and a neurophysiological index of syntactic processing, the syntactic mismatch negativity (sMMN) to local agreement violations, to compare behavioural and neurophysiological markers of grammar processing between native speakers (NS) of English and non-native speakers (NNS). Variable grammar proficiency was measured by psycholinguistic tests. When NS heard ungrammatical word sequences lacking agreement between subject and verb (e.g. *we kicks), the MMN was enhanced compared with syntactically legal sentences (e.g. he kicks). More proficient NNS also showed this difference, but less proficient NNS did not. The main cortical sources of the MMN responses were localised in bilateral superior temporal areas, where, crucially, source strength of grammar-related neuronal activity correlated significantly with grammatical proficiency of individual L2 speakers as revealed by the psycholinguistic tests. As our results show similar, early MMN indices to morpho-syntactic agreement violations among both native speakers and non-native speakers with high grammar proficiency, they appear consistent with the use of similar brain mechanisms for at least certain aspects of L1 and L2 grammars. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Distinct DNA-binding surfaces in the ATPase and linker domains of MutLγ determine its substrate specificities and exert separable functions in meiotic recombination and mismatch repair

    PubMed Central

    2017-01-01

    Mlh1-Mlh3 (MutLγ) is a mismatch repair factor with a central role in formation of meiotic crossovers, presumably through resolution of double Holliday junctions. MutLγ has DNA-binding, nuclease, and ATPase activities, but how these relate to one another and to in vivo functions are unclear. Here, we combine biochemical and genetic analyses to characterize Saccharomyces cerevisiae MutLγ. Limited proteolysis and atomic force microscopy showed that purified recombinant MutLγ undergoes ATP-driven conformational changes. In vitro, MutLγ displayed separable DNA-binding activities toward Holliday junctions (HJ) and, surprisingly, single-stranded DNA (ssDNA), which was not predicted from current models. MutLγ bound DNA cooperatively, could bind multiple substrates simultaneously, and formed higher-order complexes. FeBABE hydroxyl radical footprinting indicated that the DNA-binding interfaces of MutLγ for ssDNA and HJ substrates only partially overlap. Most contacts with HJ substrates were located in the linker regions of MutLγ, whereas ssDNA contacts mapped within linker regions as well as the N-terminal ATPase domains. Using yeast genetic assays for mismatch repair and meiotic recombination, we found that mutations within different DNA-binding surfaces exert separable effects in vivo. For example, mutations within the Mlh1 linker conferred little or no meiotic phenotype but led to mismatch repair deficiency. Interestingly, mutations in the N-terminal domain of Mlh1 caused a stronger meiotic defect than mlh1Δ, suggesting that the mutant proteins retain an activity that interferes with alternative recombination pathways. Furthermore, mlh3Δ caused more chromosome missegregation than mlh1Δ, whereas mlh1Δ but not mlh3Δ partially alleviated meiotic defects of msh5Δ mutants. These findings illustrate functional differences between Mlh1 and Mlh3 during meiosis and suggest that their absence impinges on chromosome segregation not only via reduced formation of

  6. Radiosensitization by PARP Inhibition in DNA Repair Proficient and Deficient Tumor Cells: Proliferative Recovery in Senescent Cells

    PubMed Central

    Alotaibi, Moureq; Sharma, Khushboo; Saleh, Tareq; Povirk, Lawrence F.; Hendrickson, Eric A.; Gewirtz, David A.

    2016-01-01

    Radiotherapy continues to be a primary modality in the treatment of cancer. DNA damage induced by radiation can promote apoptosis as well as both autophagy and senescence, where autophagy and senescence can theoretically function to prolong tumor survival. A primary aim of this work was to investigate the hypothesis that autophagy and/or senescence could be permissive for DNA repair, thereby facilitating tumor cell recovery from radiation-induced growth arrest and/or cell death. In addition, studies were designed to elucidate the involvement of autophagy and senescence in radiation sensitization by PARP inhibitors and the re-emergence of a proliferating tumor cell population. In the context of this work, the relationship between radiation-induced autophagy and senescence was also determined. Studies were performed using DNA repair proficient HCT116 colon carcinoma cells and a repair deficient Ligase IV (−/−) isogenic cell line. Irradiation promoted a parallel induction of autophagy and senescence that was strongly correlated with the extent of persistent H2AX phosphorylation in both cell lines; however inhibition of autophagy failed to suppress senescence, indicating that the two responses were dissociable. Irradiation resulted in a transient arrest in the HCT116 cells while arrest was prolonged in the Ligase IV (−/−) cells; however, both cell lines ultimately recovered proliferative function, which may reflect maintenance of DNA repair capacity. The PARP inhibitors (Olaparib) and (Niraparib) increased the extent of persistent DNA damage induced by radiation as well as the extent of both autophagy and senescence; neither cell line underwent significant apoptosis by radiation alone or in the presence of the PARP inhibitors. Inhibition of autophagy failed to attenuate radiation sensitization, indicating that autophagy was not involved in the action of the PARP inhibitors. As with radiation alone, despite sensitization by PARP inhibition, proliferative

  7. Can a Horse Be a Donkey? Semantic and Form Interference Effects in Translation Recognition in Early and Late Proficient and Nonproficient Spanish-Catalan Bilinguals

    ERIC Educational Resources Information Center

    Ferre, Pilar; Sanchez-Casas, Rosa; Guasch, Marc

    2006-01-01

    The present study investigates the developmental aspect of the revised hierarchical model (Kroll & Stewart, 1994) concerning the access to the conceptual store from the second language (L2). We manipulated the level of proficiency and age of L2 acquisition. We tested Spanish-Catalan bilinguals (49 early proficient bilinguals, 28 late proficient…

  8. Single-Stage Primary Cleft Lip and Palate Repair: A Review of the Literature.

    PubMed

    Kantar, Rami S; Rifkin, William J; Cammarata, Michael J; Maliha, Samantha G; Diaz-Siso, J Rodrigo; Farber, Scott J; Flores, Roberto L

    2018-06-26

    Single-stage cleft lip and palate repair is a debated surgical approach. While some studies have described favorable outcomes, concerns include the effect on craniomaxillofacial growth and increased risk of complications. To this date, there has not been a comprehensive appraisal of available data following combined cleft lip and palate repair. An extensive literature review was performed to identify all relevant articles. The level of evidence of these articles was graded according to the Oxford Centre for Evidence-Based Medicine Levels of Evidence Scale. A total of 22 relevant articles were identified, all of which were retrospective in nature. Patient age at the time of surgery ranged from 1 month to 10 years, the longest duration of follow-up was 18 years, and the largest study included 106 patients. Review of the literature shows that overall surgical outcomes following combined cleft lip and palate repair are encouraging. An increased rate of postoperative fistulas with associated speech abnormalities in some studies is noteworthy. Importantly, there is no evidence to suggest an impact on craniomaxillofacial growth, and psychosocial outcomes and parental satisfaction seem to be improved with single-stage surgery as compared with the staged approach. Our review shows overall favorable outcomes associated with combined cleft lip and palate repair. The limited follow-up time or nature of evaluated outcomes in some studies may underrepresent the true rate of adverse events, and highlights the need for additional long-term studies with standardized follow-up. To our knowledge, our review is the first to evaluate existing data regarding outcomes following combined cleft lip and palate repair.

  9. Mlh2 Is an Accessory Factor for DNA Mismatch Repair in Saccharomyces cerevisiae

    PubMed Central

    Srivatsan, Anjana; Bowen, Nikki; Gries, Kerstin; Desai, Arshad; Putnam, Christopher D.; Kolodner, Richard D.

    2014-01-01

    In Saccharomyces cerevisiae, the essential mismatch repair (MMR) endonuclease Mlh1-Pms1 forms foci promoted by Msh2-Msh6 or Msh2-Msh3 in response to mispaired bases. Here we analyzed the Mlh1-Mlh2 complex, whose role in MMR has been unclear. Mlh1-Mlh2 formed foci that often colocalized with and had a longer lifetime than Mlh1-Pms1 foci. Mlh1-Mlh2 foci were similar to Mlh1-Pms1 foci: they required mispair recognition by Msh2-Msh6, increased in response to increased mispairs or downstream defects in MMR, and formed after induction of DNA damage by phleomycin but not double-stranded breaks by I-SceI. Mlh1-Mlh2 could be recruited to mispair-containing DNA in vitro by either Msh2-Msh6 or Msh2-Msh3. Deletion of MLH2 caused a synergistic increase in mutation rate in combination with deletion of MSH6 or reduced expression of Pms1. Phylogenetic analysis demonstrated that the S. cerevisiae Mlh2 protein and the mammalian PMS1 protein are homologs. These results support a hypothesis that Mlh1-Mlh2 is a non-essential accessory factor that acts to enhance the activity of Mlh1-Pms1. PMID:24811092

  10. A massive parallel sequencing workflow for diagnostic genetic testing of mismatch repair genes

    PubMed Central

    Hansen, Maren F; Neckmann, Ulrike; Lavik, Liss A S; Vold, Trine; Gilde, Bodil; Toft, Ragnhild K; Sjursen, Wenche

    2014-01-01

    The purpose of this study was to develop a massive parallel sequencing (MPS) workflow for diagnostic analysis of mismatch repair (MMR) genes using the GS Junior system (Roche). A pathogenic variant in one of four MMR genes, (MLH1, PMS2, MSH6, and MSH2), is the cause of Lynch Syndrome (LS), which mainly predispose to colorectal cancer. We used an amplicon-based sequencing method allowing specific and preferential amplification of the MMR genes including PMS2, of which several pseudogenes exist. The amplicons were pooled at different ratios to obtain coverage uniformity and maximize the throughput of a single-GS Junior run. In total, 60 previously identified and distinct variants (substitutions and indels), were sequenced by MPS and successfully detected. The heterozygote detection range was from 19% to 63% and dependent on sequence context and coverage. We were able to distinguish between false-positive and true-positive calls in homopolymeric regions by cross-sample comparison and evaluation of flow signal distributions. In addition, we filtered variants according to a predefined status, which facilitated variant annotation. Our study shows that implementation of MPS in routine diagnostics of LS can accelerate sample throughput and reduce costs without compromising sensitivity, compared to Sanger sequencing. PMID:24689082

  11. Mismatch repair deficiency does not enhance ENU mutagenesis in the zebrafish germ line.

    PubMed

    Feitsma, Harma; de Bruijn, Ewart; van de Belt, Jose; Nijman, Isaac J; Cuppen, Edwin

    2008-07-01

    S(N)1-type alkylating agents such as N-ethyl-N-nitrosourea (ENU) are very potent mutagens. They act by transferring their alkyl group to DNA bases, which, upon mispairing during replication, can cause single base pair mutations in the next replication cycle. As DNA mismatch repair (MMR) proteins are involved in the recognition of alkylation damage, we hypothesized that ENU-induced mutation rates could be increased in a MMR-deficient background, which would be beneficial for mutagenesis approaches. We applied a standard ENU mutagenesis protocol to adult zebrafish deficient in the MMR gene msh6 and heterozygous controls to study the effect of MMR on ENU-induced DNA damage. Dose-dependent lethality was found to be similar for homozygous and heterozygous mutants, indicating that there is no difference in ENU resistance. Mutation discovery by high-throughput dideoxy resequencing of genomic targets in outcrossed progeny of the mutagenized fish did also not reveal any differences in germ line mutation frequency. These results may indicate that the maximum mutation load for zebrafish has been reached with the currently used, highly optimized ENU mutagenesis protocol. Alternatively, the MMR system in the zebrafish germ line may be saturated very rapidly, thereby having a limited effect on high-dose ENU mutagenesis.

  12. Clinicopathologic Significance of Mismatch Repair Defects in Endometrial Cancer: An NRG Oncology/Gynecologic Oncology Group Study

    PubMed Central

    McMeekin, D. Scott; Tritchler, David L.; Cohn, David E.; Mutch, David G.; Lankes, Heather A.; Geller, Melissa A.; Powell, Matthew A.; Backes, Floor J.; Landrum, Lisa M.; Zaino, Richard; Broaddus, Russell D.; Ramirez, Nilsa; Gao, Feng; Ali, Shamshad; Darcy, Kathleen M.; Pearl, Michael L.; DiSilvestro, Paul A.; Lele, Shashikant B.

    2016-01-01

    Purpose The clinicopathologic significance of mismatch repair (MMR) defects in endometrioid endometrial cancer (EEC) has not been definitively established. We undertook tumor typing to classify MMR defects to determine if MMR status is prognostic or predictive. Methods Primary EECs from NRG/GOG0210 patients were assessed for microsatellite instability (MSI), MLH1 methylation, and MMR protein expression. Each tumor was assigned to one of four MMR classes: normal, epigenetic defect, probable mutation (MMR defect not attributable to MLH1 methylation), or MSI-low. The relationships between MMR classes and clinicopathologic variables were assessed using contingency table tests and Cox proportional hazard models. Results A total of 1,024 tumors were assigned to MMR classes. Epigenetic and probable mutations in MMR were significantly associated with higher grade and more frequent lymphovascular space invasion. Epigenetic defects were more common in patients with higher International Federation of Gynecology and Obstetrics stage. Overall, there were no differences in outcomes. Progression-free survival was, however, worse for women whose tumors had epigenetic MMR defects compared with the MMR normal group (hazard ratio, 1.37; P < .05; 95% CI, 1.00 to 1.86). An exploratory analysis of interaction between MMR status and adjuvant therapy showed a trend toward improved progression-free survival for probable MMR mutation cases. Conclusion MMR defects in EECs are associated with a number of well-established poor prognostic indicators. Women with tumors that had MMR defects were likely to have higher-grade cancers and more frequent lymphovascular space invasion. Surprisingly, outcomes in these patients were similar to patients with MMR normal tumors, suggesting that MMR defects may counteract the effects of negative prognostic factors. Altered immune surveillance of MMR-deficient tumors, and other host/tumor interactions, is likely to determine outcomes for patients with MMR

  13. Clinicopathologic Significance of Mismatch Repair Defects in Endometrial Cancer: An NRG Oncology/Gynecologic Oncology Group Study.

    PubMed

    McMeekin, D Scott; Tritchler, David L; Cohn, David E; Mutch, David G; Lankes, Heather A; Geller, Melissa A; Powell, Matthew A; Backes, Floor J; Landrum, Lisa M; Zaino, Richard; Broaddus, Russell D; Ramirez, Nilsa; Gao, Feng; Ali, Shamshad; Darcy, Kathleen M; Pearl, Michael L; DiSilvestro, Paul A; Lele, Shashikant B; Goodfellow, Paul J

    2016-09-01

    The clinicopathologic significance of mismatch repair (MMR) defects in endometrioid endometrial cancer (EEC) has not been definitively established. We undertook tumor typing to classify MMR defects to determine if MMR status is prognostic or predictive. Primary EECs from NRG/GOG0210 patients were assessed for microsatellite instability (MSI), MLH1 methylation, and MMR protein expression. Each tumor was assigned to one of four MMR classes: normal, epigenetic defect, probable mutation (MMR defect not attributable to MLH1 methylation), or MSI-low. The relationships between MMR classes and clinicopathologic variables were assessed using contingency table tests and Cox proportional hazard models. A total of 1,024 tumors were assigned to MMR classes. Epigenetic and probable mutations in MMR were significantly associated with higher grade and more frequent lymphovascular space invasion. Epigenetic defects were more common in patients with higher International Federation of Gynecology and Obstetrics stage. Overall, there were no differences in outcomes. Progression-free survival was, however, worse for women whose tumors had epigenetic MMR defects compared with the MMR normal group (hazard ratio, 1.37; P < .05; 95% CI, 1.00 to 1.86). An exploratory analysis of interaction between MMR status and adjuvant therapy showed a trend toward improved progression-free survival for probable MMR mutation cases. MMR defects in EECs are associated with a number of well-established poor prognostic indicators. Women with tumors that had MMR defects were likely to have higher-grade cancers and more frequent lymphovascular space invasion. Surprisingly, outcomes in these patients were similar to patients with MMR normal tumors, suggesting that MMR defects may counteract the effects of negative prognostic factors. Altered immune surveillance of MMR-deficient tumors, and other host/tumor interactions, is likely to determine outcomes for patients with MMR-deficient tumors. © 2016 by American

  14. DNA Repair Deficiency in Neurodegeneration

    PubMed Central

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A.; Stevnsner, Tinna

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby causing Huntington’s disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage may be linked with the age-associated neurodegenerative disorders Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Mutation in the WRN protein leads to the premature aging disease Werner syndrome, a disorder that features neurodegeneration. In this article we review the evidence linking deficiencies in the DNA repair pathways with neurodegeneration. PMID:21550379

  15. Identification of a Novel PMS2 Alteration c.505C>G (R169G) In Trans with a PMS2 Pathogenic Mutation in a Patient with Constitutional Mismatch Repair Deficiency

    PubMed Central

    Mork, Maureen E.; Borras, Ester; Taggart, Melissa W.; Cuddy, Amanda; Bannon, Sarah A.; You, Y. Nancy; Lynch, Patrick M.; Ramirez, Pedro T.; Rodriguez-Bigas, Miguel A.; Vilar, Eduardo

    2016-01-01

    Constitutional mismatch repair deficiency syndrome (CMMRD) is a rare autosomal recessive predisposition to colorectal polyposis and other malignancies, often childhood-onset, that is caused by biallelic inheritance of mutations in the same mismatch repair gene. Here, we describe a patient with a clinical diagnosis of CMMRD based on colorectal polyposis and young-onset endometrial cancer who was identified to have two alterations in trans in PMS2: one known pathogenic mutation (c.1831insA; p.Ile611Asnfs*2) and one novel variant of uncertain significance (c.505C>G; p.Arg169Glu), a missense alteration. We describe the clinical and molecular features in the patient harboring this novel alteration c.505C>G, who meets clinical criteria for CMMRD and exhibits molecular evidence supporting a diagnosis of CMMRD. Although experimental validation is needed to confirm its pathogenicity, PMS2 c.505C>G likely has functional consequences that contributes to our patient's phenotype based on the patient's clinical presentation, tumor studies, and bioinformatics analysis. PMID:27017610

  16. A tetrad of bicuspid aortic valve association: A single-stage repair

    PubMed Central

    Barik, Ramachandra; Patnaik, A. N.; Mishra, Ramesh C.; Kumari, N. Rama; Gulati, A. S.

    2012-01-01

    We report a 27 years old male who presented with a combination of both congenital and acquired cardiac defects. This syndrome complex includes congenital bicuspid aortic valve, Seller's grade II aortic regurgitation, juxta- subclavian coarctation, stenosis of ostium of left subclavian artery and ruptured sinus of Valsalva aneurysm without any evidence of infective endocarditis. This type of constellation is extremely rare. Neither coarctation of aorta with left subclavian artery stenosis nor the rupture of sinus Valsalva had a favorable pathology for percutaneus intervention. Taking account into morbidity associated with repeated surgery and anesthesia patient underwent a single stage surgical repair of both the defects by two surgical incisions. The approaches include median sternotomy for rupture of sinus of Valsalva and lateral thoracotomy for coarctation with left subclavian artery stenosis. The surgery was uneventful. After three months follow up echocardiography showed mild residual gradient across the repaired coarctation segment, mild aortic regurgitation and no residual left to right shunt. This patient is under follow up. This is an extremely rare case of single stage successful repair of coarctation and rupture of sinus of Valsalva associated with congenital bicuspid aortic valve. PMID:22629035

  17. A tetrad of bicuspid aortic valve association: A single-stage repair.

    PubMed

    Barik, Ramachandra; Patnaik, A N; Mishra, Ramesh C; Kumari, N Rama; Gulati, A S

    2012-04-01

    We report a 27 years old male who presented with a combination of both congenital and acquired cardiac defects. This syndrome complex includes congenital bicuspid aortic valve, Seller's grade II aortic regurgitation, juxta- subclavian coarctation, stenosis of ostium of left subclavian artery and ruptured sinus of Valsalva aneurysm without any evidence of infective endocarditis. This type of constellation is extremely rare. Neither coarctation of aorta with left subclavian artery stenosis nor the rupture of sinus Valsalva had a favorable pathology for percutaneus intervention. Taking account into morbidity associated with repeated surgery and anesthesia patient underwent a single stage surgical repair of both the defects by two surgical incisions. The approaches include median sternotomy for rupture of sinus of Valsalva and lateral thoracotomy for coarctation with left subclavian artery stenosis. The surgery was uneventful. After three months follow up echocardiography showed mild residual gradient across the repaired coarctation segment, mild aortic regurgitation and no residual left to right shunt. This patient is under follow up. This is an extremely rare case of single stage successful repair of coarctation and rupture of sinus of Valsalva associated with congenital bicuspid aortic valve.

  18. Right Ventricular Outflow Tract Stenting in Tetralogy of Fallot Infants With Risk Factors for Early Primary Repair.

    PubMed

    Sandoval, Juan Pablo; Chaturvedi, Rajiv R; Benson, Lee; Morgan, Gareth; Van Arsdell, Glen; Honjo, Osami; Caldarone, Christopher; Lee, Kyong-Jin

    2016-12-01

    Tetralogy of Fallot with cyanosis requiring surgical repair in early infancy reflects poor anatomy and is associated with more clinical instability and longer hospitalization than those who can be electively repaired later. We bridged symptomatic infants with risk factors for early primary repair by right ventricular outflow tract stenting (stent). Four groups of tetralogy of Fallot with confluent central pulmonary arteries were studied: stent group (n=42), primary repair (aged <3 months) with pulmonary stenosis (early-PS group; n=44), primary repair (aged <3 months) with pulmonary atresia (early-PA group; n=49), and primary repair between 3 and 11 months of age (surg>3mo group; n=45). Stent patients had the smallest pulmonary arteries with a median (95% credible intervals) Nakata index (mm 2 /m 2 ) of 79 (66-85) compared with the early-PA 139 (129-154), early-PS 136 (121-153), and surg>3mo 167 (153-200) groups. Only stent infants required unifocalization of aortopulmonary collaterals (17%). Stent and early-PA infants had younger age and lower weight than early-PS infants. Stent infants had the most multiple comorbidities. Stenting allowed deferral of complete surgical repair to an age (6 months), weight (6.3 [5.8-7.0] kg), and Nakata index (147 [132-165]) similar to the low-risk surg>3mo group. The 3 early treatment groups had similar intensive care unit/hospital stays and high reintervention rates in the first 12 months after repair, compared with the surg>3mo group. Right ventricular outflow tract stenting of symptomatic tetralogy of Fallot with poor anatomy (small pulmonary arteries) and adverse factors (multiple comorbidities, low weight) relieves cyanosis and defers surgical repair. This allowed pulmonary arterial and somatic growth with clinical results comparable to early surgical repair in more favorable patients. © 2016 American Heart Association, Inc.

  19. Single-stage repair of rectoperineal and rectovestibular fistulae can be safely delayed beyond the neonatal period.

    PubMed

    Short, Scott S; Bucher, Brian T; Barnhart, Douglas C; Van Der Watt, Nadia; Zobell, Sarah; Allen, Ashley; Rollins, Michael D

    2018-02-12

    We sought to examine the short-term outcomes following single-stage repair of rectoperineal and rectovestibular fistulae in infants and identify risk factors for wound complication. Patients with a rectoperineal or rectovestibular fistula treated with a single-stage repair beyond the neonatal period (>30days of age) at a pediatric colorectal center (2011-2016) were reviewed. 36 patients with a rectoperineal and 7 patients with a rectovestibular fistula were repaired using the Posterior Sagittal Anorectoplasty (PSARP) approach. Median follow-up was 31months. The median age and weight at the time of repair were 166days and 6.5kg. Four patients (11%) suffered a wound complication (3 rectoperineal, 1 rectovestibular). Two required a diverting colostomy to allow wound healing. Two patients suffered skin separation managed with local wound care. All 4 patients experienced satisfactory wound healing without anoplasty stricture. Two different patients developed a stricture of the neo-anus. Age and weight at time of repair, gender, and presence of a genitourinary anomaly were not associated with wound complications. Delayed single-stage repair of rectoperineal and rectovestibular fistulae can be performed safely in infants beyond the newborn period. With attentive treatment, satisfactory healing can be anticipated if a wound complication is encountered. Retrospective Comparative Study, Level III. Copyright © 2018. Published by Elsevier Inc.

  20. Evaluating Mismatch Repair Deficiency in Pancreatic Adenocarcinoma: Challenges and Recommendations.

    PubMed

    Hu, Zishuo I; Shia, Jinru; Stadler, Zsofia K; Varghese, Anna M; Capanu, Marinela; Salo-Mullen, Erin; Lowery, Maeve A; Diaz, Luis A; Mandelker, Diana; Yu, Kenneth H; Zervoudakis, Alice; Kelsen, David P; Iacobuzio-Donahue, Christine A; Klimstra, David S; Saltz, Leonard B; Sahin, Ibrahim H; O'Reilly, Eileen M

    2018-03-15

    Purpose: Immune checkpoint inhibition has been shown to generate profound and durable responses in mismatch repair deficient (MMR-D) solid tumors and has elicited interest in detection tools and strategies to guide therapeutic decision-making. Herein we address questions on the appropriate screening, detection methods, patient selection, and initiation of therapy for MMR-D pancreatic ductal adenocarcinoma (PDAC) and assess the utility of next-generation sequencing (NGS) in providing additional prognostic and predictive information for MMR-D PDAC. Experimental Design: Archival and prospectively acquired samples and matched normal DNA from N = 833 PDAC cases were analyzed using a hybridization capture-based, NGS assay designed to perform targeted deep sequencing of all exons and selected introns of 341 to 468 cancer-associated genes. A computational program using NGS data derived the MSI status from the tumor-normal paired genome sequencing data. Available germline testing, IHC, and microsatellite instability (MSI) PCR results were reviewed to assess and confirm MMR-D and MSI status. Results: MMR-D in PDAC is a rare event among PDAC patients (7/833), occurring at a frequency of 0.8%. Loss of MMR protein expression by IHC, high mutational load, and elevated MSIsensor scores were correlated with MMR-D PDAC. All 7 MMR-D PDAC patients in the study were found to have Lynch syndrome. Four (57%) of the MMR-D patients treated with immune checkpoint blockade had treatment benefit (1 complete response, 2 partial responses, 1 stable disease). Conclusions: An integrated approach of germline testing and somatic analyses of tumor tissues in advanced PDAC using NGS may help guide future development of immune and molecularly directed therapies in PDAC patients. Clin Cancer Res; 24(6); 1326-36. ©2018 AACR . ©2018 American Association for Cancer Research.

  1. DNA mismatch repair gene polymorphisms affect survival in pancreatic cancer.

    PubMed

    Dong, Xiaoqun; Li, Yanan; Hess, Kenneth R; Abbruzzese, James L; Li, Donghui

    2011-01-01

    DNA mismatch repair (MMR) maintains genomic stability and mediates cellular response to DNA damage. We aim to demonstrate whether MMR genetic variants affect overall survival (OS) in pancreatic cancer. Using the Sequenom method in genomic DNA, we retrospectively genotyped 102 single-nucleotide polymorphisms (SNPs) of 13 MMR genes from 706 patients with pancreatic adenocarcinoma seen at The University of Texas MD Anderson Cancer Center. Association between genotype and OS was evaluated using multivariable Cox proportional hazard regression models. At a false discovery rate of 1% (p ≤ .0015), 15 SNPs of EXO1, MLH1, MSH2, MSH3, MSH6, PMS2, PMS2L3, TP73, and TREX1 in patients with localized disease (n = 333) and 6 SNPs of MSH3, MSH6, and TP73 in patients with locally advanced or metastatic disease (n = 373) were significantly associated with OS. In multivariable Cox proportional hazard regression models, SNPs of EXO1, MSH2, MSH3, PMS2L3, and TP73 in patients with localized disease, MSH2, MSH3, MSH6, and TP73 in patients with locally advanced or metastatic disease, and EXO1, MGMT, MSH2, MSH3, MSH6, PMS2L3, and TP73 in all patients remained significant predictors for OS (p ≤ .0015) after adjusting for all clinical predictors and all SNPs with p ≤ .0015 in single-locus analysis. Sixteen haplotypes of EXO1, MLH1, MSH2, MSH3, MSH6, PMS2, PMS2L3, RECQL, TP73, and TREX1 significantly correlated with OS in all patients (p ≤ .001). MMR gene variants may have potential value as prognostic markers for OS in pancreatic cancer patients.

  2. Early Cleft Lip Repair Revisited: A Safe and Effective Approach Utilizing a Multidisciplinary Protocol

    PubMed Central

    Imahiyerobo, Thomas A.; Liang, Fan; Fahradyan, Artur; Urbinelli, Leo; Lau, Jennifer; Matar, Marla; Magee, William; Urata, Mark

    2017-01-01

    Background: The optimal timing for cleft lip repair has yet to be established. Advances in neonatal anesthesia, along with a growing body of literature, suggesting benefits of earlier cleft lip and nasal repair, have set the stage for a reexamination of current practices. Methods: In this prospective study, cleft lip and nasal repair occurred on average at 34.8 days (13–69 days). Nasal correction was achieved primarily through molding the nasal cartilage without the placement of nasal sutures at the time of repair. A standardized anesthetic protocol aimed at limiting neurotoxicity was utilized in all cases. Anesthetic and postoperative complications were assessed. A 3-dimensional nasal analysis compared pre- and postoperative nasal symmetry for unilateral clefts. Surveys assessed familial response to repair. Results: Thirty-two patients were included (27 unilateral and 5 bilateral clefts). In this study, the overall complication rate was 3.1%. Anthropometric measurements taken from 3-dimensional-image models showed statistically significant improvement in ratios of nostril height (preoperative mean, 0.59; postoperative mean, 0.80), nasal base width (preoperative mean, 1.96; postoperative mean, 1.12), columella length (preoperative mean, 0.62; postoperative mean, 0.89; and columella angle (preoperative mean, 30.73; postoperative mean, 9.1). Survey data indicated that families uniformly preferred earlier repair. Conclusions: We present evidence that early cleft lip and nasal repair can be performed safely and is effective at improving nasal symmetry without the placement of any nasal sutures. Utilization of this protocol has the potential to be a paradigm shift in the treatment of cleft lip and nasal deformity. PMID:28740766

  3. Finite element simulation of ultrasonic waves in corroded reinforced concrete for early-stage corrosion detection

    NASA Astrophysics Data System (ADS)

    Tang, Qixiang; Yu, Tzuyang

    2017-04-01

    In reinforced concrete (RC) structures, corrosion of steel rebar introduces internal stress at the interface between rebar and concrete, ultimately leading to debonding and separation between rebar and concrete. Effective early-stage detection of steel rebar corrosion can significantly reduce maintenance costs and enable early-stage repair. In this paper, ultrasonic detection of early-stage steel rebar corrosion inside concrete is numerically investigated using the finite element method (FEM). Commercial FEM software (ABAQUS) was used in all simulation cases. Steel rebar was simplified and modeled by a cylindrical structure. 1MHz ultrasonic elastic waves were generated at the interface between rebar and concrete. Two-dimensional plain strain element was adopted in all FE models. Formation of surface rust in rebar was modeled by changing material properties and expanding element size in order to simulate the rust interface between rebar and concrete and the presence of interfacial stress. Two types of surface rust (corroded regions) were considered. Time domain and frequency domain responses of displacement were studied. From our simulation result, two corrosion indicators, baseline (b) and center frequency (fc) were proposed for detecting and quantifying corrosion.

  4. Mismatch repair proteins recruited to ultraviolet light-damaged sites lead to degradation of licensing factor Cdt1 in the G1 phase.

    PubMed

    Tanaka, Miyuki; Takahara, Michiyo; Nukina, Kohei; Hayashi, Akiyo; Sakai, Wataru; Sugasawa, Kaoru; Shiomi, Yasushi; Nishitani, Hideo

    2017-04-03

    Cdt1 is rapidly degraded by CRL4 Cdt2 E3 ubiquitin ligase after UV (UV) irradiation. Previous reports revealed that the nucleotide excision repair (NER) pathway is responsible for the rapid Cdt1-proteolysis. Here, we show that mismatch repair (MMR) proteins are also involved in the degradation of Cdt1 after UV irradiation in the G1 phase. First, compared with the rapid (within ∼15 min) degradation of Cdt1 in normal fibroblasts, Cdt1 remained stable for ∼30 min in NER-deficient XP-A cells, but was degraded within ∼60 min. The delayed degradation was also dependent on PCNA and CRL4 Cdt2 . The MMR proteins Msh2 and Msh6 were recruited to the UV-damaged sites of XP-A cells in the G1 phase. Depletion of these factors with small interfering RNAs prevented Cdt1 degradation in XP-A cells. Similar to the findings in XP-A cells, depletion of XPA delayed Cdt1 degradation in normal fibroblasts and U2OS cells, and co-depletion of Msh6 further prevented Cdt1 degradation. Furthermore, depletion of Msh6 alone delayed Cdt1 degradation in both cell types. When Cdt1 degradation was attenuated by high Cdt1 expression, repair synthesis at the damaged sites was inhibited. Our findings demonstrate that UV irradiation induces multiple repair pathways that activate CRL4 Cdt2 to degrade its target proteins in the G1 phase of the cell cycle, leading to efficient repair of DNA damage.

  5. DNA Mismatch Repair Deficiency Promotes Genomic Instability in a Subset of Papillary Thyroid Cancers.

    PubMed

    Javid, Mahsa; Sasanakietkul, Thanyawat; Nicolson, Norman G; Gibson, Courtney E; Callender, Glenda G; Korah, Reju; Carling, Tobias

    2018-02-01

    Efficient DNA damage repair by MutL-homolog DNA mismatch repair (MMR) enzymes, MLH1, MLH3, PMS1 and PMS2, are required to maintain thyrocyte genomic integrity. We hypothesized that persistent oxidative stress and consequent transcriptional dysregulation observed in thyroid follicles will lead to MMR deficiency and potentiate papillary thyroid tumorigenesis. MMR gene expression was analyzed by targeted microarray in 18 papillary thyroid cancer (PTC), 9 paracarcinoma normal thyroid (PCNT) and 10 normal thyroid (NT) samples. The findings were validated by qRT-PCR, and in follicular thyroid cancers (FTC) and follicular thyroid adenomas (FTA) for comparison. FOXO transcription factor expression was also analyzed. Protein expression was assessed by immunohistochemistry. Genomic integrity was evaluated by whole-exome sequencing-derived read-depth analysis and Mann-Whitney U test. Clinical correlations were assessed using Fisher's exact and t tests. Microarray and qRT-PCR revealed reduced expression of all four MMR genes in PTC compared with PCNT and of PMS2 compared with NT. FTC and FTA showed upregulation in MLH1, MLH3 and PMS2. PMS2 protein expression correlated with the mRNA expression pattern. FOXO1 showed lower expression in PMS2-deficient PTCs (log2-fold change -1.72 vs. -0.55, U = 11, p < 0.05 two-tailed). Rate of LOH, a measure of genomic instability, was higher in PMS2-deficient PTCs (median 3 and 1, respectively; U = 26, p < 0.05 two-tailed). No correlation was noted between MMR deficiency and clinical characteristics. MMR deficiency, potentially promoted by FOXO1 suppression, may explain the etiology for PTC development in some patients. FTC and FTA retain MMR activity and are likely caused by a different tumorigenic pathway.

  6. Red meat and poultry intake, polymorphisms in the nucleotide excision repair and mismatch repair pathways and colorectal cancer risk

    PubMed Central

    Joshi, Amit D.; Corral, Román; Siegmund, Kimberly D.; Haile, Robert W.; Le Marchand, Loïc; Martínez, Maria Elena; Ahnen, Dennis J.; Sandler, Robert S.; Lance, Peter; Stern, Mariana C.

    2009-01-01

    Diets high in red meat have been consistently associated with colorectal cancer (CRC) risk and may result in exposure to carcinogens that cause DNA damage [i.e polycyclic aromatic hydrocarbons, heterocyclic amines (HCAs) and N-nitroso compounds]. Using a family-based study, we investigated whether polymorphisms in the nucleotide excision repair (NER) (ERCC1 3′ untranslated region (UTR) G/T, XPD Asp312Asn and Lys751Gln, XPC intron 11 C/A, XPA 5′ UTR C/T, XPF Arg415Gln and XPG Asp1104His) and mismatch repair (MLH1 Ile219Val and MSH2 Gly322Asp) pathways modified the association with red meat and poultry intake. We tested for gene–environment interactions using case-only analyses (n = 577) and compared the results using case-unaffected sibling comparisons (n = 307 sibships). Increased risk of CRC was observed for intake of more than or equal to three servings per week of red meat [odds ratio (OR) = 1.8, 95% confidence interval (CI) = 1.3–2.5)] or high-temperature cooked red meat (OR = 1.6, 95% CI = 1.1–2.2). Intake of red meat heavily brown on the outside or inside increased CRC risk only among subjects who carried the XPD codon 751 Lys/Lys genotype (case-only interaction P = 0.006 and P = 0.001, respectively, for doneness outside or inside) or the XPD codon 312 Asp/Asp genotype (case-only interaction P = 0.090 and P < 0.001, respectively). These interactions were stronger for rectal cancer cases (heterogeneity test P = 0.002 for XPD Asp312Asn and P = 0.03 for XPD Lys751Gln) and remained statistically significant after accounting for multiple testing. Case-unaffected sibling analyses were generally supportive of the case-only results. These findings highlight the possible contribution of diets high in red meat to the formation of lesions that elicit the NER pathway, such as carcinogen-induced bulky adducts. PMID:19029193

  7. Early clinical outcomes following laparoscopic inguinal hernia repair.

    PubMed

    Tolver, Mette Astrup

    2013-07-01

    Laparoscopic inguinal hernia repair (TAPP) has gained increasing popularity because of less post-operative pain and a shorter duration of convalescence compared with open hernia repair technique (Lichtenstein). However, investigation of duration of convalescence with non-restrictive recommendations, and a procedure-specific characterization of the early clinical outcomes after TAPP was lacking. Furthermore, optimization of the post-operative period with fibrin sealant versus tacks for fixation of mesh, and the glucocorticoid dexamethasone versus placebo needed to be investigated in randomized clinical trials. The objective of this PhD thesis was to characterize the early clinical outcomes after TAPP and optimize the post-operative period. The four studies included in this thesis have investigated duration of convalescence and procedure-specific post-operative pain and other early clinical outcomes after TAPP. Furthermore, it has been shown that fibrin sealant can improve the early post-operative period compared with tacks, while dexamethasone showed no advantages apart from reduced use of antiemetics compared with placebo. Based on these findings, and the existing knowledge, 3-5 days of convalescence should be expected when 1 day of convalescence is recommended and future studies should focus on reducing intraabdominal pain after TAPP. Fibrin sealant can optimize the early clinical outcomes but the risk of hernia recurrence and chronic pain needs to be evaluated. Dexamethasone should be investigated in higher doses.

  8. Understanding the High School Proficiency Test and the Early Warning Test in Relation to HCCC Enrollment Trends.

    ERIC Educational Resources Information Center

    Taffy, Fred

    The Grade 11 High School Proficiency Test (HSPT) and the New Jersey Early Warning Test (EWT) are two key standardized tests that indicate academic ability of county high school graduates which colleges will need to address. While HSPT scores for county high school districts reflect a range of competency in reading, math, and writing, the majority…

  9. The 2015 Nobel Prize in Chemistry The Discovery of Essential Mechanisms that Repair DNA Damage.

    PubMed

    Lindahl, Tomas; Modrich, Paul; Sancar, Aziz

    2016-01-01

    The Royal Swedish Academy awarded the Nobel Prize in Chemistry for 2015 to Tomas Lindahl, Paul Modrich and Aziz Sancar for their discoveries in fundamental mechanisms of DNA repair. This pioneering research described three different essential pathways that correct DNA damage, safeguard the integrity of the genetic code to ensure its accurate replication through generations, and allow proper cell division. Working independently of each other, Tomas Lindahl, Paul Modrich and Aziz Sancar delineated the mechanisms of base excision repair, mismatch repair and nucleotide excision repair, respectively. These breakthroughs challenged and dismissed the early view that the DNA molecule was very stable, paving the way for the discovery of human hereditary diseases associated with distinct DNA repair deficiencies and a susceptibility to cancer. It also brought a deeper understanding of cancer as well as neurodegenerative or neurological diseases, and let to novel strategies to treat cancer.

  10. Equivalent mismatch negativity deficits across deviant types in early illness schizophrenia-spectrum patients.

    PubMed

    Hay, Rachel A; Roach, Brian J; Srihari, Vinod H; Woods, Scott W; Ford, Judith M; Mathalon, Daniel H

    2015-02-01

    Neurophysiological abnormalities in auditory deviance processing, as reflected by the mismatch negativity (MMN), have been observed across the course of schizophrenia. Studies in early schizophrenia patients have typically shown varying degrees of MMN amplitude reduction for different deviant types, suggesting that different auditory deviants are uniquely processed and may be differentially affected by duration of illness. To explore this further, we examined the MMN response to 4 auditory deviants (duration, frequency, duration+frequency "double deviant", and intensity) in 24 schizophrenia-spectrum patients early in the illness (ESZ) and 21 healthy controls. ESZ showed significantly reduced MMN relative to healthy controls for all deviant types (p<0.05), with no significant interaction with deviant type. No correlations with clinical symptoms were present (all ps>0.05). These findings support the conclusion that neurophysiological mechanisms underlying processing of auditory deviants are compromised early in illness, and these deficiencies are not specific to the type of deviant presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The Effect of Basepair Mismatch on DNA Strand Displacement.

    PubMed

    Broadwater, D W Bo; Kim, Harold D

    2016-04-12

    DNA strand displacement is a key reaction in DNA homologous recombination and DNA mismatch repair and is also heavily utilized in DNA-based computation and locomotion. Despite its ubiquity in science and engineering, sequence-dependent effects of displacement kinetics have not been extensively characterized. Here, we measured toehold-mediated strand displacement kinetics using single-molecule fluorescence in the presence of a single basepair mismatch. The apparent displacement rate varied significantly when the mismatch was introduced in the invading DNA strand. The rate generally decreased as the mismatch in the invader was encountered earlier in displacement. Our data indicate that a single base pair mismatch in the invader stalls branch migration and displacement occurs via direct dissociation of the destabilized incumbent strand from the substrate strand. We combined both branch migration and direct dissociation into a model, which we term the concurrent displacement model, and used the first passage time approach to quantitatively explain the salient features of the observed relationship. We also introduce the concept of splitting probabilities to justify that the concurrent model can be simplified into a three-step sequential model in the presence of an invader mismatch. We expect our model to become a powerful tool to design DNA-based reaction schemes with broad functionality. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. The Effect of Exercise on the Early Stages of Mesenchymal Stromal Cell-Induced Cartilage Repair in a Rat Osteochondral Defect Model.

    PubMed

    Yamaguchi, Shoki; Aoyama, Tomoki; Ito, Akira; Nagai, Momoko; Iijima, Hirotaka; Tajino, Junichi; Zhang, Xiangkai; Kiyan, Wataru; Kuroki, Hiroshi

    2016-01-01

    The repair of articular cartilage is challenging owing to the restriction in the ability of articular cartilage to repair itself. Therefore, cell supplementation therapy is possible cartilage repair method. However, few studies have verified the efficacy and safety of cell supplementation therapy. The current study assessed the effect of exercise on early the phase of cartilage repair following cell supplementation utilizing mesenchymal stromal cell (MSC) intra-articular injection. An osteochondral defect was created on the femoral grooves bilaterally of Wistar rats. Mesenchymal stromal cells that were obtained from male Wistar rats were cultured in monolayer. After 4 weeks, MSCs were injected into the right knee joint and the rats were randomized into an exercise or no-exercise intervention group. The femurs were divided as follows: C group (no exercise without MSC injection); E group (exercise without MSC injection); M group (no exercise with MSC injection); and ME group (exercise with MSC injection). At 2, 4, and 8 weeks after the injection, the femurs were sectioned and histologically graded using the Wakitani cartilage repair scoring system. At 2 weeks after the injection, the total histological scores of the M and ME groups improved significantly compared with those of the C group. Four weeks after the injection, the scores of both the M and ME groups improved significantly. Additionally, the scores in the ME group showed a significant improvement compared to those in the M group. The improvement in the scores of the E, M, and ME groups at 8 weeks were not significantly different. The findings indicate that exercise may enhance cartilage repair after an MSC intra-articular injection. This study highlights the importance of exercise following cell transplantation therapy.

  13. Single-Stage Cartilage Repair Using Platelet-Rich Fibrin Scaffolds With Autologous Cartilaginous Grafts.

    PubMed

    Wong, Chin-Chean; Chen, Chih-Hwa; Chan, Wing P; Chiu, Li-Hsuan; Ho, Wei-Pin; Hsieh, Fon-Jou; Chen, You-Tzung; Yang, Tsung-Lin

    2017-11-01

    To avoid complicated procedures requiring in vitro chondrocyte expansion for cartilage repair, the development of a culture-free, 1-stage approach combining platelet-rich fibrin (PRF) and autologous cartilage grafts may be the solution. To develop a feasible 1-step procedure to combine PRF and autologous cartilage grafts for articular chondral defects. Controlled laboratory study Methods: The chemotactic effects of PRF on chondrocytes harvested from the primary culture of rabbit cartilage were evaluated in vitro and ex vivo. The rabbit chondrocytes were cultured with different concentrations of PRF media and evaluated for their cell proliferation, chondrogenic gene expression, cell viability, and extracellular matrix synthesis abilities. For the in vivo study, the chondral defects were created on established animal models of rabbits. The gross anatomy, histology, and objective scores were evaluated to validate the treatment results. PRF improved the chemotaxis, proliferation, and viability of the cultured chondrocytes. The gene expression of the chondrogenic markers, including type II collagen and aggrecan, revealed that PRF induced the chondrogenic differentiation of cultured chondrocytes. PRF increased the formation and deposition of the cartilaginous matrix produced by cultured chondrocytes. The efficacy of PRF on cell viability was comparable with that of fetal bovine serum. In animal disease models, morphologic, histological, and objectively quantitative evaluation demonstrated that PRF combined with cartilage granules was feasible in facilitating chondral repair. PRF enhances the migration, proliferation, viability, and differentiation of chondrocytes, thus showing an appealing capacity for cartilage repair. The data altogether provide evidence to confirm the feasibility of 1-stage, culture-free method of combining PRF and autologous cartilage graft for repairing articular chondral defects. The single-stage, culture-free method of combining PRF and autologous

  14. Functional role of DNA mismatch repair gene PMS2 in prostate cancer cells.

    PubMed

    Fukuhara, Shinichiro; Chang, Inik; Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K; Shiina, Hiroaki; Nonomura, Norio; Lau, Yun-Fai C; Dahiya, Rajvir; Tanaka, Yuichiro

    2015-06-30

    DNA mismatch repair (MMR) enzymes act as proofreading complexes that maintains genomic integrity and MMR-deficient cells show an increased mutation rate. MMR has also been shown to influence cell signaling and the regulation of tumor development. MMR consists of various genes and includes post-meiotic segregation (PMS) 2 which is a vital component of mutL-alpha. In prostate, the functional role of this gene has never been reported and in this study, our aim was to investigate the effect of PMS2 on growth properties of prostate cancer (PCa) cells. Previous studies have shown PMS2 to be deficient in DU145 cells and this lack of expression was confirmed by Western blotting whereas normal prostatic PWR-1E and RWPE-1 cells expressed this gene. PMS2 effects on various growth properties of DU145 were then determined by creating stable gene transfectants. Interestingly, PMS2 caused decreased cell proliferation, migration, invasion, and in vivo growth; and increased apoptosis as compared to vector control. We further analyzed genes affected by PMS2 expression and observe the apoptosis-related TMS1 gene to be significantly upregulated whereas anti-apoptotic BCL2A1 was downregulated. These results demonstrate a functional role for PMS2 to protect against PCa progression by enhancing apoptosis of PCa cells.

  15. Functional role of DNA mismatch repair gene PMS2 in prostate cancer cells

    PubMed Central

    Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K.; Shiina, Hiroaki; Nonomura, Norio; Lau, Yun-Fai C.; Dahiya, Rajvir; Tanaka, Yuichiro

    2015-01-01

    DNA mismatch repair (MMR) enzymes act as proofreading complexes that maintains genomic integrity and MMR-deficient cells show an increased mutation rate. MMR has also been shown to influence cell signaling and the regulation of tumor development. MMR consists of various genes and includes post-meiotic segregation (PMS) 2 which is a vital component of mutL-alpha. In prostate, the functional role of this gene has never been reported and in this study, our aim was to investigate the effect of PMS2 on growth properties of prostate cancer (PCa) cells. Previous studies have shown PMS2 to be deficient in DU145 cells and this lack of expression was confirmed by Western blotting whereas normal prostatic PWR-1E and RWPE-1 cells expressed this gene. PMS2 effects on various growth properties of DU145 were then determined by creating stable gene transfectants. Interestingly, PMS2 caused decreased cell proliferation, migration, invasion, and in vivo growth; and increased apoptosis as compared to vector control. We further analyzed genes affected by PMS2 expression and observe the apoptosis-related TMS1 gene to be significantly upregulated whereas anti-apoptotic BCL2A1 was downregulated. These results demonstrate a functional role for PMS2 to protect against PCa progression by enhancing apoptosis of PCa cells. PMID:26036629

  16. Mutational signatures of DNA mismatch repair deficiency in C. elegans and human cancers.

    PubMed

    Meier, Bettina; Volkova, Nadezda V; Hong, Ye; Schofield, Pieta; Campbell, Peter J; Gerstung, Moritz; Gartner, Anton

    2018-05-01

    Throughout their lifetime, cells are subject to extrinsic and intrinsic mutational processes leaving behind characteristic signatures in the genome. DNA mismatch repair (MMR) deficiency leads to hypermutation and is found in different cancer types. Although it is possible to associate mutational signatures extracted from human cancers with possible mutational processes, the exact causation is often unknown. Here, we use C. elegans genome sequencing of pms-2 and mlh-1 knockouts to reveal the mutational patterns linked to C. elegans MMR deficiency and their dependency on endogenous replication errors and errors caused by deletion of the polymerase ε subunit pole-4 Signature extraction from 215 human colorectal and 289 gastric adenocarcinomas revealed three MMR-associated signatures, one of which closely resembles the C. elegans MMR spectrum and strongly discriminates microsatellite stable and unstable tumors (AUC = 98%). A characteristic difference between human and C. elegans MMR deficiency is the lack of elevated levels of N C G > NTG mutations in C. elegans, likely caused by the absence of cytosine (CpG) methylation in worms . The other two human MMR signatures may reflect the interaction between MMR deficiency and other mutagenic processes, but their exact cause remains unknown. In summary, combining information from genetically defined models and cancer samples allows for better aligning mutational signatures to causal mutagenic processes. © 2018 Meier et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Coarctation of the aorta and ventricular septal defect: should we perform a single-stage repair?

    PubMed

    Isomatsu, Y; Imai, Y; Shin'oka, T; Aoki, M; Sato, K

    2001-09-01

    Optimal management for coarctation of the aorta and ventricular septal defect remains controversial. The current study was undertaken to determine outcome, including recoarctation after 2-stage repair, at our institution. Between 1984 and 1998, 79 patients younger than 3 months with coarctation and ventricular septal defect underwent 2-stage repair at our institution. The first-stage operation consisted of subclavian flap angioplasty and pulmonary banding. The median age at the time of first operation was 28 days (range, 4-90 days), and median weight was 3.2 kg (range, 1.2-5.1 kg). Hypoplastic aortic arch was present in 27 patients, and coexisting anomalies were present in 13 patients. After a mean interval of 10.4 +/- 9.6 months, they underwent a second-stage repair, with closure of the ventricular septal defect and pulmonary debanding. There were 2 hospital deaths and 4 late deaths. Mean follow-up was 9.2 +/- 4.9 years (range, 2.0-18.3 years), and actuarial survival was 92.3% at 10 years (95% confidence interval, 86.6%-98.3%). Age at first operation, body weight, hypoplastic arch, and coexisting anomalies had no significant influence on overall mortality. Freedom from recoarctation rate was 90.4% at 10 years (95% confidence interval, 83.7%-97.2%). To diminish mortality and the recoarctation rate and also to decrease the possibility of complications related to circulatory arrest and allogeneic blood transfusion, 2-stage repair is still an effective technique for coarctation of the aorta associated with ventricular septal defect.

  18. Clinicopathologic analysis with immunohistochemistry for DNA mismatch repair protein expression in synchronous primary endometrial and ovarian cancers.

    PubMed

    Kobayashi, Yusuke; Nakamura, Kanako; Nomura, Hiroyuki; Banno, Kouji; Irie, Haruko; Adachi, Masataka; Iida, Miho; Umene, Kiyoko; Nogami, Yuya; Masuda, Kenta; Kisu, Iori; Ueki, Arisa; Yamagami, Wataru; Kataoka, Fumio; Hirasawa, Akira; Tominaga, Eiichiro; Susumu, Nobuyuki; Aoki, Daisuke

    2015-03-01

    Synchronous primary endometrial and ovarian cancers have been an important topic in clinical medicine because it is sometimes difficult to distinguish whether there are 2 primary tumors or a single primary tumor and an associated metastasis. In addition, although these tumors are recommended for either immunohistochemistry for DNA mismatch repair (MMR) proteins or a microsatellite instability test in the Bethesda guidelines as Lynch syndrome-associated cancers, few studies have completed these analyses. In this study, we characterized the clinicopathologic features and the expression pattern of MMR proteins in synchronous primary endometrial and ovarian cancers. Clinicopathologic features and the expression pattern of MMR proteins (MLH1, MSH2, and MSH6) were characterized and analyzed in 32 synchronous primary endometrial and ovarian cancers. Most synchronous cancers are endometrioid type (endometrioid/endometrioid) (n = 24, 75%), grade 1 (n = 19, 59.4%), and diagnosed as stage I (n = 15, 46.9%) in both endometrium and ovary. It is worth mentioning that 75% of the patients (n = 24) had endometriosis, which was more common (n = 21, 87.5%) in endometrioid/endometrioid cancers, whereas only 3 cases (37.5%) were of different histology (P = 0.018). Loss of expression of at least 1 MMR protein was observed in 17 (53.1%) of the endometrial tumors and in 10 (31.3%) of ovarian tumors. Only 4 cases (12.5%) that had specific MMR protein loss showed the same type of loss for both endometrial and ovarian tumors, in which 3 of the cases were losses in MLH1. One case showed concordant MSH6 protein loss, although the cases did not meet the Amsterdam criteria II. These results suggest that most synchronous primary endometrial ovarian cancers are not hereditary cancers caused by germ line mutations but rather sporadic cancers.

  19. Correction of Residual Ventral Penile Curvature After Division of the Urethral Plate in the First Stage of a 2-Stage Proximal Hypospadias Repair.

    PubMed

    Schlomer, Bruce J

    2017-02-01

    The first stage of a 2-stage proximal hypospadias repair involves division of the urethral plate and correction of any residual ventral penile curvature (VPC). Options to correct residual VPC include dorsal corporal shortening or ventral corporal lengthening techniques. This review discusses these options and suggests an approach to management. Recent reports of 2-stage proximal hypospadias repairs indicate low rates of recurrent VPC with either dorsal corporal shortening or ventral corporal lengthening. Dorsal corporal shortening with dorsal plication may be preferentially used for mild to moderate residual VPC after division of urethral plate and ventral corporal lengthening reserved for severe residual VPC. Ventral corporal lengthening with grafts has been associated with urethroplasty complications after the second stage hypospadias surgery. Ventral corporal lengthening with relaxing incisions of corpora has been reported, but concerns about adverse effects require longer term studies. Little guidance exists to choose the best technique for VPC correction during first stage hypospadias repair after division of urethral plate. Reported literature suggests good results with dorsal plication techniques and ventral corporal lengthening. A practical approach is to use dorsal plication techniques for mild to moderate residual VPC after division of urethral plate (<45°) and reserve ventral corporal lengthening for severe residual VPC (>45°).

  20. The MutSβ complex is a modulator of p53-driven tumorigenesis through its functions in both DNA double-strand break repair and mismatch repair.

    PubMed

    van Oers, J M M; Edwards, Y; Chahwan, R; Zhang, W; Smith, C; Pechuan, X; Schaetzlein, S; Jin, B; Wang, Y; Bergman, A; Scharff, M D; Edelmann, W

    2014-07-24

    Loss of the DNA mismatch repair (MMR) protein MSH3 leads to the development of a variety of tumors in mice without significantly affecting survival rates, suggesting a modulating role for the MutSβ (MSH2-MSH3) complex in late-onset tumorigenesis. To better study the role of MSH3 in tumor progression, we crossed Msh3(-/-) mice onto a tumor predisposing p53-deficient background. Survival of Msh3/p53 mice was not reduced compared with p53 single mutant mice; however, the tumor spectrum changed significantly from lymphoma to sarcoma, indicating MSH3 as a potent modulator of p53-driven tumorigenesis. Interestingly, Msh3(-/-) mouse embryonic fibroblasts displayed increased chromatid breaks and persistence of γH2AX foci following ionizing radiation, indicating a defect in DNA double-strand break repair (DSBR). Msh3/p53 tumors showed increased loss of heterozygosity, elevated genome-wide copy-number variation and a moderate microsatellite instability phenotype compared with Msh2/p53 tumors, revealing that MSH2-MSH3 suppresses tumorigenesis by maintaining chromosomal stability. Our results show that the MSH2-MSH3 complex is important for the suppression of late-onset tumors due to its roles in DNA DSBR as well as in DNA MMR. Further, they demonstrate that MSH2-MSH3 suppresses chromosomal instability and modulates the tumor spectrum in p53-deficient tumorigenesis and possibly has a role in other chromosomally unstable tumors as well.

  1. Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs.

    PubMed

    Girelli Zubani, Giulia; Zivojnovic, Marija; De Smet, Annie; Albagli-Curiel, Olivier; Huetz, François; Weill, Jean-Claude; Reynaud, Claude-Agnès; Storck, Sébastien

    2017-04-03

    During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung -/- Pms2 -/- mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases. © 2017 Girelli Zubani et al.

  2. Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs

    PubMed Central

    De Smet, Annie; Albagli-Curiel, Olivier; Huetz, François; Weill, Jean-Claude

    2017-01-01

    During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung−/−Pms2−/− mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases. PMID:28283534

  3. Dominant Mutations in S. cerevisiae PMS1 Identify the Mlh1-Pms1 Endonuclease Active Site and an Exonuclease 1-Independent Mismatch Repair Pathway

    PubMed Central

    Smith, Catherine E.; Mendillo, Marc L.; Bowen, Nikki; Hombauer, Hans; Campbell, Christopher S.; Desai, Arshad; Putnam, Christopher D.; Kolodner, Richard D.

    2013-01-01

    Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway. PMID:24204293

  4. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway.

    PubMed

    Smith, Catherine E; Mendillo, Marc L; Bowen, Nikki; Hombauer, Hans; Campbell, Christopher S; Desai, Arshad; Putnam, Christopher D; Kolodner, Richard D

    2013-10-01

    Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.

  5. The Effect of Exercise on the Early Stages of Mesenchymal Stromal Cell-Induced Cartilage Repair in a Rat Osteochondral Defect Model

    PubMed Central

    Yamaguchi, Shoki; Aoyama, Tomoki; Ito, Akira; Nagai, Momoko; Iijima, Hirotaka; Tajino, Junichi; Zhang, Xiangkai; Kiyan, Wataru; Kuroki, Hiroshi

    2016-01-01

    The repair of articular cartilage is challenging owing to the restriction in the ability of articular cartilage to repair itself. Therefore, cell supplementation therapy is possible cartilage repair method. However, few studies have verified the efficacy and safety of cell supplementation therapy. The current study assessed the effect of exercise on early the phase of cartilage repair following cell supplementation utilizing mesenchymal stromal cell (MSC) intra-articular injection. An osteochondral defect was created on the femoral grooves bilaterally of Wistar rats. Mesenchymal stromal cells that were obtained from male Wistar rats were cultured in monolayer. After 4 weeks, MSCs were injected into the right knee joint and the rats were randomized into an exercise or no-exercise intervention group. The femurs were divided as follows: C group (no exercise without MSC injection); E group (exercise without MSC injection); M group (no exercise with MSC injection); and ME group (exercise with MSC injection). At 2, 4, and 8 weeks after the injection, the femurs were sectioned and histologically graded using the Wakitani cartilage repair scoring system. At 2 weeks after the injection, the total histological scores of the M and ME groups improved significantly compared with those of the C group. Four weeks after the injection, the scores of both the M and ME groups improved significantly. Additionally, the scores in the ME group showed a significant improvement compared to those in the M group. The improvement in the scores of the E, M, and ME groups at 8 weeks were not significantly different. The findings indicate that exercise may enhance cartilage repair after an MSC intra-articular injection. This study highlights the importance of exercise following cell transplantation therapy. PMID:26968036

  6. One-Stage versus Two-Stage Repair of Asymmetric Bilateral Cleft Lip: A 20-Year Retrospective Study of Clinical Outcome.

    PubMed

    Chung, Kyung Hoon; Lo, Lun-Jou

    2018-05-01

    Both one- and two-stage approaches have been widely used for patients with asymmetric bilateral cleft lip. There are insufficient long-term outcome data for comparison of these two methods. The purpose of this retrospective study was to compare the clinical outcome over the past 20 years. The senior author's (L.J.L.) database was searched for patients with asymmetric bilateral cleft lip from 1995 to 2015. Qualified patients were divided into two groups: one-stage and two-stage. The postoperative photographs of patients were evaluated subjectively by surgical professionals and laypersons. Ratios of the nasolabial region were calculated for objective analysis. Finally, the revision procedures in the nasolabial area were reviewed. Statistical analyses were performed. A total of 95 consecutive patients were qualified for evaluation. Average follow-up was 13.1 years. A two-stage method was used in 35 percent of the patients, and a one-stage approach was used in 65 percent. All underwent primary nasal reconstruction. Among the satisfaction rating scores, the one-stage repair was rated significantly higher than two-stage reconstruction (p = 0.0001). Long-term outcomes of the two-stage patients and the unrepaired mini-microform deformities were unsatisfactory according to both professional and nonprofessional evaluators. The revision rate was higher in patients with a greater-side complete cleft lip and palate as compared with those without palatal involvement. The results suggested that one-stage repair provided better results with regard to achieving a more symmetric and smooth lip and nose after primary reconstruction. The revision rate was slightly higher in the two-stage patient group. Therapeutic, III.

  7. Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops

    PubMed Central

    Gupta, Shikha; Gellert, Martin; Yang, Wei

    2011-01-01

    DNA mismatch repair corrects replication errors, thus reducing mutation rates and microsatellite instability. Genetic defects in this pathway cause Lynch Syndrome and various cancers in humans. Binding of a mispaired or unpaired base by bacterial MutS and eukaryotic MutSα is well characterized. We report here crystal structures of human MutSβ complexed with DNA containing insertion-deletion loops (IDL) of 2, 3, 4, or 6 unpaired nucleotides. In contrast to eukaryotic MutSα and bacterial MutS, which bind the base of a mismatched nucleotide, MutSβ binds three phosphates in an IDL. DNA is severely bent at the IDL; unpaired bases are flipped out into the major groove and partially exposed to solvent. A normal downstream basepair can become unpaired; thereby a single unpaired base can be converted to an IDL of 2 nucleotides and recognized by MutSβ. The C-terminal dimerization domains form an integral part of the MutS structure and coordinate asymmetrical ATP hydrolysis by Msh2 and Msh3 with mismatch binding to signal for repair. PMID:22179786

  8. ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by mismatch and double-strand break repair DNA substrates.

    PubMed

    Kumar, Charanya; Eichmiller, Robin; Wang, Bangchen; Williams, Gregory M; Bianco, Piero R; Surtees, Jennifer A

    2014-06-01

    In Saccharomyces cerevisiae, Msh2-Msh3-mediated mismatch repair (MMR) recognizes and targets insertion/deletion loops for repair. Msh2-Msh3 is also required for 3' non-homologous tail removal (3'NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, we recently demonstrated that the two pathways have distinct requirements with respect to Msh2-Msh3 activities. We identified a set of aromatic residues in the nucleotide binding pocket (FLY motif) of Msh3 that, when mutated, disrupted MMR, but left 3'NHTR largely intact. One of these mutations, msh3Y942A, was predicted to disrupt the nucleotide sandwich and allow altered positioning of ATP within the pocket. To develop a mechanistic understanding of the differential requirements for ATP binding and/or hydrolysis in the two pathways, we characterized Msh2-Msh3 and Msh2-msh3Y942A ATP binding and hydrolysis activities in the presence of MMR and 3'NHTR DNA substrates. We observed distinct, substrate-dependent ATP hydrolysis and nucleotide turnover by Msh2-Msh3, indicating that the MMR and 3'NHTR DNA substrates differentially modify the ATP binding/hydrolysis activities of Msh2-Msh3. Msh2-msh3Y942A retained the ability to bind DNA and ATP but exhibited altered ATP hydrolysis and nucleotide turnover. We propose that both ATP and structure-specific repair substrates cooperate to direct Msh2-Msh3-mediated repair and suggest an explanation for the msh3Y942A separation-of-function phenotype. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by Mismatch and Double-strand Break Repair DNA substrates

    PubMed Central

    Kumar, Charanya; Eichmiller, Robin; Wang, Bangchen; Williams, Gregory M.; Bianco, Piero R.; Surtees, Jennifer A.

    2014-01-01

    In Saccharomyces cerevisiae, Msh2-Msh3-mediated mismatch repair (MMR) recognizes and targets insertion/deletion loops for repair. Msh2-Msh3 is also required for 3′ non-homologous tail removal (3′NHTR) in double-strand break repair. In both pathways, Msh2-Msh3 binds double-strand/single-strand junctions and initiates repair in an ATP-dependent manner. However, we recently demonstrated that the two pathways have distinct requirements with respect to Msh2-Msh3 activities. We identified a set of aromatic residues in the nucleotide binding pocket (FLY motif) of Msh3 that, when mutated, disrupted MMR, but left 3′ NHTR largely intact. One of these mutations, msh3Y942A, was predicted to disrupt the nucleotide sandwich and allow altered positioning of ATP within the pocket. To develop a mechanistic understanding of the differential requirements for ATP binding and/or hydrolysis in the two pathways, we characterized Msh2-Msh3 and Msh2-msh3Y942A ATP binding and hydrolysis activities in the presence of MMR and 3′ NHTR DNA substrates. We observed distinct, substrate-dependent ATP hydrolysis and nucleotide turnover by Msh2-Msh3, indicating that the MMR and 3′ NHTR DNA substrates differentially modify the ATP binding/hydrolysis activities of Msh2-Msh3. Msh2-msh3Y942A retained the ability to bind DNA and ATP but exhibited altered ATP hydrolysis and nucleotide turnover. We propose that both ATP and structure-specific repair substrates cooperate to direct Msh2-Msh3-mediated repair and suggest an explanation for the msh3Y942A separation-of-function phenotype. PMID:24746922

  10. Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries.

    PubMed

    Monteiro Santos, Erika Maria; Valentin, Mev Dominguez; Carneiro, Felipe; de Oliveira, Ligia Petrolini; de Oliveira Ferreira, Fabio; Junior, Samuel Aguiar; Nakagawa, Wilson Toshihiko; Gomy, Israel; de Faria Ferraz, Victor Evangelista; da Silva Junior, Wilson Araujo; Carraro, Dirce Maria; Rossi, Benedito Mauro

    2012-02-09

    Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson). The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.

  11. Relationships among L1 Print Exposure and Early L1 Literacy Skills, L2 Aptitude, and L2 Proficiency

    ERIC Educational Resources Information Center

    Sparks, Richard L.; Patton, Jon; Ganschow, Leonore; Humbach, Nancy

    2012-01-01

    Authors examined the relationship between individual differences in L1 print exposure and differences in early L1 skills and later L2 aptitude, L2 proficiency, and L2 classroom achievement. Participants were administered measures of L1 word decoding, spelling, phonemic awareness, reading comprehension, receptive vocabulary, and listening…

  12. Differential effects of the mismatch repair genes MSH2 and MSH3 on homeologous recombination in Saccharomyces cerevisiae.

    PubMed

    Selva, E M; Maderazo, A B; Lahue, R S

    1997-12-01

    The products of the yeast mismatch repair genes MSH2 and MSH3 participate in the inhibition of genetic recombination between homeologous (divergent) DNA sequences. In strains deficient for these genes, homeologous recombination rates between repeated elements are elevated due to the loss of this inhibition. In this study, the effects of these mutations were further analyzed by quantitation of mitotic homeologous recombinants as crossovers, gene conversions or exceptional events in wild-type, msh2, msh3 and msh2 msh3 mutant strains. When homeologous sequences were present as a direct repeat in one orientation, crossovers and gene conversions were elevated in msh2, msh3 and msh2 msh3 strains. The increases were greater in the msh2 msh3 double mutant than in either single mutant. When the order of the homeologous sequences was reversed, the msh2 mutation again yielded increased rates of crossovers and gene conversions. However, in an msh3 strain, gene conversions occurred at higher levels but interchromosomal crossovers were not increased and intrachromosomal crossovers were reduced relative to wild type. The msh2 msh3 double mutant behaved like the msh2 single mutant in this orientation. Control strains harboring homologous duplications were largely but not entirely unaffected in mutant strains, suggesting specificity for the mismatched intermediates of homeologous recombination. In all strains, very few (< 10%) recombinants could be attributed to exceptional events. These results suggest that MSH2 and MSH3 can function differentially to control homeologous exchanges.

  13. Effects of early nerve repair on experimental brachial plexus injury in neonatal rats.

    PubMed

    Bourke, Gráinne; McGrath, Aleksandra M; Wiberg, Mikael; Novikov, Lev N

    2018-03-01

    Obstetrical brachial plexus injury refers to injury observed at the time of delivery, which may lead to major functional impairment in the upper limb. In this study, the neuroprotective effect of early nerve repair following complete brachial plexus injury in neonatal rats was examined. Brachial plexus injury induced 90% loss of spinal motoneurons and 70% decrease in biceps muscle weight at 28 days after injury. Retrograde degeneration in spinal cord was associated with decreased density of dendritic branches and presynaptic boutons and increased density of astrocytes and macrophages/microglial cells. Early repair of the injured brachial plexus significantly delayed retrograde degeneration of spinal motoneurons and reduced the degree of macrophage/microglial reaction but had no effect on muscle atrophy. The results demonstrate that early nerve repair of neonatal brachial plexus injury could promote survival of injured motoneurons and attenuate neuroinflammation in spinal cord.

  14. Screening for Muir-Torre syndrome using mismatch repair protein immunohistochemistry of sebaceous neoplasms.

    PubMed

    Roberts, Maegan E; Riegert-Johnson, Douglas L; Thomas, Brittany C; Thomas, Colleen S; Heckman, Michael G; Krishna, Murli; DiCaudo, David J; Bridges, Alina G; Hunt, Katherine S; Rumilla, Kandelaria M; Cappel, Mark A

    2013-06-01

    Screening for the Muir-Torre variant of Lynch Syndrome (LS) using Mismatch Repair (MMR) gene immunohistochemistry (IHC) on sebaceous neoplasms (SNs) is technically feasible. To date, research into the clinical utility of MMR IHC for this indication is limited. We conducted a retrospective chart review of 90 patients with MMR IHC completed on at least one SN from January 2005 to May 2010. SNs included were adenomas, epitheliomas, carcinomas and basal and squamous cell carcinomas with sebaceous differentiation. Of the 90 patients, 13 (14 %) had genetically confirmed or fulfilled clinical criteria for a diagnosis of MTS and 51 patients (57 %) presented with an abnormal MMR IHC result (loss of one or more MMR proteins) on at least one SN. Abnormal IHC had a sensitivity of 85 %, specificity of 48 %, positive predictive value (PPV) of 22 % and negative predictive value (NPV) of 95 % when evaluating for MTS. When personal or family history of colorectal cancer (≥2 family members with a history of colorectal cancer) was taken into consideration, ignoring IHC results, sensitivity was 92 %, specificity was 99 %, PPV was 92 % and NPV was 99 %. MMR IHC on SNs when used to screen for MTS has poor diagnostic utility. We recommend that MMR IHC not be performed routinely on SNs when the patient does not have either personal or family history of colorectal cancer.

  15. Peritumoral granulomatous reaction in endometrial carcinoma: association with DNA mismatch repair protein deficiency, particularly loss of PMS2 expression.

    PubMed

    Stewart, Colin J R; Pearn, Amy; Pachter, Nicholas; Tan, Adeline

    2018-04-30

    The observation of peritumoral granulomatous reactions (PGRs) in two endometrial carcinomas (ECs) with a PMS2-deficient/MLH1-intact expression pattern led us to investigate whether PGRs in EC were specifically associated with DNA mismatch repair (MMR) protein deficiency, particularly PMS2 loss. Hysterectomy specimens from 22 MMR protein-intact and 54 MMR protein-deficient ECs were reviewed with specific attention to the presence of a PGR and a tumour-associated lymphoid reaction [including tumour-infiltrating lymphocytes (TILs) and stromal lymphoid infiltrates]. The MMR protein-deficient ECs included 22 cases with combined MLH1/PMS2 loss, 11 with combined MSH2/MSH6 loss, 11 with isolated MSH6 loss, and 10 with PMS2 loss but intact MLH1 staining (including the two 'index' cases). Overall, PGRs were identified in seven of 54 (13%) MMR protein-deficient ECs, five of which showed a PMS2-deficient/MLH1-intact immunophenotype; three of these patients had germline PMS2 mutations and one additional patient had a germline MSH6 mutation. None of the MMR protein-intact tumours showed a PGR. Although five of the seven PGR-positive ECs had a high-grade histological component, six were stage I. Most ECs with PGRs also showed TILs and stromal lymphoid reactions, similarly to MMR protein-deficient ECs in general. MMR protein-deficient ECs, particularly those with PMS2 loss, occasionally show PGRs in addition to stromal lymphoid infiltrates and TILs. Therefore, PGRs could be considered to constitute a histological prompt for consideration of Lynch syndrome. The potential prognostic significance of PGRs in EC requires further study. © 2018 John Wiley & Sons Ltd.

  16. Investigating Executive Working Memory and Phonological Short-Term Memory in Relation to Fluency and Self-Repair Behavior in L2 Speech.

    PubMed

    Georgiadou, Effrosyni; Roehr-Brackin, Karen

    2017-08-01

    This paper reports the findings of a study investigating the relationship of executive working memory (WM) and phonological short-term memory (PSTM) to fluency and self-repair behavior during an unrehearsed oral task performed by second language (L2) speakers of English at two levels of proficiency, elementary and lower intermediate. Correlational analyses revealed a negative relationship between executive WM and number of pauses in the lower intermediate L2 speakers. However, no reliable association was found in our sample between executive WM or PSTM and self-repair behavior in terms of either frequency or type of self-repair. Taken together, our findings suggest that while executive WM may enhance performance at the conceptualization and formulation stages of the speech production process, self-repair behavior in L2 speakers may depend on factors other than working memory.

  17. Four novel germline mutations in the MLH1 and PMS2 mismatch repair genes in patients with hereditary nonpolyposis colorectal cancer.

    PubMed

    Montazer Haghighi, Mahdi; Radpour, Ramin; Aghajani, Katayoun; Zali, Narges; Molaei, Mahsa; Zali, Mohammad Reza

    2009-08-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is the most common cause of early onset hereditary colorectal cancer. In the majority of HNPCC families, microsatellite instability (MSI) and germline mutation in one of the DNA mismatch repair (MMR) genes are found. The entire coding sequence of MMR genes (MLH1, MLH2, MLH6, and PMS2) was analyzed using direct sequencing. Also, tumor tests were done as MSI and immunohistochemistry testing. We were able to find three novel MLH1 and one novel PMS2 germline mutations in three Iranian HNPCC patients. The first was a transversion mutation c.346A>C (T116P) and happened in the highly conserved HATPase-c region of MLH1 protein. The second was a transversion mutation c.736A>T (I246L), which caused an amino acid change of isoleucine to leucine. The third mutation (c.2145,6 delTG) was frameshift and resulted in an immature stop codon in five codons downstream. All of these three mutations were detected in the MLH1 gene. The other mutation was a transition mutation, c.676G>A (G207E), which has been found in exon six of the PMS2 gene and caused an amino acid change of glycine to glutamic acid. MSI assay revealed high instability in microsatellite for two patients and microsatellite stable for one patient. In all patients, an abnormal expression of the MMR proteins in HNPCC was related to the above novel mutations.

  18. Predictors and Outcomes of Early vs. Later English Language Proficiency Among English Language Learners

    PubMed Central

    Halle, Tamara; Hair, Elizabeth; Wandner, Laura; McNamara, Michelle; Chien, Nina

    2011-01-01

    The development of English language learners (ELLs) was explored from kindergarten through eighth grade within a nationally representative sample of first-time kindergartners (N = 19,890). Growth curve analyses indicated that, compared to native English speakers, ELLs were rated by teachers more favorably on approaches to learning, self control, and externalizing behaviors in kindergarten and generally continued to grow in a positive direction on these social/behavioral outcomes at a steeper rate compared to their native English-speaking peers, holding other factors constant. Differences in reading and math achievement between ELLs and native English speakers varied based on the grade at which English proficiency is attained. Specifically, ELLs who were proficient in English by kindergarten entry kept pace with native English speakers in both reading and math initially and over time; ELLs who were proficient by first grade had modest gaps in reading and math achievement compared to native English speakers that closed narrowly or persisted over time; and ELLs who were not proficient by first grade had the largest initial gaps in reading and math achievement compared to native speakers but the gap narrowed over time in reading and grew over time in math. Among those whose home language is not English, acquiring English proficiency by kindergarten entry was associated with better cognitive and behavioral outcomes through eighth grade compared to taking longer to achieve proficiency. Multinomial regression analyses indicated that child, family, and school characteristics predict achieving English proficiency by kindergarten entry compared to achieving proficiency later. Results are discussed in terms of policies and practices that can support ELL children’s growth and development. PMID:22389551

  19. Complex relationship between mismatch repair proteins and MBD4 during immunoglobulin class switch recombination.

    PubMed

    Grigera, Fernando; Bellacosa, Alfonso; Kenter, Amy L

    2013-01-01

    Mismatch repair (MMR) safeguards against genomic instability and is required for efficient Ig class switch recombination (CSR). Methyl CpG binding domain protein 4 (MBD4) binds to MutL homologue 1 (MLH1) and controls the post-transcriptional level of several MMR proteins, including MutS homologue 2 (MSH2). We show that in WT B cells activated for CSR, MBD4 is induced and interacts with MMR proteins, thereby implying a role for MBD4 in CSR. However, CSR is in the normal range in Mbd4 deficient mice deleted for exons 2-5 despite concomitant reduction of MSH2. We show by comparison in Msh2(+/-) B cells that a two-fold reduction of MSH2 and MBD4 proteins is correlated with impaired CSR. It is therefore surprising that CSR occurs at normal frequencies in the Mbd4 deficient B cells where MSH2 is reduced. We find that a variant Mbd4 transcript spanning exons 1,6-8 is expressed in Mbd4 deficient B cells. This transcript can be ectopically expressed and produces a truncated MBD4 peptide. Thus, the 3' end of the Mbd4 locus is not silent in Mbd4 deficient B cells and may contribute to CSR. Our findings highlight a complex relationship between MBD4 and MMR proteins in B cells and a potential reconsideration of their role in CSR.

  20. Elevated levels of the mismatch repair protein PMS2 are associated with prostate cancer.

    PubMed

    Norris, Alixanna M; Woodruff, R D; D'Agostino, Ralph B; Clodfelter, Jill E; Scarpinato, Karin Drotschmann

    2007-02-01

    Defects in mismatch repair (MMR) proteins have been identified in various types of cancer. However, an association with prostate cancer has been controversial. Defective MMR results in genome instability with detrimental consequences that significantly contribute to tumorigenesis. This study determined alterations in key MMR protein levels in prostate cancer with the goal to identify prognostic markers. Prostatectomy samples were immunohistochemically stained and the relative presence or absence of key proteins MSH2, MLH1, and PMS2 determined. Cancer tissue of distinct grades was compared with the normal surrounding tissue. Microsatellite instability (MSI) in altered tissues was determined according to NCI guidelines. In contrast to reports that associate a lack of individual MMR proteins with tumorigenesis, a significant increase in PMS2 levels was identified in PIN lesions and prostate cancer tissue. This elevation in PMS2 was independent of changes in levels in its heterodimeric partner, MLH1. Prostate tumors with elevated levels of PMS2 were genetically unstable, which was corrected by MLH1 co-elevation. This is the first documentation of detrimental consequences associated with the increase in a MMR protein in human cancer. This study recognizes PMS2 elevation as a prognostic marker in pre-neoplastic and prostate cancer lesions. This result has significant implications for future diagnostic and treatment measures. (c) 2006 Wiley-Liss, Inc.

  1. Definitions and Approaches to Measuring Reading Proficiency. CEELO FastFact

    ERIC Educational Resources Information Center

    Connors-Tadros, Lori

    2014-01-01

    A state contacted the Center on Enhancing Early Learning Outcomes (CEELO) for guidance in developing a definition of "reading proficiency" and what it means to "read on grade level by third grade." The state also requested information on how national sources or states define and measure proficiency. The state was particularly…

  2. Mismatch repair defects and Lynch syndrome: The role of the basic scientist in the battle against cancer.

    PubMed

    Heinen, Christopher D

    2016-02-01

    We have currently entered a genomic era of cancer research which may soon lead to a genomic era of cancer treatment. Patient DNA sequencing information may lead to a personalized approach to managing an individual's cancer as well as future cancer risk. The success of this approach, however, begins not necessarily in the clinician's office, but rather at the laboratory bench of the basic scientist. The basic scientist plays a critical role since the DNA sequencing information is of limited use unless one knows the function of the gene that is altered and the manner by which a sequence alteration affects that function. The role of basic science research in aiding the clinical management of a disease is perhaps best exemplified by considering the case of Lynch syndrome, a hereditary disease that predisposes patients to colorectal and other cancers. This review will examine how the diagnosis, treatment and even prevention of Lynch syndrome-associated cancers has benefitted from extensive basic science research on the DNA mismatch repair genes whose alteration underlies this condition. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Inside-Out Meniscus Repair

    PubMed Central

    Nelson, Clay G.; Bonner, Kevin F.

    2013-01-01

    Meniscus repair over resection, when feasible, should be strongly considered in an effort to preserve meniscus integrity and function, especially in younger patients. Currently, a number of techniques and implants may be used to achieve a successful result. Although all-inside meniscus repair devices have evolved significantly since their introduction and have become the repair technique of choice for many surgeons, the classic inside-out repair technique is still very useful to have in one's armamentarium. Though less popular because of the ease of current-generation fixators, the inside-out technique can still offer advantages for those surgeons who are proficient. With the versatility to address most tear patterns, the ability to deliver sutures with smaller needle diameters, and proven long-term results, it has been considered the gold standard in meniscus repair. We review the inside-out repair technique for both a medial and lateral meniscus tear with some helpful tips when performing the technique, and we present a video demonstration of the lateral meniscus repair technique. PMID:24400199

  4. Mitochondrial DNA repair and damage tolerance.

    PubMed

    Stein, Alexis; Sia, Elaine A

    2017-01-01

    The accurate maintenance of mitochondrial DNA (mtDNA) is required in order for eukaryotic cells to assemble a functional electron transport chain. This independently-maintained genome relies on nuclear-encoded proteins that are imported into the mitochondria to carry out replication and repair processes. Decades of research has made clear that mitochondria employ robust and varied mtDNA repair and damage tolerance mechanisms in order to ensure the proper maintenance of the mitochondrial genome. This review focuses on our current understanding of mtDNA repair and damage tolerance pathways including base excision repair, mismatch repair, homologous recombination, non-homologous end joining, translesion synthesis and mtDNA degradation in both yeast and mammalian systems.

  5. BRAF/KRAS gene sequencing of sebaceous neoplasms after mismatch repair protein analysis.

    PubMed

    Cornejo, Kristine M; Hutchinson, Lloyd; Deng, April; Tomaszewicz, Keith; Welch, Matthew; Lyle, Stephen; Dresser, Karen; Cosar, Ediz F

    2014-06-01

    Sebaceous neoplasms are cutaneous markers for the autosomal-dominant Muir-Torre syndrome (MTS). This phenotypic variant of Lynch syndrome (LS) is caused by germline mutations in DNA mismatch repair (MMR) genes. Microsatellite instability or loss of protein expression suggests a mutation or promoter hypermethylation in 1 of the MMR genes. BRAF gene sequencing may help to distinguish between patients with sporadic and LS-associated colorectal carcinomas with loss of MLH1 expression. LS-associated carcinomas are virtually negative for BRAF mutations, but a subset harbors KRAS mutations. The aim of our study was to test sebaceous neoplasms for V600E BRAF or KRAS mutations to determine if these mutations are associated with somatic or germline MMR defects, analogous to colorectal carcinomas. Over a 4-year period, 32 cases comprising 21 sebaceous adenomas, 3 sebaceomas, and 8 sebaceous carcinomas with sufficient material for testing were collected. MMR immunohistochemistry showed that 7 neoplasms had combined loss of MLH1-PMS2, 16 neoplasms had combined loss of MSH2-MSH6, 2 neoplasms had solitary loss of MSH6, and 7 sebaceous neoplasms had intact protein expression. BRAF/KRAS testing revealed all sebaceous neoplasms contained a wild-type BRAF gene. Two (15%) of 13 patients with MTS were found to harbor a KRAS mutation and loss of MLH1 expression. We conclude that a V600E BRAF mutation may not be helpful in distinguishing sporadic from MTS-associated sebaceous neoplasms. Further studies are needed to determine if KRAS mutations are restricted to patients with MTS or are also present in sporadic sebaceous neoplasms. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Spectrum of mismatch repair gene mutations and clinical presentation of Hispanic individuals with Lynch syndrome.

    PubMed

    Sunga, Annette Y; Ricker, Charité; Espenschied, Carin R; Castillo, Danielle; Melas, Marilena; Herzog, Josef; Bannon, Sarah; Cruz-Correa, Marcia; Lynch, Patrick; Solomon, Ilana; Gruber, Stephen B; Weitzel, Jeffrey N

    2017-04-01

    Lynch syndrome (LS), the most common hereditary colorectal cancer syndrome, is caused by mismatch repair (MMR) gene mutations. However, data about MMR mutations in Hispanics are limited. This study aims to describe the spectrum of MMR mutations in Hispanics with LS and explore ancestral origins. This case series involved an IRB-approved retrospective chart review of self-identified Hispanic patients (n = 397) seen for genetic cancer risk assessment at four collaborating academic institutions in California, Texas, and Puerto Rico who were evaluated by MMR genotyping and/or tumor analysis. A literature review was conducted for all mutations identified. Of those who underwent clinical genetic testing (n = 176), 71 had MMR gene mutations. Nine mutations were observed more than once. One third (3/9) of recurrent mutations and two additional mutations (seen only once) were previously reported in Spain, confirming the influence of Spanish ancestry on MMR mutations in Hispanic populations. The recurrent mutations identified (n = 9) included both previously reported mutations as well as unique mutations not in the literature. This is the largest report of Hispanic MMR mutations in North America; however, a larger sample and haplotype analyses are needed to better understand recurrent MMR mutations in Hispanic populations. Copyright © 2017. Published by Elsevier Inc.

  7. Surgery for left ventricular aneurysm: early and late survival after simple linear repair and endoventricular patch plasty.

    PubMed

    Lundblad, Runar; Abdelnoor, Michel; Svennevig, Jan Ludvig

    2004-09-01

    Simple linear resection and endoventricular patch plasty are alternative techniques to repair postinfarction left ventricular aneurysm. The aim of the study was to compare these 2 methods with regard to early mortality and long-term survival. We retrospectively reviewed 159 patients undergoing operations between 1989 and 2003. The epidemiologic design was of an exposed (simple linear repair, n = 74) versus nonexposed (endoventricular patch plasty, n = 85) cohort with 2 endpoints: early mortality and long-term survival. The crude effect of aneurysm repair technique versus endpoint was estimated by odds ratio, rate ratio, or relative risk and their 95% confidence intervals. Stratification analysis by using the Mantel-Haenszel method was done to quantify confounders and pinpoint effect modifiers. Adjustment for multiconfounders was performed by using logistic regression and Cox regression analysis. Survival curves were analyzed with the Breslow test and the log-rank test. Early mortality was 8.2% for all patients, 13.5% after linear repair and 3.5% after endoventricular patch plasty. When adjusted for multiconfounders, the risk of early mortality was significantly higher after simple linear repair than after endoventricular patch plasty (odds ratio, 4.4; 95% confidence interval, 1.1-17.8). Mean follow-up was 5.8 +/- 3.8 years (range, 0-14.0 years). Overall 5-year cumulative survival was 78%, 70.1% after linear repair and 91.4% after endoventricular patch plasty. The risk of total mortality was significantly higher after linear repair than after endoventricular patch plasty when controlled for multiconfounders (relative risk, 4.5; 95% confidence interval, 2.0-9.7). Linear repair dominated early in the series and patch plasty dominated later, giving a possible learning-curve bias in favor of patch plasty that could not be adjusted for in the regression analysis. Postinfarction left ventricular aneurysm can be repaired with satisfactory early and late results. Surgical

  8. The yeast MSH1 gene is not involved in DNA repair or recombination during meiosis.

    PubMed

    Sia, Elaine A; Kirkpatrick, David T

    2005-02-03

    Six strong homologs of the bacterial MutS DNA mismatch repair (MMR) gene have been identified in the yeast Saccharomyces cerevisiae. With the exception of the MSH1 gene, the involvement of each homolog in DNA repair and recombination during meiosis has been determined previously. Five of the homologs have been demonstrated to act in meiotic DNA repair (MSH2, MSH3, MSH6 and MSH4) and/or meiotic recombination (MSH4 and MSH5). Unfortunately the loss of mitochondrial function that results from deletion of MSH1 disrupts meiotic progression, precluding an analysis of MSH1 function in meiotic DNA repair and recombination. However, the recent identification of two separation-of-function alleles of MSH1 that interfere with protein function but still maintain functional mitochondria allow the meiotic activities of MSH1 to be determined. We show that the G776D and F105A alleles of MSH1 exhibit no defects in meiotic recombination, repair base-base mismatches and large loop mismatches efficiently during meiosis, and have high levels of spore viability. These data indicate that the MSH1 protein, unlike other MutS homologs in yeast, plays no role in DNA repair or recombination during meiosis.

  9. 2-stage repair in infancy for severe hypospadias with chordee: long-term results after puberty.

    PubMed

    Lam, Po N; Greenfield, Saul P; Williot, Pierre

    2005-10-01

    Urinary and sexual functions were assessed in post-pubescent boys who had undergone 2-stage hypospadias repair in infancy for severe hypospadias with chordee. A total of 44 boys who had undergone 2-stage hypospadias repair from 1985 to 1993 and who were at least 13 years old were contacted. Of the 44 boys 27 (61%) with an average age of 15.4 years (range 13 to 21) responded. Meatal locations were midshaft in 14 cases, penoscrotal in 9 and perineal in 4. Four boys had bifid scrotum and 5 had intersex disorders. Intramuscular testosterone was administered preoperatively to 15 (56%) boys. A Nesbit procedure was performed in 18 boys (67%). Average patient age at stage 2 repair was 2.3 years. Mean followup was 12.7 years (range 10.7 to 17.2). Additional surgery was performed for diverticuli in 5 cases, fistula in 3 and minor strictures in 4. Of the 27 patients 25 presented for examination and 2 responded to questionnaire only. All patients had normal meatal position, normal glanular anatomy, a well-defined coronal sulcus, normal cylindrical shafts without extra skin and well-defined penoscrotal junctions. Ten boys (40%) had minor spraying of stream, all stood to void and 10 (40%) milked the urethra after voiding. None had chordee. Twenty patients were able to ejaculate and 9 (42.9%) had to milk the ejaculate. Two patients (7.7%) had minor pain with erection. All subjects were satisfied with urinary, erectile and ejaculatory functions, and 23 (92%) were pleased with appearance. The 2-stage approach for severe hypospadias results in excellent function, cosmesis and patient satisfaction after puberty, with no chordee. Minor voiding and ejaculatory problems are to be expected. Late complications are rare. The use of extragenital skin to either primarily repair or salvage a "cripple" has not been necessary.

  10. Comparative performances of staging systems for early hepatocellular carcinoma.

    PubMed

    Nathan, Hari; Mentha, Gilles; Marques, Hugo P; Capussotti, Lorenzo; Majno, Pietro; Aldrighetti, Luca; Pulitano, Carlo; Rubbia-Brandt, Laura; Russolillo, Nadia; Philosophe, Benjamin; Barroso, Eduardo; Ferrero, Alessandro; Schulick, Richard D; Choti, Michael A; Pawlik, Timothy M

    2009-08-01

    Several staging systems for patients with hepatocellular carcinoma (HCC) have been proposed, but studies of their prognostic accuracy have yielded conflicting conclusions. Stratifying patients with early HCC is of particular interest because these patients may derive the greatest benefit from intervention, yet no studies have evaluated the comparative performances of staging systems in patients with early HCC. A retrospective cohort study was performed using data on 379 patients who underwent liver resection or liver transplantation for HCC at six major hepatobiliary centres in the USA and Europe. The staging systems evaluated were: the Okuda staging system, the International Hepato-Pancreato-Biliary Association (IHPBA) staging system, the Cancer of the Liver Italian Programme (CLIP) score, the Barcelona Clinic Liver Cancer (BCLC) staging system, the Japanese Integrated Staging (JIS) score and the American Joint Committee on Cancer/International Union Against Cancer (AJCC/UICC) staging system, 6th edition. A recently proposed early HCC prognostic score was also evaluated. The discriminative abilities of the staging systems were evaluated using Cox proportional hazards models and the bootstrap-corrected concordance index (c). Overall survival of the cohort was 74% at 3 years and 52% at 5 years, with a median survival of 62 months. Most systems demonstrated poor discriminatory ability (P > 0.05 on Cox proportional hazards analysis, c approximately 0.5). However, the AJCC/UICC system clearly stratified patients (P < 0.001, c = 0.59), albeit only into two groups. The early HCC prognostic score also clearly stratified patients (P < 0.001, c = 0.60) and identified three distinct prognostic groups. The early HCC prognostic score is superior to the AJCC/UICC staging system (6th edition) for predicting the survival of patients with early HCC after liver resection or liver transplantation. Other major HCC staging systems perform poorly in patients with early HCC.

  11. Phosphorylation-dependent signaling controls degradation of DNA mismatch repair protein PMS2.

    PubMed

    Hinrichsen, Inga; Weßbecher, Isabel M; Huhn, Meik; Passmann, Sandra; Zeuzem, Stefan; Plotz, Guido; Biondi, Ricardo M; Brieger, Angela

    2017-12-01

    MutLα, a heterodimer consisting of MLH1 and PMS2, plays an important role in DNA mismatch repair and has been shown to be additionally involved in several other important cellular mechanisms. Previous work indicated that AKT could modulate PMS2 stability by phosphorylation. Still, the mechanisms of regulation of MutLα remain unclear. The stability of MutLα subunits was investigated by transiently overexpression of wild type and mutant forms of MLH1 and PMS2 using immunoblotting for measuring the protein levels after treatment. We found that treatment with the cell-permeable serine/threonine phosphatase inhibitor, Calyculin, leads to degradation of PMS2 when MLH1 or its C-terminal domain is missing or if amino acids of MLH1 essential for PMS2 interaction are mutated. In addition, we discovered that the C-terminal tail of PMS2 is relevant for this Calyculin-dependent degradation. A direct involvement of AKT, which was previously described to be responsible for PMS2 degradation, could not be detected. The multi-kinase inhibitor Sorafenib, in contrast, was able to avoid the degradation of PMS2 which postulates that cellular phosphorylation is involved in this process. Together, we show that pharmacologically induced phosphorylation by Calyculin can induce the selective proteasome-dependent degradation of PMS2 but not of MLH1 and that the PMS2 degradation could be blocked by Sorafenib treatment. Curiously, the C-terminal Lynch Syndrome-variants MLH1 L749P and MLH1 Y750X make PMS2 prone to Calyculin induced degradation. Therefore, we conclude that the specific degradation of PMS2 may represent a new mechanism to regulate MutLα. © 2017 Wiley Periodicals, Inc.

  12. Complex Relationship between Mismatch Repair Proteins and MBD4 during Immunoglobulin Class Switch Recombination

    PubMed Central

    Grigera, Fernando; Bellacosa, Alfonso; Kenter, Amy L.

    2013-01-01

    Mismatch repair (MMR) safeguards against genomic instability and is required for efficient Ig class switch recombination (CSR). Methyl CpG binding domain protein 4 (MBD4) binds to MutL homologue 1 (MLH1) and controls the post-transcriptional level of several MMR proteins, including MutS homologue 2 (MSH2). We show that in WT B cells activated for CSR, MBD4 is induced and interacts with MMR proteins, thereby implying a role for MBD4 in CSR. However, CSR is in the normal range in Mbd4 deficient mice deleted for exons 2–5 despite concomitant reduction of MSH2. We show by comparison in Msh2+/− B cells that a two-fold reduction of MSH2 and MBD4 proteins is correlated with impaired CSR. It is therefore surprising that CSR occurs at normal frequencies in the Mbd4 deficient B cells where MSH2 is reduced. We find that a variant Mbd4 transcript spanning exons 1,6–8 is expressed in Mbd4 deficient B cells. This transcript can be ectopically expressed and produces a truncated MBD4 peptide. Thus, the 3′ end of the Mbd4 locus is not silent in Mbd4 deficient B cells and may contribute to CSR. Our findings highlight a complex relationship between MBD4 and MMR proteins in B cells and a potential reconsideration of their role in CSR. PMID:24205214

  13. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange*

    PubMed Central

    Borgogno, María V.; Monti, Mariela R.; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E.; Pezza, Roberto J.

    2016-01-01

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3′ end of the initiating DNA strand have a small effect, whereas most mismatches near the 5′ end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. PMID:26709229

  14. Testing the cumulative stress and mismatch hypotheses of psychopathology in a rat model of early-life adversity.

    PubMed

    Daskalakis, Nikolaos P; Oitzl, Melly S; Schächinger, Hartmut; Champagne, Danielle L; de Kloet, E Ronald

    2012-07-16

    In the present study, we tested both the cumulative stress and the mismatch hypothesis of psychopathology. For this purpose the combined effects of early-life adversity and later-life stress exposure on behavioral markers of psychosis susceptibility were studied in male Wistar rats. Experiment I: rat pups divided on the basis of the levels of their maternal care experience in low, medium or high maternal care groups, were reared post-weaning in groups (Exp. IA) or in social isolation (Exp. IB) and tested at adulthood under basal conditions or after an acute corticosterone (CORT) administration. Maternal care levels were assessed by measuring the dam's licking and grooming (LG) the first postnatal week of life. Experiment II: rat pups exposed as neonates to daily sessions of 8h of maternal separation (MS) on postnatal days 3, 4 and 5 either altogether in their home cage (HOME SEP) or alone in a novel environment (NOVEL SEP), were reared post-weaning in groups and tested at adulthood under basal conditions. Adult testing included behaviors marking psychosis susceptibility: apomorphine-induced gnawing (APO-gnawing), acoustic startle response and its modulation by a prepulse stimulus (PPI). The behavior of the Medium LG offspring was used as baseline reference for all the three experiments. Experiment I: Low maternal LG history alone had limited effects on the behavior of Wistar offspring, although increased acoustic startle and increased PPI, at high prepulse intensity levels, were observed. When low maternal LG history was combined with post-weaning social isolation, basal APO-gnawing was decreased and PPI increased, compared to High LG and Med LG offspring. This reflects attenuated psychosis susceptibility. High LG offspring reared in isolation displayed, however, the highest APO-gnawing and the lowest PPI levels among rats reared in social isolation, which is indicative for increased psychosis susceptibility. These findings support the mismatch hypothesis. For

  15. Mechanism of mismatch recognition revealed by human MutS[beta] bound to unpaired DNA loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Shikha; Gellert, Martin; Yang, Wei

    2012-04-17

    DNA mismatch repair corrects replication errors, thus reducing mutation rates and microsatellite instability. Genetic defects in this pathway cause Lynch syndrome and various cancers in humans. Binding of a mispaired or unpaired base by bacterial MutS and eukaryotic MutS{alpha} is well characterized. We report here crystal structures of human MutS{beta} in complex with DNA containing insertion-deletion loops (IDL) of two, three, four or six unpaired nucleotides. In contrast to eukaryotic MutS{alpha} and bacterial MutS, which bind the base of a mismatched nucleotide, MutS{beta} binds three phosphates in an IDL. DNA is severely bent at the IDL; unpaired bases are flippedmore » out into the major groove and partially exposed to solvent. A normal downstream base pair can become unpaired; a single unpaired base can thereby be converted to an IDL of two nucleotides and recognized by MutS{beta}. The C-terminal dimerization domains form an integral part of the MutS structure and coordinate asymmetrical ATP hydrolysis by Msh2 and Msh3 with mismatch binding to signal for repair.« less

  16. The effect of S-substitution at the O6-guanine site on the structure and dynamics of a DNA oligomer containing a G:T mismatch

    PubMed Central

    2017-01-01

    The effect of S-substitution on the O6 guanine site of a 13-mer DNA duplex containing a G:T mismatch is studied using molecular dynamics. The structure, dynamic evolution and hydration of the S-substituted duplex are compared with those of a normal duplex, a duplex with S-substitution on guanine, but no mismatch and a duplex with just a G:T mismatch. The S-substituted mismatch leads to cell death rather than repair. One suggestion is that the G:T mismatch recognition protein recognises the S-substituted mismatch (GS:T) as G:T. This leads to a cycle of futile repair ending in DNA breakage and cell death. We find that some structural features of the helix are similar for the duplex with the G:T mismatch and that with the S-substituted mismatch, but differ from the normal duplex, notably the helical twist. These differences arise from the change in the hydrogen-bonding pattern of the base pair. However a marked feature of the S-substituted G:T mismatch duplex is a very large opening. This showed considerable variability. It is suggested that this enlarged opening would lend support to an alternative model of cell death in which the mismatch protein attaches to thioguanine and activates downstream damage-response pathways. Attack on the sulphur by reactive oxygen species, also leading to cell death, would also be aided by the large, variable opening. PMID:28910418

  17. Mutation of MSH3 in endometrial cancer and evidence for its functional role in heteroduplex repair.

    PubMed

    Risinger, J I; Umar, A; Boyd, J; Berchuck, A; Kunkel, T A; Barrett, J C

    1996-09-01

    Many human tumours have length alterations in repetitive sequence elements. Although this microsatellite instability has been attributed to mutations in four DNA mismatch repair genes in hereditary nonpolyposis colorectal cancer (HNPCC) kindreds, many sporadic tumours exhibit instability but no detectable mutations in these genes. It is therefore of interest to identify other genes that contribute to this instability. In yeast, mutations in several genes, including RTH and MSH3, cause microsatellite instability. Thus, we screened 16 endometrial carcinomas with microsatellite instability for alterations in FEN1 (the human homolog of RTH) and in MSH3 (refs 12-14). Although we found no FEN1 mutations, a frameshift mutation in MSH3 was observed in an endometrial carcinoma and in an endometrial carcinoma cell line. Extracts of the cell line were deficient in repair of DNA substrates containing mismatches or extra nucleotides. Introducing chromosome 5, encoding the MSH3 gene, into the mutant cell line increased the stability of some but not all microsatellites. Extracts of these cells repaired certain substrates containing extra nucleotides, but were deficient in repair of those containing mismatches or other extra nucleotides. A subsequent search revealed a second gene mutation in HHUA cells, a missense mutation in the MSH6 gene. Together the data suggest that the MSH3 gene encodes a product that functions in repair of some but not all pre-mutational intermediates, its mutation in tumours can result in genomic instability and, as in yeast, MSH3 and MSH6 are partially redundant for mismatch repair.

  18. Hi-LAB: A New Measure of Aptitude for High-Level Language Proficiency

    ERIC Educational Resources Information Center

    Linck, Jared A.; Hughes, Meredith M.; Campbell, Susan G.; Silbert, Noah H.; Tare, Medha; Jackson, Scott R.; Smith, Benjamin K.; Bunting, Michael F.; Doughty, Catherine J.

    2013-01-01

    Few adult second language (L2) learners successfully attain high-level proficiency. Although decades of research on beginning to intermediate stages of L2 learning have identified a number of predictors of the rate of acquisition, little research has examined factors relevant to predicting very high levels of L2 proficiency. The current study,…

  19. A Comparison of IRT Proficiency Estimation Methods under Adaptive Multistage Testing

    ERIC Educational Resources Information Center

    Kim, Sooyeon; Moses, Tim; Yoo, Hanwook

    2015-01-01

    This inquiry is an investigation of item response theory (IRT) proficiency estimators' accuracy under multistage testing (MST). We chose a two-stage MST design that includes four modules (one at Stage 1, three at Stage 2) and three difficulty paths (low, middle, high). We assembled various two-stage MST panels (i.e., forms) by manipulating two…

  20. Germline PMS2 mutation screened by mismatch repair protein immunohistochemistry of colorectal cancer in Japan.

    PubMed

    Sugano, Kokichi; Nakajima, Takeshi; Sekine, Shigeki; Taniguchi, Hirokazu; Saito, Shinya; Takahashi, Masahiro; Ushiama, Mineko; Sakamoto, Hiromi; Yoshida, Teruhiko

    2016-11-01

    Germline PMS2 gene mutations were detected by RT-PCR/direct sequencing of total RNA extracted from puromycin-treated peripheral blood lymphocytes (PBL) and multiplex ligation-dependent probe amplification (MLPA) analyses of Japanese patients with colorectal cancer (CRC) fulfilling either the revised Bethesda Guidelines or being an age at disease onset of younger than 70 years, and screened by mismatch repair protein immunohistochemistry of formalin-fixed paraffin embedded sections. Of the 501 subjects examined, 7 (1.40%) showed the downregulated expression of the PMS2 protein alone and were referred to the genetic counseling clinic. Germline PMS2 mutations were detected in 6 (85.7%), including 3 nonsense and 1 frameshift mutations by RT-PCR/direct sequencing and 2 genomic deletions by MLPA. No mutations were identified in the other MMR genes (i.e. MSH2, MLH1 and MSH6). The prevalence of the downregulated expression of the PMS2 protein alone was 1.40% among the subjects examined and IHC results predicted the presence of PMS2 germline mutations. RT-PCR from puromycin-treated PBL and MLPA may be employed as the first screening step to detect PMS2 mutations without pseudogene interference, followed by the long-range PCR/nested PCR validation using genomic DNA. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  1. Structure of the EndoMS-DNA Complex as Mismatch Restriction Endonuclease.

    PubMed

    Nakae, Setsu; Hijikata, Atsushi; Tsuji, Toshiyuki; Yonezawa, Kouki; Kouyama, Ken-Ichi; Mayanagi, Kouta; Ishino, Sonoko; Ishino, Yoshizumi; Shirai, Tsuyoshi

    2016-11-01

    Archaeal NucS nuclease was thought to degrade the single-stranded region of branched DNA, which contains flapped and splayed DNA. However, recent findings indicated that EndoMS, the orthologous enzyme of NucS, specifically cleaves double-stranded DNA (dsDNA) containing mismatched bases. In this study, we determined the structure of the EndoMS-DNA complex. The complex structure of the EndoMS dimer with dsDNA unexpectedly revealed that the mismatched bases were flipped out into binding sites, and the overall architecture most resembled that of restriction enzymes. The structure of the apo form was similar to the reported structure of Pyrococcus abyssi NucS, indicating that movement of the C-terminal domain from the resting state was required for activity. In addition, a model of the EndoMS-PCNA-DNA complex was preliminarily verified with electron microscopy. The structures strongly support the idea that EndoMS acts in a mismatch repair pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Functional analysis of rare variants in mismatch repair proteins augments results from computation-based predictive methods

    PubMed Central

    Arora, Sanjeevani; Huwe, Peter J.; Sikder, Rahmat; Shah, Manali; Browne, Amanda J.; Lesh, Randy; Nicolas, Emmanuelle; Deshpande, Sanat; Hall, Michael J.; Dunbrack, Roland L.; Golemis, Erica A.

    2017-01-01

    ABSTRACT The cancer-predisposing Lynch Syndrome (LS) arises from germline mutations in DNA mismatch repair (MMR) genes, predominantly MLH1, MSH2, MSH6, and PMS2. A major challenge for clinical diagnosis of LS is the frequent identification of variants of uncertain significance (VUS) in these genes, as it is often difficult to determine variant pathogenicity, particularly for missense variants. Generic programs such as SIFT and PolyPhen-2, and MMR gene-specific programs such as PON-MMR and MAPP-MMR, are often used to predict deleterious or neutral effects of VUS in MMR genes. We evaluated the performance of multiple predictive programs in the context of functional biologic data for 15 VUS in MLH1, MSH2, and PMS2. Using cell line models, we characterized VUS predicted to range from neutral to pathogenic on mRNA and protein expression, basal cellular viability, viability following treatment with a panel of DNA-damaging agents, and functionality in DNA damage response (DDR) signaling, benchmarking to wild-type MMR proteins. Our results suggest that the MMR gene-specific classifiers do not always align with the experimental phenotypes related to DDR. Our study highlights the importance of complementary experimental and computational assessment to develop future predictors for the assessment of VUS. PMID:28494185

  3. DNA repair targeted therapy: the past or future of cancer treatment?

    PubMed Central

    Gavande, Navnath S.; VanderVere-Carozza, Pamela S.; Hinshaw, Hilary D.; Jalal, Shadia I.; Sears, Catherine R.; Pawelczak, Katherine S.; Turchi, John J.

    2016-01-01

    The repair of DNA damage is a complex process that relies on particular pathways to remedy specific types of damage to DNA. The range of insults to DNA includes small, modest changes in structure including mismatched bases and simple methylation events to oxidized bases, intra- and interstrand DNA crosslinks, DNA double strand breaks and protein-DNA adducts. Pathways required for the repair of these lesions include mismatch repair, base excision repair, nucleotide excision repair, and the homology directed repair/Fanconi anemia pathway. Each of these pathways contributes to genetic stability, and mutations in genes encoding proteins involved in these pathways have been demonstrated to promote genetic instability and cancer. In fact, it has been suggested all cancers display defects in DNA repair. It has also been demonstrated that the ability of cancer cells to repair therapeutically induced DNA damage impacts therapeutic efficacy. This has led to targeting DNA repair pathways and proteins to develop anti-cancer agents that will increase sensitivity to traditional chemotherapeutics. While initial studies languished and were plagued by a lack of specificity and a defined mechanism of action, more recent approaches to exploit synthetic lethal interaction and develop high affinity chemical inhibitors have proven considerably more effective. In this review we will highlight recent advances and discuss previous failures in targeting DNA repair to pave the way for future DNA repair targeted agents and their use in cancer therapy. PMID:26896565

  4. Genes and Junk in Plant Mitochondria—Repair Mechanisms and Selection

    PubMed Central

    Christensen, Alan C.

    2014-01-01

    Plant mitochondrial genomes have very low mutation rates. In contrast, they also rearrange and expand frequently. This is easily understood if DNA repair in genes is accomplished by accurate mechanisms, whereas less accurate mechanisms including nonhomologous end joining or break-induced replication are used in nongenes. An important question is how different mechanisms of repair predominate in coding and noncoding DNA, although one possible mechanism is transcription-coupled repair (TCR). This work tests the predictions of TCR and finds no support for it. Examination of the mutation spectra and rates in genes and junk reveals what DNA repair mechanisms are available to plant mitochondria, and what selective forces act on the repair products. A model is proposed that mismatches and other DNA damages are repaired by converting them into double-strand breaks (DSBs). These can then be repaired by any of the DSB repair mechanisms, both accurate and inaccurate. Natural selection will eliminate coding regions repaired by inaccurate mechanisms, accounting for the low mutation rates in genes, whereas mutations, rearrangements, and expansions generated by inaccurate repair in noncoding regions will persist. Support for this model includes the structure of the mitochondrial mutS homolog in plants, which is fused to a double-strand endonuclease. The model proposes that plant mitochondria do not distinguish a damaged or mismatched DNA strand from the undamaged strand, they simply cut both strands and perform homology-based DSB repair. This plant-specific strategy for protecting future generations from mitochondrial DNA damage has the side effect of genome expansions and rearrangements. PMID:24904012

  5. Early Versus Delayed Passive Range of Motion After Rotator Cuff Repair: A Systematic Review and Meta-analysis.

    PubMed

    Kluczynski, Melissa A; Nayyar, Samir; Marzo, John M; Bisson, Leslie J

    2015-08-01

    Postoperative rehabilitation has been shown to affect healing of the rotator cuff after surgical repair. However, it is unknown whether an early or delayed rehabilitation protocol is most beneficial for healing. To determine whether early versus delayed passive range of motion (PROM) affects rotator cuff (RC) retear rates after surgery. Systematic review and meta-analysis. A systematic review of the literature published between January 2003 and February 2014 was conducted. Retear rates were compared for early (within 1 week after surgery) versus delayed (3-6 weeks after surgery) PROM using χ(2) or Fisher exact tests as well as relative risks (RR) and 95% CIs. In the first analysis, data from evidence level 1 studies that directly compared early versus delayed PROM were pooled; and in the second analysis, data from level 1 to 4 studies that did not directly compare early versus delayed PROM were pooled. The second analysis was stratified by tear size and repair method. Twenty-eight studies (1729 repairs) were included. The first analysis of level 1 studies did not reveal a significant difference in retear rates for early (13.7%) versus delayed (10.5%) PROM (P = .36; RR = 1.30 [95% CI, 0.74-2.30]). The second analysis revealed that for ≤3 cm tears, the risk of retear was lower for early versus delayed PROM for transosseous (TO) plus single-row anchor (SA) repairs (18.7% vs 28.2%, P = .02; RR = 0.66 [95% CI, 0.47-0.95]). For >5 cm tears, the risk of retear was greater for early versus delayed PROM for double-row anchor (DA) repairs (56.4% vs 20%, P = .002; RR = 2.82 [95% CI, 1.31-6.07]) and for all repair methods combined (52.2% vs 22.6%, P = .01; RR = 2.31 [95% CI, 1.16-4.61]). There were no statistically significant associations for tears measuring <1 cm, 1 to 3 cm, 3 to 5 cm, and >3 cm. Evidence is lacking with regard to the optimal timing of PROM after RC repair; however, this study suggests that tear size may be influential. © 2014 The Author(s).

  6. Modified classification and single-stage microsurgical repair of posttraumatic infected massive bone defects in lower extremities.

    PubMed

    Yang, Yun-fa; Xu, Zhong-he; Zhang, Guang-ming; Wang, Jian-wei; Hu, Si-wang; Hou, Zhi-qi; Xu, Da-chuan

    2013-11-01

    Posttraumatic infected massive bone defects in lower extremities are difficult to repair because they frequently exhibit massive bone and/or soft tissue defects, serious bone infection, and excessive scar proliferation. This study aimed to determine whether these defects could be classified and repaired at a single stage. A total of 51 cases of posttraumatic infected massive bone defect in lower extremity were included in this study. They were classified into four types on the basis of the conditions of the bone defects, soft tissue defects, and injured limb length, including Type A (without soft tissue defects), Type B (with soft tissue defects of 10 × 20 cm or less), Type C (with soft tissue defects of 10 × 20 cm or more), and Type D (with the limb shortening of 3 cm or more). Four types of single-stage microsurgical repair protocols were planned accordingly and implemented respectively. These protocols included the following: Protocol A, where vascularized fibular graft was implemented for Type A; Protocol B, where vascularized fibular osteoseptocutaneous graft was implemented for Type B; Protocol C, where vascularized fibular graft and anterior lateral thigh flap were used for Type C; and Protocol D, where limb lengthening and Protocols A, B, or C were used for Type D. There were 12, 33, 4, and 2 cases of Types A, B, C, and D, respectively, according to this classification. During the surgery, three cases of planned Protocol B had to be shifted into Protocol C; however, all microsurgical repairs were completed. With reference to Johner-Wruhs evaluation method, the total percentage of excellent and good results was 82.35% after 6 to 41 months of follow-up. It was concluded that posttraumatic massive bone defects could be accurately classified into four types on the basis of the conditions of bone defects, soft tissue coverage, and injured limb length, and successfully repaired with the single-stage repair protocols after thorough debridement. Thieme Medical

  7. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange.

    PubMed

    Borgogno, María V; Monti, Mariela R; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E; Pezza, Roberto J

    2016-03-04

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3' end of the initiating DNA strand have a small effect, whereas most mismatches near the 5' end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Does Early Versus Delayed Active Range of Motion Affect Rotator Cuff Healing After Surgical Repair? A Systematic Review and Meta-analysis.

    PubMed

    Kluczynski, Melissa A; Isenburg, Maureen M; Marzo, John M; Bisson, Leslie J

    2016-03-01

    The timing of passive range of motion (ROM) after surgical repair of the rotator cuff (RC) has been shown to affect healing. However, it is unknown if early or delayed active ROM affects healing. To determine whether early versus delayed active ROM affects structural results of RC repair surgery. Systematic review and meta-analysis. A systematic review of articles published between January 2004 and April 2014 was conducted. Structural results were compared for early (<6 weeks after surgery) versus delayed (≥6 weeks after surgery) active ROM using chi-square and Fisher exact tests, as well as relative risks (RRs) and 95% CIs. The analyses were stratified by tear size and repair method. A total of 37 studies (2251 repairs) were included in the analysis, with 10 (649 repairs) in the early group and 27 (1602 repairs) in the delayed group. For tears ≤3 cm, the risk of a structural tendon defect was higher in the early versus delayed group for transosseous plus single-row suture anchor repairs (39.7% vs 24.3%; RR, 1.63 [95% CI, 1.28-2.08]). For tears >3 cm, the risk of a structural tendon defect was higher in the early versus delayed group for suture bridge repairs (48% vs 17.5%; RR, 2.74 [95% CI, 1.59-4.73]) and all repair methods combined (40.5% vs 26.7%; RR, 1.52 [95% CI, 1.17-1.97]). For tears >5 cm, the risk of structural tendon defect was higher in the early versus delayed group for suture bridge repairs (100% vs 16.7%; RR, 6.00 [95% CI, 1.69-21.26]). There were no statistically significant associations for tears measuring ≤1, 1-3, or 3-5 cm. Early active ROM was associated with increased risk of a structural defect for small and large RC tears, and thus might not be advisable after RC repair. © 2015 The Author(s).

  9. Mismatch or cumulative stress: toward an integrated hypothesis of programming effects.

    PubMed

    Nederhof, Esther; Schmidt, Mathias V

    2012-07-16

    This paper integrates the cumulative stress hypothesis with the mismatch hypothesis, taking into account individual differences in sensitivity to programming. According to the cumulative stress hypothesis, individuals are more likely to suffer from disease as adversity accumulates. According to the mismatch hypothesis, individuals are more likely to suffer from disease if a mismatch occurs between the early programming environment and the later adult environment. These seemingly contradicting hypotheses are integrated into a new model proposing that the cumulative stress hypothesis applies to individuals who were not or only to a small extent programmed by their early environment, while the mismatch hypothesis applies to individuals who experienced strong programming effects. Evidence for the main effects of adversity as well as evidence for the interaction between adversity in early and later life is presented from human observational studies and animal models. Next, convincing evidence for individual differences in sensitivity to programming is presented. We extensively discuss how our integrated model can be tested empirically in animal models and human studies, inviting researchers to test this model. Furthermore, this integrated model should tempt clinicians and other intervenors to interpret symptoms as possible adaptations from an evolutionary biology perspective. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. The English proficiency and academic language skills of Australian bilingual children during the primary school years.

    PubMed

    Dennaoui, Kamelia; Nicholls, Ruth Jane; O'Connor, Meredith; Tarasuik, Joanne; Kvalsvig, Amanda; Goldfeld, Sharon

    2016-04-01

    Evidence suggests that early proficiency in the language of school instruction is an important predictor of academic success for bilingual children. This study investigated whether English-proficiency at 4-5 years of age predicts academic language and literacy skills among Australian bilingual children at 10-11 years of age, as part of the Longitudinal Study of Australian Children ( LSAC, 2012 ). The LSAC comprises a nationally representative clustered cross-sequential sample of Australian children. Data were analysed from a sub-sample of 129 bilingual children from the LSAC Kindergarten cohort (n = 4983), for whom teachers completed the Australian Early Development Index (AEDI) checklist (a population measure of early childhood development) and the Academic Rating Scale (ARS) language and literacy subscale. Linear regression analyses revealed that bilingual children who commenced school with stronger English proficiency had higher academic language and literacy scores at the end of primary school (β = 0.45). English proficiency remained a significant predictor, even when accounting for gender and socio-economic disadvantage (β = 0.38). The findings indicate that bilingual children who begin school without English proficiency are at risk of difficulties with academic language and literacy, even after 6 years of schooling. Risk factors need to be identified so early support can be targeted towards the most vulnerable children.

  11. A homozygous PMS2 founder mutation with an attenuated constitutional mismatch repair deficiency phenotype.

    PubMed

    Li, Lili; Hamel, Nancy; Baker, Kristi; McGuffin, Michael J; Couillard, Martin; Gologan, Adrian; Marcus, Victoria A; Chodirker, Bernard; Chudley, Albert; Stefanovici, Camelia; Durandy, Anne; Hegele, Robert A; Feng, Bing-Jian; Goldgar, David E; Zhu, Jun; De Rosa, Marina; Gruber, Stephen B; Wimmer, Katharina; Young, Barbara; Chong, George; Tischkowitz, Marc D; Foulkes, William D

    2015-05-01

    Inherited mutations in DNA mismatch repair genes predispose to different cancer syndromes depending on whether they are mono-allelic or bi-allelic. This supports a causal relationship between expression level in the germline and phenotype variation. As a model to study this relationship, our study aimed to define the pathogenic characteristics of a recurrent homozygous coding variant in PMS2 displaying an attenuated phenotype identified by clinical genetic testing in seven Inuit families from Northern Quebec. Pathogenic characteristics of the PMS2 mutation NM_000535.5:c.2002A>G were studied using genotype-phenotype correlation, single-molecule expression detection and single genome microsatellite instability analysis. This PMS2 mutation generates a de novo splice site that competes with the authentic site. In homozygotes, expression of the full-length protein is reduced to a level barely detectable by conventional diagnostics. Median age at primary cancer diagnosis is 22 years among 13 NM_000535.5:c.2002A>G homozygotes, versus 8 years in individuals carrying bi-allelic truncating mutations. Residual expression of full-length PMS2 transcript was detected in normal tissues from homozygotes with cancers in their 20s. Our genotype-phenotype study of c.2002A>G illustrates that an extremely low level of PMS2 expression likely delays cancer onset, a feature that could be exploited in cancer preventive intervention. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Early primary repair of tetralogy of fallot in neonates and infants less than four months of age.

    PubMed

    Tamesberger, Melanie I; Lechner, Evelyn; Mair, Rudolf; Hofer, Anna; Sames-Dolzer, Eva; Tulzer, Gerald

    2008-12-01

    The ideal age for correction of tetralogy of Fallot is still under discussion. The aim of this study was to analyze morbidity and mortality in patients who underwent early primary repair of tetralogy of Fallot at the age of less than 4 months and to assess whether neonates, who needed early repair within the first 4 weeks of life, faced an increased risk. From 1995 to 2006, 90 consecutive patients with tetralogy of Fallot and pulmonary stenosis underwent early primary repair. Patient charts were analyzed retrospectively for two groups: group A, 25 neonates younger than 28 days who needed early operation owing to duct-dependent pulmonary circulation or severe hypoxemia; and group B, 65 infants younger than 4 months of age who underwent elective early repair. There was no 30-day mortality; late mortality was 2% after a median follow-up time of 4.7 years. Seven of 88 patients (8%) needed reoperation and twelve of 88 patients (14%) needed reintervention. Groups A and B did not differ significantly in terms of intensive care unit stay, days of mechanical ventilation, overall hospital stay, major or minor complications, or reoperation. Significant differences were found in a more frequent use of a transannular patch (p = 0.045) and more reinterventions (p = 0.046) in group A. Early primary repair of tetralogy of Fallot can be performed safely and effectively in infants younger than 4 months of age and even in neonates younger than 28 days with duct-dependent pulmonary circulation or severe hypoxemia.

  13. 76 FR 81430 - Small Business Investment Companies-Early Stage SBICs; Public Webinars

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Part 107 Small Business Investment Companies--Early Stage... Webinars regarding its proposed Early Stage Small Business Investment Companies (Early Stage SBIC) rule. The proposed Early Stage SBIC rule defines a new sub-category of small business investment companies...

  14. Cell-Selective Biological Activity of Rhodium Metalloinsertors Correlates with Subcellular Localization

    PubMed Central

    Komor, Alexis C.; Schneider, Curtis J.; Weidmann, Alyson G.; Barton, Jacqueline K.

    2013-01-01

    Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells. Ten distinct metalloinsertors with varying lipophilicities have been synthesized and their mismatch binding affinities and biological activities determined. Although DNA photocleavage experiments demonstrate that their binding affinities are quite similar, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments have uncovered a relationship between the subcellular distribution of these metalloinsertors and their biological activities. Specifically, we find that all of our metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. However, the metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells, whereas metalloinsertors with less mitochondrial rhodium show activity that is highly selective for MMR-deficient versus proficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cell-selective cytotoxic and antiproliferative activities. The selectivity in cellular targeting depends upon binding to mismatches in genomic DNA. PMID:23137296

  15. Morphogenesis of early stage melanoma

    NASA Astrophysics Data System (ADS)

    Chatelain, Clément; Amar, Martine Ben

    2015-08-01

    Melanoma early detection is possible by simple skin examination and can insure a high survival probability when successful. However it requires efficient methods for identifying malignant lesions from common moles. This paper provides an overview first of the biological and physical mechanisms controlling melanoma early evolution, and then of the clinical tools available today for detecting melanoma in vivo at an early stage. It highlights the lack of diagnosis methods rationally linking macroscopic observables to the microscopic properties of the tissue, which define the malignancy of the tumor. The possible inputs of multiscale models for improving these methods are shortly discussed.

  16. DNA repair pathways and mitochondrial DNA mutations in gastrointestinal carcinogenesis.

    PubMed

    Basso, Daniela; Navaglia, Filippo; Fogar, Paola; Zambon, Carlo-Federico; Greco, Eliana; Schiavon, Stefania; Fasolo, Michela; Stranges, Alessia; Falda, Alessandra; Padoan, Andrea; Fadi, Elisa; Pedrazzoli, Sergio; Plebani, Mario

    2007-05-01

    This work focuses on the main DNA repair pathways, highlighting their role in gastrointestinal carcinogenesis and the role of mitochondrial DNA (mtDNA), mutations being described in several tumor types, including those of the gastrointestinal tract. The mismatch repair (MMR) system is inherently altered in patients with hereditary non-polyposis colorectal cancer, and plays a role in carcinogenesis in a subset of sporadic colorectal, gastric and esophageal cancers. Alterations in homologous recombination (HR) and non-homologous end-joining (NHEJ) also contribute to the development of pancreatic cancer. Gene polymorphisms of some X-ray cross-complementing (XRCCs), cofactor proteins involved in the base excision repair pathway, have been investigated in relation to gastric, colorectal and pancreatic cancer. Yet only one polymorphism, XRCC1 Arg194Trp, appears to be involved in smoking-related cancers and in early onset pancreatic cancer. Although evidence in the literature indicates that mtDNA somatic mutations play a role in gastric and colorectal carcinogenesis, no sound conclusions have yet been drawn regarding this issue in pancreatic cancer, although an mtDNA variant at 16519 is believed to worsen the outcome of pancreatic cancer patients, possibly because it is involved in altering cellular metabolism.

  17. Calibration of Multiple In Silico Tools for Predicting Pathogenicity of Mismatch Repair Gene Missense Substitutions

    PubMed Central

    Thompson, Bryony A.; Greenblatt, Marc S.; Vallee, Maxime P.; Herkert, Johanna C.; Tessereau, Chloe; Young, Erin L.; Adzhubey, Ivan A.; Li, Biao; Bell, Russell; Feng, Bingjian; Mooney, Sean D.; Radivojac, Predrag; Sunyaev, Shamil R.; Frebourg, Thierry; Hofstra, Robert M.W.; Sijmons, Rolf H.; Boucher, Ken; Thomas, Alun; Goldgar, David E.; Spurdle, Amanda B.; Tavtigian, Sean V.

    2015-01-01

    Classification of rare missense substitutions observed during genetic testing for patient management is a considerable problem in clinical genetics. The Bayesian integrated evaluation of unclassified variants is a solution originally developed for BRCA1/2. Here, we take a step toward an analogous system for the mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) that confer colon cancer susceptibility in Lynch syndrome by calibrating in silico tools to estimate prior probabilities of pathogenicity for MMR gene missense substitutions. A qualitative five-class classification system was developed and applied to 143 MMR missense variants. This identified 74 missense substitutions suitable for calibration. These substitutions were scored using six different in silico tools (Align-Grantham Variation Grantham Deviation, multivariate analysis of protein polymorphisms [MAPP], Mut-Pred, PolyPhen-2.1, Sorting Intolerant From Tolerant, and Xvar), using curated MMR multiple sequence alignments where possible. The output from each tool was calibrated by regression against the classifications of the 74 missense substitutions; these calibrated outputs are interpretable as prior probabilities of pathogenicity. MAPP was the most accurate tool and MAPP + PolyPhen-2.1 provided the best-combined model (R2 = 0.62 and area under receiver operating characteristic = 0.93). The MAPP + PolyPhen-2.1 output is sufficiently predictive to feed as a continuous variable into the quantitative Bayesian integrated evaluation for clinical classification of MMR gene missense substitutions. PMID:22949387

  18. Early stages of soldering reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, R.A.; Umantsev, A.

    2005-09-15

    An experiment on the early stages of intermetallic compound layer growth during soldering and its theoretical analysis were conducted with the intent to study the controlling factors of the process. An experimental technique based on fast dipping and pulling of a copper coupon in liquid solder followed by optical microscopy allowed the authors to study the temporal behavior of the sample on a single micrograph. The technique should be of value for different areas of metallurgy because many experiments on crystallization may be described as the growth of a layer of intermediate phase. Comparison of the experimental results with themore » theoretical calculations allowed one to identify the kinetics of dissolution as the rate-controlling mechanism on the early stages and measure the kinetic coefficient of dissolution. A popular model of intermetallic compound layer structure coarsening is discussed.« less

  19. EGFR mutations in early-stage and advanced-stage lung adenocarcinoma: Analysis based on large-scale data from China.

    PubMed

    Pi, Can; Xu, Chong-Rui; Zhang, Ming-Feng; Peng, Xiao-Xiao; Wei, Xue-Wu; Gao, Xing; Yan, Hong-Hong; Zhou, Qing

    2018-05-02

    EGFR-tyrosine kinase inhibitors play an important role in the treatment of advanced non-small cell lung cancer (NSCLC). EGFR mutations in advanced NSCLC occur in approximately 35% of Asian patients and 60% of patients with adenocarcinoma. However, the frequency and type of EGFR mutations in early-stage lung adenocarcinoma remain unclear. We retrospectively collected data on patients diagnosed with lung adenocarcinoma tested for EGFR mutation. Early stage was defined as pathological stage IA-IIIA after radical lung cancer surgery, and advanced stage was defined as clinical stage IIIB without the opportunity for curative treatment or stage IV according to the American Joint Committee on Cancer Staging Manual, 7th edition. A total of 1699 patients were enrolled in this study from May 2014 to May 2016; 750 were assigned to the early-stage and 949 to the advanced-stage group. Baseline characteristics of the two groups were balanced, except that there were more smokers in the advanced-stage group (P < 0.001). The total EGFR mutation rate in the early-stage group was similar to that in the advanced-stage group (53.6% vs. 51.4%, respectively; P = 0.379). There was no significant difference in EGFR mutation type between the two groups. In subgroup analysis of smoking history, there was no difference in EGFR mutation frequency or type between the early-stage and advanced-stage groups. Early-stage and advanced-stage groups exhibited the same EGFR mutation frequencies and types. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  20. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription*

    PubMed Central

    Nadkarni, Aditi; Burns, John A.; Gandolfi, Alberto; Chowdhury, Moinuddin A.; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E.; Scicchitano, David A.

    2016-01-01

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N6-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N6-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N6-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N6-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N6-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. PMID:26559971

  1. Anterior Urethral Advancement as a Single-Stage Technique for Repair of Anterior Hypospadias: Our Experience.

    PubMed

    Gite, Venkat A; Nikose, Jayant V; Bote, Sachin M; Patil, Saurabh R

    2017-07-02

    Many techniques have been described to correct anterior hypospadias with variable results. Anterior urethral advancement as one stage technique was first described by Ti Chang Shing in 1984. It was also used for the repair of strictures and urethrocutaneous fistulae involving distal urethra. We report our experience of using this technique with some modification for the repair of anterior hypospadias. In the period between 2013-2015, 20 cases with anterior hypospadias including 2 cases of glanular, 3 cases of coronal, 12 cases of subcoronal and 3 cases of distal penile hypospadias were treated with anterior urethral advancement technique. Patients' age groups ranged from 18 months to 10 years. Postoperatively, patients were passing urine from tip of neomeatus with satisfactory stream during follow up period of 6 months to 2 years. There were no major complications in any of our patients except in one patient who developed meatal stenosis which was treated by periodic dilatation. Three fold urethral mobilization was sufficient in all cases. Anterior urethral advancement technique is a single-stage procedure with good cosmetic results and least complications for anterior hypospadias repair in properly selected cases.

  2. Multi-staged repair of contaminated primary and recurrent giant incisional herniae in the same hospital admission: a proposal for a new approach.

    PubMed

    Siddique, K; Shrestha, A; Basu, S

    2014-02-01

    Repair of primary and recurrent giant incisional herniae is extremely challenging and more so in the face of surgical field contamination. Literature supports the single- and multi-staged approaches including the use of biological meshes for these difficult patients with their associated benefits and limitations. This is a retrospective analysis of a prospective study of five patients who were successfully treated through a multi-staged approach but in the same hospital admission, not previously described, for the repair of contaminated primary and recurrent giant incisional herniae in a district general hospital between 2009 and 2012. Patient demographics including their BMI and ASA, previous and current operative history including complications and follow-up were collected in a secure database. The first stage involved the eradication of contamination, and the second stage was the definitive hernia repair with the new generation-coated synthetic meshes. Of the five patients, three were men and two women with a mean age of 58 (45-74) years. Two patients had grade 4 while the remaining had grade 3 hernia as per the hernia grading system with a mean BMI of 35 (30-46). All patients required extensive adhesiolysis, bowel resection and anastomoses and wash out. Hernial defect was measured as 204* (105-440) cm(2), size of mesh implant was 568* (375-930) cm(2) and the total duration of operation (1st + 2nd Stage) was 354* (270-540) min. Duration of hospital stay was 11* (7-19) days with a follow-up of 17* (6-36) months. We believe that our multi-staged approach in the same hospital admission (for the repair of contaminated primary and recurrent giant incisional herniae), excludes the disadvantages of a true multi-staged approach and simultaneously minimises the risks and complications associated with a single-staged repair, can be adopted for these challenging patients for a successful outcome (* indicates mean).

  3. Tuning thermal mismatch between turbine rotor parts with a thermal medium

    DOEpatents

    Schmidt, Mark Christopher

    2001-01-01

    In a turbine rotor, an aft shaft wheel and the final-stage wheel of the rotor are coupled together, including by a rabbeted joint. During shutdown and startup of the turbine, a thermal mismatch between the aft shaft wheel and final-stage wheel is avoided by respectively heating and cooling the aft shaft wheel to maintain the thermal mismatch within acceptable limits, thereby avoiding opening of the rabbeted joint and the potential for unbalancing the rotor and rotor vibration. The thermal medium may be supplied by piping in the aft bearing cavity into the cavity between the forward closure plate and the aft shaft wheel.

  4. [Double Endobutto reconstituting coracoclavicular ligament combined with repairing acromioclavicular ligament at stage I for the treatment of acromioclavicular dislocation with Rockwood type III - V].

    PubMed

    Hu, Wen-yue; Yu, Chong; Huang, Zhong-ming; Han, Lei

    2015-06-01

    To explore clinical efficacy of double Endobutto reconstituting coracoclavicular ligament combined with repairing acromioclavicular ligament in stage I in treating acromioclavicular dislocation with Rockwood type III - V . From January 2010 to September 2013, 56 patients with Rockwood type III - V acromioclavicular dislocation were treated by operation, including 20 males and 36 femlaes, aged from 32 to 52 years old with an average of 38.5 years old. Twenty-five patients were on the left side and 31 cases on the right side. The time from injury to operation was from 3 to 14 days, averaged 7 days. All patients were diagnosed as acromioclavicular dislocation with Rockwood type III - V, and double Endobutto were used to reconstituting coracoclavicular ligament, line metal anchors were applied for repairing acromioclavicular ligament. Postoperative complications were observed, Karlsson and Constant-Murley evaluation standard were used to evaluate clinical effects. All patients were followed up from 8 to 24 months with average of 11 months. According to Karlsson evaluation standard at 6 months after operation,42 cases were grade A, 13 were grade B and 1 was grade C. Constant-Murley score were improved from (42.80±5.43) before operation to (91.75±4.27) at 6 months after operation. All items at 6 months after operation were better than that of preoperative items. Forty-eight patients got excellent results, 7 were moderate and only 1 with bad result. No shoulder joint adhesion, screw loosening or breakage were occurred during following up. Double Endobutto reconstituting coracoclavicular ligament combined with repairing acromioclavicular ligament in stage I for the treatment of acromioclavicular dislocation with Rockwood type III - V could obtain early staisfied clinical effects, and benefit for early recovery of shoulder joint function.

  5. Reconstitution of Saccharomyces cerevisiae DNA polymerase ε-dependent mismatch repair with purified proteins.

    PubMed

    Bowen, Nikki; Kolodner, Richard D

    2017-04-04

    Mammalian and Saccharomyces cerevisiae mismatch repair (MMR) proteins catalyze two MMR reactions in vitro. In one, mispair binding by either the MutS homolog 2 (Msh2)-MutS homolog 6 (Msh6) or the Msh2-MutS homolog 3 (Msh3) stimulates 5' to 3' excision by exonuclease 1 (Exo1) from a single-strand break 5' to the mispair, excising the mispair. In the other, Msh2-Msh6 or Msh2-Msh3 activate the MutL homolog 1 (Mlh1)-postmeiotic segregation 1 (Pms1) endonuclease in the presence of a mispair and a nick 3' to the mispair, to make nicks 5' to the mispair, allowing Exo1 to excise the mispair. DNA polymerase δ (Pol δ) is thought to catalyze DNA synthesis to fill in the gaps resulting from mispair excision. However, colocalization of the S. cerevisiae mispair recognition proteins with the replicative DNA polymerases during DNA replication has suggested that DNA polymerase ε (Pol ε) may also play a role in MMR. Here we describe the reconstitution of Pol ε-dependent MMR using S. cerevisiae proteins. A mixture of Msh2-Msh6 (or Msh2-Msh3), Exo1, RPA, RFC-Δ1N, PCNA, and Pol ε was found to catalyze both short-patch and long-patch 5' nick-directed MMR of a substrate containing a +1 (+T) mispair. When the substrate contained a nick 3' to the mispair, a mixture of Msh2-Msh6 (or Msh2-Msh3), Exo1, RPA, RFC-Δ1N, PCNA, and Pol ε was found to catalyze an MMR reaction that required Mlh1-Pms1. These results demonstrate that Pol ε can act in eukaryotic MMR in vitro.

  6. Single-stage in situ suture repair of multiple-ligament knee injury: a retrospective study of 17 patients (18 knees).

    PubMed

    Hua, Xingyi; Tao, Hui; Fang, Wang; Tang, Jian

    2016-01-22

    heterotopic bone formation. Single-stage in situ suture repair of injured ligaments confers advantages of reliable fixation and early exercise. It could be considered as an alternate and effective option in the dislocation knee with multiple-ligament injury.

  7. Are we ready to use biomarkers for staging, prognosis and treatment selection in early-stage non-small-cell lung cancer?

    PubMed

    Massuti, Bartomeu; Sanchez, Jose Miguel; Hernando-Trancho, Florentino; Karachaliou, Niki; Rosell, Rafael

    2013-06-01

    Lung cancer accounts for the majority of cancer-related deaths worldwide. At present, platinum-based therapy represents the standard of care in fit stage II and IIIA non-small cell lung cancer (NSCLC) patients following surgical resection. In advanced disease, personalized chemotherapy and targeted biologic therapy based on histological and molecular tumor profiling have already shown promise in terms of optimizing treatment efficacy. While disease stage is associated with outcome and is commonly used to determine adjuvant treatment eligibility, it is known that a subset of patients with early stage disease experience shorter survival than others with the same clinicopathological characteristics. Improved methods for identifying these individuals, at or near the time of initial diagnosis, may inform the decision to pursue adjuvant therapy options. Among the numerous candidate molecular biomarkers, only few gene-expression profiling signatures provide clinically relevant information, while real-time quantitative polymerase-chain reaction (RT-qPCR) strategy involving relatively small numbers of genes offers a practical alternative with high cross-platform performance. mRNA and/or protein expression levels of excision repair cross-complementation group 1 (ERCC1), ribonucleotide reductase M subunit 1 (RRM1) and breast cancer susceptibility gene 1 (BRCA1) are among the most promising potential biomarkers for early disease and their clinical utility is currently being evaluated in randomized phase II and III clinical trials. This review describes the most promising clinicopathological and molecular biomarkers with predictive and prognostic significance in lung cancer that have been identified through advanced research and which could influence adjuvant and neoadjuvant chemotherapy decisions for operable NSCLC in routine clinical practice.

  8. Oligonucleotide-directed mutagenesis screen to identify pathogenic Lynch syndrome-associated MSH2 DNA mismatch repair gene variants

    PubMed Central

    Houlleberghs, Hellen; Dekker, Marleen; Lantermans, Hildo; Kleinendorst, Roos; Dubbink, Hendrikus Jan; Hofstra, Robert M. W.; Verhoef, Senno; te Riele, Hein

    2016-01-01

    Single-stranded DNA oligonucleotides can achieve targeted base-pair substitution with modest efficiency but high precision. We show that “oligo targeting” can be used effectively to study missense mutations in DNA mismatch repair (MMR) genes. Inherited inactivating mutations in DNA MMR genes are causative for the cancer predisposition Lynch syndrome (LS). Although overtly deleterious mutations in MMR genes can clearly be ascribed as the cause of LS, the functional implications of missense mutations are often unclear. We developed a genetic screen to determine the pathogenicity of these variants of uncertain significance (VUS), focusing on mutator S homolog 2 (MSH2). VUS were introduced into the endogenous Msh2 gene of mouse embryonic stem cells by oligo targeting. Subsequent selection for MMR-deficient cells using the guanine analog 6-thioguanine allowed the detection of MMR-abrogating VUS. The screen was able to distinguish weak and strong pathogenic variants from polymorphisms and was used to investigate 59 Msh2 VUS. Nineteen of the 59 VUS were identified as pathogenic. Functional assays revealed that 14 of the 19 detected variants fully abrogated MMR activity and that five of the detected variants attenuated MMR activity. Implementation of the screen in clinical practice allows proper counseling of mutation carriers and treatment of their tumors. PMID:26951660

  9. Chemical defense of early life stages of benthic marine invertebrates.

    PubMed

    Lindquist, Niels

    2002-10-01

    Accurate knowledge of factors affecting the survival of early life stages of marine invertebrates is critically important for understanding their population dynamics and the evolution of their diverse reproductive and life-history characteristics. Chemical defense is an important determinant of survival for adult stages of many sessile benthic invertebrates, yet relatively little consideration has been given to chemical defenses at the early life stages. This review examines the taxonomic breadth of early life-stage chemical defense in relation to various life-history and reproductive characteristics, as well as possible constraints on the expression of chemical defense at certain life stages. Data on the localization of defensive secondary metabolites in larvae and the fitness-related consequences of consuming even a small amount of toxic secondary metabolites underpin proposals regarding the potential for Müllerian and Batesian mimicry to occur among marine larvae. The involvement of microbial symbionts in the chemical defense of early life stages illustrates its complexity for some species. As our knowledge of chemical defenses in early life stages grows, we will be able to more rigorously examine connections among phylogeny, chemical defenses, and the evolution of reproductive and life-history characteristics among marine invertebrates.

  10. Surgical treatment for apparent early stage endometrial cancer

    PubMed Central

    2014-01-01

    Most experts would agree that the standard surgical treatment for endometrial cancer includes a hysterectomy and bilateral salpingo-oophorectomy; however, the benefit of full surgical staging with lymph node dissection in patients with apparent early stage disease remains a topic of debate. Recent prospective data and advances in laparoscopic techniques have transformed this disease into one that can be successfully managed with minimally invasive surgery. This review will discuss the current surgical management of apparent early stage endometrial cancer and some of the new techniques that are being incorporated. PMID:24596812

  11. Salvage hypospadias repairs

    PubMed Central

    Sripathi, V.; Satheesh, M.; Shubha, K.

    2008-01-01

    Aim: Review of our experience and to develop an algorithm for salvage procedures in the management of hypospadias cripples and treatment of urethral strictures following hypospadias repair. Methods: This is a retrospective review of hypospadias surgeries over a 41-month period. Out of a total 168 surgeries, 20 were salvage/re-operative repairs. In three children a Duplay repair was feasible, while in four others a variety of single-stage repairs could be done. The repair was staged in seven children – buccal mucosal grafts (BMGs) in five, buccal mucosal tube in one, and skin graft in one. Five children with dense strictures were managed by dorsal BMG inlay grafting in one, vascularized tunical onlay grafting on the ventrum in one, and a free tunical patch in one. Three children were treated by internal urethrotomy and stenting for four weeks with a poor outcome. Results: The age of children ranged from 1.5–15 years (mean 4.5). Follow-up ranged from 3 months to 3.5 years. Excellent results were obtained in 10 children (50%) with a well-surfaced erect penis and a slit-like meatus. Glans closure could not be achieved and meatus was coronal in three. Two children developed fistulae following a Duplay repair and following a staged BMG. Three repairs failed completely – a composite repair broke down, a BMG tube stenosed with a proximal leak, and a stricture recurred with loss of a ventral free tunical graft. Conclusions: In salvage procedures performed on hypospadias cripples, a staged repair with buccal mucosa as an inlay in the first stage followed by tubularization 4–6 months later provides good results. A simple algorithm to plan corrective surgery in failed hypospadias cases and obtain satisfactory results is devised. PMID:20011495

  12. Salvage hypospadias repairs.

    PubMed

    Sripathi, V; Satheesh, M; Shubha, K

    2008-10-01

    Review of our experience and to develop an algorithm for salvage procedures in the management of hypospadias cripples and treatment of urethral strictures following hypospadias repair. This is a retrospective review of hypospadias surgeries over a 41-month period. Out of a total 168 surgeries, 20 were salvage/re-operative repairs. In three children a Duplay repair was feasible, while in four others a variety of single-stage repairs could be done. The repair was staged in seven children - buccal mucosal grafts (BMGs) in five, buccal mucosal tube in one, and skin graft in one. Five children with dense strictures were managed by dorsal BMG inlay grafting in one, vascularized tunical onlay grafting on the ventrum in one, and a free tunical patch in one. Three children were treated by internal urethrotomy and stenting for four weeks with a poor outcome. The age of children ranged from 1.5-15 years (mean 4.5). Follow-up ranged from 3 months to 3.5 years. Excellent results were obtained in 10 children (50%) with a well-surfaced erect penis and a slit-like meatus. Glans closure could not be achieved and meatus was coronal in three. Two children developed fistulae following a Duplay repair and following a staged BMG. Three repairs failed completely - a composite repair broke down, a BMG tube stenosed with a proximal leak, and a stricture recurred with loss of a ventral free tunical graft. In salvage procedures performed on hypospadias cripples, a staged repair with buccal mucosa as an inlay in the first stage followed by tubularization 4-6 months later provides good results. A simple algorithm to plan corrective surgery in failed hypospadias cases and obtain satisfactory results is devised.

  13. Complexes of mismatched and complementary DNA with minor groove binders. Structures at nucleotide resolution via an improved hydroxyl radical cleavage methodology

    PubMed Central

    Bialonska, Dobroslawa; Song, Kenneth; Bolton, Philip H.

    2011-01-01

    Tumor cell lines can replicate faster than normal cells and many also have defective DNA repair pathways. This has lead to the investigation of the inhibition of DNA repair proteins as a means of therapeutic intervention. An alternative approach is to hide or mask damaged DNA from the repair systems. We have developed a protocol to investigate the structures of the complexes of damaged DNA with drug like molecules. Nucleotide resolution structural information can be obtained using an improved hydroxyl radical cleavage protocol. The use of a dTn tail increases the length of the smallest fragments of interest and allows efficient co-precipitation of the fragments with poly(A). The use of a fluorescent label, on the 5′ end of the dTn tail, in conjunction with modified cleavage reaction conditions, avoids the lifetime and other problems with 32P labeling. The structures of duplex DNAs containing AC and CC mismatches in the presence and absence of minor groove binders have been investigated as have those of the fully complementary DNA. The results indicate that the structural perturbations of the mismatches are localized, are sequence dependent and that the presence of a mismatch can alter the binding of drug like molecules. PMID:21893212

  14. Complexes of mismatched and complementary DNA with minor groove binders. Structures at nucleotide resolution via an improved hydroxyl radical cleavage methodology.

    PubMed

    Bialonska, Dobroslawa; Song, Kenneth; Bolton, Philip H

    2011-11-27

    Tumor cell lines can replicate faster than normal cells and many also have defective DNA repair pathways. This has lead to the investigation of the inhibition of DNA repair proteins as a means of therapeutic intervention. An alternative approach is to hide or mask damaged DNA from the repair systems. We have developed a protocol to investigate the structures of the complexes of damaged DNA with drug like molecules. Nucleotide resolution structural information can be obtained using an improved hydroxyl radical cleavage protocol. The use of a dT(n) tail increases the length of the smallest fragments of interest and allows efficient co-precipitation of the fragments with poly(A). The use of a fluorescent label, on the 5' end of the dT(n) tail, in conjunction with modified cleavage reaction conditions, avoids the lifetime and other problems with (32)P labeling. The structures of duplex DNAs containing AC and CC mismatches in the presence and absence of minor groove binders have been investigated as have those of the fully complementary DNA. The results indicate that the structural perturbations of the mismatches are localized, are sequence dependent and that the presence of a mismatch can alter the binding of drug like molecules. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Language Proficiency Modulates the Recruitment of Non-Classical Language Areas in Bilinguals

    PubMed Central

    Leonard, Matthew K.; Torres, Christina; Travis, Katherine E.; Brown, Timothy T.; Hagler, Donald J.; Dale, Anders M.; Elman, Jeffrey L.; Halgren, Eric

    2011-01-01

    Bilingualism provides a unique opportunity for understanding the relative roles of proficiency and order of acquisition in determining how the brain represents language. In a previous study, we combined magnetoencephalography (MEG) and magnetic resonance imaging (MRI) to examine the spatiotemporal dynamics of word processing in a group of Spanish-English bilinguals who were more proficient in their native language. We found that from the earliest stages of lexical processing, words in the second language evoke greater activity in bilateral posterior visual regions, while activity to the native language is largely confined to classical left hemisphere fronto-temporal areas. In the present study, we sought to examine whether these effects relate to language proficiency or order of language acquisition by testing Spanish-English bilingual subjects who had become dominant in their second language. Additionally, we wanted to determine whether activity in bilateral visual regions was related to the presentation of written words in our previous study, so we presented subjects with both written and auditory words. We found greater activity for the less proficient native language in bilateral posterior visual regions for both the visual and auditory modalities, which started during the earliest word encoding stages and continued through lexico-semantic processing. In classical left fronto-temporal regions, the two languages evoked similar activity. Therefore, it is the lack of proficiency rather than secondary acquisition order that determines the recruitment of non-classical areas for word processing. PMID:21455315

  16. Early Versus Delayed Motion After Rotator Cuff Repair: A Systematic Review of Overlapping Meta-analyses.

    PubMed

    Houck, Darby A; Kraeutler, Matthew J; Schuette, Hayden B; McCarty, Eric C; Bravman, Jonathan T

    2017-10-01

    Previous meta-analyses have been conducted to compare outcomes of early versus delayed motion after rotator cuff repair. To conduct a systematic review of overlapping meta-analyses comparing early versus delayed motion rehabilitation protocols after rotator cuff repair to determine which meta-analyses provide the best available evidence. Systematic review. A systematic review was performed by searching PubMed and Cochrane Library databases. Search terms included "rotator cuff repair," "early passive motion," "immobilization," "rehabilitation protocol," and "meta-analysis." Results were reviewed to determine study eligibility. Patient outcomes and structural healing were extracted from these meta-analyses. Meta-analysis quality was assessed using the Oxman-Guyatt and Quality of Reporting of Meta-analyses (QUOROM) systems. The Jadad decision algorithm was then used to determine which meta-analyses provided the best level of evidence. Seven meta-analyses containing a total of 5896 patients met the eligibility criteria (1 Level I evidence, 4 Level II evidence, 2 Level III evidence). None of these meta-analyses found immobilization to be superior to early motion; however, most studies suggested that early motion would increase range of motion (ROM), thereby reducing time of recovery. Three of these studies suggested that tear size contributed to the choice of rehabilitation to ensure proper healing of the shoulder. A study by Chan et al in 2014 received the highest QUOROM and Oxman-Guyatt scores, and therefore this meta-analysis appeared to have the highest level of evidence. Additionally, a study by Riboh and Garrigues in 2014 was selected as the highest quality study in this systematic review according to the Jadad decision algorithm. The current, best available evidence suggests that early motion improves ROM after rotator cuff repair but increases the risk of rotator cuff retear. Lower quality meta-analyses indicate that tear size may provide a better strategy in

  17. Could anterior papillary muscle partial necrosis explain early mitral valve repair failure?

    PubMed

    Pozzi, Matteo; Generali, Tommaso; Henaine, Roland; Mitchell, Julia; Lemaire, Anais; Chiari, Pascal; Fran, Jean; Obadia, Jean François

    2014-09-01

    Standardized techniques of mitral valve repair (MVR) have recently witnessed the introduction of a 'respect rather than resect' concept, the strategy of which involves the use of artificial chordae. MVR displays several advantages over mitral valve replacement in degenerative mitral regurgitation (MR), but the risk of reoperation for MVR failure must be taken into account. Different mechanisms could be advocated as the leading cause of MVR failure; procedure-related mechanisms are usually involved in early MVR failure, while valve-related mechanisms are common in late failure. Here, the case is reported of an early failure of MVR using artificial chordae that could be explained by an unusual procedure-related mechanism, namely anterior papillary muscle necrosis. MVR failure is a well-known complication after surgical repair of degenerative MR, but anterior papillary muscle partial necrosis might also be considered a possible mechanism of procedure-related MVR failure, especially when considering the increasing use of artificial chordae. Owing to the encouraging results obtained, mitral valve re-repair might be considered a viable solution, but must be selected after only a meticulous evaluation of the underlying mechanism of MVR failure.

  18. Mismatch repair deficient hematopoietic stem cells are preleukemic stem cells

    PubMed Central

    Gerson, Stanton L.

    2017-01-01

    Whereas transformation events in hematopoietic malignancies may occur at different developmental stages, the initial mutation originates in hematopoietic stem cells (HSCs), creating a preleukemic stem cell (PLSC). Subsequent mutations at either stem cell or progenitor cell levels transform the PLSC into lymphoma/leukemia initiating cells (LIC). Thymic lymphomas have been thought to develop from developing thymocytes. T cell progenitors are generated from HSCs in the bone marrow (BM), but maturation and proliferation of T cells as well as T-lymphomagenesis depends on both regulatory mechanisms and microenvironment within the thymus. We studied PLSC linked to thymic lymphomas. In this study, we use MSH2-/- mice as a model to investigate the existence of PLSC and the evolution of PLSC to LIC. Following BM transplantation, we found that MSH2-/- BM cells from young mice are able to fully reconstitute multiple hematopoietic lineages of lethally irradiated wild-type recipients. However, all recipients developed thymic lymphomas within three and four months post transplantation. Transplantation of different fractions of BM cells or thymocytes from young health MSH2-/- mice showed that an HSC enriched fraction always reconstituted hematopoiesis followed by lymphoma development. In addition, lymphomas did not occur in thymectomized recipients of MSH2-/- BM. These results suggest that HSCs with DNA repair defects such as MSH2-/- are PLSCs because they retain hematopoietic function, but also carry an obligate lymphomagenic potential within their T-cell progeny that is dependent on the thymic microenvironment. PMID:28767666

  19. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene.

    PubMed

    Win, Aung Ko; Reece, Jeanette C; Buchanan, Daniel D; Clendenning, Mark; Young, Joanne P; Cleary, Sean P; Kim, Hyeja; Cotterchio, Michelle; Dowty, James G; MacInnis, Robert J; Tucker, Katherine M; Winship, Ingrid M; Macrae, Finlay A; Burnett, Terrilea; Le Marchand, Loïc; Casey, Graham; Haile, Robert W; Newcomb, Polly A; Thibodeau, Stephen N; Lindor, Noralane M; Hopper, John L; Gallinger, Steven; Jenkins, Mark A

    2015-12-01

    The base excision repair protein, MUTYH, functionally interacts with the DNA mismatch repair (MMR) system. As genetic testing moves from testing one gene at a time, to gene panel and whole exome next generation sequencing approaches, understandin g the risk associated with co-existence of germline mutations in these genes will be important for clinical interpretation and management. From the Colon Cancer Family Registry, we identified 10 carriers who had both a MUTYH mutation (6 with c.1187G>A p.(Gly396Asp), 3 with c.821G>A p.(Arg274Gln), and 1 with c.536A>G p.(Tyr179Cys)) and a MMR gene mutation (3 in MLH1, 6 in MSH2, and 1 in PMS2), 375 carriers of a single (monoallelic) MUTYH mutation alone, and 469 carriers of a MMR gene mutation alone. Of the 10 carriers of both gene mutations, 8 were diagnosed with colorectal cancer. Using a weighted cohort analysis, we estimated that risk of colorectal cancer for carriers of both a MUTYH and a MMR gene mutation was substantially higher than that for carriers of a MUTYH mutation alone [hazard ratio (HR) 21.5, 95% confidence interval (CI) 9.19-50.1; p < 0.001], but not different from that for carriers of a MMR gene mutation alone (HR 1.94, 95% CI 0.63-5.99; p = 0.25). Within the limited power of this study, there was no evidence that a monoallelic MUTYH gene mutation confers additional risk of colorectal cancer for carriers of a MMR gene mutation alone. Our finding suggests MUTYH mutation testing in MMR gene mutation carriers is not clinically informative.

  20. Defining the learning curve in laparoscopic paraesophageal hernia repair: a CUSUM analysis.

    PubMed

    Okrainec, Allan; Ferri, Lorenzo E; Feldman, Liane S; Fried, Gerald M

    2011-04-01

    There are numerous reports in the literature documenting high recurrence rates after laparoscopic paraesophageal hernia repair. The purpose of this study was to determine the learning curve for this procedure using the Cumulative Summation (CUSUM) technique. Forty-six consecutive patients with paraesophageal hernia were evaluated prospectively after laparoscopic paraesophageal hernia repair. Upper GI series was performed 3 months postoperatively to look for recurrence. Patients were stratified based on the surgeon's early (first 20 cases) and late experience (>20 cases). The CUSUM method was then used to further analyze the learning curve. Nine patients (21%) had anatomic recurrence. There was a trend toward a higher recurrence rate during the first 20 cases, although this did not achieve statistical significance (33% vs. 13%, p = 0.10). However, using a CUSUM analysis to plot the learning curve, we found that the recurrence rate diminishes after 18 cases and reaches an acceptable rate after 26 cases. Surgeon experience is an important predictor of recurrence after laparoscopic paraesophageal hernia repair. CUSUM analysis revealed there is a significant learning curve to become proficient at this procedure, with approximately 20 cases required before a consistent decrease in hernia recurrence rate is observed.

  1. Mechanism for verification of mismatched and homoduplex DNAs by nucleotides-bound MutS analyzed by molecular dynamics simulations.

    PubMed

    Ishida, Hisashi; Matsumoto, Atsushi

    2016-09-01

    In order to understand how MutS recognizes mismatched DNA and induces the reaction of DNA repair using ATP, the dynamics of the complexes of MutS (bound to the ADP and ATP nucleotides, or not) and DNA (with mismatched and matched base-pairs) were investigated using molecular dynamics simulations. As for DNA, the structure of the base-pairs of the homoduplex DNA which interacted with the DNA recognition site of MutS was intermittently disturbed, indicating that the homoduplex DNA was unstable. As for MutS, the disordered loops in the ATPase domains, which are considered to be necessary for the induction of DNA repair, were close to (away from) the nucleotide-binding sites in the ATPase domains when the nucleotides were (not) bound to MutS. This indicates that the ATPase domains changed their structural stability upon ATP binding using the disordered loop. Conformational analysis by principal component analysis showed that the nucleotide binding changed modes which have structurally solid ATPase domains and the large bending motion of the DNA from higher to lower frequencies. In the MutS-mismatched DNA complex bound to two nucleotides, the bending motion of the DNA at low frequency modes may play a role in triggering the formation of the sliding clamp for the following DNA-repair reaction step. Moreover, MM-PBSA/GBSA showed that the MutS-homoduplex DNA complex bound to two nucleotides was unstable because of the unfavorable interactions between MutS and DNA. This would trigger the ATP hydrolysis or separation of MutS and DNA to continue searching for mismatch base-pairs. Proteins 2016; 84:1287-1303. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Early nerve repair in traumatic brachial plexus injuries in adults: treatment algorithm and first experiences.

    PubMed

    Pondaag, Willem; van Driest, Finn Y; Groen, Justus L; Malessy, Martijn J A

    2018-01-26

    OBJECTIVE The object of this study was to assess the advantages and disadvantages of early nerve repair within 2 weeks following adult traumatic brachial plexus injury (ATBPI). METHODS From 2009 onwards, the authors have strived to repair as early as possible extended C-5 to C-8 or T-1 lesions or complete loss of C-5 to C-6 or C-7 function in patients in whom there was clinical and radiological suspicion of root avulsion. Among a group of 36 patients surgically treated in the period between 2009 and 2011, surgical findings in those who had undergone treatment within 2 weeks after trauma were retrospectively compared with results in those who had undergone delayed treatment. The result of biceps muscle reanimation was the primary outcome measure. RESULTS Five of the 36 patients were referred within 2 weeks after trauma and were eligible for early surgery. Nerve ruptures and/or avulsions were found in all early cases of surgery. The advantages of early surgery are as follows: no scar formation, easy anatomical identification, and gap length reduction. Disadvantages include less-clear demarcation of vital nerve tissue and unfamiliarity with the interpretation of frozen-section examination findings. All 5 early-treatment patients recovered a biceps force rated Medical Research Council grade 4. CONCLUSIONS Preliminary results of nerve repair within 2 weeks of ATBPI are encouraging, and the benefits outweigh the drawbacks. The authors propose a decision algorithm to select patients eligible for early surgery. Referral standards for patients with ATBPI must be adapted to enable early surgery.

  3. Spiritual Diversity and Living with Early-Stage Dementia.

    PubMed

    McGee, Jocelyn Shealy; Zhao, Holly Carlson; Myers, Dennis R; Seela Eaton, Hannah

    2018-01-01

    Attention to spiritual diversity is necessary for the provision of culturally informed clinical care for people with early-stage dementia and their family members. In this article, an evidence-based theoretical framework for conceptualizing spiritual diversity is described in detail (Pargament, 2011). The framework is then applied to two clinical case studies of people living with early-stage dementia to elucidate the multilayered components of spiritual diversity in this population. The case studies were selected from a larger mixed-methods study on spirituality, positive psychological factors, health, and well-being in people living with early-stage dementia and their family members. To our knowledge this is the first systematic attempt to apply a theoretical framework for understanding spiritual diversity in this population. Implications for clinical practice are provided.

  4. PKM2 released by neutrophils at wound site facilitates early wound healing by promoting angiogenesis.

    PubMed

    Zhang, Yinwei; Li, Liangwei; Liu, Yuan; Liu, Zhi-Ren

    2016-03-01

    Neutrophils infiltration/activation following wound induction marks the early inflammatory response in wound repair. However, the role of the infiltrated/activated neutrophils in tissue regeneration/proliferation during wound repair is not well understood. Here, we report that infiltrated/activated neutrophils at wound site release pyruvate kinase M2 (PKM2) by its secretive mechanisms during early stages of wound repair. The released extracellular PKM2 facilitates early wound healing by promoting angiogenesis at wound site. Our studies reveal a new and important molecular linker between the early inflammatory response and proliferation phase in tissue repair process. © 2016 by the Wound Healing Society.

  5. Tumor mismatch repair immunohistochemistry and DNA MLH1 methylation testing of patients with endometrial cancer diagnosed at age younger than 60 years optimizes triage for population-level germline mismatch repair gene mutation testing.

    PubMed

    Buchanan, Daniel D; Tan, Yen Y; Walsh, Michael D; Clendenning, Mark; Metcalf, Alexander M; Ferguson, Kaltin; Arnold, Sven T; Thompson, Bryony A; Lose, Felicity A; Parsons, Michael T; Walters, Rhiannon J; Pearson, Sally-Ann; Cummings, Margaret; Oehler, Martin K; Blomfield, Penelope B; Quinn, Michael A; Kirk, Judy A; Stewart, Colin J; Obermair, Andreas; Young, Joanne P; Webb, Penelope M; Spurdle, Amanda B

    2014-01-10

    Clinicopathologic data from a population-based endometrial cancer cohort, unselected for age or family history, were analyzed to determine the optimal scheme for identification of patients with germline mismatch repair (MMR) gene mutations. Endometrial cancers from 702 patients recruited into the Australian National Endometrial Cancer Study (ANECS) were tested for MMR protein expression using immunohistochemistry (IHC) and for MLH1 gene promoter methylation in MLH1-deficient cases. MMR mutation testing was performed on germline DNA of patients with MMR-protein deficient tumors. Prediction of germline mutation status was compared for combinations of tumor characteristics, age at diagnosis, and various clinical criteria (Amsterdam, Bethesda, Society of Gynecologic Oncology, ANECS). Tumor MMR-protein deficiency was detected in 170 (24%) of 702 cases. Germline testing of 158 MMR-deficient cases identified 22 truncating mutations (3% of all cases) and four unclassified variants. Tumor MLH1 methylation was detected in 99 (89%) of 111 cases demonstrating MLH1/PMS2 IHC loss; all were germline MLH1 mutation negative. A combination of MMR IHC plus MLH1 methylation testing in women younger than 60 years of age at diagnosis provided the highest positive predictive value for the identification of mutation carriers at 46% versus ≤ 41% for any other criteria considered. Population-level identification of patients with MMR mutation-positive endometrial cancer is optimized by stepwise testing for tumor MMR IHC loss in patients younger than 60 years, tumor MLH1 methylation in individuals with MLH1 IHC loss, and germline mutations in patients exhibiting loss of MSH6, MSH2, or PMS2 or loss of MLH1/PMS2 with absence of MLH1 methylation.

  6. Fundamental Motor Skill Proficiency of 6- to 9-Year-Old Singaporean Children.

    PubMed

    Mukherjee, Swarup; Ting Jamie, Lye Ching; Fong, Leong Hin

    2017-06-01

    Fundamental movement proficiency (FMS) is most successfully acquired during early school years. This cross-sectional study assessed FMS proficiency in Singaporean children at the start of and following 2.5 years of primary school physical education (PE). Participants were 244 children from Primary 1 and 3 levels. Fundamental movement skills (FMS) were assessed with the Test of Gross Motor Development-Second Edition (TGMD-2) that includes locomotor (LOCO) and object control (OC) subtests. Most children were rated "average" and "below average" for LOCO skills but "poor" and "below average" for OC skills without significant gender differences on either subtest or overall FMS proficiency and without FMS mastery. These young Singaporean children failed to exhibit age-appropriate FMS proficiency despite early PE exposure, and they demonstrated lags in FMS compared with the TGMD-2 U.S. normative sample. We discuss implications for sports competence perception, difficulty in coping with later movement learning expectations and reduced later motivation to participate in PE and play. We also discuss implications for preschool and lower primary school PE curricula with a particular focus on both OC skills and LOCO skills requiring muscular fitness like hopping and jumping.

  7. 76 FR 76907 - Small Business Investment Companies-Early Stage SBICs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ... respect to geographic location. SBA's primary concern in terms of geography is to ensure that the Early... SBICs is the primary source of cash used to service their SBA debt. SBA expects that some Early Stage...--Early Stage SBICs AGENCY: U.S. Small Business Administration. ACTION: Proposed rule. SUMMARY: In this...

  8. Evidence supporting the match/mismatch hypothesis of psychiatric disorders.

    PubMed

    Santarelli, Sara; Lesuis, Sylvie L; Wang, Xiao-Dong; Wagner, Klaus V; Hartmann, Jakob; Labermaier, Christiana; Scharf, Sebastian H; Müller, Marianne B; Holsboer, Florian; Schmidt, Mathias V

    2014-06-01

    Chronic stress is one of the predominant environmental risk factors for a number of psychiatric disorders, particularly for major depression. Different hypotheses have been formulated to address the interaction between early and adult chronic stress in psychiatric disease vulnerability. The match/mismatch hypothesis of psychiatric disease states that the early life environment shapes coping strategies in a manner that enables individuals to optimally face similar environments later in life. We tested this hypothesis in female Balb/c mice that underwent either stress or enrichment early in life and were in adulthood further subdivided in single or group housed, in order to provide aversive or positive adult environments, respectively. We studied the effects of the environmental manipulation on anxiety-like, depressive-like and sociability behaviors and gene expression profiles. We show that continuous exposure to adverse environments (matched condition) is not necessarily resulting in an opposite phenotype compared to a continuous supportive environment (matched condition). Rather, animals with mismatched environmental conditions behaved differently from animals with matched environments on anxious, social and depressive like phenotypes. These results further support the match/mismatch hypothesis and illustrate how mild or moderate aversive conditions during development can shape an individual to be optimally adapted to similar conditions later in life. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  9. Overexpression of the DNA mismatch repair factor, PMS2, confers hypermutability and DNA damage tolerance.

    PubMed

    Gibson, Shannon L; Narayanan, Latha; Hegan, Denise Campisi; Buermeyer, Andrew B; Liskay, R Michael; Glazer, Peter M

    2006-12-08

    Inherited defects in genes associated with DNA mismatch repair (MMR) have been linked to familial colorectal cancer. Cells deficient in MMR are genetically unstable and demonstrate a tolerance phenotype in response to certain classes of DNA damage. Some sporadic human cancers also show abnormalities in MMR gene function, typically due to diminished expression of one of the MutL homologs, MLH1. Here, we report that overexpression of the MutL homolog, human PMS2, can also cause a disruption of the MMR pathway in mammalian cells, resulting in hypermutability and DNA damage tolerance. A mouse fibroblast cell line carrying a recoverable lambda phage shuttle vector for mutation detection was transfected with either a vector designed to express hPMS2 or with an empty vector control. Cells overexpressing hPMS2 were found to have elevated spontaneous mutation frequencies at the cII reporter gene locus. They also showed an increase in the level of mutations induced by the alkylating agent, methynitrosourea (MNU). Clonogenic survival assays demonstrated increased survival of the PMS2-overexpressing cells following exposure to MNU, consistent with the induction of a damage tolerance phenotype. Similar results were seen in cells expressing a mutant PMS2 gene, containing a premature stop codon at position 134 and representing a variant found in an individual with familial colon cancer. These results show that dysregulation of PMS2 gene expression can disrupt MMR function in mammalian cells and establish an additional carcinogenic mechanism by which cells can develop genetic instability and acquire resistance to cytotoxic cancer therapies.

  10. Introducing Calculators to Learners Early in Their Schooling: The Effect on Long-Term Arithmetic Proficiency

    ERIC Educational Resources Information Center

    Mogari, David; Faleye, Sunday

    2012-01-01

    There are opposing views about calculator use in school mathematics. This paper reports on a study that investigated the arithmetic proficiency of mathematics 1 university students and the effects of calculator usage at school level on their proficiency. The study followed a descriptive survey design involving the use of questionnaire and data…

  11. Computer Proficiency Questionnaire: Assessing Low and High Computer Proficient Seniors

    PubMed Central

    Boot, Walter R.; Charness, Neil; Czaja, Sara J.; Sharit, Joseph; Rogers, Wendy A.; Fisk, Arthur D.; Mitzner, Tracy; Lee, Chin Chin; Nair, Sankaran

    2015-01-01

    Purpose of the Study: Computers and the Internet have the potential to enrich the lives of seniors and aid in the performance of important tasks required for independent living. A prerequisite for reaping these benefits is having the skills needed to use these systems, which is highly dependent on proper training. One prerequisite for efficient and effective training is being able to gauge current levels of proficiency. We developed a new measure (the Computer Proficiency Questionnaire, or CPQ) to measure computer proficiency in the domains of computer basics, printing, communication, Internet, calendaring software, and multimedia use. Our aim was to develop a measure appropriate for individuals with a wide range of proficiencies from noncomputer users to extremely skilled users. Design and Methods: To assess the reliability and validity of the CPQ, a diverse sample of older adults, including 276 older adults with no or minimal computer experience, was recruited and asked to complete the CPQ. Results: The CPQ demonstrated excellent reliability (Cronbach’s α = .98), with subscale reliabilities ranging from .86 to .97. Age, computer use, and general technology use all predicted CPQ scores. Factor analysis revealed three main factors of proficiency related to Internet and e-mail use; communication and calendaring; and computer basics. Based on our findings, we also developed a short-form CPQ (CPQ-12) with similar properties but 21 fewer questions. Implications: The CPQ and CPQ-12 are useful tools to gauge computer proficiency for training and research purposes, even among low computer proficient older adults. PMID:24107443

  12. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Wyrobek, Andrew J.

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization.more » During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.« less

  13. Exercise training improves in vivo endothelial repair capacity of early endothelial progenitor cells in subjects with metabolic syndrome.

    PubMed

    Sonnenschein, Kristina; Horváth, Tibor; Mueller, Maja; Markowski, Andrea; Siegmund, Tina; Jacob, Christian; Drexler, Helmut; Landmesser, Ulf

    2011-06-01

    Endothelial dysfunction and injury are considered to contribute considerably to the development and progression of atherosclerosis. It has been suggested that intense exercise training can increase the number and angiogenic properties of early endothelial progenitor cells (EPCs). However, whether exercise training stimulates the capacity of early EPCs to promote repair of endothelial damage and potential underlying mechanisms remain to be determined. The present study was designed to evaluate the effects of moderate exercise training on in vivo endothelial repair capacity of early EPCs, and their nitric oxide and superoxide production as characterized by electron spin resonance spectroscopy analysis in subjects with metabolic syndrome. Twenty-four subjects with metabolic syndrome were randomized to an 8 weeks exercise training or a control group. Superoxide production and nitric oxide (NO) availability of early EPCs were characterized by using electron spin resonance (ESR) spectroscopy analysis. In vivo endothelial repair capacity of EPCs was examined by transplantation into nude mice with defined carotid endothelial injury. Endothelium-dependent, flow-mediated vasodilation was analysed using high-resolution ultrasound. Importantly, exercise training resulted in a substantially improved in vivo endothelial repair capacity of early EPCs (24.0 vs 12.7%; p < 0.05) and improved endothelium-dependent vasodilation. Nitric oxide production of EPCs was substantially increased after exercise training, but not in the control group. Moreover, exercise training reduced superoxide production of EPCs, which was not observed in the control group. The present study suggests for the first time that moderate exercise training increases nitric oxide production of early endothelial progenitor cells and reduces their superoxide production. Importantly, this is associated with a marked beneficial effect on the in vivo endothelial repair capacity of early EPCs in subjects with

  14. Reverse gastric tube oesophageal substitution for staged repair of oesophageal atresia and tracheo-oesophageal fistula.

    PubMed

    Bode, Christopher Olusanjo; Ademuyiwa, Adesoji Oludotun

    2014-01-01

    The management of oesophageal atresia and tracheo-oesophageal atresia (OATOF) is very challenging. While in developed countries survival of patients with this condition has improved, the outcome in many developing countries has been poor. Primary repair through a thoracotomy (or video-assisted thoracoscopic surgery where available) is the gold standard treatment of OATOF. However, in our setting where patients typically present late and with minimum support resources such as Neonatal Intensive Care Unit and total parenteral nutrition; staged repair may be the only hope of survival of these patients and this communication highlights the essential steps of this mode of treatment.

  15. Cancer screening behaviors and risk perceptions among family members of colorectal cancer patients with unexplained mismatch repair deficiency.

    PubMed

    Katz, Lior H; Advani, Shailesh; Burton-Chase, Allison M; Fellman, Bryan; Polivka, Katrina M; Yuan, Ying; Lynch, Patrick M; Peterson, Susan K

    2017-04-01

    Communication gaps in families with unexplained mismatch repair (MMR) deficiency (UMMRD) could negatively impact the screening behaviors of relatives of individual with UMMRD. We evaluated cancer risk perception, screening behaviors, and family communication among relatives of colorectal cancer (CRC) patients with UMMRD. Fifty-one family members of 17 probands with UMMRD completed a questionnaire about cancer risk perception, adherence to Lynch syndrome (LS) screening recommendations, and communication with relatives. Clinical data about the probands were obtained from medical records. Thirty-eight participants (78%) were worried from having cancer and twenty-one participants (42%) had undergone colonoscopy in the past 2 years, as recommended for LS families. In terms of screening for extracolonic cancers, only two eligible participants (3.9%) were screened for gastric, endometrial (10.0%), and ovarian (9.5%) cancers. Additionally, 5 participants (10%) underwent genetic counseling. Most participants were not told by anyone to be screened for extracolonic cancers (84, 85, and 95% for gastric, ovarian, and endometrial cancers, respectively). A minority of family members of CRC patients with UMMRD follow cancer screening as recommended for LS families. Health care providers should encourage patients with UMMRD to share information on LS-related cancers screening, especially extracolonic cancers, with their relatives.

  16. Cancer screening behaviors and risk perceptions among family members of colorectal cancer patients with unexplained mismatch repair deficiency

    PubMed Central

    Advani, Shailesh; Burton-Chase, Allison M.; Fellman, Bryan; Polivka, Katrina M.; Yuan, Ying; Lynch, Patrick M.; Peterson, Susan K.

    2018-01-01

    Communication gaps in families with unexplained mismatch repair (MMR) deficiency (UMMRD) could negatively impact the screening behaviors of relatives of individual with UMMRD. We evaluated cancer risk perception, screening behaviors, and family communication among relatives of colorectal cancer (CRC) patients with UMMRD. Fifty-one family members of 17 probands with UMMRD completed a questionnaire about cancer risk perception, adherence to Lynch syndrome (LS) screening recommendations, and communication with relatives. Clinical data about the probands were obtained from medical records. Thirty-eight participants (78%) were worried from having cancer and twenty-one participants (42%) had undergone colonoscopy in the past 2 years, as recommended for LS families. In terms of screening for extracolonic cancers, only two eligible participants (3.9%) were screened for gastric, endometrial (10.0%), and ovarian (9.5%) cancers. Additionally, 5 participants (10%) underwent genetic counseling. Most participants were not told by anyone to be screened for extracolonic cancers (84, 85, and 95% for gastric, ovarian, and endometrial cancers, respectively). A minority of family members of CRC patients with UMMRD follow cancer screening as recommended for LS families. Health care providers should encourage patients with UMMRD to share information on LS-related cancers screening, especially extracolonic cancers, with their relatives. PMID:27832499

  17. DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae

    PubMed Central

    Boiteux, Serge; Jinks-Robertson, Sue

    2013-01-01

    DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage. PMID:23547164

  18. Magnetic resonance imaging for diagnosis and assessment of cartilage defect repairs.

    PubMed

    Marlovits, Stefan; Mamisch, Tallal Charles; Vekszler, György; Resinger, Christoph; Trattnig, Siegfried

    2008-04-01

    Clinical magnetic resonance imaging (MRI) is the method of choice for the non-invasive evaluation of articular cartilage defects and the follow-up of cartilage repair procedures. The use of cartilage-sensitive sequences and a high spatial-resolution technique enables the evaluation of cartilage morphology even in the early stages of disease, as well as assessment of cartilage repair. Sequences that offer high contrast between articular cartilage and adjacent structures, such as the fat-suppressed, 3-dimensional, spoiled gradient-echo sequence and the fast spin-echo sequence, are accurate and reliable for evaluating intrachondral lesions and surface defects of articular cartilage. These sequences can also be performed together in reasonable examination times. In addition to morphology, new MRI techniques provide insight into the biochemical composition of articular cartilage and cartilage repair tissue. These techniques enable the diagnosis of early cartilage degeneration and help to monitor the effect and outcome of various surgical and non-surgical cartilage repair therapies.

  19. Computer proficiency questionnaire: assessing low and high computer proficient seniors.

    PubMed

    Boot, Walter R; Charness, Neil; Czaja, Sara J; Sharit, Joseph; Rogers, Wendy A; Fisk, Arthur D; Mitzner, Tracy; Lee, Chin Chin; Nair, Sankaran

    2015-06-01

    Computers and the Internet have the potential to enrich the lives of seniors and aid in the performance of important tasks required for independent living. A prerequisite for reaping these benefits is having the skills needed to use these systems, which is highly dependent on proper training. One prerequisite for efficient and effective training is being able to gauge current levels of proficiency. We developed a new measure (the Computer Proficiency Questionnaire, or CPQ) to measure computer proficiency in the domains of computer basics, printing, communication, Internet, calendaring software, and multimedia use. Our aim was to develop a measure appropriate for individuals with a wide range of proficiencies from noncomputer users to extremely skilled users. To assess the reliability and validity of the CPQ, a diverse sample of older adults, including 276 older adults with no or minimal computer experience, was recruited and asked to complete the CPQ. The CPQ demonstrated excellent reliability (Cronbach's α = .98), with subscale reliabilities ranging from .86 to .97. Age, computer use, and general technology use all predicted CPQ scores. Factor analysis revealed three main factors of proficiency related to Internet and e-mail use; communication and calendaring; and computer basics. Based on our findings, we also developed a short-form CPQ (CPQ-12) with similar properties but 21 fewer questions. The CPQ and CPQ-12 are useful tools to gauge computer proficiency for training and research purposes, even among low computer proficient older adults. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Polymer fiber-based models of connective tissue repair and healing.

    PubMed

    Lee, Nancy M; Erisken, Cevat; Iskratsch, Thomas; Sheetz, Michael; Levine, William N; Lu, Helen H

    2017-01-01

    Physiologically relevant models of wound healing are essential for understanding the biology of connective tissue repair and healing. They can also be used to identify key cellular processes and matrix characteristics critical for the design of soft tissue grafts. Modeling the various stages of repair post tendon injury, polymer meshes of varying fiber diameter (nano-1 (390 nm) < nano-2 (740 nm) < micro (1420 nm)) were produced. Alignment was also introduced in the nano-2 group to model matrix undergoing biological healing rather than scar formation. The response of human tendon fibroblasts on these model substrates were evaluated over time as a function of fiber diameter and alignment. It was observed that the repair models of unaligned nanoscale fibers enhanced cell growth and collagen synthesis, while these outcomes were significantly reduced in the mature repair model consisting of unaligned micron-sized fibers. Organization of paxillin and actin on unaligned meshes was enhanced on micro- compared to nano-sized fibers, while the expression and activity of RhoA and Rac1 were greater on nanofibers. In contrast, aligned nanofibers promoted early cell organization, while reducing excessive cell growth and collagen production in the long term. These results show that the early-stage repair model of unaligned nanoscale fibers elicits a response characteristic of the proliferative phase of wound repair, while the more mature model consisting of unaligned micron-sized fibers is more representative of the remodeling phase by supporting cell organization while suppressing growth and biosynthesis. Interestingly, introduction of fiber alignment in the nanofiber model alters fibroblast response from repair to healing, implicating matrix alignment as a critical design factor for circumventing scar formation and promoting biological healing of soft tissue injuries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Living with early-stage dementia: a review of qualitative studies.

    PubMed

    Steeman, Els; de Casterlé, Bernadette Dierckx; Godderis, Jan; Grypdonck, Mieke

    2006-06-01

    This paper presents a literature review whose aim was to provide better understanding of living with early-stage dementia. Even in the early stages, dementia may challenge quality of life. Research on early-stage dementia is mainly in the domain of biomedical aetiology and pathology, providing little understanding of what it means to live with dementia. Knowledge of the lived experience of having dementia is important in order to focus pro-active care towards enhancing quality of life. Qualitative research is fundamentally well suited to obtaining an insider's view of living with early-stage dementia. We performed a meta-synthesis of qualitative research findings. We searched MEDLINE, CINAHL, and PsycINFO and reviewed the papers cited in the references of pertinent articles, the references cited in a recently published book on the subjective experience of dementia, one thesis, and the journal Dementia. Thirty-three pertinent articles were identified, representing 28 separate studies and 21 different research samples. Findings were coded, grouped, compared and integrated. Living with dementia is described from the stage a person discovers the memory impairment, through the stage of being diagnosed with dementia, to that of the person's attempts to integrate the impairment into everyday life. Memory loss often threatens perceptions of security, autonomy and being a meaningful member of society. At early stages of memory loss, individuals use self-protecting and self-adjusting strategies to deal with perceived changes and threats. However, the memory impairment itself may make it difficult for an individual to deal with these changes, thereby causing frustration, uncertainty and fear. Our analysis supports the integration of proactive care into the diagnostic process, because even early-stage dementia may challenge quality of life. Moreover, this care should actively involve both the individual with dementia and their family so that both parties can adjust positively

  2. Doublethink and scale mismatch polarize policies for an invasive tree

    PubMed Central

    Roberts, Caleb P.; Uden, Daniel R.; Allen, Craig R.; Twidwell, Dirac

    2018-01-01

    Mismatches between invasive species management policies and ecological knowledge can lead to profound societal consequences. For this reason, natural resource agencies have adopted the scientifically-based density-impact invasive species curve to guide invasive species management. We use the density-impact model to evaluate how well management policies for a native invader (Juniperus virginiana) match scientific guidelines. Juniperus virginiana invasion is causing a sub-continental regime shift from grasslands to woodlands in central North America, and its impacts span collapses in endemic diversity, heightened wildfire risk, and crashes in grazing land profitability. We (1) use land cover data to identify the stage of Juniperus virginiana invasion for three ecoregions within Nebraska, USA, (2) determine the range of invasion stages at individual land parcel extents within each ecoregion based on the density-impact model, and (3) determine policy alignment and mismatches relative to the density-impact model in order to assess their potential to meet sustainability targets and avoid societal impacts as Juniperus virginiana abundance increases. We found that nearly all policies evidenced doublethink and policy-ecology mismatches, for instance, promoting spread of Juniperus virginiana regardless of invasion stage while simultaneously managing it as a native invader in the same ecoregion. Like other invasive species, theory and literature for this native invader indicate that the consequences of invasion are unlikely to be prevented if policies fail to prioritize management at incipient invasion stages. Theory suggests a more realistic approach would be to align policy with the stage of invasion at local and ecoregion management scales. There is a need for scientists, policy makers, and ecosystem managers to move past ideologies governing native versus non-native invader classification and toward a framework that accounts for the uniqueness of native species invasions

  3. Doublethink and scale mismatch polarize policies for an invasive tree

    USGS Publications Warehouse

    Roberts, Caleb P.; Uden, Daniel R.; Allen, Craig R.; Twidwell, Dirac

    2018-01-01

    Mismatches between invasive species management policies and ecological knowledge can lead to profound societal consequences. For this reason, natural resource agencies have adopted the scientifically-based density-impact invasive species curve to guide invasive species management. We use the density-impact model to evaluate how well management policies for a native invader (Juniperus virginiana) match scientific guidelines. Juniperus virginiana invasion is causing a sub-continental regime shift from grasslands to woodlands in central North America, and its impacts span collapses in endemic diversity, heightened wildfire risk, and crashes in grazing land profitability. We (1) use land cover data to identify the stage of Juniperus virginiana invasion for three ecoregions within Nebraska, USA, (2) determine the range of invasion stages at individual land parcel extents within each ecoregion based on the density-impact model, and (3) determine policy alignment and mismatches relative to the density-impact model in order to assess their potential to meet sustainability targets and avoid societal impacts as Juniperus virginiana abundance increases. We found that nearly all policies evidenced doublethink and policy-ecology mismatches, for instance, promoting spread of Juniperus virginiana regardless of invasion stage while simultaneously managing it as a native invader in the same ecoregion. Like other invasive species, theory and literature for this native invader indicate that the consequences of invasion are unlikely to be prevented if policies fail to prioritize management at incipient invasion stages. Theory suggests a more realistic approach would be to align policy with the stage of invasion at local and ecoregion management scales. There is a need for scientists, policy makers, and ecosystem managers to move past ideologies governing native versus non-native invader classification and toward a framework that accounts for the uniqueness of native species

  4. Lack of correlation between phonetic magnetic mismatch field and plasma d-serine levels in humans.

    PubMed

    Suga, Motomu; Kawakubo, Yuki; Nishimura, Yukika; Hashimoto, Kenji; Yumoto, Masato; Kasai, Kiyoto

    2018-04-24

    Uncovering molecular bases for auditory language processing in the human brain is a fundamental scientific challenge. The power and latency of the magnetic mismatch field (MMF) elicited by phoneme change, which are magnetoencephalographic indices of language function in its early stage of information processing, are theoretically thought to be modulated by N-methyl-d-aspartate-type glutamate receptor (NMDAR) function, but no study has yet assessed this possibility. We have thus sought to demonstrate an association between phonetic MMF power/latency and levels of plasma d-serine, an intrinsic co-agonist of glycine binding sites on NMDAR, in adults. The MMF response to phoneme changes was recorded using 204-channel magnetoencephalography in 61 healthy, right-handed, Japanese adults. Plasma levels of d- and l-serine were measured for each participant. We did not find a significant correlation between MMF power/latency and plasma serine levels. Despite a sufficient sample size, we failed to find an association between the physiological markers of the early stage of information processing of language in the auditory cortex and biomarkers indexing glutamatergic function. Our study did not indicate that a molecular index of glutamatergic function could be a surrogate marker for the early stage of information processing of language in humans. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  5. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene

    PubMed Central

    Win, Aung Ko; Reece, Jeanette C.; Buchanan, Daniel D.; Clendenning, Mark; Young, Joanne P.; Cleary, Sean P.; Kim, Hyeja; Cotterchio, Michelle; Dowty, James G.; MacInnis, Robert J.; Tucker, Katherine M.; Winship, Ingrid M.; Macrae, Finlay A.; Burnett, Terrilea; Le Marchand, Loïc; Casey, Graham; Haile, Robert W.; Newcomb, Polly A.; Thibodeau, Stephen N.; Lindor, Noralane M.; Hopper, John L.; Gallinger, Steven; Jenkins, Mark A.

    2015-01-01

    The base excision repair protein, MUTYH, functionally interacts with the DNA mismatch repair (MMR) system. As genetic testing moves from testing one gene at a time, to gene panel and whole exome next generation sequencing approaches, understanding the risk associated with co-existence of germline mutations in these genes will be important for clinical interpretation and management. From the Colon Cancer Family Registry, we identified 10 carriers who had both a MUTYH mutation (6 with c.1187G>A p.(Gly396Asp), 3 with c.821G>A p.(Arg274Gln), and 1 with c.536A>G p.(Tyr179Cys)) and a MMR gene mutation (3 in MLH1, 6 in MSH2, and 1 in PMS2), 375 carriers of a single (monoallelic) MUTYH mutation alone, and 469 carriers of a MMR gene mutation alone. Of the 10 carriers of both gene mutations, 8 were diagnosed with colorectal cancer. Using a weighted cohort analysis, we estimated that risk of colorectal cancer for carriers of both a MUTYH and a MMR gene mutation was substantially higher than that for carriers of a MUTYH mutation alone [hazard ratio (HR) 21.5, 95 % confidence interval (CI) 9.19–50.1; p < 0.001], but not different from that for carriers of a MMR gene mutation alone (HR 1.94, 95 % CI 0.63–5.99; p = 0.25). Within the limited power of this study, there was no evidence that a monoallelic MUTYH gene mutation confers additional risk of colorectal cancer for carriers of a MMR gene mutation alone. Our finding suggests MUTYH mutation testing in MMR gene mutation carriers is not clinically informative. PMID:26202870

  6. Child Care and Early Childhood Education: More Information Sharing and Program Review by HHS Could Enhance Access for Families with Limited English Proficiency. Report to Congressional Requesters. GAO-06-807

    ERIC Educational Resources Information Center

    Shaul, Marnie S.

    2006-01-01

    Questions have been raised about whether parents with limited English proficiency are having difficulty accessing child care and early education programs for their children. Research suggests that quality early care experiences can greatly improve the school readiness of young children. GAO was asked to provide information on: (1) the…

  7. Alcohol Consumption and the Risk of Colorectal Cancer for Mismatch Repair Gene Mutation Carriers

    PubMed Central

    Dashti, S. Ghazaleh; Buchanan, Daniel D.; Jayasekara, Harindra; Ouakrim, Driss Ait; Clendenning, Mark; Rosty, Christophe; Winship, Ingrid M.; Macrae, Finlay A.; Giles, Graham G.; Parry, Susan; Casey, Graham; Haile, Robert W.; Gallinger, Steven; Le Marchand, Loïc; Thibodeau, Stephen N.; Lindor, Noralane M.; Newcomb, Polly A.; Potter, John D.; Baron, John A.; Hopper, John L.; Jenkins, Mark A.; Win, Aung Ko

    2016-01-01

    Background People with germline mutation in one of the DNA mismatch repair (MMR) genes have increased colorectal cancer risk. For these high-risk people, study findings of the relationship between alcohol consumption and colorectal cancer risk have been inconclusive. Methods 1,925 MMR gene mutations carriers recruited into the Colon Cancer Family Registry who had completed a questionnaire on lifestyle factors were included. Weighted Cox proportional hazard regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between alcohol consumption and colorectal cancer. Results Colorectal cancer was diagnosed in 769 carriers (40%) at a mean (standard deviation) age of 42.6 (10.3) years. Compared with abstention, ethanol consumption from any alcoholic beverage up to 14 grams/day and >28 grams/day were associated with increased colorectal cancer risk (HR, 1.50; 95%CI, 1.09–2.07 and 1.69; 95%CI, 1.07–2.65 respectively; P-trend=0.05), and colon cancer risk (HR, 1.78; 95%CI, 1.27–2.49 and 1.94; 95%CI, 1.19–3.18 respectively; P-trend=0.02). However, there was no clear evidence for an association with rectal cancer risk. Also, there was no evidence for associations between consumption of individual alcoholic beverage types (beer, wine, spirits) and colorectal, colon, or rectal cancer risk. Conclusion Our data suggests that alcohol consumption, particularly more than 28 grams/day of ethanol (~2 standard drinks of alcohol in the US), is associated with increased colorectal cancer risk for MMR gene mutation carriers. Impact Although these data suggested that alcohol consumption in MMR carriers was associated with increased colorectal cancer risk, there was no evidence of a dose-response, and not all types of alcohol consumption were associated with increased risk. PMID:27811119

  8. Do postoperative platelet-rich plasma injections accelerate early tendon healing and functional recovery after arthroscopic supraspinatus repair? A randomized controlled trial.

    PubMed

    Wang, Allan; McCann, Philip; Colliver, Jess; Koh, Eamon; Ackland, Timothy; Joss, Brendan; Zheng, Minghao; Breidahl, Bill

    2015-06-01

    Tendon-bone healing after rotator cuff repair directly correlates with a successful outcome. Biological therapies that elevate local growth-factor concentrations may potentiate healing after surgery. To ascertain whether postoperative and repeated application of platelet-rich plasma (PRP) to the tendon repair site improves early tendon healing and enhances early functional recovery after double-row arthroscopic supraspinatus repair. Randomized controlled trial; Level of evidence, 1. A total of 60 patients underwent arthroscopic double-row supraspinatus tendon repair. After randomization, half the patients received 2 ultrasound-guided injections of PRP to the repair site at postoperative days 7 and 14. Early structural healing was assessed with MRI at 16 weeks, and cuff appearances were graded according to the Sugaya classification. Functional scores were recorded with the Oxford Shoulder Score; Quick Disability of the Arm, Shoulder and Hand; visual analog scale for pain; and Short Form-12 quality-of-life score both preoperatively and at postoperative weeks 6, 12, and 16; isokinetic strength and active range of motion were measured at 16 weeks. PRP treatment did not improve early functional recovery, range of motion, or strength or influence pain scores at any time point after arthroscopic supraspinatus repair. There was no difference in structural integrity of the supraspinatus repair on MRI between the PRP group (0% full-thickness retear; 23% partial tear; 77% intact) and the control group (7% full-thickness retear; 23% partial tear; 70% intact) at 16 weeks postoperatively (P = .35). After arthroscopic supraspinatus tendon repair, image-guided PRP treatment on 2 occasions does not improve early tendon-bone healing or functional recovery. © 2015 The Author(s).

  9. DNA Damage Induced by Alkylating Agents and Repair Pathways

    PubMed Central

    Kondo, Natsuko; Takahashi, Akihisa; Ono, Koji; Ohnishi, Takeo

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O6-methylguanine-DNA methyltransferase, and O6MeG:T mispairs are recognized by the mismatch repair system (MMR). MMR cannot repair the O6MeG/T mispairs, which eventually lead to double-strand breaks. Bifunctional alkylating agents form interstrand cross-links (ICLs) which are more complex and highly cytotoxic. ICLs are repaired by complex of NER factors (e.g., endnuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1), Fanconi anemia repair, and homologous recombination. A detailed understanding of how cells cope with DNA damage caused by alkylating agents is therefore potentially useful in clinical medicine. PMID:21113301

  10. Age is a significant predictor of early and late improvement in semen parameters after microsurgical varicocele repair.

    PubMed

    Kimura, M; Nagao, K; Tai, T; Kobayashi, H; Nakajima, K

    2017-04-01

    Accumulating evidence indicates that varicocele repair improves sperm quality. However, longitudinal changes in sperm parameters and predictors of improved semen characteristics after surgery have not been fully investigated. We retrospectively reviewed data from 100 men who underwent microsurgical subinguinal varicocele repair at a single centre. Follow-up semen examinations were carried out at 3, 6 and 12 months post-operatively. Logistic regression was used to identify predictors of early (3 months) and late (≥6 months) improvement in semen parameters after varicocele repair. At 3 months post-operatively, 76.1% of the patients had improved total motile sperm counts, which continued to improve significantly up to 12 months post-operatively (p = .016). When comparing changes in semen parameters between younger (<37 years) and older (≥37 years) men, post-operative improvements in sperm concentration and motility were greater among younger men. Multivariate analysis showed that younger age was associated with early (p = .043) and late (p = .010) post-operative improvement in total motile sperm count. Our findings indicate that early varicocele repair improved semen parameters after surgery. © 2016 Blackwell Verlag GmbH.

  11. Diverging effects of HLA-DPB1 matching status on outcome following unrelated donor transplantation depending on disease stage and the degree of matching for other HLA alleles.

    PubMed

    Shaw, B E; Mayor, N P; Russell, N H; Apperley, J F; Clark, R E; Cornish, J; Darbyshire, P; Ethell, M E; Goldman, J M; Little, A-M; Mackinnon, S; Marks, D I; Pagliuca, A; Thomson, K; Marsh, S G E; Madrigal, J A

    2010-01-01

    Disease stage and recipient/donor human leukocyte antigen (HLA) matching are important determinants of outcome in transplantation using volunteer-unrelated donors (VUD). Matching for HLA-A, -B, -C, -DRB1, -DQB1 is beneficial, whereas the importance of DPB1 matching is more controversial. The impact of HLA matching status may differ dependent on disease stage. We investigated the outcome according to the degree of HLA matching at 6 loci, in 488 recipients of predominantly T-cell depleted bone marrow VUD transplants for leukaemia. Survival was significantly better in 12/12-matched transplants in those with early leukaemia (5 years: 63 versus 41% in 10/10 matched, P=0.006), but not late stage disease. Conversely, within the HLA-mismatched group (< or =9/10), there was a significant survival advantage to DPB1 mismatching (5 years: 39 versus 21% in DPB1 matched, P=0.008), particularly in late leukaemia (P=0.01), persisting in multivariate analysis (odds ratio 0.478; 95% confidence interval 0.30, 0.75; P=0.001). These novel findings suggest that the best outcome for patients with early leukaemia, with a 10/10-matched donor, is achieved by matching for DPB1. Conversely, our results suggest that in patients receiving an HLA-mismatched graft, the outcome is significantly better if they are also mismatched for DPB1. We recommend validation of these results in independent datasets.

  12. Masked translation priming effects with low proficient bilinguals.

    PubMed

    Dimitropoulou, Maria; Duñabeitia, Jon Andoni; Carreiras, Manuel

    2011-02-01

    Non-cognate masked translation priming lexical decision studies with unbalanced bilinguals suggest that masked translation priming effects are asymmetric as a function of the translation direction (significant effects only in the dominant [L1] to nondominant [L2] language translation direction). However, in contrast to the predictions of most current accounts of masked translation priming effects, bidirectional effects have recently been reported with a group of low proficient bilinguals Duyck & Warlop 2009 (Experimental Psychology 56:173-179). In a series of masked translation priming lexical decision experiments we examined whether the same pattern of effects would emerge with late and low proficient Greek (L1)-Spanish (L2) bilinguals. Contrary to the results obtained by Duyck and Warlop, and in line with the results found in most studies in the masked priming literature, significant translation priming effects emerged only when the bilinguals performed the task with L1 primes and L2 targets. The existence of the masked translation priming asymmetry with low proficient bilinguals suggests that cross-linguistic automatic lexico-semantic links may be established very early in the process of L2 acquisition. These findings could help to define models of bilingualism that consider L2 proficiency level to be a determining factor.

  13. Photons from the early stages of relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Oliva, L.; Ruggieri, M.; Plumari, S.; Scardina, F.; Peng, G. X.; Greco, V.

    2017-07-01

    We present results about photon-production in relativistic heavy-ion collisions. The main novelty of our study is the calculation of the contribution of the early-stage photons to the photon spectrum. The initial stage is modeled by an ensemble of classical gluon fields which decay to a quark-gluon plasma via the Schwinger mechanism, and the evolution of the system is studied by coupling classical field equations to relativistic kinetic theory; photon production is then computed by including the pertinent collision processes into the collision integral. We find that the contribution of the early-stage photons to the direct photon spectrum is substantial for pT≈2 GeV and higher, the exact value depending on the collision energy; therefore, we identify this part of the photon spectrum as the sign of the early stage. Moreover, the amount of photons produced during the early stage is not negligible with respect to those produced by a thermalized quark-gluon plasma: We support the idea that there is no dark age in relativistic heavy-ion collisions.

  14. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription.

    PubMed

    Nadkarni, Aditi; Burns, John A; Gandolfi, Alberto; Chowdhury, Moinuddin A; Cartularo, Laura; Berens, Christian; Geacintov, Nicholas E; Scicchitano, David A

    2016-01-08

    DNA adducts derived from carcinogenic polycyclic aromatic hydrocarbons like benzo[a]pyrene (B[a]P) and benzo[c]phenanthrene (B[c]Ph) impede replication and transcription, resulting in aberrant cell division and gene expression. Global nucleotide excision repair (NER) and transcription-coupled DNA repair (TCR) are among the DNA repair pathways that evolved to maintain genome integrity by removing DNA damage. The interplay between global NER and TCR in repairing the polycyclic aromatic hydrocarbon-derived DNA adducts (+)-trans-anti-B[a]P-N(6)-dA, which is subject to NER and blocks transcription in vitro, and (+)-trans-anti-B[c]Ph-N(6)-dA, which is a poor substrate for NER but also blocks transcription in vitro, was tested. The results show that both adducts inhibit transcription in human cells that lack both NER and TCR. The (+)-trans-anti-B[a]P-N(6)-dA lesion exhibited no detectable effect on transcription in cells proficient in NER but lacking TCR, indicating that NER can remove the lesion in the absence of TCR, which is consistent with in vitro data. In primary human cells lacking NER, (+)-trans-anti-B[a]P-N(6)-dA exhibited a deleterious effect on transcription that was less severe than in cells lacking both pathways, suggesting that TCR can repair the adduct but not as effectively as global NER. In contrast, (+)-trans-anti-B[c]Ph-N(6)-dA dramatically reduces transcript production in cells proficient in global NER but lacking TCR, indicating that TCR is necessary for the removal of this adduct, which is consistent with in vitro data showing that it is a poor substrate for NER. Hence, both global NER and TCR enhance the recovery of gene expression following DNA damage, and TCR plays an important role in removing DNA damage that is refractory to NER. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Overview of existing cartilage repair technology.

    PubMed

    McNickle, Allison G; Provencher, Matthew T; Cole, Brian J

    2008-12-01

    Currently, autologous chondrocyte implantation and osteochondral grafting bridge the gap between palliation of cartilage injury and resurfacing via arthroplasty. Emerging technologies seek to advance first generation techniques and accomplish several goals including predictable outcomes, cost-effective technology, single-stage procedures, and creation of durable repair tissue. The biologic pipeline represents a variety of technologies including synthetics, scaffolds, cell therapy, and cell-infused matrices. Synthetic constructs, an alternative to biologic repair, resurface a focal chondral defect rather than the entire joint surface. Scaffolds are cell-free constructs designed as a biologic "net" to augment marrow stimulation techniques. Minced cartilage technology uses stabilized autologous or allogeneic fragments in 1-stage transplantation. Second and third generation cell-based methods include alternative membranes, chondrocyte seeding, and culturing onto scaffolds. Despite the promising early results of these products, significant technical obstacles remain along with unknown long-term durability. The vast array of developing technologies has exceptional promise and the potential to revolutionize the cartilage treatment algorithm within the next decade.

  16. Ninety-six haploid yeast strains with individual disruptions of open reading frames between YOR097C and YOR192C, constructed for the Saccharomyces genome deletion project, have an additional mutation in the mismatch repair gene MSH3.

    PubMed

    Lehner, Kevin R; Stone, Megan M; Farber, Rosann A; Petes, Thomas D

    2007-11-01

    As part of the Saccharomyces Genome Deletion Project, sets of presumably isogenic haploid and diploid strains that differed only by single gene deletions were constructed. We found that one set of 96 strains (containing deletions of ORFs located between YOR097C and YOR192C) in the collection, which was derived from the haploid BY4741, has an additional mutation in the MSH3 mismatch repair gene.

  17. Two-stage repair for severe proximal hypospadias using oral mucosal grafts: combination of a modified Bracka method and a modified Byars flap method.

    PubMed

    Mitsukawa, Nobuyuki; Saiga, Atsuomi; Akita, Shinsuke; Kubota, Yoshitaka; Kuriyama, Motone; Satoh, Kaneshige

    2015-02-01

    One-stage repair is a conventional treatment of hypospadias. If hypospadias is severe as in the scrotal type and perineal type, penile curvature sometimes cannot be corrected by dorsal midline plication alone. In addition to resection of the urethral plate, ventral grafting becomes necessary for insufficient skin and subcutaneous tissue. In recent years, there has been renewed interest in 2-stage repair for such severe cases and salvage of failed cases with scarring. In the present study, novel 2-stage urethroplasty was performed in 6 cases to repair severe proximal hypospadias which required resection of the urethral plate. This novel method consisted of a combination of a modified Bracka method using oral mucosal grafts and a modified Byars flap of the dorsal foreskin. Good results were obtained using this novel method.

  18. Germline PMS2 and somatic POLE exonuclease mutations cause hypermutability of the leading DNA strand in biallelic mismatch repair deficiency syndrome brain tumours.

    PubMed

    Andrianova, Maria A; Chetan, Ghati Kasturirangan; Sibin, Madathan Kandi; Mckee, Thomas; Merkler, Doron; Narasinga, Rao Kvl; Ribaux, Pascale; Blouin, Jean-Louis; Makrythanasis, Periklis; Seplyarskiy, Vladimir B; Antonarakis, Stylianos E; Nikolaev, Sergey I

    2017-11-01

    Biallelic mismatch repair deficiency (bMMRD) in tumours is frequently associated with somatic mutations in the exonuclease domains of DNA polymerases POLE or POLD1, and results in a characteristic mutational profile. In this article, we describe the genetic basis of ultramutated high-grade brain tumours in the context of bMMRD. We performed exome sequencing of two second-cousin patients from a large consanguineous family of Indian origin with early onset of high-grade glioblastoma and astrocytoma. We identified a germline homozygous nonsense variant, p.R802*, in the PMS2 gene. Additionally, by genome sequencing of these tumours, we found extremely high somatic mutation rates (237/Mb and 123/Mb), as well as somatic mutations in the proofreading domain of POLE polymerase (p.P436H and p.L424V), which replicates the leading DNA strand. Most interestingly, we found, in both cancers, that the vast majority of mutations were consistent with the signature of POLE exo - , i.e. an abundance of C>A and C>T mutations, particularly in special contexts, on the leading strand. We showed that the fraction of mutations under positive selection among mutations in tumour suppressor genes is more than two-fold lower in ultramutated tumours than in other glioblastomas. Genetic analyses enabled the diagnosis of the two consanguineous childhood brain tumours as being due to a combination of PMS2 germline and POLE somatic variants, and confirmed them as bMMRD/POLE exo - disorders. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Cultural Proficiency

    ERIC Educational Resources Information Center

    Guerra, Patricia L.; Nelson, Sarah W.

    2007-01-01

    Cultural proficiency is defined as "the policies and practices of an organization or the values and behaviors of an individual that enable the agency or person to interact effectively in a culturally diverse environment." The diverse composition of today's classrooms demands that schools and educators be culturally proficient, yet few of them are.…

  20. [EFFECTIVENESS OF ONE-STAGE REPAIR AND RECONSTRUCTION FOR KNEE DISLOCATION WITH MULTIPLE LIGAMENT INJURIES].

    PubMed

    Sun, Zhengyu; Zhang, Chenghao; Tang, Xin; Chen, Gang; Li, Jian

    2016-06-08

    To evaluate the surgical procedure and short-term effectiveness of one-stage repair and reconstruction of knee dislocation with multiple ligament injuries (KDMLI). Between September 2010 and April 2014, 9 cases (9 knees) of KDMLI were treated. There were 7 males and 2 females with an average age of 42 years (range, 27-57 years). Injury was caused by traffic accident in 3 cases, heavy-weight crushing in 3 cases, sports sprain in 2 cases, and falling from height in 1 case. The average time from injury to operation was 11 days (range, 3-19 days). The results of posterior drawer test and Lachman test were positive in all patients. The results of varus stress testing were three-degree positive in 4 cases, and the results of valgus stress testing were three-degree positive in 6 cases. The Lysholm score of knee was 27.2±6.3; the International Knee Documentation Committee (IKDC) score was 29.7±6.5; and the range of motion (ROM) was (52.6±12.8)°. All patients suffered from posterior cruciate ligament (PCL) injury and femoral avulsion injury of anterior cruciate ligament (ACL). Combined injuries included medial collateral ligament (MCL) injury in 4 cases (medial meniscus injury in 1 case), lateral collateral ligament (LCL) injury in 2 cases, and MCL and LCL injuries in 2 cases (medial meniscus and lateral meniscus injuries in 1 case). Autologous harmstring tendon was used to reconstruct PCL under arthroscopy combined with limited open in situ suture for repair of femoral avulsion injury of ACL, and repair of MCL, LCL, and other injury in one-stage operation. All incisions healed by first intention. Joint effusion of knee occurred in 1 case and was cured after removal of fluid combined with pressure bandage. All patients were followed up 12-36 months with an average of 22 months. At last follow-up, the result of posterior drawer test was negative in all patients. The results of Lachman test were one-degree positive in 2 cases; the result of varus stress testing was one

  1. DNA Repair in Drosophila: Mutagens, Models, and Missing Genes

    PubMed Central

    Sekelsky, Jeff

    2017-01-01

    The numerous processes that damage DNA are counterbalanced by a complex network of repair pathways that, collectively, can mend diverse types of damage. Insights into these pathways have come from studies in many different organisms, including Drosophila melanogaster. Indeed, the first ideas about chromosome and gene repair grew out of Drosophila research on the properties of mutations produced by ionizing radiation and mustard gas. Numerous methods have been developed to take advantage of Drosophila genetic tools to elucidate repair processes in whole animals, organs, tissues, and cells. These studies have led to the discovery of key DNA repair pathways, including synthesis-dependent strand annealing, and DNA polymerase theta-mediated end joining. Drosophila appear to utilize other major repair pathways as well, such as base excision repair, nucleotide excision repair, mismatch repair, and interstrand crosslink repair. In a surprising number of cases, however, DNA repair genes whose products play important roles in these pathways in other organisms are missing from the Drosophila genome, raising interesting questions for continued investigations. PMID:28154196

  2. Cultural Proficiency. Research Brief

    ERIC Educational Resources Information Center

    Walker, Karen

    2007-01-01

    Cultural proficiency and diversity are often used interchangeably, yet there are some distinct differences between them. Cultural proficiency is the umbrella under which diversity falls. According to one source, "Cultural proficiency is a way of being that allows individuals and organizations to interact effectively with people who differ from…

  3. Current developments in the treatment of early-stage classical Hodgkin lymphoma.

    PubMed

    Borchmann, Sven; von Tresckow, Bastian; Engert, Andreas

    2016-09-01

    After presenting the current treatment recommendations for early-stage Hodgkin lymphoma, we give an overview on recently published clinical trials in this setting. Furthermore, the potential influence of current trials on the treatment of early-stage Hodgkin lymphoma and integration of newly emerging drugs into treatment protocols will be discussed. Trials attempting treatment de-escalation and omission of radiotherapy on the basis of early interim PET-scans have been disappointing so far, but results of some large trials employing this strategy are still awaited. In contrast, a more defensive strategy of starting treatment with less aggressive doxorubicine, bleomycin, vinblastine, dacarbazine (ABVD) chemotherapy and intensifying treatment in early interim PET-positive patients has shown encouraging results. New drugs such as brentuximab vedotin and immune checkpoint inhibitors have shown promising results in relapsed and refractory Hodgkin lymphoma. Clinical trials of brentuximab vedotin in early-stage Hodgkin lymphoma have been initiated. Additionally, biomarker-based treatment de-escalation might be a possible route for future improvements. The challenge for future clinical research in early-stage Hodgkin lymphoma is to continue to cure the majority of patients with first-line treatment while reducing long-term toxicity. New strategies to achieve that goal are currently being developed and will further refine treatment of early-stage Hodgkin lymphoma.

  4. Early Experiences with the Endovascular Repair of Ruptured Descending Thoracic Aortic Aneurysm

    PubMed Central

    Choi, Jae-Sung; Oh, Se Jin; Sung, Yong Won; Moon, Hyun Jong; Lee, Jung Sang

    2016-01-01

    Background The aim of this study was to report our early experiences with the endovascular repair of ruptured descending thoracic aortic aneurysms (rDTAAs), which are a rare and life-threatening condition. Methods Among 42 patients who underwent thoracic endovascular aortic repair (TEVAR) between October 2010 and September 2015, five patients (11.9%) suffered an rDTAA. Results The mean age was 72.4±5.1 years, and all patients were male. Hemoptysis and hemothorax were present in three (60%) and two (40%) patients, respectively. Hypovolemic shock was noted in three patients who underwent emergency operations. A hybrid operation was performed in three patients. The mean operative time was 269.8±72.3 minutes. The mean total length of aortic coverage was 186.0±49.2 mm. No 30-day mortality occurred. Stroke, delirium, and atrial fibrillation were observed in one patient each. Paraplegia did not occur. Endoleak was found in two patients (40%), one of whom underwent an early and successful reintervention. During the mean follow-up period of 16.8±14.8 months, two patients died; one cause of death was a persistent type 1 endoleak and the other cause was unknown. Conclusion TEVAR for rDTAA was associated with favorable early mortality and morbidity outcomes. However, early reintervention should be considered if persistent endoleak occurs. PMID:27064672

  5. Influence of different palate repair protocols on facial growth in unilateral complete cleft lip and palate.

    PubMed

    Xu, Xue; Kwon, Hyuk-Jae; Shi, Bing; Zheng, Qian; Yin, Heng; Li, Chenghao

    2015-01-01

    To address the question of whether one- or two-stage palatal treatment protocol has fewer detrimental effects on craniofacial growth in patients aged 5 years with unilateral complete cleft lip and palate. Forty patients with non-syndromic unilateral complete cleft lip and palate (UCCLPs) who had received primary cleft lip repair at age 6-12 months and cleft palate repair at age 18-30 months were selected in this study. Eighteen UCCLP patients who received two-stage palate repair were selected as group 1, and 22 UCCLP patients who received one-stage palate repair were selected as group 2. The control group consisted of 20 patients with unilateral incomplete cleft lip (UICL patients) whose age and gender matched with UCCLP patients. A one-sample Kolmogorov-Smirnov test was used to analyze the nature of data distribution. Bonferroni test and Kruskal-Wallis H tests were used for multiple comparisons. Both case groups showed reduced maxillary sagittal length (ANS-PMP, A-PM, p < 0.05) and retrusion of the maxilla (S-Ptm, p < 0.05), A point and ANS point (Ba-N-A, Ba-N-ANS, p < 0.05). Patients treated with two-stage palate repair had a reduced posterior maxillary vertical height (R-PMP, p < 0.05). Our results indicated that maxillary sagittal length and position could be perturbed by both one- and two-stage palate repair. Vomer flap repair inhibited maxilla vertical growth. Delayed hard palate repair showed less detrimental effects on maxillary growth compared to early hard palate repair in UCCLP patients aged 5 years. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  6. Generic Difference Between Early and Late Stages of BATSE Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Mitrofanov, Igor G.; Litvak, Maxim L.; Anfimov, Dimitrij S.; Sanin, Anton B.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey N.; Preece, Robert D.; Meegan, Charles A.

    2001-01-01

    The early and late stages of gamma-ray bursts are studied in a statistical analysis of the large sample of long BATSE events. The primary peak is used as the boundary between the early and late stages of emission. Significant differences are found between the stages: the early stage is shorter, it has harder emission, and it becomes a smaller fraction of the total burst duration for burst groups of decreasing intensity.

  7. General Differences between Early and Late Stages of BATSE Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Mitrofanov, I. G.; Litvak, M. L.; Anfimov, D. S.; Sanin, A. B.; Briggs, M. S.; Paciesas, W. S.; Pendleton, G. N.; Preece, R. D.; Meegan, C. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The early and late stages of gamma-ray bursts are studied in a statistical analysis of the large sample of long BATSE events. The primary peak is used as the boundary between the early and late stages of emission. Significant differences are found between the stages: the early stage is shorter, it has harder emission, and it becomes a smaller fraction of the total burst duration for burst groups of decreasing intensity.

  8. Effect of early realignment on length and delayed repair of postpelvic fracture urethral injury.

    PubMed

    Koraitim, Mamdouh M

    2012-04-01

    To determine the effect of early realignment of posterior urethral injury on the length and delayed repair of ensuing urethral defect. We reviewed the medical records of 120 patients with a pelvic fracture urethral defect who were referred for delayed repair from elsewhere from 1995 to 2009. The review was focused on 5 variables: initial management of urethral injury, length of urethral defect, type of delayed repair, continence, and erectile function. Of the patients, 26 were excluded from the study and 94 were categorized as having been initially treated by realignment (42 patients, group 1) or suprapubic cystostomy (52 patients, group 2). Urethral defects ≤ 2 cm in length were found in 28 patients (67%) in group 1 versus 22 (42%) in group 2. Defects >2 cm were found in 14 patients (33%) in group 1 versus 30 (58%) in group 2. The repair was accomplished by a simple perineal operation in 32 (76%) and 30 (58%) patients in groups 1 and 2, respectively. An elaborated perineal or perineo-abdominal procedure was required in 10 (24%) and 22 (42%) patients in groups 1 and 2, respectively (all P < .05). Incontinence occurred in 1 patient in group 1. Impotence developed in 10 (28%) of 36 realigned adults and in 2 (5%) of 38 adults with suprapubic cystostomy. Early realignment of posterior urethral injury decreases the length of the ensuing urethral defect and facilitates its delayed repair. Incontinence and impotence appear to result from the injury itself and not the treatment. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. (CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition.

    PubMed

    Owen, Barbara A L; Yang, Zungyoon; Lai, Maoyi; Gajec, Maciej; Gajek, Maciez; Badger, John D; Hayes, Jeffrey J; Edelmann, Winfried; Kucherlapati, Raju; Wilson, Teresa M; McMurray, Cynthia T

    2005-08-01

    Cells have evolved sophisticated DNA repair systems to correct damaged DNA. However, the human DNA mismatch repair protein Msh2-Msh3 is involved in the process of trinucleotide (CNG) DNA expansion rather than repair. Using purified protein and synthetic DNA substrates, we show that Msh2-Msh3 binds to CAG-hairpin DNA, a prime candidate for an expansion intermediate. CAG-hairpin binding inhibits the ATPase activity of Msh2-Msh3 and alters both nucleotide (ADP and ATP) affinity and binding interfaces between protein and DNA. These changes in Msh2-Msh3 function depend on the presence of A.A mispaired bases in the stem of the hairpin and on the hairpin DNA structure per se. These studies identify critical functional defects in the Msh2-Msh3-CAG hairpin complex that could misdirect the DNA repair process.

  10. Deficient expression of DNA repair enzymes in early progression to sporadic colon cancer

    PubMed Central

    2012-01-01

    Background Cancers often arise within an area of cells (e.g. an epithelial patch) that is predisposed to the development of cancer, i.e. a "field of cancerization" or "field defect." Sporadic colon cancer is characterized by an elevated mutation rate and genomic instability. If a field defect were deficient in DNA repair, DNA damages would tend to escape repair and give rise to carcinogenic mutations. Purpose To determine whether reduced expression of DNA repair proteins Pms2, Ercc1 and Xpf (pairing partner of Ercc1) are early steps in progression to colon cancer. Results Tissue biopsies were taken during colonoscopies of 77 patients at 4 different risk levels for colon cancer, including 19 patients who had never had colonic neoplasia (who served as controls). In addition, 158 tissue samples were taken from tissues near or within colon cancers removed by resection and 16 tissue samples were taken near tubulovillous adenomas (TVAs) removed by resection. 568 triplicate tissue sections (a total of 1,704 tissue sections) from these tissue samples were evaluated by immunohistochemistry for 4 DNA repair proteins. Substantially reduced protein expression of Pms2, Ercc1 and Xpf occurred in field defects of up to 10 cm longitudinally distant from colon cancers or TVAs and within colon cancers. Expression of another DNA repair protein, Ku86, was infrequently reduced in these areas. When Pms2, Ercc1 or Xpf were reduced in protein expression, then either one or both of the other two proteins most often had reduced protein expression as well. The mean inner colon circumferences, from 32 resections, of the ascending, transverse and descending/sigmoid areas were measured as 6.6 cm, 5.8 cm and 6.3 cm, respectively. When combined with other measurements in the literature, this indicates the approximate mean number of colonic crypts in humans is 10 million. Conclusions The substantial deficiencies in protein expression of DNA repair proteins Pms2, Ercc1 and Xpf in about 1 million

  11. Patients' views on early sensory relearning following nerve repair-a Q-methodology study.

    PubMed

    Vikström, Pernilla; Carlsson, Ingela; Rosén, Birgitta; Björkman, Anders

    2017-09-26

    Descriptive study. Early sensory relearning where the dynamic capacity of the brain is used has been shown to improve sensory outcome after nerve repair. However, no previous studies have examined how patients experience early sensory relearning. To describe patient's views on early sensory relearning. Statements' scores were analyzed by factor analysis. Thirty-seven consecutive adult patients with median and/or ulnar nerve repair who completed early sensory relearning were included. Three factors were identified, explaining 45% of the variance: (1) "Believe sensory relearning is meaningful, manage to get an illusion of touch and complete the sensory relearning"; (2) "Do not get an illusion of touch easily and need support in their sensory relearning" (3) "Are not motivated, manage to get an illusion of touch but do not complete sensory relearning". Many patients succeed in implementing their sensory relearning. However, a substantial part of the patient population need more support, have difficulties to create illusion of touch, and lack motivation to complete the sensory relearning. To enhance motivation and meaningfulness by relating the training clearly to everyday occupations and to the patient's life situation is a suggested way to proceed. The three unique factors indicate motivation and sense of meaningfulness as key components which should be taken into consideration in developing programs for person-centered early sensory relearning. 3. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  12. Repair of complete bilateral cleft lip with severely protruding premaxilla performing a premaxillary setback and vomerine ostectomy in one stage surgery

    PubMed Central

    Sanchez-Sanchez, Marta; Iglesias-Martin, Fernando; Garcia-Perla-Garcia, Alberto; Belmonte-Caro, Rodolfo; Gonzalez-Perez, Luis-Miguel

    2015-01-01

    Background The authors present a technique for selected cases of CBCL. The primary repair of the CBCL with a severely protruding premaxilla in one stage surgery is very difficult, essentially because a good muscular apposition is difficult, forcing synchronously to do a premaxillary setback to facilitate subsequent bilateral lip repair and, thus, achieving satisfactory results. We achieve this by a reductive ostectomy on the vomero-premaxillary suture. Material and Methods 4 patients with CBCL and severely protruding premaxilla underwent premaxillary setback by vomerine ostectomy at the same time of lip repair in the past 24 months. The extent of premaxillary setback varied between 9 and 16 mm. The required amount of bone was removed anterior to the vomero-premaxillary suture. The authors did an additional simultaneous gingivoperiosteoplasty in all patients, achieving an enough stability of the premaxilla in its new position, to be able to close the alveolar gap bilaterally. The authors have examined the position of premaxilla and dental arch between 6 and 24 months. We did not do the primary nose correction, because this increased the risk of impairment of the already compromised vascularity of the philtrum and premaxilla. Results The follow-up period ranged between 6 and 24 months. None of the patients had any major complication. During follow-up, the premaxilla was minimally mobile. We achieved a good lip repair in all cases: adequate muscle repair, symmetry of the lip, prolabium and Cupid’s bow, as well as good scars. Conclusions To our knowledge, there are few reports of one stage surgery with vomerine ostectomy to repair CBCL with severely protruding premaxilla. Doing this vomerine ostectomy, we don’t know how it will affect the subsequent growth of the premaxila and restrict the natural maxillary growth. Applying this alternative treatment for children with CBCL and protruded premaxilla without any preoperative orthopedic, we can successfully perform, in

  13. Proficiency Standards and Cut-Scores for Language Proficiency Tests.

    ERIC Educational Resources Information Center

    Moy, Raymond H.

    1984-01-01

    Discusses the problems associated with "grading on a curve," the approach often used for standard setting on language proficiency tests. Proposes four main steps presented in the setting of a non-arbitrary cut-score. These steps not only establish a proficiency standard checked by external criteria, but also check to see that the test covers the…

  14. 40 CFR 797.1600 - Fish early life stage toxicity test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the test solution concentrations. The test terminates following 60 days of post-hatch exposure (for an... 40 Protection of Environment 32 2014-07-01 2014-07-01 false Fish early life stage toxicity test... Fish early life stage toxicity test. (a) Purpose. This guideline is intended to be used for assessing...

  15. 40 CFR 797.1600 - Fish early life stage toxicity test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the test solution concentrations. The test terminates following 60 days of post-hatch exposure (for an... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Fish early life stage toxicity test... Fish early life stage toxicity test. (a) Purpose. This guideline is intended to be used for assessing...

  16. An Investigation of the Use of Listening Strategies and Listening Performance of Proficient and Nonproficient Language Learners

    ERIC Educational Resources Information Center

    Piamsai, Chatraporn

    2014-01-01

    This study was an attempt to investigate how proficient and non-proficient learners used listening strategies to complete a listening task. 65 third-year Chulalongkorn University Commerce and Accountancy students participated in the first stage of the quantitative data collection. 18 students were randomly selected from the group for more in depth…

  17. English Language Proficiency and Early School Attainment Among Children Learning English as an Additional Language.

    PubMed

    Whiteside, Katie E; Gooch, Debbie; Norbury, Courtenay F

    2017-05-01

    Children learning English as an additional language (EAL) often experience lower academic attainment than monolingual peers. In this study, teachers provided ratings of English language proficiency and social, emotional, and behavioral functioning for 782 children with EAL and 6,485 monolingual children in reception year (ages 4-5). Academic attainment was assessed in reception and Year 2 (ages 6-7). Relative to monolingual peers with comparable English language proficiency, children with EAL displayed fewer social, emotional, and behavioral difficulties in reception, were equally likely to meet curriculum targets in reception, and were more likely to meet targets in Year 2. Academic attainment and social, emotional, and behavioral functioning in children with EAL are associated with English language proficiency at school entry. © 2016 The Authors. Child Development published by Wiley Periodicals, Inc. on behalf of Society for Research in Child Development.

  18. Early integration of vowel and pitch processing: a mismatch negativity study.

    PubMed

    Lidji, Pascale; Jolicoeur, Pierre; Kolinsky, Régine; Moreau, Patricia; Connolly, John F; Peretz, Isabelle

    2010-04-01

    Several studies have explored the processing specificity of music and speech, but only a few have addressed the processing autonomy of their fundamental components: pitch and phonemes. Here, we examined the additivity of the mismatch negativity (MMN) indexing the early interactions between vowels and pitch when sung. Event-related potentials (ERPs) were recorded while participants heard frequent sung vowels and rare stimuli deviating in pitch only, in vowel only, or in both pitch and vowel. The task was to watch a silent movie while ignoring the sounds. All three types of deviants elicited both an MMN and a P3a ERP component. The observed MMNs were of similar amplitude for the three types of deviants and the P3a was larger for double deviants. The MMNs to deviance in vowel and deviance in pitch were not additive. The underadditivity of the MMN responses suggests that vowel and pitch differences are processed by interacting neural networks. The results indicate that vowel and pitch are processed as integrated units, even at a pre-attentive level. Music-processing specificity thus rests on more complex dimensions of music and speech. 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Expression of hMSH2 protein of the human DNA mismatch repair system in oral lichen planus

    PubMed Central

    2004-01-01

    Lichen planus is a mucocutaneous disease of inflammatory nature and unknown etiology. It is characterized by a cell-mediated immunological response to induced antigenic change in skin and/or mucosa. The possible malignant transformation of lichen planus remains a subject of controversial discussions in the literature. hMSH2 is one of the human DNA mismatch repair (hMMR) genes and it plays an important role in reducing mutation and maintaining genomic stability. hMSH2 alterations have been reported in oral squamous cell carcinoma and there are evidences suggesting the association between oral lichen planus and squamous cell carcinoma. In this study, we aim to investigate the immunolocalization of hMSH2 protein in oral lichen planus compared to oral normal mucosa epithelium. We examined the expression of hMSH2 protein by immunohistochemistry in twenty-six cases of oral lichen planus. Clinically, 12 of them were categorized into reticular subtype and 14 were atrophic/erosive. Ten cases of normal mucosa were added to the control group. Results showed that the percentage of positive cells to hMSH2 was smaller in reticular (46.54%; p=0,006) and atrophic/erosive (48.79%; p=0,028) subtypes of oral lichen planus compared to normal mucosa (61.29%). The reduced expression of hMSH2 protein in oral lichen planus suggests that this lesion is more susceptible to mutation and therefore facilitate the development of oral squamous cell carcinoma. PMID:15912193

  20. Home and Community Language Proficiency in Spanish-English Early Bilingual University Students.

    PubMed

    Schmidtke, Jens

    2017-10-17

    This study assessed home and community language proficiency in Spanish-English bilingual university students to investigate whether the vocabulary gap reported in studies of bilingual children persists into adulthood. Sixty-five early bilinguals (mean age = 21 years) were assessed in English and Spanish vocabulary and verbal reasoning ability using subtests of the Woodcock-Muñoz Language Survey-Revised (Schrank & Woodcock, 2009). Their English scores were compared to 74 monolinguals matched in age and level of education. Participants also completed a background questionnaire. Bilinguals scored below the monolingual control group on both subtests, and the difference was larger for vocabulary compared to verbal reasoning. However, bilinguals were close to the population mean for verbal reasoning. Spanish scores were on average lower than English scores, but participants differed widely in their degree of balance. Participants with an earlier age of acquisition of English and more current exposure to English tended to be more dominant in English. Vocabulary tests in the home or community language may underestimate bilingual university students' true verbal ability and should be interpreted with caution in high-stakes situations. Verbal reasoning ability may be more indicative of a bilingual's verbal ability.

  1. Mechanisms of double-strand-break repair during gene targeting in mammalian cells.

    PubMed Central

    Ng, P; Baker, M D

    1999-01-01

    In the present study, the mechanism of double-strand-break (DSB) repair during gene targeting at the chromosomal immunoglobulin mu-locus in a murine hybridoma was examined. The gene-targeting assay utilized specially designed insertion vectors genetically marked in the region of homology to the chromosomal mu-locus by six diagnostic restriction enzyme site markers. The restriction enzyme markers permitted the contribution of vector-borne and chromosomal mu-sequences in the recombinant product to be determined. The use of the insertion vectors in conjunction with a plating procedure in which individual integrative homologous recombination events were retained for analysis revealed several important features about the mammalian DSB repair process:The presence of the markers within the region of shared homology did not affect the efficiency of gene targeting.In the majority of recombinants, the vector-borne marker proximal to the DSB was absent, being replaced with the corresponding chromosomal restriction enzyme site. This result is consistent with either formation and repair of a vector-borne gap or an "end" bias in mismatch repair of heteroduplex DNA (hDNA) that favored the chromosomal sequence. Formation of hDNA was frequently associated with gene targeting and, in most cases, began approximately 645 bp from the DSB and could encompass a distance of at least 1469 bp.The hDNA was efficiently repaired prior to DNA replication.The repair of adjacent mismatches in hDNA occurred predominantly on the same strand, suggesting the involvement of a long-patch repair mechanism. PMID:10049929

  2. Hepatocellular carcinoma: early-stage management challenges

    PubMed Central

    Erstad, Derek J; Tanabe, Kenneth K

    2017-01-01

    Hepatocellular carcinoma (HCC) is a major cause of cancer death and is increasing in incidence. This review focuses on HCC surveillance and treatment of early-stage disease, which are essential to improving outcomes. Multiple societies have published HCC surveillance guidelines, but screening efforts have been limited by noncompliance and overall lack of testing for patients with undiagnosed chronic liver disease. Treatment of early-stage HCC has become increasingly complex due to expanding therapeutic options and better outcomes with established treatments. Surgical indications for HCC have broadened with improved preoperative liver testing, neoadjuvant therapy, portal vein embolization, and perioperative care. Advances in post-procedural monitoring have improved efficacies of transarterial chemoembolization and radiofrequency ablation, and novel therapies involving delivery of radiochemicals are being studied in small trials. Finally, advances in liver transplantation have allowed for expanded indications beyond Milan criteria with non-inferior outcomes. More clinical trials evaluating new therapies and multimodal regimens are necessary to help clinicians design better treatment algorithms and improve outcomes. PMID:28721349

  3. Tritiated water exposure disrupts myofibril structure and induces mis-regulation of eye opacity and DNA repair genes in zebrafish early life stages.

    PubMed

    Arcanjo, Caroline; Armant, Olivier; Floriani, Magali; Cavalie, Isabelle; Camilleri, Virginie; Simon, Olivier; Orjollet, Daniel; Adam-Guillermin, Christelle; Gagnaire, Béatrice

    2018-04-27

    Tritium ( 3 H) is a radioactive isotope of hydrogen. In the environment, the most common form of tritium is tritiated water (HTO). The present study aimed to identify early biomarkers of HTO contamination through the use of an aquatic model, the zebrafish (Danio rerio). We used the zebrafish embryo-larvae model to investigate the modes of action of HTO exposure at dose rates of 0.4 and 4 mGy/h, dose rates expected to induce deleterious effects on fish. Zebrafish were exposed to HTO from 3 hpf (hours post fertilization) to 96 hpf. The transcriptomic effects were investigated 24 h and 96 h after the beginning of the contamination, using mRNAseq. Results suggested an impact of HTO contamination, regardless of the dose rate, on genes involved in muscle contraction (tnnt2d, tnni2a.4, slc6a1a or atp2a1l) and eye opacity (crygm2d9, crygmxl1, mipb or lim2.3) after 24 h of contamination. Interestingly, an opposite differential expression was highlighted in genes playing a role in muscle contraction and eye opacity in 24 hpf embryos when comparing dose rates, suggesting an onset of DNA protective mechanisms. The expression of h2afx and ddb2 involved in DNA repair was enhanced in response to HTO exposure. The entrainment of circadian clock and the response to H 2 O 2 signalling pathways were enriched at 96 hpf at 0.4 mGy/h and in both stages after 4 mGy/h. Genes involved in ROS scavenging were differentially expressed only after 24 h of exposure for the lowest dose rate, suggesting the onset of early protective mechanisms against oxidative stress. Effects highlighted on muscle at the molecular scale were confirmed at a higher biological scale, as electron microscopy observations revealed sarcomere impairments in 96 hpf larvae for both dose rates. Together with other studies, the present work provides useful data to better understand modes of action of tritium on zebrafish embryos-larvae. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. A Four Stage Approach to Early Childhood Intervention.

    ERIC Educational Resources Information Center

    Haber, Julian S.

    This paper describes a model for the involvement of primary health care personnel in the identification and treatment of developmental disabilities as a part of early childhood intervention programs. The integrated multidisciplinary model is divided into four stages. During the first stage an assignment of prenatal, perinatal, and postnatal risk…

  5. The Mechanism of Nucleotide Excision Repair-Mediated UV-Induced Mutagenesis in Nonproliferating Cells

    PubMed Central

    Kozmin, Stanislav G.; Jinks-Robertson, Sue

    2013-01-01

    Following the irradiation of nondividing yeast cells with ultraviolet (UV) light, most induced mutations are inherited by both daughter cells, indicating that complementary changes are introduced into both strands of duplex DNA prior to replication. Early analyses demonstrated that such two-strand mutations depend on functional nucleotide excision repair (NER), but the molecular mechanism of this unique type of mutagenesis has not been further explored. In the experiments reported here, an ade2 adeX colony-color system was used to examine the genetic control of UV-induced mutagenesis in nondividing cultures of Saccharomyces cerevisiae. We confirmed a strong suppression of two-strand mutagenesis in NER-deficient backgrounds and demonstrated that neither mismatch repair nor interstrand crosslink repair affects the production of these mutations. By contrast, proteins involved in the error-prone bypass of DNA damage (Rev3, Rev1, PCNA, Rad18, Pol32, and Rad5) and in the early steps of the DNA-damage checkpoint response (Rad17, Mec3, Ddc1, Mec1, and Rad9) were required for the production of two-strand mutations. There was no involvement, however, for the Pol η translesion synthesis DNA polymerase, the Mms2-Ubc13 postreplication repair complex, downstream DNA-damage checkpoint factors (Rad53, Chk1, and Dun1), or the Exo1 exonuclease. Our data support models in which UV-induced mutagenesis in nondividing cells occurs during the Pol ζ-dependent filling of lesion-containing, NER-generated gaps. The requirement for specific DNA-damage checkpoint proteins suggests roles in recruiting and/or activating factors required to fill such gaps. PMID:23307894

  6. The Association Between Broad Antigen HLA Mismatches, Eplet HLA Mismatches and Acute Rejection After Kidney Transplantation.

    PubMed

    Do Nguyen, Hung Thanh; Wong, Germaine; Chapman, Jeremy R; McDonald, Stephen P; Coates, Patrick T; Watson, Narelle; Russ, Graeme R; D'Orsogna, Lloyd; Lim, Wai Hon

    2016-12-01

    Epitope matching, which evaluates mismatched amino acids within antigen-antibody interaction sites (eplets), may better predict acute rejection than broad antigen matching alone. We aimed to determine the association between eplet mismatches and acute rejection in kidney transplant recipients. The association between eplet mismatches, broad antigen mismatches and acute rejection was assessed using adjusted Cox proportional hazard regression. Model discrimination for acute rejection was evaluated using the area under receiver operating characteristic curves. Of the 3,499 kidney transplant recipients from 2006 to 2011, the average (SD) number of broad antigen and eplet mismatches were 3.4 (1.7) and 22.8 (12.2), respectively. Compared with 0 to 2 eplet mismatches, the adjusted hazard ratio (HR) for acute rejection among those with 20 or greater eplet mismatches was 2.16 (95% confidence interval [CI], 1.33-3.52; P = 0.001). The adjusted area under the curve for broad antigen mismatches was 0.58 (95% CI, 0.56-0.61), similar to that for eplet mismatches (HR, 0.59; 95% CI, 0.56-0.61; P = 0.365). In recipients who were considered as low immunological risk (0-2 broad antigen HLA-ABDR mismatch), those with 20 or greater eplet mismatches experienced an increased risk of rejection compared to those with less than 20 mismatches (adjusted HR, 1.85; 95% CI, 1.11-3.08; P = 0.019). Increasing number of eplet mismatches is associated with acute rejection in kidney transplant recipients. Consideration of eplet HLA mismatches may improve risk stratification for acute rejection in a selected group of kidney transplant candidates.

  7. Local Anaesthetic Inguinal Hernia Repair Performed Under Supervision: Early and Long-Term Outcomes

    PubMed Central

    Sanjay, P; Woodward, A

    2009-01-01

    INTRODUCTION Local anaesthetic inguinal hernia repair may be technically demanding. There are minimal data regarding the outcomes of local anaesthetic hernia repair by trainees in comparison with consultants. PATIENTS AND METHODS All consecutive local anaesthetic repairs performed by trainees and one consultant over a 9-year period were reviewed. Operation time, volume of local anaesthetic used, early and long-term complications were assessed. A postal survey was conducted to assess chronic groin pain and satisfaction rates. RESULTS A total of 369 repairs were reviewed of which 265 repairs were performed by the consultant and 104 by trainees. The male-to-female ratio was 25:1 and the median age of the study group was 61 years (range, 18–93 years). The volume of local anaesthetic used was significantly higher for trainees than the consultant (42 ml versus 69 ml; P = 0.03). The operative time for the consultant and the trainees was 35 min and 40 min (P = 0.8). The day-case rate was higher for the consultant than the trainees (84% versus 69%; P = 0.02). Three patients operated by trainees required conversion to a general anaesthetic repair. No difference was noted in chronic groin pain (consultant 28% versus trainees 32%; P = 0.52) on the postal survey. The median follow-up was 5 years (range, 2–7 years). CONCLUSIONS Local anaesthetic inguinal hernia repair can be performed safely by surgical trainees under consultant supervision with minimal short- and long-term morbidity. A large volume dilute solution of Lignocaine and Marcaine is recommended when hernia repair is undertaken by trainees. PMID:19785942

  8. Validation of predictive models for germline mutations in DNA mismatch repair genes in colorectal cancer.

    PubMed

    Monzon, Jose G; Cremin, Carol; Armstrong, Linlea; Nuk, Jennifer; Young, Sean; Horsman, Doug E; Garbutt, Kristy; Bajdik, Chris D; Gill, Sharlene

    2010-02-15

    Lynch syndrome is defined by the presence of germline mutations in mismatch repair (MMR) genes. Several models have been recently devised that predict mutation carrier status (Myriad Genetics, Wijnen, Barnetson, PREMM and MMRpro models). Families at moderate-high risk for harboring a Lynch-associated mutation, referred to the BC Cancer Agency (BCCA) Hereditary Cancer Program (HCP), underwent mutation analysis, immunohistochemistry and/or microsatellite testing. Seventy-two tested cases were included. Twenty-five patients were mutation positive (34.7%) and 47 were mutation negative (65.3%). Nineteen of 43 patients who were both microsatellite stable and normal on immunohistochemistry for MLH1 and MSH2 were also genotyped for mutations in these genes; all 19 were negative for MMR gene mutations. Model-derived probabilities of harboring a MMR gene mutation in the proband were calculated and compared to observed results. The area under the ROC curves were 0.75 (95%CI; 0.63-0.87), 0.86 (0.7-0.96), 0.89 (0.82-0.97), 0.89 (0.81-0.98) and 0.93 (0.86-0.99) for the Myriad, Barnetson, Wijnen, MMRpro and PREMM models, respectively. The Amsterdam II criteria had a sensitivity and specificity of 0.76 and 0.74, respectively, in this cohort. The PREMM model demonstrated the best performance for predicting carrier status based on the positive likelihood ratios at the >10%, >20% and >30% probability thresholds. In this referred cohort, the PREMM model had the most favorable concordance index and predictive performance for carrier status based on the positive LR. These prediction models (PREMM, MMRPro and Wijnen) may soon replace the Amsterdam II and revised Bethesda criteria as a prescreening tool for Lynch mutations.

  9. Notch and Delta mRNAs in early-stage and mid-stage Drosophila embryos exhibit complementary patterns of protein producing potentials

    PubMed Central

    Shepherd, Andrew; Wesley, Uma; Wesley, Cedric

    2010-01-01

    Notch and Delta proteins generate Notch signaling that specifies cell fates during animal development. There is an intriguing phenomenon in Drosophila embryogenesis that has not received much attention and whose significance to embryogenesis is unknown. Notch and Delta mRNAs expressed in early-stage embryos are shorter than their counterparts in mid-stage embryos. We show here that the difference in sizes is due to mRNA 3′ processing at alternate polyadenylation sites. While the early-stage Notch mRNA has a lower protein-producing potential than the mid-stage Notch mRNA, the early-stage Delta mRNA has a higher protein-producing potential than the mid-stage Delta mRNA. Our data can explain the complementary patterns of Notch and Delta protein levels in early-stage and mid-stage embryos. Our data also raise the possibility that the manner and regulation of Notch signaling change in the course of embryogenesis and that this change is effected by 3′ UTR and mRNA 3′ processing factors. PMID:20201103

  10. Unaccusative Mismatches in Japanese.

    ERIC Educational Resources Information Center

    Tsujimura, Natsuko

    Two instances of unaccusative verb mismatches in Japanese are examined. An unaccusative mismatch is the situation in which a different accusative diagnostic singles out different classes of intransitive verbs within and across languages. One type of unaccusative mismatch has to do with group C verbs, or verbs of manner with protagonist control.…

  11. Optimal early active mobilisation protocol after extensor tendon repairs in zones V and VI: A systematic review of literature.

    PubMed

    Collocott, Shirley Jf; Kelly, Edel; Ellis, Richard F

    2018-03-01

    Early mobilisation protocols after repair of extensor tendons in zone V and VI provide better outcomes than immobilisation protocols. This systematic review investigated different early active mobilisation protocols used after extensor tendon repair in zone V and VI. The purpose was to determine whether any one early active mobilisation protocol provides superior results. An extensive literature search was conducted to identify articles investigating the outcomes of early active mobilisation protocols after extensor tendon repair in zone V and VI. Databases searched were AMED, Embase, Medline, Cochrane and CINAHL. Studies were included if they involved participants with extensor tendon repairs in zone V and VI in digits 2-5 and described a post-operative rehabilitation protocol which allowed early active metacarpophalangeal joint extension. Study designs included were randomised controlled trials, observational studies, cohort studies and case series. The Structured Effectiveness Quality Evaluation Scale was used to evaluate the methodological quality of the included studies. Twelve articles met the inclusion criteria. Two types of early active mobilisation protocols were identified: controlled active motion protocols and relative motion extension splinting protocols. Articles describing relative motion extension splinting protocols were more recent but of lower methodological quality than those describing controlled active motion protocols. Participants treated with controlled active motion and relative motion extension splinting protocols had similar range of motion outcomes, but those in relative motion extension splinting groups returned to work earlier. The evidence reviewed suggested that relative motion extension splinting protocols may allow an earlier return to function than controlled active motion protocols without a greater risk of complication.

  12. L2-Proficiency-Dependent Laterality Shift in Structural Connectivity of Brain Language Pathways.

    PubMed

    Xiang, Huadong; van Leeuwen, Tessa Marije; Dediu, Dan; Roberts, Leah; Norris, David G; Hagoort, Peter

    2015-08-01

    Diffusion tensor imaging (DTI) and a longitudinal language learning approach were applied to investigate the relationship between the achieved second language (L2) proficiency during L2 learning and the reorganization of structural connectivity between core language areas. Language proficiency tests and DTI scans were obtained from German students before and after they completed an intensive 6-week course of the Dutch language. In the initial learning stage, with increasing L2 proficiency, the hemispheric dominance of the Brodmann area (BA) 6-temporal pathway (mainly along the arcuate fasciculus) shifted from the left to the right hemisphere. With further increased proficiency, however, lateralization dominance was again found in the left BA6-temporal pathway. This result is consistent with reports in the literature that imply a stronger involvement of the right hemisphere in L2 processing especially for less proficient L2 speakers. This is the first time that an L2 proficiency-dependent laterality shift in the structural connectivity of language pathways during L2 acquisition has been observed to shift from left to right and back to left hemisphere dominance with increasing L2 proficiency. The authors additionally find that changes in fractional anisotropy values after the course are related to the time elapsed between the two scans. The results suggest that structural connectivity in (at least part of) the perisylvian language network may be subject to fast dynamic changes following language learning.

  13. Early stages of Ostwald ripening

    NASA Astrophysics Data System (ADS)

    Shneidman, Vitaly A.

    2013-07-01

    The Becker-Döring (BD) nucleation equation is known to predict a narrow double-exponential front (DEF) in the distribution of growing particles over sizes, which is due to early transient effects. When mass conservation is included, nucleation is eventually exhausted while independent growth is replaced by ripening. Despite the enormous difference in the associated time scales, and the resulting demand on numerics, within the generalized BD model the early DEF is shown to be crucial for the selection of the unique self-similar Lifshitz-Slyozov-Wagner asymptotic regime. Being preserved till the latest stages of growth, the DEF provides a universal part of the initial conditions for the ripening problem, regardless of the mass exchange mechanism between the nucleus and the matrix.

  14. Influence of hope, social support, and self-esteem in early stage dementia.

    PubMed

    Cotter, Valerie T; Gonzalez, Elizabeth W; Fisher, Kathleen; Richards, Kathy C

    2018-02-01

    Background People in the early stages of dementia adjust to the illness through stages of awareness, coping, and evaluation. Studies have found that hope, social support, and self-esteem facilitate coping, adjustment, and adaptation in chronic illness. Objective The purpose of this descriptive study was to examine the relationships between hope, social support, and self-esteem in individuals with early stage dementia. Methods Data were obtained from 53 individuals with early stage dementia. The scores on the Herth Hope Index, Social Support Questionnaire Short-Form, and the State Self-Esteem Scale were analyzed using linear regression. Results Hope was moderately associated with self-esteem ( r = .49, p < .001). Hope accounted for 25% of the variance in self-esteem and was a key component in predicting self-esteem. No significant relationship was found between social support and self-esteem. Conclusion Findings suggest that hope may be an important factor to help individuals manage potential threats to self-esteem in the experience of early stage dementia. Strategies to inspire hope and then enhance self-esteem are promising for individuals living with early stage dementia.

  15. Screening for Lynch syndrome and referral to clinical genetics by selective mismatch repair protein immunohistochemistry testing: an audit and cost analysis.

    PubMed

    Colling, Richard; Church, David N; Carmichael, Juliet; Murphy, Lucinda; East, James; Risby, Peter; Kerr, Rachel; Chetty, Runjan; Wang, Lai Mun

    2015-12-01

    Lynch syndrome (LS) accounts for around 3% of colorectal cancers (CRCs) and is caused by germline mutations in mismatch repair (MMR) genes. Recently, screening strategies to identify patients with LS have become popular. We audited CRCs screened with MMR immunohistochemistry (IHC) in 2013. 209 tumours had MMR IHC performed at a cost of £12 540. 47/209 (21%) cases showed IHC loss of expression in at least one MMR protein. 28/44 cases with loss of MLH1 had additional BRAF V600E testing, at a cost of £5040. MMR IHC reduced the number of potential clinical genetics referrals from 209 to 47. BRAF mutation testing, performed in a subset of cases with MLH1 loss, further reduced this to 21. At a cost of £1340 per referral, this model of LS screening for clinical genetics referral had significant potential savings (£234 340) and can be easily implemented in parallel with MMR IHC done for prognostication in CRCs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Advances in biologic augmentation for rotator cuff repair

    PubMed Central

    Patel, Sahishnu; Gualtieri, Anthony P.; Lu, Helen H.; Levine, William N.

    2016-01-01

    Rotator cuff tear is a very common shoulder injury that often necessitates surgical intervention for repair. Despite advances in surgical techniques for rotator cuff repair, there is a high incidence of failure after surgery because of poor healing capacity attributed to many factors. The complexity of tendon-to-bone integration inherently presents a challenge for repair because of a large biomechanical mismatch between the tendon and bone and insufficient regeneration of native tissue, leading to the formation of fibrovascular scar tissue. Therefore, various biological augmentation approaches have been investigated to improve rotator cuff repair healing. This review highlights recent advances in three fundamental approaches for biological augmentation for functional and integrative tendon–bone repair. First, the exploration, application, and delivery of growth factors to improve regeneration of native tissue is discussed. Second, applications of stem cell and other cell-based therapies to replenish damaged tissue for better healing is covered. Finally, this review will highlight the development and applications of compatible biomaterials to both better recapitulate the tendon–bone interface and improve delivery of biological factors for enhanced integrative repair. PMID:27750374

  17. A Delicate Balance Between Repair and Replication Factors Regulates Recombination Between Divergent DNA Sequences in Saccharomyces cerevisiae

    PubMed Central

    Chakraborty, Ujani; George, Carolyn M.; Lyndaker, Amy M.; Alani, Eric

    2016-01-01

    Single-strand annealing (SSA) is an important homologous recombination mechanism that repairs DNA double strand breaks (DSBs) occurring between closely spaced repeat sequences. During SSA, the DSB is acted upon by exonucleases to reveal complementary sequences that anneal and are then repaired through tail clipping, DNA synthesis, and ligation steps. In baker’s yeast, the Msh DNA mismatch recognition complex and the Sgs1 helicase act to suppress SSA between divergent sequences by binding to mismatches present in heteroduplex DNA intermediates and triggering a DNA unwinding mechanism known as heteroduplex rejection. Using baker’s yeast as a model, we have identified new factors and regulatory steps in heteroduplex rejection during SSA. First we showed that Top3-Rmi1, a topoisomerase complex that interacts with Sgs1, is required for heteroduplex rejection. Second, we found that the replication processivity clamp proliferating cell nuclear antigen (PCNA) is dispensable for heteroduplex rejection, but is important for repairing mismatches formed during SSA. Third, we showed that modest overexpression of Msh6 results in a significant increase in heteroduplex rejection; this increase is due to a compromise in Msh2-Msh3 function required for the clipping of 3′ tails. Thus 3′ tail clipping during SSA is a critical regulatory step in the repair vs. rejection decision; rejection is favored before the 3′ tails are clipped. Unexpectedly, Msh6 overexpression, through interactions with PCNA, disrupted heteroduplex rejection between divergent sequences in another recombination substrate. These observations illustrate the delicate balance that exists between repair and replication factors to optimize genome stability. PMID:26680658

  18. Comparison of cellular lethality in DNA repair-proficient or -deficient cell lines resulting from exposure to 70 MeV/n protons or 290 MeV/n carbon ions.

    PubMed

    Genet, Stefan C; Maeda, Junko; Fujisawa, Hiroshi; Yurkon, Charles R; Fujii, Yoshihiro; Romero, Ashley M; Genik, Paula C; Fujimori, Akira; Kitamura, Hisashi; Kato, Takamitsu A

    2012-11-01

    Charged particle therapy utilizing protons or carbon ions has been rapidly intensifying over recent years. The present study was designed to jointly investigate these two charged particle treatment modalities with respect to modeled anatomical depth-dependent dose and linear energy transfer (LET) deliveries to cells with either normal or compromised DNA repair phenotypes. We compared cellular lethality in response to dose, LET and Bragg peak location for accelerated protons and carbon ions at 70 and 290 MeV/n, respectively. A novel experimental live cell irradiation OptiCell™ in vitro culture system using three different Chinese hamster ovary (CHO) cells as a mammalian model was conducted. A wild-type DNA repair-competent CHO cell line (CHO 10B2) was compared to two other CHO cell lines (51D1 and xrs5), each genetically deficient with respect to one of the two major DNA repair pathways (homologous recombination and non-homologous end joining pathways, respectively) following genotoxic insults. We found that wild-type and homologous recombination-deficient (Rad51D) cellular lethality was dependent on both the dose and LET of the carbon ions, whereas it was only dependent on dose for protons. The non-homologous end joining deficient cell line (Ku80 mutant) showed nearly identical dose-response profiles for both carbon ions and protons. Our results show that the increasingly used modality of carbon ions as charged particle therapy is advantageous to protons in a radiotherapeutic context, primarily for tumor cells proficient in non-homologous end joining DNA repair where cellular lethality is dependent not only on the dose as in the case of more common photon therapeutic modalities, but more importantly on the carbon ion LETs. Genetic characterization of patient tumors would be key to individualize and optimize the selection of radiation modality, clinical outcome and treatment cost.

  19. All-optical photoacoustic imaging and detection of early-stage dental caries

    NASA Astrophysics Data System (ADS)

    Sampathkumar, Ashwin; Hughes, David A.; Longbottom, Chris; Kirk, Katherine J.

    2015-02-01

    Dental caries remain one of the most common oral diseases in the world. Current detection methods, such as dental explorer and X-ray radiography, suffer from poor sensitivity and specificity at the earliest (and reversible) stages of the disease because of the small size (< 100 microns) of early-stage lesions. We have developed a fine-resolution (480 nm), ultra-broadband (1 GHz), all-optical photoacoustic imaging (AOPAI) system to image and detect early stages of tooth decay. This AOPAI system provides a non-contact, non-invasive and non-ionizing means of detecting early-stage dental caries. Ex-vivo teeth exhibiting early-stage, white-spot lesions were imaged using AOPAI. Experimental scans targeted each early-stage lesion and a reference healthy enamel region. Photoacoustic (PA) signals were generated in the tooth using a 532-nm pulsed laser and the light-induced broadband ultrasound signal was detected at the surface of the tooth with an optical path-stabilized Michelson interferometer operating at 532 nm. The measured time-domain signal was spatially resolved and back-projected to form 2D and 3D maps of the lesion using k-wave reconstruction methods. Experimental data collected from areas of healthy and diseased enamel indicate that the lesion generated a larger PA response compared to healthy enamel. The PA-signal amplitude alone was able to detect a lesion on the surface of the tooth. However, time- reversal reconstructions of the PA scans also quantitatively depicted the depth of the lesion. 3D PA reconstruction of the diseased tooth indicated a sub-surface lesion at a depth of 0.6 mm, in addition to the surface lesion. These results suggest that our AOPAI system is well suited for rapid clinical assessment of early-stage dental caries. An overview of the AOPAI system, fine-resolution PA and histology results of diseased and healthy teeth will be presented.

  20. Efficient harvesting methods for early-stage snake and turtle embryos.

    PubMed

    Matsubara, Yoshiyuki; Kuroiwa, Atsushi; Suzuki, Takayuki

    2016-04-01

    Reptile development is an intriguing research target for understating the unique morphogenesis of reptiles as well as the evolution of vertebrates. However, there are numerous difficulties associated with studying development in reptiles. The number of available reptile eggs is usually quite limited. In addition, the reptile embryo is tightly adhered to the eggshell, making it a challenge to isolate reptile embryos intact. Furthermore, there have been few reports describing efficient procedures for isolating intact embryos especially prior to pharyngula stage. Thus, the aim of this review is to present efficient procedures for obtaining early-stage reptilian embryos intact. We first describe the method for isolating early-stage embryos of the Japanese striped snake. This is the first detailed method for obtaining embryos prior to oviposition in oviparous snake species. Second, we describe an efficient strategy for isolating early-stage embryos of the soft-shelled turtle. © 2016 Japanese Society of Developmental Biologists.

  1. Alcohol Consumption and the Risk of Colorectal Cancer for Mismatch Repair Gene Mutation Carriers.

    PubMed

    Dashti, S Ghazaleh; Buchanan, Daniel D; Jayasekara, Harindra; Ait Ouakrim, Driss; Clendenning, Mark; Rosty, Christophe; Winship, Ingrid M; Macrae, Finlay A; Giles, Graham G; Parry, Susan; Casey, Graham; Haile, Robert W; Gallinger, Steven; Le Marchand, Loïc; Thibodeau, Stephen N; Lindor, Noralane M; Newcomb, Polly A; Potter, John D; Baron, John A; Hopper, John L; Jenkins, Mark A; Win, Aung Ko

    2017-03-01

    Background: People with germline mutation in one of the DNA mismatch repair (MMR) genes have increased colorectal cancer risk. For these high-risk people, study findings of the relationship between alcohol consumption and colorectal cancer risk have been inconclusive. Methods: 1,925 MMR gene mutations carriers recruited into the Colon Cancer Family Registry who had completed a questionnaire on lifestyle factors were included. Weighted Cox proportional hazard regression models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association between alcohol consumption and colorectal cancer. Results: Colorectal cancer was diagnosed in 769 carriers (40%) at a mean (SD) age of 42.6 (10.3) years. Compared with abstention, ethanol consumption from any alcoholic beverage up to 14 g/day and >28 g/day was associated with increased colorectal cancer risk (HR, 1.50; 95% CI, 1.09-2.07 and 1.69; 95% CI, 1.07-2.65, respectively; P trend = 0.05), and colon cancer risk (HR, 1.78; 95% CI, 1.27-2.49 and 1.94; 95% CI, 1.19-3.18, respectively; P trend = 0.02). However, there was no clear evidence for an association with rectal cancer risk. Also, there was no evidence for associations between consumption of individual alcoholic beverage types (beer, wine, spirits) and colorectal, colon, or rectal cancer risk. Conclusions: Our data suggest that alcohol consumption, particularly more than 28 g/day of ethanol (∼2 standard drinks of alcohol in the United States), is associated with increased colorectal cancer risk for MMR gene mutation carriers. Impact: Although these data suggested that alcohol consumption in MMR carriers was associated with increased colorectal cancer risk, there was no evidence of a dose-response, and not all types of alcohol consumption were associated with increased risk. Cancer Epidemiol Biomarkers Prev; 26(3); 366-75. ©2016 AACR . ©2016 American Association for Cancer Research.

  2. Artificial mismatch hybridization

    DOEpatents

    Guo, Zhen; Smith, Lloyd M.

    1998-01-01

    An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.

  3. Expression of DNA mismatch repair proteins MLH1, MSH2, and MSH6 in recurrent glioblastoma.

    PubMed

    Stark, Andreas M; Doukas, Alexander; Hugo, Heinz-Herrmann; Hedderich, Jürgen; Hattermann, Kirsten; Maximilian Mehdorn, H; Held-Feindt, Janka

    2015-02-01

    Methylated O6-methylguanin-DNA-methytransferase (MGMT) promoter methylation is associated with survival in patients with glioblastoma. Current evidence suggests that further mismatch repair genes play a pivotal role in the tumor response to treatment. Candidate genes are MLH1, MSH2, and MSH6. Formerly, we found evidence of prognostic impact of MLH1 and MSH6 immunohistochemical expression in a small series of patients with initial glioblastoma. Two hundred and eleven patients were included who underwent macroscopically total removal of primary glioblastoma and at least one re-craniotomy for recurrence. Immunohistochemical staining was performed on paraffin-embedded specimens of initial tumors with specific antibodies against MLH1, MSH2, and MSH6. RESULTS were compared to the Ki67 proliferation index and patient survival. Additionally, fresh frozen samples from 16 paired initial and recurrent specimens were examined using real-time reverse transcription polymerase chain reaction (RT-PCR) with specific primers against MLH1, MSH2, and MSH6. RESULTS were compared to MGMT status and survival. (1) Immunohistochemical expression of MSH6 was significantly associated with the Ki67 proliferation index (P<0.001) but not with survival. (2) PCR revealed two patients with increasing expression of MLH1, MLH2, and MSH6 over treatment combined with lacking MGMT methylation. In another two patients, decreased MLH1, MSH2, and MSH6 expression was observed in combination with MGMT promoter methylation. Our data indicate that there may be glioblastoma patient subgroups characterized by MMR-expression changes beyond MGMT promoter methylation. The immunohistochemical expression of MLH1, MSH2, and MSH6 in initial glioblastoma is not associated with patient survival.

  4. Involvement of Mismatch Repair in the Reciprocal Control of Motility and Adherence of Uropathogenic Escherichia coli

    PubMed Central

    Cooper, Lauren A.; Simmons, Lyle A.

    2012-01-01

    Type 1 fimbriae and flagella, two surface organelles critical for colonization of the urinary tract by uropathogenic Escherichia coli (UPEC), mediate opposing virulence objectives. Type 1 fimbriae facilitate adhesion to mucosal cells and promote bacterial persistence in the urinary tract, while flagella propel bacteria through urine and along mucous layers during ascension to the upper urinary tract. Using a transposon screen of the E. coli CFT073 fim locked-ON (L-ON) mutant, a construct that constitutively expresses type 1 fimbriae and represses motility, we identified six mutants that exhibited a partial restoration of motility. Among these six mutated genes was mutS, which encodes a component of the methyl-directed mismatch repair (MMR) system. When complemented with mutS in trans, motility was again repressed. To determine whether the MMR system, in general, is involved in this reciprocal control, we characterized the effects of gene deletions of other MMR components on UPEC motility. Isogenic deletions of mutS, mutH, and mutL were constructed in both wild-type CFT073 and fim L-ON backgrounds. All MMR mutants showed an increase in motility in the wild-type background, and ΔmutH and ΔmutS mutations increased motility in the fim L-ON background. Cochallenge of the wild-type strain with an MMR-defective strain showed a subtle but significant competitive advantage in the bladder and spleen for the MMR mutant using the murine model of ascending urinary tract infection after 48 h. Our findings demonstrate that the MMR system generally affects the reciprocal regulation of motility and adherence and thus could contribute to UPEC pathogenesis during urinary tract infections. PMID:22473602

  5. Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer

    DTIC Science & Technology

    2012-03-01

    patients with early stage ErbB2-overexpressing biopsies and ER- atypia . 13 REFERENCES: 1. Jordan VC. Tamoxifen for breast cancer prevention. Proc Soc...Summary01-03-2012 Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer Shalini Jain University of Texas M.D. Anderson Cancer Center Houston...SUBTITLE “Src Kinase: A Novel Target of Early-Stage ER-Negative Breast Cancer” 5a. CONTRACT NUMBER W81XWH-11-1-0004 5b. GRANT NUMBER

  6. DNA repair: a changing geography? (1964-2008).

    PubMed

    Maisonobe, Marion; Giglia-Mari, Giuseppina; Eckert, Denis

    2013-07-01

    This article aims to explain the current state of DNA Repair studies' global geography by focusing on the genesis of the community. Bibliometric data is used to localize scientific activities related to DNA Repair at the city level. The keyword "DNA Repair" was introduced first by American scientists. It started to spread after 1964 that is to say, after P. Howard-Flanders (Yale University), P. Hanawalt (Stanford University) and R. Setlow (Oak Ridge Laboratories) found evidence for Excision Repair mechanisms. It was the first stage in the emergence of an autonomous scientific community. In this article, we will try to assess to what extent the geo-history of this scientific field is determinant in understanding its current geography. In order to do so, we will localize the places where the first "DNA Repair" publications were signed fifty years ago and the following spatial diffusion process, which led to the current geography of the field. Then, we will focus on the evolution of the research activity of "early entrants" in relation to the activity of "latecomers". This article is an opportunity to share with DNA Repair scientists some research results of a dynamic field in Science studies: spatial scientometrics. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. DNA double strand break repair in human bladder cancer is error prone and involves microhomology-associated end-joining

    PubMed Central

    Bentley, Johanne; Diggle, Christine P.; Harnden, Patricia; Knowles, Margaret A.; Kiltie, Anne E.

    2004-01-01

    In human cells DNA double strand breaks (DSBs) can be repaired by the non-homologous end-joining (NHEJ) pathway. In a background of NHEJ deficiency, DSBs with mismatched ends can be joined by an error-prone mechanism involving joining between regions of nucleotide microhomology. The majority of joins formed from a DSB with partially incompatible 3′ overhangs by cell-free extracts from human glioblastoma (MO59K) and urothelial (NHU) cell lines were accurate and produced by the overlap/fill-in of mismatched termini by NHEJ. However, repair of DSBs by extracts using tissue from four high-grade bladder carcinomas resulted in no accurate join formation. Junctions were formed by the non-random deletion of terminal nucleotides and showed a preference for annealing at a microhomology of 8 nt buried within the DNA substrate; this process was not dependent on functional Ku70, DNA-PK or XRCC4. Junctions were repaired in the same manner in MO59K extracts in which accurate NHEJ was inactivated by inhibition of Ku70 or DNA-PKcs. These data indicate that bladder tumour extracts are unable to perform accurate NHEJ such that error-prone joining predominates. Therefore, in high-grade tumours mismatched DSBs are repaired by a highly mutagenic, microhomology-mediated, alternative end-joining pathway, a process that may contribute to genomic instability observed in bladder cancer. PMID:15466592

  8. Usability of tablet computers by people with early-stage dementia.

    PubMed

    Lim, Fabian S; Wallace, Tim; Luszcz, Mary A; Reynolds, Karen J

    2013-01-01

    Tablet computers are generally associated with an intuitive interface. The adoption and use of tablet computers within the early-stage dementia context could potentially assist in daily living and provide users with a source for leisure activities and social networking. As dementia mainly affects the older adult population, it is expected that many people with dementia and even their carers do not use tablet computers as part of their everyday living. This paper explores the usability of tablet computers within the early-stage dementia context as a source of leisure for people with dementia. The main advantage of the use of tablet computers in this manner is to provide carers some reprieve from the constant care and attention often required in caring for people with dementia. Seven-day in-home trials were conducted to determine whether people with early-stage dementia were -capable of using a tablet computer independently. Twenty-one people with early-stage dementia and carer dyads participated in the trial. Feedback was gathered through questionnaires from both the person with dementia and their carer regarding the use of a tablet computer as part of their everyday living. Approximately half the participants with dementia were able to engage with and use the tablet computer independently, which proved to be helpful to their carers. No significant traits were observed to help identify those who were less likely to use a tablet computer. Carer relief was quantified by the amount of time participants with dementia spent using the device without supervision. The results and feedback from the trial provide significant insights to introducing new technology within the early-stage dementia context. Users' needs must be considered on a case-by-case basis to successfully facilitate the uptake of tablet computers in the dementia context. The trial has provided sufficient justification to further explore more uses of tablet computers in the dementia context, and not just for

  9. Surgical Staging of Early Stage Endometrial Cancer: Comparison Between Laparotomy and Laparoscopy

    PubMed Central

    Api, Murat; Kayatas, Semra; Boza, Aysen Telce; Nazik, Hakan; Adiguzel, Cevdet; Guzin, Kadir; Eroglu, Mustafa

    2013-01-01

    Background The aim of the present study was to compare the laparotomy (LT) and laparoscopy (LS) in patients who undergone surgical staging for early stage endometrium cancer. Methods Retrospective data were collected and analyzed for amount of intraoperative bleeding, complication rates, total resected and laterality specific number of lymph nodes and duration of operation in patients operated with either LT or LS. Results Seventy-nine stage I endometrium cancer patients were found to be eligible for the trial purposes: 58 (73.4%) treated by LT and 21 (26.6%) treated by LS. The number of lymph nodes was similar in LT (8.9 ± 5.3) and LS (9.2 ± 4.8) (P = 0.8). In LT group, there was no difference in the number of lymph nodes between the right and left sides (10 ± 5.8 and 8.7 ± 4.8 respectively, P = 0.19); in LS group, the number of lymph nodes resected from the right side was higher than the left side (9.8 ± 5 and 7 ± 3.5 respectively, P = 0.039). The amount of intraoperative bleeding and hospitalization period were significantly higher in LT group. Seventy-nine patients had a median follow-up of 30 months. The two groups were similar for disease-free survival (P = 0.46, log rank test). Conclusions There was no significant difference between the two methods in terms of number of total resected lymph nodes. In early stage endometrial carcinoma, LS has provided adequate staging and similar survival rates with LT. PMID:29147363

  10. Ultraviolet light-resistant primary transfectants of xeroderma pigmentosum cells are also DNA repair-proficient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stark, M.; Naiman, T.; Canaani, D.

    1989-08-15

    In a previous work, an immortal xeroderma pigmentosum cell line belonging to complementation group C was complemented to a UV-resistant phenotype by transfection with a human cDNA clone library. We now report that the primary transformants selected for UV-resistance also acquired normal levels of DNA repair. This was assessed both by measurement of UV-induced ({sup 3}H)thymidine incorporation and by equilibrium sedimentation analysis of repair-DNA synthesis. Therefore, the transduced DNA element which confers normal UV-resistance also corrects the excision repair defect of the xeroderma pigmentosum group C cell line.

  11. DNA repair in Chromobacterium violaceum.

    PubMed

    Duarte, Fábio Teixeira; Carvalho, Fabíola Marques de; Bezerra e Silva, Uaska; Scortecci, Kátia Castanho; Blaha, Carlos Alfredo Galindo; Agnez-Lima, Lucymara Fassarella; Batistuzzo de Medeiros, Silvia Regina

    2004-03-31

    Chromobacterium violaceum is a Gram-negative beta-proteobacterium that inhabits a variety of ecosystems in tropical and subtropical regions, including the water and banks of the Negro River in the Brazilian Amazon. This bacterium has been the subject of extensive study over the last three decades, due to its biotechnological properties, including the characteristic violacein pigment, which has antimicrobial and anti-tumoral activities. C. violaceum promotes the solubilization of gold in a mercury-free process, and has been used in the synthesis of homopolyesters suitable for the production of biodegradable polymers. The complete genome sequence of this organism has been completed by the Brazilian National Genome Project Consortium. The aim of our group was to study the DNA repair genes in this organism, due to their importance in the maintenance of genomic integrity. We identified DNA repair genes involved in different pathways in C. violaceum through a similarity search against known sequences deposited in databases. The phylogenetic analyses were done using programs of the PHILYP package. This analysis revealed various metabolic pathways, including photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, recombinational repair, and the SOS system. The similarity between the C. violaceum sequences and those of Neisserie miningitidis and Ralstonia solanacearum was greater than that between the C. violaceum and Escherichia coli sequences. The peculiarities found in the C. violaceum genome were the absence of LexA, some horizontal transfer events and a large number of repair genes involved with alkyl and oxidative DNA damage.

  12. DNA Copy Number Signature to Predict Recurrence in Early Stage Ovarian Cancer

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-14-1-0194 TITLE: DNA Copy Number Signature to Predict Recurrence in Early-Stage Ovarian Cancer PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER DNA Copy Number Signature to Predict Recurrence in Early-Stage Ovarian Cancer 5b. GRANT NUMBER W81XWH-14-1-0194 5c. PROGRAM...determine the copy number gain and loss for early stage high grade ovarian cancers through IlluminaHumanOmniExpress-FFPE BeadChip system • Subtask 1 DNA

  13. rhPDGF-BB promotes early healing in a rat rotator cuff repair model.

    PubMed

    Kovacevic, David; Gulotta, Lawrence V; Ying, Liang; Ehteshami, John R; Deng, Xiang-Hua; Rodeo, Scott A

    2015-05-01

    .3 ± 3.2 N/mm, p = 0.01; 100 µg/mL PDGF: 25.7 ± 6.1 N, p = 0.005 and 11.6 ± 3.3 N/mm, p = 0.01; 300 µg/mL PDGF: 27 ± 6.9 N, p = 0.014 and 12.7 ± 4.1 N/mm, p = 0.01). rhPDGF-BB delivery on a collagen scaffold enhanced cellular proliferation and angiogenesis during the early phase of healing, but this did not result in either a more structurally organized or stronger attachment site at later stages of healing. The collagen scaffold had a detrimental effect on healing strength at 28 days, and its relatively larger size compared with the rat tendon may have caused mechanical impingement and extrinsic compression of the healing tendon. Future studies should be performed in larger animal models where healing occurs more slowly. Augmenting the healing environment to improve the structural integrity and to reduce the retear rate after rotator cuff repair may be realized with continued understanding and optimization of growth factor delivery systems.

  14. Development of repair mechanism of FSX-414 based 1st stage nozzle of gas turbine

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Tawfiqur

    2017-06-01

    This paper describes the failure mechanism and repair technology of 1st stage nozzle or vane of industrial gas turbine which is made of cobalt based super alloy FSX-414. 1st stage nozzles or vanes are important stationery components of gas turbine based power plant. Those are the parts of hot gas path components of gas turbine and their manufacturing process is casting. At present, it is widely accepted that gas turbine based combined cycle power plant is the most efficient and cost effective solution to generate electricity. One of the factors of high efficiency of this type of gas turbine is the increase of its turbine inlet temperature. As an effect of this factor and in conjunction with some other factors, the 1st stage nozzle of gas turbine operates under extremely high temperature and thermal stresses. As a result, the design lifetime of these components becomes limited. Furthermore, attention on nozzles or vanes is required in order to achieve their design lifetime. However, due to unfriendly operational condition and environmental effect, anytime failure can occur on these heat resistant alloy based components which may lead to severe damage of gas turbine. To mitigate these adverse effects, schedule maintenance is performed on a predetermined time interval of hot gas path components of gas turbine based power plant. This paper addresses common failures in gas turbine's 1st stage nozzles or vanes. Usually these are repaired by using ADH process but for several reasons ADH process is not used here. Hence the challenging task is performed using gas tungsten arc welding which is presented in this article systematically.

  15. Effect of rapid set binder on early strength and permeability of HES latex modified road repair pre-packed concrete

    NASA Astrophysics Data System (ADS)

    Han, J. W.; Lee, S. K.; Yu, C.; Park, C. G.

    2015-12-01

    The early strength development characteristics and permeability resistance of high early strength (HES) pre-packed road repair concrete incorporating a rapid-set binder material were evaluated for emergency repairs to road pavement. The rapid-set binder is a mixture of rapid-set cement and silica sands whose fluidity improves with the addition of styrene butadiene latex (latex). The resulting mixture has a compressive strength of 21 MPa or higher and a flexural strength of greater than 3.5 MPa after 4 hours, the maximum curing age allowed for emergency repair materials. This study examines the strength development properties and permeability resistance of HES latex-modified pre-packed road repair concrete using a rapid- set binder as a function of the latex-to-binder mixing ratio at values of 0.40, 0.33, 0.29 and 0.25. Both early strength development properties and permeability resistance increased as the ratio of latex to rapid-set binder decreased. The mixture showed a compressive strength of 21 MPa or higher after 4 hours, which is the design standard of emergency repair concrete, only when this ratio was 0.29 or lower. A flexural strength of 3.5 MPa or greater was observed after hours only when this ratio was 0.33 or lower. The standard for permeability resistance, less than 2,000 C of chloride after 7 days of curing, was satisfied by all ratios. The ratio of latex to rapid-set binder satisfying all of the conditions for an emergency road repair material was 0.29 or less.

  16. Linguistic category structure influences early auditory processing: Converging evidence from mismatch responses and cortical oscillations.

    PubMed

    Scharinger, Mathias; Monahan, Philip J; Idsardi, William J

    2016-03-01

    While previous research has established that language-specific knowledge influences early auditory processing, it is still controversial as to what aspects of speech sound representations determine early speech perception. Here, we propose that early processing primarily depends on information propagated top-down from abstractly represented speech sound categories. In particular, we assume that mid-vowels (as in 'bet') exert less top-down effects than the high-vowels (as in 'bit') because of their less specific (default) tongue height position as compared to either high- or low-vowels (as in 'bat'). We tested this assumption in a magnetoencephalography (MEG) study where we contrasted mid- and high-vowels, as well as the low- and high-vowels in a passive oddball paradigm. Overall, significant differences between deviants and standards indexed reliable mismatch negativity (MMN) responses between 200 and 300ms post-stimulus onset. MMN amplitudes differed in the mid/high-vowel contrasts and were significantly reduced when a mid-vowel standard was followed by a high-vowel deviant, extending previous findings. Furthermore, mid-vowel standards showed reduced oscillatory power in the pre-stimulus beta-frequency band (18-26Hz), compared to high-vowel standards. We take this as converging evidence for linguistic category structure to exert top-down influences on auditory processing. The findings are interpreted within the linguistic model of underspecification and the neuropsychological predictive coding framework. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Proficiency Differences in Syntactic Processing of Monolingual Native Speakers Indexed by Event-related Potentials

    PubMed Central

    Pakulak, Eric; Neville, Helen J.

    2010-01-01

    While anecdotally there appear to be differences in the way native speakers use and comprehend their native language, most empirical investigations of language processing study university students and none have studied differences in language proficiency which may be independent of resource limitations such as working memory span. We examined differences in language proficiency in adult monolingual native speakers of English using an event-related potential (ERP) paradigm. ERPs were recorded to insertion phrase structure violations in naturally spoken English sentences. Participants recruited from a wide spectrum of society were given standardized measures of English language proficiency, and two complementary ERP analyses were performed. In between-groups analyses, participants were divided, based on standardized proficiency scores, into Lower Proficiency (LP) and Higher Proficiency (HP) groups. Compared to LP participants, HP participants showed an early anterior negativity that was more focal, both spatially and temporally, and a larger and more widely distributed positivity (P600) to violations. In correlational analyses, we utilized a wide spectrum of proficiency scores to examine the degree to which individual proficiency scores correlated with individual neural responses to syntactic violations in regions and time windows identified in the between-group analyses. This approach also employed partial correlation analyses to control for possible confounding variables. These analyses provided evidence for the effects of proficiency that converged with the between-groups analyses. These results suggest that adult monolingual native speakers of English who vary in language proficiency differ in the recruitment of syntactic processes that are hypothesized to be at least in part automatic as well as of those thought to be more controlled. These results also suggest that in order to fully characterize neural organization for language in native speakers it is

  18. Management of Early Stage, High-Risk Endometrial Carcinoma: Preoperative and Surgical Considerations

    PubMed Central

    Pettigrew, Gaetan

    2013-01-01

    Endometrial cancer is the most common gynecologic malignancy in the developed world. Most cases are diagnosed at an early stage and have low-grade histology, portending an overall excellent prognosis. There exists a subgroup of patients with early, high-risk disease, whose management remains controversial, as current data is clouded by inclusion of early stage tumors with different high-risk features for recurrence, unstandardized protocols for surgical staging, and an evolving staging system by which we are grouping these patients. Here, we present preoperative and intraoperative considerations that should be taken into account when planning surgical management for this population of patients. PMID:23878545

  19. Robotic Inguinal Hernia Repair: Technique and Early Experience.

    PubMed

    Arcerito, Massimo; Changchien, Eric; Bernal, Oscar; Konkoly-Thege, Adam; Moon, John

    2016-10-01

    Laparoscopic inguinal hernia repair has been shown to have multiple advantages compared with open repair such as less postoperative pain and earlier resume of daily activities with a comparable recurrence rate. We speculate robotic inguinal hernia repair may yield equivalent benefits, while providing the surgeon added dexterity. One hundred consecutive robotic inguinal hernia repairs with mesh were performed with a mean age of 56 years (25-96). Fifty-six unilateral hernias and 22 bilateral hernias were repaired amongst 62 males and 16 females. Polypropylene mesh was used for reconstruction. All but, two patients were completed robotically. Mean operative time was 52 minutes per hernia repair (45-67). Five patients were admitted overnight based on their advanced age. Regular diet was resumed immediately. Postoperative pain was minimal and regular activity was achieved after an average of four days. One patient recurred after three months in our earlier experience and he was repaired robotically. Mean follow-up time was 12 months. These data, compared with laparoscopic approach, suggest similar recurrence rates and postoperative pain. We believe comparative studies with laparoscopic approach need to be performed to assess the role robotic surgery has in the treatment of inguinal hernia repair.

  20. Multimodal imaging findings in 'hyper-early' stage MEWDS.

    PubMed

    Cahuzac, Armelle; Wolff, Benjamin; Mathis, Thibaud; Errera, Marie-Hélène; Sahel, José-Alain; Mauget-Faÿsse, Martine

    2017-10-01

    To describe a new stage of multiple evanescent white dot syndrome (MEWDS), occurring at a very early phase of the disease. Retrospective analysis of clinical, angiographic and tomographic findings in four patients with 'hyper-early' stage MEWDS. In four patients seen within 1 week of the onset of symptoms, fundus analysis revealed macular granity and the classic yellow-white dots, some having no corresponding hyperautofluorescent pattern. Spectral-domain optical coherence tomography (SD-OCT) showed central foveal disruption of the ellipsoid zone (EZ) and interdigitation layer with a hyper-reflective dome-shaped lesion. In two patients, fluorescein angiography (FA) revealed an intermediate hypofluorescent perimacular halo, whereas late indocyanine green angiography (ICGA) showed a hyperfluorescent halo as well as the classic MEWDS features. After a few days, the EZ disruption appeared complete on OCT and fundus autofluorescence (FAF) in all patients. Visual acuity, OCT and FAF findings had fully recovered within 3 months. We have shown a new feature of MEWDS on FAF, OCT, FA and ICGA, corresponding to a very early stage of the disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Unraveling Mixed Hydrate Formation: Microscopic Insights into Early Stage Behavior.

    PubMed

    Hall, Kyle Wm; Zhang, Zhengcai; Kusalik, Peter G

    2016-12-29

    The molecular-level details of mixed hydrate nucleation remain unclear despite the broad implications of this process for a variety of scientific domains. Through analysis of mixed hydrate nucleation in a prototypical CH 4 /H 2 S/H 2 O system, we demonstrate that high-level kinetic similarities between mixed hydrate systems and corresponding pure hydrate systems are not a reliable basis for estimating the composition of early stage mixed hydrate nuclei. Moreover, we show that solution compositions prior to and during nucleation are not necessarily effective proxies for the composition of early stage mixed hydrate nuclei. Rather, microscopic details, (e.g., guest-host interactions and previously neglected cage types) apparently play key roles in determining early stage behavior of mixed hydrates. This work thus provides key foundational concepts and insights for understanding mixed hydrate nucleation.

  2. A mismatch between supply and demand of social support in dementia care: a qualitative study on the perspectives of spousal caregivers and their social network members.

    PubMed

    Dam, Alieske E H; Boots, Lizzy M M; van Boxtel, Martin P J; Verhey, Frans R J; de Vugt, Marjolein E

    2017-06-13

    Access to social support contributes to feelings of independence and better social health. This qualitative study aims to investigate multi-informant perspectives on informal social support in dementia care networks. Ten spousal caregivers of people with dementia (PwD) completed an ecogram, a social network card and a semi-structured interview. The ecogram aimed to trigger subjective experiences regarding social support. Subsequently, 17 network members were interviewed. The qualitative analyses identified codes, categories, and themes. Sixth themes emerged: (1) barriers to ask for support; (2) facilitators to ask for support; (3) barriers to offer support; (4) facilitators to offer support; (5) a mismatch between supply and demand of social support; and (6) openness in communication to repair the imbalance. Integrating social network perspectives resulted in a novel model identifying a mismatch between the supply and demand of social support, strengthened by a cognitive bias: caregivers reported to think for other social network members and vice versa. Openness in communication in formal and informal care systems might repair this mismatch.

  3. Driving behaviors in early stage dementia: a study using in-vehicle technology.

    PubMed

    Eby, David W; Silverstein, Nina M; Molnar, Lisa J; LeBlanc, David; Adler, Geri

    2012-11-01

    According to the Alzheimer's Association (2011), (1) in 8 people age 65 and older, and about one-half of people age 85 and older, have Alzheimer's disease in the United States (US). There is evidence that drivers with Alzheimer's disease and related dementias are at an increased risk for unsafe driving. Recent advances in sensor, computer, and telecommunication technologies provide a method for automatically collecting detailed, objective information about the driving performance of drivers, including those with early stage dementia. The objective of this project was to use in-vehicle technology to describe a set of driving behaviors that may be common in individuals with early stage dementia (i.e., a diagnosis of memory loss) and compare these behaviors to a group of drivers without cognitive impairment. Seventeen drivers with a diagnosis of early stage dementia, who had completed a comprehensive driving assessment and were cleared to drive, participated in the study. Participants had their vehicles instrumented with a suite of sensors and a data acquisition system, and drove 1-2 months as they would under normal circumstances. Data from the in-vehicle instrumentation were reduced and analyzed, using a set of algorithms/heuristics developed by the research team. Data from the early stage dementia group were compared to similar data from an existing dataset of 26 older drivers without dementia. The early stage dementia group was found to have significantly restricted driving space relative to the comparison group. At the same time, the early stage dementia group (which had been previously cleared by an occupational therapist as safe to drive) drove as safely as the comparison group. Few safety-related behavioral errors were found for either group. Wayfinding problems were rare among both groups, but the early stage dementia group was significantly more likely to get lost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Bioaccumulation of lipophilic substances in fish early life stages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, G.I.; Kristensen, P.

    1998-07-01

    Accumulation of {sup 14}C-labeled polycyclic aromatic hydrocarbons, naphthalene, phenanthrene, pyrene, and benzo(a)pyrene and polychlorinated biphenyl (PCB) congeners PCB 31 and PCB 105 with a log octanol/water partition coefficient (K{sub ow}) range from 3.37 to 6.5 was investigated in eggs and larvae of zebra fish (Brachydanio rerio), and in larvae of cod (Gadus morhua), herring (Clupea harengus), and turbot (Scophthalmus maximus). Significant differences in the uptake and elimination rate constants between eggs and larvae of zebra fish were seen. The low rate of uptake and the lower elimination rate of eggs did, however, lead to bioconcentration factors (BCFs) comparable to thosemore » for larvae. As biotransformation of xenobiotics in embryonic and larval stages was indicated to be insignificant compared to juvenile/adult stages, body burdens of readily biotransformed chemicals may be higher in fish early life stages. Because weight and lipid content did not differ much between the investigated species, the main reason for the variability in BCFs between marine species and freshwater species was considered to be caused by differences in exposure temperatures that affect the degree of biotransformation. Due to the smaller size of larvae and thus an increased total surface of the membranes per unit fish weight, steady-state conditions were reached at a faster r/ate in early life stages than in juvenile/adult life stages. The lipid-normalized bioconcentration factors (BCF{sub L}) were linearly related to K{sub ow} but BCF{sub L} was, in general, higher than K{sub ow}, indicating that octanol is not a suitable surrogate for fish lipids. Differences in bioconcentration kinetics between larvae and juvenile/adult life stages are considered to be the main reason for the higher sensitivity, with respect to external effect concentrations, generally obtained for early life stages of fish.« less

  5. Occurrence and surgical repair of third degree perineal lacerations in adult female camels (Camelus dromedarius) by one-stage (Goetz) technique

    PubMed Central

    Anwar, S.; Purohit, G.N.

    2013-01-01

    Retrospective analysis of third degree perineal lacerations in 7 female camels (6-17 yrs of age) that were surgically corrected by one stage repair (Goetz technique) is presented. Majority (3/7) of the camels was primiparous and all parturitions had a history of calving assistance. Six (6/7) camels recovered by first intention of healing. Dehiscence of perineal structure occurred in only one camel due to infection and healed by second intention. Subsequent matings resulted in pregnancy in four camels and one camel died due to unrelated causes. We conclude that perineal lacerations can occur in primiparous camels with difficult assisted deliveries and that one stage repair of perineal lacerations in camels improves the perineal conformation and such camels may easily regain normal fertility. PMID:26623316

  6. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination

    PubMed Central

    Sugawara, Neal; Pâques, Frédéric; Colaiácovo, Mónica; Haber, James E.

    1997-01-01

    When gene conversion is initiated by a double-strand break (DSB), any nonhomologous DNA that may be present at the ends must be removed before new DNA synthesis can be initiated. In Saccharomyces cerevisiae, removal of nonhomologous ends depends not only on the nucleotide excision repair endonuclease Rad1/Rad10 but also on Msh2 and Msh3, two proteins that are required to correct mismatched bp. These proteins have no effect when DSB ends are homologous to the donor, either in the kinetics of recombination or in the proportion of gene conversions associated with crossing-over. A second DSB repair pathway, single-strand annealing also requires Rad1/Rad10 and Msh2/Msh3, but reveals a difference in their roles. When the flanking homologous regions that anneal are 205 bp, the requirement for Msh2/Msh3 is as great as for Rad1/Rad10; but when the annealing partners are 1,170 bp, Msh2/Msh3 have little effect, while Rad1/Rad10 are still required. Mismatch repair proteins Msh6, Pms1, and Mlh1 are not required. We suggest Msh2 and Msh3 recognize not only heteroduplex loops and mismatched bp, but also branched DNA structures with a free 3′ tail. PMID:9256462

  7. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination.

    PubMed

    Sugawara, N; Pâques, F; Colaiácovo, M; Haber, J E

    1997-08-19

    When gene conversion is initiated by a double-strand break (DSB), any nonhomologous DNA that may be present at the ends must be removed before new DNA synthesis can be initiated. In Saccharomyces cerevisiae, removal of nonhomologous ends depends not only on the nucleotide excision repair endonuclease Rad1/Rad10 but also on Msh2 and Msh3, two proteins that are required to correct mismatched bp. These proteins have no effect when DSB ends are homologous to the donor, either in the kinetics of recombination or in the proportion of gene conversions associated with crossing-over. A second DSB repair pathway, single-strand annealing also requires Rad1/Rad10 and Msh2/Msh3, but reveals a difference in their roles. When the flanking homologous regions that anneal are 205 bp, the requirement for Msh2/Msh3 is as great as for Rad1/Rad10; but when the annealing partners are 1,170 bp, Msh2/Msh3 have little effect, while Rad1/Rad10 are still required. Mismatch repair proteins Msh6, Pms1, and Mlh1 are not required. We suggest Msh2 and Msh3 recognize not only heteroduplex loops and mismatched bp, but also branched DNA structures with a free 3' tail.

  8. Components of a Fanconi-like pathway control Pso2-independent DNA interstrand crosslink repair in yeast.

    PubMed

    Ward, Thomas A; Dudášová, Zuzana; Sarkar, Sovan; Bhide, Mangesh R; Vlasáková, Danuša; Chovanec, Miroslav; McHugh, Peter J

    2012-01-01

    Fanconi anemia (FA) is a devastating genetic disease, associated with genomic instability and defects in DNA interstrand cross-link (ICL) repair. The FA repair pathway is not thought to be conserved in budding yeast, and although the yeast Mph1 helicase is a putative homolog of human FANCM, yeast cells disrupted for MPH1 are not sensitive to ICLs. Here, we reveal a key role for Mph1 in ICL repair when the Pso2 exonuclease is inactivated. We find that the yeast FANCM ortholog Mph1 physically and functionally interacts with Mgm101, a protein previously implicated in mitochondrial DNA repair, and the MutSα mismatch repair factor (Msh2-Msh6). Co-disruption of MPH1, MGM101, MSH6, or MSH2 with PSO2 produces a lesion-specific increase in ICL sensitivity, the elevation of ICL-induced chromosomal rearrangements, and persistence of ICL-associated DNA double-strand breaks. We find that Mph1-Mgm101-MutSα directs the ICL-induced recruitment of Exo1 to chromatin, and we propose that Exo1 is an alternative 5'-3' exonuclease utilised for ICL repair in the absence of Pso2. Moreover, ICL-induced Rad51 chromatin loading is delayed when both Pso2 and components of the Mph1-Mgm101-MutSα and Exo1 pathway are inactivated, demonstrating that the homologous recombination stages of ICL repair are inhibited. Finally, the FANCJ- and FANCP-related factors Chl1 and Slx4, respectively, are also components of the genetic pathway controlled by Mph1-Mgm101-MutSα. Together this suggests that a prototypical FA-related ICL repair pathway operates in budding yeast, which acts redundantly with the pathway controlled by Pso2, and is required for the targeting of Exo1 to chromatin to execute ICL repair.

  9. Early versus late repair of bile duct injuries.

    PubMed

    Mercado, Miguel Angel

    2006-11-01

    Biliary injuries associated with laparoscopic cholecystectomy occur at a constant rate of 0.3% to 0.6%. The spectrum of injures ranges from small leaks of bile to complete section of the main ducts requiring bilioenteric reconstruction. The goal of biliary reconstruction is to obtain a high-quality bilioenteric anastomosis that will not malfunction for a long time. No prospective, controlled, randomized trial (evidence level 1) has been conducted that shows whether an early repair is better than a late one. The timing of the operative procedure should be individualized. A complete examination of the patient should be performed to identify the type of injury and coexistent comorbidities. For septic patients and those with multiple organ dysfunction syndrome, the repair should be delayed. Maneuvers to drain the bile ducts can be performed to relieve jaundice and cholangitis in these patients. For these cases, the surgery should be delayed. If a stable patient is found, without comorbidities, the operation can be scheduled earlier. Subhepatic drains should not be left for a long period because of the risk for intestinal fistulization. If needed, they should be changed for transhepatic stents. High-quality bilioenteric anastomoses are performed with fine absorbable sutures for healthy ducts (nonscarred, noninflamed, nonischemic) in a wide opening, with anastomosis of a (tension-free) defunctionalized jejunal limb. Individualization of the patient is the best rule.

  10. Trends in Teacher Certification: Equipping Teachers to Prepare Proficient Readers

    ERIC Educational Resources Information Center

    Rowland, Julie

    2015-01-01

    Ensuring that students are reading proficiently by third grade is a key component of keeping students on track to graduate high school and pursue college and careers. Because of the magnitude of this academic milestone, states typically pursue policies that promote early identification and intervention for struggling readers. However, teachers are…

  11. One-stage sequential bilateral thoracic expansion for asphyxiating thoracic dystrophy (Jeune syndrome).

    PubMed

    Muthialu, Nagarajan; Mussa, Shafi; Owens, Catherine M; Bulstrode, Neil; Elliott, Martin J

    2014-10-01

    Jeune syndrome (asphyxiating thoracic dystrophy) is a rare disorder characterized by skeletal dysplasia, reduced diameter of the thoracic cage and extrathoracic organ involvement. Fatal, early respiratory insufficiency may occur. Two-stage lateral thoracic expansion has been reported, addressing each side sequentially over 3-12 months. While staged repair theoretically provides less invasive surgery in a small child with respiratory distress, we utilized a single stage, bilateral procedure aiming to rapidly maximize lung development. Combined bilateral surgery also offered the chance of rapid recovery, and reduced hospital stay. We present our early experience of this modification of existing surgical treatment for an extremely rare condition, thought to be generally fatal in early childhood. Nine children (6 males, 3 females; median age 30 months [3.5-75]) underwent thoracic expansion for Jeune syndrome in our centre. All patients required preoperative respiratory support (5 with tracheostomy, 8 requiring positive pressure ventilation regularly within each day/night cycle). Two children underwent sequential unilateral (2-month interval between stages) and 7 children bilateral thoracic expansion by means of staggered osteotomies of third to eighth ribs and plate fixation of fourth to fifth rib and sixth to seventh rib, leaving the remaining ribs floating. There was no operative mortality. There were 2 deaths within 3 months of surgery, due to pulmonary hypertension (1 following two-stage and 1 following single-stage thoracic expansion). At the median follow-up of 11 months (1-15), 3 children have been discharged home from their referring unit and 2 have significantly reduced respiratory support. One child remains on non-invasive ventilation and another is still ventilated with a high oxygen requirement. Jeune syndrome is a difficult condition to manage, but bilateral thoracic expansion offers an effective reduction in ventilator requirements in these children

  12. Collaboration with Pharma Will Introduce Nanotechnologies in Early Stage Drug Development | FNLCR Staging

    Cancer.gov

    The Frederick National Lab has begun to assist several major pharmaceutical companies in adopting nanotechnologies in early stage drug development, when the approach is most efficient and cost-effective. For some time, the national lab’s Nanotechno

  13. Frequent PIK3CA Mutations in Colorectal and Endometrial Cancer with Double Somatic Mismatch Repair Mutations

    PubMed Central

    Cohen, Stacey A.; Turner, Emily H.; Beightol, Mallory B.; Jacobson, Angela; Gooley, Ted A.; Salipante, Stephen J.; Haraldsdottir, Sigurdis; Smith, Christina; Scroggins, Sheena; Tait, Jonathan F.; Grady, William M.; Lin, Edward H.; Cohn, David E.; Goodfellow, Paul J.; Arnold, Mark W.; de la Chapelle, Albert; Pearlman, Rachel; Hampel, Heather; Pritchard, Colin C.

    2016-01-01

    Background & Aims Double somatic mutations in mismatch repair (MMR) genes have recently been described in colorectal and endometrial cancers with microsatellite instability (MSI) not attributable to MLH1 hypermethylation or germline mutation. We sought to define the molecular phenotype of this newly recognized tumor subtype. Methods From two prospective Lynch syndrome screening studies, we identified patients with colorectal and endometrial tumors harboring ≥2 somatic MMR mutations, but normal germline MMR testing (“double somatic”). We determined the frequencies of tumor PIK3CA, BRAF, KRAS, NRAS, and PTEN mutations by targeted next-generation sequencing and used logistic-regression models to compare them to: Lynch syndrome, MLH1 hypermethylated, and microsatellite stable (MSS) tumors. We validated our findings using independent datasets from The Cancer Genome Atlas (TCGA). Results Among colorectal cancer cases, we found that 14/21 (67%) of double somatic cases had PIK3CA mutations vs. 4/18 (22%) Lynch syndrome, 2/10 (20%) MLH1 hypermethylated, and 12/78 (15%) MSS tumors; p<0.0001. PIK3CA mutations were detected in 100% of 13 double somatic endometrial cancers (p=0.04). BRAF mutations were absent in double somatic and Lynch syndrome colorectal tumors. We found highly similar results in a validation cohort from TCGA (113 colorectal, 178 endometrial cancer), with 100% of double somatic cases harboring a PIK3CA mutation (p<0.0001). Conclusions PIK3CA mutations are present in double somatic mutated colorectal and endometrial cancers at substantially higher frequencies than other MSI subgroups. PIK3CA mutation status may better define an emerging molecular entity in colorectal and endometrial cancers, with the potential to inform screening and therapeutic decision making. PMID:27302833

  14. A New Tool for Assessing Mobile Device Proficiency in Older Adults: The Mobile Device Proficiency Questionnaire.

    PubMed

    Roque, Nelson A; Boot, Walter R

    2018-02-01

    Mobile device proficiency is increasingly required to participate in society. Unfortunately, there still exists a digital divide between younger and older adults, especially with respect to mobile devices (i.e., tablet computers and smartphones). Training is an important goal to ensure that older adults can reap the benefits of these devices. However, efficient/effective training depends on the ability to gauge current proficiency levels. We developed a new scale to accurately assess the mobile device proficiency of older adults: the Mobile Device Proficiency Questionnaire (MDPQ). We present and validate the MDPQ and a short 16-question version of the MDPQ (MDPQ-16). The MDPQ, its subscales, and the MDPQ-16 were found to be highly reliable and valid measures of mobile device proficiency in a large sample. We conclude that the MDPQ and MDPQ-16 may serve as useful tools for facilitating mobile device training of older adults and measuring mobile device proficiency for research purposes.

  15. Early postoperative fluoroquinolone use is associated with an increased revision rate after arthroscopic rotator cuff repair.

    PubMed

    Cancienne, Jourdan M; Brockmeier, Stephen F; Rodeo, Scott A; Young, Chris; Werner, Brian C

    2017-07-01

    To evaluate the association of postoperative fluoroquinolone use following arthroscopic primary rotator cuff repair with failure requiring revision rotator cuff repair. An insurance database was queried for patients undergoing rotator cuff repair from 2007 to 2015. These patients were divided into three groups: (1) patients prescribed fluoroquinolones within 6 months postoperatively (divided into 0-2, 2-4, and 4-6 months), (2) a matched negative control cohort of patients not prescribed fluoroquinolones, and (3) a matched positive control cohort of patients prescribed fluoroquinolones between 6 and 18 months following rotator cuff repair. Rates of failure requiring revision rotator cuff repair were compared within 2 years. A total of 1292 patients were prescribed fluoroquinolones within 6 months after rotator cuff repair, including 442 within 2 months, 433 within 2 to 4 months, and 417 within 4 to 6 months, and were compared to 5225 matched negative controls and 1597 matched positive controls. The rate of revision rotator cuff repair was significantly higher in patients prescribed fluoroquinolones within 2 months (6.1 %) compared to matched negative (2.2 %, P = 0.0009) and positive controls (2.4 %, P = 0.0026). There were no significant differences in the rate of revision rotator cuff repair when fluoroquinolones were prescribed >2 months after rotator cuff repair. Early use of fluoroquinolones following rotator cuff repair was independently associated with significantly increased rates of failure requiring revision rotator cuff repair. This is the first clinical study examining the association of postoperative fluoroquinolone use with failure following arthroscopic rotator cuff repair. III.

  16. Biological effects of simple changes in functionality on rhodium metalloinsertors

    PubMed Central

    Weidmann, Alyson G.; Komor, Alexis C.; Barton, Jacqueline K.

    2013-01-01

    DNA mismatch repair (MMR) is crucial to ensuring the fidelity of the genome. The inability to correct single base mismatches leads to elevated mutation rates and carcinogenesis. Using metalloinsertors–bulky metal complexes that bind with high specificity to mismatched sites in the DNA duplex–our laboratory has adopted a new chemotherapeutic strategy through the selective targeting of MMR-deficient cells, that is, those that have a propensity for cancerous transformation. Rhodium metalloinsertors display inhibitory effects selectively in cells that are deficient in the MMR machinery, consistent with this strategy. However, a highly sensitive structure–function relationship is emerging with the development of new complexes that highlights the importance of subcellular localization. We have found that small structural modifications, for example a hydroxyl versus a methyl functional group, can yield profound differences in biological function. Despite similar binding affinities and selectivities for DNA mismatches, only one metalloinsertor shows selective inhibition of cellular proliferation in MMR-deficient versus -proficient cells. Studies of whole-cell, nuclear and mitochondrial uptake reveal that this selectivity depends upon targeting DNA mismatches in the cell nucleus. PMID:23776288

  17. Ionizing radiation, inflammation, and their interactions in colon carcinogenesis in Mlh1-deficient mice

    PubMed Central

    Morioka, Takamitsu; Miyoshi-Imamura, Tomoko; Blyth, Benjamin J; Kaminishi, Mutsumi; Kokubo, Toshiaki; Nishimura, Mayumi; Kito, Seiji; Tokairin, Yutaka; Tani, Shusuke; Murakami-Murofushi, Kimiko; Yoshimi, Naoki; Shimada, Yoshiya; Kakinuma, Shizuko

    2015-01-01

    Genetic, physiological and environmental factors are implicated in colorectal carcinogenesis. Mutations in the mutL homolog 1 (MLH1) gene, one of the DNA mismatch repair genes, are a main cause of hereditary colon cancer syndromes such as Lynch syndrome. Long-term chronic inflammation is also a key risk factor, responsible for colitis-associated colorectal cancer; radiation exposure is also known to increase colorectal cancer risk. Here, we studied the effects of radiation exposure on inflammation-induced colon carcinogenesis in DNA mismatch repair-proficient and repair-deficient mice. Male and female Mlh1−/− and Mlh1+/+ mice were irradiated with 2 Gy X-rays when aged 2 weeks or 7 weeks and/or were treated with 1% dextran sodium sulfate (DSS) in drinking water for 7 days at 10 weeks old to induce mild inflammatory colitis. No colon tumors developed after X-rays and/or DSS treatment in Mlh1+/+ mice. Colon tumors developed after DSS treatment alone in Mlh1−/− mice, and exposure to radiation prior to DSS treatment increased the number of tumors. Histologically, colon tumors in the mice resembled the subtype of well-to-moderately differentiated adenocarcinomas with tumor-infiltrating lymphocytes of human Lynch syndrome. Immunohistochemistry revealed that expression of both p53 and β-catenin and loss of p21 and adenomatosis polyposis coli proteins were observed at the later stages of carcinogenesis, suggesting a course of molecular pathogenesis distinct from typical sporadic or colitis-associated colon cancer in humans. In conclusion, radiation exposure could further increase the risk of colorectal carcinogenesis induced by inflammation under the conditions of Mlh1 deficiency. PMID:25529563

  18. Dynamics of spontaneous flipping of a mismatched base in DNA duplex.

    PubMed

    Yin, Yandong; Yang, Lijiang; Zheng, Guanqun; Gu, Chan; Yi, Chengqi; He, Chuan; Gao, Yi Qin; Zhao, Xin Sheng

    2014-06-03

    DNA base flipping is a fundamental theme in DNA biophysics. The dynamics for a B-DNA base to spontaneously flip out of the double helix has significant implications in various DNA-protein interactions but are still poorly understood. The spontaneous base-flipping rate obtained previously via the imino proton exchange assay is most likely the rate of base wobbling instead of flipping. Using the diffusion-decelerated fluorescence correlation spectroscopy together with molecular dynamics simulations, we show that a base of a single mismatched base pair (T-G, T-T, or T-C) in a double-stranded DNA can spontaneously flip out of the DNA duplex. The extrahelical lifetimes are on the order of 10 ms, whereas the intrahelical lifetimes range from 0.3 to 20 s depending on the stability of the base pairs. These findings provide detailed understanding on the dynamics of DNA base flipping and lay down foundation to fully understand how exactly the repair proteins search and locate the target mismatched base among a vast excess of matched DNA bases.

  19. Assessing Language Proficiency Levels: Oral Proficiency Testing, Pre- and Post-Soviet Study.

    ERIC Educational Resources Information Center

    Baker, Robert L.

    The importance of assessing language proficiency levels and the relationship of this priority to the teaching of Russian at the university level are discussed. Serious concerns about the value of language-specific proficiency guidelines are raised, and an argument is presented suggesting that language-specific guidelines may lead to undue emphasis…

  20. Balancing risk and benefit in early-stage classical Hodgkin lymphoma.

    PubMed

    Bröckelmann, Paul J; Sasse, Stephanie; Engert, Andreas

    2018-04-12

    With defined chemotherapy and radiotherapy (RT) and risk-adapted treatment, early-stage classical Hodgkin lymphoma (HL) has become curable in a majority of patients. Hence, a major current goal is to reduce treatment-related toxicity while maintaining long-term disease control. Patients with early-stage favorable disease (ie, limited stage without risk factors [RFs]) are frequently treated with 2 cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine (2×ABVD) followed by 20-Gy involved-field or involved-site RT (IF/ISRT). In patients with early-stage unfavorable disease (ie, limited stage with RFs), 4 cycles of chemotherapy are usually consolidated with 30-Gy IF/ISRT. Compared with 4×ABVD, 2 cycles of bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone (2×BEACOPP escalated ) followed by 2×ABVD improved 5-year progression-free survival (PFS), with similar 5-year overall survival. Recently, treatment strategies based on [ 18 F]fluorodeoxyglucose positron emission tomography (PET) response were evaluated. In early-stage unfavorable HL, a majority of patients achieved a negative interim PET after 2×ABVD and an excellent outcome after 4×ABVD, whereas in those with a positive interim PET, 2×BEACOPP escalated improved 5-year PFS. Furthermore, a PET-guided RT approach was evaluated to decrease long-term toxicity. Although both the RAPID and H10 trials reported poorer disease control without RT, PET-guided omission of RT can constitute a valid therapeutic option in patients with an increased risk of RT-associated toxicity (eg, because of sex, age, or disease localization). Implementation of drugs such as the anti-CD30 antibody-drug conjugate brentuximab vedotin or the anti-programmed death 1 antibodies nivolumab or pembrolizumab might allow further reduction of overall mortality and improve quality of life in affected patients. © 2018 by The American Society of Hematology.

  1. Minimally invasive transcanal myringotomy for pediatric early stage congenital cholesteatoma.

    PubMed

    Jang, Chul Ho; Jung, Eun Kyung; Sung, Chung Man; Kim, Seung Beom; Kim, Young Yoon; Seong, Jong Yuap; Kang, Sung Hoon; Cho, Yong Beom

    2016-11-01

    Recently, minimally invasive transcanal myringotomy (MITM), which is a useful surgical technique for early stage congenital cholesteatoma (CC) in children, was introduced. The purpose of this study is to evaluate the short-term surgical results of MITM in pediatric early stage CC. We retrospectively reviewed the charts of 24 patients who underwent MITM between January 2013 and October 2015. The patients' ages ranged from 1 to 16 years (mean, 2.6 years). There were 17 male and 7 female patients. The right side (n = 13) was affected twice as often as the left side (n = 11). The most common site was the anterosuperior quadrant (15 cases). The diameter of the CC on axial computed tomography images ranged from 2.8 to 5.7 mm (mean, 3.9 mm). CCs were graded according to Potsic's system: 18 cases were classified as stage I, 3 case as stage II, and 3 cases as stage III. AllCCs except 1 were closed type. In21 patients, the tympanic membrane closed naturally without recurrence. Three patients showed small persistent dry perforation. Natural closure occurred in these patients, who were treated with paper patches. MITM is a simple, effective technique for removing an early stage CC from the middle ear, and it can minimize operative time, length of hospitalization, and postoperative morbidity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Comparison of the anti-proliferation and apoptosis-induction activities of sulindac, celecoxib, curcumin, and nifedipine in mismatch repair-deficient cell lines.

    PubMed

    Wei, Shu-Chen; Lin, Young-Sun; Tsao, Po-Nien; Wu-Tsai, Jyy-Ji; Wu, C H Herbert; Wong, Jau-Min

    2004-08-01

    The adenomatous polyposis coli (APC) and mismatch repair (MMR) pathways are both involved in the tumorigenesis of hereditary colorectal cancers. Chemoprevention focuses on the APC pathway in the absence of information concerning MMR targets. This study compared the anticancer effects of sulindac, celecoxib, curcumin, and nifedipine in MMR-deficient cell lines, in order to determine the most appropriate chemopreventive agent for long-term use in patients with hereditary colorectal cancer. Five human colorectal cell lines (SW480, HCT116, LoVo, SW48, and HCT15) and an endometrial cancer cell line (HEC-1-A) were used for susceptibility testing. Tests included assays for growth inhibition, cell-cycle arrest, and apoptosis. Sulindac, celecoxib, curcumin, and nifedipine all displayed dose- and time-dependent anti-proliferation activities. Celecoxib was the most effective anti-proliferative agent, and increased the G0/G1 phase proportion in the cell cycle after treatment more significantly than the other agents in all cell lines. Curcumin displayed a more potent apoptosis-inducing activity than the other agents in treated cells. The tested drugs were effective against colorectal and endometrial cancer cell lines. Celecoxib is more potent with fewer side effects than sulindac. Nifedipine's observed chemopreventive efficacy may complement its known therapeutic application in patients with hypertension.

  3. The early stages of duplicate gene evolution

    PubMed Central

    Moore, Richard C.; Purugganan, Michael D.

    2003-01-01

    Gene duplications are one of the primary driving forces in the evolution of genomes and genetic systems. Gene duplicates account for 8–20% of the genes in eukaryotic genomes, and the rates of gene duplication are estimated at between 0.2% and 2% per gene per million years. Duplicate genes are believed to be a major mechanism for the establishment of new gene functions and the generation of evolutionary novelty, yet very little is known about the early stages of the evolution of duplicated gene pairs. It is unclear, for example, to what extent selection, rather than neutral genetic drift, drives the fixation and early evolution of duplicate loci. Analysis of recently duplicated genes in the Arabidopsis thaliana genome reveals significantly reduced species-wide levels of nucleotide polymorphisms in the progenitor and/or duplicate gene copies, suggesting that selective sweeps accompany the initial stages of the evolution of these duplicated gene pairs. Our results support recent theoretical work that indicates that fates of duplicate gene pairs may be determined in the initial phases of duplicate gene evolution and that positive selection plays a prominent role in the evolutionary dynamics of the very early histories of duplicate nuclear genes. PMID:14671323

  4. Subcomponents of Second-Language Aptitude and Second-Language Proficiency

    ERIC Educational Resources Information Center

    Sparks, Richard L.; Humbach, Nancy; Patton, Jon; Ganschow, Leonore

    2011-01-01

    A factor analysis of a test battery that included early first-language (L1) achievement, L1 cognitive ability, second-language (L2) aptitude, and L2 affective measures to predict oral and written L2 proficiency was conducted. The analysis yielded 4 factors that were labeled Language Analysis, composed of L1 and L2 language comprehension, grammar,…

  5. Clinical Practice of Adjuvant Chemotherapy in Patients with Early-Stage Epithelial Ovarian Cancer.

    PubMed

    Frielink, Lindy M J; Pijlman, Brenda M; Ezendam, Nicole P M; Pijnenborg, Johanna M A

    2016-01-01

    Adjuvant platinum-based chemotherapy improves survival in women with early-stage epithelial ovarian cancer (EOC). Yet, there is a wide variety in clinical practice. All patients diagnosed with FIGO I and IIa EOC (2006-2010) in the south of the Netherlands were analyzed. The percentage of patients that received adjuvant chemotherapy was determined as well as the comprehensiveness of staging and outcome. Forty percent (54/135) of the patients with early-stage EOC received adjuvant chemotherapy. Treatment with adjuvant chemotherapy was associated with FIGO stage, clear-cell histology and nonoptimal staging. Optimal staging was achieved in 50%, and nonoptimal staging was associated with advanced age, comorbidity and treatment in a non-referral hospital. Overall, there was no difference in outcome between patients with and without adjuvant chemotherapy. Yet, in grade 3 tumors, adjuvant chemotherapy seems beneficial. Selective treatment of patients with early-stage EOC might reduce adjuvant chemotherapy without compromising outcome. © 2016 S. Karger AG, Basel.

  6. Proficiency Effect on L2 Pragmatic Competence

    ERIC Educational Resources Information Center

    Xiao, Feng

    2015-01-01

    This paper synthesizes cross-sectional studies of the effect of proficiency on second language (L2) pragmatics to answer the synthesis question: Does proficiency affect adult learners' pragmatic competence? Findings have revealed an overall positive proficiency effect on pragmatic competence, and in most cases higher proficiency learners have…

  7. Cancer spectrum in DNA mismatch repair gene mutation carriers: results from a hospital based Lynch syndrome registry

    PubMed Central

    Pande, Mala; Wei, Chongjuan; Chen, Jinyun; Amos, Christopher I.; Lynch, Patrick M.; Lu, Karen H.; Lucio, Laura A.; Boyd-Rogers, Stephanie G.; Bannon, Sarah A.; Mork, Maureen E.

    2012-01-01

    The spectrum of cancers seen in a hospital based Lynch syndrome registry of mismatch repair gene mutation carriers was examined to determine the distribution of cancers and examine excess cancer risk. Overall there were 504 cancers recorded in 368 mutation carriers from 176 families. These included 236 (46.8 %) colorectal and 268 (53.2 %) extracolonic cancers. MLH1 mutation carriers had a higher frequency of colorectal cancers whereas MSH2, MSH6 and PMS2 mutation carriers had more extracolonic cancers although these differences were not statistically significant. Men had fewer extracolonic cancers than colorectal (45.3 vs. 54.7 %), whereas women had more extracolonic than colorectal cancers (59.0 vs. 41.0 %). The mean age at diagnosis overall for extracolonic cancers was older than for colorectal, 49.1 versus 44.8 years (P ≤ 0.001). As expected, the index cancer was colorectal in 58.1 % of patients and among the extracolonic index cancers, endometrial was the most common (13.8 %). A significant number of non-Lynch syndrome index cancers were recorded including breast (n = 5) prostate (n = 3), thyroid (n = 3), cervix (n = 3), melanoma (n = 3), and 1 case each of thymoma, sinus cavity, and adenocarcinoma of the lung. However, standardized incidence ratios calculated to assess excess cancer risk showed that only those cancers known to be associated with Lynch syndrome were significant in our sample. We found that Lynch syndrome patients can often present with cancers that are not considered part of Lynch syndrome. This has clinical relevance both for diagnosis of Lynch syndrome and surveillance for cancers of different sites during follow-up of these patients. PMID:22714864

  8. Solution structure and intramolecular exchange of methyl-cytosine binding domain protein 4 (MBD4) on DNA suggests a mechanism to scan for mCpG/TpG mismatches

    PubMed Central

    Walavalkar, Ninad M.; Cramer, Jason M.; Buchwald, William A.; Scarsdale, J. Neel; Williams, David C.

    2014-01-01

    Unlike other members of the methyl-cytosine binding domain (MBD) family, MBD4 serves as a potent DNA glycosylase in DNA mismatch repair specifically targeting mCpG/TpG mismatches arising from spontaneous deamination of methyl-cytosine. The protein contains an N-terminal MBD (MBD4MBD) and a C-terminal glycosylase domain (MBD4GD) separated by a long linker. This arrangement suggests that the MBD4MBD either directly augments enzymatic catalysis by the MBD4GD or targets the protein to regions enriched for mCpG/TpG mismatches. Here we present structural and dynamic studies of MBD4MBD bound to dsDNA. We show that MBD4MBD binds with a modest preference formCpG as compared to mismatch, unmethylated and hydroxymethylated DNA. We find that while MBD4MBD exhibits slow exchange between molecules of DNA (intermolecular exchange), the domain exhibits fast exchange between two sites in the same molecule of dsDNA (intramolecular exchange). Introducing a single-strand defect between binding sites does not greatly reduce the intramolecular exchange rate, consistent with a local hopping mechanism for moving along the DNA. These results support a model in which the MBD4MBD4 targets the intact protein to mCpG islands and promotes scanning by rapidly exchanging between successive mCpG sites which facilitates repair of nearby mCpG/TpG mismatches by the glycosylase domain. PMID:25183517

  9. [Aging affects early stage direction selectivity of MT cells in rhesus monkeys].

    PubMed

    Liang, Zhen; Chen, Yue-Ming; Meng, Xue; Wang, Yi; Zhou, Bao-Zhuo; Xie, Ying-Ying; He, Wen-Sheng

    2012-10-01

    The middle temporal area (MT/V5) plays an important role in motion processing. Neurons in this area have a strongly selective response to the moving direction of objects and as such, the selectivity of MT neurons was proposed to be a neural mechanism for the perception of motion. Our previous studies have found degradation in direction selectivity of MT neurons in old monkeys, but this direction selectivity was calculated during the whole response time and the results were not able to uncover the mechanism of motion perception over a time course. Furthermore, experiments have found that direction selectivity was enhanced by attention at a later stage. Therefore, the response should be excluded in experiments with anesthesia. To further characterize the neural mechanism over a time course, we investigated the age-related changes of direction selectivity in the early stage by comparing the proportions of direction selective MT cells in old and young macaque monkeys using in vivo single-cell recording techniques. Our results show that the proportion of early-stage-direction-selective cells is lower in old monkeys than in young monkeys, and that the early stage direction bias (esDB) of old MT cells decreased relative to young MT cells. Furthermore, the proportion of MT cells having strong early stage direction selectivity in old monkeys was decreased. Accordingly, the functional degradation in the early stage of MT cells may mediate perceptual declines of old primates in visual motion tasks.

  10. Educational Mismatch and Self-Employment

    ERIC Educational Resources Information Center

    Bender, Keith A.; Roche, Kristen

    2013-01-01

    Previous research on educational mismatch concentrates on estimating its labor market consequences but with a focus on wage and salary workers. This paper examines the far less studied influence of mismatch on the self-employed. Using a sample of workers in science and engineering fields, results show larger earnings penalties for mismatch among…

  11. Contemporary results of aortic valve repair for congenital disease: lessons for management and staged strategy.

    PubMed

    Vergnat, Mathieu; Asfour, Boulos; Arenz, Claudia; Suchowerskyj, Philipp; Bierbach, Benjamin; Schindler, Ehrenfried; Schneider, Martin; Hraska, Victor

    2017-09-01

    Any aortic valve (AoV) operation in children (repair, Ross or mechanical replacement) is a palliation and reinterventions are frequent. AoV repair is a temporary solution primarily aimed at allowing the patient to grow to an age when more definitive solutions are available. We retrospectively analysed AoV repair effectiveness across the whole age spectrum of children, excluding neonates and AoV disease secondary to congenital heart disease. From 2003 to 2015, 193 consecutive patients were included. The mean age was 9.2 ± 6.9 years (22% <1 year); 86 (45%) had a preceding balloon valvuloplasty. The indications for the procedure were stenotic (n = 123; 64%), regurgitant (n = 63; 33%) or combined (n = 7; 4%) disease. The procedures performed were commissurotomy shaving (n = 74; 38%), leaflet replacement (n = 78; 40%), leaflet extension (n = 21; 11%) and neocommissure creation (n = 21; 11%). Post-repair geometry was tricuspid in 137 (71%) patients. The 10-year survival rate was 97.1%. Freedom from reoperation and replacement at 7 years was, respectively, 57% (95% confidence interval, 47-66) and 68% (95% confidence interval, 59-76). In multivariate analysis, balloon dilatation before 6 months, the absence of a developed commissure, a non-tricuspid post-repair geometry and cross-clamp duration were predictors for reoperation and replacement. After a mean follow-up period of 5.1 ± 3.0 years, 145 (75%) patients had a preserved native valve, with undisturbed valve function (peak gradient <40 mmHg, regurgitation ≤mild) in 113 (58%). Aortic valve repair in children is safe and effective in delaying the timing for more definitive solution. Surgical strategy should be individualized according to the age of the patient. Avoidance of early balloon dilatation and aiming for a tricuspid post-repair arrangement may improve outcomes. © The Author 2017. Published by Oxford University Press on behalf of the European Association

  12. Prognostic model for survival in patients with early stage cervical cancer.

    PubMed

    Biewenga, Petra; van der Velden, Jacobus; Mol, Ben Willem J; Stalpers, Lukas J A; Schilthuis, Marten S; van der Steeg, Jan Willem; Burger, Matthé P M; Buist, Marrije R

    2011-02-15

    In the management of early stage cervical cancer, knowledge about the prognosis is critical. Although many factors have an impact on survival, their relative importance remains controversial. This study aims to develop a prognostic model for survival in early stage cervical cancer patients and to reconsider grounds for adjuvant treatment. A multivariate Cox regression model was used to identify the prognostic weight of clinical and histological factors for disease-specific survival (DSS) in 710 consecutive patients who had surgery for early stage cervical cancer (FIGO [International Federation of Gynecology and Obstetrics] stage IA2-IIA). Prognostic scores were derived by converting the regression coefficients for each prognostic marker and used in a score chart. The discriminative capacity was expressed as the area under the curve (AUC) of the receiver operating characteristic. The 5-year DSS was 92%. Tumor diameter, histological type, lymph node metastasis, depth of stromal invasion, lymph vascular space invasion, and parametrial extension were independently associated with DSS and were included in a Cox regression model. This prognostic model, corrected for the 9% overfit shown by internal validation, showed a fair discriminative capacity (AUC, 0.73). The derived score chart predicting 5-year DSS showed a good discriminative capacity (AUC, 0.85). In patients with early stage cervical cancer, DSS can be predicted with a statistical model. Models, such as that presented here, should be used in clinical trials on the effects of adjuvant treatments in high-risk early cervical cancer patients, both to stratify and to include patients. Copyright © 2010 American Cancer Society.

  13. 15 CFR 285.8 - Proficiency testing.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 1 2012-01-01 2012-01-01 false Proficiency testing. 285.8 Section 285... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND ASSESSMENT PROGRAMS NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM § 285.8 Proficiency testing. (a) NVLAP proficiency testing is...

  14. 15 CFR 285.8 - Proficiency testing.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 1 2014-01-01 2014-01-01 false Proficiency testing. 285.8 Section 285... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND ASSESSMENT PROGRAMS NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM § 285.8 Proficiency testing. (a) NVLAP proficiency testing is...

  15. 15 CFR 285.8 - Proficiency testing.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false Proficiency testing. 285.8 Section 285... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE ACCREDITATION AND ASSESSMENT PROGRAMS NATIONAL VOLUNTARY LABORATORY ACCREDITATION PROGRAM § 285.8 Proficiency testing. (a) NVLAP proficiency testing is...

  16. Collision Repair Campaign

    EPA Pesticide Factsheets

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  17. 1-Stage delayed bulboprostatic anastomotic repair of posterior urethral rupture: 60 patients with 1-year followup.

    PubMed

    Corriere, J N

    2001-02-01

    The long-term results of delayed 1-stage bulboprostatic anastomotic urethroplasty for posterior urethral ruptures are evaluated. A total of 63, 1-stage delayed repairs of complete posterior urethral ruptures in 60 men with at least 1-year followup were reviewed. Two ruptures were due to gunshot wounds and 58 were secondary to a pelvic fracture. There were 58 repairs done by the perineal approach and 5 required an abdominal perineal approach. Surgical complications included 2 (3%) rectal injuries, 3 (5%) repeat strictures that required reoperation and 20 (32%) repeat strictures that required dilation or visual internal urethrotomy. By 1 year after surgery all patients had a patent urethra and did not require further treatment. At 1 year 43 (72%) patients voided normally, 5 (8.3%) were areflexic and performed self-catheterization, 5 (8.3%) had urge incontinence and 5 (8.3%) had mild stress incontinence requiring no treatment. Moderate stress incontinence responded to imipramine in 1 case and collagen injection in 1. Of the patients who were potent preoperatively 31 (52%) remained potent postoperatively. Of the 29 (48%) patients who were impotent preoperatively and immediately postoperatively 9 regained potency at 1 year. However, at 1 year, the quality of erections of the 40 potent men was normal in only 22 (37%) and fair to poor in 18 (30%). The 1-stage delayed bulboprostatic anastomotic urethroplasty has a good long-term result with little morbidity for treatment of posterior urethral ruptures in men.

  18. Large-scale Metabolomic Analysis Reveals Potential Biomarkers for Early Stage Coronary Atherosclerosis.

    PubMed

    Gao, Xueqin; Ke, Chaofu; Liu, Haixia; Liu, Wei; Li, Kang; Yu, Bo; Sun, Meng

    2017-09-18

    Coronary atherosclerosis (CAS) is the pathogenesis of coronary heart disease, which is a prevalent and chronic life-threatening disease. Initially, this disease is not always detected until a patient presents with seriously vascular occlusion. Therefore, new biomarkers for appropriate and timely diagnosis of early CAS is needed for screening to initiate therapy on time. In this study, we used an untargeted metabolomics approach to identify potential biomarkers that could enable highly sensitive and specific CAS detection. Score plots from partial least-squares discriminant analysis clearly separated early-stage CAS patients from controls. Meanwhile, the levels of 24 metabolites increased greatly and those of 18 metabolites decreased markedly in early CAS patients compared with the controls, which suggested significant metabolic dysfunction in phospholipid, sphingolipid, and fatty acid metabolism in the patients. Furthermore, binary logistic regression showed that nine metabolites could be used as a combinatorial biomarker to distinguish early-stage CAS patients from controls. The panel of nine metabolites was then tested with an independent cohort of samples, which also yielded satisfactory diagnostic accuracy (AUC = 0.890). In conclusion, our findings provide insight into the pathological mechanism of early-stage CAS and also supply a combinatorial biomarker to aid clinical diagnosis of early-stage CAS.

  19. Promoter hypermethylation of mismatch repair gene hMLH1 predicts the clinical response of malignant astrocytomas to nitrosourea.

    PubMed

    Fukushima, Takao; Katayama, Yoichi; Watanabe, Takao; Yoshino, Atsuo; Ogino, Akiyoshi; Ohta, Takashi; Komine, Chiaki

    2005-02-15

    In certain types of human cancers, transcriptional inactivation of hMLH1 by promoter hypermethylation plays a causal role in the loss of mismatch repair functions that modulate cytotoxic pathways in response to DNA-damaging agents. The aim of the present study was to investigate the role of promoter methylation of the hMLH1 gene in malignant astrocytomas. We examined the hMLH1 promoter methylation in a homogeneous cohort of patients with 41 malignant astrocytomas treated by 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-2(2-chloroethyl)-3-nitrosourea chemotherapy in combination with radiation and interferon therapy, and assessed the correlation of such methylation with clinical outcome. hMLH1 promoter methylation was found in 6 (15%) of the 41 newly diagnosed malignant astrocytomas. Hypermethylation of the hMLH1 promoter corresponded closely with a loss of immunohistochemical staining for hMLH1 protein (P = 0.0013). Patients with hMLH1-methylated tumors displayed a greater chance of responding to adjuvant therapy as compared with those with hMLH1-unmethylated tumors (P = 0.0150). The presence of hMLH1 hypermethylation was significantly associated with a longer progression-free survival on both univariate analysis (P = 0.0340) and multivariate analysis (P = 0.0161). The present study identified hMLH1 methylation status as a predictor of the clinical response of malignant astrocytomas to chloroethylnitrosourea-based adjuvant therapy. The findings obtained suggest that determination of the methylation status of hMLH1 could provide a potential basis for designing rational chemotherapeutic strategies, as well as for predicting prognosis.

  20. Initial Spanish Proficiency and English Language Development among Spanish-Speaking English Learner Students in New Mexico. REL 2018-286

    ERIC Educational Resources Information Center

    Arellano, Brenda; Liu, Feng; Stoker, Ginger; Slama, Rachel

    2018-01-01

    To what extent do Spanish-speaking English learner students develop English proficiency and grade-level readiness in English language arts and math from early elementary school to upper elementary school? Is there a relationship between proficiency in a student's primary home language, Spanish, and the amount of time needed to attain fluency in…