Sample records for early-type galaxy formation

  1. Early type galaxies: Mapping out the two-dimensional space of galaxy star formation histories

    NASA Astrophysics Data System (ADS)

    Graves, Genevieve J.

    Early type galaxies form a multi-parameter family, as evidenced by the two- dimensional (2-D) Fundamental Plane relationship. However, their star formation histories are often treated as a one-dimensional mass sequence. This dissertation presents a systematic study of the relationship between the multi- parameter structural properties of early type galaxies and their star formation histoires. We demonstrate that the stellar populations of early type galaxies span a 2-D space, which means that their star formation histories form a two- parameter family. This 2-D family is then mapped onto several familiar early type galaxy scaling relations, including the color-magnitude relation, the Fundamental Plane, and a cross-section through the Fundamental Plane. We find that the stellar population properties, and therefore the star formation histories of early type galaxies depend most strongly on galaxy velocity dispersion (s), rather than on luminosity ( L ), stellar mass ( M [low *] ), or dynamical mass ( M dyn ). Interestingly, stellar populations are independent of the radius ( R e ) of the galaxies. At fixed s, they show correlated residuals through the thickness of the Fundamental Plane (FP) in the surface-brightness ( I e ) dimension, such that low-surface-brightness galaxies are older, less metal-enriched, and more enhanced in Mg relative to Fe than their counterparts at the same s and R e on the FP midplane. Similarly, high- surface-brightness galaxies are younger, more metal-rich, and less Mg-enhanced than their counterparts on the FP midplane. These differences suggest that the duration of star formation varies through the thickness of the FP. If the dynamical mass-to-light ratios of early type galaxies ( M dyn /L ) were constant for all such galaxies, the FP would be equivalent to the plane predicted by the virial relation. However, the observed FP does not exactly match the virial plane. The FP is tilted from the virial plane, indicating that M dyn /L varies

  2. Structural analysis of star-forming blue early-type galaxies. Merger-driven star formation in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    George, Koshy

    2017-02-01

    Context. Star-forming blue early-type galaxies at low redshift can give insight to the stellar mass growth of L⋆ elliptical galaxies in the local Universe. Aims: We wish to understand the reason for star formation in these otherwise passively evolving red and dead stellar systems. The fuel for star formation can be acquired through recent accretion events such as mergers or flyby. The signatures of such events should be evident from a structural analysis of the galaxy image. Methods: We carried out structural analysis on SDSS r-band imaging data of 55 star-forming blue elliptical galaxies, derived the structural parameters, analysed the residuals from best-fit to surface brightness distribution, and constructed the galaxy scaling relations. Results: We found that star-forming blue early-type galaxies are bulge-dominated systems with axial ratio >0.5 and surface brightness profiles fitted by Sérsic profiles with index (n) mostly >2. Twenty-three galaxies are found to have n< 2; these could be hosting a disc component. The residual images of the 32 galaxy surface brightness profile fits show structural features indicative of recent interactions. The star-forming blue elliptical galaxies follow the Kormendy relation and show the characteristics of normal elliptical galaxies as far as structural analysis is concerned. There is a general trend for high-luminosity galaxies to display interaction signatures and high star formation rates. Conclusions: The star-forming population of blue early-type galaxies at low redshifts could be normal ellipticals that might have undergone a recent gas-rich minor merger event. The star formation in these galaxies will shut down once the recently acquired fuel is consumed, following which the galaxy will evolve to a normal early-type galaxy.

  3. The star formation history of early-type galaxies as a function of mass and environment

    NASA Astrophysics Data System (ADS)

    Clemens, M. S.; Bressan, A.; Nikolic, B.; Alexander, P.; Annibali, F.; Rampazzo, R.

    2006-08-01

    Using the third data release of the Sloan Digital Sky Survey (SDSS), we have rigorously defined a volume-limited sample of early-type galaxies in the redshift range 0.005 < z <= 0.1. We have defined the density of the local environment for each galaxy using a method which takes account of the redshift bias introduced by survey boundaries if traditional methods are used. At luminosities greater than our absolute r-band magnitude cut-off of -20.45, the mean density of environment shows no trend with redshift. We calculate the Lick indices for the entire sample and correct for aperture effects and velocity dispersion in a model-independent way. Although we find no dependence of redshift or luminosity on environment, we do find that the mean velocity dispersion, σ, of early-type galaxies in dense environments tends to be higher than in low-density environments. Taking account of this effect, we find that several indices show small but very significant trends with environment that are not the result of the correlation between indices and velocity dispersion. The statistical significance of the data is sufficiently high to reveal that models accounting only for α-enhancement struggle to produce a consistent picture of age and metallicity of the sample galaxies, whereas a model that also includes carbon enhancement fares much better. We find that early-type galaxies in the field are younger than those in environments typical of clusters but that neither metallicity, α-enhancement nor carbon enhancement are influenced by the environment. The youngest early-type galaxies in both field and cluster environments are those with the lowest σ. However, there is some evidence that the objects with the largest σ are slightly younger, especially in denser environments. Independent of environment both the metallicity and α-enhancement grow monotonically with σ. This suggests that the typical length of the star formation episodes which formed the stars of early-type galaxies

  4. Imaging the Hot Stellar Content of Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Bertola, Francesco

    1991-07-01

    WE PROPOSE TO IMAGE WITH THE FOC IN THE F/96 CONFIGURATION FIVE EARLY TYPE GALAXIES IN FOUR PASSBANDS CENTERED AT 1500 A, 2200 A, 2800 A AND 3400 A. WHEN COUPLED WITH PHOTOMETRY OBTAINED FROM THE GROUND OUR OBSERVATIONS WILL ALLOW US TO DERIVE COMPLETE SED OF THESE GALAXIES AS A FUNCTION OF THE DISTANCE FROM THE CENTER. THIS IS A KEY STEP TOWARDS THE UNDERSTANDING OF STELLAR POPULATIONS - IN PARTICULAR THE ONE RESPONSIBLE FOR THE UV EMISSION - IN EARLY TYPE GALAXIES AND WILL PROVIDE IMPORTANT INSIGHT IN THEIR FORMATION AND EVOLUTION. WE PLAN TO OBSERVE NGC 1399, NGC 2681, NGC 4552, NGC 5018 AND NGC 4627 WHICH SAMPLE A WIDE RANGE OF INTRINSIC PROPERTIES AS INDICATED BY PREVIOUS IUE OBSERVATIONS. FOR NGC 4627 THERE IS EVIDENCE OF ONGOING STAR FORMATION AND THE HST WILL BE ABLE TO SHOW THE CHARACTERISTIC CLUMPINESS. NGC 2681 HAD A STARBUST OF AGE GREATER THAN 1 GYR. NGC 4552 IS ONE OF THE MOST METAL RICH GALAXY KNOWN. NGC 1399 HAS THE SAME METALLICITY AND LUMINOSITY OF THE PREVIOUS GALAXY BUT IS A MUCH STRONGER X-RAY EMITTER. NGC 5018 IS A VERY GOOD CANDIDATE FOR ONGOING STAR FORMATION. WE BELIEVE IN THIS WAY WE CAN OBTAIN SED FOR THE TWO-DIMENSIONAL IMAGES OF EARLY TYPE GALAXIES FROM BROAD BAND IMAGING ALONE. THE CALIBRATION OF OUR FILTER SYSTEM WILL ALLOW US TO APPLY IT TO THE BIDIMENSIONAL ANALYSIS OF THE GENERAL SAMPLE OF EARLY TYPE GALAXIES.

  5. A collisional model for the formation of ripples in early-type disk galaxies

    NASA Technical Reports Server (NTRS)

    Wallin, John F.; Struck-Marcell, Curtis

    1988-01-01

    Restricted three-body calculations of high-inclination low-impact-parameter encounters between a disk galaxy and its companion are used to demonstrate that the shell-like ripples noted in a number of disk galaxies are also collisional artifacts. It is suggested that some of the ripples may be the results of internal oscillations following such encounters. It is assumed that the target is an early-type disk with a sufficiently low gas fraction that recent star formation does not dominate the appearance of the disturbed disk.

  6. Evolution of Late-type Galaxies in a Cluster Environment: Effects of High-speed Multiple Encounters with Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Hwang, Jeong-Sun; Park, Changbom; Banerjee, Arunima; Hwang, Ho Seong

    2018-04-01

    Late-type galaxies falling into a cluster would evolve being influenced by the interactions with both the cluster and the nearby cluster member galaxies. Most numerical studies, however, tend to focus on the effects of the former with little work done on those of the latter. We thus perform a numerical study on the evolution of a late-type galaxy interacting with neighboring early-type galaxies at high speed using hydrodynamic simulations. Based on the information obtained from the Coma cluster, we set up the simulations for the case where a Milky Way–like late-type galaxy experiences six consecutive collisions with twice as massive early-type galaxies having hot gas in their halos at the closest approach distances of 15–65 h ‑1 kpc at the relative velocities of 1500–1600 km s‑1. Our simulations show that the evolution of the late-type galaxy can be significantly affected by the accumulated effects of the high-speed multiple collisions with the early-type galaxies, such as on cold gas content and star formation activity of the late-type galaxy, particularly through the hydrodynamic interactions between cold disk and hot gas halos. We find that the late-type galaxy can lose most of its cold gas after the six collisions and have more star formation activity during the collisions. By comparing our simulation results with those of galaxy–cluster interactions, we claim that the role of the galaxy–galaxy interactions on the evolution of late-type galaxies in clusters could be comparable with that of the galaxy–cluster interactions, depending on the dynamical history.

  7. The stellar populations of nearby early-type galaxies

    NASA Astrophysics Data System (ADS)

    Concannon, Kristi Dendy

    The recent completion of comprehensive photometric and spectroscopic galaxy surveys has revealed that early-type galaxies form a more heterogeneous family than previously thought. To better understand the star formation histories of early-type galaxies, we have obtained a set of high resolution, high signal-to-noise ratio spectra for a sample of 180 nearby early-type galaxies with the FAST spectrograph and the 1.5m telescope at F. L. Whipple Observatory. The spectra cover the wavelength range 3500 5500 Å which allows the comparison of various Balmer lines, most importantly the higher order lines in the blue, and have a S/N ratio higher than that of previous samples, which makes it easier to investigate the intrinsic spread in the observed parameters. The data set contains galaxies in both the local field and Virgo cluster environment and spans the velocity dispersion range 50 < log σ < 250km s -1. In conjunction with recent improvements in population synthesis modeling, our data set enables us to investigate the star formation history of E/S0 galaxies as a function of mass (σ), environment, and to some extent morphology. We are able to probe the effects of age and metallicity on fundamental observable relations such as the Mg-σ relation, and show that there is a significant spread in age in such diagrams, at all log σ, such that their “uniformity” can not be interpreted as a homogeneous history for early-type galaxies. Analyzing the age and [Fe/H] distribution as a function of the galaxy mass, we find that an age-σ relation exists among galaxies in both the local field and the Virgo cluster, such that the lower log σ galaxies have younger luminosity-weighted mean ages. The age spread of the low σ galaxies suggests that essentially all of the low-mass galaxies contain young to intermediate age populations, whereas the spread in age of the high log σ galaxies (log σ >˜ 2.0) is much larger, with galaxies spanning the age range of 4 19 Gyr. Thus, rather

  8. Demise of faint satellites around isolated early-type galaxies

    NASA Astrophysics Data System (ADS)

    Park, Changbom; Hwang, Ho Seong; Park, Hyunbae; Lee, Jong Chul

    2018-02-01

    The hierarchical galaxy formation scenario in the Cold Dark Matter cosmology with a non-vanishing cosmological constant Λ and geometrically flat space (ΛCDM) has been very successful in explaining the large-scale distribution of galaxies. However, there have been claims that ΛCDM over-predicts the number of satellite galaxies associated with massive galaxies compared with observations—the missing satellite galaxy problem1-3. Isolated groups of galaxies hosted by passively evolving massive early-type galaxies are ideal laboratories for identifying the missing physics in the current theory4-11. Here, we report—based on a deep spectroscopic survey—that isolated massive and passive early-type galaxies without any signs of recent wet mergers or accretion episodes have almost no satellite galaxies fainter than the r-band absolute magnitude of about Mr = -14. If only early-type satellites are used, the cutoff is at the somewhat brighter magnitude of about Mr = -15. Such a cutoff has not been found in other nearby satellite galaxy systems hosted by late-type galaxies or those with merger features. Various physical properties of satellites depend strongly on the host-centric distance. Our observations indicate that the satellite galaxy luminosity function is largely determined by the interaction of satellites with the environment provided by their host.

  9. Demography of SDSS Early-type Galaxies from the Perspective of Radial Color Gradients

    NASA Astrophysics Data System (ADS)

    Suh, Hyewon; Jeong, H.; Oh, K.; Yi, S. K.; Ferreras, I.; Schawinski, K.

    2010-01-01

    We have investigated the radial g-r color gradients of early-type galaxies in the Sloan Digital Sky Survey (SDSS) DR6 in the redshift range 0.00 < z < 0.06. The majority of massive early-type galaxies show a negative color gradient (centers being redder). On the other hand, roughly 30 percent of the galaxies in this sample show positive color gradients (centers being bluer). These positive-gradient galaxies often show strong Hβ absorption line strengths and/or emission line ratios that are consistent with containing young stellar populations. Combining the optical data with Galaxy Evolution Explorer (GALEX) UV photometry, we find that all positive-gradient galaxies show blue UV-optical colors. This implies that the residual star formation in early-type galaxies is centrally concentrated. These positive-gradient galaxies tend to live in lower density regions. They are also a bit more likely to have a late-type companion galaxy, hinting at a possible role of interactions with a gas-rich companion. A simplistic population analysis shows that these positive color gradients are visible only for half a billion years after a star burst. Moreover, the positive-gradient galaxies occupy different regions in the fundamental planes from the outnumbering negative-gradient galaxies. However, the positions of the positive-gradient galaxies on the fundamental planes cannot be attributed to any reasonable amount of recent star formation alone but require substantially lower velocity dispersions to begin with. Our results based on the optical data are consistent with the residual star formation interpretation which was based on the GALEX UV data. A low-level residual star formation seems continuing in most of the less-massive early-type galaxies in their centers.

  10. Early-Type Galaxy Star Formation Histories in Different Environments

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Patrick; Graves, G.

    2014-01-01

    We use very high-S/N stacked spectra of ˜29,000 nearby quiescent early-type galaxies (ETGs) from the Sloan Digital Sky Survey (SDSS) to investigate variations in their star formation histories (SFHs) with environment at fixed position along and perpendicular to the Fundamental Plane (FP). We separate galaxies in the three-dimensional FP space defined by galaxy effective radius Re, central stellar velocity dispersion σ, and surface brightness residual from the FP, ΔIe. We use the SDSS group catalogue of Yang et al. to further separate galaxies into three categories by their “identities” within their respective dark matter halos: central “Brightest Group Galaxies” (BGGs); Satellites; and Isolateds (those which are “most massive” in a dark matter halo with no Satellites). Within each category, we construct high-S/N mean stacked spectra to determine mean singleburst ages, [Fe/H], and [Mg/Fe] based on the stellar population synthesis models of R. Schiavon. This allows us to study variations in the stellar population properties (SPPs) with local group environment at fixed structure (i.e., fixed position in FP-space). We find that the SFHs of quiescent ETGs are almost entirely determined by their structural parameters σ and ΔIe. Any variation with local group environment at fixed structure is only slight: Satellites have the oldest stellar populations, 0.02 dex older than BGGs and 0.04 dex older than Isolateds; BGGs have the highest Fe-enrichments, 0.01 dex higher than Isolateds and 0.02 dex higher than Satellites; there are no differences in Mg-enhancement between BGGs, Isolateds, and Satellites. Our observation that, to zeroth-order, the SFHs of quiescent ETGs are fully captured by their structures places important qualitative constraints on the degree to which late-time evolutionary processes (those which occur after a galaxy’s initial formation and main star-forming lifetime) can alter their SFHs/structures.

  11. Young stellar populations in early-type galaxies in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Nolan, Louisa A.; Raychaudhury, Somak; Kabán, Ata

    2007-02-01

    We use a purely data-driven rectified factor analysis to identify early-type galaxies with recent star formation in Data Release 4 of the Sloan Digital Sky Survey Spectroscopic Catalogue. We compare the spectra and environment of these galaxies with those of `normal' early-type galaxies, and a sample of independently selected E+A galaxies. We calculate the projected local galaxy surface density from the nearest five and 10 neighbours (Σ5 and Σ10) for each galaxy in our sample, and find that the dependence on projected local density, of the properties of E+A galaxies, is not significantly different from that of early-type galaxies with young stellar populations, dropping off rapidly towards denser environments, and flattening off at densities <~0.1-0.3 Mpc-2. The dearth of E+A galaxies in dense environments confirms that E+A galaxies are most likely the products of galaxy-galaxy merging or interactions, rather than star-forming galaxies whose star formation has been quenched by processes unique to dense environments, such as ram-pressure stripping or galaxy harassment. We see a tentative peak in the number of E+A galaxies at Σ10 ~ 0.1-0.3 Mpc-2, which may represent the local galaxy density at which the rate of galaxy-galaxy merging or interaction rate peaks. Analysis of the spectra of our early-type galaxies with young stellar populations suggests that they have a stellar component dominated by F stars, ~1-4 Gyr old, together with a mature, metal-rich population characteristic of `typical' early-type galaxies. The young stars represent >~10 per cent of the stellar mass in these galaxies. This, together with the similarity of the environments in which this `E+F' population and the E+A galaxy sample are found, suggests that E+F galaxies used to be E+A galaxies, but have evolved by a further ~ one to a few Gyr. Our rectified factor analysis is sensitive enough to identify this hidden population, which allows us to study the global and intrinsic properties of early-type

  12. Young, metal-enriched cores in early-type dwarf galaxies in the Virgo cluster based on colour gradients

    NASA Astrophysics Data System (ADS)

    Urich, Linda; Lisker, Thorsten; Janz, Joachim; van de Ven, Glenn; Leaman, Ryan; Boselli, Alessandro; Paudel, Sanjaya; Sybilska, Agnieszka; Peletier, Reynier F.; den Brok, Mark; Hensler, Gerhard; Toloba, Elisa; Falcón-Barroso, Jesús; Niemi, Sami-Matias

    2017-10-01

    Early-type dwarf galaxies are not simply featureless, old objects, but were found to be much more diverse, hosting substructures and a variety of stellar population properties. To explore the stellar content of faint early-type galaxies, and to investigate in particular those with recent central star formation, we study colours and colour gradients within one effective radius in optical (g - r) and near-infrared (I - H) bands for 120 Virgo cluster early-type galaxies with - 19 mag galaxies turn out to have blue cores, when defined as g - r colour gradients larger than 0.10 mag/Reff, which represents the positive tail of the gradient distribution. For these galaxies, we find that they have the strongest age gradients, and that even outside the blue core, their mean stellar population is younger than the mean of ordinary faint early-type galaxies. The metallicity gradients of these blue-cored early-type dwarf galaxies are, however, in the range of most normal faint early-type galaxies, which we find to have non-zero gradients with higher central metallicity. The blue central regions are consistent with star formation activity within the last few 100 Myr. We discuss whether these galaxies could be explained by environmental quenching of star formation in the outer galaxy regions while the inner star formation activity continued.

  13. The TESIS Project: Revealing Massive Early-Type Galaxies at z > 1

    NASA Astrophysics Data System (ADS)

    Saracco, P.; Longhetti, M.; Severgnini, P.; Della Ceca, R.; Braito, V.; Bender, R.; Drory, N.; Feulner, G.; Hopp, U.; Mannucci, F.; Maraston, C.

    How and when present-day massive early-type galaxies built up and what type of evolution has characterized their growth (star formation and/or merging) still remain open issues. The different competing scenarios of galaxy formation predict much different properties of early-type galaxies at z > 1. The "monolithic" collapse predicts that massive spheroids formed at high redshift (z > 2.5-3) and that their comoving density is constant at z < 2.5-3 since they evolve only in luminosity. On the contrary, in the hierarchical scenario massive spheroids are built up through subsequent mergers reaching their final masses at z < 1.5 [3,5]. As a consequence, massive systems are very rare at z > 1, their comoving density decreases from z = 0 to z ~ 1.5 and they should experience their last burst of star formation at z < 1.5, concurrent with the merging event(s) of their formation. These opposed predicted properties of early-types at z > 1 can be probed observationally once a well defined sample of massive early-types at z > 1 is available. We are constructing such a sample through a dedicated near-IR very low resolution (λ/Δλ≃50) spectroscopic survey (TNG EROs Spectroscopic Identification Survey, TESIS, [6]) of a complete sample of 30 bright (K < 18.5) Extremely Red Objects (EROs).

  14. SDSS-IV MaNGA: Spatially resolved star formation histories in galaxies as a function of galaxy mass and type

    NASA Astrophysics Data System (ADS)

    Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Lian, J.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.; Schneider, D. P.

    2017-04-01

    We study the internal gradients of stellar population properties within 1.5 Re for a representative sample of 721 galaxies, with stellar masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV MaNGA Integral-Field-Unit survey. Through the use of our full spectral fitting code firefly, we derive light- and mass-weighted stellar population properties and their radial gradients, as well as full star formation and metal enrichment histories. We also quantify the impact that different stellar population models and full spectral fitting routines have on the derived stellar population properties and the radial gradient measurements. In our analysis, we find that age gradients tend to be shallow for both early-type and late-type galaxies. Mass-weighted age gradients of early-types arepositive (˜0.09 dex/Re) pointing to 'outside-in' progression of star formation, while late-type galaxies have negative light-weighted age gradients (˜-0.11 dex/Re), suggesting an 'inside-out' formation of discs. We detect negative metallicity gradients in both early- and late-type galaxies, but these are significantly steeper in late-types, suggesting that the radial dependence of chemical enrichment processes and the effect of gas inflow and metal transport are far more pronounced in discs. Metallicity gradients of both morphological classes correlate with galaxy mass, with negative metallicity gradients becoming steeper with increasing galaxy mass. The correlation with mass is stronger for late-type galaxies, with a slope of d(∇[Z/H])/d(log M) ˜ -0.2 ± 0.05 , compared to d(∇[Z/H])/d(log M) ˜ -0.05 ± 0.05 for early-types. This result suggests that the merger history plays a relatively small role in shaping metallicity gradients of galaxies.

  15. Timing the formation and assembly of early-type galaxies via spatially resolved stellar populations analysis

    NASA Astrophysics Data System (ADS)

    Martín-Navarro, Ignacio; Vazdekis, Alexandre; Falcón-Barroso, Jesús; La Barbera, Francesco; Yıldırım, Akın; van de Ven, Glenn

    2018-04-01

    To investigate star formation and assembly processes of massive galaxies, we present here a spatially resolved stellar population analysis of a sample of 45 elliptical galaxies (Es) selected from the Calar Alto Legacy Integral Field Area survey. We find rather flat age and [Mg/Fe] radial gradients, weakly dependent on the effective velocity dispersion of the galaxy within half-light radius. However, our analysis shows that metallicity gradients become steeper with increasing galaxy velocity dispersion. In addition, we have homogeneously compared the stellar population gradients of our sample of Es to a sample of nearby relic galaxies, i.e. local remnants of the high-z population of red nuggets. This comparison indicates that, first, the cores of present-day massive galaxies were likely formed in gas-rich, rapid star formation events at high redshift (z ≳ 2). This led to radial metallicity variations steeper than observed in the local Universe, and positive [Mg/Fe] gradients. Secondly, our analysis also suggests that a later sequence of minor dry mergers, populating the outskirts of early-type galaxies (ETGs), flattened the pristine [Mg/Fe] and metallicity gradients. Finally, we find a tight age-[Mg/Fe] relation, supporting that the duration of the star formation is the main driver of the [Mg/Fe] enhancement in massive ETGs. However, the star formation time-scale alone is not able to fully explain our [Mg/Fe] measurements. Interestingly, our results match the expected effect that a variable stellar initial mass function would have on the [Mg/Fe] ratio.

  16. The ATLAS3D Project - XXX. Star formation histories and stellar population scaling relations of early-type galaxies

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2015-04-01

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, R^maj_e), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 per cent of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5 M⊙), which themselves formed 90 per cent of their stars by z ˜ 2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions.

  17. Snapshot Survey of the Globular Cluster Populations of Isolated Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Gregg, Michael

    2017-08-01

    We propose WFC3/UVIS snapshot observations of a sample of 75 isolated early type galaxiesresiding in cosmic voids or extremely low density regions. The primary aim is to usetheir globular cluster populations to reconstruct their evolutionary history, revealingif, how, and why void ellipticals differ from cluster ellipticals. The galaxies span arange of luminosities, providing a varied sample for comparison with the well-documentedglobular cluster populations in denser environments. This proposed WFC3 study of isolatedearly type galaxies breaks new ground by targeting a sample which has thus far receivedlittle attention, and, significantly, this will be the first such study with HST.Characterizing early type galaxies in voids and their GC systems promises to increase ourunderstanding of galaxy formation and evolution of galaxies in general because isolatedobjects are the best approximation to a control sample that we have for understanding theinfluence of environment on formation and evolution. Whether these isolated objects turnout to be identical to or distinct from counterparts in other regions of the Universe,they will supply insight into the formation and evolution of all galaxies. Parallel ACSimaging will help to characterize the near field environments of the sample.

  18. Discovery of the Kinematic Alignment of Early-type Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Kim, Suk; Jeong, Hyunjin; Lee, Jaehyun; Lee, Youngdae; Joo, Seok-Joo; Kim, Hak-Sub; Rey, Soo-Chang

    2018-06-01

    Using the kinematic position angles (PAkin), an accurate indicator for the spin axis of a galaxy, obtained from the ATLAS3D integral-field-unit (IFU) spectroscopic data, we discovered that 57 Virgo early-type galaxies tend to prefer the specific PAkin values of 20° and 100°, suggesting that they are kinematically aligned with each other. These kinematic alignment angles are further associated with the directions of the two distinct axes of the Virgo cluster extending east–west and north–south, strongly suggesting that the two distinct axes are the filamentary structures within the cluster as a trace of infall patterns of galaxies. Given that the spin axis of a massive early-type galaxy does not change easily even in clusters from the hydrodynamic simulations, Virgo early-type galaxies are likely to fall into the cluster along the filamentary structures while maintaining their angular momentum. This implies that many early-type galaxies in clusters are formed in filaments via major mergers before subsequently falling into the cluster. Investigating the kinematic alignment in other clusters will allow us to understand the formation of galaxy clusters and early-type galaxies.

  19. The ATLAS3D project - XXVII. Cold gas and the colours and ages of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Young, Lisa M.; Scott, Nicholas; Serra, Paolo; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Weijmans, Anne-Marie

    2014-11-01

    We present a study of the cold gas contents of the ATLAS3D early-type galaxies, in the context of their optical colours, near-ultraviolet colours and Hβ absorption line strengths. Early-type (elliptical and lenticular) galaxies are not as gas poor as previously thought, and at least 40 per cent of local early-type galaxies are now known to contain molecular and/or atomic gas. This cold gas offers the opportunity to study recent galaxy evolution through the processes of cold gas acquisition, consumption (star formation) and removal. Molecular and atomic gas detection rates range from 10 to 34 per cent in red sequence early-type galaxies, depending on how the red sequence is defined, and from 50 to 70 per cent in blue early-type galaxies. Notably, massive red sequence early-type galaxies (stellar masses >5 × 1010 M⊙, derived from dynamical models) are found to have H I masses up to M(H I)/M* ˜ 0.06 and H2 masses up to M(H2)/M* ˜ 0.01. Some 20 per cent of all massive early-type galaxies may have retained atomic and/or molecular gas through their transition to the red sequence. However, kinematic and metallicity signatures of external gas accretion (either from satellite galaxies or the intergalactic medium) are also common, particularly at stellar masses ≤5 × 1010 M⊙, where such signatures are found in ˜50 per cent of H2-rich early-type galaxies. Our data are thus consistent with a scenario in which fast rotator early-type galaxies are quenched former spiral galaxies which have undergone some bulge growth processes, and in addition, some of them also experience cold gas accretion which can initiate a period of modest star formation activity. We discuss implications for the interpretation of colour-magnitude diagrams.

  20. Spatially-resolved star formation histories of CALIFA galaxies. Implications for galaxy formation

    NASA Astrophysics Data System (ADS)

    González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; García-Benito, R.; López Fernández, R.; Vale Asari, N.; Cortijo-Ferrero, C.; de Amorim, A. L.; Lacerda, E. A. D.; Sánchez, S. F.; Lehnert, M. D.; Walcher, C. J.

    2017-11-01

    This paper presents the spatially resolved star formation history (SFH) of nearby galaxies with the aim of furthering our understanding of the different processes involved in the formation and evolution of galaxies. To this end, we apply the fossil record method of stellar population synthesis to a rich and diverse data set of 436 galaxies observed with integral field spectroscopy in the CALIFA survey. The sample covers a wide range of Hubble types, with stellar masses ranging from M⋆ 109 to 7 × 1011 M⊙. Spectral synthesis techniques are applied to the datacubes to retrieve the spatially resolved time evolution of the star formation rate (SFR), its intensity (ΣSFR), and other descriptors of the 2D SFH in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd) and five bins of stellar mass. Our main results are that (a) galaxies form very fast independently of their current stellar mass, with the peak of star formation at high redshift (z > 2). Subsequent star formation is driven by M⋆ and morphology, with less massive and later type spirals showing more prolonged periods of star formation. (b) At any epoch in the past, the SFR is proportional to M⋆, with most massive galaxies having the highest absolute (but lowest specific) SFRs. (c) While today, the ΣSFR is similar for all spirals and significantly lower in early-type galaxies (ETG), in the past, the ΣSFR scales well with morphology. The central regions of today's ETGs are where the ΣSFR reached the highest values (> 103 M⊙ Gyr-1 pc-2), similar to those measured in high-redshift star-forming galaxies. (d) The evolution of ΣSFR in Sbc systems matches that of models for Milky Way-like galaxies, suggesting that the formation of a thick disk may be a common phase in spirals at early epochs. (e) The SFR and ΣSFR in outer regions of E and S0 galaxies show that they have undergone an extended phase of growth in mass between z = 2 and 0.4. The mass assembled in this phase is in agreement with

  1. Revealing the origin of the cold ISM in massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Davis, T. A.; Alatalo, K.; Bureau, M.; Young, L.; Blitz, L.; Crocker, A.; Bayet, E.; Bois, M.; Bournaud, F.; Cappellari, M.; Davies, R. L.; Duc, P.-A.; de Zeeuw, P. T.; Emsellem, E.; Falcon-Barroso, J.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Lablanche, P.-Y.; McDermid, R. M.; Morganti, R.; Naab, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.

    2013-07-01

    Recently, massive early-type galaxies have shed their red-and-dead moniker, thanks to the discovery that many host residual star formation. As part of the ATLAS-3D project, we have conducted a complete, volume-limited survey of the molecular gas in 260 local early-type galaxies with the IRAM-30m telescope and the CARMA interferometer, in an attempt to understand the fuel powering this star formation. We find that around 22% of early-type galaxies in the local volume host molecular gas reservoirs. This detection rate is independent of galaxy luminosity and environment. Here we focus on how kinematic misalignment measurements and gas-to-dust ratios can be used to put constraints on the origin of the cold ISM in these systems. The origin of the cold ISM seems to depend strongly on environment, with misaligned, dust poor gas (indicative of externally acquired material) being common in the field but completely absent in rich groups and in the Virgo cluster. Very massive galaxies also appear to be devoid of accreted gas. This suggests that in the field mergers and/or cold gas accretion dominate the gas supply, while in clusters internal secular processes become more important. This implies that environment has a strong impact on the cold gas properties of ETGs.

  2. Isolated Early-type Galaxies in the 2dFGRS

    NASA Astrophysics Data System (ADS)

    Fuse, Christopher R.; Lamir, C.

    2014-01-01

    Isolated galaxies are systems that have experienced limited external perturbations, thus the properties of these galaxies are largely due to internal processes. The features of isolated early-type galaxies (IEGs) provide a baseline from which to compare early-type systems residing in higher-density environments. We use the Two-Degree Field Galaxy Redshift Survey (2dFGRS) and the NASA Extragalactic Database (NED) to identify IEGs in the nearby universe. Search criteria in the 2dFGRS were chosen to insure that the IEGs have remained separated from neighboring galaxies for the majority of their lifetimes. Isolated galaxies are chosen utilizing a minimum projected physical separation of 1 Mpc from any neighboring non-dwarf galaxy brighter than Mb = -16.5 mags. A minimum redshift separation of 350 km/s between a candidate galaxy and a neighboring was imposed to further insure the candidate’s isolation. Early results of the search for isolated early-type galaxies in the southern sky are presented.

  3. Enviromental Effects on Internal Color Gradients of Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    La Barbera, F.; de Carvalho, R. R.; Gal, R. R.; Busarello, G.; Haines, C. P.; Mercurio, A.; Merluzzi, P.; Capaccioli, M.; Djorgovski, S. G.

    2007-05-01

    One of the most debated issues of observational and theoretical cosmology is that of how the environment affects the formation and evolution of galaxies. To gain new insight into this subject, we have derived surface photometry for a sample of 3,000 early-type galaxies belonging to 163 clusters with different richness, spanning a redshift range of 0.05 to 0.25. This large data-set is used to analyze how the color distribution inside galaxies depends on several parameters, such as cluster richness, local galaxy density, galaxy luminosity and redshift. We find that the internal color profile of galaxies strongly depends on the environment where galaxies reside. Galaxies in poor and rich clusters are found to follow two distinct trends in the color gradient vs. redshift diagram, with color gradients beeing less steep in rich rather than in poor clusters. No dependence of color gradients on galaxy luminosity is detected both for poor and rich clusters. We find that color gradients strongly depend on local galaxy density, with more shallow gradients in high density regions. Interestingly, this result holds only for low richness clusters, with color gradients of galaxies in rich clusters showing no dependence on local galaxy density. Our results support a reasonable picture whereby young early-type galaxies form in a dissipative collapse process, and then undergo increased (either major or minor) merging activity in richer rather than in poor clusters.

  4. The Origin of Dwarf Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa

    2012-10-01

    Abridge. We have conducted a spectrophotometric study of dwarf early-type galaxies (dEs) in the Virgo cluster and in regions of lower density. We have found that these galaxies show many properties in common with late-type galaxies but not with more massive early-types (E/S0). The properties of the dEs in Virgo show gradients within the cluster. dEs in the outer parts of the Virgo cluster are kinematically supported by rotation, while those in the center are supported by the random motions of their stars (i.e. pressure supported). The rotationally supported dEs have disky isophotes and faint underlying spiral/irregular substructures, they also show younger ages than those pressure supported, which have boxy isophotes and are smooth and regular, without any substructure. We compare the position of these dEs with massive early-type galaxies in the Faber-Jackson and Fundamental Plane relations, and we find that, although there is no difference between the position of rotationally and pressure supported dEs, both deviate from the relations of massive early-type galaxies in the direction of dwarf spheroidal systems (dSphs). We have used their offset with respect to the Fundamental Plane of E/S0 galaxies to estimate their dark matter fraction. All the properties studied in this work agree with a ram pressure stripping scenario, where late-type galaxies infall into the cluster, their interaction with the intergalactic medium blows away their gas and, as a result, they are quenched in a small amount of time. However, those dEs in the center of the cluster seem to have been fully transformed leaving no trace of their possible spiral origin, thus, if that is the case, they must have experienced a more violent mechanism in combination with ram pressure stripping.

  5. A multiparametric analysis of the Einstein sample of early-type galaxies. 2: Galaxy formation history and properties of the interstellar medium

    NASA Technical Reports Server (NTRS)

    Eskridge, Paul B.; Fabbiano, Giuseppina; Kim, Dong-Woo

    1995-01-01

    We have conducted bivariate and multivariate statistical analysis of data measuring the integrated luminosity, shape, and potential depth of the Einstein sample of early-type galaxies (presented by Fabbiano et al. 1992). We find significant correlations between the X-ray properties and the axial ratios (a/b) of our sample, such that the roundest systems tend to have the highest L(sub x) and L(sub x)/L(sub B). The most radio-loud objects are also the roundest. We confirm the assertion of Bender et al. (1989) that galaxies with high L(sub x) are boxy (have negative a(sub 4)). Both a/b and a(sub 4) are correlated with L(sub B), but not with IRAS 12 um and 100 um luminosities. There are strong correlations between L(sub x), Mg(sub 2), and sigma(sub nu) in the sense that those systems with the deepest potential wells have the highest L(sub x) and Mg(sub 2). Thus the depth of the potential well appears to govern both the ability to reatin an ISM at the present epoch and to retain the enriched ejecta of early star formation bursts. Both L(sub x)/L(sub B) and L(sub 6) (the 6 cm radio luminosity) show threshold effects with sigma(sub nu) exhibiting sharp increases at log sigma(sub nu) approximately = 2.2. Finally, there is clearly an interrelationship between the various stellar and structural parameters: The scatter in the bivariate relationships between the shape parameters (a/b and a(sub 4)) and the depth parameter sigma(sub nu) is a function of abundance in the sense that, for a given a(sub 4) or a/b, the systems with the highest sigma(sub nu) also have the highest Mg(sub 2). Furthermore, for a constant sigma(sun nu), disky galaxies tend to have higher Mg(sub 2) than boxy ones. Alternatively, for a given abundance, boxy ellipticals tend to be more massive than disky ellipticals. One possibility is that early-type galaxies of a given mass, originating from mergers (boxy ellipticals), have lower abundances than 'primordial' (disky) early-type galaxies. Another is that

  6. The origin of dwarf early-type galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, E.

    2013-05-01

    We have conducted a spectrophotometric study of dwarf early-type galaxies (dEs) in the Virgo cluster and in regions of lower density. We have found that these galaxies show many properties in common with late-type galaxies but not with more massive early-types (E/S0). The properties of the dEs in Virgo show gradients within the cluster. dEs in the outer parts of the Virgo cluster are kinematically supported by rotation, while those in the center are supported by the random motions of their stars (i.e. pressure supported). The rotationally supported dEs have disky isophotes and faint underlying spiral/irregular substructures, they also show younger ages than those pressure supported, which have boxy isophotes and are smooth and regular, without any substructure. We compare the position of these dEs with massive early-type galaxies in the Faber-Jackson and Fundamental Plane relations, and we find that, although there is no difference between the position of rotationally and pressure supported dEs, both deviate from the relations of massive early-type galaxies in the direction of dwarf spheroidal systems (dSphs). We have used their offset with respect to the Fundamental Plane of E/S0 galaxies to estimate their dark matter fraction. All the properties studied in this work agree with a ram pressure stripping scenario, where late-type galaxies infall into the cluster, their interaction with the intergalactic medium blows away their gas and, as a result, they are quenched in a small amount of time. However, those dEs in the center of the cluster seem to have been fully transformed leaving no trace of their possible spiral origin, thus, if that is the case, they must have experienced a more violent mechanism in combination with ram pressure stripping, the open problem is that even galaxy harassment does not fully explain the observed properties for the pressure supported dEs in the center of the Virgo cluster.

  7. Systematic variation of the stellar initial mass function in early-type galaxies.

    PubMed

    Cappellari, Michele; McDermid, Richard M; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2012-04-25

    Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination, no consensus has emerged on whether it is universal among different types of galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS(3D) sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy's IMF depends intimately on the galaxy's formation history.

  8. Supernovae in Early-Type Galaxies: Directly Connecting Age and Metallicity with Type Ia Luminosity

    NASA Astrophysics Data System (ADS)

    Gallagher, Joseph S.; Garnavich, Peter M.; Caldwell, Nelson; Kirshner, Robert P.; Jha, Saurabh W.; Li, Weidong; Ganeshalingam, Mohan; Filippenko, Alexei V.

    2008-10-01

    We have obtained optical spectra of 29 early-type (E/S0) galaxies that hosted Type Ia supernovae (SNe Ia). We have measured absorption-line strengths and compared them to a grid of models to extract the relations between the supernova properties and the luminosity-weighted age/composition of the host galaxies. Such a direct measurement is a marked improvement over existing analyses that tend to rely on general correlations between the properties of stellar populations and morphology. We find a strong correlation suggesting that SNe Ia in galaxies whose populations have a characteristic age greater than 5 Gyr are ~1 mag fainter at Vmax than those found in galaxies with younger populations. We find that SN Ia distance residuals in the Hubble diagram are correlated with host-galaxy metal abundance with higher iron abundance galaxies hosting less-luminous supernovae. We thus conclude that the time since progenitor formation primarily determines the radioactive Ni production while progenitor metal abundance has a weaker influence on peak luminosity, but one not fully corrected by light-curve shape and color fitters. This result, particularly the secondary dependence on metallicity, has significant implications for the determination of the equation-of-state parameter, w = P/(ρ c2) , and could impact planning for future dark-energy missions such as JDEM. Assuming no selection effects in discovering SNe Ia in local early-type galaxies, we find a higher specific SN Ia rate in E/S0 galaxies with ages below 3 Gyr than in older hosts. The higher rate and brighter luminosities seen in the youngest E/S0 hosts may be a result of recent star formation and represents a tail of the "prompt" SN Ia progenitors.

  9. Chandra Early Type Galaxy Atals

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo; Anderson, Craig; Burke, Douglas J.; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer; McCollough, Michael; Morgan, Douglas; Mossman, Amy; O'Sullivan, Ewan; Paggi, Alessandro; Vrtilek, Saeqa Dil; Trinchieri, Ginevra

    2017-08-01

    The hot gas in early type galaxies (ETGs) plays a crucial role in understanding their formation and evolution. As the hot gas is often extended to the outskirts beyond the optical size, the large scale structural features identified by Chandra (including jets, cavities, cold fronts, filaments and tails) point to key evolutionary mechanisms, e.g., AGN feedback, merging history, accretion, stripping and star formation and its quenching. We have systematically analyzed the archival Chandra data of ~100 ETGs to study the hot ISM. We produce the uniformly derived data products with spatially resolved spectral information and will make them accessible via a public web site. With 2D spectral infomation, we further discuss gas morphology, scaling relations, X-ray based mass profiles and their implications related to various physical mechanisms (e.g., stellar and AGN feedback).

  10. A study of star formation by Hα emission of galaxies in the galaxy group NGC 4213

    NASA Astrophysics Data System (ADS)

    Maungkorn, Sakdawoot; Kriwattanawong, Wichean

    2017-09-01

    This research aims to study hydrogen alpha emission, corresponding to star formation of galaxies in the NGC 4213 group that has an average recession velocity of 6,821 km/s. The imaging observations with broad-band filters (B, V and RC) and narrow-band filters ([S II] and Red-continuum) were carried out from the 2.4-m reflecting telescope at Thai National Observatory (TNO). There are 11 sample galaxies in this study, consisting of 2 elliptical, 2 lenticular and 7 spiral galaxies. It was found that the late-type galaxies tend to be bluer than early-type galaxies, due to these galaxies consist of relatively high proportion of blue stars. Furthermore, the equivalent width of hydrogen alpha (EW(Hα)) tends to increase as a function of morphological type. This indicates that star formation in late-type galaxies taking place more than the early-type galaxies. Furthermore, a ratio of the star formation rate to galaxy mass also increases slightly with the galaxy type. This could be due to the interaction between galaxy-galaxy or tidal interaction occurring within the galaxy group.

  11. An ALMA view of star formation efficiency suppression in early-type galaxies after gas-rich minor mergers

    NASA Astrophysics Data System (ADS)

    van de Voort, Freeke; Davis, Timothy A.; Matsushita, Satoki; Rowlands, Kate; Shabala, Stanislav S.; Allison, James R.; Ting, Yuan-Sen; Sansom, Anne E.; van der Werf, Paul P.

    2018-05-01

    Gas-rich minor mergers contribute significantly to the gas reservoir of early-type galaxies (ETGs) at low redshift, yet the star formation efficiency (SFE; the star formation rate divided by the molecular gas mass) appears to be strongly suppressed following some of these events, in contrast to the more well-known merger-driven starbursts. We present observations with the Atacama Large Millimeter/submillimeter Array (ALMA) of six ETGs, which have each recently undergone a gas-rich minor merger, as evidenced by their disturbed stellar morphologies. These galaxies were selected because they exhibit extremely low SFEs. We use the resolving power of ALMA to study the morphology and kinematics of the molecular gas. The majority of our galaxies exhibit spatial and kinematical irregularities, such as detached gas clouds, warps, and other asymmetries. These asymmetries support the interpretation that the suppression of the SFE is caused by dynamical effects stabilizing the gas against gravitational collapse. Through kinematic modelling we derive high velocity dispersions and Toomre Q stability parameters for the gas, but caution that such measurements in edge-on galaxies suffer from degeneracies. We estimate merger ages to be about 100 Myr based on the observed disturbances in the gas distribution. Furthermore, we determine that these galaxies lie, on average, two orders of magnitude below the Kennicutt-Schmidt relation for star-forming galaxies as well as below the relation for relaxed ETGs. We discuss potential dynamical processes responsible for this strong suppression of star formation surface density at fixed molecular gas surface density.

  12. The Origin of Dwarf Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa; Boselli, A.; Gorgas, J.

    2013-01-01

    The physical mechanisms involved in the formation and evolution of dwarf early-type galaxies (dEs) are not well understood yet. Whether these objects, that outnumber any other class of object in clusters, are the low luminosity extension of massive early-type galaxies, i.e. formed through similar processes, or are a different group of objects possibly formed through the transformation of low luminosity spiral galaxies, is still an open debate. Studying the kinematic properties of dEs is a powerful way to distinguish between these two scenarios. In my PhD, awarded with a Fulbright postdoctoral Fellowship and with the 2011 prize to the best Spanish PhD dissertation in Astronomy, we used this technique to make a spectrophotometric analysis of 18 dEs in the Virgo cluster. I found some differences for these dEs within the cluster. The dEs in the outer parts of Virgo have rotation curves with shapes and amplitudes similar to late-type galaxies of the same luminosity. They are rotationally supported, have disky isophotes, and younger ages than those dEs in the center of Virgo, which are pressure supported, often have boxy isophotes and are older. Ram pressure stripping, which removes the gas of galaxies leaving the stars untouched, explains the properties of the dEs located in the outskirts of Virgo. However, the dEs in the central cluster regions, which have lost their angular momentum, must have suffered a more violent transformation. A combination of ram pressure stripping and harassment is not enough to remove the rotation and the disky structures of these galaxies. I am conducting new analysis with 20 new dEs to throw some light in this direction. I also analysed the Faber-Jackson and the Fundamental Plane relations, and I found that dEs deviate from the trends of massive elliptical galaxies towards the position of dark matter dominated systems such as the dwarf spheroidal satellites of the Milky Way and M31. This indicates that dEs have a non-negligible dark matter

  13. The metal enrichment of passive galaxies in cosmological simulations of galaxy formation

    NASA Astrophysics Data System (ADS)

    Okamoto, Takashi; Nagashima, Masahiro; Lacey, Cedric G.; Frenk, Carlos S.

    2017-02-01

    Massive early-type galaxies have higher metallicities and higher ratios of α elements to iron than their less massive counterparts. Reproducing these correlations has long been a problem for hierarchical galaxy formation theory, both in semi-analytic models and cosmological hydrodynamic simulations. We show that a simulation in which gas cooling in massive dark haloes is quenched by radio-mode active galactic nuclei (AGNs) feedback naturally reproduces the observed trend between α/Fe and the velocity dispersion of galaxies, σ. The quenching occurs earlier for more massive galaxies. Consequently, these galaxies complete their star formation before α/Fe is diluted by the contribution from Type Ia supernovae. For galaxies more massive than ˜1011 M⊙, whose α/Fe correlates positively with stellar mass, we find an inversely correlated mass-metallicity relation. This is a common problem in simulations in which star formation in massive galaxies is quenched either by quasar- or radio-mode AGN feedback. The early suppression of gas cooling in progenitors of massive galaxies prevents them from recapturing enriched gas ejected as winds. Simultaneously reproducing the [α/Fe]-σ relation and the mass-metallicity relation is, thus, difficult in the current framework of galaxy formation.

  14. The molecular cloud content of early type galaxies

    NASA Technical Reports Server (NTRS)

    Wiklind, Tommy; Henkel, Christian

    1990-01-01

    A survey of the CO content of early type galaxies led to 24 new detections, mostly lenticular galaxies. The galaxies, which are situated in both the Northern and Southern Hemispheres, were selected as being far-IR luminous compared to their blue luminosity, and situated at distances less than about 50 Mpc (H sub o=100 km/s Mpc(-1). Results for some early galaxies (NGC 404, NGC 3593 and NGC 4369 are given.

  15. On a connection between supernova occurrence and tidal interaction in early type galaxies

    NASA Technical Reports Server (NTRS)

    Kochhar, R. K.

    1990-01-01

    There are three types of supernovae: two subtypes SNIa and Ib; and SNII. Late type galaxies produce all types of SN, whereas early types (E, SO, and non-Magellanic irregulars IO) have hosted only SNIa. The recently identified SNIb, like SNII, have massive stars as their progenitors. Reviving Oemler and Tinsley's (1979) suggestion that SNIa also come from short-lived stars, the author asserts that they need not occur in all early-type galaxies. SNIa occur only in those galaxies that have access to gas and can form stars in their main body. (SN in nuclear regions are a different matter altogether). In this model, SNIa are not associated with typical stellar population of E/SOs but with regions of localized star formation. Note that data on SNIa from spirals is already consistent with this model.

  16. Supermassive blackhole growth and the supernovae history in high-z early-type galaxies

    NASA Astrophysics Data System (ADS)

    Rocca-Volmerange, Brigitte

    2015-08-01

    A large variety of feedback models, supported by many galaxy surveys, tentatively relate AGN to star formation by stimulation or quenching. However any accretion process from variable AGNs has never been observed to be turned on or off by star formation. We propose to follow the supernovae explosions through the star formation laws of early-type galaxies with the help of the galaxy evolution model Pégase.3. Applied to the continuous Spectral Energy Distribution, including Herschel data of two z=3.8 radio galaxies (4C41.17 and TN J2007-1316), the comparison with Supermassive BlackHole masses from SDSS opens a new interpretation of the AGN-starburst relation without any need of feedback (Rocca-Volmerange et al, 2015, 2013)

  17. Probing Minor-merger-driven Star Formation In Early-type Galaxies Using Spatially-resolved Spectro-photometric Studies

    NASA Astrophysics Data System (ADS)

    Kaviraj, Sugata; Crockett, M.; Silk, J.; O'Connell, R. W.; Whitmore, B.; Windhorst, R.; Cappellari, M.; Bureau, M.; Davies, R.

    2012-01-01

    Recent studies that leverage the rest-frame ultraviolet (UV) spectrum have revealed widespread recent star formation in early-type galaxies (ETGs), traditionally considered to be old, passively-evolving systems. This recent star formation builds 20% of the ETG stellar mass after z 1, driven by repeated minor mergers between ETGs and small, gas-rich satellites. We demonstrate how spatially-resolved studies, using a combination of high-resolution UV-optical imaging and integral-field spectroscopy (IFS), is a powerful tool to quantify the assembly history of individual ETGs and elucidate the poorly-understood minor-merger process. Using a combination of WFC3 UV-optical (2500-8200 angstroms) imaging and IFS from the SAURON project of the ETG NGC 4150, we show that this galaxy experienced a merger with mass ratio 1:15 around 0.9 Gyr ago, which formed 3% of its stellar mass and a young kinematically-decoupled core. A UV-optical analysis of its globular cluster system shows that the bulk of the stars locked up in these clusters likely formed 6-7 Gyrs in the past. We introduce a new HST-WFC3 programme, approved in Cycle 19, which will leverage similar UV-optical imaging of a representative sample of nearby ETGs from SAURON to study the recent star formation and its drivers in unprecedented detail and put definitive constraints on minor-merger-driven star formation in massive galaxies at late epochs.

  18. Mass and size growth of early-type galaxies by dry mergers in cluster environments

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao; Ishiyama, Tomoaki

    2016-02-01

    We perform dry merger simulations to investigate the role of dry mergers in the size growth of early-type galaxies in high-density environments. We replace the virialized dark matter haloes obtained by a large cosmological N-body simulation with N-body galaxy models consisting of two components, a stellar bulge and a dark matter halo, which have higher mass resolution than the cosmological simulation. We then resimulate nine cluster-forming regions, whose masses range from 1 × 1014 to 5 × 1014 M⊙. Masses and sizes of stellar bulges are also assumed to satisfy the stellar mass-size relation of high-z compact massive early-type galaxies. We find that dry major mergers considerably contribute to the mass and size growth of central massive galaxies. One or two dry major mergers double the average stellar mass and quadruple the average size between z = 2 and 0. These growths favourably agree with observations. Moreover, the density distributions of our simulated central massive galaxies grow from the inside-out, which is consistent with recent observations. The mass-size evolution is approximated as R∝ M_{{ast }}^{α }, with α ˜ 2.24. Most of our simulated galaxies are efficiently grown by dry mergers, and their stellar mass-size relations match the ones observed in the local Universe. Our results show that the central galaxies in the cluster haloes are potential descendants of high-z (z ˜ 2-3) compact massive early-type galaxies. This conclusion is consistent with previous numerical studies which investigate the formation and evolution of compact massive early-type galaxies.

  19. Investigating early-type galaxy evolution with a multiwavelength approach. II. The UV structure of 11 galaxies with Swift-UVOT

    NASA Astrophysics Data System (ADS)

    Rampazzo, R.; Mazzei, P.; Marino, A.; Uslenghi, M.; Trinchieri, G.; Wolter, A.

    2017-06-01

    Context. GALEX detected a significant fraction of early-type galaxies, in particular S0s, showing far-UV bright structures, sometimes involving an entire galaxy out to its outskirts. These features suggest the presence of either recent ongoing and/or prolonged star formation episodes, shedding new light on the evolution of these systems. Aims: We aim at understanding the evolutionary path[s] of these early-type galaxies and the mechanisms at the origin of their UV-bright structures. We investigate with a multiwavelength approach the link between the inner and outer galaxy regions of a set of 11 early-type galaxies that were selected because of their nearly passive stage of evolution in the nuclear region. Methods: This paper, second of a series, focuses on the information coming from the comparison between UV features detected by Swift-UVOT, which trace recent star formation, and the galaxy optical structure, which maps older stellar populations. We performed a surface photometric study of these early-type galaxies, observed with the Swift-UVOT UV filters W2 2030 Å λ0, M2 2231 Å λ0, W1 2634 Å λ0 and the UBV bands. BVRI photometry from other sources in the literature was also used. Our integrated magnitude measurements were analyzed and compared with corresponding values in the literature. We characterize the overall galaxy structure that best fits the UV and optical luminosity profiles using a single Sérsic law. Results: The galaxies NGC 1366, NGC 1426, NGC 3818, NGC 3962, and NGC 7192 show featureless luminosity profiles. Excluding NGC 1366, which has a clear edge-on disk (n ≈ 1-2), and NGC 3818, the remaining three galaxies have Sérsic's indices n ≈ 3-4 in the optical and a lower index in the UV. Bright ring- or arm-like structures are revealed by UV images and luminosity profiles of NGC 1415, NGC 1533, NGC 1543, NGC 2685, NGC 2974, and IC 2006. The ring- or arm-like structures differ from galaxy to galaxy. Sérsic indices of UV profiles for these

  20. Dwarf galaxy populations in present-day galaxy clusters - II. The history of early-type and late-type dwarfs

    NASA Astrophysics Data System (ADS)

    Lisker, Thorsten; Weinmann, Simone M.; Janz, Joachim; Meyer, Hagen T.

    2013-06-01

    How did the dwarf galaxy population of present-day galaxy clusters form and grow over time? We address this question by analysing the history of dark matter subhaloes in the Millennium II cosmological simulation. A semi-analytic model serves as the link to observations. We argue that a reasonable analogue to early morphological types or red-sequence dwarf galaxies are those subhaloes that experienced strong mass-loss, or alternatively those that have spent a long time in massive haloes. This approach reproduces well the observed morphology-distance relation of dwarf galaxies in the Virgo and Coma clusters, and thus provides insight into their history. Over their lifetime, present-day late types have experienced an amount of environmental influence similar to what the progenitors of dwarf ellipticals had already experienced at redshifts above 2. Therefore, dwarf ellipticals are more likely to be a result of early and continuous environmental influence in group- and cluster-size haloes, rather than a recent transformation product. The observed morphological sequences of late-type and early-type galaxies have developed in parallel, not consecutively. Consequently, the characteristics of today's late-type galaxies are not necessarily representative for the progenitors of today's dwarf ellipticals. Studies aiming to reproduce the present-day dwarf population thus need to start at early epochs, model the influence of various environments, and also take into account the evolution of the environments themselves.

  1. Gas-rich dwarfs and accretion phenomena in early-type galaxies

    NASA Technical Reports Server (NTRS)

    Silk, J.; Norman, C.

    1979-01-01

    An analysis is presented of the combined effects of cloud accretion and galactic winds and coronae. An accretion model is developed wherein gas-rich dwarf galaxies are accreted into galactic halos, which provides an adequate source of H I to account for observations of neutral gas in early-type galaxies. Accretion is found to fuel the wind, thereby regulating the accretion flow and yielding a time-dependent model for star formation, enrichment, and nuclear activity. The permissible parameter range for intergalactic gas clouds and galaxy groups is discussed, along with the frequency of gas-rich dwarfs and their large ratios of gas mass to luminosity. Also considered is the occurrence of gas stripping and the consequent formation of dwarf spheroidal systems that remain in the halo, and gas clouds that dissipate and suffer further infall. A cosmological implication of the model is that, because the characteristic time scale of a gas-rich dwarf galaxy to be accreted and lose its gas is comparable to a Hubble time, there may have been a far more extensive primordial distribution of such systems at earlier epochs.

  2. The formation of galaxies

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Silk, J.

    1983-01-01

    Current models of galaxy formation are examined in a review of recent observational and theoretical studies. Observational data on elliptical galaxies, disk galaxies, luminosity functions, clustering, and angular fluctuations in the cosmic microwave background are summarized. Theoretical aspects discussed include the origin and early evolution of small fluctuations, matter and radiation fluctuations, the formation of large-scale structure, dissipationless galaxy formation, galaxy mergers, dissipational galaxy formation, and the implications of particle physics (GUTs, massive neutrinos, and gravitinos) for cosmology.

  3. The onset of galactic winds in early-type galaxies

    NASA Technical Reports Server (NTRS)

    Jones, Christine

    1992-01-01

    We completed the spectral analysis of 31 early-type galaxies to investigate whether their x-ray emission was predominantly due to thermal bremsstrahlung from a hot gaseous corona or emission from discrete, galactic sources such as x-ray binaries. If a corona dominates the x-ray emission, its spectra is expected to be relatively cool (0.5 - 1 keV) compared to the harder emission associated with x-ray binaries in our galaxy, the Magellanic Clouds and M31. While it is generally accepted that the x-ray emission in luminous E and S0 galaxies arises from hot coronae, the status of hot gas in lower luminosity (and hence lower mass) galaxies is less clear. Calculations show that, for a given supernova rate, a critical galaxy luminosity (mass) exists below which the gas cannot be gravitationally confined and a galactic wind is predicted to be effective in expelling gas from the galaxy. Since significant mass (a dark halo) is required to hold a hot, gaseous corona around a galaxy, we expect that the faintest, smallest galaxies will not have a hot corona, but their x-ray emission will be dominated by galactic sources or by an active galactic nuclei. In the sample we tested which spanned the absolute magnitude range from -21.5 to -19.5, we found that except for two galaxies whose x-ray emission was dominated by an active nucleus, that the others were consistent with emission from hot gas. We also found that there is a correlation between gas temperature and galaxy magnitude (mass), such that the brighter, more luminous galaxies have hotter gas temperatures. Thus even at relatively faint magnitudes, the dominant emission from early-type galaxies appears to be hot gas. We also carried out an investigation of the x-ray surface brightness distribution of the x-ray emission for about 100 early type galaxies to determine whether the x-ray emission from galaxies are extended. Extended x-ray emission is expected if the emission is due to a hot gaseous corona. We determined the ratio

  4. A survey of the properties of early-type galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Joel N.; Roberts, M. S.; Hogg, D. E.

    1990-01-01

    A compilation of the properties of elliptical and early disk galaxies was completed. In addition to material from the literature, such as Infrared Astronomy Satellite (IRAS) fluxes, the compilation includes recent measurements of HI and CO, as well as a review of the x ray properties by Forman and Jones. The data are used to evaluate the gas content of early systems and to search for correlations with x ray emission. The interstellar medium in early-type galaxies is generally dominated by hot interstellar gas (T approx. 10 to the 7th power K; c.f. the review by Fabbiano 1989 and references therein). In addition, a significant fraction of these galaxies show infrared emission (Knapp, et al., 1989), optical emission lines, and visible dust. Sensitive studies in HI and CO of a number of these galaxies have been completed recently, resulting in several detections, particularly of the later types. Researchers wish to understand the connection among these different forms of the interstellar medium, and to examine the theoretical picture of the fate of the hot gas. To do so, they compiled observations of several forms of interstellar matter for a well-defined sample of early-type galaxies. Here they present a statistical analysis of this data base and discuss the implications of the results.

  5. The distribution of early- and late-type galaxies in the Coma cluster

    NASA Technical Reports Server (NTRS)

    Doi, M.; Fukugita, M.; Okamura, S.; Turner, E. L.

    1995-01-01

    The spatial distribution and the morohology-density relation of Coma cluster galaxies are studied using a new homogeneous photmetric sample of 450 galaxies down to B = 16.0 mag with quantitative morphology classification. The sample covers a wide area (10 deg X 10 deg), extending well beyond the Coma cluster. Morphological classifications into early- (E+SO) and late-(S) type galaxies are made by an automated algorithm using simple photometric parameters, with which the misclassification rate is expected to be approximately 10% with respect to early and late types given in the Third Reference Catalogue of Bright Galaxies. The flattened distribution of Coma cluster galaxies, as noted in previous studies, is most conspicuously seen if the early-type galaxies are selected. Early-type galaxies are distributed in a thick filament extended from the NE to the WSW direction that delineates a part of large-scale structure. Spiral galaxies show a distribution with a modest density gradient toward the cluster center; at least bright spiral galaxies are present close to the center of the Coma cluster. We also examine the morphology-density relation for the Coma cluster including its surrounding regions.

  6. Evolution of the early-type galaxy fraction in clusters since z = 0.8

    NASA Astrophysics Data System (ADS)

    Simard, L.; Clowe, D.; Desai, V.; Dalcanton, J. J.; von der Linden, A.; Poggianti, B. M.; White, S. D. M.; Aragón-Salamanca, A.; De Lucia, G.; Halliday, C.; Jablonka, P.; Milvang-Jensen, B.; Saglia, R. P.; Pelló, R.; Rudnick, G. H.; Zaritsky, D.

    2009-12-01

    We study the morphological content of a large sample of high-redshift clusters to determine its dependence on cluster mass and redshift. Quantitative morphologies are based on PSF-convolved, 2D bulge+disk decompositions of cluster and field galaxies on deep Very Large Telescope FORS2 images of eighteen, optically-selected galaxy clusters at 0.45 < z < 0.80 observed as part of the ESO Distant Cluster Survey (“EDisCS”). Morphological content is characterized by the early-type galaxy fraction f_et, and early-type galaxies are objectively selected based on their bulge fraction and image smoothness. This quantitative selection is equivalent to selecting galaxies visually classified as E or S0. Changes in early-type fractions as a function of cluster velocity dispersion, redshift and star-formation activity are studied. A set of 158 clusters extracted from the Sloan Digital Sky Survey is analyzed exactly as the distant EDisCS sample to provide a robust local comparison. We also compare our results to a set of clusters from the Millennium Simulation. Our main results are: (1) the early-type fractions of the SDSS and EDisCS clusters exhibit no clear trend as a function of cluster velocity dispersion. (2) Mid-z EDisCS clusters around σ = 500 km s-1 have f_et ≃ 0.5 whereas high-z EDisCS clusters have f_et ≃ 0.4. This represents a ~25% increase over a time interval of 2 Gyr. (3) There is a marked difference in the morphological content of EDisCS and SDSS clusters. None of the EDisCS clusters have early-type galaxy fractions greater than 0.6 whereas half of the SDSS clusters lie above this value. This difference is seen in clusters of all velocity dispersions. (4) There is a strong and clear correlation between morphology and star formation activity in SDSS and EDisCS clusters in the sense that decreasing fractions of [OII] emitters are tracked by increasing early-type fractions. This correlation holds independent of cluster velocity dispersion and redshift even

  7. The hELENa project - II. Abundance distribution trends of early-type galaxies: from dwarfs to giants

    NASA Astrophysics Data System (ADS)

    Sybilska, A.; Kuntschner, H.; van de Ven, G.; Vazdekis, A.; Falcón-Barroso, J.; Peletier, R. F.; Lisker, T.

    2018-06-01

    In this second paper of The role of Environment in shaping Low-mass Early-type Nearby galaxies (hELENa) series we study [Mg/Fe] abundance distribution trends of early-type galaxies (ETGs) observed with the Spectrographic Areal Unit for Research on Optical Nebulae integral field unit, spanning a wide range in mass and local environment densities: 20 low-mass early types (dEs) of Sybilska et al. and 258 massive early types (ETGs) of the ATLAS3D project, all homogeneously reduced and analysed. We show that the [Mg/Fe] ratios scale with velocity dispersion (σ) at fixed [Fe/H] and that they evolve with [Fe/H] along similar paths for all early types, grouped in bins of increasing local and global σ, as well as the second velocity moment Vrms, indicating a common inside-out formation pattern. We then place our dEs on the [Mg/Fe] versus [Fe/H] diagram of Local Group galaxies and show that dEs occupy the same region and show a similar trend line slope in the diagram as the high-metallicity stars of the Milky Way and the Large Magellanic Cloud. This finding extends the similar trend found for dwarf spheroidal versus dwarf irregular galaxies and supports the notion that dEs have evolved from late-type galaxies that have lost their gas at a point of their evolution, which likely coincided with them entering denser environments.

  8. Effect of the Large Scale Environment on the Internal Dynamics of Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Maubon, G.; Prugniel, Ph.

    We have studied the population-density relation in very sparse environments, from poor clusters to isolated galaxies, and we find that early-type galaxies with a young stellar population are preferably found in the lowest density environments. We show a marginal indication that this effect is due to an enhancement of the stellar formation independent of the morphological segregation, but we failed to find any effect from the internal dynamics.

  9. Identifying the progenitors of present-day early-type galaxies in observational surveys: correcting `progenitor bias' using the Horizon-AGN simulation

    NASA Astrophysics Data System (ADS)

    Martin, G.; Kaviraj, S.; Devriendt, J. E. G.; Dubois, Y.; Pichon, C.; Laigle, C.

    2018-03-01

    As endpoints of the hierarchical mass-assembly process, the stellar populations of local early-type galaxies encode the assembly history of galaxies over cosmic time. We use Horizon-AGN, a cosmological hydrodynamical simulation, to study the merger histories of local early-type galaxies and track how the morphological mix of their progenitors evolves over time. We provide a framework for alleviating `progenitor bias' - the bias that occurs if one uses only early-type galaxies to study the progenitor population. Early types attain their final morphology at relatively early epochs - by z ˜ 1, around 60 per cent of today's early types have had their last significant merger. At all redshifts, the majority of mergers have one late-type progenitor, with late-late mergers dominating at z > 1.5 and early-early mergers becoming significant only at z < 0.5. Progenitor bias is severe at all but the lowest redshifts - e.g. at z ˜ 0.6, less than 50 per cent of the stellar mass in today's early types is actually in progenitors with early-type morphology, while, at z ˜ 2, studying only early types misses almost all (80 per cent) of the stellar mass that eventually ends up in local early-type systems. At high redshift, almost all massive late-type galaxies, regardless of their local environment or star formation rate, are progenitors of local early-type galaxies, as are lower mass (M⋆ < 1010.5 M_{⊙}) late-types as long as they reside in high-density environments. In this new era of large observational surveys (e.g. LSST, JWST), this study provides a framework for studying how today's early-type galaxies have been built up over cosmic time.

  10. The Outer Halos of Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Gerhard, Ortwin; Arnaboldi, Magda; Longobardi, Alessia

    2015-04-01

    The outer halos of massive early-type galaxies (ETGs) are dark matter dominated and may have formed by accretion of smaller systems during galaxy evolution. Here a brief report is given of some recent work on the kinematics, angular momentum, and mass distributions of simulated ETG halos, and of corresponding properties of observed halos measured with planetary nebulae (PNe) as tracers. In the outermost regions of the Virgo-central galaxy M87, the PN data show that the stellar halo and the co-spatial intracluster light are distinct kinematic components.

  11. Massive Galaxies Are Larger in Dense Environments: Environmental Dependence of Mass-Size Relation of Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Yoon, Yongmin; Im, Myungshin; Kim, Jae-Woo

    2017-01-01

    Under the Λ cold dark matter (ΛCDM) cosmological models, massive galaxies are expected to be larger in denser environments through frequent hierarchical mergers with other galaxies. Yet, observational studies of low-redshift early-type galaxies have shown no such trend, standing as a puzzle to solve during the past decade. We analyzed 73,116 early-type galaxies at 0.1 ≤ z < 0.15, adopting a robust nonparametric size measurement technique and extending the analysis to many massive galaxies. We find for the first time that local early-type galaxies heavier than 1011.2 M⊙ show a clear environmental dependence in mass-size relation, in such a way that galaxies are as much as 20%-40% larger in the densest environments than in underdense environments. Splitting the sample into the brightest cluster galaxies (BCGs) and non-BCGs does not affect the result. This result agrees with the ΛCDM cosmological simulations and suggests that mergers played a significant role in the growth of massive galaxies in dense environments as expected in theory.

  12. Herschel-ATLAS: Dusty early-type galaxies

    NASA Astrophysics Data System (ADS)

    Rowlands, K.; Dunne, L.; Maddox, S.

    2015-03-01

    Early-type galaxies (ETGs) are thought to be devoid of dust and star-formation, having formed most of their stars at early epochs. We present the detection of the dustiest ETGs in a large-area blind submillimetre survey with Herschel (H-ATLAS, Eales et al. 2010), where the lack of pre-selection in other bands makes it the first unbiased survey for cold dust in ETGs. The parent sample of 1087 H-ATLAS galaxies in this study have a >= 5σ detection at 250μm, a reliable optical counterpart to the submillimetre source (Smith et al. 2011) and a spectroscopic redshift from the GAMA survey (Driver et al. 2011). Additionally, we construct a control sample of 1052 optically selected galaxies undetected at 250μm and matched in stellar mass to the H-ATLAS parent sample to eliminate selection effects. ETGs were selected from both samples via visual classifications using SDSS images. Further details can be found in Rowlands et al. (2012). Physical parameters are derived for each galaxy using the multiwavelength spectral energy distribution (SED) fitting code of da Cunha, Charlot and Elbaz (2008), Smith et al. 2012, using an energy balance argument. We investigate the differences between the dusty ETGs and the general ETG population, and find that the H-ATLAS ETGs are more than an order of magnitude dustier than the control ETGs. The mean dust mass of the 42 H-ATLAS ETGs is 5.5 × 107M⊙ (comparable to the dust mass of spirals in our sample), whereas the dust mass of the 233 control ETGs inferred from stacking at optical positions on the 250μm map is (0.8 - 4.0) × 106M⊙ for 25-15 K dust. The average star-formation rate of the H-ATLAS ETGs is 1.0 dex higher than that of control ETGs, and the mean r-band light-weighted age of the H-ATLAS ETGs is 1.8 Gyr younger than the control ETGs. The rest-frame NUV - r colours of the H-ATLAS ETGs are 1.0 magnitudes bluer than the control ETGs, and some ETGs may be transitioning from the blue cloud to the red sequence. Some H-ATLAS ETGs

  13. Herschel Spectroscopy of Early-type Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapham, Ryen Carl; Young, Lisa M.; Crocker, Alison, E-mail: ryen.lapham@student.nmt.edu, E-mail: lyoung@physics.nmt.edu, E-mail: crockera@reed.edu

    We present Herschel spectroscopy of atomic lines arising in photodissociation regions as well as ionization regions of nearby early-type galaxies (ETGs), focusing on the volume-limited Atlas3D sample. Our data include the [C ii], [O i], and [N ii] 122 and 205 μ m lines, along with ancillary data including CO and H i maps. We find that ETGs have [C ii]/FIR ratios slightly lower than spiral galaxies in the KINGFISH sample, and several ETGs have unusually large [N ii] 122/[C ii] ratios. The [N ii] 122/[C ii] ratio is correlated with UV colors and there is a strong anti-correlation ofmore » [C ii]/FIR with NUV-K seen in both spirals and ETGs, likely due to a softer radiation field with fewer photons available to ionize carbon and heat the gas. The correlation thus makes a [C ii] deficit in galaxies with redder stellar populations. The high [N ii] 122/[C ii] (and low [C ii]/FIR) line ratios could also be affected by the removal of much of the diffuse, low-density gas, which is consistent with the low H i/H{sub 2} ratios. [C ii] is now being used as a star-formation indicator, and we find that it is just as good for ETGs as in spirals. The [C ii]/CO ratios found are also similar to those found in spiral galaxies. Through the use of the [N ii] 205 μ m line, estimates of the percentage of [C ii] emission arising from ionized gas indicate that a significant portion could arise in ionized regions.« less

  14. A CONSTANT LIMITING MASS SCALE FOR FLAT EARLY-TYPE GALAXIES FROM z {approx} 1 TO z = 0: DENSITY EVOLVES BUT SHAPES DO NOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, Bradford P.; Van der Wel, Arjen; Rix, Hans-Walter

    2012-04-20

    We measure the evolution in the intrinsic shape distribution of early-type galaxies from z {approx} 1 to z {approx} 0 by analyzing their projected axis-ratio distributions. We extract a low-redshift sample (0.04 < z < 0.08) of early-type galaxies with very low star formation rates from the Sloan Digital Sky Survey, based on a color-color selection scheme and verified through the absence of emission lines in the spectra. The inferred intrinsic shape distribution of these early-type galaxies is strongly mass dependent: the typical short-to-long intrinsic axis ratio of high-mass early-type galaxies (>10{sup 11} M{sub Sun }) is 2:3, whereas atmore » masses below 10{sup 11} M{sub Sun} this ratio narrows to 1:3, or more flattened galaxies. In an entirely analogous manner, we select a high-redshift sample (0.6 < z < 0.8) from two deep-field surveys with multi-wavelength and Hubble Space Telescope/Advanced Camera for Surveys imaging: GEMS and COSMOS. We find a seemingly universal mass of {approx}10{sup 11} M{sub Sun} for highly flattened early-type systems at all redshifts. This implies that the process that grows an early-type galaxy above this ceiling mass, irrespective of cosmic epoch, involves forming round systems. Using both parametric and non-parametric tests, we find no evolution in the projected axis-ratio distribution for galaxies with masses >3 Multiplication-Sign 10{sup 10} M{sub Sun} with redshift. At the same time, our samples imply an increase of 2-3 Multiplication-Sign in comoving number density for early-type galaxies at masses >3 Multiplication-Sign 10{sup 10} M{sub Sun }, in agreement with previous studies. Given the direct connection between the axis-ratio distribution and the underlying bulge-to-disk ratio distribution, our findings imply that the number density evolution of early-type galaxies is not exclusively driven by the emergence of either bulge- or disk-dominated galaxies, but rather by a balanced mix that depends only on the stellar mass of

  15. Cooling flows and X-ray emission in early-type galaxies

    NASA Technical Reports Server (NTRS)

    Sarazin, Craig L.

    1990-01-01

    The X-ray properties of normal early-type galaxies and the limited theoretical understanding of the physics of the hot interstellar medium in these galaxies are reviewed. A number of simple arguments about the physical state of the gas are given. Steady-state cooling flow models for these galaxies are presented, and their time-dependent evolution is discussed. The X-ray emission found in early-type galaxies indicates that they contain significant amounts of hot interstellar gas, and that they are not the gas-poor systems they were previously thought to be. In the brighter X-ray galaxies, the amounts of hot gas observed are consistent with those expected given the present rates of stellar mass loss. The required rates of heating of the gas are consistent with those expected from the motions of gas-losing stars and supernovae. The X-ray observations are generally more consistent with a lower rate of Type I supernovae than was previously thought.

  16. GALAXY ZOO: THE FUNDAMENTALLY DIFFERENT CO-EVOLUTION OF SUPERMASSIVE BLACK HOLES AND THEIR EARLY- AND LATE-TYPE HOST GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schawinski, Kevin; Urry, C. Megan; Virani, Shanil

    We use data from the Sloan Digital Sky Survey and visual classifications of morphology from the Galaxy Zoo project to study black hole growth in the nearby universe (z < 0.05) and to break down the active galactic nucleus (AGN) host galaxy population by color, stellar mass, and morphology. We find that the black hole growth at luminosities L[O{sub III}]>10{sup 40} erg s{sup -1} in early- and late-type galaxies is fundamentally different. AGN host galaxies as a population have a broad range of stellar masses (10{sup 10}-10{sup 11} M{sub sun}), reside in the green valley of the color-mass diagram andmore » their central black holes have median masses around 10{sup 6.5} M{sub sun}. However, by comparing early- and late-type AGN host galaxies to their non-active counterparts, we find several key differences: in early-type galaxies, it is preferentially the galaxies with the least massive black holes that are growing, while in late-type galaxies, it is preferentially the most massive black holes that are growing. The duty cycle of AGNs in early-type galaxies is strongly peaked in the green valley below the low-mass end (10{sup 10} M{sub sun}) of the red sequence at stellar masses where there is a steady supply of blue cloud progenitors. The duty cycle of AGNs in late-type galaxies on the other hand peaks in massive (10{sup 11} M{sub sun}) green and red late-types which generally do not have a corresponding blue cloud population of similar mass. At high-Eddington ratios (L/L{sub Edd}>0.1), the only population with a substantial fraction of AGNs are the low-mass green valley early-type galaxies. Finally, the Milky Way likely resides in the 'sweet spot' on the color-mass diagram where the AGN duty cycle of late-type galaxies is highest. We discuss the implications of these results for our understanding of the role of AGNs in the evolution of galaxies.« less

  17. VizieR Online Data Catalog: Massive early-type galaxies (Buitrago+, 2013)

    NASA Astrophysics Data System (ADS)

    Buitrago, F.; Trujillo, I.; Conselice, C. J.; Haussler, B.

    2013-08-01

    Present-day massive galaxies are composed mostly of early-type objects. It is unknown whether this was also the case at higher redshifts. In a hierarchical assembling scenario the morphological content of the massive population is expected to change with time from disc-like objects in the early Universe to spheroid-like galaxies at present. In this paper we have probed this theoretical expectation by compiling a large sample of massive (Mstellar>=1011h-270M⊙) galaxies in the redshift interval 0galaxies selected from Sloan Digital Sky Survey plus 875 objects observed with the Hubble Space Telescope belonging to the Palomar Observatory Wide-field InfraRed/DEEP2 and GOODS NICMOS Survey surveys. 639 of our objects have spectroscopic redshifts. Our morphological classification is performed as close as possible to the optical rest frame according to the photometric bands available in our observations both quantitatively (using the Sersic index as a morphological proxy) and qualitatively (by visual inspection). Using both techniques we find an enormous change on the dominant morphological class with cosmic time. The fraction of early-type galaxies among the massive galaxy population has changed from ~20-30 per cent at z~3 to~70 per cent at z=0. Early-type galaxies have been the predominant morphological class for massive galaxies since only z~1. (1 data file).

  18. Chemical Evolution and the Formation of Dwarf Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Cote, Benoit; JINA-CEE, NuGrid, ChETEC

    2018-06-01

    Stellar abundances in local dwarf galaxies offer a unique window into the nature and nucleosynthesis of the first stars. They also contain clues regarding how galaxies formed and assembled in the early stages of the universe. In this talk, I will present our effort to connect nuclear astrophysics with the field of galaxy formation in order to define what can be learned about galaxy evolution using stellar abundances. In particular, I will describe the current state of our numerical chemical evolution pipeline which accounts for the mass assembly history of galaxies, present how we use high-redshift cosmological hydrodynamic simulations to calibrate our models and to learn about the formation of dwarf galaxies, and address the challenge of identifying the dominant r-process site(s) using stellar abundances.

  19. GALEX studies on UV properties of Nearby Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Rhee, J.; Rich, R. M.; Sohn, Y.-J.; Lee, Y.-W.; Gil de Paz, A.; Deharveng, J.-M.; Donas, J.; Boselli, A.; Rey, S.-C.; Yi, S. K.; GALEX Team

    2005-12-01

    We present the results of surface photometry on the far-UV (FUV) and near-UV (NUV) images of 23 nearby elliptical galaxies and spiral bulges taken from the GALEX (Galaxy Evolution Explorer). Surface brightness profiles of most galaxies are consistent with de Vaucouleurs' r1/4 law except for some cases more consistent with exponential profiles. We analyze the radial profiles of UV color, (FUV - NUV), and Mg2 line index to investigate a correlation between the gradients of UV color and metal abundance for early-type galaxies. UV color gradients are calculated by applying least square fitting to UV color profile up to effective radius, while Mg2 line strength gradients are compiled for 12 galaxies from previous works. For the 12 early-type galaxies, we find that UV color profiles have a trend to become bluer inward and there is a weak correlation between the gradients of UV color and Mg2 line strength in the sense that galaxies with larger UV color gradients tend to have stronger metal abundance gradients. We also explore the properties of the GALEX-measured ultraviolet rising flux in 96 nearby elliptical galaxies, as a function Lick Mg2 index and velocity dispersion. We include 36 galaxies in the Virgo cluster from the sample of Boselli et al (2005). We find no correlation between the Mg2 index, and log σ and FUV-r. This confirms the findings of Rich et al (2005) for a sample of GALEX/SDSS quiescent early-type galaxies. This is true both for the integrated light, and for nuclear colors. We find a weak correlation between Mg2 and FUV-NUV. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology.

  20. UNDERSTANDING THE STRUCTURE OF THE HOT INTERSTELLAR MEDIUM IN NORMAL EARLY-TYPE GALAXIES.

    NASA Astrophysics Data System (ADS)

    Traynor, Liam; Kim, Dong-Woo; Chandra Galaxy Atlas

    2018-01-01

    The hot interstellar medium (ISM) of early-type galaxies (ETG's) provides crucial insight into the understanding of their formation and evolution. Mechanisms such as type Ia supernovae heating, AGN feedback, deepening potential depth through dark matter assembly and ramp-pressure stripping are known to affect the structure of the ISM. By using temperature maps and radial temperature profiles of the hot ISM from ~70 ETG's with archival Chandra data, it is possible to classify the galaxy's ISM into common structural types. This is extended by using 3D fitting of the radial temperature profile in order to provide models that further constrain the structural types. Five structural types are present, negative (temperature decreases with radii), positive (temperature increases with radii), hybrid-dip (temperature decreases at small radii and increases at large radii), hybrid-bump (inverse of hybrid-dip) and quasi-isothermal (temperature is constant at all radii). This work will be continued by 1) determining which mechanisms are present in which galaxies and 2) analysing the model parameters between galaxies within each structural type to determine whether each type can be described by a single set of model parameters, indicating that the same physical processes are responsible for creating that structural type.

  1. Central stellar mass deficits of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Tsige Dullo, Bililign; Graham, Alister

    2016-01-01

    The centers of giant galaxies display stellar mass deficits (Mdef) which are thought to be a signature left by inspiraling supermassive black holes (SMBHs) from pre-merged galaxies. We quantify these deficits using the core-Sérsic model for the largest ever sample of early-type galaxies and find Mdef ˜ 0.5 to 4 MBH (SMBH mass). We find that lenticular disc galaxies with bulge magnitudes MV ≤ -21.0 mag also have central stellar deficits, suggesting that their bulges may have formed from major merger events while their surroundingdisc was subsequently built up, perhaps via cold gas accretion scenarios. Interestingly, these bulges have sizes and mass densities comparable to the compact galaxies found at z ˜ 1.5 to 2.

  2. Early-type galaxies have been the predominant morphological class for massive galaxies since only z ˜ 1

    NASA Astrophysics Data System (ADS)

    Buitrago, Fernando; Trujillo, Ignacio; Conselice, Christopher J.; Häußler, Boris

    2013-01-01

    Present-day massive galaxies are composed mostly of early-type objects. It is unknown whether this was also the case at higher redshifts. In a hierarchical assembling scenario the morphological content of the massive population is expected to change with time from disc-like objects in the early Universe to spheroid-like galaxies at present. In this paper we have probed this theoretical expectation by compiling a large sample of massive (Mstellar ≥ 1011 h- 270 M⊙) galaxies in the redshift interval 0 < z < 3. Our sample of 1082 objects comprises 207 local galaxies selected from Sloan Digital Sky Survey plus 875 objects observed with the Hubble Space Telescope belonging to the Palomar Observatory Wide-field InfraRed/DEEP2 and GOODS NICMOS Survey surveys. 639 of our objects have spectroscopic redshifts. Our morphological classification is performed as close as possible to the optical rest frame according to the photometric bands available in our observations both quantitatively (using the Sérsic index as a morphological proxy) and qualitatively (by visual inspection). Using both techniques we find an enormous change on the dominant morphological class with cosmic time. The fraction of early-type galaxies among the massive galaxy population has changed from ˜20-30 per cent at z ˜ 3 to ˜70 per cent at z = 0. Early-type galaxies have been the predominant morphological class for massive galaxies since only z ˜ 1.

  3. Accounting for the dispersion in the x ray properties of early-type galaxies

    NASA Technical Reports Server (NTRS)

    White, Raymond E., III; Sarazin, Craig L.

    1990-01-01

    The x ray luminosities of early-type galaxies are correlated with their optical (e.g., blue) luminosities (L sub X approx. L sub B exp 1.6), but the x ray luminosities exhibit considerable scatter for a given optical luminosity L sub B. This dispersion in x ray luminosity is much greater than the dispersion of other properties of early-type galaxies (for a given L sub B), such as luminosity scale-length, velocity dispersion, color, and metallicity. Here, researchers consider several possible sources for the dispersion in x ray luminosity. Some of the scatter in x ray luminosity may result from stellar population variations between galaxies with similar L sub B. Since the x ray emitting gas is from accumulated stellar mass loss, the L sub X dispersion may be due to variations in integrated stellar mass loss rates. Another possible cause of the L sub X dispersion may be variations in the amount of cool material in the galaxies; cool gas may act as an energy sink for the hot gas. Infrared emission may be used to trace such cool material, so researchers look for a correlation between the infrared emission and the x ray emission of early-type galaxies at fixed L sub B. Velocity dispersion variations between galaxies of similar L sub B may also contribute to the L sub X dispersion. The most likely a priori source of the dispersion in L sub X is probably the varying amount of ram-pressure stripping in a range of galaxy environments. The hot gaseous halos of early-type galaxies can be stripped in encounters with other galaxies or with ambient cluster gas if the intracluster gas is sufficiently dense. Researchers find that the most likely cause of dispersion in the x ray properties of early type galaxies is probably the ram-pressure stripping of gaseous halos from galaxies. For a sample of 81 early-type galaxies with x ray luminosities or upper limits derived from Einstein Observatory observations (CFT) researchers calculated the cumulative distribution of angular distances

  4. The host galaxy/AGN connection in nearby early-type galaxies. Is there a miniature radio-galaxy in every "core" galaxy?

    NASA Astrophysics Data System (ADS)

    Balmaverde, B.; Capetti, A.

    2006-02-01

    This is the second of a series of three papers exploring the connection between the multiwavelength properties of AGN in nearby early-type galaxies and the characteristics of their hosts. We selected two samples with 5 GHz VLA radio flux measurements down to 1 mJy, reaching levels of radio luminosity as low as 1036 erg s-1. In Paper I we presented a study of the surface brightness profiles for the 65 objects with available archival HST images out of the 116 radio-detected galaxies. We classified early-type galaxies into "core" and "power-law" galaxies, discriminating on the basis of the slope of their nuclear brightness profiles, following the Nukers scheme. Here we focus on the 29 core galaxies (hereafter CoreG). We used HST and Chandra data to isolate their optical and X-ray nuclear emission. The CoreG invariably host radio-loud nuclei, with an average radio-loudness parameter of Log R = L5 {GHz} / LB ˜ 3.6. The optical and X-ray nuclear luminosities correlate with the radio-core power, smoothly extending the analogous correlations already found for low luminosity radio-galaxies (LLRG) toward even lower power, by a factor of ˜ 1000, covering a combined range of 6 orders of magnitude. This supports the interpretation of a common non-thermal origin of the nuclear emission also for CoreG. The luminosities of the nuclear sources, most likely dominated by jet emission, set firm upper limits, as low as L/L_Edd ˜ 10-9 in both the optical and X-ray band, on any emission from the accretion process. The similarity of CoreG and LLRG when considering the distributions host galaxies luminosities and black hole masses, as well as of the surface brightness profiles, indicates that they are drawn from the same population of early-type galaxies. LLRG represent only the tip of the iceberg associated with (relatively) high activity levels, with CoreG forming the bulk of the population. We do not find any relationship between radio-power and black hole mass. A minimum black hole

  5. The components of mid- and far-infrared emission from S0 and early-type shell galaxies

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A., Jr.; Bally, John; Hacking, Perry

    1989-01-01

    The IRAS database has been used to study detections of about 150 early-type elliptical and S0 galaxies exhibiting a shell structure. No strong evidence for the expected enhancement of either star formation rates or heating of the interstellar medium is found. It is suggested that for some of the sample galaxies either a contribution from warm dust surrounding evolved stars or emission from an active nucleus may be significant.

  6. Early-type galaxies in the Chandra cosmos survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Civano, F.; Fabbiano, G.; Kim, D.-W.

    2014-07-20

    We study a sample of 69 X-ray detected early-type galaxies (ETGs), selected from the Chandra COSMOS survey, to explore the relation between the X-ray luminosity of hot gaseous halos (L{sub X,{sub gas}}) and the integrated stellar luminosity (L{sub K} ) of the galaxies, in a range of redshift extending out to z = 1.5. In the local universe, a tight, steep relationship has been established between these two quantities (L{sub X,gas}∼L{sub K}{sup 4.5}), suggesting the presence of largely virialized halos in X-ray luminous systems. We use well-established relations from the study of local universe ETGs, together with the expected evolutionmore » of the X-ray emission, to subtract the contribution of low-mass X-ray binary populations from the X-ray luminosity of our sample. Our selection minimizes the presence of active galactic nuclei (AGNs), yielding a sample representative of normal passive COSMOS ETGs; therefore, the resulting luminosity should be representative of gaseous halos, although we cannot exclude other sources such as obscured AGNs or enhanced X-ray emission connected with embedded star formation in the higher-z galaxies. We find that most of the galaxies with estimated L{sub X} < 10{sup 42} erg s{sup –1} and z < 0.55 follow the L{sub X,{sub gas}}-L{sub K} relation of local universe ETGs. For these galaxies, the gravitational mass can be estimated with a certain degree of confidence from the local virial relation. However, the more luminous (10{sup 42} erg s{sup –1}« less

  7. Galaxy evolution in extreme environments: Molecular gas content star formation and AGN in isolated void galaxies

    NASA Astrophysics Data System (ADS)

    Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha

    Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.

  8. Eight luminous early-type galaxies in nearby pairs and sparse groups. I. Stellar populations spatially analysed

    NASA Astrophysics Data System (ADS)

    Rosa, D. A.; Milone, A. C.; Krabbe, A. C.; Rodrigues, I.

    2018-06-01

    We present a detailed spatial analysis of stellar populations based on long-slit optical spectra in a sample of eight luminous early-type galaxies selected from nearby sparse groups and pairs, three of them may have interaction with another galaxy of similar mass. We have spatially measured luminosity-weighted averages of age, [M/H], [Fe/H], and [α /Fe] in the sample galaxies to add empirical data relative to the influence of galaxy mass, environment, interaction, and AGN feedback in their formation and evolution. The stellar population of the individual galaxies were determined through the well-established stellar population synthesis code starlight using semi-empirical simple stellar population models. Radial variations of luminosity- weighted means of age, [M/H], [Fe/H], and [α /Fe] were quantified up to half of the effective radius of each galaxy. We found trends between representative values of age, [M/H], [α /Fe], and the nuclear stellar velocity dispersion. There are also relations between the metallicity/age gradients and the velocity dispersion. Contributions of 1-4 Gyr old stellar populations were quantified in IC 5328 and NGC 6758 as well as 4-8 Gyr old ones in NGC 5812. Extended gas is present in IC 5328, NGC 1052, NGC 1209, and NGC 6758, and the presence of a LINER is identified in all these galaxies. The regions up to one effective radius of all galaxies are basically dominated by α -enhanced metal-rich old stellar populations likely due to rapid star formation episodes that induced efficient chemical enrichment. On average, the age and [α /Fe] gradients are null and the [M/H] gradients are negative, although discordant cases were found. We found no correlation between the stellar population properties and the LINER presence as well as between the stellar properties and environment or gravitational interaction, suggesting that the influence of progenitor mass cannot be discarded in the formation and evolution of early-type galaxies.

  9. Analysis of the Einstein sample of early-type galaxies

    NASA Technical Reports Server (NTRS)

    Eskridge, Paul B.; Fabbiano, Giuseppina

    1993-01-01

    The EINSTEIN galaxy catalog contains x-ray data for 148 early-type (E and SO) galaxies. A detailed analysis of the global properties of this sample are studied. By comparing the x-ray properties with other tracers of the ISM, as well as with observables related to the stellar dynamics and populations of the sample, we expect to determine more clearly the physical relationships that determine the evolution of early-type galaxies. Previous studies with smaller samples have explored the relationships between x-ray luminosity (L(sub x)) and luminosities in other bands. Using our larger sample and the statistical techniques of survival analysis, a number of these earlier analyses were repeated. For our full sample, a strong statistical correlation is found between L(sub X) and L(sub B) (the probability that the null hypothesis is upheld is P less than 10(exp -4) from a variety of rank correlation tests. Regressions with several algorithms yield consistent results.

  10. On the interdependence of galaxy morphology, star formation and environment in massive galaxies in the nearby Universe

    NASA Astrophysics Data System (ADS)

    Bait, Omkar; Barway, Sudhanshu; Wadadekar, Yogesh

    2017-11-01

    Using multiwavelength data, from ultraviolet to optical to near-infrared to mid-infrared, for ˜6000 galaxies in the local Universe, we study the dependence of star formation on the morphological T-types for massive galaxies (log M*/M⊙ ≥ 10). We find that, early-type spirals (Sa-Sbc) and S0s predominate in the green valley, which is a transition zone between the star forming and quenched regions. Within the early-type spirals, as we move from Sa to Sbc spirals the fraction of green valley and quenched galaxies decreases, indicating the important role of the bulge in the quenching of galaxies. The fraction of early-type spirals decreases as we enter the green valley from the blue cloud, which coincides with the increase in the fraction of S0s. These points towards the morphological transformation of early-type spiral galaxies into S0s, which can happen due to environmental effects such as ram-pressure stripping, galaxy harassment or tidal interactions. We also find a second population of S0s that are actively star forming and are present in all environments. Since morphological T-type, specific star formation rate (sSFR), and environmental density are all correlated with each other, we compute the partial correlation coefficient for each pair of parameters while keeping the third parameter as a control variable. We find that morphology most strongly correlates with sSFR, independent of the environment, while the other two correlations (morphology-density and sSFR-environment) are weaker. Thus, we conclude that, for massive galaxies in the local Universe, the physical processes that shape their morphology are also the ones that determine their star-forming state.

  11. The population of early-type galaxies: how it evolves with time and how it differs from passive and late-type galaxies

    NASA Astrophysics Data System (ADS)

    Tamburri, S.; Saracco, P.; Longhetti, M.; Gargiulo, A.; Lonoce, I.; Ciocca, F.

    2014-10-01

    Aims: There are two aims to our analysis. On the one hand we are interested in addressing whether a sample of morphologically selected early-type galaxies (ETGs) differs from a sample of passive galaxies in terms of galaxy statistics. On the other hand we study how the relative abundance of galaxies, the number density, and, the stellar mass density for different morphological types change over the redshift range 0.6 ≤ z ≤ 2.5. Methods: From the 1302 galaxies brighter than Ks(AB) = 22 selected from the GOODS-MUSIC catalogue, we classified the ETGs, i.e. elliptical (E) and spheroidal galaxies (E/S0), on the basis of their morphology and the passive galaxies on the basis of their specific star formation rate (sSFR ≤ 10-11 yr-1). Since the definition of a passive galaxy depends on the model parameters assumed to fit the spectral energy distribution of the galaxy, in addition to the assumed sSFR threshold, we probed the dependence of this definition and selection on the stellar initial mass function (IMF). Results: We find that spheroidal galaxies cannot be distinguished from the other morphological classes on the basis of their low star formation rate, irrespective of the IMF adopted in the models. In particular, we find that a large fraction of passive galaxies (>30%) are disc-shaped objects and that the passive selection misses a significant fraction (~26%) of morphologically classified ETGs. Using the sample of 1302 galaxies morphologically classified into spheroidal galaxies (ETGs) and non-spheroidal galaxies (LTGs), we find that the fraction of these two morphological classes is constant over the redshift range 0.6 ≤ z ≤ 2.5, being 20-30% the fraction of ETGs and 70-80% the fraction of LTGs. However, at z < 1 these fractions change among the population of the most massive (M∗ ≥ 1011 M⊙) galaxies, with the fraction of massive ETGs rising up to 40% and the fraction of massive LTGs decreasing to 60%. Parallel to this trend, we find that the number

  12. The Cool Stellar Populations of Early-Type Galaxies and the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Houdashelt, Mark Lee

    1995-01-01

    Red (6800-9200 A) and near-infrared (K-band) spectra have been obtained for 34 early-type galaxies in the Virgo cluster, the Coma cluster and the field. The strengths of the Ca II triplet (lambdalambda 8498, 8542, 8662 A), the Na I doublet ( lambdalambda8183, 8195 A), the Mg I lambda8807 A line, and molecular bands of TiO and VO were measured from the red spectra. Absorption due to the CO band with bandhead at 2.29 mu m was measured from the near-infrared spectra. The behavior of the spectral indices was examined for the Virgo galaxy nuclei as functions of luminosity and color. Overall, the CO, TiO and Na I indices were found to be stronger in redder and brighter galaxies. The Mg I and the Ca II triplet lines did not vary significantly among galaxies of different color or brightness. These trends are consistent with a change in chemical composition producing the well-known color-magnitude relation for early -type galaxies. No significant differences were detected among galaxies of similar luminosity in the Virgo cluster, the Coma cluster and the field. To simulate the stellar population changes implied by the radial color gradients observed in early-type galaxies, models were constructed to represent the integrated light of the Galactic bulge as a function of latitude. A field in Baade's Window (BW) was studied first and the stellar population there was found to be quite inhomogeneous. The BW model indicated that the integrated light of BW is giant -dominated, and the BW spectral energy distribution is very similar to that of the nucleus of a low-luminosity early -type galaxy. From models of BW and a field at b = -8^circ, radial gradients were estimated for the Galactic bulge and compared to the changes which occur along a luminosity sequence of early -type galaxies in the Virgo cluster. This comparison showed that: (1) the Na I and I(8197) indices increase steeply with redder colors in the Virgo galaxies but appear to decrease with color in the Galactic bulge

  13. Environmental Effects on the Metallicities of Early-Type Galaxies

    NASA Technical Reports Server (NTRS)

    Jones, Christine; Oliversen, Ronald (Technical Monitor)

    2004-01-01

    We completed and published two papers in the Astrophysical Journal based on research from grant. In the first paper we analyzed nine X-ray-bright Virgo early-type galaxies observed by both ASCA and ROSAT. Through spatially resolved spectroscopy, we determined the radial temperature profiles and abundances of Mg, Si, and Fe for six galaxies. The temperature profiles are consistent with isothermal temperatures outside of cooler regions at the galaxies' centers. We present new evidence for iron abundance gradients in NGC 4472 and NGC 4649 and confirm the previous results on NGC 4636. Mg and Si abundance gradients on average are flatter than those of iron and correspond to an underabundance of α-process elements at high Fe values, while at low iron the element ratios favor enrichment by Type II supernovae (SNe). We explain the observed trend using the metallicity dependence of SN Ia metal production and present constraints on the available theoretical modeling for low-metallicity inhibition of SNe Ia. In the second paper We analyzed nine X-ray-bright Virgo early-type galaxies observed by both ASCA and ROSAT. Through spatially resolved spectroscopy, we determined the radial temperature profiles and abundances of Mg, Si, and Fe for six galaxies. The temperature profiles are consistent with isothermal temperatures outside of cooler regions at the galaxies' centers. We present new evidence for iron abundance gradients in NGC 4472 and NGC 4649 and confirm the previous results on NGC 4636. Mg and Si abundance gradients on average are flatter than those of iron and correspond to an underabundance of α-process elements at high Fe values, while at low iron the element ratios favor enrichment by Type I1 supernovae (SNe). We explain the observed trend using the metallicity dependence of SN Ia metal production and present constraints on the available theoretical modeling for low-metallicity inhibition of SNe Ia.

  14. Forming Disk Galaxies Early in the Universe

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    What were galaxies like in the first 500 million years of the universe? According to simulations by Yu Feng (UC Berkeley) and collaborators, the earliest massive galaxies to form were mostly disk-shaped, rather than the compact clumps previously predicted. Early-Galaxy Models. Current models for galaxy formation predict that small perturbations in the distribution of matter in the early universe collapsed to form very compact, irregular, clumpy first galaxies. Observations support this: the furthest out that we've spotted disk-shaped galaxies is at z=3, whereas the galaxies we've observed from earlier times -- up to redshifts of z=8-10 -- are very compact. But could this be a selection effect, arising from the rarity of large galaxies in the early universe? Current surveys at high redshift have thus far only covered relatively small volumes of space, so it's not necessarily surprising that we haven't yet spotted any large disk galaxies. Similarly, numerical simulations of galaxy formation are limited in the size of the volume they can evolve, so resulting models of early galaxy formation also tend to favor compact clumpy galaxies over large disks. An Enormous Simulation. Pushing at these limitations, Feng and his collaborators used the Blue Waters supercomputer to carry out an enormous cosmological hydrodynamic simulation called BlueTides. In this simulation, they track 700 billion particles as they evolve in a volume of 400 comoving Mpc/h -- 40 times the volume of the largest previous simulation and 300 times the volume of the largest observational survey at these redshifts. What they find is that by z=8, a whopping 70% of the most massive galaxies (over 7 billion solar masses each) were disk-shaped, though they are more compact, gas-rich, and turbulent than present-day disk galaxies like the Milky Way. The way the most massive galaxies formed in the simulation also wasn't expected: rather than resulting from major mergers, they were built from smooth accretion

  15. Dark-ages reionization and galaxy formation simulation - III. Modelling galaxy formation and the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Mutch, Simon J.; Geil, Paul M.; Poole, Gregory B.; Angel, Paul W.; Duffy, Alan R.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2016-10-01

    We introduce MERAXES, a new, purpose-built semi-analytic galaxy formation model designed for studying galaxy growth during reionization. MERAXES is the first model of its type to include a temporally and spatially coupled treatment of reionization and is built upon a custom (100 Mpc)3 N-body simulation with high temporal and mass resolution, allowing us to resolve the galaxy and star formation physics relevant to early galaxy formation. Our fiducial model with supernova feedback reproduces the observed optical depth to electron scattering and evolution of the galaxy stellar mass function between z = 5 and 7, predicting that a broad range of halo masses contribute to reionization. Using a constant escape fraction and global recombination rate, our model is unable to simultaneously match the observed ionizing emissivity at z ≲ 6. However, the use of an evolving escape fraction of 0.05-0.1 at z ˜ 6, increasing towards higher redshift, is able to satisfy these three constraints. We also demonstrate that photoionization suppression of low-mass galaxy formation during reionization has only a small effect on the ionization history of the intergalactic medium. This lack of `self-regulation' arises due to the already efficient quenching of star formation by supernova feedback. It is only in models with gas supply-limited star formation that reionization feedback is effective at regulating galaxy growth. We similarly find that reionization has only a small effect on the stellar mass function, with no observationally detectable imprint at M* > 107.5 M⊙. However, patchy reionization has significant effects on individual galaxy masses, with variations of factors of 2-3 at z = 5 that correlate with environment.

  16. Environmental Effects on the Metallicities of Early-Type Galaxies

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Jones, Christine

    2004-01-01

    In this multi-year project to investigate the metal enrichment of early-type galaxies, we have used ROSAT, ASCA and now Chandra observations to study samples of galaxies. We have published two papers and a third paper that incorporates Chandra archival observations is nearing completion. Below, we briefly describe our findings. Our first paper "SN IA Enrichment in Virgo Early-type Galaxies from ROSAT and ASCA Observations" was published in the Astrophysical Journal (vol 539, 603) reported on the properties of nine X-ray bright elliptical galaxies in the Virgo cluster observed by ROSAT and ASCA. We measured iron abundance gradients as a function of radius in three galaxies. We found that the magnesium and silicon abundance gradients were in general flatter than those of iron. We suggest this is due to a metallicity dependence in the metal production rates of SN Ia's. We calculate SN Ia rates in the center of these galaxies that are comparable to those measured optically. Our second paper "ASCA Observations of Groups at Radii of Low Overdensity: Implications for Cosmic Preheating" also was published in the Astrophysical Journal (vol 578, 74). This paper reported on the ASCA spectroscopy of nine groups of galaxies. We found that the entropy profile in groups is driven by nongravitational heating processes, and could be explained by a short period of preheating by galactic winds. The third paper (in preparation) uses a sample of about 200 galaxies from both ROSAT and Chandra observations. In this paper we characterize both the nuclear and the extended X-ray emission for this sample. We will use these observations to determine the "on-time" of the X-ray emitting AGN and the fraction of "fossil groups" as well as to investigate how large AGN outbursts can sweep the galaxy of its hot ISM, thus leading to changes in the ISM metal enrichment.

  17. The ESO Nearby Abell Cluster Survey. VI. Spatial distribution and kinematics of early- and late-type galaxies

    NASA Astrophysics Data System (ADS)

    de Theije, P. A. M.; Katgert, P.

    1999-01-01

    Analysis of the data obtained in the ESO Nearby Abell Cluster Survey (ENACS) has shown that the space distribution and kinematics of galaxies with detectable emission lines in their spectra differ significantly from those of galaxies without emission lines. This result, and details of the kinematics, were considered as support for the idea that at least the spirals with emission lines are on orbits that are not isotropic. This might indicate that this subset of late-type galaxies either has `first approach'-orbits towards the dense core of their respective clusters, or has orbits that `avoid' the core. The galaxies with emission lines are essentially all late-type galaxies. On the other hand, the emission-line galaxies represent only about a third of the late-type galaxies, the majority of which do not show detectable emission lines. The galaxies without emission lines are therefore a mix of early- and late-type galaxies. In this paper we attempt to separate early- and late-type galaxies, and we study possible differences in distribution and kinematics of the two galaxy classes. For only about 10% of the galaxies in the ENACS, the morphology is known from imaging. Here, we describe our classification on the basis of the ENACS spectrum. The significant information in each spectrum is compressed into 15 Principal Components, which are used as input for an Artificial Neural Network. The latter is `trained' with 150 of the 270 galaxies for which a morphological type is available from Dressler, and subsequently used to classify each galaxy. This yields a classification for two-thirds of the ENACS galaxies. The Artificial Neural Network has two output classes: early-type (E+S0) and late-type (S+I) galaxies. We do not distinguish E and S0 galaxies, because these cannot be separated very robustly on the basis of the spectrum. The success rate of the classification is estimated from the sample of 120 galaxies with Dressler morphologies which were not used to train the ANN

  18. The hELENa project - I. Stellar populations of early-type galaxies linked with local environment and galaxy mass

    NASA Astrophysics Data System (ADS)

    Sybilska, A.; Lisker, T.; Kuntschner, H.; Vazdekis, A.; van de Ven, G.; Peletier, R.; Falcón-Barroso, J.; Vijayaraghavan, R.; Janz, J.

    2017-09-01

    We present the first in a series of papers in The role of Environment in shaping Low-mass Early-type Nearby galaxies (hELENa) project. In this paper, we combine our sample of 20 low-mass early types (dEs) with 258 massive early types (ETGs) from the ATLAS3D survey - all observed with the SAURON integral field unit - to investigate early-type galaxies' stellar population scaling relations and the dependence of the population properties on local environment, extended to the low-σ regime of dEs. The ages in our sample show more scatter at lower σ values, indicative of less massive galaxies being affected by the environment to a higher degree. The shape of the age-σ relations for cluster versus non-cluster galaxies suggests that cluster environment speeds up the placing of galaxies on the red sequence. While the scaling relations are tighter for cluster than for the field/group objects, we find no evidence for a difference in average population characteristics of the two samples. We investigate the properties of our sample in the Virgo cluster as a function of number density (rather than simple clustrocentric distance) and find that dE ages correlate with the local density such that galaxies in regions of lower density are younger, likely because they are later arrivals to the cluster or have experienced less pre-processing in groups, and consequently used up their gas reservoir more recently. Overall, dE properties correlate more strongly with density than those of massive ETGs, which was expected as less massive galaxies are more susceptible to external influences.

  19. EARLY-TYPE GALAXIES WITH TIDAL DEBRIS AND THEIR SCALING RELATIONS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Taehyun; Sheth, Kartik; Munoz-Mateos, Juan-Carlos

    2012-07-01

    Tidal debris around galaxies can yield important clues on their evolution. We have identified tidal debris in 11 early-type galaxies (T {<=} 0) from a sample of 65 early types drawn from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). The tidal debris includes features such as shells, ripples, and tidal tails. A variety of techniques, including two-dimensional decomposition of galactic structures, were used to quantify the residual tidal features. The tidal debris contributes {approx}3%-10% to the total 3.6 {mu}m luminosity of the host galaxy. Structural parameters of the galaxies were estimated using two-dimensional profile fitting. We investigatemore » the locations of galaxies with tidal debris in the fundamental plane and Kormendy relation. We find that galaxies with tidal debris lie within the scatter of early-type galaxies without tidal features. Assuming that the tidal debris is indicative of recent gravitational interaction or merger, this suggests that these galaxies have either undergone minor merging events so that the overall structural properties of the galaxies are not significantly altered, or they have undergone a major merging events but already have experienced sufficient relaxation and phase mixing so that their structural properties become similar to those of the non-interacting early-type galaxies.« less

  20. The assembly of stellar haloes in massive Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Buitrago, F.

    2017-03-01

    Massive (Mstellar >= 5×1010 M⊙) Early-Type Galaxies (ETGs) must build an outer stellar envelope over cosmic time in order to account for their remarkable size evolution. This is similar to what occurs to nearby Late-Type Galaxies (LTGs), which create their stellar haloes out of the debris of lower mass systems. We analysed the outer parts of massive ETGs at z < 1 by exploiting the Hubble Ultra Deep Field imaging. These galaxies store 10-30% of their stellar mass at distances 10 < R/kpc < 50, in contrast to the low percentages (< 5%) found for LTGs. We find evidence for a progressive outskirt development with redshift driven solely via merging.

  1. Green Peas emit X-rays: Extreme Star Formation in Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip

    2017-01-01

    Luminous compact galaxies (LCGs), Lyman Alpha Emitters (LAEs), and Lyman Break Analog galaxies (LBAs) are all used as proxies for star-forming galaxies in the early Universe (z ≥ 6). The X-ray emission from such galaxies has been found to be elevated compared to other star-forming galaxies in our local Universe. It has been suggested that this may be due to the lower metallicity seen in these proxies to high-redshift galaxies and the elevated X-ray emission may affect the heating and Reionization evolution of the early Universe. Our previous studies have suggested the existence of an LX-SFR-metallicity plane for all star-forming galaxies. We present these results in the context of our newest Joint Chandra/HST study containing the first X-ray detection of the Green Pea galaxies, a population of compact starburst galaxies discovered by volunteers in the Galaxy Zoo Project (Cardamone+2009). The galaxies were given the name Green Peas due to their compact size and green appearance in the gri composite images from SDSS. The green color is caused by a strong [OIII]λ5007Å emission line, an indicator of recent star formation. We observed a few of the most promising candidates with joint Chandra/HST observation and discuss our findings here.

  2. Star formation in globular clusters and dwarf galaxies and implications for the early evolution of galaxies

    NASA Technical Reports Server (NTRS)

    Lin, Douglas N. C.; Murray, Stephen D.

    1991-01-01

    Based upon the observed properties of globular clusters and dwarf galaxies in the Local Group, we present important theoretical constraints on star formation in these systems. These constraints indicate that protoglobular cluster clouds had long dormant periods and a brief epoch of violent star formation. Collisions between protocluster clouds triggered fragmentation into individual stars. Most protocluster clouds dispersed into the Galactic halo during the star formation epoch. In contrast, the large spread in stellar metallicity in dwarf galaxies suggests that star formation in their pregenitors was self-regulated: we propose the protocluster clouds formed from thermal instability in the protogalactic clouds and show that a population of massive stars is needed to provide sufficient UV flux to prevent the collapsing protogalactic clouds from fragmenting into individual stars. Based upon these constraints, we propose a unified scenario to describe the early epochs of star formation in the Galactic halo as well as the thick and thin components of the Galactic disk.

  3. Inferring the star-formation histories of the most massive and passive early-type galaxies at z < 0.3

    NASA Astrophysics Data System (ADS)

    Citro, Annalisa; Pozzetti, Lucia; Moresco, Michele; Cimatti, Andrea

    2016-07-01

    Context. In the Λ cold dark matter (ΛCDM) cosmological framework, massive galaxies are the end-points of the hierarchical evolution and are therefore key probes for understanding how the baryonic matter evolves within the dark matter halos. Aims: The aim of this work is to use the archaeological approach in order to infer the stellar population properties and star formation histories of the most massive (M > 1010.75 M⊙) and passive early-type galaxies (ETGs) at 0 < z < 0.3 (corresponding to a cosmic time interval of ~3.3 Gyr) based on stacked, high signal-to-noise (S/N), spectra extracted from the Sloan Digital Sky Survey (SDSS). Our study is focused on the most passive ETGs in order to avoid the contamination of galaxies with residual star formation activity and extract the evolutionary information on the oldest envelope of the global galaxy population. Methods: Unlike most previous studies in this field, we did not rely on individual absorption features such as the Lick indices, but we used the information present in the full spectrum with the STARLIGHT public code, adopting different stellar population synthesis models. Successful tests have been performed to assess the reliability of STARLIGHT to retrieve the evolutionary properties of the ETG stellar populations such as the age, metallicity and star formation history. The results indicate that these properties can be derived with accuracy better than 10% at S/N ≳ 10-20, and also that the procedure of stacking galaxy spectra does not introduce significant biases into their retrieval. Results: Based on our spectral analysis, we found that the ETGs of our sample are very old systems - the most massive ones are almost as old as the Universe. The stellar metallicities are slightly supersolar, with a mean of Z ~ 0.027 ± 0.002 and Z ~ 0.029 ± 0.0015 (depending on the spectral synthesis models used for the fit) and do not depend on redshift. Dust extinction is very low, with a mean of AV ~ 0.08 ± 0.030 mag

  4. On the Star Formation Rate, Initial Mass Function, and Hubble Type of Disk Galaxies and the Age of the Universe

    NASA Astrophysics Data System (ADS)

    Sommer-Larsen, Jesper

    1996-01-01

    Evolutionary models for the disks of large disk galaxies, including effects of star formation, non-instantaneous gas recycling from stars, and infall of low-metallicity gas from the halo, have been calculated and compared with data for nearby, generally large disk galaxies on present disk star-formation rates (based on integrated Hα luminosities) as a function of disk gas fractions. The data were extracted from the work by Kennicutt, Tamblyn, & Congdon. The result of the comparison suggests that for disk galaxies the Hubble sequence is a disk age sequence, with early-type disks being the oldest and late types the youngest. Under the assumption of a minimum age of the Galactic disk of 10 Gyr, the mean age of Sa/Sab galaxies, and hence the age of the universe, is found to be at least 17±2 Gyr. It is furthermore found that the disk star-formation timescale is approximately independent of disk-galaxy type. Finally, it is found that the global initial mass function (IMF) in galactic disks is 2-3 times more weighted toward high-mass stars than the Scalo "best-fitting" model for the solar-neighborhood IMF. The more top-heavy model of Kennicutt provides a good fit to observation.

  5. Exploring simulated early star formation in the context of the ultrafaint dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Corlies, Lauren; Johnston, Kathryn V.; Wise, John H.

    2018-04-01

    Ultrafaint dwarf galaxies (UFDs) are typically assumed to have simple, stellar populations with star formation ending at reionization. Yet as the observations of these galaxies continue to improve, their star formation histories (SFHs) are revealed to be more complicated than previously thought. In this paper, we study how star formation, chemical enrichment, and mixing proceed in small, dark matter haloes at early times using a high-resolution, cosmological, hydrodynamical simulation. The goals are to inform the future use of analytic models and to explore observable properties of the simulated haloes in the context of UFD data. Specifically, we look at analytic approaches that might inform metal enrichment within and beyond small galaxies in the early Universe. We find that simple assumptions for modelling the extent of supernova-driven winds agree with the simulation on average, whereas inhomogeneous mixing and gas flows have a large effect on the spread in simulated stellar metallicities. In the context of the UFDs, this work demonstrates that simulations can form haloes with a complex SFH and a large spread in the metallicity distribution function within a few hundred Myr in the early Universe. In particular, bursty and continuous star formation are seen in the simulation and both scenarios have been argued from the data. Spreads in the simulated metallicities, however, remain too narrow and too metal-rich when compared to the UFDs. Future work is needed to help reduce these discrepancies and advance our interpretation of the data.

  6. Interstellar matter in early-type galaxies. II - The relationship between gaseous components and galaxy types

    NASA Technical Reports Server (NTRS)

    Bregman, Joel N.; Hogg, David E.; Roberts, Morton S.

    1992-01-01

    Interstellar components of early-type galaxies are established by galactic type and luminosity in order to search for relationships between the different interstellar components and to test the predictions of theoretical models. Some of the data include observations of neutral hydrogen, carbon monoxide, and radio continuum emission. An alternative distance model which yields LX varies as LB sup 2.45, a relation which is in conflict with simple cooling flow models, is discussed. The dispersion of the X-ray luminosity about this regression line is unlikely to result from stripping. The striking lack of clear correlations between hot and cold interstellar components, taken together with their morphologies, suggests that the cold gas is a disk phenomenon while the hot gas is a bulge phenomenon, with little interaction between the two. The progression of galaxy type from E to Sa is not only a sequence of decreasing stellar bulge-to-disk ratio, but also of hot-to-cold-gas ratio.

  7. Recent Structural Evolution of Early-Type Galaxies: Size Growth from z = 1 to z = 0

    NASA Astrophysics Data System (ADS)

    van der Wel, Arjen; Holden, Bradford P.; Zirm, Andrew W.; Franx, Marijn; Rettura, Alessandro; Illingworth, Garth D.; Ford, Holland C.

    2008-11-01

    Strong size and internal density evolution of early-type galaxies between z ~ 2 and the present has been reported by several authors. Here we analyze samples of nearby and distant (z ~ 1) galaxies with dynamically measured masses in order to confirm the previous, model-dependent results and constrain the uncertainties that may play a role. Velocity dispersion (σ) measurements are taken from the literature for 50 morphologically selected 0.8 < z < 1.2 field and cluster early-type galaxies with typical masses Mdyn = 2 × 1011 M⊙. Sizes (Reff) are determined with Advanced Camera for Surveys imaging. We compare the distant sample with a large sample of nearby (0.04 < z < 0.08) early-type galaxies extracted from the Sloan Digital Sky Survey for which we determine sizes, masses, and densities in a consistent manner, using simulations to quantify systematic differences between the size measurements of nearby and distant galaxies. We find a highly significant difference between the σ - Reff distributions of the nearby and distant samples, regardless of sample selection effects. The implied evolution in Reff at fixed mass between z = 1 and the present is a factor of 1.97 +/- 0.15. This is in qualitative agreement with semianalytic models; however, the observed evolution is much faster than the predicted evolution. Our results reinforce and are quantitatively consistent with previous, photometric studies that found size evolution of up to a factor of 5 since z ~ 2. A combination of structural evolution of individual galaxies through the accretion of companions and the continuous formation of early-type galaxies through increasingly gas-poor mergers is one plausible explanation of the observations. Based on observations with the Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555, and observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory

  8. Neutral Gas Properties of Extremely Isolated Early-type Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Trisha; Marcum, Pamela M.; Fanelli, Michael N., E-mail: trisha.l.ashley@nasa.gov, E-mail: pamela.m.marcum@nasa.gov, E-mail: michael.n.fanelli@nasa.gov

    We present the results of single-dish atomic hydrogen (H i) observations of six highly isolated early-type galaxies. These objects are a representative subset of galaxies previously studied at optical wavelengths and selected to be separated by at least 2.5 Mpc from companions brighter than M{sub V}  = −16.5 mag. Each galaxy was observed with a single pointing using the NRAO Green Bank Telescope L -band receiver. Five of these systems were strongly detected in H i. These five galaxies exhibit H i profiles with a range of properties: single Gaussian-like peaks, separate double peaks, and double horn-like profiles. The four bluestmore » galaxies ( B − V < 0.54) all contain significant gas with H i masses ranging from 1.1 × 10{sup 8} to 1.4 × 10{sup 9}.« less

  9. Galaxy populations in the Antlia cluster - III. Properties of faint early-type galaxies

    NASA Astrophysics Data System (ADS)

    Smith Castelli, Analía. V.; Cellone, Sergio A.; Faifer, Favio R.; Bassino, Lilia P.; Richtler, Tom; Romero, Gisela A.; Calderón, Juan Pablo; Caso, Juan Pablo

    2012-01-01

    We present a new analysis of the early-type galaxy population in the central region of the Antlia cluster, focusing on the faint systems such as dwarf ellipticals (dEs) and dwarf spheroidals (dSphs). The colour-magnitude relation (CMR) and the relation between luminosity and mean effective surface brightness for galaxies in the central region of Antlia have been previously studied in Paper I of the present series. Now we confirm 22 early-type galaxies as Antlia members, using Gemini-GMOS and Magellan-MIKE spectra. Among them, 15 are dEs from the FS90 Antlia Group catalogue, two belong to the rare type of compact ellipticals (cEs) and five are new faint dwarfs that had never been catalogued before. In addition, we present 16 newly identified low-surface-brightness galaxy candidates, almost half of them displaying morphologies consistent with being Antlia's counterparts of Local Group dSphs, which extend the faint luminosity limit of our study down to MB=-10.1(BT= 22.6) mag. With these new data, we built an improved CMR in the Washington photometric system, i.e. integrated T1 magnitudes versus (C-T1) colours, which extends ˜4 mag faintwards the limit of spectroscopically confirmed Antlia members. When only confirmed early-type members are considered, this relation extends over 10 mag in luminosity with no apparent change in slope or increase in colour dispersion towards its faint end. The intrinsic colour scatter of the relation is compared with those reported for other clusters of galaxies; we argue that it is likely that the large scatter of the CMR, usually reported at faint magnitudes, is mostly due to photometric errors along with an improper membership/morphological classification. The distinct behaviour of the luminosity versus mean effective surface brightness relation at the bright and faint ends is analysed, while it is confirmed that dE galaxies on the same relation present a very similar effective radius, regardless of their colour. The projected spatial

  10. The diversity of atomic hydrogen in slow rotator early-type galaxies

    NASA Astrophysics Data System (ADS)

    Young, Lisa M.; Serra, Paolo; Krajnović, Davor; Duc, Pierre-Alain

    2018-06-01

    We present interferometric observations of H I in nine slow rotator early-type galaxies of the Atlas3D sample. With these data, we now have sensitive H I searches in 34 of the 36 slow rotators. The aggregate detection rate is 32 per cent ± 8 per cent, consistent with the previous work; however, we find two detections with extremely high H I masses, whose gas kinematics are substantially different from what was previously known about H I in slow rotators. These two cases (NGC 1222 and NGC 4191) broaden the known diversity of H I properties in slow rotators. NGC 1222 is a merger remnant with prolate-like rotation and, if it is indeed prolate in shape, an equatorial gas disc; NGC 4191 has two counter-rotating stellar discs and an unusually large H I disc. We comment on the implications of this disc for the formation of 2σ galaxies. In general, the H I detection rate, the incidence of relaxed H I discs, and the H I/stellar mass ratios of slow rotators are indistinguishable from those of fast rotators. These broad similarities suggest that the H I we are detecting now is unrelated to the galaxies' formation processes and was often acquired after their stars were mostly in place. We also discuss the H I non-detections; some of these galaxies that are undetected in H I or CO are detected in other tracers (e.g. FIR fine structure lines and dust). The question of whether there is cold gas in massive galaxies' scoured nuclear cores still needs work. Finally, we discuss an unusual isolated H I cloud with a surprisingly faint (undetected) optical counterpart.

  11. Real & Simulated IFU Observations of Low-Mass Early-Type Galaxies: Environmental Influence Probed for Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Sybilska, Agnieszka; Łokas, Ewa Luiza; Fouquet, Sylvain

    2017-03-01

    We combine high-quality IFU data with a new set of numerical simulations to study low-mass early type galaxies (dEs) in dense environments. Our earlier study of dEs in the Virgo cluster has produced the first large-scale maps of kinematic and stellar population properties of dEs in those environments (Ryś et al. 2013, 2014, 2015). A quantitative discrimination between various (trans)formation processes proposed for these objects is, however, a complex issue, requiring a priori assumptions about the progenitors of galaxies we observe and study today. To bridge this gap between observations and theoretical predictions, we use the expertise gained in the IFU data analysis to look ``through the eye of SAURON'' at our new suite of high-resolution N-body simulations of dEs in the Virgo cluster. Mimicking the observers perspective as closely as possible, we can also indicate the existing instrumental and viewer limitations regarding what we are/are not able to detect as observers.

  12. The galaxy-wide initial mass function of dwarf late-type to massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Weidner, C.; Kroupa, P.; Pflamm-Altenburg, J.; Vazdekis, A.

    2013-12-01

    Observational studies are showing that the galaxy-wide stellar initial mass function (IMF) is top-heavy in galaxies with high star formation rates (SFRs). Calculating the integrated galactic stellar initial mass function (IGIMF) as a function of the SFR of a galaxy, it follows that galaxies which have or which formed with SFRs >10 M⊙ yr-1 would have a top-heavy IGIMF in excellent consistency with the observations. Consequently and in agreement with observations, elliptical galaxies would have higher mass-to-light ratios as a result of the overabundance of stellar remnants compared to a stellar population that formed with an invariant canonical stellar IMF. For the Milky Way, the IGIMF yields very good agreement with the disc- and the bulge IMF determinations. Our conclusions are that purely stochastic descriptions of star formation on the scales of a parsec and above are falsified. Instead, star formation follows the laws, stated here as axioms, which define the IGIMF theory. We also find evidence that the power-law index β of the embedded cluster mass function decreases with increasing SFR. We propose further tests of the IGIMF theory through counting massive stars in dwarf galaxies.

  13. Understanding the formation and evolution of early-type galaxies based on newly developed single-burst stellar population synthesis models in the infrared

    NASA Astrophysics Data System (ADS)

    Roeck, Benjamin

    2015-12-01

    whole optical and infrared wavelength range between 3500 and 50000Å which are almost completely based on spectra of observed stars (apart from two gaps which were fitted with theoretical stellar spectra) . We analyze the behaviour of the near-infrared (J - K) and the Spitzer ([3.6]-[4.5]) colour calculated from our models. For ages older than 3 Gyr, both colours depend only slightly on age and metallicity. However, for younger ages, both colours become redder which is caused by the asymptotic giant branch stars contributing significantly to the light in the infrared at ages between 0.1 and 3 Gyr. Furthermore, we find a satisfactory agreement between the optical and near-infrared colours measured from our models and the colours observed from various samples of globular clusters and early-type x galaxies. However, our model predictions are only able to reproduce correctly the Spitzer ([3.6]-[4.5]) colours of older, more massive galaxies that resemble a single-burst population. Younger, less massive and more metal-poor galaxies show redder colours than our models. This mismatch can be explained by a more extended star formation history of these galaxies which includes a metal-poor or/and young population. The Spitzer ([3.6]-[4.5]) colours derived from our models also agree very well with those from most other models available in this wavelength range as long as they also correctly take into account a strong CO absorption band situated at 4.5 μm. The model predictions for colours in the near-infrared, such as (J - K), differ more between the different sets of models, depending on the underlying prescriptions for the asymptotic giant branch stellar evolutionary phase. Compared to other authors, we adopt only a moderate contribution of asymptotic giant branch stars to our models. Our stellar population models allow us also to determine mass-to-light ratios in different infrared bands. Consequently, we can confirm that the massto- light ratio determined in the Spitzer [3

  14. Diverse Formation Mechanisms for Compact Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Ah; Paudel, Sanjaya; Yoon, Suk-Jin

    2018-01-01

    Compact, quenched galaxies such as M32 are unusual ones located off the mass - size scaling relation defined by normal galaxies. Still, their formation mechanisms remain unsolved. Here we investigate the evolution of ~100 compact, quenched galaxies at z = 0 identified in the Illustris cosmological simulation. We identify three ways for a galaxy to become a compact one and, often, multiple mechanisms operate in a combined manner. First, stripping is responsible for making about a third of compact galaxies. Stripping removes stars from galaxies, usually while keeping their sizes intact. About one third are galaxies that cease their growth early on after entering into more massive, gigantic halos. Finally, about half of compact galaxies, ~ 35 % of which turn out to undergo stripping, experience the compaction due to the highly centrally concentrated star formation. We discuss the evolutionary path of compact galaxies on the mass – size plane for each mechanism in a broader context of dwarf galaxy formation and evolution.

  15. Early-type galaxy archeology: Ages, abundance ratios, and effective temperatures from full-spectrum fitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Charlie; Graves, Genevieve J.; Van Dokkum, Pieter G.

    2014-01-01

    The stellar populations of galaxies hold vital clues to their formation histories. In this paper we present results based on modeling stacked spectra of early-type galaxies drawn from the Sloan Digital Sky Survey as a function of velocity dispersion, σ, from 90 km s{sup –1} to 300 km s{sup –1}. The spectra are of extremely high quality, with typical signal-to-noise ratio of 1000 Å{sup –1}, and a wavelength coverage of 4000 Å –8800 Å. Our population synthesis model includes variation in 16 elements from C to Ba, a two-component star formation history, the shift in effective temperature, Δ T {submore » eff}, of the stars with respect to a solar metallicity isochrone, and the stellar initial mass function, among other parameters. In our approach we fit the full optical spectra rather than a select number of spectral indices and are able to, for the first time, measure the abundances of the elements V, Cr, Mn, Co, and Ni from the integrated light of distant galaxies. Our main results are as follows: (1) light-weighted stellar ages range from 6-12 Gyr from low to high σ; (2) [Fe/H] varies by less than 0.1 dex across the entire sample; (3) Mg closely tracks O, and both increase from ≈0.0 at low σ to ∼0.25 at high σ; Si and Ti show a shallower rise with σ, and Ca tracks Fe rather than O; (4) the iron peak elements V, Cr, Mn, and Ni track Fe, while Co tracks O, suggesting that Co forms primarily in massive stars; (5) C and N track O over the full sample and [C/Fe] and [N/Fe] exceed 0.2 at high σ; and (6) the variation in Δ T {sub eff} with total metallicity closely follows theoretical predictions based on stellar evolution theory. This last result is significant because it implies that we are robustly solving not only for the detailed abundance patterns but also the detailed temperature distributions (i.e., isochrones) of the stars in these galaxies. A variety of tests reveal that the systematic uncertainties in our measurements are probably 0

  16. X-ray Emission from Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip; Prestwich, Andrea H.; Mirabel, I. Felix; Feng, Hua

    2016-01-01

    Around 300,000 years after the Big Bang, the Universe had cooled enough to combine and form neutral atoms. This signified the beginning of a time known as the Dark Ages. Neutral matter began to fall into the dark matter gravitational wells that were seeded after the initial moments of the Big Bang. As the first stars and galaxies formed within these gravitational wells, the surrounding baryonic matter was heated and started to ionize. The source of energetic photons that heated and reionized the early Universe remains uncertain. Early galaxies had low metallicity and recent population synthesis calculations suggest that the number and luminosity of high-mass X-ray binaries are enhanced in star-forming galaxies with low metallicity, offering a potentially important and previously overlooked source of heating and reionization. Here we examine two types of local galaxies that have been shown to be good analogs to the early galaxies in the Universe: Blue compact dwarf galaxies (BCDs) and Lyman Break Analogs (LBAs).A BCD is defined by its blue optical colors, low metallicities, and physically small size. This makes BCDs the best available local analogs for early star formation. We analyzed data from a sample of 25 metal-poor BCDs and compared our results with those of near-solar metallicity galaxies. Using a Bayesian approach, we showed that the X-ray luminosity function for the low-metallicity BCDs is significantly elevated relative to the XLF for near-solar metallicity galaxies.Larger, gas-rich galaxies may have formed shortly after these first galaxies. These larger galaxies would be similar in their properties to the high-redshift Lyman break galaxies (LBGs). LBAs provide the best local comparison to the LBGs. We studied a sample of 10 LBAs in order to measure the relation between star formation rate and X-ray luminosity for these galaxies. We found that for LBAs with intermediate sub-solar metallicities, there is enhanced X-ray emission relative to the expected

  17. Age Dating Merger Events in Early Type Galaxies via the Detection of AGB Light

    NASA Technical Reports Server (NTRS)

    Bothun, G.

    2005-01-01

    A thorough statistical analysis of the J-H vs. H-K color plane of all detected early type galaxies in the 2MASS catalog with velocities less than 5000 km/s has been performed. This all sky survey is not sensitive to one particular galactic environment and therefore a representative range of early type galaxy environments have been sampled. Virtually all N-body simulation so major mergers produces a central starburst due to rapid collection of gas. This central starburst is of sufficient amplitude to change the stellar population in the central regions of the galaxy. Intermediate age populations are given away by the presence of AGB stars which will drive the central colors redder in H-K relative to the J- H baseline. This color anomaly has a lifetime of 2-5 billion years depending on the amplitude of the initial starburst Employing this technique on the entire 2MASS sample (several hundred galaxies) reveals that the AGB signature occurs less than 1% of the time. This is a straightforward indication that virtually all nearby early type galaxies have not had a major merger occur within the last few billion years.

  18. The Star Formation Demographics of Galaxies in the Local Volume

    NASA Astrophysics Data System (ADS)

    Lee, Janice C.; Kennicutt, Robert C.; Funes, S. J., José G.; Sakai, Shoko; Akiyama, Sanae

    2007-12-01

    We examine the connections between the current global star formation activity, luminosity, dynamical mass, and morphology of galaxies in the Local Volume, using Hα data from the 11 Mpc Hα and Ultraviolet Galaxy Survey (11HUGS). Taking the equivalent width (EW) of the Hα emission line as a tracer of the specific star formation rate, we analyze the distribution of galaxies in the MB-EW and rotational velocity (Vmax)-EW planes. Star-forming galaxies show two characteristic transitions in these planes. A narrowing of the galaxy locus occurs at MB~-15 and Vmax~50 km s-1, where the scatter in the logarithmic EWs drops by a factor of 2 as the luminosities/masses increase, and galaxy morphologies shift from predominately irregular to late-type spiral. Another transition occurs at MB~-19 and Vmax~120 km s-1, above which the sequence turns off toward lower EWs and becomes mostly populated by intermediate- and early-type bulge-prominent spirals. Between these two transitions, the mean logarithmic EW appears to remain constant at 30 Å. We comment on how these features reflect established empirical relationships, and provide clues for identifying the large-scale physical processes that both drive and regulate star formation, with emphasis on the low-mass galaxies which dominate our approximately volume-limited sample.

  19. Reversal of Fortune: Increased Star Formation Efficiencies in the Early Histories of Dwarf Galaxies?

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Weisz, Daniel R.; Conroy, Charlie

    2014-08-01

    On dwarf galaxy scales, the different shapes of the galaxy stellar mass function and the dark halo mass function require a star-formation efficiency (SFE) in these systems that is currently more than 1 dex lower than that of Milky Way-size halos. Here, we argue that this trend may actually be reversed at high redshift. Specifically, by combining the resolved star-formation histories of nearby isolated dwarfs with the simulated mass-growth rates of dark matter halos, we show that the assembly of these systems occurs in two phases: (1) an early, fast halo accretion phase with a rapidly deepening potential well, characterized by a high SFE; and (2) a late, slow halo accretion phase where, perhaps as a consequence of reionization, the SFE is low. Nearby dwarfs have more old stars than predicted by assuming a constant or decreasing SFE with redshift, a behavior that appears to deviate qualitatively from the trends seen among more massive systems. Taken at face value, the data suggest that at sufficiently early epochs, dwarf galaxy halos above the atomic cooling mass limit can be among the most efficient sites of star formation in the universe.

  20. Testing the Presence of Multiple Photometric Components in Nearby Early-type Galaxies using SDSS

    NASA Astrophysics Data System (ADS)

    Oh, Semyeong; Greene, Jenny E.; Lackner, Claire N.

    2017-02-01

    We investigate two-dimensional image decomposition of nearby, morphologically selected early-type galaxies (ETGs). We are motivated by recent observational evidence of significant size growth of quiescent galaxies and theoretical development advocating a two-phase formation scenario for ETGs. We find that a significant fraction of nearby ETGs show changes in isophotal shape that require multi-component models. The characteristic sizes of the inner and outer component are ˜3 and ˜15 kpc. The inner component lies on the mass-size relation of ETGs at z ˜ 0.25-0.75, while the outer component tends to be more elliptical and hints at a stochastic buildup process. We find real physical differences between single- and double-component ETGs, with double-component galaxies being younger and more metal-rich. The fraction of double-component ETGs increases with increasing σ and decreases in denser environments. We hypothesize that double-component systems were able to accrete gas and small galaxies until later times, boosting their central densities, building up their outer parts, and lowering their typical central ages. In contrast, the oldest galaxies, perhaps due to residing in richer environments, have no remaining hints of their last accretion episode.

  1. PHOTOMETRIC PROPERTIES AND LUMINOSITY FUNCTION OF NEARBY MASSIVE EARLY-TYPE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Y. Q.; Xia, X. Y.; Hao, C. N.

    We perform photometric analyses of a bright early-type galaxy sample with 2949 galaxies (M{sub r} < -22.5 mag) in the redshift range of 0.05-0.15, drawn from the Sloan Digital Sky Survey (SDSS) DR7 with morphological classification from Galaxy Zoo 1. We measure the Petrosian and isophotal magnitudes, as well as the corresponding half-light radius for each galaxy. We find that for the brightest galaxies (M{sub r} < -23 mag), our Petrosian magnitudes and isophotal magnitudes to 25 mag arcsec{sup -2} and 1% of the sky brightness are on average 0.16 mag, 0.20 mag, and 0.26 mag brighter than the SDSSmore » Petrosian values, respectively. In the first case, the underestimations are caused by overestimations in the sky background by the SDSS PHOTO algorithm, while the latter two are also due to deeper photometry. Similarly, the typical half-light radii (r{sub 50}) measured by the SDSS algorithm are smaller than our measurements. As a result, the bright end of the r-band luminosity function is found to decline more slowly than previous works. Our measured luminosity densities at the bright end are more than one order of magnitude higher than those of Blanton et al., and the stellar mass densities at M{sub *} {approx} 5 Multiplication-Sign 10{sup 11} M{sub Sun} and M{sub *} {approx} 10{sup 12} M{sub Sun} are a few tenths and a factor of a few higher than those of Bernardi et al. These results may significantly alleviate the tension in the assembly of massive galaxies between observations and predictions of the hierarchical structure formation model.« less

  2. Galaxy formation

    PubMed Central

    Peebles, P. J. E.

    1998-01-01

    It is argued that within the standard Big Bang cosmological model the bulk of the mass of the luminous parts of the large galaxies likely had been assembled by redshift z ∼ 10. Galaxy assembly this early would be difficult to fit in the widely discussed adiabatic cold dark matter model for structure formation, but it could agree with an isocurvature version in which the cold dark matter is the remnant of a massive scalar field frozen (or squeezed) from quantum fluctuations during inflation. The squeezed field fluctuations would be Gaussian with zero mean, and the distribution of the field mass therefore would be the square of a random Gaussian process. This offers a possibly interesting new direction for the numerical exploration of models for cosmic structure formation. PMID:9419326

  3. Effects of secular evolution on the star formation history of galaxies

    NASA Astrophysics Data System (ADS)

    Lorenzo, M. Fernández; Sulentic, J.; Verdes-Montenegro, L.; Argudo-Fernández, M.; Ruiz, J. E.; Sabater, J.; Sánchez-Expósito, S.

    2015-03-01

    We report the study performed as part of the AMIGA (Analysis of the interstellar Medium of Isolated GAlaxies; http://www.amiga.iaa.es) project, focused on the SDSS (g-r) colors of the sample. Assuming that color is an indicator of star formation history, this work better records the signature of passive star formation via pure secular evolution. Median values for each morphological type in AMIGA were compared with equivalent measures for galaxies in denser environments. We found a tendency for AMIGA spiral galaxies to be redder than galaxies in close pairs, but no clear difference when we compare with galaxies in other (e.g. group) environments. The (g-r) color of isolated galaxies presents a Gaussian distribution, as indicative of pure secular evolution, and a smaller median absolute deviation (almost half) compared to both wide and close pairs. This redder color and lower color dispersion of AMIGA spirals compared with close pairs is likely due to a more passive star formation in very isolated galaxies. In Fig. 1, we represent the size versus stellar mass for early and late-type galaxies of our sample, compared with the local relations of Shen et al. (2003). The late-type isolated galaxies are ~1.2 times larger or have less stellar mass than local spirals in other environments. The latter would be in agreement with the passive star formation found in the previous part. We acknowledge Grant AYA2011-30491-C02-01, P08-FQM-4205 and TIC-114.

  4. X-ray Scaling Relations of Early Type Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo

    2015-08-01

    We will review recent results of the X-ray scaling relations of early type galaxies. With high quality Chandra X-ray data, the properties (Lx and T) of hot ISM are accurately measured from gas-poor to gas-rich galaxies. We found a strong correlation between Lx(gas) and M(total) among ETGs with independently measured M(total), indicating that the total mass is the primary factor in regulating the amount of hot gas. We found a tight correlation between Lx(gas) and T(gas) among normal (non-cD), genuine (passively evolving, sigma-supported) ellipticals. This relation holds in a large range of Lx (several 1038 - a few 1041 erg/s). While this relation can be understood among gas-rich galaxies (Lx > 1040 erg/s) as a consequence of virialized gaseous halos in the dark matter potentials, the same tight relation is unexpected among gas-poor galaxies where the hot gas is in a wind/outflow state. We also found an interesting difference between cDs and giant Es, the former having an order of magnitude higher Lx(gas) with a similar T(gas). We will discuss the implications of our results by comparing with other observations of galaxies/groups and recent simulations.

  5. The influence of galaxy environment on the stellar initial mass function of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Rosani, Giulio; Pasquali, Anna; La Barbera, Francesco; Ferreras, Ignacio; Vazdekis, Alexandre

    2018-06-01

    In this paper, we investigate whether the stellar initial mass function (IMF) of early-type galaxies depends on their host environment. To this purpose, we have selected a sample of early-type galaxies from the SPIDER catalogue, characterized their environment through the group catalogue of Wang et al., and used their optical Sloan Digital Sky Survey (SDSS) spectra to constrain the IMF slope, through the analysis of IMF-sensitive spectral indices. To reach a high enough signal-to-noise ratio, we have stacked spectra in velocity dispersion (σ0) bins, on top of separating the sample by galaxy hierarchy and host halo mass, as proxies for galaxy environment. In order to constrain the IMF, we have compared observed line strengths and predictions of MIUSCAT/EMILES synthetic stellar population models, with varying age, metallicity, and `bimodal' (low-mass tapered) IMF slope (Γ _b). Consistent with previous studies, we find that Γ _b increases with σ0, becoming bottom-heavy (i.e. an excess of low-mass stars with respect to the Milky Way like IMF) at high σ0. We find that this result is robust against the set of isochrones used in the stellar population models, as well as the way the effect of elemental abundance ratios is taken into account. We thus conclude that it is possible to use currently state-of-the-art stellar population models and intermediate resolution spectra to consistently probe IMF variations. For the first time, we show that there is no dependence of Γb on environment or galaxy hierarchy, as measured within the 3 arcsec SDSS fibre, thus leaving the IMF as an intrinsic galaxy property, possibly set already at high redshift.

  6. The Evolution of Globular Cluster Systems In Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl

    1999-07-01

    We will measure structural parameters {core radii and concentrations} of globular clusters in three early-type galaxies using deep, four-point dithered observations. We have chosen globular cluster systems which have young, medium-age and old cluster populations, as indicated by cluster colors and luminosities. Our primary goal is to test the hypothesis that globular cluster luminosity functions evolve towards a ``universal'' form. Previous observations have shown that young cluster systems have exponential luminosity functions rather than the characteristic log-normal luminosity function of old cluster systems. We will test to see whether such young system exhibits a wider range of structural parameters than an old systems, and whether and at what rate plausible disruption mechanisms will cause the luminosity function to evolve towards a log-normal form. A simple observational comparison of structural parameters between different age cluster populations and between diff er ent sub-populations within the same galaxy will also provide clues concerning both the formation and destruction mechanisms of star clusters, the distinction between open and globular clusters, and the advisability of using globular cluster luminosity functions as distance indicators.

  7. The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Pantoni, L.; Zanisi, L.; Shi, J.; Mancuso, C.; Massardi, M.; Shankar, F.; Bressan, A.; Danese, L.

    2018-04-01

    We aim to provide a holistic view on the typical size and kinematic evolution of massive early-type galaxies (ETGs) that encompasses their high-z star-forming progenitors, their high-z quiescent counterparts, and their configurations in the local Universe. Our investigation covers the main processes playing a relevant role in the cosmic evolution of ETGs. Specifically, their early fast evolution comprises biased collapse of the low angular momentum gaseous baryons located in the inner regions of the host dark matter halo; cooling, fragmentation, and infall of the gas down to the radius set by the centrifugal barrier; further rapid compaction via clump/gas migration toward the galaxy center, where strong heavily dust-enshrouded star formation takes place and most of the stellar mass is accumulated; and ejection of substantial gas amount from the inner regions by feedback processes, which causes a dramatic puffing-up of the stellar component. In the late slow evolution, passive aging of stellar populations and mass additions by dry merger events occur. We describe these processes relying on prescriptions inspired by basic physical arguments and by numerical simulations to derive new analytical estimates of the relevant sizes, timescales, and kinematic properties for individual galaxies along their evolution. Then we obtain quantitative results as a function of galaxy mass and redshift, and compare them to recent observational constraints on half-light size R e , on the ratio v/σ between rotation velocity and velocity dispersion (for gas and stars) and on the specific angular momentum j ⋆ of the stellar component; we find good consistency with the available multiband data in average values and dispersion, both for local ETGs and for their z ∼ 1–2 star-forming and quiescent progenitors. The outcomes of our analysis can provide hints to gauge sub-grid recipes implemented in simulations, to tune numerical experiments focused on specific processes, and to plan

  8. The colour-magnitude relation as a constraint on the formation of rich cluster galaxies

    NASA Astrophysics Data System (ADS)

    Bower, Richard G.; Kodama, Tadayuki; Terlevich, Ale

    1998-10-01

    The colours and magnitudes of early-type galaxies in galaxy clusters are strongly correlated. The existence of such a correlation has been used to infer that early-type galaxies must be old passively evolving systems. Given the dominance of early-type galaxies in the cores of rich clusters, this view sits uncomfortably with the increasing fraction of blue galaxies found in clusters at intermediate redshifts, and with the late formation of galaxies favoured by cold dark matter type cosmologies. In this paper, we make a detailed investigation of these issues and examine the role that the colour-magnitude relation can play in constraining the formation history of galaxies currently found in the cores of rich clusters. We start by considering the colour evolution of galaxies after star formation ceases. We show that the scatter of the colour-magnitude relation places a strong constraint on the spread in age that is allowed for the bulk of the stellar population. In the extreme case that the stars are formed in a single event, the spread in age cannot be more than 4 Gyr. Although the bulk of stars must be formed in a short period, continuing formation of stars in a fraction of the galaxies is not so strongly constrained. We examine a model in which star formation occurs over an extended period of time in most galaxies with star formation being truncated randomly. This model is consistent with the formation of stars in a few systems until look-back times of ~5Gyr. An extension of this type of star formation history allows us to reconcile the small present-day scatter of the colour-magnitude relation with the observed blue galaxy fractions of intermediate redshift galaxy clusters. In addition to setting a limit on the variations in luminosity-weighted age between the stellar populations of cluster galaxies, the colour-magnitude relation can also be used to constrain the degree of merging between pre-existing stellar systems. This test relies on the slope of the colour

  9. Quenching of the star formation activity in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Roehlly, Y.; Fossati, M.; Buat, V.; Boissier, S.; Boquien, M.; Burgarella, D.; Ciesla, L.; Gavazzi, G.; Serra, P.

    2016-11-01

    We study the star formation quenching mechanism in cluster galaxies by fitting the spectral energy distribution (SED) of the Herschel Reference Survey, a complete volume-limited K-band-selected sample of nearby galaxies including objects in different density regions, from the core of the Virgo cluster to the general field. The SEDs of the target galaxies were fitted using the CIGALE SED modelling code. The truncated activity of cluster galaxies was parametrised using a specific star formation history with two free parameters, the quenching age QA and the quenching factor QF. These two parameters are crucial for the identification of the quenching mechanism, which acts on long timescales when starvation processes are at work, but is rapid and efficient when ram pressure occurs. To be sensitive to an abrupt and recent variation of the star formation activity, we combined twenty photometric bands in the UV to far-infrared in a new way with three age-sensitive Balmer line absorption indices extracted from available medium-resolution (R 1000) integrated spectroscopy and with Hα narrow-band imaging data. The use of a truncated star formation history significantly increases the quality of the fit in HI-deficient galaxies of the sample, that is to say, in those objects whose atomic gas content has been removed during the interaction with the hostile cluster environment. The typical quenching age of the perturbed late-type galaxies is QA ≲ 300 Myr whenever the activity of star formation is reduced by 50% < QF ≤ 80% and QA ≲ 500 Myr for QF > 80%, while that of the quiescent early-type objects is QA ≃ 1-3 Gyr. The fraction of late-type galaxies with a star formation activity reduced by QF > 80% and with an HI-deficiency parameter HI-def > 0.4 drops by a factor of 5 from the inner half virial radius of the Virgo cluster (R/Rvir < 0.5), where the hot diffuse X-ray emitting gas of the cluster is located, to the outer regions (R/Rvir > 4). The efficient quenching of the

  10. Interstellar matter in early-type galaxies. I. The catalog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, M.S.; Hogg, D.E.; Bregman, J.N.

    1991-03-01

    A catalog is given of the currently available measurements of interstellar matter in the 467 early-type galaxies listed in the second edition of the Revised Shapley-Ames Catalog of Bright Galaxies. The morphological type range is E, SO, and Sa. The ISM tracers are emission in the following bands: IRAS 100 micron, X-ray, radio, neutral hydrogen, and carbon monoxide. Nearly two-thirds of the Es and SOs have been detected in one or more of these tracers. Additional observed quantities that are tabulated include: magnitude, colors, radial velocity, central velocity dispersion, maximum of the rotation curve, angular size, 60 micron flux, andmore » supernovae. Qualitative statements as to the presence of dust or emission lines, when available in the literature, are given. Quantities derivative from the observed values are also listed and include masses of H I, CO, X-ray gas, and dust as well as an estimate of the total mass and mass-to-luminosity ratio of the individual galaxies. 204 refs.« less

  11. VEGAS: A VST Early-type GAlaxy Survey. I. Presentation, wide-field surface photometry, and substructures in NGC 4472

    NASA Astrophysics Data System (ADS)

    Capaccioli, Massimo; Spavone, Marilena; Grado, Aniello; Iodice, Enrichetta; Limatola, Luca; Napolitano, Nicola R.; Cantiello, Michele; Paolillo, Maurizio; Romanowsky, Aaron J.; Forbes, Duncan A.; Puzia, Thomas H.; Raimondo, Gabriella; Schipani, Pietro

    2015-09-01

    Context. We present the VST Early-type GAlaxy Survey (VEGAS), which is designed to obtain deep multiband photometry in g,r,i, of about one hundred nearby galaxies down to 27.3, 26.8, and 26 mag/arcsec2 respectively, using the ESO facility VST/OmegaCAM. Aims: The goals of the survey are 1) to map the light distribution up to ten effective radii, re; 2) to trace color gradients and surface brightness fluctuation gradients out to a few re for stellar population characterization; and 3) to obtain a full census of the satellite systems (globular clusters and dwarf galaxies) out to 20% of the galaxy virial radius. The external regions of galaxies retain signatures of the formation and evolution mechanisms that shaped them, and the study of nearby objects enables a detailed analysis of their morphology and interaction features. To clarify the complex variety of formation mechanisms of early-type galaxies (ETGs), wide and deep photometry is the primary observational step, which at the moment has been pursued with only a few dedicated programs. The VEGAS survey has been designated to provide these data for a volume-limited sample with exceptional image quality. Methods: In this commissioning photometric paper we illustrate the capabilities of the survey using g- and i-band VST/OmegaCAM images of the nearby galaxy NGC 4472 and of smaller ETGs in the surrounding field. Results: Our surface brightness profiles reach rather faint levels and agree excellently well with previous literature. Genuine new results concern the detection of an intracluster light tail in NGC 4472 and of various substructures at increasing scales. We have also produced extended (g - i) color profiles. Conclusions: The VST/OmegaCAM data that we acquire in the context of the VEGAS survey provide a detailed view of substructures in the optical emission from extended galaxies, which can be as faint as a hundred times below the sky level. Appendices are available in electronic form at http://www.aanda.org

  12. The SAMI Galaxy Survey: spatially resolving the main sequence of star formation

    NASA Astrophysics Data System (ADS)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus

    2018-04-01

    We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  13. Star formation in early-type galaxies: the role of stellar winds and kinematics.

    NASA Astrophysics Data System (ADS)

    Pellegrini, Silvia; Negri, Andrea; Ciotti, Luca

    2015-08-01

    Early-Type galaxies (ETGs) host a hot ISM produced mainly by stellar winds, and heated by Type Ia supernovae (SNIa) and the thermalization of stellar motions. Recent high resolution 2D hydrodynamical simulations (Negri et al. 2014) showed that ordered rotation in the stellar component alters significantly the evolution of the hot ISM, and results in the formation of a centrifugally supported cold equatorial disc. This agrees well with the recent evidence that approximately 50% of massive ETGs host significant quantities of cold gas (Morganti et al. 2006; Young et al. 2014), often in settled configurations, sharing the same kinematics of the stars. In particular, in a systematic investigation of the ATLAS3D sample, the most massive fast-rotating ETGs always have kinematically aligned gas, which suggests an internal origin for it, and molecular gas is detected only in fast rotators (Davis et al. 2011). The observed cold gas seems also to provide material for low level star formation (SF) activity (Combes et al. 2007, Davis et al. 2014). Interestingly, in the ATLAS3D sample, SF and young stellar populations are detected only in fast rotators (Sarzi et al. 2013). In a recent work we investigated whether and how SF takes place in the cold gas disc typically produced in rotating ETGs by our previous 2D simulations, by adding to them the possibility for the gas to form stars (Negri et al. 2015). We also inserted the injection of mass, momentum and energy appropriate for the newly (and continuously) forming stellar population. We found that subsequent generations of stars are formed, and that most of the extended and massive cold disc is consumed by this process, leaving at the present epoch cold gas masses that compare well with those observed. The mass in secondary generations of stars resides mostly in a disc, and could be related to a younger, more metal rich disky stellar component indeed observed in fast rotator ETGs (Cappellari et al. 2013). Most of the mass in

  14. Chemically-Deduced Star Formation Histories Of Dwarf Galaxies Using Barium

    NASA Astrophysics Data System (ADS)

    Duggan, Gina; Kirby, Evan

    2017-06-01

    Dwarf galaxies offer a unique opportunity to study the competing forces of galaxy evolution. Their simpler history (i.e., small size, fewer major mergers, and lack of active galactic nuclei) enables us to isolate different physical mechanisms more easily. The effects of these mechanisms are imprinted on the galaxy's star formation history. Traditionally, star formation histories are determined from color-magnitude diagrams. However, chemical abundances can increase the precision of this measurement. Here we present a simplistic galactic chemical evolution model to infer the star formation history. Chemical abundances are measured from spectra obtained with Keck/DEIMOS medium-resolution spectroscopy for over a hundred red giant stars from several satellite dwarf spheroidal galaxies and globular clusters. We focus our work on iron and barium abundances because they predominantly trace Type Ia supernovae and asymptotic giant branch stars, respectively. The different timescales of these two nucleosynthetic sources can be used to measure a finely resolved star formation history, especially when combined with existing [α/Fe] measurements. These models will inform the details of early star formation in dwarf galaxies and how it is affected by various physical processes, such as reionization and tidal stripping.

  15. Environmental Effects on the Metallicities of Early-Type Galaxies

    NASA Technical Reports Server (NTRS)

    Jones, Christine; Oliversen, Ronald J. (Technical Monitor)

    2003-01-01

    We have completed and published two papers based on research from this grant. Our first paper "SN IA Enrichment in Virgo Early-type Galaxies from ROSAT and ASCA Observations" was published in the Astrophysical Journal (vol 539,603) reported on the properties of nine X-ray bright elliptical galaxies in the Virgo cluster observed by ROSAT and ASCA. We measured iron abundance gradients as a function of radius in three galaxies. We found that the magnesium and silicon abundance gradients were in general flatter than those of iron. We suggest this is due to a metallicity dependence in the metal production rates of SN Ia's. We calculate SN Ia rates in the center of these galaxies that are comparable to those measured optically. Our second paper "ASCA Observations of Groups at Radii of Low Overdensity: Implications for Cosmic Preheating" also was published in the Astrophysical Journal (vol 578, 74). This paper reported on the ASCA spectroscopy of nine groups of galaxies. We found that the entropy profile in groups is driven by nongravitational heating processes, and could be explained by a short period of preheating by galactic winds.

  16. Early assembly of the most massive galaxies.

    PubMed

    Collins, Chris A; Stott, John P; Hilton, Matt; Kay, Scott T; Stanford, S Adam; Davidson, Michael; Hosmer, Mark; Hoyle, Ben; Liddle, Andrew; Lloyd-Davies, Ed; Mann, Robert G; Mehrtens, Nicola; Miller, Christopher J; Nichol, Robert C; Romer, A Kathy; Sahlén, Martin; Viana, Pedro T P; West, Michael J

    2009-04-02

    The current consensus is that galaxies begin as small density fluctuations in the early Universe and grow by in situ star formation and hierarchical merging. Stars begin to form relatively quickly in sub-galactic-sized building blocks called haloes which are subsequently assembled into galaxies. However, exactly when this assembly takes place is a matter of some debate. Here we report that the stellar masses of brightest cluster galaxies, which are the most luminous objects emitting stellar light, some 9 billion years ago are not significantly different from their stellar masses today. Brightest cluster galaxies are almost fully assembled 4-5 billion years after the Big Bang, having grown to more than 90 per cent of their final stellar mass by this time. Our data conflict with the most recent galaxy formation models based on the largest simulations of dark-matter halo development. These models predict protracted formation of brightest cluster galaxies over a Hubble time, with only 22 per cent of the stellar mass assembled at the epoch probed by our sample. Our findings suggest a new picture in which brightest cluster galaxies experience an early period of rapid growth rather than prolonged hierarchical assembly.

  17. EVIDENCE FOR A CONSTANT IMF IN EARLY-TYPE GALAXIES BASED ON THEIR X-RAY BINARY POPULATIONS

    NASA Astrophysics Data System (ADS)

    Zepf, Stephen E.; Maccarone, T. J.; Kundu, A.; Gonzalez, A. H.; Lehmer, B.; Maraston, C.

    2014-01-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having steeper IMFs. These steeper IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars and black holes. In this paper, we specifically predict the variation in the number of black holes and neutron stars in early type galaxies based on the IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary populations (LMXBs) of nearby early-type galaxies. These binaries are field neutron stars or black holes accreting from a low-mass donor star. We specifically compare the number of field LMXBs per K-band light in a well-studied sample of elliptical galaxies, and use this result to distinguish between an invariant IMF and one that is Kroupa/Chabrier-like at low masses and steeper at high masses. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF.

  18. THE EVOLUTION OF EARLY- AND LATE-TYPE GALAXIES IN THE COSMIC EVOLUTION SURVEY UP TO z {approx} 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannella, Maurilio; Gabasch, Armin; Drory, Niv

    2009-08-10

    The Cosmic Evolution Survey (COSMOS) allows for the first time a highly significant census of environments and structures up to redshift 1, as well as a full morphological description of the galaxy population. In this paper we present a study aimed to constrain the evolution, in the redshift range 0.2 < z < 1.2, of the mass content of different morphological types and its dependence on the environmental density. We use a deep multicolor catalog, covering an area of {approx}0.7 deg{sup 2} inside the COSMOS field, with accurate photometric redshifts (i {approx}< 26.5 and {delta}z/(z {sub spec} + 1) {approx}more » 0.035). We estimate galaxy stellar masses by fitting the multicolor photometry to a grid of composite stellar population models. We quantitatively describe the galaxy morphology by fitting point-spread function convolved Sersic profiles to the galaxy surface brightness distributions down to F814 = 24 mag for a sample of 41,300 objects. We confirm an evolution of the morphological mix with redshift: the higher the redshift the more disk-dominated galaxies become important. We find that the morphological mix is a function of the local comoving density: the morphology density relation extends up to the highest redshift explored. The stellar mass function of disk-dominated galaxies is consistent with being constant with redshift. Conversely, the stellar mass function of bulge-dominated systems shows a decline in normalization with redshift. Such different behaviors of late-types and early-types stellar mass functions naturally set the redshift evolution of the transition mass. We find a population of relatively massive, early-type galaxies, having high specific star formation rate (SSFR) and blue colors which live preferentially in low-density environments. The bulk of massive (>7 x 10{sup 10} M {sub sun}) early-type galaxies have similar characteristic ages, colors, and SSFRs independently of the environment they belong to, with those hosting the oldest stars

  19. Galaxy And Mass Assembly (GAMA): galaxy environments and star formation rate variations

    NASA Astrophysics Data System (ADS)

    Wijesinghe, D. B.; Hopkins, A. M.; Brough, S.; Taylor, E. N.; Norberg, P.; Bauer, A.; Brown, M. J. I.; Cameron, E.; Conselice, C. J.; Croom, S.; Driver, S.; Grootes, M. W.; Jones, D. H.; Kelvin, L.; Loveday, J.; Pimbblet, K. A.; Popescu, C. C.; Prescott, M.; Sharp, R.; Baldry, I.; Sadler, E. M.; Liske, J.; Robotham, A. S. G.; Bamford, S.; Bland-Hawthorn, J.; Gunawardhana, M.; Meyer, M.; Parkinson, H.; Drinkwater, M. J.; Peacock, J.; Tuffs, R.

    2012-07-01

    We present a detailed investigation into the effects of galaxy environment on their star formation rates (SFRs) using galaxies observed in the Galaxy And Mass Assembly (GAMA) survey. We use three independent volume-limited samples of galaxies within z < 0.2 and Mr < -17.8. We investigate the known SFR-density relationship and explore in detail the dependence of SFR on stellar mass and density. We show that the SFR-density trend is only visible when we include the passive galaxy population along with the star-forming population. This SFR-density relation is absent when we consider only the star-forming population of galaxies, consistent with previous work. While there is a strong dependence of the EWHα on density we find, as in previous studies, that these trends are largely due to the passive galaxy population and this relationship is absent when considering a 'star-forming' sample of galaxies. We find that stellar mass has the strongest influence on SFR and EWHα with the environment having no significant effect on the star formation properties of the star-forming population. We also show that the SFR-density relationship is absent for both early- and late-type star-forming galaxies. We conclude that the stellar mass has the largest impact on the current SFR of a galaxy, and any environmental effect is not detectable. The observation that the trends with density are due to the changing morphology fraction with density implies that the time-scales must be very short for any quenching of the SFR in infalling galaxies. Alternatively, galaxies may in fact undergo predominantly in situ evolution where the infall and quenching of galaxies from the field into dense environments is not the dominant evolutionary mode.

  20. BUILDING LATE-TYPE SPIRAL GALAXIES BY IN-SITU AND EX-SITU STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillepich, Annalisa; Madau, Piero; Mayer, Lucio

    We analyze the formation and evolution of the stellar components in ''Eris'', a 120 pc resolution cosmological hydrodynamic simulation of a late-type spiral galaxy. The simulation includes the effects of a uniform UV background, a delayed-radiative-cooling scheme for supernova feedback, and a star formation recipe based on a high gas density threshold. It allows a detailed study of the relative contributions of ''in-situ'' (within the main host) and ''ex-situ'' (within satellite galaxies) star formation to each major Galactic component in a close Milky Way analog. We investigate these two star-formation channels as a function of galactocentric distance, along different lines ofmore » sight above and along the disk plane, and as a function of cosmic time. We find that: (1) approximately 70% of today's stars formed in-situ; (2) more than two thirds of the ex-situ stars formed within satellites after infall; (3) the majority of ex-situ stars are found today in the disk and in the bulge; (4) the stellar halo is dominated by ex-situ stars, whereas in-situ stars dominate the mass profile at distances ≲ 5 kpc from the center at high latitudes; and (5) approximately 25% of the inner, r ≲ 20 kpc, halo is composed of in-situ stars that have been displaced from their original birth sites during Eris' early assembly history.« less

  1. SDSS-IV MaNGA: Probing the Kinematic Morphology–Density Relation of Early-type Galaxies with MaNGA

    NASA Astrophysics Data System (ADS)

    Greene, J. E.; Leauthaud, A.; Emsellem, E.; Goddard, D.; Ge, J.; Andrews, B. H.; Brinkman, J.; Brownstein, J. R.; Greco, J.; Law, D.; Lin, Y.-T.; Masters, K. L.; Merrifield, M.; More, S.; Okabe, N.; Schneider, D. P.; Thomas, D.; Wake, D. A.; Yan, R.; Drory, N.

    2017-12-01

    The “kinematic” morphology–density relation for early-type galaxies posits that those galaxies with low angular momentum are preferentially found in the highest-density regions of the universe. We use a large sample of galaxy groups with halo masses {10}12.5< {M}{halo}< {10}14.5 {h}-1 {M}ȯ observed with the Mapping Nearby Galaxies at APO (MaNGA) survey to examine whether there is a correlation between local environment and rotational support that is independent of stellar mass. We find no compelling evidence for a relationship between the angular momentum content of early-type galaxies and either local overdensity or radial position within the group at fixed stellar mass.

  2. The kinematic properties of dwarf early-type galaxies in the Virgo cluster

    NASA Astrophysics Data System (ADS)

    Toloba, E.; Boselli, A.; Peletier, R. F.; Gorgas, J.

    2011-11-01

    We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster. These data are used to study the origin of dEs inhabiting clusters. Within them we detect two populations: half of the sample (52%) are rotationally supported and the other half are pressure supported. We also find that the rotationally supported dEs are located in the outer parts of the cluster, present disky morphological shapes and are younger than those pressure supported that are concentrated in the core of the cluster without any underlying structures. Our analysis reveals that the rotationally supported objects have rotation curves similarly shaped to those of star forming galaxies of similar luminosities and follow the Tully-Fisher relation. This is expected if dEs are the descendant of low luminosity star forming systems which recently entered the cluster and lost their gas due to a ram pressure stripping event, quenching their star formation activity and transforming them into quiescent systems, but conserving their angular momentum.

  3. UV SEDs of early-type cluster galaxies: a new look at the UV upturn

    NASA Astrophysics Data System (ADS)

    Ali, S. S.; Bremer, M. N.; Phillipps, S.; De Propris, R.

    2018-05-01

    Using GALEX, Ultraviolet Optical Telescope (UVOT), and optical photometry, we explore the prevalence and strength of the Ultraviolet (UV) upturn in the spectra of quiescent early-type galaxies in several nearby clusters. Even for galaxies with completely passive optical colours, there is a large spread in vacuum UV colour consistent with almost all having some UV upturn component. Combining GALEX and UVOT data below 3000 Å, we generate for the first time comparatively detailed UV spectral energy distributions for Coma cluster galaxies. Fitting the UV upturn component with a blackbody, 26 of these show a range of characteristic temperatures (10 000-21 000K) for the UV upturn population. Assuming a single temperature to explain GALEX-optical colours could underestimate the fraction of galaxies with UV upturns and mis-classify some as systems with residual star formation. The UV upturn phenomenon is not an exclusive feature found only in giant galaxies; we identify galaxies with similar (or even bluer) FUV - V colours to the giants with upturns over a range of fainter luminosities. The temperature and strength of the UV upturn are correlated with galaxy mass. Under the plausible hypothesis that the sources of the UV upturn are blue horizontal branch stars, the most likely mechanism for this is the presence of a substantial (between 4 per cent and 20 per cent) Helium-rich (Y > 0.3) population of stars in these galaxies, potentially formed at z ˜ 4 and certainly at z > 2; this plausibly sets a lower limit of {˜ } {0.3- 0.8} × 10^{10} M⊙ to the in situ stellar mass of ˜L* galaxies at this redshift.

  4. STELLAR KINEMATICS AND STRUCTURAL PROPERTIES OF VIRGO CLUSTER DWARF EARLY-TYPE GALAXIES FROM THE SMAKCED PROJECT. III. ANGULAR MOMENTUM AND CONSTRAINTS ON FORMATION SCENARIOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toloba, E.; Guhathakurta, P.; Boselli, A.

    2015-02-01

    We analyze the stellar kinematics of 39 dwarf early-type galaxies (dEs) in the Virgo Cluster. Based on the specific stellar angular momentum λ{sub Re} and the ellipticity, we find 11 slow rotators and 28 fast rotators. The fast rotators in the outer parts of the Virgo Cluster rotate significantly faster than fast rotators in the inner parts of the cluster. Moreover, 10 out of the 11 slow rotators are located in the inner 3° (D < 1 Mpc) of the cluster. The fast rotators contain subtle disk-like structures that are visible in high-pass filtered optical images, while the slow rotatorsmore » do not exhibit these structures. In addition, two of the dEs have kinematically decoupled cores and four more have emission partially filling in the Balmer absorption lines. These properties suggest that Virgo Cluster dEs may have originated from late-type star-forming galaxies that were transformed by the environment after their infall into the cluster. The correlation between λ{sub Re} and the clustercentric distance can be explained by a scenario where low luminosity star-forming galaxies fall into the cluster, their gas is rapidly removed by ram-pressure stripping, although some of it can be retained in their core, their star formation is quenched but their stellar kinematics are preserved. After a long time in the cluster and several passes through its center, the galaxies are heated up and transformed into slow rotating dEs.« less

  5. The extent of CO in the early-type galaxy NGC 4472

    NASA Technical Reports Server (NTRS)

    Hutchtmeier, W. K.; Bregman, J. N.; Hogg, D. E.; Roberts, M. S.

    1994-01-01

    NGC 4472, and E/SO system, is the earliest type normal galaxy with detected CO emission, and here we present additional radio observations in the lines of CO(1-0) and CO(2-1) to determine the distribution and internal properties of this gas. The original detection is reconfirmed, but observations at five surrounding locations and at two other locations in the galaxy do not show the gas to be extended; the total H2 gas mass is estimated to be 4 x 10(exp 7) solar mass. A high CO(1-0)/CO(2-1) brightness temperature ratio is found (greater than 3), which is indicative of subthermal excitation of the CO(2-1) line that can occur at low gas temperatures and low gas densities. Also, upper limits are given for the CO(2-1) fluxes in four other early-type galaxies.

  6. Stellar haloes in massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Buitrago, F.

    2017-03-01

    The Hubble Ultra Deep Field (HUDF) opens up an unique window to witness galaxy assembly at all cosmic distances. Thanks to its extraordinary depth, it is a privileged tool to beat the cosmological dimming, which affects any extragalactic observations and has a very strong dependence with redshift (1 +z)^4. In particular, massive (M_{stellar}>5 × 10^{10} M_⊙) Early Type Galaxies (ETGs) are the most interesting candidates for these studies, as they must grow in an inside-out fashion developing an extended stellar envelope/halo that accounts for their remarkable size evolution (˜5 times larger in the nearby Universe than at z=2-3). To this end we have analysed the 6 most massive ETGs at z <1 in the HUDF12. Because of the careful data reduction and the exhaustive treatment of the Point Spread Function (PSF), we are able to trace the galaxy surface brightness profiles up to the same levels as in the local Universe but this time at = 0.65 (31 mag arcsec^{-2} in all 8 HST bands, ˜ 29 mag arcsec^{-2} restframe or beyond 25 effective radii). This fact enables us to investigate the galactic outskirts or stellar haloes at a previously unexplored era, characterising their light and mass profiles, colors and for the first time the amount of mass in ongoing mergers.

  7. A comparison of the near-infrared spectral features of early-type galaxies in the Coma Cluster, the Virgo cluster and the field

    NASA Technical Reports Server (NTRS)

    Houdashelt, Mark L.; Frogel, Jay A.

    1993-01-01

    Earlier researchers derived the relative distance between the Coma and Virgo clusters from color-magnitude relations of the early-type galaxies in each cluster. They found that the derived distance was color-dependent and concluded that the galaxies of similar luminosity in the two clusters differ in their red stellar populations. More recently, the color-dependence of the Coma-Virgo distance modulus has been called into question. However, because these two clusters differ so dramatically in their morphologies and kinematics, it is plausible that the star formation histories of the member galaxies also differed. If the conclusions of earlier researchers are indeed correct, then some signature of the resulting stellar population differences should appear in the near-infrared and/or infrared light of the respective galaxies. We have collected near-infrared spectra of 17 Virgo and 10 Coma early-type galaxies; this sample spans about four magnitudes in luminosity in each cluster. Seven field E/S0 galaxies have been observed for comparison. Pseudo-equivalent widths have been measured for all of the field galaxies, all but one of the Virgo members, and five of the Coma galaxies. The features examined are sensitive to the temperature, metallicity, and surface gravity of the reddest stars. A preliminary analysis of these spectral features has been performed, and, with a few notable exceptions, the measured pseudo-equivalent widths agree well with previously published values.

  8. VEGAS-SSS: A VST Programme to Study the Satellite Stellar Systems around Bright Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Cantiello, M.; Capaccioli, M.; Napolitano, N.; Grado, A.; Limatola, L.; Paolillo, M.; Iodice, E.; Romanowsky, A. J.; Forbes, D. A.; Raimondo, G.; Spavone, M.; La Barbera, F.; Puzia, T. H.; Schipani, P.

    2015-03-01

    The VEGAS-SSS programme is devoted to studying the properties of small stellar systems (SSSs) in and around bright galaxies, built on the VLT Survey Telescope early-type galaxy survey (VEGAS), an ongoing guaranteed time imaging survey distributed over many semesters (Principal Investigator: Capaccioli). On completion, the VEGAS survey will have collected detailed photometric information of ~ 100 bright early-type galaxies to study the properties of diffuse light (surface brightness, colours, surface brightness fluctuations, etc.) and the distribution of clustered light (compact ''small'' stellar systems) out to previously unreached projected galactocentric radii. VEGAS-SSS will define an accurate and homogeneous dataset that will have an important legacy value for studies of the evolution and transformation processes taking place in galaxies through the fossil information provided by SSSs.

  9. 2D modelling of the light distribution of early-type galaxies in a volume-limited sample - II. Results for real galaxies

    NASA Astrophysics Data System (ADS)

    D'Onofrio, M.

    2001-10-01

    In this paper we analyse the results of the two-dimensional (2D) fit of the light distribution of 73 early-type galaxies belonging to the Virgo and Fornax clusters, a sample volume- and magnitude-limited down to MB=-17.3, and highly homogeneous. In our previous paper (Paper I) we have presented the adopted 2D models of the surface-brightness distribution - namely the r1/n and (r1/n+exp) models - we have discussed the main sources of error affecting the structural parameters, and we have tested the ability of the chosen minimization algorithm (MINUIT) in determining the fitting parameters using a sample of artificial galaxies. We show that, with the exception of 11 low-luminosity E galaxies, the best fit of the real galaxy sample is always achieved with the two-component (r1/n+exp) model. The improvement in the χ2 due to the addition of the exponential component is found to be statistically significant. The best fit is obtained with the exponent n of the generalized r1/n Sersic law different from the classical de Vaucouleurs value of 4. Nearly 42 per cent of the sample have n<2, suggesting the presence of exponential `bulges' also in early-type galaxies. 20 luminous E galaxies are fitted by the two-component model, with a small central exponential structure (`disc') and an outer big spheroid with n>4. We believe that this is probably due to their resolved core. The resulting scalelengths Rh and Re of each component peak approximately at ~1 and ~2kpc, respectively, although with different variances in their distributions. The ratio Re/Rh peaks at ~0.5, a value typical for normal lenticular galaxies. The first component, represented by the r1/n law, is probably made of two distinct families, `ordinary' and `bright', on the basis of their distribution in the μe-log(Re) plane, a result already suggested by Capaccioli, Caon and D'Onofrio. The bulges of spirals and S0 galaxies belong to the `ordinary' family, while the large spheroids of luminous E galaxies form the

  10. Dark-ages reionization and galaxy formation simulation - IX. Economics of reionizing galaxies

    NASA Astrophysics Data System (ADS)

    Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Kim, Han-Seek; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-09-01

    Using a series of high-resolution hydrodynamical simulations we show that during the rapid growth of high-redshift (z > 5) galaxies, reserves of molecular gas are consumed over a time-scale of 300 Myr, almost independent of feedback scheme. We find that there exists no such simple relation for the total gas fractions of these galaxies, with little correlation between gas fractions and specific star formation rates. The bottleneck or limiting factor in the growth of early galaxies is in converting infalling gas to cold star-forming gas. Thus, we find that the majority of high-redshift dwarf galaxies are effectively in recession, with demand (of star formation) never rising to meet supply (of gas), irrespective of the baryonic feedback physics modelled. We conclude that the basic assumption of self-regulation in galaxies - that they can adjust total gas consumption within a Hubble time - does not apply for the dwarf galaxies thought to be responsible for providing most UV photons to reionize the high-redshift Universe. We demonstrate how this rapid molecular time-scale improves agreement between semi-analytic model predictions of the early Universe and observed stellar mass functions.

  11. Depleted cores, multicomponent fits, and structural parameter relations for luminous early-type galaxies

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Graham, Alister W.

    2014-11-01

    New surface brightness profiles from 26 early-type galaxies with suspected partially depleted cores have been extracted from the full radial extent of Hubble Space Telescope images. We have carefully quantified the radial stellar distributions of the elliptical galaxies using the core-Sérsic model whereas for the lenticular galaxies a core-Sérsic bulge plus an exponential disc model gives the best representation. We additionally caution about the use of excessive multiple Sérsic functions for decomposing galaxies and compare with past fits in the literature. The structural parameters obtained from our fitted models are, in general, in good agreement with our initial study using radially limited (R ≲ 10 arcsec) profiles, and are used here to update several `central' as well as `global' galaxy scaling relations. We find near-linear relations between the break radius Rb and the spheroid luminosity L such that Rb ∝ L1.13±0.13, and with the supermassive black hole mass MBH such that R_b∝ M_BH^{0.83 ± 0.21}. This is internally consistent with the notion that major, dry mergers add the stellar and black hole mass in equal proportion, i.e. MBH ∝ L. In addition, we observe a linear relation R_b∝ R_e^{0.98 ± 0.15} for the core-Sérsic elliptical galaxies - where Re is the galaxies' effective half-light radii - which is collectively consistent with the approximately linear, bright-end of the curved L-Re relation. Finally, we measure accurate stellar mass deficits Mdef that are in general 0.5-4 MBH, and we identify two galaxies (NGC 1399, NGC 5061) that, due to their high Mdef/MBH ratio, may have experienced oscillatory core-passage by a (gravitational radiation)-kicked black hole. The galaxy scaling relations and stellar mass deficits favour core-Sérsic galaxy formation through a few `dry' major merger events involving supermassive black holes such that M_def ∝ M_BH^{3.70 ± 0.76}, for MBH ≳ 2 × 108 M⊙.

  12. Angular Momentum and Galaxy Formation Revisited

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-01

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j sstarf and mass M sstarf (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j sstarf reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j sstarf in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of ~100 nearby bright galaxies of all types, placing them on a diagram of j sstarf versus M sstarf. The ellipticals and spirals form two parallel j sstarf-M sstarf tracks, with log-slopes of ~0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of ~3-4 if mass-to-light ratio variations are neglected for simplicity, and ~7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j sstarf-M sstarf trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow separate, fundamental j sstarf

  13. ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-15

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j{sub *} and mass M{sub *} (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii aremore » generally sufficient to estimate total j{sub *} reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j{sub *} in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of {approx}100 nearby bright galaxies of all types, placing them on a diagram of j{sub *} versus M{sub *}. The ellipticals and spirals form two parallel j{sub *}-M{sub *} tracks, with log-slopes of {approx}0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of {approx}3-4 if mass-to-light ratio variations are neglected for simplicity, and {approx}7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j{sub *}-M{sub *} trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that

  14. Black-hole-regulated star formation in massive galaxies.

    PubMed

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  15. Black-hole-regulated star formation in massive galaxies

    NASA Astrophysics Data System (ADS)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  16. Towards a physical classification of early-type galaxies. Profile of a key programme.

    NASA Astrophysics Data System (ADS)

    Bender, R.; Capaccioli, M.; Macchetto, F.; Nieto, J.-L.

    1989-03-01

    Hubble was the first who succeeded in classifying galaxies within a scheme of some physical meaning. Although it soon became clear that Hubble's tuning fork does not represent an evolutionary sequence, this essential diagram has proven to be a powerful tool especially for the understanding of late-type galaxies. On the other hand, the "early-type" sequence of elliptical (E) and SO galaxies is less satisfying, because it does not seem to reflect a unique sequence of physical properties. The SO class, although conceived to bridge the gap between disk- and disk-Iess galaxies, has often been abused to host ellipticals exhibiting peculiarities incompatible with their definition as structureless objects. For the elliptical galaxies themselves, "ellipticity" has been found to be essentially meaningless with regard to their angular momentum properties, and shows Iittle, if any, correlation with other global parameters. This fact became apparent after the first stellar kinematical measurements of luminous ellipticals (Bertola and Capaccioli 1975, IIlingworth 1977); E galaxies are not necessarily f1attened by rotation and may have anisotropie velocity dispersions (Binney 1978).

  17. The MASSIVE Survey - X. Misalignment between Kinematic and Photometric Axes and Intrinsic Shapes of Massive Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Ene, Irina; Ma, Chung-Pei; Veale, Melanie; Greene, Jenny E.; Thomas, Jens; Blakeslee, John P.; Foster, Caroline; Walsh, Jonelle L.; Ito, Jennifer; Goulding, Andy D.

    2018-06-01

    We use spatially resolved two-dimensional stellar velocity maps over a 107″ × 107″ field of view to investigate the kinematic features of 90 early-type galaxies above stellar mass 1011.5M⊙ in the MASSIVE survey. We measure the misalignment angle Ψ between the kinematic and photometric axes and identify local features such as velocity twists and kinematically distinct components. We find 46% of the sample to be well aligned (Ψ < 15°), 33% misaligned, and 21% without detectable rotation (non-rotators). Only 24% of the sample are fast rotators, the majority of which (91%) are aligned, whereas 57% of the slow rotators are misaligned with a nearly flat distribution of Ψ from 15° to 90°. 11 galaxies have Ψ ≳ 60° and thus exhibit minor-axis ("prolate") rotation in which the rotation is preferentially around the photometric major axis. Kinematic misalignments occur more frequently for lower galaxy spin or denser galaxy environments. Using the observed misalignment and ellipticity distributions, we infer the intrinsic shape distribution of our sample and find that MASSIVE slow rotators are consistent with being mildly triaxial, with mean axis ratios of b/a = 0.88 and c/a = 0.65. In terms of local kinematic features, 51% of the sample exhibit kinematic twists of larger than 20°, and 2 galaxies have kinematically distinct components. The frequency of misalignment and the broad distribution of Ψ reported here suggest that the most massive early-type galaxies are mildly triaxial, and that formation processes resulting in kinematically misaligned slow rotators such as gas-poor mergers occur frequently in this mass range.

  18. Inefficient star formation in extremely metal poor galaxies.

    PubMed

    Shi, Yong; Armus, Lee; Helou, George; Stierwalt, Sabrina; Gao, Yu; Wang, Junzhi; Zhang, Zhi-Yu; Gu, Qiusheng

    2014-10-16

    The first galaxies contain stars born out of gas with few or no 'metals' (that is, elements heavier than helium). The lack of metals is expected to inhibit efficient gas cooling and star formation, but this effect has yet to be observed in galaxies with an oxygen abundance (relative to hydrogen) below a tenth of that of the Sun. Extremely metal poor nearby galaxies may be our best local laboratories for studying in detail the conditions that prevailed in low metallicity galaxies at early epochs. Carbon monoxide emission is unreliable as a tracer of gas at low metallicities, and while dust has been used to trace gas in low-metallicity galaxies, low spatial resolution in the far-infrared has typically led to large uncertainties. Here we report spatially resolved infrared observations of two galaxies with oxygen abundances below ten per cent of the solar value, and show that stars formed very inefficiently in seven star-forming clumps in these galaxies. The efficiencies are less than a tenth of those found in normal, metal rich galaxies today, suggesting that star formation may have been very inefficient in the early Universe.

  19. Kinematic properties and dark matter fraction of Virgo dwarf early-type galaxies

    NASA Astrophysics Data System (ADS)

    Toloba, E.; Boselli, A.; Peletier, R.; Gorgas, J.

    2015-03-01

    What happens to dwarf galaxies as they enter the cluster potential well is one of the main unknowns in studies of galaxy evolution. Several evidence suggests that late-type galaxies enter the cluster and are transformed to dwarf early-type galaxies (dEs). We study the Virgo cluster to understand which mechanisms are involved in this transformation. We find that the dEs in the outer parts of Virgo have rotation curves with shapes and amplitudes similar to late-type galaxies of the same luminosity (Fig. 1). These dEs are rotationally supported, have disky isophotes, and younger ages than those dEs in the center of Virgo, which are pressure supported, often have boxy isophotes and are older (Fig. 1). Ram pressure stripping, thus, explains the properties of the dEs located in the outskirts of Virgo. However, the dEs in the central cluster regions, which have lost their angular momentum, must have suffered a more violent transformation. A combination of ram pressure stripping and harassment is not enough to remove the rotation and the spiral/disky structures of these galaxies. We find that on the the Faber-Jackson and the Fundamental Plane relations dEs deviate from the trends of massive elliptical galaxies towards the position of dark matter dominated systems such as the dwarf spheroidal satellites of the Milky Way and M31. Both, rotationally and pressure supported dEs, however, populate the same region in these diagrams. This indicates that dEs have a non-negligible dark matter fraction within their half light radius.

  20. New View of Distant Galaxy Reveals Furious Star Formation

    NASA Astrophysics Data System (ADS)

    2007-12-01

    A furious rate of star formation discovered in a distant galaxy shows that galaxies in the early Universe developed either much faster or in a different way from what astronomers have thought. "This galaxy is forming stars at an incredible rate," said Wei-Hao Wang, an astronomer at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. The galaxy, Wang said, is forming the equivalent of 4,000 Suns a year. This is a thousand times more violent than our own Milky Way Galaxy. Location of Distant Galaxy Visible-light, left (from HST) and Infrared, right, (from Spitzer) Images: Circles indicate location of GOODS 850-5. CREDIT: Wang et al., STScI, Spitzer, NASA, NRAO/AUI/NSF Click on image for high-resolution file (1 MB) The galaxy, called GOODS 850-5, is 12 billion light-years from Earth, and thus is seen as it was only about 1.5 billion years after the Big Bang. Wang and his colleagues observed it using the Smithsonian Astrophysical Observatory's Submillimeter Array (SMA) on Mauna Kea in Hawaii. Young stars in the galaxy were enshrouded in dust that was heated by the stars and radiated infrared light strongly. Because of the galaxy's great distance from Earth, the infrared light waves have been stretched out to submillimeter-length radio waves, which are seen by the SMA. The waves were stretched or "redshifted," as astronomers say, by the ongoing expansion of the Universe. "This evidence for prolific star formation is hidden by the dust from visible-light telescopes," Wang explained. The dust, in turn, was formed from heavy elements that had to be built up in the cores of earlier stars. This indicates, Wang said, that significant numbers of stars already had formed, then spewed those heavy elements into interstellar space through supernova explosions and stellar winds. "Seeing the radiation from this heated dust revealed star formation we could have found in no other way," Wang said. Similar dusty galaxies in the early Universe may contain most of the

  1. The SAMI Galaxy Survey: Gravitational Potential and Surface Density Drive Stellar Populations. I. Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Barone, Tania M.; D’Eugenio, Francesco; Colless, Matthew; Scott, Nicholas; van de Sande, Jesse; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Cortese, Luca; Croom, Scott M.; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; Lorente, Nuria P. F.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.

    2018-03-01

    The well-established correlations between the mass of a galaxy and the properties of its stars are considered to be evidence for mass driving the evolution of the stellar population (SP). However, for early-type galaxies (ETGs), we find that g ‑ i color and stellar metallicity [Z/H] correlate more strongly with gravitational potential Φ than with mass M, whereas SP age correlates best with surface density Σ. Specifically, for our sample of 625 ETGs with integral-field spectroscopy from the Sydney-AAO Multi-object Integral-field Galaxy Survey, compared to correlations with mass, the color–Φ, [Z/H]–Φ, and age–Σ relations show both a smaller scatter and a lower residual trend with galaxy size. For the star formation duration proxy [α/Fe], we find comparable results for trends with Φ and Σ, with both being significantly stronger than the [α/Fe]–M relation. In determining the strength of a trend, we analyze both the overall scatter, and the observational uncertainty on the parameters, in order to compare the intrinsic scatter in each correlation. These results lead us to the following inferences and interpretations: (1) the color–Φ diagram is a more precise tool for determining the developmental stage of the SP than the conventional color–mass diagram; and (2) gravitational potential is the primary regulator of global stellar metallicity, via its relation to the gas escape velocity. Furthermore, we propose the following two mechanisms for the age and [α/Fe] relations with Σ: (a) the age–Σ and [α/Fe]–Σ correlations arise as results of compactness-driven quenching mechanisms; and/or (b) as fossil records of the {{{Σ }}}SFR}\\propto {{{Σ }}}gas} relation in their disk-dominated progenitors.

  2. The Stellar Initial Mass Function in Early-type Galaxies from Absorption Line Spectroscopy. III. Radial Gradients

    NASA Astrophysics Data System (ADS)

    van Dokkum, Pieter; Conroy, Charlie; Villaume, Alexa; Brodie, Jean; Romanowsky, Aaron J.

    2017-06-01

    There is good evidence that the centers of massive early-type galaxies have a bottom-heavy stellar initial mass function (IMF) compared to that of the Milky Way. Here we study the radial variation of the IMF within such galaxies, using a combination of high-quality Keck spectroscopy and a new suite of stellar population synthesis models that cover a wide range in metallicity. As in the previous studies in this series, the models are fitted directly to the spectra and treat all elemental abundance ratios as free parameters. Using newly obtained spectroscopy for six galaxies, including deep data extending to ˜ 1{R}{{e}} for the galaxies NGC 1407, NGC 1600, and NGC 2695, we find that the IMF varies strongly with galactocentric radius. For all six galaxies the IMF is bottom-heavy in the central regions, with average mass-to-light ratio “mismatch” parameter α \\equiv {({\\text{}}M/L)/({\\text{}}M/L)}{MW}≈ 2.5 at R = 0. The IMF rapidly becomes more bottom-light with increasing radius, flattening off near the Milky Way value (α ≈ 1.1) at R> 0.4{R}{{e}}. A consequence is that the luminosity-weighted average IMF depends on the measurement aperture: within R={R}{{e}} we find < α {> }L=1.3{--}1.5, consistent with recent lensing and dynamical results from SLACS and {{ATLAS}}3{{D}}. Our results are also consistent with several earlier studies that were based on analyses of radial gradients of line indices. The observed IMF gradients support galaxy formation models in which the central regions of massive galaxies had a different formation history than their outer parts. Finally, we make use of the high signal-to-noise central spectra of NGC 1407 and NGC 2695 to demonstrate how we can disentangle IMF effects and abundance effects.

  3. Early-type galaxies: Automated reduction and analysis of ROSAT PSPC data

    NASA Technical Reports Server (NTRS)

    Mackie, G.; Fabbiano, G.; Harnden, F. R., Jr.; Kim, D.-W.; Maggio, A.; Micela, G.; Sciortino, S.; Ciliegi, P.

    1996-01-01

    Preliminary results of early-type galaxies that will be part of a galaxy catalog to be derived from the complete Rosat data base are presented. The stored data were reduced and analyzed by an automatic pipeline. This pipeline is based on a command language scrip. The important features of the pipeline include new data time screening in order to maximize the signal to noise ratio of faint point-like sources, source detection via a wavelet algorithm, and the identification of sources with objects from existing catalogs. The pipeline outputs include reduced images, contour maps, surface brightness profiles, spectra, color and hardness ratios.

  4. Formaldehyde in Absorption: Tracing Molecular Gas in Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Dollhopf, Niklaus M.; Donovan Meyer, Jennifer

    2016-01-01

    Early-Type Galaxies (ETGs) have been long-classified as the red, ellipsoidal branch of the classic Hubble tuning fork diagram of galactic structure. In part with this classification, ETGs are thought to be molecular and atomic gas-poor with little to no recent star formation. However, recent efforts have questioned this ingrained classification. Most notably, the ATLAS3D survey of 260 ETGs within ~40 Mpc found 22% contain CO, a common tracer for molecular gas. The presence of cold molecular gas also implies the possibility for current star formation within these galaxies. Simulations do not accurately predict the recent observations and further studies are necessary to understand the mechanisms of ETGs.CO traces molecular gas starting at densities of ~102 cm-3, which makes it a good tracer of bulk molecular gas, but does little to constrain the possible locations of star formation within the cores of dense molecular gas clouds. Formaldehyde (H2CO) traces molecular gas on the order of ~104 cm-3, providing a further constraint on the location of star-forming gas, while being simple enough to possibly be abundant in gas-poor ETGs. In cold molecular clouds at or above ~104 cm-3 densities, the structure of formaldehyde enables a phenomenon in which rotational transitions have excitation temperatures driven below the temperature of the cosmic microwave background (CMB), ~2.7 K. Because the CMB radiates isotropically, formaldehyde can be observed in absorption, independent of distance, as a tracer of moderately-dense molecular clouds and star formation.This novel observation technique of formaldehyde was incorporated for observations of twelve CO-detected ETGs from the ATLAS3D sample, including NGC 4710 and PGC 8815, to investigate the presence of cold molecular gas, and possible star formation, in ETGs. We present images from the Very Large Array, used in its C-array configuration, of the J = 11,0 - 11,1 transition of formaldehyde towards these sources. We report our

  5. The Sloan Lens ACS Survey. I. A Large Spectroscopically Selected Sample of Massive Early-Type Lens Galaxies

    NASA Technical Reports Server (NTRS)

    Bolton, Adam S.; Burles, Scott; Koopmans, Leon V. E.; Treu, Tommaso; Moustakas, Leonidas A.

    2006-01-01

    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope (HST) Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple nebular emission lines at a redshift significantly higher than that of the SDSS target galaxy. The SLACS survey is optimized to detect bright early-type lens galaxies with faint lensed sources in order to increase the sample of known gravitational lenses suitable for detailed lensing, photometric, and dynamical modeling. In this paper, the first in a series on the current results of our HST Cycle 13 imaging survey, we present a catalog of 19 newly discovered gravitational lenses, along with nine other observed candidate systems that are either possible lenses, nonlenses, or nondetections. The survey efficiency is thus >=68%. We also present Gemini 8 m and Magellan 6.5 m integral-field spectroscopic data for nine of the SLACS targets, which further support the lensing interpretation. A new method for the effective subtraction of foreground galaxy images to reveal faint background features is presented. We show that the SLACS lens galaxies have colors and ellipticities typical of the spectroscopic parent sample from which they are drawn (SDSS luminous red galaxies and quiescent MAIN sample galaxies), but are somewhat brighter and more centrally concentrated. Several explanations for the latter bias are suggested. The SLACS survey provides the first statistically significant and homogeneously selected sample of bright early-type lens galaxies, furnishing a powerful probe of the structure of early-type galaxies within the half-light radius. The high confirmation rate of lenses in the SLACS survey suggests consideration of spectroscopic lens discovery as an explicit science goal of future spectroscopic galaxy surveys.

  6. VEGAS: A VST Early-type GAlaxy Survey. II. Photometric study of giant ellipticals and their stellar halos

    NASA Astrophysics Data System (ADS)

    Spavone, Marilena; Capaccioli, Massimo; Napolitano, Nicola R.; Iodice, Enrichetta; Grado, Aniello; Limatola, Luca; Cooper, Andrew P.; Cantiello, Michele; Forbes, Duncan A.; Paolillo, Maurizio; Schipani, Pietro

    2017-07-01

    Observations of diffuse starlight in the outskirts of galaxies are thought to be a fundamental source of constraint on the cosmological context of galaxy assembly in the ΛCDM model. Such observations are not trivial because of the extreme faintness of such regions. In this work, we investigated the photometric properties of six massive early-type galaxies (ETGs) in the VEGAS sample (NGC 1399, NGC 3923, NGC 4365, NGC 4472, NGC 5044, and NGC 5846) out to extremely low surface brightness levels with the goal of characterizing the global structure of their light profiles for comparison to state-of-the-art galaxy formation models. We carried out deep and detailed photometric mapping of our ETG sample taking advantage of deep imaging with VST/OmegaCAM in the g and I bands. By fitting the light profiles, and comparing the results to simulations of elliptical galaxy assembly, we have identified signatures of a transition between relaxed and unrelaxed accreted components and can constrain the balance between in situ and accreted stars. The very good agreement of our results with predictions from theoretical simulations demonstrates that the full VEGAS sample of 100 ETGs will allow us to use the distribution of diffuse light as a robust statistical probe of the hierarchical assembly of massive galaxies.

  7. VEGAS-SSS: A VST Early-Type GAlaxy Survey: Analysis of Small Stellar System

    NASA Astrophysics Data System (ADS)

    Cantiello, M.

    VEGAS-SSS is a program devoted to study the properties of small stellar systems (SSSs) around bright galaxies, built on the VEGAS survey. At completion, the survey will have collected detailed photometric information of ˜ 100 bright early-type galaxies to study the properties of diffuse light (surface brightness, colours, SBF, etc.) and the clustered light (compact stellar systems) out to previously unreached projected galactocentric radii. VEGAS-SSS will define an accurate and homogeneous dataset that will have an important legacy value for studies of the evolution and transformation processes taking place in galaxies through the fossil information provided by SSSs.

  8. Feedback in low-mass galaxies in the early Universe.

    PubMed

    Erb, Dawn K

    2015-07-09

    The formation, evolution and death of massive stars release large quantities of energy and momentum into the gas surrounding the sites of star formation. This process, generically termed 'feedback', inhibits further star formation either by removing gas from the galaxy, or by heating it to temperatures that are too high to form new stars. Observations reveal feedback in the form of galactic-scale outflows of gas in galaxies with high rates of star formation, especially in the early Universe. Feedback in faint, low-mass galaxies probably facilitated the escape of ionizing radiation from galaxies when the Universe was about 500 million years old, so that the hydrogen between galaxies changed from neutral to ionized-the last major phase transition in the Universe.

  9. Cosmic evolution of star formation properties of galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Sungeun

    2014-01-01

    Development of bolometer array and camera at submillimeter wavelength has played an important role in detecting submillimeter bright galaxies, so called submillimeter galaxies. These galaxies seem to be progenitors of present-day massive galaxies and account for their considerable contributions to the light from the early universe and their expected high star formation rates if there is a close link between the submillimeter galaxies and the star formation activities, and the interstellar dust in galaxies is mainly heated by the star light. We review assembly of submillimeter galaxies chosen from the AzTEC and the Herschel SPIRE/PACS data archives, and investigate their spectral energy distribution fits including the data at other wavelengths to deduce details about stellar parameters including star formation rates and parameters yielding the metallicity, composition and abundance in dust, and disc structure of these galaxies. This work has been supported in part by Mid-career Researcher Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology 2011-0028001.

  10. A cosmological solution to the Impossibly Early Galaxy Problem

    NASA Astrophysics Data System (ADS)

    Yennapureddy, Manoj K.; Melia, Fulvio

    2018-06-01

    To understand the formation and evolution of galaxies at redshifts 0 ≲ z ≲ 10, one must invariably introduce specific models (e.g., for the star formation) in order to fully interpret the data. Unfortunately, this tends to render the analysis compliant to the theory and its assumptions, so consensus is still somewhat elusive. Nonetheless, the surprisingly early appearance of massive galaxies challenges the standard model, and the halo mass function estimated from galaxy surveys at z ≳ 4 appears to be inconsistent with the predictions of ΛCDM, giving rise to what has been termed "The Impossibly Early Galaxy Problem" by some workers in the field. A simple resolution to this question may not be forthcoming. The situation with the halos themselves, however, is more straightforward and, in this paper, we use linear perturbation theory to derive the halo mass function over the redshift range 0 ≲ z ≲ 10 for the Rh = ct universe. We use this predicted halo distribution to demonstrate that both its dependence on mass and its very weak dependence on redshift are compatible with the data. The difficulties with ΛCDM may eventually be overcome with refinements to the underlying theory of star formation and galaxy evolution within the halos. For now, however, we demonstrate that the unexpected early formation of structure may also simply be due to an incorrect choice of the cosmology, rather than to yet unknown astrophysical issues associated with the condensation of mass fluctuations and subsequent galaxy formation.

  11. An evolutionary missing link? A modest-mass early-type galaxy hosting an oversized nuclear black hole

    NASA Astrophysics Data System (ADS)

    van Loon, Jacco Th.; Sansom, Anne E.

    2015-11-01

    SAGE1C J053634.78-722658.5 is a galaxy at redshift z = 0.14, discovered behind the Large Magellanic Cloud in the Spitzer Space Telescope`Surveying the Agents of Galaxy Evolution' Spectroscopy survey. It has very strong silicate emission at 10 μm but negligible far-IR and UV emission. This makes it a candidate for a bare active galactic nuclei (AGN) source in the IR, perhaps seen pole-on, without significant IR emission from the host galaxy. In this paper we present optical spectra taken with the Southern African Large Telescope to investigate the nature of the underlying host galaxy and its AGN. We find broad H α emission characteristic of an AGN, plus absorption lines associated with a mature stellar population (>9 Gyr), and refine its redshift determination to z = 0.1428 ± 0.0001. There is no evidence for any emission lines associated with star formation. This remarkable object exemplifies the need for separating the emission from any AGN from that of the host galaxy when employing IR diagnostic diagrams. We estimate the black hole mass, MBH = 3.5 ± 0.8 × 108 M⊙, host galaxy mass, M_stars=2.5^{2.5}_{1.2}× 10^{10} M⊙, and accretion luminosity, Lbol(AGN) = 5.3 ± 0.4 × 1045 erg s-1 (≈12 per cent of the Eddington luminosity), and find the AGN to be more prominent than expected for a host galaxy of this modest size. The old age is in tension with the downsizing paradigm in which this galaxy would recently have transformed from a star-forming disc galaxy into an early-type, passively evolving galaxy.

  12. THE TYPE Ia SUPERNOVA RATE IN RADIO AND INFRARED GALAXIES FROM THE CANADA-FRANCE-HAWAII TELESCOPE SUPERNOVA LEGACY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, M. L.; Pritchet, C. J.; Balam, D.

    2010-02-15

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, Very Large Array 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is {approx}1-5 times the rate in all early-type galaxies, and that any enhancement is always {approx}<2{sigma}. Rates in these subsets are consistent with predictions of the two-component 'A+B' SN Ia rate model. Since infraredmore » properties of radio SN Ia hosts indicate dust-obscured star formation, we incorporate infrared star formation rates into the 'A+B' model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions (DTDs) for SNe Ia, although other DTDs cannot be ruled out based on our data.« less

  13. Active galactic nuclei feedback, quiescence and circumgalactic medium metal enrichment in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Eisenreich, Maximilian; Naab, Thorsten; Choi, Ena; Ostriker, Jeremiah P.; Emsellem, Eric

    2017-06-01

    We present three-dimensional hydrodynamical simulations showing the effect of kinetic and radiative active galactic nuclei (AGN) feedback on a model galaxy representing a massive quiescent low-redshift early-type galaxy of M* = 8.41 × 1010 M⊙, harbouring an MBH = 4 × 108 M⊙ black hole surrounded by a cooling gaseous halo. We show that, for a total baryon fraction of ˜20 per cent of the cosmological value, feedback from the AGN can keep the galaxy quiescent for about 4.35 Gyr and with properties consistent with black hole mass and X-ray luminosity scaling relations. However, this can only be achieved if the AGN feedback model includes both kinetic and radiative feedback modes. The simulation with only kinetic feedback fails to keep the model galaxy fully quiescent, while one with only radiative feedback leads to excessive black hole growth. For higher baryon fractions (e.g. 50 per cent of the cosmological value), the X-ray luminosities exceed observed values by at least one order of magnitude, and rapid cooling results in a star-forming galaxy. The AGN plays a major role in keeping the circumgalactic gas at observed metallicities of Z/Z⊙ ≳ 0.3 within the central ˜30 kpc by venting nuclear gas enriched with metals from residual star formation activity. As indicated by previous cosmological simulations, our results are consistent with a model for which the black hole mass and the total baryon fraction are set at higher redshifts z > 1 and the AGN alone can keep the model galaxy on observed scaling relations. Models without AGN feedback violate both the quiescence criterion as well as circumgalactic medium metallicity constraints.

  14. Dust-Corrected Star Formation Rates in Galaxies with Outer Rings

    NASA Astrophysics Data System (ADS)

    Kostiuk, I.; Silchenko, O.

    2018-03-01

    The star formation rates SFR, as well as the SFR surface densities ΣSFR and absolute stellar magnitudes MAB, are determined and corrected for interinsic dust absorption for 34 disk galaxies of early morphological types with an outer ring structure and ultraviolet emission from the ring. These characteristic are determined for the outer ring structures and for the galaxies as a whole. Data from the space telescopes GALEX (in the NUV and FUV ultraviolet ranges) and WISE (in the W4 22 μm infrared band) are used. The average relative deviation in the corrected SFR and ΣSFR derived from the NUV and FUV bands is only 19.0%, so their averaged values are used for statistical consideration. The relations between the dust-corrected SFR characteristics, UV colours, the galaxy morphological type, absolute magnitude are illustrated.

  15. Multiple populations within globular clusters in Early-type galaxies Exploring their effect on stellar initial mass function estimates

    NASA Astrophysics Data System (ADS)

    Chantereau, W.; Usher, C.; Bastian, N.

    2018-05-01

    It is now well-established that most (if not all) ancient globular clusters host multiple populations, that are characterised by distinct chemical features such as helium abundance variations along with N-C and Na-O anti-correlations, at fixed [Fe/H]. These very distinct chemical features are similar to what is found in the centres of the massive early-type galaxies and may influence measurements of the global properties of the galaxies. Additionally, recent results have suggested that M/L variations found in the centres of massive early-type galaxies might be due to a bottom-heavy stellar initial mass function. We present an analysis of the effects of globular cluster-like multiple populations on the integrated properties of early-type galaxies. In particular, we focus on spectral features in the integrated optical spectrum and the global mass-to-light ratio that have been used to infer variations in the stellar initial mass function. To achieve this we develop appropriate stellar population synthesis models and take into account, for the first time, an initial-final mass relation which takes into consideration a varying He abundance. We conclude that while the multiple populations may be present in massive early-type galaxies, they are likely not responsible for the observed variations in the mass-to-light ratio and IMF sensitive line strengths. Finally, we estimate the fraction of stars with multiple populations chemistry that come from disrupted globular clusters within massive ellipticals and find that they may explain some of the observed chemical patterns in the centres of these galaxies.

  16. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; hide

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  17. On the formation of ring galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Jiang, Ing-Guey

    2011-08-01

    The formation scenario of ring galaxies is addressed in this paper. We focus on the P-type ring galaxies presented in Madore, Nelson & Petrillo (2009), particularly on the axis-symmetric ones. Our simulations show that a ring can form through the collision of disc and dwarf galaxies, and the locations, widths, and density contrasts of the ring are well determined. We find that a ring galaxy such as AM 2302-322 can be produced by this collision scenario.

  18. Hα imaging observations of early-type galaxies from the ATLAS3D survey

    NASA Astrophysics Data System (ADS)

    Gavazzi, G.; Consolandi, G.; Pedraglio, S.; Fossati, M.; Fumagalli, M.; Boselli, A.

    2018-03-01

    Context. The traditional knowledge of the mechanisms that brought to the formation and evolution of early type galaxies (ETG) in a hierarchical Universe was challenged by the unexpected finding by ATLAS3D that 86% ETGs show signs of a fast rotating disk at their interior, implying an origin common to most spiral galaxies, followed by a quenching phase, while only a minority of the most massive systems are slow rotators and were likely to be the products of merger events. Aims: Our aim is to improve our knowledge on the content and distribution of ionised hydrogen and their usage to form stars in a representative sample of ETGs for which the kinematics and detailed morphological classification were known from ATLAS3D. Methods: Using narrow-band filters centered on the redshifted Hα line along with a broad-band (r-Gunn) filter to recover the stellar continuum, we observed or collected existing imaging observations for 147 ETG (including members of the Virgo cluster), representative of the whole ATLAS3D survey. Results: 55 ETGs (37%) were detected in the Hα line above our detection threshold (HαEW ≤ -1 Å) and 21 harbour a strong source (HαEW ≤ -5 Å) . Conclusions: The strong Hα emitters appear associated with mostly low-mass (M* 1010 M⊙) S0 galaxies which contain conspicuous stellar and gaseous disks, harbouring significant star formation at their interior, including their nuclei. The weak Hα emitters are almost one order of magnitude more massive, contain gas-poor disks and harbour an AGN at their centers. Their emissivity is dominated by [NII] and does not imply star formation. The 92 undetected ETGs constitute the majority in our sample and are gas-free systems which lack a disk and exhibit passive spectra even in their nuclei. These pieces of evidence reinforce the conclusion of Cappellari (2016, ARA&A, 54, 597) that the evolution of ETGs followed the secular channel for the less massive systems and the dry merging channel for the most massive

  19. Galaxy Formation through Filamentary Accretion at z = 6.1

    NASA Astrophysics Data System (ADS)

    Jones, G. C.; Willott, C. J.; Carilli, C. L.; Ferrara, A.; Wang, R.; Wagg, J.

    2017-08-01

    We present Atacama Large Millimeter/submillimeter Array observations of the dust continuum and [C II] 158 μm line emission from the z = 6.0695 Lyman-Break Galaxy (LBG) WMH5. These observations at 0.″3 spatial resolution show a compact (˜3 kpc) main galaxy in dust and [C II] emission, with a “tail” of emission extending to the east by about 5 kpc (in projection). The [C II] tail is comprised predominantly of two distinct sub-components in velocity, separated from the core by ˜100 and 250 km s-1, with narrow intrinsic widths of about 80 km s-1, which we call “sub-galaxies.” The sub-galaxies themselves are extended east-west by about 3 kpc in individual channel images. The [C II] tail joins smoothly into the main galaxy velocity field. The [C II] line to continuum ratios are comparable for the main and sub-galaxy positions, within a factor two. In addition, these ratios are comparable to z˜ 5.5 LBGs. We conjecture that the WMH5 system represents the early formation of a galaxy through the accretion of smaller satellite galaxies, embedded in a smoother gas distribution, along a possibly filamentary structure. The results are consistent with current cosmological simulations of early galaxy formation and support the idea of very early enrichment with dust and heavy elements of the accreting material.

  20. Spectroscopic aperture biases in inside-out evolving early-type galaxies from CALIFA

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.; Vílchez, J. M.; Kehrig, C.; Iglesias-Páramo, J.; Breda, I.; Lehnert, M. D.; Sánchez, S. F.; Ziegler, B.; Dos Reis, S. N.; Bland-Hawthorn, J.; Galbany, L.; Bomans, D. J.; Rosales-Ortega, F. F.; Walcher, C. J.; García-Benito, R.; Márquez, I.; Del Olmo, A.; Mollá, M.; Marino, R. A.; Catalán-Torrecilla, C.; González Delgado, R. M.; López-Sánchez, Á. R.; Califa Collaboration

    2016-02-01

    Integral field spectroscopy (IFS) studies based on CALIFA survey data have recently revealed ongoing low-level star formation (SF) in the periphery of a small fraction (~10%) of local early-type galaxies (ETGs), witnessing a still ongoing inside-out galaxy growth process. A distinctive property of the nebular component in these ETGs, classified I+, is a structure with two radial zones, the inner of which displays LINER emission with a Hα equivalent width EW(Hα) ≃ 1 Å, the outer (3 Å galaxy periphery leads to a strong aperture (or, correspondingly, redshift) bias in spectroscopic single-fiber studies of type I+ ETGs: at low redshift (z ≲ 0.45), SDSS spectroscopy is restricted to the inner (SF-devoid LINER) zone, which causes the galaxies to be erroneously classified as "retired", that is, systems entirely lacking SF, and whose faint nebular emissionis solely powered by the post-AGB stellar component. The SDSS aperture progressively encompasses the outer SF zone only at higher z, at which the galaxies are unambiguously classified as "composite SF/LINER". We also empirically demonstrate that the principal effect of a decreasing spectroscopic aperture on the classification of I+ ETGs through standard [Nii]/Hα vs. [Oiii]/Hβ emission-line (BPT) ratios consists of a monotonic shift upward and to the right precisely along the upper right wing of the "seagull" distribution on the BPT plane, that is, along the pathway connecting composite SF/Hii galaxies with AGN/LINERs. Motivated by these observational insights, we also investigate theoretically observational biases in aperture-limited studies of inside-out growing galaxies as a function of z. To this end, we devise a simple 1D model that involves an outward-propagating exponentially decreasing SF process since z ~ 10 and reproduces the radial extent and two-zone EW

  1. The sensitivity of harassment to orbit: mass loss from early-type dwarfs in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Smith, R.; Sánchez-Janssen, R.; Beasley, M. A.; Candlish, G. N.; Gibson, B. K.; Puzia, T. H.; Janz, J.; Knebe, A.; Aguerri, J. A. L.; Lisker, T.; Hensler, G.; Fellhauer, M.; Ferrarese, L.; Yi, S. K.

    2015-12-01

    We conduct a comprehensive numerical study of the orbital dependence of harassment on early-type dwarfs consisting of 168 different orbits within a realistic, Virgo-like cluster, varying in eccentricity and pericentre distance. We find harassment is only effective at stripping stars or truncating their stellar discs for orbits that enter deep into the cluster core. Comparing to the orbital distribution in cosmological simulations, we find that the majority of the orbits (more than three quarters) result in no stellar mass loss. We also study the effects on the radial profiles of the globular cluster systems of early-type dwarfs. We find these are significantly altered only if harassment is very strong. This suggests that perhaps most early-type dwarfs in clusters such as Virgo have not suffered any tidal stripping of stars or globular clusters due to harassment, as these components are safely embedded deep within their dark matter halo. We demonstrate that this result is actually consistent with an earlier study of harassment of dwarf galaxies, despite the apparent contradiction. Those few dwarf models that do suffer stellar stripping are found out to the virial radius of the cluster at redshift = 0, which mixes them in with less strongly harassed galaxies. However when placed on phase-space diagrams, strongly harassed galaxies are found offset to lower velocities compared to weakly harassed galaxies. This remains true in a cosmological simulation, even when haloes have a wide range of masses and concentrations. Thus phase-space diagrams may be a useful tool for determining the relative likelihood that galaxies have been strongly or weakly harassed.

  2. The Environmental Impact of Intra-Cluster Medium on the Interstellar Medium in Early Type Galaxies

    NASA Technical Reports Server (NTRS)

    Trinchieri, Ginevra

    1993-01-01

    Draft versions of three articles submitted for publication are presented. The first two articles address high resolution X-ray images of early type galaxies observed with the ROSAT HRI and PSPC. Data for NGC 1553 and NGC 5846 indicate that the emission is highly irregular, with interesting features at different scales. The gas temperatures also vary both with the galactocentric radius and in correspondence to regions of higher emission and denser material. Strikingly similar features are observed in the X-ray and H-alpha morphologies of NGC 1553 and NGC 5846, while smooth, regular isophotes are observed in NGC 4649 at both wavelengths. The third article addresses ROSAT PSPC observations of 5 X-ray bright early type galaxies.

  3. A 30 kpc Chain of "Beads on a String" Star Formation between Two Merging Early Type Galaxies in the Core of a Strong-lensing Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Tremblay, Grant R.; Gladders, Michael D.; Baum, Stefi A.; O'Dea, Christopher P.; Bayliss, Matthew B.; Cooke, Kevin C.; Dahle, Håkon; Davis, Timothy A.; Florian, Michael; Rigby, Jane R.; Sharon, Keren; Soto, Emmaris; Wuyts, Eva

    2014-08-01

    New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ~1 kpc in projection from one another, combining to an estimated total star formation rate of ~5 M ⊙ yr-1. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arranged in a network spanning ~27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known "beads on a string" mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known "beads on a string" systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.

  4. Galaxy Clustering Topology in the Sloan Digital Sky Survey Main Galaxy Sample: A Test for Galaxy Formation Models

    NASA Astrophysics Data System (ADS)

    Choi, Yun-Young; Park, Changbom; Kim, Juhan; Gott, J. Richard, III; Weinberg, David H.; Vogeley, Michael S.; Kim, Sungsoo S.; SDSS Collaboration

    2010-09-01

    We measure the topology of the main galaxy distribution using the Seventh Data Release of the Sloan Digital Sky Survey, examining the dependence of galaxy clustering topology on galaxy properties. The observational results are used to test galaxy formation models. A volume-limited sample defined by Mr < -20.19 enables us to measure the genus curve with an amplitude of G = 378 at 6 h -1 Mpc smoothing scale, with 4.8% uncertainty including all systematics and cosmic variance. The clustering topology over the smoothing length interval from 6 to 10 h -1 Mpc reveals a mild scale dependence for the shift (Δν) and void abundance (AV ) parameters of the genus curve. We find substantial bias in the topology of galaxy clustering with respect to the predicted topology of the matter distribution, which varies with luminosity, morphology, color, and the smoothing scale of the density field. The distribution of relatively brighter galaxies shows a greater prevalence of isolated clusters and more percolated voids. Even though early (late)-type galaxies show topology similar to that of red (blue) galaxies, the morphology dependence of topology is not identical to the color dependence. In particular, the void abundance parameter AV depends on morphology more strongly than on color. We test five galaxy assignment schemes applied to cosmological N-body simulations of a ΛCDM universe to generate mock galaxies: the halo-galaxy one-to-one correspondence model, the halo occupation distribution model, and three implementations of semi-analytic models (SAMs). None of the models reproduces all aspects of the observed clustering topology; the deviations vary from one model to another but include statistically significant discrepancies in the abundance of isolated voids or isolated clusters and the amplitude and overall shift of the genus curve. SAM predictions of the topology color dependence are usually correct in sign but incorrect in magnitude. Our topology tests indicate that, in

  5. Star formation in simulated galaxies: understanding the transition to quiescence at 3 × 1010 M⊙

    NASA Astrophysics Data System (ADS)

    Taylor, Philip; Federrath, Christoph; Kobayashi, Chiaki

    2017-08-01

    Star formation in galaxies relies on the availability of cold, dense gas, which, in turn, relies on factors internal and external to the galaxies. In order to provide a simple model for how star formation is regulated by various physical processes in galaxies, we analyse data at redshift z = 0 from a hydrodynamical cosmological simulation that includes prescriptions for star formation and stellar evolution, active galactic nuclei, and their associated feedback processes. This model can determine the star formation rate (SFR) as a function of galaxy stellar mass, gas mass, black hole mass, and environment. We find that gas mass is the most important quantity controlling star formation in low-mass galaxies, and star-forming galaxies in dense environments have higher SFR than their counterparts in the field. In high-mass galaxies, we find that black holes more massive than ˜ 107.5 M⊙ can be triggered to quench star formation in their host; this mass scale is emergent in our simulations. Furthermore, this black hole mass corresponds to a galaxy bulge mass ˜ 2 × 1010 M⊙, consistent with the mass at which galaxies start to become dominated by early types ( ˜ 3 × 1010 M⊙, as previously shown in observations by Kauffmann et al.). Finally, we demonstrate that our model can reproduce well the SFR measured from observations of galaxies in the Galaxy And Mass Assembly and Arecibo Legacy Fast ALFA surveys.

  6. Star-formation complexes in the `galaxy-sized' supergiant shell of the galaxy Holmberg I

    NASA Astrophysics Data System (ADS)

    Egorov, Oleg V.; Lozinskaya, Tatiana A.; Moiseev, Alexei V.; Smirnov-Pinchukov, Grigory V.

    2018-05-01

    We present the results of observations of the galaxy Holmberg I carried out at the Russian 6-m telescope in the narrow-band imaging, long-slit spectroscopy, and scanning Fabry-Perot interferometer modes. A detailed analysis of gas kinematics, ionization conditions, and metallicity of star-forming regions in the galaxy is presented. The aim of the paper is to analyse the propagation of star formation in the galaxy and to understand the role of the ongoing star formation in the evolution of the central `galaxy-sized' supergiant H I shell (SGS), where all regions of star formation are observed. We show that star formation in the galaxy occurs in large unified complexes rather than in individual giant H II regions. Evidence of the triggered star formation is observed both on scales of individual complexes and of the whole galaxy. We identified two supernova-remnant candidates and one late-type WN star and analysed their spectrum and surrounding-gas kinematics. We provide arguments indicating that the SGS in Holmberg I is destructing by the influence of star formation occurring on its rims.

  7. Active Galactic Nuclei Feedback and the Origin and Fate of the Hot Gas in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Pellegrini, Silvia; Ciotti, Luca; Negri, Andrea; Ostriker, Jeremiah P.

    2018-04-01

    A recent determination of the relationships between the X-ray luminosity of the ISM (L X) and the stellar and total mass for a sample of nearby early-type galaxies (ETGs) is used to investigate the origin of the hot gas, via a comparison with the results of hydrodynamical simulations of the ISM evolution for a large set of isolated ETGs. After the epoch of major galaxy formation (after z ≃ 2), the ISM is replenished by stellar mass losses and SN ejecta, at the rate predicted by stellar evolution, and is depleted by star formation; it is heated by the thermalization of stellar motions, SNe explosions, and the mechanical (from winds) and radiative AGN feedback. The models agree well with the observed relations, even for the largely different L X values at the same mass, thanks to the sensitivity of the gas flow to many galaxy properties; this holds for models including AGN feedback, and those without. Therefore, the mass input from the stellar population is able to account for a major part of the observed L X; and AGN feedback, while very important to maintain massive ETGs in a time-averaged quasi-steady state, keeping low star formation and the black hole mass, does not dramatically alter the gas content originating in stellar recycled material. These conclusions are based on theoretical predictions for the stellar population contributions in mass and energy, and on a self-consistent modeling of AGN feedback.

  8. Galaxy Zoo: star formation versus spiral arm number

    NASA Astrophysics Data System (ADS)

    Hart, Ross E.; Bamford, Steven P.; Casteels, Kevin R. V.; Kruk, Sandor J.; Lintott, Chris J.; Masters, Karen L.

    2017-06-01

    Spiral arms are common features in low-redshift disc galaxies, and are prominent sites of star formation and dust obscuration. However, spiral structure can take many forms: from galaxies displaying two strong 'grand design' arms to those with many 'flocculent' arms. We investigate how these different arm types are related to a galaxy's star formation and gas properties by making use of visual spiral arm number measurements from Galaxy Zoo 2. We combine ultraviolet and mid-infrared (MIR) photometry from GALEX and WISE to measure the rates and relative fractions of obscured and unobscured star formation in a sample of low-redshift SDSS spirals. Total star formation rate has little dependence on spiral arm multiplicity, but two-armed spirals convert their gas to stars more efficiently. We find significant differences in the fraction of obscured star formation: an additional ˜10 per cent of star formation in two-armed galaxies is identified via MIR dust emission, compared to that in many-armed galaxies. The latter are also significantly offset below the IRX-β relation for low-redshift star-forming galaxies. We present several explanations for these differences versus arm number: variations in the spatial distribution, sizes or clearing time-scales of star-forming regions (I.e. molecular clouds), or contrasting recent star formation histories.

  9. UIT Observations of Early-Type Galaxies and Analysis of the FUSE Spectrum of a Subdwarf B Star

    NASA Technical Reports Server (NTRS)

    Ohl, Raymond G.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    This work covers Ultraviolet Imaging Telescope (UIT) observations of early-type galaxies (155 nm) and Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of a Galactic subdwarf B star (sdB). Early UV space astronomy missions revealed that early-type galaxies harbor a population of stars with effective temperatures greater than that of the main sequence turn-off (about 6,000 K) and UV emission that is very sensitive to characteristics of the stellar population. We present UV (155 nm) surface photometry and UV-B color profiles for 8 E and SO galaxies observed by UIT. Some objects have de Vaucouleurs surface brightness profiles, while others have disk-like profiles, but we find no other evidence for the presence of a disk or young, massive stars. There is a wide range of UV-B color gradients, but there is no correlation with metallicity gradients. SdB stars are the leading candidate UV emitters in old, high metallicity stellar populations (e.g., early-type galaxies). We observed the Galactic sdB star PG0749+658 with FUSE and derived abundances with the aim of constraining models of the heavy element distribution in sdB atmospheres. All of the elements measured are depleted with respect to solar, except for Cr and Mn, which are about solar, and Ni, which is enhanced. This work was supported in part by NASA grants NAG5-700 and NAG5-6403 to the University of Virginia and NAS5-32985 to Johns Hopkins University.

  10. Extended nebular emission in CALIFA early-type galaxies

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.; Kehrig, C.; Vílchez, J. M.; Lehnert, M. D.

    2015-02-01

    The morphological, spectroscopic and kinematical properties of the warm interstellar medium ( wim ) in early-type galaxies (ETGs) hold key observational constraints to nuclear activity and the buildup history of these massive quiescent systems. High-quality integral field spectroscopy (IFS) data with a wide spectral and spatial coverage, such as those from the CALIFA survey, offer a precious opportunity for advancing our understanding in this respect. We use deep IFS data from CALIFA (califa.caha.es) to study the wim over the entire extent and optical spectral range of 32 nearby ETGs. We find that all ETGs in our sample show faint (Hα equivalent width EW(Hα)~0.5 ... 2 Å) extranuclear nebular emission extending out to >=2 Petrosian50 radii. Confirming and strengthening our conclusions in Papaderos et al. (2013, hereafter P13) we argue that ETGs span a broad continuous sequence with regard to the properties of their wim , and they can be roughly subdivided into two characteristic classes. The first one (type i) comprises ETGs with a nearly constant EW(Hα)~1-3 Å in their extranuclear component, in quantitative agreement with (even though, no proof for) the hypothesis of photoionization by the post-AGB stellar component being the main driver of extended wim emission. The second class (type ii) consists of virtually wim -evacuated ETGs with a large Lyman continuum (Ly c) photon escape fraction and a very low (<=0.5 Å) EW(Hα) in their nuclear zone. These two ETG classes appear indistinguishable from one another by their LINER-specific emission-line ratios. Additionally, here we extend the classification by P13 by the class i+ which stands for a subset of type i ETGs with low-level star-forming activity in contiguous spiral-arm like features in their outermost periphery. These faint features, together with traces of localized star formation in several type i&i+ systems point to a non-negligible contribution from young massive stars to the global ionizing photon

  11. Star Formation in Irregular Galaxies.

    ERIC Educational Resources Information Center

    Hunter, Deidre; Wolff, Sidney

    1985-01-01

    Examines mechanisms of how stars are formed in irregular galaxies. Formation in giant irregular galaxies, formation in dwarf irregular galaxies, and comparisons with larger star-forming regions found in spiral galaxies are considered separately. (JN)

  12. Killing Star Formation in Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    When a dwarf galaxy falls into the halo of a large galaxy like the Milky Way, how is star formation in the dwarf affected? A collaboration led by Andrew Wetzel (California Institute of Technology and Carnegie Observatories) recently set out to answer this question using observations of nearby galaxies and simulations of the infall process. Observed Quenching: Isolated dwarf galaxies tend to be gas-rich and very actively star-forming. In contrast, most dwarf galaxies within 300 kpc of us (the Milky Way's virial radius) contain little or no cold gas, and they're quiescent: there's not much star formation happening. And this isn't just true of the Milky Way; we observe the same difference in the satellite galaxies surrounding Andromeda galaxy. Once a dwarf galaxy has moved into the gravitational realm of a larger galaxy, the satellite's gas vanishes rapidly and its star formation is shut off — but how, and on what timescale? The known dwarf galaxies in the Local Group (out to 1.6 Mpc) are plotted by their distance from their host vs. their stellar mass. Blue stars indicate actively star-forming dwarfs and red circles indicate quiescent ones. Credit: Wetzel et al. 2015. Timescales for Quiescence: To answer these questions, the authors explored the process of galaxy infall using Exploring the Local Volume in Simulations (ELVIS), a suite of cosmological N-body simulations intended to explore the Local Group. They combined the infall times from the simulations with observational knowledge of the fraction of nearby galaxies that are currently quiescent, in order to determine what timescales are required for different processes to deplete the gas in the dwarf galaxies and quench star formation. Based on their results, two types of quenching culprits are at work: gas consumption (where a galaxy simply uses up its immediate gas supply and doesn't have access to more) and gas stripping (where external forces like ram pressure remove gas from the galaxy). These processes

  13. Probing the interstellar medium in early-type galaxies with Infrared Space Oberservatory observations

    NASA Technical Reports Server (NTRS)

    Malhotra, S.; Hollenbach, D.; Helou, D.; Silbermann, N.; Valjavec, E.; Rubin, R.; Dale, D.; Hunter, D.; Lu, N.; Lord, S.; hide

    2000-01-01

    Four IRAS-detected early-type galaxies were observed with the Infrared Space Observatory (ISO). With the exception of the 15 mu m image of NGC 1052, the mid-IR images of NGC 1052, NGC 1155, NGC 5866, and NGC 6958 at 4.5, 7, and 15 mu m show extended emission.

  14. Chemical Evidence for Evolution of galaxies

    NASA Astrophysics Data System (ADS)

    Dutil, Yvan

    I have compiled the very best data published on abundance gradients. From this sample of 29 galaxies, some information can be gained on the mecanism of morphological evolution in disk galaxies. From this sample, I find that early-type galaxies show an identical trend in the behavior of extrapolated central abundance versus morphological type to that shown by late-type galaxies with strong bars, even in the absence of bar! On a a diagram showing extrapolated central abundance versus morphological type, two sequences appear: late-type barred galaxies and early-type galaxies (barred or not barred) fall on sequence 0.5 dex below that of normal late-type galaxies. This behavior is consistent with a scenario of morphological evolution of disk galaxies by formation and dissolution of a bar over a period of a few 10^^9 yr, where later type galaxies (Sd,Sc,Sbc, evolve into earlier-type disk galaxies trough transitory SBc and SBb phases.

  15. Star Formation in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    O'Connell, Robert

    2009-07-01

    Star formation is a fundamental astrophysical process; it controls phenomena ranging from the evolution of galaxies and nucleosynthesis to the origins of planetary systems and abodes for life. The WFC3, optimized at both UV and IR wavelengths and equipped with an extensive array of narrow-band filters, brings unique capabilities to this area of study. The WFC3 Scientific Oversight Committee {SOC} proposes an integrated program on star formation in the nearby universe which will fully exploit these new abilities. Our targets range from the well-resolved R136 in 30 Dor in the LMC {the nearest super star cluster} and M82 {the nearest starbursting galaxy} to about half a dozen other nearby galaxies that sample a wide range of star-formation rates and environments. Our program consists of broad-band multiwavelength imaging over the entire range from the UV to the near-IR, aimed at studying the ages and metallicities of stellar populations, revealing young stars that are still hidden by dust at optical wavelengths, and showing the integrated properties of star clusters. Narrow-band imaging of the same environments will allow us to measure star-formation rates, gas pressure, chemical abundances, extinction, and shock morphologies. The primary scientific issues to be addressed are: {1} What triggers star formation? {2} How do the properties of star-forming regions vary among different types of galaxies and environments of different gas densities and compositions? {3} How do these different environments affect the history of star formation? {4} Is the stellar initial mass function universal or determined by local conditions?

  16. A 30 kpc CHAIN OF ''BEADS ON A STRING'' STAR FORMATION BETWEEN TWO MERGING EARLY TYPE GALAXIES IN THE CORE OF A STRONG-LENSING GALAXY CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremblay, Grant R.; Davis, Timothy A.; Gladders, Michael D.

    2014-08-01

    New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z = 0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of 19 massive superclusters of young stars (or small tidal dwarf galaxies) separated by ∼1 kpc in projection from one another, combining to an estimated total star formation rate of ∼5 M {sub ☉} yr{sup –1}. The resolved young stellar superclusters are threaded by narrow Hα, [O II], and blue excess filaments arrangedmore » in a network spanning ∼27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known ''beads on a string'' mode of star formation observed on kiloparsec scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known ''beads on a string'' systems associated with kiloparsec-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter, we present the images and follow-up spectroscopy and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA submillimeter interferometry, and Chandra X-ray imaging.« less

  17. The ATLAS3D project - X. On the origin of the molecular and ionized gas in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Davis, Timothy A.; Alatalo, Katherine; Sarzi, Marc; Bureau, Martin; Young, Lisa M.; Blitz, Leo; Serra, Paolo; Crocker, Alison F.; Krajnović, Davor; McDermid, Richard M.; Bois, Maxime; Bournaud, Frédéric; Cappellari, Michele; Davies, Roger L.; Duc, Pierre-Alain; de Zeeuw, P. Tim; Emsellem, Eric; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Weijmans, Anne-Marie

    2011-10-01

    We make use of interferometric CO and H I observations, and optical integral-field spectroscopy from the ATLAS3D survey, to probe the origin of the molecular and ionized interstellar medium (ISM) in local early-type galaxies. We find that 36 ± 5 per cent of our sample of fast-rotating early-type galaxies have their ionized gas kinematically misaligned with respect to the stars, setting a strong lower limit on the importance of externally acquired gas (e.g. from mergers and cold accretion). Slow rotators have a flat distribution of misalignments, indicating that the dominant source of gas is external. The molecular, ionized and atomic gas in all the detected galaxies are always kinematically aligned, even when they are misaligned from the stars, suggesting that all these three phases of the ISM share a common origin. In addition, we find that the origin of the cold and warm gas in fast-rotating early-type galaxies is strongly affected by environment, despite the molecular gas detection rate and mass fractions being fairly independent of group/cluster membership. Galaxies in dense groups and the Virgo cluster nearly always have their molecular gas kinematically aligned with the stellar kinematics, consistent with a purely internal origin (presumably stellar mass loss). In the field, however, kinematic misalignments between the stellar and gaseous components indicate that at least 42 ± 5 per cent of local fast-rotating early-type galaxies have their gas supplied from external sources. When one also considers evidence of accretion present in the galaxies' atomic gas distributions, ≳46 per cent of fast-rotating field ETGs are likely to have acquired a detectable amount of ISM from accretion and mergers. We discuss several scenarios which could explain the environmental dichotomy, including preprocessing in galaxy groups/cluster outskirts and the morphological transformation of spiral galaxies, but we find it difficult to simultaneously explain the kinematic

  18. Star Formation Rates of dS galaxies

    NASA Astrophysics Data System (ADS)

    Hidalgo-Gámez, A. M.; Vega-Acevedo, I.; Magaña-Serrano, M. A.

    2014-10-01

    The Star Formation Rate of a sample of nine dwarf spiral galaxies and ten late-type Sm is determined from the Hα luminosity. The main interest was to check if these two kind of late-type galaxies have similar SFR or not. The images were acquired at the 1.5m telescope of the SPM-OAN and they were reduced with the software MIDAS. The values of the SFR are very similar for both type of galaxies and also similar to other Sm galaxies. The main result is that the dwarf spiral galaxies are more efficient when forming stars than the Sm galaxies because the SFR per are are lower for the latter with the same gas density than for dwarf spirals. However, the SFRs are larger in the Sm galaxies. In addition, the SFR per area were compared with global properties of the galaxies. There is only a relationship between the SFR and the surface brightness as well as with the absolute blue magnitude, but no relationship with the optical radius. A larger sample is needed in order to obtain a more conclusive answer.

  19. Star formation and galaxy evolution in different environments, from the field to massive clusters

    NASA Astrophysics Data System (ADS)

    Tyler, Krystal

    This thesis focuses on how a galaxy's environment affects its star formation, from the galactic environment of the most luminous IR galaxies in the universe to groups and massive clusters of galaxies. Initially, we studied a class of high-redshift galaxies with extremely red optical-to-mid-IR colors. We used Spitzer spectra and photometry to identify whether the IR outputs of these objects are dominated by AGNs or star formation. In accordance with the expectation that the AGN contribution should increase with IR luminosity, we find most of our very red IR-luminous galaxies to be dominated by an AGN, though a few appear to be star-formation dominated. We then observed how the density of the extraglactic environment plays a role in galaxy evolution. We begin with Spitzer and HST observations of intermediate-redshift groups. Although the environment has clearly changed some properties of its members, group galaxies at a given mass and morphology have comparable amounts of star formation as field galaxies. We conclude the main difference between the two environments is the higher fraction of massive early-type galaxies in groups. Clusters show even more distinct trends. Using three different star-formation indicators, we found the mass-SFR relation for cluster galaxies can look similar to the field (A2029) or have a population of low-star-forming galaxies in addition to the field-like galaxies (Coma). We contribute this to differing merger histories: recently-accreted galaxies would not have time for their star formation to be quenched by the cluster environment (A2029), while an accretion event in the past few Gyr would give galaxies enough time to have their star formation suppressed by the cluster environment. Since these two main quenching mechanisms depend on the density of the intracluster gas, we turn to a group of X-ray underluminous clusters to study how star-forming galaxies have been affected in clusters with lower than expected X-ray emission. We find the

  20. Dark matter-rich early-type galaxies in the CASSOWARY 5 strong lensing system

    NASA Astrophysics Data System (ADS)

    Grillo, C.; Christensen, L.

    2011-12-01

    We study the strong gravitational lensing system number 5 identified by the CAmbridge Sloan Survey Of Wide ARcs in the skY (CASSOWARY). In this system, a source at redshift 1.069 is lensed into four detected images by two early-type galaxies at redshift 0.388. The average projected angular distance of the multiple images from the primary lens is 12.6 kpc, corresponding to approximately 1.3 times the value of the galaxy effective radius. The observed positions of the multiple images are well reproduced by a model in which the total mass distribution of the deflector is described in terms of two singular isothermal sphere profiles and a small external shear component. The values of the effective velocity dispersions of the two lens galaxies are 328+7- 8 and 350+17- 18 km s-1. The best-fitting lensing model predicts magnification values larger than 2 for each multiple image and a total magnification factor of 17. By modelling the lens galaxy spectral energy distributions, we measure lens luminous masses of (3.09 ± 0.30) × 1011 and (5.87 ± 0.58) × 1011 M⊙ and stellar mass-to-light ratios of 2.5 ± 0.3 and 2.8 ± 0.3 M⊙ L-1⊙, i (in the observed i band). These values are used to disentangle the luminous and dark matter components in the vicinity of the multiple images. We estimate that the dark over total mass ratio projected within a cylinder centred on the primary lens and with a radius of 12.6 kpc is 0.8 ± 0.1. Inside the effective radii of the two galaxies, we measure projected total mass-to-light ratios of 12.6 ± 1.4 and 13.1 ± 1.7 M⊙ L-1⊙, i. We contrast these measurements with the typical values found at similar distances (in units of the effective radius) in isolated lens galaxies and show that the amount of dark matter present in these lens galaxies is almost a factor 4 larger than in field lens galaxies with comparable luminous masses. Data and models are therefore consistent with interpreting the lens of this system as a galaxy group. We infer

  1. SDSS-IV MaNGA: a distinct mass distribution explored in slow-rotating early-type galaxies

    NASA Astrophysics Data System (ADS)

    Rong, Yu; Li, Hongyu; Wang, Jie; Gao, Liang; Li, Ran; Ge, Junqiang; Jing, Yingjie; Pan, Jun; Fernández-Trincado, J. G.; Valenzuela, Octavio; Ortíz, Erik Aquino

    2018-06-01

    We study the radial acceleration relation (RAR) for early-type galaxies (ETGs) in the SDSS MaNGA MPL5 data set. The complete ETG sample show a slightly offset RAR from the relation reported by McGaugh et al. (2016) at the low-acceleration end; we find that the deviation is due to the fact that the slow rotators show a systematically higher acceleration relation than the McGaugh's RAR, while the fast rotators show a consistent acceleration relation to McGaugh's RAR. There is a 1σ significant difference between the acceleration relations of the fast and slow rotators, suggesting that the acceleration relation correlates with the galactic spins, and that the slow rotators may have a different mass distribution compared with fast rotators and late-type galaxies. We suspect that the acceleration relation deviation of slow rotators may be attributed to more galaxy merger events, which would disrupt the original spins and correlated distributions of baryons and dark matter orbits in galaxies.

  2. Analysis of the star formation histories of galaxies in different environments: from low to high density

    NASA Astrophysics Data System (ADS)

    Ortega-Minakata, René A.

    2015-11-01

    formation histories of galaxies in our catalogue were found to be strongly dependent on their morphology, and consequently on their emission-line activity. Star-forming galaxies are late types that have the youngest populations; Sy2-dominated galaxies show a mixture of young and old populations, while LINER-likes have older populations; and passive, early-type galaxies have the oldest populations and have no current star formation. This is consistent with the idea that the processes that fix or change the morphology of galaxies are more internal and modulated by their mass, and are tightly related to how much gas is available to stimulate or stop star formation or AGN activity. In contrast, the star formation histories of galaxies were found to be only weakly dependent on their environmental density, with isolated galaxies showing somewhat younger populations than galaxies in high-density environments. This is consistent with the weak morphology-density relation found for the general population of galaxies, and supports the idea that morphology and formation history are tightly related and, while the processes that change the morphology are more common in the cluster environment, the environmental density itself does not directly affect much the formation history of galaxies. The stellar mass of galaxies seems to modulate their activity and morphology: massive galaxies formed more rapidly in the past, efficiently converting their gas into stars, leaving little or no gas to form stars or fuel AGN activity later on, thus making them low-intensity active galaxies or passive galaxies. The formation of these massive galaxies would then only depend on the local density of protogalaxies, so a high merger rate in environments similar to compact groups of galaxies in the past would result in an early-type galaxy, effectively explaining the relation between mass, activity, morphology, stellar mean age and velocity dispersion of galaxies. The catalogue presented here is useful and

  3. The Structure and Kinematics of Little Blue Spheroid Galaxies

    NASA Astrophysics Data System (ADS)

    Moffett, Amanda J.; Phillipps, Steven; Robotham, Aaron; Driver, Simon; Bremer, Malcolm; GAMA survey team, SAMI survey team

    2018-01-01

    A population of blue, morphologically early-type galaxies, dubbed "Little Blue Spheroids" (LBSs), has been identified as a significant contributor to the low redshift galaxy population in the GAMA survey. Using deep, high-resolution optical imaging from KiDS and the new Bayesian, two-dimensional galaxy profile modelling code PROFIT, we examine the detailed structural characteristics of LBSs, including low surface brightness components not detected in previous SDSS imaging. We find that these LBS galaxies combine features typical of early-type and late-type populations, with structural properties similar to other low-mass early types and star formation rates similar to low-mass late types. We further consider the environments and SAMI-derived IFU kinematics of LBSs in order to investigate the conditions of their formation and the current state of their dynamical evolution.

  4. Evidence for a Sizable Age Spread among Galaxies from the Ultraviolet-Upturn Phenomenon in Early-type Systems

    NASA Astrophysics Data System (ADS)

    Park, Jang-Hyun; Lee, Young-Wook

    1997-02-01

    The suggestion of Lee that the age spread among galaxies is responsible for the systematic variation of the ultraviolet upturn among early-type systems is examined here with detailed population synthesis models. Our models differ from previous ones by including (1) the effect of metallicity spreads and (2) detailed modeling of the variations in H-R diagram morphology (including the helium-burning phase) with age and metallicity. Our models suggest that the far-UV radiation of these systems is dominated by a minority population of metal-poor, hot horizontal-branch (HB) stars and their post-HB progeny, with some contribution from metal-rich post-asymptotic giant branch stars, while the optical radiation is dominated by a metal-rich population. The systematic variation of the UV upturn depends on the contribution from metal-poor, hot HB stars and their post-HB progeny, which in turn depends on the ages of old stellar populations in galaxies. Our result implies a prolonged epoch of galaxy formation, in the sense that more massive galaxies (in denser environments) formed first. With the assumption that the UV-upturn phenomenon is solely due to the age variations among galaxies, we estimate the difference in age between the giant elliptical galaxies and the spiral bulges of the Local Group to be ~3 Gyr. This suggests that the best estimate for the lower limit of the age of the universe is ~19 Gyr, which of course would be in conflict with the current estimate of H0, together with the standard cosmological models with zero cosmological constant.

  5. Detection of Enhanced Central Mass-to-light Ratios in Low-mass Early-type Galaxies: Evidence for Black Holes?

    NASA Astrophysics Data System (ADS)

    Pechetti, Renuka; Seth, Anil; Cappellari, Michele; McDermid, Richard; den Brok, Mark; Mieske, Steffen; Strader, Jay

    2017-11-01

    We present dynamical measurements of the central mass-to-light ratio (M/L) of a sample of 27 low-mass early-type {{ATLAS}}3{{D}} galaxies. We consider all {{ATLAS}}3{{D}} galaxies with 9.7 < log({M}\\star /{M}⊙ ) < 10.5 in our analysis, selecting out galaxies with available high-resolution Hubble Space Telescope (HST) data, and eliminating galaxies with significant central color gradients or obvious dust features. We use the HST images to derive mass models for these galaxies and combine these with the central velocity dispersion values from {{ATLAS}}3{{D}} data to obtain a central dynamical M/L estimate. These central dynamical {\\text{}}M/L{{s}} are higher than dynamical {\\text{}}M/L{{s}} derived at larger radii and stellar population estimates of the galaxy centers in ˜80% of galaxies, with a median enhancement of ˜14% and a statistical significance of 3.3σ. We show that the enhancement in the central M/L is best described either by the presence of black holes in these galaxies or by radial initial mass function variations. Assuming a black hole model, we derive black hole masses for the sample of galaxies. In two galaxies, NGC 4458 and NGC 4660, the data suggest significantly overmassive black holes, while in most others only upper limits are obtained. We also show that the level of M/L enhancements we see in these early-type galaxy nuclei are consistent with the larger enhancements seen in ultracompact dwarf galaxies (UCDs), supporting the scenario where massive UCDs are created by stripping galaxies of these masses.

  6. Testing Verlinde's emergent gravity in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Tortora, C.; Koopmans, L. V. E.; Napolitano, N. R.; Valentijn, E. A.

    2018-01-01

    Emergent Gravity (EG) has been proposed to resolve the missing mass problem in galaxies, replacing the potential of dark matter (DM) by the effect of the entropy displacement of dark energy by baryonic matter. This apparent DM depends only on the baryonic mass distribution and the present-day value of the Hubble parameter. In this paper we test the EG proposition, formalized by Verlinde for a spherical and isolated mass distribution using the central dynamics (Sloan Digital Sky Survey velocity dispersion, σ) and the K-band light distribution in a sample of 4032 massive (M_{\\star }≳ 10^{10} M_{⊙}) and local early-type galaxies (ETGs) from the SPIDER datasample. Our results remain unaltered if we consider the sample of 750 roundest field galaxies. Using these observations we derive the predictions by EG for the stellar mass-to-light ratio (M/L) and the initial mass function (IMF). We demonstrate that, consistently with a classical Newtonian framework with a DM halo component or alternative theories of gravity as MOdified Newtonian Dynamics (MOND), the central dynamics can be fitted if the IMF is assumed non-universal and systematically changing with σ. For the case of EG, we find lower, but still acceptable, stellar M/L if compared with the DM-based Navarro, Frenk & White (NFW) model and with MOND, but pretty similar to adiabatically contracted DM haloes and with expectations from spectral gravity-sensitive features. If the strain caused by the entropy displacement would be not maximal, as adopted in the current formulation, then the dynamics of ETGs could be reproduced with larger M/L.

  7. A model for the origin of bursty star formation in galaxies

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André

    2018-01-01

    We propose a simple analytic model to understand when star formation is time steady versus bursty in galaxies. Recent models explain the observed Kennicutt-Schmidt relation between star formation rate and gas surface densities in galaxies as resulting from a balance between stellar feedback and gravity. We argue that bursty star formation occurs when such an equilibrium cannot be stably sustained, and identify two regimes in which galaxy-scale star formation should be bursty: (i) at high redshift (z ≳ 1) for galaxies of all masses, and (ii) at low masses (depending on gas fraction) for galaxies at any redshift. At high redshift, characteristic galactic dynamical time-scales become too short for supernova feedback to effectively respond to gravitational collapse in galactic discs (an effect recently identified for galactic nuclei), whereas in dwarf galaxies star formation occurs in too few bright star-forming regions to effectively average out. Burstiness is also enhanced at high redshift owing to elevated gas fractions in the early Universe. Our model can thus explain the bursty star formation rates predicted in these regimes by recent high-resolution galaxy formation simulations, as well as the bursty star formation histories observationally inferred in both local dwarf and high-redshift galaxies. In our model, bursty star formation is associated with particularly strong spatiotemporal clustering of supernovae. Such clustering can promote the formation of galactic winds and our model may thus also explain the much higher wind mass loading factors inferred in high-redshift massive galaxies relative to their z ∼ 0 counterparts.

  8. Galaxy Zoo: evidence for diverse star formation histories through the green valley

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Marshall, P. J.; Bamford, S.; Fortson, L.; Kaviraj, S.; Masters, K. L.; Melvin, T.; Nichol, R. C.; Skibba, R. A.; Willett, K. W.

    2015-06-01

    Does galaxy evolution proceed through the green valley via multiple pathways or as a single population? Motivated by recent results highlighting radically different evolutionary pathways between early- and late-type galaxies, we present results from a simple Bayesian approach to this problem wherein we model the star formation history (SFH) of a galaxy with two parameters, [t, τ] and compare the predicted and observed optical and near-ultraviolet colours. We use a novel method to investigate the morphological differences between the most probable SFHs for both disc-like and smooth-like populations of galaxies, by using a sample of 126 316 galaxies (0.01 < z < 0.25) with probabilistic estimates of morphology from Galaxy Zoo. We find a clear difference between the quenching time-scales preferred by smooth- and disc-like galaxies, with three possible routes through the green valley dominated by smooth- (rapid time-scales, attributed to major mergers), intermediate- (intermediate time-scales, attributed to minor mergers and galaxy interactions) and disc-like (slow time-scales, attributed to secular evolution) galaxies. We hypothesize that morphological changes occur in systems which have undergone quenching with an exponential time-scale τ < 1.5 Gyr, in order for the evolution of galaxies in the green valley to match the ratio of smooth to disc galaxies observed in the red sequence. These rapid time-scales are instrumental in the formation of the red sequence at earlier times; however, we find that galaxies currently passing through the green valley typically do so at intermediate time-scales.†

  9. Dark-ages reionization and galaxy-formation simulation- VI. The origins and fate of the highest known redshift galaxy

    NASA Astrophysics Data System (ADS)

    Mutch, Simon J.; Liu, Chuanwu; Poole, Gregory B.; Geil, Paul M.; Duffy, Alan R.; Trenti, Michele; Oesch, Pascal A.; Illingworth, Garth D.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2016-12-01

    Using Hubble data, including new grism spectra, Oesch et al. recently identified GN-z11, an MUV = -21.1 galaxy at z = 11.1 (just 400 Myr after the big bang). With an estimated stellar mass of ˜109 M⊙, this galaxy is surprisingly bright and massive, raising questions as to how such an extreme object could form so early in the Universe. Using MERAXES, a semi-analytic galaxy-formation model developed as part of the Dark-ages Reionization And Galaxy-formation Observables from Numerical Simulations (DRAGONS) programme, we investigate the potential formation mechanisms and eventual fate of GN-z11. The volume of our simulation is comparable to that of the discovery observations and possesses two analogue galaxies of similar luminosity to this remarkably bright system. Existing in the two most massive subhaloes at z = 11.1 (Mvir = 1.4 × 1011 M⊙ and 6.7 × 1010 M⊙), our model analogues show excellent agreement with all available observationally derived properties of GN-z11. Although they are relatively rare outliers from the full galaxy population at high-z, they are no longer the most massive or brightest systems by z = 5. Furthermore, we find that both objects possess relatively smooth, but extremely rapid mass growth histories with consistently high star formation rates and UV luminosities at z > 11, indicating that their brightness is not a transient, merger-driven feature. Our model results suggest that future wide-field surveys with the James Webb Space Telescope may be able to detect the progenitors of GN-z11 analogues out to z ˜ 13-14, pushing the frontiers of galaxy-formation observations to the early phases of cosmic reionization and providing a valuable glimpse of the first galaxies to reionize the Universe on large scales.

  10. The MASSIVE Survey. IX. Photometric Analysis of 35 High-mass Early-type Galaxies with HST WFC3/IR

    NASA Astrophysics Data System (ADS)

    Goullaud, Charles F.; Jensen, Joseph B.; Blakeslee, John P.; Ma, Chung-Pei; Greene, Jenny E.; Thomas, Jens

    2018-03-01

    We present near-infrared observations of 35 of the most massive early-type galaxies in the local universe. The observations were made using the infrared channel of the Hubble Space Telescope Wide Field Camera 3 (WFC3) in the F110W (1.1 μm) filter. We measured surface brightness profiles and elliptical isophotal fit parameters from the nuclear regions out to a radius of ∼10 kpc in most cases. We find that 37% (13) of the galaxies in our sample have isophotal position-angle rotations greater than 20° over the radial range imaged by WFC3/IR, which is often due to the presence of neighbors or multiple nuclei. Most galaxies in our sample are significantly rounder near the center than in the outer regions. This sample contains 6 fast rotators and 28 slow rotators. We find that all fast rotators are either disky or show no measurable deviation from purely elliptical isophotes. Among slow rotators, significantly disky and boxy galaxies occur with nearly equal frequency. The galaxies in our sample often exhibit changing isophotal shapes, sometimes showing both significantly disky and boxy isophotes at different radii. The fact that parameters vary widely between galaxies and within individual galaxies is evidence that these massive galaxies have complicated formation histories, and some of them have experienced recent mergers and have not fully relaxed. These data demonstrate the value of IR imaging of galaxies at high spatial resolution and provide measurements necessary for determining stellar masses, dynamics, and black hole masses in high-mass galaxies. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with Program GO-14219.

  11. Star Formation in Galaxies

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Topics addressed include: star formation; galactic infrared emission; molecular clouds; OB star luminosity; dust grains; IRAS observations; galactic disks; stellar formation in Magellanic clouds; irregular galaxies; spiral galaxies; starbursts; morphology of galactic centers; and far-infrared observations.

  12. Early-type galaxies in the Antlia cluster: catalogue and isophotal analysis

    NASA Astrophysics Data System (ADS)

    Calderón, Juan P.; Bassino, Lilia P.; Cellone, Sergio A.; Gómez, Matías

    2018-06-01

    We present a statistical isophotal analysis of 138 early-type galaxies in the Antlia cluster, located at a distance of ˜ 35 Mpc. The observational material consists of CCD images of four 36 × 36 arcmin2 fields obtained with the MOSAIC II camera at the Blanco 4-m telescope at Cerro Tololo Interamerican Observatory. Our present work supersedes previous Antlia studies in the sense that the covered area is four times larger, the limiting magnitude is MB ˜ -9.6 mag, and the surface photometry parameters of each galaxy are derived from Sérsic model fits extrapolated to infinity. In a companion previous study we focused on the scaling relations obtained by means of surface photometry, and now we present the data, on which the previous paper is based, the parameters of the isophotal fits as well as an isophotal analysis. For each galaxy, we derive isophotal shape parameters along the semimajor axis and search for correlations within different radial bins. Through extensive statistical tests, we also analyse the behaviour of these values against photometric and global parameters of the galaxies themselves. While some galaxies do display radial gradients in their ellipticity (ɛ) and/or their Fourier coefficients, differences in mean values between adjacent regions are not statistically significant. Regarding Fourier coefficients, dwarf galaxies usually display gradients between all adjacent regions, while non-dwarfs tend to show this behaviour just between the two outermost regions. Globally, there is no obvious correlation between Fourier coefficients and luminosity for the whole magnitude range (-12 ≳ MV ≳ -22); however, dwarfs display much higher dispersions at all radii.

  13. VizieR Online Data Catalog: VEGAS: A VST Early-type GAlaxy Survey (Capaccioli+, 2015)

    NASA Astrophysics Data System (ADS)

    Capaccioli, M.; Spavone, M.; Grado, A.; Iodice, E.; Limatola, L.; Napolitano, N. R.; Cantiello, M.; Paolillo, M.; Romanowsky, A. J.; Forbes, D. A.; Puzia, T. H.; Raimondo, G.; Schipani, P.

    2015-11-01

    The VST Elliptical GAlaxies Survey (VEGAS) is a deep multiband (g,r,i) imaging survey of early-type galaxies in the southern hemisphere carried out with VST at the ESO Cerro Paranal Observatory (Chile). The large field of view (FOV) of the OmegaCAM mounted on VST (one square degree matched by pixels 0.21-arcsec wide), together with its high efficiency and spatial resolution (typically better than 1-arcsec; Kuijken, 2011Msngr.146....8K) allows us to map with a reasonable integration time the surface brightness of a galaxy out to isophotes encircling about 95% of the total light. Observations started in October 2011 (ESO Period 88), and since then, the survey has acquired exposures for about 20 bright galaxies (and for a wealth of companion objects in the field), for a totality of ~80h (up to Period 93). (1 data file).

  14. Enhanced X-ray Emission from Early Universe Analog Galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew; Kaaret, Philip; Prestwich, Andrea H.; Mirabel, I. Felix; Feng, Hua

    2016-04-01

    X-rays from binaries containing compact objects may have played an important role in heating the early Universe. Here we discuss our findings from X-ray studies of blue compact dwarf galaxies (BCDs), Lyman break analogs (LBAs), and Green Pea galaxies (GP), all of which are considered local analogs to high redshift galaxies. We find enhanced X-ray emission per unit star-formation rate which strongly correlates with decreasing metallicity. We find evidence for the existence of a L_X-SFR-Metallicity plane for star-forming galaxies. The exact properties of X-ray emission in the early Universe affects the timing and morphology of reionization, both being observable properties of current and future radio observations of the redshifted 21cm signal from neutral hydrogen.

  15. Implications for the Origin of Early-type Dwarf Galaxies: A Detailed Look at the Isolated Rotating Early-type Dwarf Galaxy LEDA 2108986 (CG 611), Ramifications for the Fundamental Plane’s {S}_{K}^{2} Kinematic Scaling, and the Spin-Ellipticity Diagram

    NASA Astrophysics Data System (ADS)

    Graham, Alister W.; Janz, Joachim; Penny, Samantha J.; Chilingarian, Igor V.; Ciambur, Bogdan C.; Forbes, Duncan A.; Davies, Roger L.

    2017-05-01

    Selected from a sample of nine, isolated, dwarf early-type galaxies (ETGs) with the same range of kinematic properties as dwarf ETGs in clusters, we use LEDA 2108986 (CG 611) to address the nature versus nurture debate regarding the formation of dwarf ETGs. The presence of faint disk structures and rotation within some cluster dwarf ETGs has often been heralded as evidence that they were once late-type spiral or dwarf irregular galaxies prior to experiencing a cluster-induced transformation into an ETG. However, CG 611 also contains significant stellar rotation (≈20 km s-1) over its inner half-light radius ({R}{{e},{maj}}=0.71 kpc), and its stellar structure and kinematics resemble those of cluster ETGs. In addition to hosting a faint young nuclear spiral within a possible intermediate-scale stellar disk, CG 611 has accreted an intermediate-scale, counter-rotating gas disk. It is therefore apparent that dwarf ETGs can be built by accretion events, as opposed to disk-stripping scenarios. We go on to discuss how both dwarf and ordinary ETGs with intermediate-scale disks, whether under (de)construction or not, are not fully represented by the kinematic scaling {S}0.5=\\sqrt{0.5 {V}{rot}2+{σ }2}, and we also introduce a modified spin-ellipticity diagram λ (R)-ɛ (R) with the potential to track galaxies with such disks.

  16. Star Formation in low mass galaxies

    NASA Astrophysics Data System (ADS)

    Mehta, Vihang

    2018-01-01

    Our current hierarchical view of the universe asserts that the large galaxies we see today grew via mergers of numerous smaller galaxies. As evidenced by recent literature, the collective impact of these low mass galaxies on the universe is more substantial than previously thought. Studying the growth and evolution of these low mass galaxies is critical to our understanding of the universe as a whole. Star formation is one of the most important ongoing processes in galaxies. Forming stars is fundamental to the growth of a galaxy. One of the main goals of my thesis is to analyze the star formation in these low mass galaxies at different redshifts.Using the Hubble UltraViolet Ultra Deep Field (UVUDF), I investigate the star formation in galaxies at the peak of the cosmic star formation history using the ultraviolet (UV) light as a star formation indicator. Particularly, I measure the UV luminosity function (LF) to probe the volume-averaged star formation properties of galaxies at these redshifts. The depth of the UVUDF is ideal for a direct measurement of the faint end slope of the UV LF. This redshift range also provides a unique opportunity to directly compare UV to the "gold standard" of star formation indicators, namely the Hα nebular emission line. A joint analysis of the UV and Hα LFs suggests that, on average, the star formation histories in low mass galaxies (~109 M⊙) are more bursty compared to their higher mass counterparts at these redshifts.Complementary to the analysis of the average star formation properties of the bulk galaxy population, I investigate the details of star formation in some very bursty galaxies at lower redshifts selected from Spitzer Large Area Survey with Hyper-Suprime Cam (SPLASH). Using a broadband color-excess selection technique, I identify a sample of low redshift galaxies with bright nebular emission lines in the Subaru-XMM Deep Field (SXDF) from the SPLASH-SXDF catalog. These galaxies are highly star forming and have

  17. The Influence Of Environment On The Star Formation Properties Of Galaxies

    NASA Astrophysics Data System (ADS)

    Rodriguez Del Pino, Bruno

    2015-10-01

    star formation properties and nuclear activity in galaxies in a multi-cluster system at z 0.165. We employ Tuneable Filter observations to map the Halpha and N[II] emission lines. We show the feasibility and advantages of using these type of observations to map emission lines in a large number of objects at a single redshift, and developed a procedure for the reduction and analysis of the data. We find a large number of optical AGN that were not previously detected as X-ray point sources. The probability that a galaxy hosts an AGN is not found to correlate with environment. From the analysis of the integrated star formation properties of the galaxies in the multi-cluster system we observe a significant number of galaxies with suppressed star formation with respect to the field. Although stellar mass is the main driver of the suppression of star formation, once its effect is removed, we find that galaxies in the core regions have reduced specific star formation rates (SSFRs) with respect to the infall regions. Moreover, the environment influences galaxies differently depending on their stellar mass. Galaxies with low masses experience a change in morphology (from irregulars and spirals to early-types) and colour (blue to red) as they fall into regions of higher density. However, many massive spiral galaxies retain their disk morphologies and the visibility of their spiral arms all the way to the core regions. Before becoming passive, these galaxies experience a phase exhibiting red colours and relatively high SSFRs. A significant fraction of the spiral galaxies with relatively high masses go through this phase, which could represent the transition towards becoming S0s. We finish by presenting some interesting results on the spatial distribution of the emission-line regions in the cluster galaxies. We develop a method to create emission-line images, which successfully preserves the flux within the emission lines. Our analysis on the concentrations and sizes of the star

  18. STELLAR POPULATIONS AND EVOLUTION OF EARLY-TYPE CLUSTER GALAXIES: CONSTRAINTS FROM OPTICAL IMAGING AND SPECTROSCOPY OF z = 0.5-0.9 GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgensen, Inger; Chiboucas, Kristin, E-mail: ijorgensen@gemini.edu, E-mail: kchiboucas@gemini.edu

    2013-03-15

    indices and recent stellar population models from Thomas et al., we find that MS0451.6-0305 has a mean metallicity [M/H] approximately 0.2 dex below that of the other clusters and our low-redshift sample. We confirm our previous result that RXJ0152.7-1357 has a mean abundance ratio [{alpha}/Fe] approximately 0.3 dex higher than that of the other clusters. The differences in [M/H] and [{alpha}/Fe] between the high-redshift clusters and the low-redshift sample are inconsistent with a passive evolution scenario for early-type cluster galaxies over the redshift interval studied. Low-level star formation may be able to bring the metallicity of MS0451.6-0305 in agreement with the low-redshift sample, while we speculate whether galaxy mergers can lead to sufficiently large changes in the abundance ratios for the RXJ0152.7-1357 galaxies to allow them to reach the low-redshift sample values in the time available.« less

  19. Galactic rings revisited. II. Dark gaps and the locations of resonances in early-to-intermediate-type disc galaxies

    NASA Astrophysics Data System (ADS)

    Buta, Ronald J.

    2017-10-01

    Dark gaps are commonly seen in early-to-intermediate-type barred galaxies having inner and outer rings or related features. In this paper, the morphologies of 54 barred and oval ringed galaxies have been examined with the goal of determining what the dark gaps are telling us about the structure and evolution of barred galaxies. The analysis is based mainly on galaxies selected from the Galaxy Zoo 2 data base and the Catalogue of Southern Ringed Galaxies. The dark gaps between inner and outer rings are of interest because of their likely association with the L4 and L5 Lagrangian points that would be present in the gravitational potential of a bar or oval. Since the points are theoretically expected to lie very close to the corotation resonance (CR) of the bar pattern, the gaps provide the possibility of locating corotation in some galaxies simply by measuring the radius rgp of the gap region and setting rCR=rgp. With the additional assumption of generally flat rotation curves, the locations of other resonances can be predicted and compared with observed morphological features. It is shown that this `gap method' provides remarkably consistent interpretations of the morphology of early-to-intermediate-type barred galaxies. The paper also brings attention to cases where the dark gaps lie inside an inner ring, rather than between inner and outer rings. These may have a different origin compared to the inner/outer ring gaps.

  20. X-Ray Scaling Relations of Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Babyk, Iu. V.; McNamara, B. R.; Nulsen, P. E. J.; Hogan, M. T.; Vantyghem, A. N.; Russell, H. R.; Pulido, F. A.; Edge, A. C.

    2018-04-01

    X-ray luminosity, temperature, gas mass, total mass, and their scaling relations are derived for 94 early-type galaxies (ETGs) using archival Chandra X-ray Observatory observations. Consistent with earlier studies, the scaling relations, L X ∝ T 4.5±0.2, M ∝ T 2.4±0.2, and L X ∝ M 2.8±0.3, are significantly steeper than expected from self-similarity. This steepening indicates that their atmospheres are heated above the level expected from gravitational infall alone. Energetic feedback from nuclear black holes and supernova explosions are likely heating agents. The tight L X –T correlation for low-luminosity systems (i.e., below 1040 erg s‑1) are at variance with hydrodynamical simulations, which generally predict higher temperatures for low-luminosity galaxies. We also investigate the relationship between total mass and pressure, Y X = M g × T, finding M\\propto {Y}X0.45+/- 0.04. We explore the gas mass to total mass fraction in ETGs and find a range of 0.1%–1.0%. We find no correlation between the gas-to-total mass fraction with temperature or total mass. Higher stellar velocity dispersions and higher metallicities are found in hotter, brighter, and more massive atmospheres. X-ray core radii derived from β-model fitting are used to characterize the degree of core and cuspiness of hot atmospheres.

  1. Star Formation in Merging Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Mansheim, Alison Seiler

    abstracts of each paper. The Chapter 1 contains an introduction to the topic and motivation to fill a vacuum in knowledge using our hypothesis. Chapter 4, following the meat of the thesis in Chapters 2 and 3, gives closure and looks to the future. In Chapter 2, we investigate star formation in DLSCL J0916.2+2953, a dissociative merger of two clusters at z = 0.53 that has progressed 1.1 +1.3-0.4 Gyr since first pass-through. We attempt to reveal the effects a collision may have had on the evolution of the cluster galaxies by tracing their star formation history. We probe current and recent activity to identify a possible star formation event at the time of the merger using EW(Hdelta), EW(OII) and Dn(4000) measured from the composite spectra of 64 cluster and 153 coeval field galaxies. We supplement Keck DEIMOS spectra with DLS and HST imaging to determine the color, stellar mass, and morphology of each galaxy and conduct a comprehensive study of the populations in this complex structure. Spectral results indicate the average cluster and cluster red sequence galaxies experienced no enhanced star formation relative to the surrounding field during the merger, ruling out a predominantly merger-quenched population. We find that the average blue galaxy in the North cluster is currently active and in the South cluster is currently post-starburst having undergone a recent star formation event. While the North activity could be latent or long-term merger effects, a young blue stellar population and irregular geometry suggest the cluster was still forming prior the collision. While the South activity coincides with the time of the merger, the blue early-type population could be a result of secular cluster processes. The evidence suggests that the dearth or surfeit of activity is indiscernible from normal cluster galaxy evolution. In Chapter 3, we examine the effects of an impending cluster merger on galaxies in the large scale structure (LSS) RX Cl J0910 at z =1.105. Using multi

  2. Fred Hoyle: contributions to the theory of galaxy formation

    NASA Astrophysics Data System (ADS)

    Efstathiou, George

    I review two fundamental contributions that Fred Hoyle made to the theory of galaxy formation. Hoyle was the first to propose that protogalaxies acquired their angular momentum via tidal torques from neighbouring perturbations during a period of gravitational instability. To my knowldege, he was also the first to suggest that the masses of galaxies could be explained by the requirement that primordial gas clouds cool radiatively on a suitable timescale. Tidal torques and cooling arguments play a central role in the modern theory of galaxy formation. It is a measure of Hoyle's breadth and inventiveness that he recognized the importance of these processes at such an early stage in the history of the subject.

  3. On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael

    2006-01-01

    The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the field and in rich galaxy clusters are contrasted by juxtaposing the buildup of heavy metals in the universe inferred from observed star formation and supernovae rate histories with data on the evolution of Fe abundances in the intracluster medium (ICM). Models for the chemical evolution of Fe in these environments are constructed, subject to observational constraints, for this purpose. While models with a mean delay for SNIa of 3 Gyr and standard initial mass function (IMF) are fully consistent with observations in the field, cluster Fe enrichment immediately tracked a rapid, top-heavy phase of star formation - although transport of Fe into the ICM may have been more prolonged and star formation likely continued beyond redshift 1. The means of this prompt enrichment consisted of SNII yielding greater than or equal to 0.1 solar mass per explosion (if the SNIa rate normalization is scaled down from its value in the field according to the relative number of candidate progenitor stars in the 3 - 8 solar mass range) and/or SNIa with short delay times originating during the rapid star formation epoch. Star formation is greater than 3 times more efficient in rich clusters than in the field, mitigating the overcooling problem in numerical cluster simulations. Both the fraction of baryons cycled through stars, and the fraction of the total present-day stellar mass in the form of stellar remnants, are substantially greater in clusters than in the field.

  4. A multiwavelength survey of H I-excess galaxies with surprisingly inefficient star formation

    NASA Astrophysics Data System (ADS)

    Geréb, K.; Janowiecki, S.; Catinella, B.; Cortese, L.; Kilborn, V.

    2018-05-01

    We present the results of a multiwavelength survey of H I-excess galaxies, an intriguing population with large H I reservoirs associated with little current star formation. These galaxies have stellar masses M⋆ > 1010 M⊙, and were identified as outliers in the gas fraction versus NUV-r colour and stellar mass surface density scaling relations based on the GALEX Arecibo SDSS Survey (GASS). We obtained H I interferometry with the Giant Metrewave Radio Telescope, Keck optical long-slit spectroscopy, and deep optical imaging (where available) for four galaxies. Our analysis reveals multiple possible reasons for the H I excess in these systems. One galaxy, AGC 10111, shows an H I disc that is counter-rotating with respect to the stellar bulge, a clear indication of external origin of the gas. Another galaxy appears to host a Malin 1-type disc, where a large specific angular momentum has to be invoked to explain the extreme M_{H I}/M⋆ ratio of 166 per cent. The other two galaxies have early-type morphology with very high gas fractions. The lack of merger signatures (unsettled gas, stellar shells, and streams) in these systems suggests that these gas-rich discs have been built several Gyr ago, but it remains unclear how the gas reservoirs were assembled. Numerical simulations of large cosmological volumes are needed to gain insight into the formation of these rare and interesting systems.

  5. ROSAT PSPC observations of two X-ray-faint early-type galaxies: NGC 4365 and NGC 4382

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.; Kim, D.-W.; Trinchieri, G.

    1994-01-01

    We present the results of ROSAT Positive Sensitive Proportional Counter (PSPC) observations of the two early-type galaxies NGC 4365 and NGC 4382. These galaxies are among those observed with Einstein to have the lowest X-ray to optical flux ratios of early-type galaxies. The PSCP data show that for radii r greater than 50 arcsec the radial distributions of the X-ray surface brightness are consistent with the optical distributions of King (1978). We also find that these galaxies have X-ray spectra significantly different from those observed in X-ray-bright ellipticals, with a relative excess of counts detected in the softest spectral channels. This confirms earlier Einstein results. The characteristics of the ROSAT PSPC do not allow us to discriminate between possible spectral models. If we adopt a two-component thermal model on the grounds of physical plausibility, we find that the spectral data can be fitted with a very soft optically thin component, with kT approximately 0.2 keV, and a hard component with kT greater than (1.0-1.5) keV. The hard component has a luminosity consistent with that expected from the integrated emission of a population of low mass-X-ray binaries in these galaxies; the nature of the very soft component is more speculative. Candidates include the coronal emission of late-type stars, supersoft X-ray sources, RS CVn, and perhaps a hot Interstellar Medium (ISM). Alternatively, the spectal data may be fitted with a 0.6-1 keV bremsstrahlung spectrum (expontential plus Gaunt), and may suggest the presence of a totally new population of X-ray sources.

  6. THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.

    2015-02-20

    We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increasesmore » for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M {sub *} = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  7. The SL2S galaxy-scale lens sample. V. dark matter halos and stellar IMF of massive early-type galaxies out to redshift 0.8

    DOE PAGES

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; ...

    2015-02-17

    Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  8. Early-type Galaxy Spin Evolution in the Horizon-AGN Simulation

    NASA Astrophysics Data System (ADS)

    Choi, Hoseung; Yi, Sukyoung K.; Dubois, Yohan; Kimm, Taysun; Devriendt, Julien. E. G.; Pichon, Christophe

    2018-04-01

    Using the Horizon-AGN simulation data, we study the relative role of mergers and environmental effects in shaping the spin of early-type galaxies (ETGs) after z ≃ 1. We follow the spin evolution of 10,037 color-selected ETGs more massive than {10}10 {M}ȯ that are divided into four groups: cluster centrals (3%), cluster satellites (33%), group centrals (5%), and field ETGs (59%). We find a strong mass dependence of the slow rotator fraction, f SR, and the mean spin of massive ETGs. Although we do not find a clear environmental dependence of f SR, a weak trend is seen in the mean value of the spin parameter driven by the satellite ETGs as they gradually lose their spin as their environment becomes denser. Galaxy mergers appear to be the main cause of total spin changes in 94% of the central ETGs of halos with {M}vir}> {10}12.5 {M}ȯ , but only 22% of satellite and field ETGs. We find that non-merger-induced tidal perturbations better correlate with the galaxy spin down in satellite ETGs than in mergers. Given that the majority of ETGs are not central in dense environments, we conclude that non-merger tidal perturbation effects played a key role in the spin evolution of ETGs observed in the local (z < 1) universe.

  9. Star formation quenching in green valley galaxies at 0.5 ≲ z ≲ 1.0 and constraints with galaxy morphologies

    NASA Astrophysics Data System (ADS)

    Nogueira-Cavalcante, J. P.; Gonçalves, T. S.; Menéndez-Delmestre, K.; Sheth, K.

    2018-01-01

    We calculate the star formation quenching time-scales in green valley galaxies at intermediate redshifts (z ∼ 0.5-1) using stacked zCOSMOS spectra of different galaxy morphological types: spheroidal, disc-like, irregular and merger, dividing disc-like galaxies further into unbarred, weakly barred and strongly barred, assuming a simple exponentially decaying star formation history model and based on the H δ absorption feature and the 4000 Å break. We find that different morphological types present different star formation quenching time-scales, reinforcing the idea that the galaxy morphology is strongly correlated with the physical processes responsible for quenching star formation. Our quantification of the star formation quenching time-scale indicates that discs have typical time-scales 60 per cent to five times longer than that of galaxies presenting spheroidal, irregular or merger morphologies. Barred galaxies, in particular, present the slowest transition time-scales through the green valley. This suggests that although secular evolution may ultimately lead to gas exhaustion in the host galaxy via bar-induced gas inflows that trigger star formation activity, secular agents are not major contributors in the rapid quenching of galaxies at these redshifts. Galaxy interaction, associated with the elliptical, irregular and merger morphologies, contributes, to a more significant degree, to the fast transition through the green valley at these redshifts. In light of previous works suggesting that both secular and merger processes are responsible for the star formation quenching at low redshifts, our results provide an explanation to the recent findings that star formation quenching happened at a faster pace at z ∼ 0.8.

  10. Formation of massive clouds and dwarf galaxies during tidal encounters

    NASA Technical Reports Server (NTRS)

    Kaufman, Michele; Elmegreen, Bruce G.; Thomasson, Magnus; Elmegreen, Debra M.

    1993-01-01

    Gerola et al. (1983) propose that isolated dwarf galaxies can form during galaxy interactions. As evidence of this process, Mirabel et al. (1991) find 10(exp 9) solar mass clouds and star formation complexes at the outer ends of the tidal arms in the Antennae and Superantennae galaxies. We describe observations of HI clouds with mass greater than 10(exp 8) solar mass in the interacting galaxy pair IC 2163/NGC 2207. This pair is important because we believe it represents an early stage in the formation of giant clouds during an encounter. We use a gravitational instability model to explain why the observed clouds are so massive and discuss a two-dimensional N-body simulation of an encounter that produces giant clouds.

  11. Merger-driven evolution of the effective stellar initial mass function of massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2017-02-01

    The stellar initial mass function (IMF) of early-type galaxies is the combination of the IMF of the stellar population formed in situ and that of accreted stellar populations. Using as an observable the effective IMF αIMF, defined as the ratio between the true stellar mass of a galaxy and the stellar mass inferred assuming a Salpeter IMF, we present a theoretical model for its evolution as a result of dry mergers. We use a simple dry-merger evolution model, based on cosmological N-body simulations, together with empirically motivated prescriptions for the IMF to make predictions on how the effective IMF of massive early-type galaxies changes from z = 2 to z = 0. We find that the IMF normalization of individual galaxies becomes lighter with time. At fixed velocity dispersion, αIMF is predicted to be constant with redshift. Current dynamical constraints on the evolution of the IMF are in slight tension with this prediction, even though systematic uncertainties, including the effect of radial gradients in the IMF, prevent a conclusive statement. The correlation of αIMF with stellar mass becomes shallower with time, while the correlation between αIMF and velocity dispersion is mostly preserved by dry mergers. We also find that dry mergers can mix the dependence of the IMF on stellar mass and velocity dispersion, making it challenging to infer, from z = 0 observations of global galactic properties, what is the quantity that is originally coupled with the IMF.

  12. Constraints on early-type galaxy structure from spectroscopically selected gravitational lenses

    NASA Astrophysics Data System (ADS)

    Bolton, Adam Stallard

    2005-11-01

    This thesis describes all aspects of a unique spectroscopic survey for strong galaxy-galaxy gravitational lenses: motivation, candidate selection, ground- based spectroscopic follow-up, Hubble Space Telescope imaging, data analysis, and results on the radial density profile of the lens galaxies. The lens candidates are selected from within the spectroscopic database of the Sloan Digital Sky Survey (SDSS) based on the appearance of two significantly different redshifts along the same line of sight, and lenses are confirmed within the candidate sample by follow-up imaging and spectroscopy. The sample of [approximate]20 early-type lenses presented in this thesis represents the largest single strong-lens galaxy sample discovered and published to date. These lenses probe the mass of the lens galaxies on scales roughly equal to one-half effective radius. We find a dynamical normalization between isothermal lens-model velocity dispersions and aperture-corrected SDSS stellar velocity dispersions of f = s lens /s stars = 0.95 +/- 0.03. By combining lens-model Einstein radii and de Vaucouleurs effective radii with stellar velocity dispersions through the Jeans equation, we find that the logarithmic slope [Special characters omitted.] of the density profile in our lens galaxies (r 0 ( [Special characters omitted.] ) is on average slightly steeper than isothermal ([Special characters omitted.] = 2) with a modest intrinsic scatter. Parameterizing the intrinsic distribution in [Special characters omitted.] as Gaussian, we find a maximum-likelihood mean of [Special characters omitted. ] and standard deviation of s[Special characters omitted.] = [Special characters omitted.] (68% confidence, for isotropic velocity-dispersion models). Our results rule out a single universal logarithmic density slope at >99.995% confidence. The success of this spectroscopic lens survey suggests that similar projects should be considered as an explicit science goal of future redshift surveys. (Copies

  13. The formation of the massive galaxies in the SSA22 z = 3.1 protocluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubo, M.; Uchimoto, Y. K.; Yamada, T.

    We study the properties of K-band-selected galaxies (K {sub AB} < 24) in the z = 3.09 SSA22 protocluster field. 430 galaxies at 2.6 < z {sub phot} < 3.6 are selected as potential protocluster members in a 112 arcmin{sup 2} area based on their photometric redshifts. We find that ≈20% of the massive galaxies with stellar masses >10{sup 11} M {sub ☉} at z {sub phot} ∼ 3.1 have colors consistent with those of quiescent galaxies with ages >0.5 Gyr. This fraction increases to ≈50% after correcting for unrelated foreground/background objects. We also find that 30% of the massivemore » galaxies are heavily reddened, dusty, star-forming galaxies. Few such quiescent galaxies at similar redshifts are seen in typical survey fields. An excess surface density of 24 μm sources at z {sub phot} ∼ 3.1 is also observed, implying the presence of dusty star-formation activity in the protocluster. Cross-correlation with the X-ray data indicates that the fraction of K-band-selected protocluster galaxies hosting active galactic nuclei (AGNs) is also high compared with the field. The sky distribution of the quiescent galaxies, the 24 μm sources, and the X-ray AGNs show clustering around a density peak of z = 3.1 Lyα emitters. A significant fraction of the massive galaxies have already become quiescent, while dusty star-formation is still active in the SSA22 protocluster. These findings indicate that we are witnessing the formation epoch of massive early-type galaxies in the centers of the predecessors to present-day rich galaxy clusters.« less

  14. Formation of the first galaxies under Population III stellar feedback

    NASA Astrophysics Data System (ADS)

    Jeon, Myoungwon

    2015-01-01

    The first galaxies, which formed a few hundred million years after the big bang, are related to important cosmological questions. Given thatthey are thought to be the basic building blocks of large galaxies seen today, understanding their formation and properties is essentialto studying galaxy formation as a whole. In this dissertation talk, I will present the results of our highly-resolved cosmological ab-initio simulations to understand the assembly process of first galaxies under the feedback from the preceding generations of first stars, the so-called Population III (Pop III). The first stars formed at z≲30 in dark matter (DM) minihalos with M_{vir}=10^5-10^6Msun, predominately via molecular hydrogen (H_2) cooling. Radiation from Pop III stars dramatically altered the gas within their host minihalos, through photoionization, photoheating, and photoevaporation. Once a Pop III star explodes as a supernova (SN), heavy elements are dispersed, enriching the interstellar (ISM) and intergalactic medium (IGM), thus initiating the process of chemical evolution. I will begin by presenting how the SN explosion of the first stars influences early cosmic history, specifically assessing the time delay in further star formation and tracing the evolution of metal-enriched gas until the second episode star formation happens. These results will show the role of Pop III supernovae on the star formation transition from Pop III to Population II. Additionally, the more distant, diffuse IGM was heated by X-rays emitted by accreting black holes (BHs), or high-mass X-ray binaries (HMXBs), both remnants of Pop III stars. I will present results of a series of simulations where we study the impact of X-ray feedback from BHs and HMXBs on the star formation history in the early universe, and discuss the resulting implications on reionization. I will also present the role of X-rays on the early BH growth, providing constraints on models for supermassive black hole formation. Finally, I

  15. Astronomers Discover Most Distant Galaxy Showing Key Evidence For Furious Star Formation

    NASA Astrophysics Data System (ADS)

    2003-12-01

    Astronomers have discovered a key signpost of rapid star formation in a galaxy 11 billion light-years from Earth, seen as it was when the Universe was only 20 percent of its current age. Using the National Science Foundation's Very Large Array (VLA) radio telescope, the scientists found a huge quantity of dense interstellar gas -- the environment required for active star formation -- at the greatest distance yet detected. A furious spawning of the equivalent of 1,000 Suns per year in a distant galaxy dubbed the Cloverleaf may be typical of galaxies in the early Universe, the scientists say. Cloverleaf galaxy VLA image (green) of radio emission from HCN gas, superimposed on Hubble Space Telescope image of the Cloverleaf galaxy. The four images of the Cloverleaf are the result of gravitational lensing. CREDIT: NRAO/AUI/NSF, STScI (Click on Image for Larger Version) "This is a rate of star formation more than 300 times greater than that in our own Milky Way and similar spiral galaxies, and our discovery may provide important information about the formation and evolution of galaxies throughout the Universe," said Philip Solomon, of Stony Brook University in New York. While the raw material for star formation has been found in galaxies at even greater distances, the Cloverleaf is by far the most distant galaxy showing this essential signature of star formation. That essential signature comes in the form of a specific frequency of radio waves emitted by molecules of the gas hydrogen cyanide (HCN). "If you see HCN, you are seeing gas with the high density required to form stars," said Paul Vanden Bout of the National Radio Astronomy Observatory (NRAO). Solomon and Vanden Bout worked with Chris Carilli of NRAO and Michel Guelin of the Institute for Millimeter Astronomy in France. They reported their results in the December 11 issue of the scientific journal Nature. In galaxies like the Milky Way, dense gas traced by HCN but composed mainly of hydrogen molecules is always

  16. Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Hunt, Leslie K.; Madden, Suzanne C.; Schneider, Raffaella

    2008-12-01

    'Shea and Michael L. Norman; 16. Damped Lyα systems as probes of chemical evolution over cosmological timescales Miroslava Dessauges-Zavadsky; 17. Connecting high-redshift galaxy populations through observations of local damped Lyman alpha dwarf galaxies Regina E. Schulte-Ladbeck; 18. Chemical enrichment and feedback in low metallicity environments: constraints on galaxy formation Francesca Matteucci; 19. Effects of reionization on dwarf galaxy formation Massimo Ricotti; 20. The importance of following the evolution of the dust in galaxies on their SEDs A. Schurer, F. Calura, L. Silva, A. Pipino, G. L. Granato, F. Matteucci and R. Maiolino; 21. About the chemical evolution of dSphs (and the peculiar globular cluster ωCen) Andrea Marcolini and Annibale D'Ercole; 22. Young star clusters in the small Magellanic cloud: impact of local and global conditions on star formation Elena Sabbi, Linda J. Smith, Lynn R. Carlson, Antonella Nota, Monca Tosi, Michele Cignoni, Jay S. Gallagher III, Marco Sirianni and Margaret Meixner; 23. Modeling the ISM properties of metal-poor galaxies and gamma-ray burst hosts Emily M. Levesque, Lisa J. Kewley, Kirsten Larson and Leonie Snijders; 24. Dwarf galaxies and the magnetisation of the IGM Uli Klein; Session III. Explosive Events in Low-Metallicity Environments: 25. Supernovae and their evolution in a low metallicity ISM Roger A. Chevalier; 26. First stars - type Ib supernovae connection Ken'ichi Nomoto, Masaomi Tanaka, Yasuomi Kamiya, Nozomu Tominaga and Keiichi Maeda; 27. Supernova nucleosynthesis in the early universe Nozomu Tominaga, Hideyuki Umeda, Keiichi Maeda, Ken'ichi Nomoto and Nobuyuki Iwamoto; 28. Powerful explosions at Z = 0? Sylvia Ekström, Georges Meynet, Raphael Hirschi and André Maeder; 29. Wind anisotropy and stellar evolution Cyril Georgy, Georges Meynet and André Maeder; 30. Low-mass and metal-poor gamma-ray burst

  17. Galaxy Zoo: Major Galaxy Mergers Are Not a Significant Quenching Pathway

    NASA Astrophysics Data System (ADS)

    Weigel, Anna K.; Schawinski, Kevin; Caplar, Neven; Carpineti, Alfredo; Hart, Ross E.; Kaviraj, Sugata; Keel, William C.; Kruk, Sandor J.; Lintott, Chris J.; Nichol, Robert C.; Simmons, Brooke D.; Smethurst, Rebecca J.

    2017-08-01

    We use stellar mass functions to study the properties and the significance of quenching through major galaxy mergers. In addition to SDSS DR7 and Galaxy Zoo 1 data, we use samples of visually selected major galaxy mergers and post-merger galaxies. We determine the stellar mass functions of the stages that we would expect major-merger-quenched galaxies to pass through on their way from the blue cloud to the red sequence: (1) major merger, (2) post-merger, (3) blue early type, (4) green early type, and (5) red early type. Based on their similar mass function shapes, we conclude that major mergers are likely to form an evolutionary sequence from star formation to quiescence via quenching. Relative to all blue galaxies, the major-merger fraction increases as a function of stellar mass. Major-merger quenching is inconsistent with the mass and environment quenching model. At z˜ 0, major-merger-quenched galaxies are unlikely to constitute the majority of galaxies that transition through the green valley. Furthermore, between z˜ 0-0.5, major-merger-quenched galaxies account for 1%-5% of all quenched galaxies at a given stellar mass. Major galaxy mergers are therefore not a significant quenching pathway, neither at z˜ 0 nor within the last 5 Gyr. The majority of red galaxies must have been quenched through an alternative quenching mechanism that causes a slow blue to red evolution. .

  18. Uv-bright Nearby Early-type Galaxies Observed in the Mid-infrared: Eidence for a Multi-stage Formation History by Way of WISE and GALEX Imaging

    NASA Technical Reports Server (NTRS)

    Petty, S. M.; Neill, J. D.; Jarrett, T. H.; Blain, A. W.; Farrah, D. G.; Rich, R. M.; Tsai, C.-W.; Benford, D. J.; Bridge, C. R.; Lake, S. E.; hide

    2013-01-01

    In the local universe, 10% of massive elliptical galaxies are observed to exhibit a peculiar property: a substantial excess of ultraviolet emission than what is expected from their old, red stellar populations. Several origins for this ultraviolet excess (UVX) have been proposed including a population of hot young stars and a population of old, blue horizontal branch or extended horizontal branch (BHB or EHB) stars that have undergone substantial mass loss from their outer atmospheres. We explore the radial distribution of UVX in a selection of 49 nearby E/S0-type galaxies by measuring their extended photometry in the UV through mid-infrared (mid-IR) with the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the Wide-field Infrared Survey Explorer (WISE). We compare UV/optical and UV/mid-IR colors with the Flexible Stellar Population Synthesis models, which allow for the inclusion of EHB stars. We find that combined WISE mid-IR and GALEX UV colors are more effective in distinguishing models than optical colors, and that the UV/mid-IR combination is sensitive to the EHB fraction. There are strong color gradients, with the outer radii bluer than the inner half-light radii by approx.1 mag. This color difference is easily accounted for with an increase in the BHB fraction of 0.25 with radius. We estimated that the average ages for the inner and outer radii are 7.0 +/- 0.3 Gyr, and 6.2 +/- 0.2 Gyr, respectively, with the implication that the outer regions are likely to have formed approx. 1 Gyr after the inner regions. Additionally, we find that metallicity gradients are likely not a significant factor in the color difference. The separation of color between the inner and outer regions, which agrees with a specific stellar population difference (e.g., higher EHB populations), and the approx. 0.5-2 Gyr age difference suggests multi-stage formation. Our results are best explained by inside-out formation: rapid star formation within the core at early

  19. UV-BRIGHT NEARBY EARLY-TYPE GALAXIES OBSERVED IN THE MID-INFRARED: EVIDENCE FOR A MULTI-STAGE FORMATION HISTORY BY WAY OF WISE AND GALEX IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petty, S. M.; Farrah, D. G.; Neill, J. D.

    2013-10-01

    In the local universe, 10% of massive elliptical galaxies are observed to exhibit a peculiar property: a substantial excess of ultraviolet emission than what is expected from their old, red stellar populations. Several origins for this ultraviolet excess (UVX) have been proposed including a population of hot young stars and a population of old, blue horizontal branch or extended horizontal branch (BHB or EHB) stars that have undergone substantial mass loss from their outer atmospheres. We explore the radial distribution of UVX in a selection of 49 nearby E/S0-type galaxies by measuring their extended photometry in the UV through mid-infraredmore » (mid-IR) with the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the Wide-field Infrared Survey Explorer (WISE). We compare UV/optical and UV/mid-IR colors with the Flexible Stellar Population Synthesis models, which allow for the inclusion of EHB stars. We find that combined WISE mid-IR and GALEX UV colors are more effective in distinguishing models than optical colors, and that the UV/mid-IR combination is sensitive to the EHB fraction. There are strong color gradients, with the outer radii bluer than the inner half-light radii by {approx}1 mag. This color difference is easily accounted for with an increase in the BHB fraction of 0.25 with radius. We estimated that the average ages for the inner and outer radii are 7.0 {+-} 0.3 Gyr, and 6.2 {+-} 0.2 Gyr, respectively, with the implication that the outer regions are likely to have formed {approx}1 Gyr after the inner regions. Additionally, we find that metallicity gradients are likely not a significant factor in the color difference. The separation of color between the inner and outer regions, which agrees with a specific stellar population difference (e.g., higher EHB populations), and the {approx}0.5-2 Gyr age difference suggests multi-stage formation. Our results are best explained by inside-out formation: rapid star formation within the core

  20. SPIDER. IV. OPTICAL AND NEAR-INFRARED COLOR GRADIENTS IN EARLY-TYPE GALAXIES: NEW INSIGHT INTO CORRELATIONS WITH GALAXY PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Barbera, F.; De Carvalho, R. R.; De La Rosa, I. G.

    2010-11-15

    We present an analysis of stellar population gradients in 4546 early-type galaxies (ETGs) with photometry in grizYHJK along with optical spectroscopy. ETGs were selected as bulge-dominated systems, displaying passive spectra within the SDSS fibers. A new approach is described which utilizes color information to constrain age and metallicity gradients. Defining an effective color gradient, {nabla}{sub *}, which incorporates all of the available color indices, we investigate how {nabla}{sub *} varies with galaxy mass proxies, i.e., velocity dispersion, stellar (M{sub *}) and dynamical (M{sub dyn}) masses, as well as age, metallicity, and [{alpha}/Fe]. ETGs with M{sub dyn} larger than 8.5 xmore » 10{sup 10} M{sub sun} have increasing age gradients and decreasing metallicity gradients with respect to mass, metallicity, and enhancement. We find that velocity dispersion and [{alpha}/Fe] are the main drivers of these correlations. ETGs with 2.5 x 10{sup 10} M{sub sun} {<=} M{sub dyn} {<=} 8.5 x 10{sup 10} M{sub sun} show no correlation of age, metallicity, and color gradients with respect to mass, although color gradients still correlate with stellar population parameters, and these correlations are independent of each other. In both mass regimes, the striking anti-correlation between color gradient and {alpha}-enhancement is significant at {approx}5{sigma} and results from the fact that metallicity gradient decreases with [{alpha}/Fe]. This anti-correlation may reflect the fact that star formation and metallicity enrichment are regulated by the interplay between the energy input from supernovae, and the temperature and pressure of the hot X-ray gas in ETGs. For all mass ranges, positive age gradients are associated with old galaxies (>5-7 Gyr). For galaxies younger than {approx}5 Gyr, mostly at low mass, the age gradient tends to be anti-correlated with the Age parameter, with more positive gradients at younger ages.« less

  1. Peering Into an Early Galaxy

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-04-01

    reports on what weve learned peering into CR7s interior with ALMA.ALMA observations of [C II] (white contours) are overlaid on an ultraviolet image of the galaxy CR7 taken with Hubble (background image). The presence of [C II] throughout the galaxy indicate that CR7 does not primarily consist of metal-free gas, as had been previously proposed. [Matthee et al. 2017]Metals yet No Dust?Matthee and collaborators deep spectroscopic observations of CR7 targeted the far-infrared dust continuum emission and a gas emission line, [C II]. The authors detected [C II] emission in a large region in and around the galaxy, including near the ultraviolet clumps. This clearly indicates the presence of metals in these star-forming regions, and it rules out the possibility that CR7s gas is mostly primordial and forming metal-free Pop III stars.The authors do not detect far infrared continuum emission from dust, which sets an unusually low upper limit on the amount of dust that may be present in this galaxy. This limit allows them to better interpret their measurements of star formation rates in CR7, providing more information about the galaxys properties.Lastly, Matthee and collaborators note that the [C II] emission is detected in multiple different components that have different velocities. The authors propose that these components are accreting satellite galaxies. If this is correct, then CR7 is not only a target to learn about early sources of light in the universe its also a rare opportunity to directly witness the build-up of a central galaxy in the early universe.CitationJ. Matthee et al 2017 ApJ 851 145. doi:10.3847/1538-4357/aa9931

  2. Galaxy bachelors, couples, spouses: Star formation in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Barger, Kathleen; Richstein, Hannah; SDSS-IV/MaNGA

    2017-01-01

    We investigate the star formation activity in three galaxy systems in different stages of interaction to determine how the environment of galaxies affects their star forming ability and potential. These systems include an isolated galaxy, a pair of interacting galaxies, and a pair of merging galaxies. All of the target galaxies in these systems have similar stellar masses and similar radii and are at similar redshifts. We trace the star formation activity over the past 1-2 Gyr using spatially and kinematically resolved H-alpha emission, H-alpha equivalent width, and 4000-Angstrom break maps. This work is based on data from the fourth-generation Sloan Digital Sky Survey (SDSS-IV)/Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), and is part of the Project No.0285 in SDSS-IV.

  3. Star Formation Suppression in Compact Group Galaxies: A New Path to Quenching?

    NASA Astrophysics Data System (ADS)

    Alatalo, K.; Appleton, P. N.; Lisenfeld, U.; Bitsakis, T.; Lanz, L.; Lacy, M.; Charmandaris, V.; Cluver, M.; Dopita, M. A.; Guillard, P.; Jarrett, T.; Kewley, L. J.; Nyland, K.; Ogle, P. M.; Rasmussen, J.; Rich, J. A.; Verdes-Montenegro, L.; Xu, C. K.; Yun, M.

    2015-10-01

    We present CO(1-0) maps of 12 warm H2-selected Hickson Compact Groups (HCGs), covering 14 individually imaged warm H2 bright galaxies, with the Combined Array for Research in Millimeter Astronomy. We found a variety of molecular gas distributions within the HCGs, including regularly rotating disks, bars, rings, tidal tails, and possibly nuclear outflows, though the molecular gas morphologies are more consistent with spirals and early-type galaxies than mergers and interacting systems. Our CO-imaged HCG galaxies, when plotted on the Kennicutt-Schmidt relation, shows star formation (SF) suppression of < {S} > =10+/- 5, distributed bimodally, with five objects exhibiting suppressions of {S} ≳ 10 and depletion timescales ≳10 Gyr. This SF inefficiency is also seen in the efficiency per freefall time of Krumholz et al. We investigate the gas-to-dust ratios of these galaxies to determine if an incorrect LCO-M(H2) conversion caused the apparent suppression and find that HCGs have normal gas-to-dust ratios. It is likely that the cause of the apparent suppression in these objects is associated with shocks injecting turbulence into the molecular gas, supported by the fact that the required turbulent injection luminosity is consistent with the bright H2 luminosity reported by Cluver et al. Galaxies with high SF suppression ({S} ≳ 10) also appear to be those in the most advanced stages of transition across both optical and infrared color space. This supports the idea that at least some galaxies in HCGs are transitioning objects, where a disruption of the existing molecular gas in the system suppresses SF by inhibiting the molecular gas from collapsing and forming stars efficiently. These observations, combined with recent work on poststarburst galaxies with molecular reservoirs, indicates that galaxies do not need to expel their molecular reservoirs prior to quenching SF and transitioning from blue spirals to red early-type galaxies. This may imply that SF quenching can

  4. The Relation between Luminous AGNs and Star Formation in Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Rieke, G. H.; Egami, E.; Haines, C. P.; Pereira, M. J.; Smith, G. P.

    2015-08-01

    We study the relation of active galactic nuclei (AGNs) to star formation in their host galaxies. Our sample includes 205 Type-1 and 85 Type-2 AGNs, 162 detected with Herschel, from fields surrounding 30 galaxy clusters in the Local Cluster Substructure Survey. The sample is identified by optical line widths and ratios after selection to be brighter than 1 mJy at 24 μm. We show that Type-2 AGN [O iii]λ5007 line fluxes at high z can be contaminated by their host galaxies with typical spectrograph entrance apertures (but our sample is not compromised in this way). We use spectral energy distribution (SED) templates to decompose the galaxy SEDs and estimate star formation rates (SFRs), AGN luminosities, and host galaxy stellar masses (described in an accompanying paper). The AGNs arise from massive black holes (˜ 3× {10}8{M}⊙ ) accreting at ˜10% of the Eddington rate and residing in galaxies with stellar mass \\gt 3× {10}10{M}⊙ ; those detected with Herschel have IR luminosity from star formation in the range of {L}{SF,{IR}}˜ {10}10-{10}12{L}⊙ . We find that (1) the specific SFRs in the host galaxies are generally consistent with those of normal star-forming (main sequence) galaxies; (2) there is a strong correlation between the luminosities from star formation and the AGN; and (3) the correlation may not result from a causal connection, but could arise because the black hole mass (and hence AGN Eddington luminosity) and star formation are both correlated with the galaxy mass.

  5. Star Formation-Driven Winds in the Early Universe

    NASA Astrophysics Data System (ADS)

    Peek, Matthew; Lundgren, Britt; Brammer, Gabriel

    2018-01-01

    Measuring the extent of star formation-driven winds from galaxies in the early universe is crucial for understanding of how galaxies evolve over cosmic time. Using WFC3/IR grism data from the Hubble Space Telescope (HST), we have measured the star formation rates and star formation rate surface densities of several hundred galaxies at redshift (z) = 1, when the universe was roughly half its present age. The galaxies we examine are also probed by background quasars, whose spectra provide information about the extent of metal-enriched gas in their halos. We use a computational pipeline to measure the density of the star formation in each galaxy and correlate these measurements with detections of Mg II absorption in nearby quasar spectra from the Sloan Digital Sky Survey. Our preliminary results support a model in which galaxies with high SFR surface densities drive metal-enriched gas out of the disk and into these galaxies’ extended halos, where that gas is detected in the spectra of more distant quasars.

  6. Approximations to galaxy star formation rate histories: properties and uses of two examples

    NASA Astrophysics Data System (ADS)

    Cohn, J. D.

    2018-05-01

    Galaxies evolve via a complex interaction of numerous different physical processes, scales and components. In spite of this, overall trends often appear. Simplified models for galaxy histories can be used to search for and capture such emergent trends, and thus to interpret and compare results of galaxy formation models to each other and to nature. Here, two approximations are applied to galaxy integrated star formation rate histories, drawn from a semi-analytic model grafted onto a dark matter simulation. Both a lognormal functional form and principal component analysis (PCA) approximate the integrated star formation rate histories fairly well. Machine learning, based upon simplified galaxy halo histories, is somewhat successful at recovering both fits. The fits to the histories give fixed time star formation rates which have notable scatter from their true final time rates, especially for quiescent and "green valley" galaxies, and more so for the PCA fit. For classifying galaxies into subfamilies sharing similar integrated histories, both approximations are better than using final stellar mass or specific star formation rate. Several subsamples from the simulation illustrate how these simple parameterizations provide points of contact for comparisons between different galaxy formation samples, or more generally, models. As a side result, the halo masses of simulated galaxies with early peak star formation rate (according to the lognormal fit) are bimodal. The galaxies with a lower halo mass at peak star formation rate appear to stall in their halo growth, even though they are central in their host halos.

  7. GALAXY EVOLUTION IN THE MID-INFRARED GREEN VALLEY: A CASE OF THE A2199 SUPERCLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gwang-Ho; Lee, Myung Gyoon; Sohn, Jubee

    2015-02-20

    We study the mid-infrared (MIR) properties of the galaxies in the A2199 supercluster at z = 0.03 to understand the star formation activity of galaxy groups and clusters in the supercluster environment. Using the Wide-field Infrared Survey Explorer data, we find no dependence of mass-normalized integrated star formation rates of galaxy groups/clusters on their virial masses. We classify the supercluster galaxies into three classes in the MIR color-luminosity diagram: MIR blue cloud (massive, quiescent, and mostly early-type), MIR star-forming sequence (mostly late-type), and MIR green valley galaxies. These MIR green valley galaxies are distinguishable from the optical green valley galaxiesmore » in the sense that they belong to the optical red sequence. We find that the fraction of each MIR class does not depend on the virial mass of each group/cluster. We compare the cumulative distributions of surface galaxy number density and cluster/group-centric distance for the three MIR classes. MIR green valley galaxies show the distribution between MIR blue cloud and MIR star-forming (SF) sequence galaxies. However, if we fix galaxy morphology, early- and late-type MIR green valley galaxies show different distributions. Our results suggest a possible evolutionary scenario of these galaxies: (1) late-type MIR SF sequence galaxies → (2) late-type MIR green valley galaxies → (3) early-type MIR green valley galaxies → (4) early-type MIR blue cloud galaxies. In this sequence, the star formation of galaxies is quenched before the galaxies enter the MIR green valley, and then morphological transformation occurs in the MIR green valley.« less

  8. H2-based star formation laws in hierarchical models of galaxy formation

    NASA Astrophysics Data System (ADS)

    Xie, Lizhi; De Lucia, Gabriella; Hirschmann, Michaela; Fontanot, Fabio; Zoldan, Anna

    2017-07-01

    We update our recently published model for GAlaxy Evolution and Assembly (GAEA), to include a self-consistent treatment of the partition of cold gas in atomic and molecular hydrogen. Our model provides significant improvements with respect to previous ones used for similar studies. In particular, GAEA (I) includes a sophisticated chemical enrichment scheme accounting for non-instantaneous recycling of gas, metals and energy; (II) reproduces the measured evolution of the galaxy stellar mass function; (III) reasonably reproduces the observed correlation between galaxy stellar mass and gas metallicity at different redshifts. These are important prerequisites for models considering a metallicity-dependent efficiency of molecular gas formation. We also update our model for disc sizes and show that model predictions are in nice agreement with observational estimates for the gas, stellar and star-forming discs at different cosmic epochs. We analyse the influence of different star formation laws including empirical relations based on the hydrostatic pressure of the disc, analytic models and prescriptions derived from detailed hydrodynamical simulations. We find that modifying the star formation law does not affect significantly the global properties of model galaxies, neither their distributions. The only quantity showing significant deviations in different models is the cosmic molecular-to-atomic hydrogen ratio, particularly at high redshift. Unfortunately, however, this quantity also depends strongly on the modelling adopted for additional physical processes. Useful constraints on the physical processes regulating star formation can be obtained focusing on low-mass galaxies and/or at higher redshift. In this case, self-regulation has not yet washed out differences imprinted at early time.

  9. A multiparametric analysis of the Einstein sample of early-type galaxies. 1: Luminosity and ISM parameters

    NASA Technical Reports Server (NTRS)

    Eskridge, Paul B.; Fabbiano, Giuseppina; Kim, Dong-Woo

    1995-01-01

    We have conducted bivariate and multivariate statistical analysis of data measuring the luminosity and interstellar medium of the Einstein sample of early-type galaxies (presented by Fabbiano, Kim, & Trinchieri 1992). We find a strong nonlinear correlation between L(sub B) and L(sub X), with a power-law slope of 1.8 +/- 0.1, steepening to 2.0 +/- if we do not consider the Local Group dwarf galaxies M32 and NGC 205. Considering only galaxies with log L(sub X) less than or equal to 40.5, we instead find a slope of 1.0 +/- 0.2 (with or without the Local Group dwarfs). Although E and S0 galaxies have consistent slopes for their L(sub B)-L(sub X) relationships, the mean values of the distribution functions of both L(sub X) and L(sub X)/L(sub B) for the S0 galaxies are lower than those for the E galaxies at the 2.8 sigma and 3.5 sigma levels, respectively. We find clear evidence for a correlation between L(sub X) and the X-ray color C(sub 21), defined by Kim, Fabbiano, & Trinchieri (1992b), which indicates that X-ray luminosity is correlated with the spectral shape below 1 keV in the sense that low-L(sub X) systems have relatively large contributions from a soft component compared with high-L(sub X) systems. We find evidence from our analysis of the 12 micron IRAS data for our sample that our S0 sample has excess 12 micron emission compared with the E sample, scaled by their optical luminosities. This may be due to emission from dust heated in star-forming regions in S0 disks. This interpretation is reinforced by the existence of a strong L(sub 12)-L(sub 100) correlation for our S0 sample that is not found for the E galaxies, and by an analysis of optical-IR colors. We find steep slopes for power-law relationships between radio luminosity and optical, X-ray, and far-IR (FIR) properties. This last point argues that the presence of an FIR-emitting interstellar medium (ISM) in early-type galaxies is coupled to their ability to generate nonthermal radio continuum, as

  10. Into the Epoch of Galaxy Formation

    NASA Astrophysics Data System (ADS)

    2000-02-01

    distant, evolved galaxies and also about the existence of associations of distant galaxies. A first clear example is the concentration of galaxies that appear uniformly yellow in PR Photo 06b/00 , apparently tracing a group of galaxies that was already assembled when the Universe was only 6 billion years old. A confirmation of the distance of a few of these galaxies has already been obtained by means of spectral observations in the framework of an ESO Large Programme , entitled "A Stringent Test on the Formation of Early Type and Massive Galaxies" and carried out by another group of astronomers [2]. A further clear example of a concentration of distant galaxies is seen in the upper right part of PR Photo 06b/00 . The very red colours of several galaxies in this sky area indicate that they are even more distant, "evolved" galaxies, already present when the Universe was only 1/3 of the current age. Notes [1] The European team consists of Emanuele Giallongo (Principal Investigator), Adriano Fontana , Nicola Menci and Francesco Poli (all at Rome Observatory), Stephane Arnouts and Sandro D'Odorico (European Southern Observatory, Garching), Stefano Cristiani (ST European Coordinating Facility, Garching) and Paolo Saracco (Milan Observatory). The data analysis was performed at the Milan ( P. Saracco ) and Rome ( A. Fontana , F. Poli ) Observatories. [2] This programme is conducted Andrea Cimatti (Principal Investigator) and Emanuele Daddi (both at Arcetri Observatory), Tom Broadhurst , Sandro D'Odorico , Roberto Gilmozzi and Alvio Renzini (European Southern Observatory), Stefano Cristiani (ST European Coordinating Facility, Garching), Adriano Fontana , Emanuele Giallongo , Nicola Menci and Francesco Poli (Rome Observatory), Marco Mignoli , Lucia Pozzetti and Giovanni Zamorani (Bologna Observatory) and Paolo Saracco (Milan Observatory). Technical note : The K-band image ( PR Photo 06a/00 ) is the result of 510 min of integration time with ISAAC at VLT ANTU. The 3-sigma magnitude

  11. Star-Formation Histories of MUSCEL Galaxies

    NASA Astrophysics Data System (ADS)

    Young, Jason; Kuzio de Naray, Rachel; Xuesong Wang, Sharon

    2018-01-01

    The MUSCEL program (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies) uses combined ground-based/space-based data to determine the spatially resolved star-formation histories of low surface brightness (LSB) galaxies. LSB galaxies are paradoxical in that they are gas rich but have low star-formation rates. Here we present our observations and fitting technique, and the derived histories for select MUSCEL galaxies. It is our aim to use these histories in tandem with velocity fields and metallicity profiles to determine the physical mechanism(s) that give these faint galaxies low star-formation rates despite ample gas supplies.

  12. The three phases of galaxy formation

    NASA Astrophysics Data System (ADS)

    Clauwens, Bart; Schaye, Joop; Franx, Marijn; Bower, Richard G.

    2018-05-01

    We investigate the origin of the Hubble sequence by analysing the evolution of the kinematic morphologies of central galaxies in the EAGLE cosmological simulation. By separating each galaxy into disc and spheroidal stellar components and tracing their evolution along the merger tree, we find that the morphology of galaxies follows a common evolutionary trend. We distinguish three phases of galaxy formation. These phases are determined primarily by mass, rather than redshift. For M* ≲ 109.5M⊙ galaxies grow in a disorganised way, resulting in a morphology that is dominated by random stellar motions. This phase is dominated by in-situ star formation, partly triggered by mergers. In the mass range 109.5M⊙ ≲ M* ≲ 1010.5M⊙ galaxies evolve towards a disc-dominated morphology, driven by in-situ star formation. The central spheroid (i.e. the bulge) at z = 0 consists mostly of stars that formed in-situ, yet the formation of the bulge is to a large degree associated with mergers. Finally, at M* ≳ 1010.5M⊙ growth through in-situ star formation slows down considerably and galaxies transform towards a more spheroidal morphology. This transformation is driven more by the buildup of spheroids than by the destruction of discs. Spheroid formation in these galaxies happens mostly by accretion at large radii of stars formed ex-situ (i.e. the halo rather than the bulge).

  13. Probing Galaxy Formation and Evolution with Space Born Sub-Millimeter Telescopes

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Arendt, Richard G.; Moseley, Harvey; Benford, Dominic; Shafer, Richard; Mather, John; Oegerle, William (Technical Monitor)

    2002-01-01

    A major unresolved question in cosmology is how the complex system of galaxies we see in the present universe evolved from an almost perfectly smooth beginning. Multiwavelength observations of galaxies have revealed that a significant fraction of their UV-visible starlight is absorbed and reradiated by dust at infrared JR) and submillimeter wavelengths. The cumulative IR-submm. emission from galaxies since the epoch of recombination, the cosmic IR background, has recently been recorded by the COBE satellite. The COBE observations in combination with recent submm surveys conducted with the SCUBA on the 15 m JCMT have shown that most of the radiation from star formation that has taken place in the early stages of galaxy evolution is reradiated by dust at submm wavelengths. Therefore, submm telescopes offer a unique probe of the early stages of galaxy formation and evolution. This talk will: (1) consider the impact of telescope diameter on the depth of the survey (what redshift can be probed) at different wavelengths; (2) discuss the relative scientific merits of high-resolution narrow-field surveys versus lower resolution deep surveys; and (3) show how both strategies offer complementary information crucial to our understanding of the structure and evolution of galaxies in the universe.

  14. The Herschel Virgo Cluster Survey. XIII. Dust in early-type galaxies

    NASA Astrophysics Data System (ADS)

    di Serego Alighieri, S.; Bianchi, S.; Pappalardo, C.; Zibetti, S.; Auld, R.; Baes, M.; Bendo, G.; Corbelli, E.; Davies, J. I.; Davis, T.; De Looze, I.; Fritz, J.; Gavazzi, G.; Giovanardi, C.; Grossi, M.; Hunt, L. K.; Magrini, L.; Pierini, D.; Xilouris, E. M.

    2013-04-01

    Aims: We study the dust content of a large optical input sample of 910 early-type galaxies (ETG) in the Virgo cluster, also extending to the dwarf ETG, and examine the results in relation to those on the other cold ISM components. Methods: We have searched for far-infrared emission in all galaxies in the input sample using the 250 μm image of the Herschel Virgo Cluster Survey (HeViCS). This image covers a large fraction of the cluster with an area of ~55 square degrees. For the detected ETG we measured fluxes in five bands from 100 to 500 μm, and estimated the dust mass and temperature with modified black-body fits. Results: Dust is detected above the completeness limit of 25.4 mJy at 250 μm in 46 ETG, 43 of which are in the optically complete part of the input sample. In addition, dust is present at fainter levels in another six ETG. We detect dust in the four ETG with synchrotron emission, including M 87. Dust appears to be much more concentrated than stars and more luminous ETG have higher dust temperatures. Considering only the optically complete input sample and correcting for the contamination by background galaxies, dust detection rates down to the 25.4 mJy limit are 17% for ellipticals, about 40% for lenticulars (S0 + S0a), and around 3% for dwarf ETG. Dust mass does not correlate clearly with stellar mass and is often much greater than expected for a passive galaxy in a closed-box model. The dust-to-stars mass ratio anticorrelates with galaxy luminosity, and for some dwarf ETG reaches values as high as for dusty late-type galaxies. In the Virgo cluster slow rotators appear more likely to contain dust than fast ones. Comparing the dust results with those on Hi there are only eight ETG detected both in dust and in Hi in the HeViCS area; 39 have dust but only an upper limit on Hi, and eight have Hi but only an upper limit on dust. The locations of these galaxies in the cluster are different, with the dusty ETG concentrated in the densest regions, while the

  15. Star Formation in a Complete Spectroscopic Survey of Galaxies

    NASA Astrophysics Data System (ADS)

    Carter, B. J.; Fabricant, D. G.; Geller, M. J.; Kurtz, M. J.; McLean, B.

    2001-10-01

    The 15R-North galaxy redshift survey is a uniform spectroscopic survey (S/N~10) covering the range 3650-7400 Å for 3149 galaxies with median redshift 0.05. The sample is 90% complete to R=15.4. The median slit covering fraction is 24% of the galaxy, apparently sufficient to minimize the effects of aperture bias on the EW(Hα). Forty-nine percent of the galaxies in the survey have one or more emission lines detected at >=2 σ. In agreement with previous surveys, the fraction of absorption-line galaxies increases steeply with galaxy luminosity. We use Hβ, [O III], Hα, and [N II] to discriminate between star-forming galaxies and AGNs. At least 20% of the galaxies are star-forming, at least 17% have AGN-like emission, and 12% have unclassifiable emission. The unclassified 12% may include a ``hybrid'' population of galaxies with both star formation and AGN activity. The AGN fraction increases steeply with luminosity; the fraction of star-forming galaxies decreases. We use the EW(Hα+[N II]) to estimate the Scalo birthrate parameter, b, the ratio of the current star formation rate to the time averaged star formation rate. The median birthrate parameter is inversely correlated with luminosity in agreement with the conclusions based on smaller samples (Kennicutt, Tamblyn, & Congdon). Because our survey is large, we identify 33 vigorously star-forming galaxies with b>3. We confirm the conclusion of Jansen, Franx, & Fabricant that EW([O II]) must be used with caution as a measure of current star formation. Finally, we examine the way galaxies of different spectroscopic type trace the large-scale galaxy distribution. As expected the absorption-line fraction decreases and the star-forming emission-line fraction increases as the galaxy density decreases. The AGN fraction is insensitive to the surrounding galaxy density; the unclassified fraction declines slowly as the density increases. For the star-forming galaxies, the EW(Hα) increases very slowly as the galaxy number

  16. Zooming in on star formation in the brightest galaxies of the early Universe discovered with the Planck and Herschel satellites

    NASA Astrophysics Data System (ADS)

    Canameras, Raoul

    2016-09-01

    Strongly gravitationally lensed galaxies offer an outstanding opportunity to characterize the most intensely star-forming galaxies in the high-redshift universe. In the most extreme cases, one can probe the mechanisms that underlie the intense star formation on the scales of individual star-forming regions. This requires very fortuitous gravitational lensing configurations offering magnification factors >>10, which are particularly rare toward the high-redshift dusty star-forming galaxies. The Planck's Dusty GEMS (Gravitationally Enhanced subMillimeter Sources) sample contains eleven of the brightest high-redshift galaxies discovered with the Planck submillimeter all-sky survey, with flux densities between 300 and 1000 mJy at 350 microns, factors of a few brighter than the majority of lensed sources previously discovered with other surveys. Six of them are above the 90% completeness limit of the Planck Catalog of Compact Sources (PCCS), suggesting that they are among the brightest high-redshift sources on the sky selected by their active star formation. This thesis comes within the framework of the extensive multi-wavelength follow-up programme designed to determine the overall properties of the high-redshift sources and to probe the lensing configurations. Firstly, to characterize the intervening lensing structures and calculate lensing models, I use optical and near/mid-infrared imaging and spectroscopy. I deduce that our eleven GEMS are aligned with intervening matter overdensities at intermediate redshift, either massive isolated galaxies or galaxy groups and clusters. The foreground sources exhibit evolved stellar populations of a few giga years, characteristic of early-type galaxies. Moreover, the first detailed models of the light deflection toward the GEMS suggest magnification factors systematically >10, and >20 for some lines-of-sight. Secondly, we observe the GEMS in the far-infrared and sub-millimeter domains in order to characterize the background

  17. VARIATIONS OF MID- AND FAR-INFRARED LUMINOSITIES AMONG EARLY-TYPE GALAXIES: RELATION TO STELLAR METALLICITY AND COLD DUST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, William G.; Brighenti, Fabrizio; Temi, Pasquale

    The Hubble morphological sequence from early to late galaxies corresponds to an increasing rate of specific star formation. The Hubble sequence also follows a banana-shaped correlation between 24 and 70 {mu}m luminosities, both normalized with the K-band luminosity. We show that this correlation is significantly tightened if galaxies with central active galactic nucleus (AGN) emission are removed, but the cosmic scatter of elliptical galaxies in both 24 and 70 {mu}m luminosities remains significant along the correlation. We find that the 24 {mu}m variation among ellipticals correlates with stellar metallicity, reflecting emission from hot dust in winds from asymptotic giant branchmore » stars of varying metallicity. Infrared surface brightness variations in elliptical galaxies indicate that the K - 24 color profile is U-shaped for reasons that are unclear. In some elliptical galaxies, cold interstellar dust emitting at 70 and 160 {mu}m may arise from recent gas-rich mergers. However, we argue that most of the large range of 70 {mu}m luminosity in elliptical galaxies is due to dust transported from galactic cores by feedback events in (currently IR-quiet) AGNs. Cooler dusty gas naturally accumulates in the cores of elliptical galaxies due to dust-cooled local stellar mass loss and may accrete onto the central black hole, releasing energy. AGN-heated gas can transport dust in cores 5-10 kpc out into the hot gas atmospheres where it radiates extended 70 {mu}m emission but is eventually destroyed by sputtering. This, and some modest star formation, defines a cycle of dust creation and destruction. Elliptical galaxies evidently undergo large transient excursions in the banana plot in times comparable to the sputtering time or AGN duty cycle, 10 Myr. Normally regarded as passive, elliptical galaxies are the most active galaxies in the IR color-color correlation.« less

  18. Merging Features and Optical-Near Infrared Color Gradients of Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Duho; Im, M.

    2012-01-01

    It has been suggested that merging plays an important role in the formation and the evolution of early-type galaxies (ETGs). Optical-NIR color gradients of ETGs in high density environments are found to be less steep than those of ETGs in low density environments, hinting frequent merger activities in ETGs in high density environments. In order to examine if the flat color gradients are the result of dry mergers, we studied the relations between merging features, color gradient, and environments of 198 low redshift ETGs selected from Sloan Digital Sky Survey (SDSS) Stripe82. Near Infrared (NIR) images are taken from UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). Color(r-K) gradients of ETGs with tidal features are a little flatter than relaxed ETGs, but not significant. We found that massive (>1011.3 M⊙) relaxed ETGs have 2.5 times less scattered color gradients than less massive ETGs. The less scattered color gradients of massive ETGs could be evidence of dry merger processes in the evolution of massive ETGs. We found no relation between color gradients of ETGs and their environments.

  19. The connection between dark and baryonic matter in the process of galaxy formation

    NASA Astrophysics Data System (ADS)

    Trujillo, Sebastian

    2014-01-01

    Current galaxy formation theory still struggles to explain many essential galaxy properties. This thesis addresses these problems in the context of the interplay between baryons and dark matter in the concordance cosmological model. In the first part, we investigate galaxy abundance and scaling relations using a compilation of observational data along with large-scale cosmological simulations of dark matter (DM). We find that the standard cosmological model, in conjunction with halo abundance matching (HAM) and simple dynamical corrections, fits all basic statistics of galaxies more massive than the Large Magellanic Cloud (LMC). This zero-parameter model predicts the observed luminosity-velocity relation of early-and late-type galaxies, as well as the clustering of bright galaxies and the observed abundance of galaxies as a function of circular velocity. However, we find that all DM halos more massive than the LMC are much more abundant than the galaxies they host. Motivated by the model's shortcomings, in the second part we study the effect of baryons on galaxy formation using numerical simulations that include gas physics. We implement a model of star formation (SF) and stellar feedback based directly on observations of star-forming regions, where stellar feedback from massive stars includes radiation pressure, photoheating, supernovae, and stellar winds. We find that stellar radiation has a strong effect at z > 1, where it efficiently suppresses SF by dispersing cold and dense gas, preventing runaway growth of the stellar component, and yielding rising SF histories that reproduce many observations. Stellar feedback produces bulgeless discs with rotation curves and baryon fractions in excellent agreement with data. Feedback-driven blowouts reduce the central DM density of a dwarf, relieving tension between ACDM and observations. Based on these results, we begin to characterize the baryon cycle of galaxies and its imprint on studies of the circumgalactic medium

  20. Star Formation, Quenching And Chemical Enrichment In Local Galaxies From Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Belfiore, Francesco

    2017-08-01

    Within the currently well-established ΛCDM cosmological framework we still lack a satisfactory understanding of the processes that trigger, regulate and eventually quench star formation on galactic scales. Gas flows (including inflows from the cosmic web and supernovae-driven outflows) are considered to act as self-regulatory mechanisms, generating the scaling relations between stellar mass, star formation rate and metallicity observed in the local Universe by large spectroscopic surveys. These surveys, however, have so far been limited by the availability of only one spectrum per galaxy. The aim of this dissertation is to expand the study of star formation and chemical abundances to resolved scales within galaxies by using integral field spectroscopy (IFS) data, mostly from the ongoing SDSS-IV MaNGA survey. In the first part of this thesis I demonstrate the ubiquitous presence of extended low ionisation emission-line regions (LIERs) in both late- and early-type galaxies. By studying the Hα equivalent width and diagnostic line ratios radial profiles, together with tracers of the underlying stellar population, I show that LIERs are not due to a central point source but to hot evolved (post-asymptotic giant branch) stars. In light of this, I suggest a new classification scheme for galaxies based on their line emission. By analysing the colours, star formation rates, morphologies, gas and stellar kinematics and environmental properties of galaxies with substantial LIER emission, I identify two distinct populations. Galaxies where the central regions are LIER-like, but show star formation at larger radii are late types in which star formation is slowly quenched inside-out. This transformation is associated with massive bulges. Galaxies dominated by LIER emission at all radii, on the other hand, are red-sequence galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Quiescent galaxies devoid of line emission reside in denser

  1. Analysis of Mass Profiles and Cooling Flows of Bright, Early-Type Galaxies AO2, AO3 and Surface Brightness Profiles and Energetics of Intracluster Gas in Cool Galaxy Clusters AO3

    NASA Technical Reports Server (NTRS)

    White, Raymond E., III

    1998-01-01

    This final report uses ROSAT observations to analyze two different studies. These studies are: Analysis of Mass Profiles and Cooling Flows of Bright, Early-Type Galaxies; and Surface Brightness Profiles and Energetics of Intracluster Gas in Cool Galaxy Clusters.

  2. Tracing the Mass-Dependent Star Formation History of Late-Type Galaxies using X-ray Emission: Results from the CHANDRA Deep Fields

    NASA Technical Reports Server (NTRS)

    Lehmer, B.D; Brandt, W.N.; Schneider, D.P.; Steffen, A.T.; Alexander, D.M.; Bell, E.F.; Hornschemeier, A.E.; McIntosh, D.H.; Bauer, F.E.; Gilli, R.; hide

    2008-01-01

    We report on the X-ray evolution over the last approx.9 Gyr of cosmic history (i.e., since z = 1.4) of late-type galaxy populations in the Chandra Deep Field-North and Extended Chandra Deep Field-South (CDF-N and E-CDF-S. respectively; jointly CDFs) survey fields. Our late-type galaxy sample consists of 2568 galaxies. which were identified using rest-frame optical colors and HST morphologies. We utilized X-ray stacking analyses to investigate the X-ray emission from these galaxies, emphasizing the contributions from normal galaxies that are not dominated by active galactic nuclei (AGNs). Over this redshift range, we find significant increases (factors of approx. 5-10) in the X-ray-to-optical mean luminosity ratio (L(sub x)/L(sub B)) and the X-ray-to-stellar-mass mean ratio (L(sub x)/M(sub *)) for galaxy populations selected by L(sub B) and M(sub *), respectively. When analyzing galaxy samples selected via SFR, we find that the mean X-ray-to-SFR ratio (L(sub x)/SFR) is consistent with being constant over the entire redshift range for galaxies with SFR = 1-100 Solar Mass/yr, thus demonstrating that X-ray emission can be used as a robust indicator of star-formation activity out to z approx. 1.4. We find that the star-formation activity (as traced by X-ray luminosity) per unit stellar mass in a given redshift bin increases with decreasing stellar mass over the redshift range z = 0.2-1, which is consistent with previous studies of how star-formation activity depends on stellar mass. Finally, we extend our X-ray analyses to Lyman break galaxies at z approx. 3 and estimate that L(sub x)/L(sub B) at z approx. 3 is similar to its value at z = 1.4.

  3. Ghostly Halos in Dwarf Galaxies: a probe of star formation in the Early Universe

    NASA Astrophysics Data System (ADS)

    Kang, Hoyoung; Ricotti, Massimo

    2016-01-01

    We carry out numerical simulations to characterize the size, stellar mass, and stellar mass surface density of extended stellar halos in dwarf galaxies as a function of dark matter halo mass. We expect that for galaxies smaller than a critical value, these ghostly halos will not exist because the smaller galactic subunits that build it up, do not form any stars. The detection of ghostly halos around isolated dwarf galaxies is a sensitive test of the efficiency of star formation in the first galaxies and of whether ultra-faint dwarf satellites of the Milky Way are fossils of the first galaxies.

  4. The evolution of early-type galaxies in nearby clusters: breaking the age-metallicity degeneracy with Spitzer IRS Blue Peak-Up Imaging

    NASA Astrophysics Data System (ADS)

    Bressan, Alessandro; Buson, Lucio; Clemens, Marcel; Danese, Luigi; Granato, Gian Luigi; Panuzzo, Pasquale; Rampazzo, Roberto; Silva, Laura; Valdes, Jose Ramon

    2005-06-01

    We have shown with Cycle 1 observations that Spitzer has the capability of disentangling age and metallicity in old stellar populations. By looking to the broad emission feature left by dust enshrouded asymptotic giant branch stars above 9.7 microns, Spitzer IRS can provide direct evidence that the colour- magnitude relation of Virgo ellipticals is mainly driven by metallicity. However, with the IRS spectrograph we can only probe the bright tail of the colour-magnitude relation, and only in the nearest cluster. We propose to use IRS Blue Peak-Up, the only Spitzer band that looks directly in the core of that spectral feature, to reach fainter galaxies. We will perform a thorough investigation of early type galaxies along the colour-magnitude relation in Virgo and in Coma clusters. These observations, when coupled with already existing IRAC and Optical-NIR observations, will allow a) an unbiased census of the stellar populations in cluster early type galaxies; b) an estimate of the AGB material recycled into the ISM in these systems; c) a direct check of the universality of the colour- magnitude relation on a wide range of magnitudes; d) a spatial study of the stellar populations within the galaxies, e.g. investigating differences between bulge and disk populations within S0; e) the most secure reference frame with which to compare the evolution of early type galaxies in other environments (groups and field).

  5. Quenching of the Star Formation Activity of Galaxies in Dense Environments

    NASA Astrophysics Data System (ADS)

    Boselli, A.

    2017-12-01

    The nearby Universe is an ideal laboratory to study the effects of the environments on galaxy evolution. We have analysed the multifrequency properties of galaxies in the nearby clusters Virgo, Coma, and A1367. We have shown that the HI gas content and the activity of star formation of the late-type galaxies start to gradually decrease inwards ˜ one virial radius. We have also shown that late-type galaxies in these clusters have truncated HI, H_2, dust, and star forming discs once the HI gas content is removed by the harsh environment. Some of these galaxies also exibit spectacular tails of atomic neutral, ionised, or hot gas without any counterpart in the stellar component. All this evidence favors ram pressure stripping as the dominant mechanism responsible for the gas removal from the disc, and for the following quenching of the star formation activity.

  6. Star Formation History In Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Chien, Li-Hsin

    2009-01-01

    Interacting and merging galaxies are believed to play an important role in many aspects of galactic evolution. Their violent interactions can trigger starbursts, which lead to formation of young globular clusters. Therefore the ages of these young globular clusters can be interpreted to yield the timing of interaction-triggered events, and thus provide a key to reconstruct the star formation history in merging galaxies. The link between galaxy interaction and star formation is well established, but the triggers of star formation in interacting galaxies are still not understood. To date there are two competing formulas that describe the star formation mechanism--density-dependent and shock-induced rules. Numerical models implementing the two rules predict significantly different star formation histories in merging galaxies. My dissertation combines these two distinct areas of astrophysics, stellar evolution and galactic dynamics, to investigate the star formation history in galaxies at various merging stages. Begin with NGC 4676 as an example, I will briefly describe its model and illustrate the idea of using the ages of clusters to constrain the modeling. The ages of the clusters are derived from spectra that were taken with multi-object spectroscopy on Keck. Using NGC 7252 as a second example, I will present a state of the art dynamical model which predicts NGC7252's star formation history and other properties. I will then show a detailed comparison and analysis between the clusters and the modeling. In the end, I will address this important link as the key to answer the fundamental question of my thesis: what is the trigger of star formation in merging galaxies?

  7. Dry minor mergers and size evolution of high-z compact massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao

    2013-01-01

    Recent observations show evidence that high-z (z ˜ 2-3) early-type galaxies (ETGs) are more compact than those with comparable mass at z ˜ 0. Such size evolution is most likely explained by the `dry merger sceanario'. However, previous studies based on this scenario cannot consistently explain the properties of both high-z compact massive ETGs and local ETGs. We investigate the effect of multiple sequential dry minor mergers on the size evolution of compact massive ETGs. From an analysis of the Millennium Simulation Data Base, we show that such minor (stellar mass ratio M2/M1 < 1/4) mergers are extremely common during hierarchical structure formation. We perform N-body simulations of sequential minor mergers with parabolic and head-on orbits, including a dark matter component and a stellar component. Typical mass ratios of these minor mergers are 1/20 < M2/M1 ≤q 1/10. We show that sequential minor mergers of compact satellite galaxies are the most efficient at promoting size growth and decreasing the velocity dispersion of compact massive ETGs in our simulations. The change of stellar size and density of the merger remnants is consistent with recent observations. Furthermore, we construct the merger histories of candidates for high-z compact massive ETGs using the Millennium Simulation Data Base and estimate the size growth of the galaxies through the dry minor merger scenario. We can reproduce the mean size growth factor between z = 2 and z = 0, assuming the most efficient size growth obtained during sequential minor mergers in our simulations. However, we note that our numerical result is only valid for merger histories with typical mass ratios between 1/20 and 1/10 with parabolic and head-on orbits and that our most efficient size-growth efficiency is likely an upper limit.

  8. On-Going Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Braine, Jonathan; Duc, P.-A.; Lisenfeld, U.; Charmandaris, V.; Vallejo, O.; Leon, S.; Brinks, E.

    2002-07-01

    We investigate the process of galaxy formation as can be observed in the only currently forming galaxies - the so-called Tidal Dwarf Galaxies, hereafter TDGs - through observations of the molecular gas detected via its CO (Carbon Monoxide) emission. These objects are formed of material torn off of the outer parts of a spiral disk due to tidal forces in a collision between two massive galaxies. Molecular gas is a key element in the galaxy formation process, providing the link between a cloud of gas and a bona fide galaxy. We have detected CO in 8 TDGs (Braine, Lisenfeld, Duc and Leon, 2000: Nature 403, 867; Braine, Duc, Lisenfeld, Charmandaris, Vallejo, Leon and Brinks: 2001, A&A 378, 51), with an overall detection rate of 80%, showing that molecular gas is abundant in TDGs, up to a few 108 M ⊙. The CO emission coincides both spatially and kinematically with the HI emission, indicating that the molecular gas forms from the atomic hydrogen where the HI column density is high. A possible trend of more evolved TDGs having greater molecular gas masses is observed, in accord with the transformation of HI into H2. Although TDGs share many of the properties of small irregulars, their CO luminosity is much greater (factor ˜ 100) than that of standard dwarf galaxies of comparable luminosity. This is most likely a consequence of the higher metallicity (≳sim 1/3 solar) of TDGs which makes CO a good tracer of molecular gas. This allows us to study star formation in environments ordinarily inaccessible due to the extreme difficulty of measuring the molecular gas mass. The star formation efficiency, measured by the CO luminosity per Hα flux, is the same in TDGs and full-sized spirals. CO is likely the best tracer of the dynamics of these objects because some fraction of the HI near the TDGs may be part of the tidal tail and not bound to the TDG. Although uncertainties are large for individual objects, as the geometry is unknown, our sample is now of eight detected objects

  9. The dwarf galaxy population of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration

    2015-01-01

    The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass galaxies as probes for external mechanisms. Here we report on recent and ongoing observational studies of the said clusters with imaging and spectroscopy, as well as on the interpretation of present-day cluster galaxy populations with the aid of cosmological simulations.Multicolor imaging data allow us to identify residual star formation in otherwise red early-type dwarf galaxies, which hold clues to the strength of gas stripping processes. Major-axis spectra and 2D kinematical maps provide insight regarding the amount of rotational support and how much dynamical heating a dwarf galaxy may have experienced. To this end, dedicated N-body simulations that follow the evolution of galaxies since early epochs reveal their path through parameter space, and can be compared to observations in order to understand the time-integrated effect of environmental influence.

  10. Tracing the Mass of Early-type Galaxies using Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Sluis, A. P. N.; William, T. B.

    2002-12-01

    We report on observations of two ellipticals (NGC 3379 and NGC 1549) and two S0s (NGC 3384 and NGC 4636) performed with the Rutgers Fabry-Perot (RFP). The observations are part of a larger project to study the distribution of mass in the outer regions of early-type galaxies. Efforts to determine this distribution are generally hampered by the scarcity of useful tracers of the potential at large radii. Ellipticals and S0s have steep surface brightness profiles that make absorption line spectroscopy of the stellar population practically impossible beyond a few kpc from the center. Also, their gas content is low and does not extend far beyond the nucleus. Planetary Nebulae (PNe) offer a way around these problems: as remants of intermediate mass stars we expect them to follow the stellar light distribution and be numerous enough to be an effective tracer. PNe radiate hundreds of solar luminosities in a few emission lines (mostly [OIII] 5007 Å), making it possible to detect them over extragalactic distances and at the same time measure their line of sight velocities using the RFP. We present the photometry and the kinematics of the PN systems as well as some simple dynamical mass models for the four galaxies mentioned above.

  11. The Masses and Stellar Content of Nuclei in Early-Type Galaxies from Multi-Band Photometry and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Spengler, Chelsea; Côté, Patrick; Roediger, Joel; Ferrarese, Laura; Sánchez-Janssen, Rubén; Toloba, Elisa; Liu, Yiqing; Guhathakurta, Puragra; Cuillandre, Jean-Charles; Gwyn, Stephen; Zirm, Andrew; Muñoz, Roberto; Puzia, Thomas; Lançon, Ariane; Peng, Eric; Mei, Simona; Powalka, Mathieu

    2018-01-01

    It is now established that most, if not all, massive galaxies host central supermassive black holes (SMBHs), and that these SMBHs are linked to the growth their host galaxies as shown by several scaling relations. Within the last couple of decades, it has become apparent that most lower-mass galaxies without obvious SMBHs nevertheless contain some sort of central massive object in the form of compact stellar nuclei that also follow identical (or similar) scaling relations. These nuclei are challenging to study given their small sizes and relatively faint magnitudes, but understanding their origins and relationship to their hosts is critical to gaining a more complete picture of galaxy evolution. To that end, we highlight selected results from an analysis of 39 nuclei and their early-type hosts in the Virgo Cluster using ten broadband filters: F300W, F475W, F850LP, F160W, u*griz, and Ks. We estimate masses, metallicities and ages using simple stellar population (SSP) models. For 19 nuclei, we compare to SSP parameters derived from Keck and Gemini spectra and find reasonable agreement between the photometric and spectroscopic metallicity: the RMS scatter is 0.3 dex. We reproduce the nucleus-galaxy mass fraction of 0.33 ± 0.08% for galaxy stellar masses 108.4-1010.3 M⊙ with a typical precision of ~35% for the nuclei masses. Based on available model predictions, there is no single preferred formation scenario for nuclei, suggesting that nuclei are formed stochastically through a mix of processes. Nuclei metallicities are statistically identical to those of their hosts, appearing 0.07 ± 0.3 dex more metal-rich on average — although, omitting galaxies with unusual origins (i.e., compact ellipticals), nuclei are 0.20 ± 0.28 dex more metal-rich. We find no clear age difference between nuclei and their galaxies, with nuclei displaying a broad range of ages. Interestingly, we find that the most massive nuclei may be flatter and more closely aligned with the semi

  12. A General Precipitation-limited L X–T–R Relation among Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Voit, G. Mark; Ma, C. P.; Greene, J.; Goulding, A.; Pandya, V.; Donahue, M.; Sun, M.

    2018-01-01

    The relation between X-ray luminosity (L X) and ambient gas temperature (T) among massive galactic systems is an important cornerstone of both observational cosmology and galaxy-evolution modeling. In the most massive galaxy clusters, the relation is determined primarily by cosmological structure formation. In less massive systems, it primarily reflects the feedback response to radiative cooling of circumgalactic gas. Here we present a simple but powerful model for the L X–T relation as a function of physical aperture R within which those measurements are made. The model is based on the precipitation framework for AGN feedback and assumes that the circumgalactic medium is precipitation-regulated at small radii and limited by cosmological structure formation at large radii. We compare this model with many different data sets and show that it successfully reproduces the slope and upper envelope of the L X–T–R relation over the temperature range from ∼0.2 keV through ≳ 10 {keV}. Our findings strongly suggest that the feedback mechanisms responsible for regulating star formation in individual massive galaxies have much in common with the precipitation-triggered feedback that appears to regulate galaxy-cluster cores.

  13. The Ellipticities of Cluster Early-type Galaxies from z ~ 1 to z ~ 0: No Evolution in the Overall Distribution of Bulge-to-Disk Ratios

    NASA Astrophysics Data System (ADS)

    Holden, B. P.; Franx, M.; Illingworth, G. D.; Postman, M.; van der Wel, A.; Kelson, D. D.; Blakeslee, J. P.; Ford, H.; Demarco, R.; Mei, S.

    2009-03-01

    We have compiled a sample of early-type cluster galaxies from 0 < z < 1.3 and measured the evolution of their ellipticity distributions. Our sample contains 487 galaxies in 17 z>0.3 clusters with high-quality space-based imaging and a comparable sample of 210 galaxies in 10 clusters at z < 0.05. We select early-type galaxies (elliptical and S0 galaxies) that fall within the cluster R 200, and which lie on the red-sequence in the magnitude range -19.3>MB > - 21, after correcting for luminosity evolution as measured by the fundamental plane. Our ellipticity measurements are made in a consistent manner over our whole sample. We perform extensive simulations to quantify the systematic and statistical errors, and find that it is crucial to use point-spread function (PSF)-corrected model fits; determinations of the ellipticity from Hubble Space Telescope image data that do not account for the PSF "blurring" are systematically and significantly biased to rounder ellipticities at redshifts z>0.3. We find that neither the median ellipticity, nor the shape of the ellipticity distribution of cluster early-type galaxies evolves with redshift from z ~ 0 to z>1 (i.e., over the last ~8 Gyr). The median ellipticity at z>0.3 is statistically identical with that at z < 0.05, being higher by only 0.01 ± 0.02 or 3 ± 6%, while the distribution of ellipticities at z>0.3 agrees with the shape of the z < 0.05 distribution at the 1-2% level (i.e., the probability that they are drawn from the same distribution is 98-99%). These results are strongly suggestive of an unchanging overall bulge-to-disk ratio distribution for cluster early-type galaxies over the last ~8 Gyr from z ~ 1 to z ~ 0. This result contrasts with that from visual classifications which show that the fraction of morphologically-selected disk-dominated early-type galaxies, or S0s, is significantly lower at z>0.4 than at z ~ 0. We find that the median disk-dominated early-type, or S0, galaxy has a somewhat higher

  14. SDSS-IV MaNGA: Variation of the Stellar Initial Mass Function in Spiral and Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Ge, Junqiang; Mao, Shude; Cappellari, Michele; Long, R. J.; Li, Ran; Emsellem, Eric; Dutton, Aaron A.; Li, Cheng; Bundy, Kevin; Thomas, Daniel; Drory, Niv; Lopes, Alexandre Roman

    2017-04-01

    We perform Jeans anisotropic modeling (JAM) on elliptical and spiral galaxies from the MaNGA DR13 sample. By comparing the stellar mass-to-light ratios estimated from stellar population synthesis and from JAM, we find a systematic variation of the initial mass function (IMF) similar to that in the earlier {{ATLAS}}3{{D}} results. Early-type galaxies (elliptical and lenticular) with lower velocity dispersions within one effective radius are consistent with a Chabrier-like IMF, while galaxies with higher velocity dispersions are consistent with a more bottom-heavy IMF such as the Salpeter IMF. Spiral galaxies have similar systematic IMF variations, but with slightly different slopes and larger scatters, due to the uncertainties caused by the higher gas fractions and extinctions for these galaxies. Furthermore, we examine the effects of stellar mass-to-light ratio gradients on our JAM modeling, and we find that the trends become stronger after considering the gradients.

  15. The X-Shooter Lens Survey - I. Dark matter domination and a Salpeter-type initial mass function in a massive early-type galaxy

    NASA Astrophysics Data System (ADS)

    Spiniello, C.; Koopmans, L. V. E.; Trager, S. C.; Czoske, O.; Treu, T.

    2011-11-01

    We present the first results from the X-Shooter Lens Survey: an analysis of the massive early-type galaxy SDSS J1148+1930 at redshift z= 0.444. We combine its extended kinematic profile - derived from spectra obtained with X-Shooter on the European Southern Observatory Very Large Telescope - with strong gravitational lensing and multicolour information derived from Sloan Digital Sky Survey (SDSS) images. Our main results are as follows. (i) The luminosity-weighted stellar velocity dispersion is <σ*>(≲Reff) = 352 ± 10 ± 16 km s-1, extracted from a rectangular aperture of 1.8 × 1.6 arcsec2 centred on the galaxy, more accurate and considerably lower than a previously published value of ˜450 km s-1. (ii) A single-component (stellar plus dark) mass model of the lens galaxy yields a logarithmic total-density slope of γ'= 1.72+0.05- 0.06 (68 per cent confidence level, CL; ?) within a projected radius of ˜2.16 arcsec. (iii) The projected stellar mass fraction, derived solely from the lensing and dynamical data, is f*(galaxies. Dwarf-rich IMFs in the lower mass range of 0.1-0.7 M⊙, with α≥ 3 (with dN/dM∝M-α) - such as that recently suggested for massive early-type galaxies with α= 3 in the mass range 0.1-1 M⊙- are excluded at the >90 per cent CL and in some cases violate the total lensing

  16. Galaxy Morphology Revealed By SDSS: Blue Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae

    The Sloan Digital Sky Survey (SDSS) reveals many new features of galaxy morphologies. Among others, the discovery of blue elliptical galaxies provides some insights into the formation and evolution of galaxies. There seems to be two types of blue elliptical galaxies. One type shows globally blue colors suggesting star formations over the entire galaxy whereas the other type shows blue core that indicates enhanced star formation in the nuclear regions. The former seems to be currently forming galaxies, while the latter is thought to be in transition stage from the blue cloud to the red sequence due to AGN feedback.

  17. TEMPORAL SELF-ORGANIZATION IN GALAXY FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cen, Renyue, E-mail: cen@astro.princeton.edu

    We report on the discovery of a relation between the number of star formation (SF) peaks per unit time, ν{sub peak}, and the size of the temporal smoothing window function, Δt, used to define the peaks: ν{sub peak}∝Δt {sup 1} {sup –} {sup φ} (φ ∼ 1.618). This relation holds over the range of Δt = 10-1000 Myr that can be reliably computed here, using a large sample of galaxies obtained from a state-of-the-art cosmological hydrodynamic simulation. This means that the temporal distribution of SF peaks in galaxies as a population is fractal with a Hausdorff fractal dimension equal to φmore » – 1. This finding reveals, for the first time, that the superficially chaotic process of galaxy formation is underlined by temporal self-organization up to at least one gigayear. It is tempting to suggest that, given the known existence of spatial fractals (such as the power-law two-point function of galaxies), there is a joint spatio-temporal self-organization in galaxy formation. From an observational perspective, it will be urgent to devise diagnostics to probe the SF histories of galaxies with good temporal resolution to facilitate a test of this prediction. If confirmed, it would provide unambiguous evidence for a new picture of galaxy formation that is interaction driven, cooperative, and coherent in and between time and space. Unravelling its origin may hold the key to understanding galaxy formation.« less

  18. Galaxy collisions as a mechanism of ultra diffuse galaxy (UDG) formation

    NASA Astrophysics Data System (ADS)

    Baushev, A. N.

    2018-04-01

    We suggest a possible mechanism of ultra diffuse galaxy formation: the UDGs may occur as a result of a central collision of galaxies. If the galaxies are young and contain a lot of gas, the collision may kick all the gas off the systems and thus strongly suppress any further star formation. As a result, the galaxies now have a very low surface brightness and other properties typical of the ultra diffuse galaxies. We use the Coma cluster (where numerous UDGs were recently discovered) to test the efficiency of the process. The mechanism works very well and can transform a significant fraction of the cluster population into ultra diffuse galaxies. The UDGs formed by the process concentrate towards the center of the cluster, and their globular cluster systems remain undamaged, in accordance with observational results. The projected surface density of UDGs in the cluster may help us to recognize the mechanism of UDG formation, or clarify relative contributions of several possible competitive mechanisms at work.

  19. Multicolor photometry of the merging galaxy cluster A2319: Dynamics and star formation properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Peng-Fei; Yuan, Qi-Rong; Zhang, Li

    2014-05-01

    Asymmetric X-ray emission and a powerful cluster-scale radio halo indicate that A2319 is a merging cluster of galaxies. This paper presents our multicolor photometry for A2319 with 15 optical intermediate filters in the Beijing-Arizona-Taiwan-Connecticut (BATC) system. There are 142 galaxies with known spectroscopic redshifts within the viewing field of 58' × 58' centered on this rich cluster, including 128 member galaxies (called sample I). A large velocity dispersion in the rest frame, 1622{sub −70}{sup +91} km s{sup –1}, suggests merger dynamics in A2319. The contour map of projected density and localized velocity structure confirm the so-called A2319B substructure, at ∼10'more » northwest to the main concentration A2319A. The spectral energy distributions (SEDs) of more than 30,000 sources are obtained in our BATC photometry down to V ∼ 20 mag. A u-band (∼3551 Å) image with better seeing and spatial resolution, obtained with the Bok 2.3 m telescope at Kitt Peak, is taken to make star-galaxy separation and distinguish the overlapping contamination in the BATC aperture photometry. With color-color diagrams and photometric redshift technique, 233 galaxies brighter than h {sub BATC} = 19.0 are newly selected as member candidates after an exclusion of false candidates with contaminated BATC SEDs by eyeball-checking the u-band Bok image. The early-type galaxies are found to follow a tight color-magnitude correlation. Based on sample I and the enlarged sample of member galaxies (called sample II), subcluster A2319B is confirmed. The star formation properties of cluster galaxies are derived with the evolutionary synthesis model, PEGASE, assuming a Salpeter initial mass function and an exponentially decreasing star formation rate (SFR). A strong environmental effect on star formation histories is found in the manner that galaxies in the sparse regions have various star formation histories, while galaxies in the dense regions are found to have shorter SFR

  20. Integral-field kinematics and stellar populations of early-type galaxies out to three half-light radii

    NASA Astrophysics Data System (ADS)

    Boardman, Nicholas Fraser; Weijmans, Anne-Marie; van den Bosch, Remco; Kuntschner, Harald; Emsellem, Eric; Cappellari, Michele; de Zeeuw, Tim; Falcón-Barroso, Jesus; Krajnović, Davor; McDermid, Richard; Naab, Thorsten; van de Ven, Glenn; Yildirim, Akin

    2017-11-01

    We observed 12 nearby H I-detected early-type galaxies (ETGs) of stellar mass ˜1010 M⊙ ≤ M* ≤ ˜1011 M⊙ with the Mitchell Integral-Field Spectrograph, reaching approximately three half-light radii in most cases. We extracted line-of-sight velocity distributions for the stellar and gaseous components. We find little evidence of transitions in the stellar kinematics of the galaxies in our sample beyond the central effective radius, with centrally fast-rotating galaxies remaining fast-rotating and centrally slow-rotating galaxies likewise remaining slow-rotating. This is consistent with these galaxies having not experienced late dry major mergers; however, several of our objects have ionized gas that is misaligned with respect to their stars, suggesting some kind of past interaction. We extract Lick index measurements of the commonly used H β, Fe5015, Mg b, Fe5270 and Fe5335 absorption features, and we find most galaxies to have flat H β gradients and negative Mg b gradients. We measure gradients of age, metallicity and abundance ratio for our galaxies using spectral fitting, and for the majority of our galaxies find negative age and metallicity gradients. We also find the stellar mass-to-light ratios to decrease with radius for most of the galaxies in our sample. Our results are consistent with a view in which intermediate-mass ETGs experience mostly quiet evolutionary histories, but in which many have experienced some kind of gaseous interaction in recent times.

  1. The Neutral Gas Properties of Extremely Isolated Early-type Galaxies. II.

    NASA Astrophysics Data System (ADS)

    Ashley, Trisha; Marcum, Pamela M.; Fanelli, Michael N.

    2018-01-01

    As part of an ongoing study of isolated early-type galaxies (IEG), we present neutral hydrogen (H I) observations of six IEGs obtained with the Green Bank Telescope. Two of the six IEGs presented in this paper have detected H I emission (KIG 870 and SDSS J102145.89+383249.8). KIG 870 has an H I emission profile that is strongly asymmetric about the optical systemic velocity with a redshifted double-horned profile and a blueshifted single-peaked component. KIG 870 is likely an advanced merger system. SDSS J102145.89+383249.8 has a Gaussian-like profile, indicating that the H I is not strongly rotating, is in a face-on disk, or is in a thick-disk similar to a dwarf galaxy. Our parent sample of H I observations is composed of 12 IEGs, 7 of which have now been detected in H I. The dwarf and luminous IEGs in our parent sample have median H I-mass-to-blue-luminosity ratios that are each three times larger than that of their non-cluster ETG counterparts, indicating that IEGs in our sample are significantly more gas rich than non-cluster ETGs.

  2. A study of the effect of bulges on bar formation in disc galaxies

    NASA Astrophysics Data System (ADS)

    Kataria, Sandeep Kumar; Das, Mousumi

    2018-04-01

    We use N-body simulations of bar formation in isolated galaxies to study the effect of bulge mass and bulge concentration on bar formation. Bars are global disc instabilities that evolve by transferring angular momentum from the inner to outer discs and to the dark matter halo. It is well known that a massive spherical component such as halo in a disc galaxy can make it bar stable. In this study, we explore the effect of another spherical component, the bulge, on bar formation in disc galaxies. In our models, we vary both the bulge mass and concentration. We have used two sets of models: one that has a dense bulge and high surface density disc, and the other model has a less concentrated bulge and a lighter disc. In both models, we vary the bulge to disc mass fraction from 0 to 0.7. Simulations of both the models show that there is an upper cut-off in bulge-to-disc mass ratio Mb/Md above which bars cannot form; the cut-off is smaller for denser bulges (Mb/Md = 0.2) compared to less denser ones (Mb/Md = 0.5). We define a new criterion for bar formation in terms of the ratio of bulge to total radial force (Fb/Ftot) at the disc scale lengths above which bars cannot form. We find that if Fb/Ftot > 0.35, a disc is stable and a bar cannot form. Our results indicate that early-type disc galaxies can still form strong bars in spite of having massive bulges.

  3. The ZEUS 1 & 2 INvestigated Galaxy Reference Sample (ZINGRS): A window into galaxies in the early Universe.

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl; Hershey, Deborah; Scrabeck, Alex; Higdon, Sarah; Higdon, James L.; Tidwell, Hannah; Lamarche, Cody; Vishwas, Amit; Nikola, Thomas; Stacey, Gordon J.; Brisbin, Drew

    2018-06-01

    Galaxies have evolved significantly from the early Universe until today. Star formation rates, stellar and molecular gas masses, sizes and metal enrichment of galaxies have all changed significantly from early epochs until the present. Probing the physical conditions of galaxy at high redshift is vital to understanding this evolution. ZINGRS, the ZEUS 1 and 2 INvestigated Galaxy Reference Sample, provides a unique and powerful window for this work. The sample consists of more than ~30 galaxies from z ~ 1 - 4.5 for which the far-IR fine-structure lines (e.g. [CII] 158 micron, [NII] 122micron, [OIII] 88 micron) have been observed with the ZEUS-1 and 2 instruments. These lines are ideal for studying high-z systems since they require low energies for excitation, are typically optically thin, and are not susceptible to extinction from dust. ZINGRS is the largest collection of far-IR fine-structure line detections at high-z. Here we describe the sample, including extensive multifrequency supporting observations like CO & radio continuum, and summarize what we have learned so far.

  4. SDSS-IV MaNGA: Uncovering the Angular Momentum Content of Central and Satellite Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Greene, J. E.; Leauthaud, A.; Emsellem, E.; Ge, J.; Aragón-Salamanca, A.; Greco, J.; Lin, Y.-T.; Mao, S.; Masters, K.; Merrifield, M.; More, S.; Okabe, N.; Schneider, D. P.; Thomas, D.; Wake, D. A.; Pan, K.; Bizyaev, D.; Oravetz, D.; Simmons, A.; Yan, R.; van den Bosch, F.

    2018-01-01

    We study 379 central and 159 satellite early-type galaxies with two-dimensional kinematics from the integral-field survey Mapping Nearby Galaxies at APO (MaNGA) to determine how their angular momentum content depends on stellar and halo mass. Using the Yang et al. group catalog, we identify central and satellite galaxies in groups with halo masses in the range {10}12.5 {h}-1 {M}ȯ < {M}200b< {10}15 {h}-1 {M}ȯ . As in previous work, we see a sharp dependence on stellar mass, in the sense that ∼70% of galaxies with stellar mass {M}* > {10}11 {h}-2 {M}ȯ tend to have very little rotation, while nearly all galaxies at lower mass show some net rotation. The ∼30% of high-mass galaxies that have significant rotation do not stand out in other galaxy properties, except for a higher incidence of ionized gas emission. Our data are consistent with recent simulation results suggesting that major merging and gas accretion have more impact on the rotational support of lower-mass galaxies. When carefully matching the stellar mass distributions, we find no residual differences in angular momentum content between satellite and central galaxies at the 20% level. Similarly, at fixed mass, galaxies have consistent rotation properties across a wide range of halo mass. However, we find that errors in classification of central and satellite galaxies with group finders systematically lower differences between satellite and central galaxies at a level that is comparable to current measurement uncertainties. To improve constraints, the impact of group-finding methods will have to be forward-modeled via mock catalogs.

  5. A challenge to dSph formation models: are the most isolated Local Group dSph galaxies truly old?

    NASA Astrophysics Data System (ADS)

    Monelli, Matteo

    2017-08-01

    What is the origin of the different dwarf galaxy types? The classification into dwarf irregular (dIrr), spheroidal (dSph), and transition (dT) types is based on their present-day properties. However, star formation histories (SFHs) reconstructed from deep color-magnitude diagrams (CMDs) provide details on the early evolution of galaxies of all these types, and indicate only two basic evolutionary paths. One is characterized by a vigorous but brief initial star-forming event, and little or no star formation thereafter (fast evolution), and the other one by roughly continuous star formation until (nearly) the present time (slow evolution). These two paths do not map directly onto the dIrr, dT and dSph types. Thus, the present galaxy properties do not reflect their lifetime evolution. Since there are some indications that slow dwarfs were assembled in lower-density environments than fast dwarfs, Gallart et al (2015) proposed that the distinction between fast and slow dwarfs reflects the characteristic density of the environment where they formed. This scenario, and more generally scenarios where dSph galaxies formed through the interaction with a massive galaxy, are challenged by a small sample of extremely isolated dSph/dT in the outer fringes of the Local Group. This proposal targets two of these objects (VV124, KKR25) for which we will infer their SFH - through a novel technique that combines the information from their RR Lyrae stars and deep CMDs sampling the intermediate-age population - in order to test these scenarios. This is much less demanding on observing time than classical SFH derivation using full depth CMDs.

  6. The Origin of Dust in the Early Universe: Probing the Star Formation History of Galaxies by Their Dust Content

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Cherchneff, Isabelle

    2010-01-01

    Two distinct scenarios for the origin of the approximately 4 x 10(exp 8) Solar Mass of dust observed in the high-redshift (z = 6.4) quasar J1148+5251 have been proposed. The first assumes that this galaxy is much younger than the age of the universe at that epoch so that only supernovae, could have produced this dust. The second scenario assumes a significantly older galactic age, so that the dust could have formed in lower-mass AGB stars. Presenting new integral solutions for the chemical evolution of metals and dust in galaxies, we offer a critical evaluation of these two scenarios. ^N;"(,, show that the AGB scenario is sensitive to the details of the galaxy's star formation history (SFH), which must consist of an early intense starburst followed by a period of low stellar activity. The presence or absence of massive amounts of dust in high-redshift galaxies can therefore be used to infer their SFH. However, a problem with the AGB scenario is that it produces a stellar mass that is significantly larger than the inferred dynamical mass of J1148+5251, an yet unresolved discrepancy. If this problem persists, then additional sites for the growth or formation of dust, such as molecular clouds or dense clouds around active galactic nuclei, must be considered.

  7. Witnessing the Formation of a Brightest Cluster Galaxy in a Nearby X-ray Cluster

    NASA Astrophysics Data System (ADS)

    Rasmussen, Jesper; Mulchaey, John S.; Bai, Lei; Ponman, Trevor J.; Raychaudhury, Somak; Dariush, Ali

    2010-07-01

    The central dominant galaxies in galaxy clusters constitute the most massive and luminous galaxies in the universe. Despite this, the formation of these brightest cluster galaxies (BCGs) and the impact of this on the surrounding cluster environment remain poorly understood. Here we present multiwavelength observations of the nearby poor X-ray cluster MZ 10451, in which both processes can be studied in unprecedented detail. Chandra observations of the intracluster medium (ICM) in the cluster core, which harbors two optically bright early-type galaxies in the process of merging, show that the system has retained a cool core and a central metal excess. This suggests that any merger-induced ICM heating and mixing remain modest at this stage. Tidally stripped stars seen around either galaxy likely represent an emerging intracluster light component, and the central ICM abundance enhancement may have a prominent contribution from in situ enrichment provided by these stars. The smaller of the merging galaxies shows evidence for having retained a hot gas halo, along with tentative evidence for some obscured star formation, suggesting that not all BCG major mergers at low redshift are completely dissipationless. Both galaxies are slightly offset from the peak of the ICM emission, with all three lying on an axis that roughly coincides with the large-scale elongation of the ICM. Our data are consistent with a picture in which central BCGs are built up by mergers close to the cluster core, by galaxies infalling on radial orbits aligned with the cosmological filaments feeding the cluster. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  8. Dark-ages reionization and galaxy formation simulation - XIII. AGN quenching of high-redshift star formation in ZF-COSMOS-20115

    NASA Astrophysics Data System (ADS)

    Qin, Yuxiang; Mutch, Simon J.; Duffy, Alan R.; Geil, Paul M.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-11-01

    Massive quiescent galaxies (MQGs) are thought to have formed stars rapidly at early times followed by a long period of quiescence. The recent discovery of a MQG, ZF-COSMOS-20115 at z ˜ 4, only 1.5 Gyr after the big bang, places new constraints on galaxy growth and the role of feedback in early star formation. Spectroscopic follow-up confirmed ZF-COSMOS-20115 as a MQG at z = 3.717 with an estimated stellar mass of ˜1011 M⊙, showing no evidence of recent star formation. We use the Meraxes semi-analytic model to investigate how ZF-COSMOS-20115 analogues build stellar mass, and why they become quiescent. We identify three analogue galaxies with similar properties to ZF-COSMOS-20115. We find that ZF-COSMOS-20115 is likely hosted by a massive halo with virial mass of ˜1013 M⊙, having been through significant mergers at early times. These merger events drove intense growth of the nucleus, which later prevented cooling and quenched star formation. Therefore, ZF-COSMOS-20115 is unlikely to have experienced strong or extended star formation events at z < 3.7. We find that the analogues host the most massive black holes in our simulation and were luminous quasars at z ˜ 5, indicating that ZF-COSMOS-20115 and other MQGs may be the descendants of high-redshift quasars. In addition, the model suggests that ZF-COSMOS-20115 formed in a region of intergalactic medium that was reionized early.

  9. Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data

    NASA Astrophysics Data System (ADS)

    Strateva, Iskra; Ivezić, Željko; Knapp, Gillian R.; Narayanan, Vijay K.; Strauss, Michael A.; Gunn, James E.; Lupton, Robert H.; Schlegel, David; Bahcall, Neta A.; Brinkmann, Jon; Brunner, Robert J.; Budavári, Tamás; Csabai, István; Castander, Francisco Javier; Doi, Mamoru; Fukugita, Masataka; Győry, Zsuzsanna; Hamabe, Masaru; Hennessy, Greg; Ichikawa, Takashi; Kunszt, Peter Z.; Lamb, Don Q.; McKay, Timothy A.; Okamura, Sadanori; Racusin, Judith; Sekiguchi, Maki; Schneider, Donald P.; Shimasaku, Kazuhiro; York, Donald

    2001-10-01

    We study the optical colors of 147,920 galaxies brighter than g*=21, observed in five bands by the Sloan Digital Sky Survey (SDSS) over ~100 deg2 of high Galactic latitude sky along the celestial equator. The distribution of galaxies in the g*-r* versus u*-g* color-color diagram is strongly bimodal, with an optimal color separator of u*-r*=2.22. We use visual morphology and spectral classification of subsamples of 287 and 500 galaxies, respectively, to show that the two peaks correspond roughly to early- (E, S0, and Sa) and late-type (Sb, Sc, and Irr) galaxies, as expected from their different stellar populations. We also find that the colors of galaxies are correlated with their radial profiles, as measured by the concentration index and by the likelihoods of exponential and de Vaucouleurs' profile fits. While it is well known that late-type galaxies are bluer than early-type galaxies, this is the first detection of a local minimum in their color distribution. In all SDSS bands, the counts versus apparent magnitude relations for the two color types are significantly different and demonstrate that the fraction of blue galaxies increases toward the faint end.

  10. Quasar Feedback at the Peak of the Galaxy Formation Epoch

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Zakamska, Nadia L.; Strauss, Michael A.; Greene, Jenny E.; Alexandroff, Rachael

    2014-08-01

    The correlations between properties of supermassive black holes and stellar spheroids in galaxies imply a physical connection between these two components. Using Gemini GMOS IFU, we demonstrated that powerful ionized gas winds are ubiquitous in luminous radio-quiet z~ 0.5 quasars. We now extend this study to the era of peak galaxy formation and quasar activity when quasar feedback likely shaped the properties of massive galaxies. Our GMOS IFU observations of 5 quasars at z~ 3 are now underway, and we plan for fall observations. We propose a GMOS IFU survey to map the spatial distribution and kinematics of Ly(alpha) and N V 1240Aemission around 5 obscured quasars at z=3-3.3 that are extremely luminous (L_Ly(alpha)~10^45 erg s^- 1). Obscured quasars likely constitute the majority of the quasar population and represent the early enshrouded phase of black hole growth, luminous obscured quasars are thus the most likely sites of quasar feedback, as we found at low redshifts. We will look for quasar- driven outflows, and directly probe the effects of quasars on their galaxy-wide and intergalactic environments close to the peak of the galaxy formation epoch.

  11. STAR FORMATION SUPPRESSION DUE TO JET FEEDBACK IN RADIO GALAXIES WITH SHOCKED WARM MOLECULAR GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanz, Lauranne; Ogle, Patrick M.; Appleton, Philip N.

    2016-07-20

    We present Herschel observations of 22 radio galaxies, selected for the presence of shocked, warm molecular hydrogen emission. We measured and modeled spectral energy distributions in 33 bands from the ultraviolet to the far-infrared to investigate the impact of jet feedback on star formation activity. These galaxies are massive, early-type galaxies with normal gas-to-dust ratios, covering a range of optical and infrared colors. We find that the star formation rate (SFR) is suppressed by a factor of ∼3–6, depending on how molecular gas mass is estimated. We suggest that this suppression is due to the shocks driven by the radiomore » jets injecting turbulence into the interstellar medium (ISM), which also powers the luminous warm H{sub 2} line emission. Approximately 25% of the sample shows suppression by more than a factor of 10. However, the degree of SFR suppression does not correlate with indicators of jet feedback including jet power, diffuse X-ray emission, or intensity of warm molecular H{sub 2} emission, suggesting that while injected turbulence likely impacts star formation, the process is not purely parameterized by the amount of mechanical energy dissipated into the ISM. Radio galaxies with shocked warm molecular gas cover a wide range in SFR–stellar mass space, indicating that these galaxies are in a variety of evolutionary states, from actively star-forming and gas-rich to quiescent and gas-poor. SFR suppression appears to have the largest impact on the evolution of galaxies that are moderately gas-rich.« less

  12. Evidence for a Constant Initial Mass Function in Early-type Galaxies Based on Their X-Ray Binary Populations

    NASA Astrophysics Data System (ADS)

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.; Kundu, Arunav; Gonzalez, Anthony H.; Lehmer, Bret D.; Maraston, Claudia

    2014-04-01

    A number of recent studies have proposed that the stellar initial mass function (IMF) of early type galaxies varies systematically as a function of galaxy mass, with higher mass galaxies having bottom-heavy IMFs. These bottom-heavy IMFs have more low-mass stars relative to the number of high mass stars, and therefore naturally result in proportionally fewer neutron stars (NSs) and black holes (BHs). In this paper, we specifically predict the variation in the number of BHs and NSs based on the power-law IMF variation required to reproduce the observed mass-to-light ratio trends with galaxy mass. We then test whether such variations are observed by studying the field low-mass X-ray binary (LMXB) populations of nearby early-type galaxies. In these binaries, an NS or BH accretes matter from a low-mass donor star. Their number is therefore expected to scale with the number of BHs and NSs present in a galaxy. We find that the number of LMXBs per K-band light is similar among the galaxies in our sample. These data therefore demonstrate the uniformity of the slope of the IMF from massive stars down to those now dominating the K-band light and are consistent with an invariant IMF. Our results are inconsistent with an IMF which varies from a Kroupa/Chabrier like IMF for low-mass galaxies to a steep power-law IMF (with slope x = 2.8) for high mass galaxies. We discuss how these observations constrain the possible forms of the IMF variations and how future Chandra observations can enable sharper tests of the IMF. Based in part on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA). The scientific results reported in this article are based in part on data obtained from the Chandra Data Archive and observations made by the

  13. The MASSIVE survey - VIII. Stellar velocity dispersion profiles and environmental dependence of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Veale, Melanie; Ma, Chung-Pei; Greene, Jenny E.; Thomas, Jens; Blakeslee, John P.; Walsh, Jonelle L.; Ito, Jennifer

    2018-02-01

    We measure the radial profiles of the stellar velocity dispersions, σ(R), for 90 early-type galaxies (ETGs) in the MASSIVE survey, a volume-limited integral-field spectroscopic (IFS) galaxy survey targeting all northern-sky ETGs with absolute K-band magnitude MK < -25.3 mag, or stellar mass M* ≳ 4 × 1011M⊙, within 108 Mpc. Our wide-field 107 arcsec × 107 arcsec IFS data cover radii as large as 40 kpc, for which we quantify separately the inner (2 kpc) and outer (20 kpc) logarithmic slopes γinner and γouter of σ(R). While γinner is mostly negative, of the 56 galaxies with sufficient radial coverage to determine γouter we find 36 per cent to have rising outer dispersion profiles, 30 per cent to be flat within the uncertainties and 34 per cent to be falling. The fraction of galaxies with rising outer profiles increases with M* and in denser galaxy environment, with 10 of the 11 most massive galaxies in our sample having flat or rising dispersion profiles. The strongest environmental correlations are with local density and halo mass, but a weaker correlation with large-scale density also exists. The average γouter is similar for brightest group galaxies, satellites and isolated galaxies in our sample. We find a clear positive correlation between the gradients of the outer dispersion profile and the gradients of the velocity kurtosis h4. Altogether, our kinematic results suggest that the increasing fraction of rising dispersion profiles in the most massive ETGs are caused (at least in part) by variations in the total mass profiles rather than in the velocity anisotropy alone.

  14. Stacked Star Formation Rate Profiles of Bursty Galaxies Exhibit “Coherent” Star Formation

    NASA Astrophysics Data System (ADS)

    Orr, Matthew E.; Hayward, Christopher C.; Nelson, Erica J.; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Kereš, Dušan; Chan, T. K.; Schmitz, Denise M.; Miller, Tim B.

    2017-11-01

    In a recent work based on 3200 stacked Hα maps of galaxies at z˜ 1, Nelson et al. find evidence for “coherent star formation”: the stacked star formation rate (SFR) profiles of galaxies above (below) the “star formation main sequence” (MS) are above (below) that of galaxies on the MS at all radii. One might interpret this result as inconsistent with highly bursty star formation and evidence that galaxies evolve smoothly along the MS rather than crossing it many times. We analyze six simulated galaxies at z˜ 1 from the Feedback in Realistic Environments (FIRE) project in a manner analogous to the observations to test whether the above interpretations are correct. The trends in stacked SFR profiles are qualitatively consistent with those observed. However, SFR profiles of individual galaxies are much more complex than the stacked profiles: the former can be flat or even peak at large radii because of the highly clustered nature of star formation in the simulations. Moreover, the SFR profiles of individual galaxies above (below) the MS are not systematically above (below) those of MS galaxies at all radii. We conclude that the time-averaged coherent star formation evident stacks of observed galaxies is consistent with highly bursty, clumpy star formation of individual galaxies and is not evidence that galaxies evolve smoothly along the MS.

  15. Constraints on galaxy formation theories

    NASA Technical Reports Server (NTRS)

    Szalay, A. S.

    1986-01-01

    The present theories of galaxy formation are reviewed. The relation between peculiar velocities, temperature fluctuations of the microwave background and the correlation function of galaxies point to the possibility that galaxies do not form uniformly everywhere. The velocity data provide strong constraints on the theories even in the case when light does not follow mass of the universe.

  16. The SLUGGS survey: the mass distribution in early-type galaxies within five effective radii and beyond

    NASA Astrophysics Data System (ADS)

    Alabi, Adebusola B.; Forbes, Duncan A.; Romanowsky, Aaron J.; Brodie, Jean P.; Strader, Jay; Janz, Joachim; Pota, Vincenzo; Pastorello, Nicola; Usher, Christopher; Spitler, Lee R.; Foster, Caroline; Jennings, Zachary G.; Villaume, Alexa; Kartha, Sreeja

    2016-08-01

    We study mass distributions within and beyond 5 effective radii (Re) in 23 early-type galaxies from the SAGES Legacy Unifying Globulars and Galaxies Survey, using their globular cluster (GC) kinematic data. The data are obtained with Keck/DEep Imaging Multi-Object Spectrograph, and consist of line-of-sight velocities for ˜3500 GCs, measured with a high precision of ˜15 km s-1 per GC and extending out to ˜13 Re. We obtain the mass distribution in each galaxy using the tracer mass estimator of Watkins et al. and account for kinematic substructures, rotation of the GC systems and galaxy flattening in our mass estimates. The observed scatter between our mass estimates and results from the literature is less than 0.2 dex. The dark matter fraction within 5 Re (fDM) increases from ˜0.6 to ˜0.8 for low- and high-mass galaxies, respectively, with some intermediate-mass galaxies (M* ˜ 1011 M⊙) having low fDM ˜ 0.3, which appears at odds with predictions from simple galaxy models. We show that these results are independent of the adopted orbital anisotropy, stellar mass-to-light (M/L) ratio, and the assumed slope of the gravitational potential. However, the low fDM in the ˜1011 M⊙ galaxies agrees with the cosmological simulations of Wu et al. where the pristine dark matter distribution has been modified by baryons during the galaxy assembly process. We find hints that these M* ˜ 1011 M⊙ galaxies with low fDM have very diffuse dark matter haloes, implying that they assembled late. Beyond 5 Re, the M/L gradients are steeper in the more massive galaxies and shallower in both low and intermediate mass galaxies.

  17. A Multi-Faceted Study of Three Forms of Galactic Formation in the Early Universe

    NASA Astrophysics Data System (ADS)

    Jones, Gareth Christopher

    While observations of the early universe have focused on bright, highly starbursting galaxies, star formation activity in the early universe was dominated by main sequence galaxies. Observations of the former group have been accumulating for decades, but the latter are only recently observable using modern instruments. In this work, we apply the Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array (ALMA) to observe specific examples of each galactic class, in order to explore three modes of galaxy formation: smooth accretion, satellite accretion, and massive mergers. Using the molecular gas tracer CO and a broad set of continuum measurements, we characterize the gas mass and distribution, star formation, and dust temperature of the two archetypal massively merging Hyper-Luminous IR Galaxies (HyLIRGs) BRI1202-0725 & BRI1335-0417. We then examine the [C II] emission of the Lyman-Break Galaxy (LBG) WMH5, which shows two infalling gas clouds, implying ongoing formation via filamentary accretion. Finally, we apply a classical suite of dynamical characterization tools to [C II] observations of three MS galaxies and three starbursts, resulting in rotation curves and dynamical masses for each. By examining each of these sources in detail, we find that galaxies in the early (i.e., z > 4) universe formed via a broad range of interactions, ranging from cold-mode accretion to major mergers. As these instruments continue observing, and with the future advent of JWST and perhaps the ngVLA, stronger constraints may be placed on the behavior of the galaxies in the epoch of initial galaxy formation.

  18. The Growth of Early Galaxies and Reionization of Hydrogen

    NASA Astrophysics Data System (ADS)

    Chary, Ranga Ram

    2012-07-01

    The reionization of the intergalactic medium about a billion years after the Big Bang was an important event which occurred due to the release of ionizing photons from the growth of stellar mass and black holes in the early Universe. By leveraging the benefits of field galaxy surveys, I will present some recent breakthroughs in our understanding of how the earliest galaxies in the Universe evolved. I will present evidence that unlike in the local Universe where galaxy growth occurs through intermittent cannibalism, star-formation in the distant Universe is a more continuous if violent process with an overabundance of massive stars. Implications for the reionization history of the Universe will also be discussed.

  19. ON THE STAR FORMATION PROPERTIES OF VOID GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moorman, Crystal M.; Moreno, Jackeline; White, Amanda

    2016-11-10

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on timescales of 10 and 100 Myr, using H α emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable H i detections from ALFALFA. For the fullmore » H i detected sample, SSFRs do not vary systematically with large-scale environment. However, investigating only the H i detected dwarf galaxies reveals a trend toward higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit H i mass (known as the star formation efficiency; SFE) of a galaxy, as a function of environment. For the overall H i detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies still does not reveal a statistically significant difference between SFEs in voids versus walls. These results suggest that void environments, on average, provide a nurturing environment for dwarf galaxy evolution allowing for higher specific star formation rates while forming stars with similar efficiencies to those in walls.« less

  20. The very soft X-ray emission of X-ray-faint early-type galaxies

    NASA Technical Reports Server (NTRS)

    Pellegrini, S.; Fabbiano, G.

    1994-01-01

    A recent reanaylsis of Einstein data, and new ROSAT observations, have revealed the presence of at least two components in the X-ray spectra of X-ray faint early-type galaxies: a relatively hard component (kT greater than 1.5 keV), and a very soft component (kT approximately 0.2-0.3 keV). In this paper we address the problem of the nature of the very soft component and whether it can be due to a hot interstellar medium (ISM), or is most likely originated by the collective emission of very soft stellar sources. To this purpose, hydrodynamical evolutionary sequences for the secular behavior of gas flows in ellipticals have been performed, varying the Type Ia supernovae rate of explosion, and the dark matter amount and distribution. The results are compared with the observational X-ray data: the average Einstein spectrum for six X-ray faint early-type galaxies (among which are NGC 4365 and NGC 4697), and the spectrum obtained by the ROSAT pointed observation of NGC 4365. The very soft component could be entirely explained with a hot ISM only in galaxies such as NGC 4697, i.e., when the depth of the potential well-on which the average ISM temperature strongly depends-is quite shallow; in NGC 4365 a diffuse hot ISM would have a temperature larger than that of the very soft component, because of the deeper potential well. So, in NGC 4365 the softest contribution to the X-ray emission comes certainly from stellar sources. As stellar soft X-ray emitters, we consider late-type stellar coronae, supersoft sources such as those discovered by ROSAT in the Magellanic Clouds and M31, and RS CVn systems. All these candidates can be substantial contributors to the very soft emission, though none of them, taken separately, plausibly accounts entirely for its properties. We finally present a model for the X-ray emission of NGC 4365, to reproduce in detail the results of the ROSAT pointed observation, including the Position Sensitive Proportional Counter (PSPC) spectrum and radial

  1. The ratio of molecular to atomic gas in spiral galaxies as a function of morphological type

    NASA Technical Reports Server (NTRS)

    Knezek, Patricia M.; Young, Judith S.

    1990-01-01

    In order to gain an understanding of the global processes which influence cloud and star formation in disk galaxies, it is necessary to determine the relative amounts of atomic, molecular, and ionized gas both as a function of position in galaxies and from galaxy to galaxy. With observations of the CO distributions in over 200 galaxies now completed as part of the Five College Radio Astronomy Observatory (FCRAO) Extragalactic CO Survey (Young et al. 1989), researchers are finally in a position to determine the type dependence of the molecular content of spiral galaxies, along with the ratio of molecular to atomic gas as a function of type. Do late type spirals really have more gas than early types when the molecular gas content is included. Researchers conclude that there is more than an order of magnitude decrease in the ratio of molecular to atomic gas mass as a function of morphological type from Sa-Sd; an average Sa galaxy has more molecular than atomic gas, and an average Sc has less. Therefore, the total interstellar gas mass to blue luminosity ratio, M sub gas/L sub B, increases by less than a factor of two as a function of type from Sa-Sd. The dominant effect found is that the phase of the gas in the cool interstellar medium (ISM) varies along the Hubble sequence. Researchers suggest that the more massive and centrally concentrated galaxies are able to achieve a molecular-dominated ISM through the collection of more gas in the potential. That gas may then form molecular clouds when a critical density is exceeded. The picture which these observations support is one in which the conversion of atomic gas to molecular gas is a global process which depends on large scale dynamics (cf Wyse 1986). Among interacting and merging systems, researchers find considerable scatter in the M(H2)/M(HI) ratio, with the mean ratio similar to that in the early type galaxies. The high global ratio of molecular to atomic gas could result from the removal of HI gas, the enhanced

  2. On the robustness of the Hβ Lick index as a cosmic clock in passive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Concas, Alice; Pozzetti, L.; Moresco, M.; Cimatti, A.

    2017-06-01

    We examine the Hβ Lick index in a sample of ˜24 000 massive (log(M/M_{⊙})>10.75) and passive early-type galaxies extracted from the Sloan Digital Sky Survey at z < 0.3, in order to assess the reliability of this index to constrain the epoch of formation and age evolution of these systems. We further investigate the possibility of exploiting this index as `cosmic chronometer', I.e. to derive the Hubble parameter from its differential evolution with redshift, hence constraining cosmological models independently of other probes. We find that the Hβ strength increases with redshift as expected in passive evolution models, and shows at each redshift weaker values in more massive galaxies. However, a detailed comparison of the observed index with the predictions of stellar population synthesis models highlights a significant tension, with the observed index being systematically lower than expected. By analysing the stacked spectra, we find a weak [N II] λ6584 emission line (not detectable in the single spectra) that anti-correlates with the mass, which can be interpreted as a hint of the presence of ionized gas. We estimated the correction of the Hβ index by the residual emission component exploiting different approaches, but find it very uncertain and model dependent. We conclude that, while the qualitative trends of the observed Hβ-z relations are consistent with the expected passive and downsizing scenario, the possible presence of ionized gas even in the most massive and passive galaxies prevents us to use this index for a quantitative estimate of the age evolution and for cosmological applications.

  3. Gas clump formation via thermal instability in high-redshift dwarf galaxy mergers

    NASA Astrophysics Data System (ADS)

    Arata, Shohei; Yajima, Hidenobu; Nagamine, Kentaro

    2018-04-01

    Star formation in high-redshift dwarf galaxies is a key to understand early galaxy evolution in the early Universe. Using the three-dimensional hydrodynamics code GIZMO, we study the formation mechanism of cold, high-density gas clouds in interacting dwarf galaxies with halo masses of ˜3 × 107 M⊙, which are likely to be the formation sites of early star clusters. Our simulations can resolve both the structure of interstellar medium on small scales of ≲ 0.1 pc and the galactic disc simultaneously. We find that the cold gas clouds form in the post-shock region via thermal instability due to metal-line cooling, when the cooling time is shorter than the galactic dynamical time. The mass function of cold clouds shows almost a power-law initially with an upper limit of thermally unstable scale. We find that some clouds merge into more massive ones with ≳104 M⊙ within ˜ 2 Myr. Only the massive cold clouds with ≳ 103 M⊙ can keep collapsing due to gravitational instability, resulting in the formation of star clusters. We find that the clump formation is more efficient in the prograde-prograde merger than the prograde-retrograde case due to the difference in the degree of shear flow. In addition, we investigate the dependence of cloud mass function on metallicity and H2 abundance, and show that the cases with low metallicities (≲10-2 Z⊙) or high H2 abundance (≳10-3) cannot form massive cold clouds with ≳103 M⊙.

  4. Formation of ultra-compact dwarf galaxies from supergiant molecular clouds

    NASA Astrophysics Data System (ADS)

    Goodman, Morgan; Bekki, Kenji

    2018-05-01

    The origin of ultra-compact dwarf galaxies (UCDs) is not yet clear. One possible formation path of UCDs is the threshing of a nucleated elliptical dwarf galaxy (dE, N), however, it remains unclear how such massive nuclear stellar systems were formed in dwarf galaxies. To better establish the early history of UCDs, we investigate the formation of UCD progenitor clusters from super giant molecular clouds (SGMCs), using hydrodynamical simulations. In this study we focus on SGMCs with masses 107 - 108 M_{\\odot } that can form massive star clusters that display physical properties similar to UCDs. We find that the clusters have extended star formation histories with two phases, producing multiple distinct stellar populations, and that the star formation rate is dependent on the feedback effects of SNe and AGB stars. The later generations of stars formed in these clusters are more compact, leading to a clearly nested structure, and these stars will be more He-rich than those of the first generation, leading to a slight colour gradient. The simulated clusters demonstrate scaling relations between Reff and M and σv and M consistent with those observed in UCDs and strongly consistent with those of the original SGMC. We discuss whether SGMCs such as these can be formed through merging of self-gravitating molecular clouds in galaxies at high-z.

  5. A massive, quiescent galaxy at a redshift of 3.717.

    PubMed

    Glazebrook, Karl; Schreiber, Corentin; Labbé, Ivo; Nanayakkara, Themiya; Kacprzak, Glenn G; Oesch, Pascal A; Papovich, Casey; Spitler, Lee R; Straatman, Caroline M S; Tran, Kim-Vy H; Yuan, Tiantian

    2017-04-05

    Finding massive galaxies that stopped forming stars in the early Universe presents an observational challenge because their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These surveys have revealed the presence of massive, quiescent early-type galaxies appearing as early as redshift z ≈ 2, an epoch three billion years after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy-formation models, in which they form rapidly at z ≈ 3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, using coarsely sampled photometry. However, these early, massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here we report the spectroscopic confirmation of one such galaxy at redshift z = 3.717, with a stellar mass of 1.7 × 10 11 solar masses. We derive its age to be nearly half the age of the Universe at this redshift and the absorption line spectrum shows no current star formation. These observations demonstrate that the galaxy must have formed the majority of its stars quickly, within the first billion years of cosmic history in a short, extreme starburst. This ancestral starburst appears similar to those being found by submillimetre-wavelength surveys. The early formation of such massive systems implies that our picture of early galaxy assembly requires substantial revision.

  6. A massive, quiescent galaxy at a redshift of 3.717

    NASA Astrophysics Data System (ADS)

    Glazebrook, Karl; Schreiber, Corentin; Labbé, Ivo; Nanayakkara, Themiya; Kacprzak, Glenn G.; Oesch, Pascal A.; Papovich, Casey; Spitler, Lee R.; Straatman, Caroline M. S.; Tran, Kim-Vy H.; Yuan, Tiantian

    2017-04-01

    Finding massive galaxies that stopped forming stars in the early Universe presents an observational challenge because their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These surveys have revealed the presence of massive, quiescent early-type galaxies appearing as early as redshift z ≈ 2, an epoch three billion years after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy-formation models, in which they form rapidly at z ≈ 3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, using coarsely sampled photometry. However, these early, massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here we report the spectroscopic confirmation of one such galaxy at redshift z = 3.717, with a stellar mass of 1.7 × 1011 solar masses. We derive its age to be nearly half the age of the Universe at this redshift and the absorption line spectrum shows no current star formation. These observations demonstrate that the galaxy must have formed the majority of its stars quickly, within the first billion years of cosmic history in a short, extreme starburst. This ancestral starburst appears similar to those being found by submillimetre-wavelength surveys. The early formation of such massive systems implies that our picture of early galaxy assembly requires substantial revision.

  7. DEMOGRAPHICS OF BULGE TYPES WITHIN 11 Mpc AND IMPLICATIONS FOR GALAXY EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, David B.; Drory, Niv, E-mail: dbfisher@astro.umd.edu

    2011-06-01

    We present an inventory of galaxy bulge types (elliptical galaxy, classical bulge, pseudobulge, and bulgeless galaxy) in a volume-limited sample within the local 11 Mpc sphere using Spitzer 3.6 {mu}m and Hubble Space Telescope data. We find that whether counting by number, star formation rate, or stellar mass, the dominant galaxy type in the local universe has pure disk characteristics (either hosting a pseudobulge or being bulgeless). Galaxies that contain either a pseudobulge or no bulge combine to account for over 80% of the number of galaxies above a stellar mass of 10{sup 9} M{sub sun}. Classical bulges and ellipticalmore » galaxies account for {approx}1/4, and disks for {approx}3/4 of the stellar mass in the local 11 Mpc. About 2/3 of all star formation in the local volume takes place in galaxies with pseudobulges. Looking at the fraction of galaxies with different bulge types as a function of stellar mass, we find that the frequency of classical bulges strongly increases with stellar mass, and comes to dominate above 10{sup 10.5} M{sub sun}. Galaxies with pseudobulges dominate at 10{sup 9.5}-10{sup 10.5} M{sub sun}. Yet lower-mass galaxies are most likely to be bulgeless. If pseudobulges are not a product of mergers, then the frequency of pseudobulges in the local universe poses a challenge for galaxy evolution models.« less

  8. The formation of Local Group planes of galaxies

    NASA Astrophysics Data System (ADS)

    Shaya, Ed J.; Tully, R. Brent

    2013-12-01

    The confinement of most satellite galaxies in the Local Group to thin planes presents a challenge to the theory of hierarchical galaxy clustering. The Pan-Andromeda Archaeological Survey (PAndAS) collaboration has identified a particularly thin configuration with kinematic coherence among companions of M31 and there have been long-standing claims that the dwarf companions to the Milky Way lie in a plane roughly orthogonal to the disc of our galaxy. This discussion investigates the possible origins of four Local Group planes: the plane similar, but not identical to that identified by the PAndAS collaboration, an adjacent slightly tilted plane and two planes in the vicinity of the Milky Way: one with very nearby galaxies and the other with more distant ones. Plausible orbits are found by using a combination of Numerical Action methods and a backward in time integration procedure. This investigation assumes that the companion galaxies formed at an early time in accordance with the standard cosmological model. For M31, M33, IC10 and Leo I, solutions are found that are consistent with measurements of their proper motions. For galaxies in planes, there must be commonalities in their proper motions, and this constraint greatly limits the number of physically plausible solutions. Key to the formation of the planar structures has been the evacuation of the Local Void and consequent build-up of the Local Sheet, a wall of this void. Most of the M31 companion galaxies were born in early-forming filamentary or sheet-like substrata that chased M31 out of the void. M31 is a moving target because of its attraction towards the Milky Way, and the result has been alignments stretched towards our galaxy. In the case of the configuration around the Milky Way, it appears that our galaxy was in a three-way competition for companions with M31 and Centaurus A. Only those within a modest band fell our way. The Milky Way's attraction towards the Virgo Cluster resulted in alignment along the

  9. Exploring the Surface Brightness Breaks and Star Formation in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Malko, Bradley Ann; Hunter, Deidre Ann

    2018-06-01

    Stellar surface brightness profiles of both spirals and dwarf irregular galaxies often show breaks in which the exponential fall-off abruptly changes slope. Most often the profile is down-bending (Type II) in the outer disk, but sometimes it is up-bending (Type III). Stellar disks extend a long ways beyond the profile breaks, but we do not understand what happens physically at the breaks. To explore this we are examining the star formation activity, as traced with FUV emission, interior to the break compared to that exterior to the break in both dwarf irregulars and spiral galaxies. We present the results for the spiral galaxy NGC 2500 and compare it to the LITTLE THINGS dwarf irregular galaxies.

  10. Dust-obscured star-forming galaxies in the early universe

    NASA Astrophysics Data System (ADS)

    Wilkins, Stephen M.; Feng, Yu; Di Matteo, Tiziana; Croft, Rupert; Lovell, Christopher C.; Thomas, Peter

    2018-02-01

    Motivated by recent observational constraints on dust reprocessed emission in star-forming galaxies at z ∼ 6 and above, we use the very large cosmological hydrodynamical simulation BLUETIDES to explore predictions for the amount of dust-obscured star formation in the early Universe (z > 8). BLUETIDES matches current observational constraints on both the UV luminosity function and galaxy stellar mass function and predicts that approximately 90 per cent of the star formation in high-mass (M* > 1010 M⊙) galaxies at z = 8 is already obscured by dust. The relationship between dust attenuation and stellar mass predicted by BLUETIDES is consistent with that observed at lower redshift. However, observations of several individual objects at z > 6 are discrepant with the predictions, though it is possible that their uncertainties may have been underestimated. We find that the predicted surface density of z ≥ 8 submm sources is below that accessible to current Herschel, SCUBA-2 and Atacama Large Millimetre Array (ALMA) submm surveys. However, as ALMA continues to accrue an additional surface area the population of z > 8 dust-obscured galaxies may become accessible in the near future.

  11. The Influence of Galactic Outflows on the Formation of Nearby Dwarf Galaxies.

    PubMed

    Scannapieco; Ferrara; Broadhurst

    2000-06-10

    We show that the gas in growing density perturbations is vulnerable to the influence of winds outflowing from nearby collapsed galaxies that have already formed stars. This suggests that the formation of nearby galaxies with masses less, similar10(9) M( middle dot in circle) is likely to be suppressed, irrespective of the details of galaxy formation. An impinging wind may shock-heat the gas of a nearby perturbation to above the virial temperature, thereby mechanically evaporating the gas, or the baryons may be stripped from the perturbation entirely if they are accelerated to above the escape velocity. We show that baryonic stripping is the most effective of these two processes, because shock-heated clouds that are too large to be stripped are able to radiatively cool within a sound crossing time, limiting evaporation. The intergalactic medium temperatures and star formation rates required for outflows to have a significant influence on the formation of low-mass galaxies are consistent with current observations, but may soon be examined directly via associated distortions in the cosmic microwave background and with near-infrared observations from the Next Generation Space Telescope, which may detect the supernovae from early-forming stars.

  12. The X-ray surface brightness distribution and spectral properties of six early-type galaxies

    NASA Technical Reports Server (NTRS)

    Trinchieri, G.; Fabbiano, G.; Canizares, C. R.

    1986-01-01

    Detailed analysis is presented of the Einstein X-ray observations of six early-type galaxies. The results show that effective cooling is probably present in these systems, at least in the innermost regions. Interaction with the surrounding medium has a major effect on the X-ray surface brightness distribution at large radii, at least for galaxies in clusters. The data do not warrant the general assumptions of isothermality and gravitational hydrostatic equilibrium at large radii. Comparison of the X-ray surface brightness profiles with model predictions indicate that 1/r-squared halos with masses of the order of 10 times the stellar masses are required to match the data. The physical model of White and Chevalier (1984) for steady cooling flows in a King law potential with no heavy halo gives a surface brightness distribution that resembles the data if supernovae heating is present.

  13. Probing Globular Cluster Formation in Low Metallicity Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey E.; Hunt, Leslie K.; Reines, Amy E.

    2008-12-01

    The ubiquitous presence of globular clusters around massive galaxies today suggests that these extreme star clusters must have been formed prolifically in the earlier universe in low-metallicity galaxies. Numerous adolescent and massive star clusters are already known to be present in a variety of galaxies in the local universe; however most of these systems have metallicities of 12 + log(O/H) > 8, and are thus not representative of the galaxies in which today's ancient globular clusters were formed. In order to better understand the formation and evolution of these massive clusters in environments with few heavy elements, we have targeted several low-metallicity dwarf galaxies with radio observations, searching for newly-formed massive star clusters still embedded in their birth material. The galaxies in this initial study are HS 0822+3542, UGC 4483, Pox 186, and SBS 0335-052, all of which have metallicities of 12 + log(O/H) < 7.75. While no thermal radio sources, indicative of natal massive star clusters, are found in three of the four galaxies, SBS 0335-052 hosts two such objects, which are incredibly luminous. The radio spectral energy distributions of these intense star-forming regions in SBS 0335-052 suggest the presence of ~12,000 equivalent O-type stars, and the implied star formation rate is nearing the maximum starburst intensity limit.

  14. A Comparison of the Near-Infrared Spectral Features of Early-Type Galaxies in the Virgo and Coma Clusters

    NASA Astrophysics Data System (ADS)

    Houdashelt, M. L.

    1992-05-01

    Initial results are presented from an examination of near-infrared spectra (6800 - 9200 Angstroms) of 34 early-type galaxies - 17 in the Virgo cluster, 10 in the Coma cluster and seven field members. It has previously been speculated that E/S0 galaxies of similar luminosity in the Virgo and Coma clusters have different red stellar populations. To explore this possibility, pseudo-equivalent widths of a number of near-IR spectral features have been measured. The important features studied include the TiO bands near 7100, 7890, 8197, 8500 and 8950 Angstroms, which are mainly produced by the late-type stars whose flux contributes only about 10-20\\ the near-IR. The strengths of the Ca triplet (8498, 8542, 8662 Angstroms) and Na I doublet (8183, 8195 Angstroms) are also measured, since these features are affected by the relative contribution of dwarf stars to the red light. Although the main focus of this work is the search for spectral differences among the Coma, Virgo and field E/S0 populations, each subgroup of galaxies (and the sample as a whole) are also examined for correlations among the feature strengths, galaxy color and luminosity.

  15. SDSS-IV MaNGA: global stellar population and gradients for about 2000 early-type and spiral galaxies on the mass-size plane

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Mao, Shude; Cappellari, Michele; Ge, Junqiang; Long, R. J.; Li, Ran; Mo, H. J.; Li, Cheng; Zheng, Zheng; Bundy, Kevin; Thomas, Daniel; Brownstein, Joel R.; Roman Lopes, Alexandre; Law, David R.; Drory, Niv

    2018-05-01

    We perform full spectrum fitting stellar population analysis and Jeans Anisotropic modelling of the stellar kinematics for about 2000 early-type galaxies (ETGs) and spiral galaxies from the MaNGA DR14 sample. Galaxies with different morphologies are found to be located on a remarkably tight mass plane which is close to the prediction of the virial theorem, extending previous results for ETGs. By examining an inclined projection (`the mass-size' plane), we find that spiral and early-type galaxies occupy different regions on the plane, and their stellar population properties (i.e. age, metallicity, and stellar mass-to-light ratio) vary systematically along roughly the direction of velocity dispersion, which is a proxy for the bulge fraction. Galaxies with higher velocity dispersions have typically older ages, larger stellar mass-to-light ratios and are more metal rich, which indicates that galaxies increase their bulge fractions as their stellar populations age and become enriched chemically. The age and stellar mass-to-light ratio gradients for low-mass galaxies in our sample tend to be positive (centre < outer), while the gradients for most massive galaxies are negative. The metallicity gradients show a clear peak around velocity dispersion log10 σe ≈ 2.0, which corresponds to the critical mass ˜3 × 1010 M⊙ of the break in the mass-size relation. Spiral galaxies with large mass and size have the steepest gradients, while the most massive ETGs, especially above the critical mass Mcrit ≳ 2 × 1011 M⊙, where slow rotator ETGs start dominating, have much flatter gradients. This may be due to differences in their evolution histories, e.g. mergers.

  16. Star Formation Properties of Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Hunter, D. A.; Elmegreen, B. G.

    2003-12-01

    What regulates star formation in gas-rich dwarf galaxies on global and local scales? To address this question, we have conducted a survey of a large sample of reasonably normal, relatively nearby, non-interacting galaxies without spiral arms. The sample includes 94 Im galaxies, 26 Blue Compact Dwarfs, and 20 Sm systems. The data consist of UBV and Hα images for the entire sample, and JHK images, HI maps, CO observations, and HII region spectrophotometry for a sub-sample. The Hα , UBV, and JHK image sets act as probes of star formation on three different times scales: Hα images trace the most recent star formation (≤10 Myrs) through the ionization of natal clouds by the short-lived massive stars; UBV, while a more complicated clue, integrates over the past Gyr; and JHK integrates over the lifetime of the galaxy where even in Im galaxies global JHK colors are characteristic of old stellar populations. These data are being used to determine the nature and distribution of the star formation activity, to characterize the interstellar medium out of which the clouds and stars are forming, and to develop models that describe the important processes that drive star formation in these tiny systems. Here we present the Hα data: integrated star formation rates, azimuthally-averaged Hα surface brightnesses, and extents of star formation, and explore the relationship of the star formation properties to other integrated parameters of the galaxies. One TI CCD used in this work was provided to Lowell by the National Science Foundation and another was on loan from the U. S. Naval Observatory in Flagstaff. The Hα filters were purchased with funds provided by a Small Research Grant from the American Astronomical Society, National Science Foundation grant AST-9022046, and grant 960355 from JPL. Funding for carrying out this work was provided by the Lowell Research Fund and by the National Science Foundation through grants AST-0204922 to DAH and AST-0205097 to BGE.

  17. The JCMT Nearby Galaxies Legacy Survey - VII. Hα imaging and massive star formation properties

    NASA Astrophysics Data System (ADS)

    Sánchez-Gallego, J. R.; Knapen, J. H.; Wilson, C. D.; Barmby, P.; Azimlu, M.; Courteau, S.

    2012-06-01

    We present Hα fluxes, star formation rates (SFRs) and equivalent widths (EWs) for a sample of 156 nearby galaxies observed in the 12CO J= 3-2 line as part of the James Clerk Maxwell Telescope Nearby Galaxies Legacy Survey. These are derived from images and values in the literature and from new Hα images for 72 galaxies which we publish here. We describe the sample, observations and procedures to extract the Hα fluxes and related quantities. We discuss the SFR properties of our sample and confirm the well-known correlation with galaxy luminosity, albeit with high dispersion. Our SFRs range from 0.1 to 11 M⊙ yr-1 with a median SFR value for the complete sample of 0.2 M⊙ yr-1. This median value is somewhat lower than similar published measurements, which we attribute, in part, to our sample being H I selected and, thus, not biased towards high SFRs as has frequently been the case in previous studies. Additionally, we calculate internal absorptions for the Hα line, A(Hα), which are lower than many of those used in previous studies. Our derived EWs, which range from 1 to 880 Å with a median value of 27 Å, show little dependence on luminosity but rise by a factor of 5 from early- to late-type galaxies. This paper is the first in a series aimed at comparing SFRs obtained from Hα imaging of galaxies with information derived from other tracers of star formation and atomic and molecular gas.

  18. Fundamental tests of galaxy formation theory

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1982-01-01

    The structure of the universe as an environment where traces exist of the seed fluctuations from which galaxies formed is studied. The evolution of the density fluctuation modes that led to the eventual formation of matter inhomogeneities is reviewed, How the resulting clumps developed into galaxies and galaxy clusters acquiring characteristic masses, velocity dispersions, and metallicities, is discussed. Tests are described that utilize the large scale structure of the universe, including the dynamics of the local supercluster, the large scale matter distribution, and the anisotropy of the cosmic background radiation, to probe the earliest accessible stages of evolution. Finally, the role of particle physics is described with regard to its observable implications for galaxy formation.

  19. Star Formation in the Central Regions of Galaxies

    NASA Astrophysics Data System (ADS)

    Tsai, Mengchun

    2015-08-01

    The galactic central region connects the galactic nucleus to the host galaxy. If the central black hole co-evolved with the host galaxies, there should be some evidence left in the central region. We use the environmental properties in the central regions such as star-forming activity, stellar population and molecular abundance to figure out a possible scenario of the evolution of galaxies. In this thesis at first we investigated the properties of the central regions in the host galaxies of active and normal galaxies. We used radio emission around the nuclei of the host galaxies to represent activity of active galactic nuclei (AGNs), and used infrared ray (IR) emission to represent the star-forming activity and stellar population of the host galaxies. We determined that active galaxies have higher stellar masses (SMs) within the central kiloparsec radius than normal galaxies do independent of the Hubble types of the host galaxies; but both active and normal galaxies exhibit similar specific star formation rates (SSFRs). We also discovered that certain AGNs exhibit substantial inner stellar structures in the IR images; most of the AGNs with inner structures are Seyferts, whereas only a few LINERs exhibit inner structures. We note that the AGNs with inner structures show a positive correlation between the radio activity of the AGNs and the SFRs of the host galaxies, but the sources without inner structures show a negative correlation between the radio power and the SFRs. These results might be explained with a scenario of starburst-AGN evolution. In this scenario, AGN activities are triggered following a nuclear starburst; during the evolution, AGN activities are accompanied by SF activity in the inner regions of the host galaxies; at the final stage of the evolution, the AGNs might transform into LINERs, exhibiting weak SF activity in the central regions of the host galaxies. For further investigation about the inner structure, we choose the most nearby and luminous

  20. The SAMI Galaxy Survey: Early Data Release

    NASA Astrophysics Data System (ADS)

    Allen, J. T.; Croom, S. M.; Konstantopoulos, I. S.; Bryant, J. J.; Sharp, R.; Cecil, G. N.; Fogarty, L. M. R.; Foster, C.; Green, A. W.; Ho, I.-T.; Owers, M. S.; Schaefer, A. L.; Scott, N.; Bauer, A. E.; Baldry, I.; Barnes, L. A.; Bland-Hawthorn, J.; Bloom, J. V.; Brough, S.; Colless, M.; Cortese, L.; Couch, W. J.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Gunawardhana, M. L. P.; Hampton, E. J.; Hopkins, A. M.; Kewley, L. J.; Lawrence, J. S.; Leon-Saval, S. G.; Liske, J.; López-Sánchez, Á. R.; Lorente, N. P. F.; McElroy, R.; Medling, A. M.; Mould, J.; Norberg, P.; Parker, Q. A.; Power, C.; Pracy, M. B.; Richards, S. N.; Robotham, A. S. G.; Sweet, S. M.; Taylor, E. N.; Thomas, A. D.; Tonini, C.; Walcher, C. J.

    2015-01-01

    We present the Early Data Release of the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. The SAMI Galaxy Survey is an ongoing integral field spectroscopic survey of ˜3400 low-redshift (z < 0.12) galaxies, covering galaxies in the field and in groups within the Galaxy And Mass Assembly (GAMA) survey regions, and a sample of galaxies in clusters. In the Early Data Release, we publicly release the fully calibrated data cubes for a representative selection of 107 galaxies drawn from the GAMA regions, along with information about these galaxies from the GAMA catalogues. All data cubes for the Early Data Release galaxies can be downloaded individually or as a set from the SAMI Galaxy Survey website. In this paper we also assess the quality of the pipeline used to reduce the SAMI data, giving metrics that quantify its performance at all stages in processing the raw data into calibrated data cubes. The pipeline gives excellent results throughout, with typical sky subtraction residuals in the continuum of 0.9-1.2 per cent, a relative flux calibration uncertainty of 4.1 per cent (systematic) plus 4.3 per cent (statistical), and atmospheric dispersion removed with an accuracy of 0.09 arcsec, less than a fifth of a spaxel.

  1. Star formation quenching in quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Carniani, Stefano

    2017-10-01

    Galaxy evolution is likely to be shaped by negative feedback from active galactic nuclei (AGN). In the whole range of redshifts and luminosities studied so far, galaxies hosting an AGN frequently show fast and extended outflows consisting in both ionised and molecular gas. Such outflows could potentially quench the start formation within the host galaxy, but a clear evidence of negative feedback in action is still missing. Hereby I will analyse integral-field spectroscopic data for six quasars at z ˜2.4 obtained with SINFONI in the H- and K-band. All the quasars show [OIII]λ5007 line detection of fast, extended outflows. Also, the high signal-to-noise SINFONI observations allow the identification of faint narrow Hα emission (FWHM < 500 km/s), which is spatially extended and associated with star formation in the host galaxy. On paper fast outflows are spatially anti-correlated with star-formation powered emission, i.e. star formation is suppressed in the area affected by the outflow. Nonetheless as narrow, spatially-extended Hα emission, indicating star formation rates of at least 50 - 100 M⊙/yr, has been detected, either AGN feedback is not affecting the whole host galaxy, or star formation is completely quenched only by several feedback episodes. On the other hand, a positive feedback scenario, supported by narrow emission in Hα extending along the edges of the outflow cone, suggests that galaxy-wide outflows could also have a twofold role in the evolution of the host galaxy. Finally, I will present CO(3-2) ALMA data for three out of the six QSOs observed with SINFONI. Flux maps obtained for the CO(3-2) transition suggest that molecular gas within the host galaxy is swept away by fast winds. A negative-feedback scenario is supported by the inferred molecular gas mass in all three objects, which is significantly below what observed in non-active main-sequence galaxies at high-z.

  2. Star Formation in Merging Galaxies Using FIRE

    NASA Astrophysics Data System (ADS)

    Perez, Adrianna; Hung, Chao-Ling; Naiman, Jill; Moreno, Jorge; Hopkins, Philip

    2018-01-01

    Galaxy interactions and mergers are efficient mechanisms to birth stars at rates that are significantly higher than found in our Milky Way galaxy. The Kennicut-Schmidt (KS) relation is an empirical relationship between the star-forming rate and gas surface densities of galaxies (Schmidt 1959; Kennicutt 1998). Although most galaxies follow the KS relation, the high levels of star formation in galaxy mergers places them outside of this otherwise tight relationship. The goal of this research is to analyze the gas content and star formation of simulated merging galaxies. Our work utilizes the Feedback In Realistic Environments (FIRE) model (Hopkins et al., 2014). The FIRE project is a high-resolution cosmological simulation that resolves star-forming regions and incorporates stellar feedback in a physically realistic way. In this work, we have noticed a significant increase in the star formation rate at first and second passage, when the two black holes of each galaxy approach one other. Next, we will analyze spatially resolved star-forming regions over the course of the interacting system. Then, we can study when and how the rates that gas converts into stars deviate from the standard KS. These analyses will provide important insights into the physical mechanisms that regulate star formation of normal and merging galaxies and valuable theoretical predictions that can be used to compare with current and future observations from ALMA or the James Webb Space Telescope.

  3. The formation of disc galaxies in high-resolution moving-mesh cosmological simulations

    NASA Astrophysics Data System (ADS)

    Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker

    2014-01-01

    We present cosmological hydrodynamical simulations of eight Milky Way-sized haloes that have been previously studied with dark matter only in the Aquarius project. For the first time, we employ the moving-mesh code AREPO in zoom simulations combined with a comprehensive model for galaxy formation physics designed for large cosmological simulations. Our simulations form in most of the eight haloes strongly disc-dominated systems with realistic rotation curves, close to exponential surface density profiles, a stellar mass to halo mass ratio that matches expectations from abundance matching techniques, and galaxy sizes and ages consistent with expectations from large galaxy surveys in the local Universe. There is no evidence for any dark matter core formation in our simulations, even so they include repeated baryonic outflows by supernova-driven winds and black hole quasar feedback. For one of our haloes, the object studied in the recent `Aquila' code comparison project, we carried out a resolution study with our techniques, covering a dynamic range of 64 in mass resolution. Without any change in our feedback parameters, the final galaxy properties are reassuringly similar, in contrast to other modelling techniques used in the field that are inherently resolution dependent. This success in producing realistic disc galaxies is reached, in the context of our interstellar medium treatment, without resorting to a high density threshold for star formation, a low star formation efficiency, or early stellar feedback, factors deemed crucial for disc formation by other recent numerical studies.

  4. The ALHAMBRA survey: 2D analysis of the stellar populations in massive early-type galaxies at z < 0.3

    NASA Astrophysics Data System (ADS)

    San Roman, I.; Cenarro, A. J.; Díaz-García, L. A.; López-Sanjuan, C.; Varela, J.; González Delgado, R. M.; Sánchez-Blázquez, P.; Alfaro, E. J.; Ascaso, B.; Bonoli, S.; Borlaff, A.; Castander, F. J.; Cerviño, M.; Fernández-Soto, A.; Márquez, I.; Masegosa, J.; Muniesa, D.; Pović, M.; Viironen, K.; Aguerri, J. A. L.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Cepa, J.; Cristóbal-Hornillos, D.; Infante, L.; Martínez, V. J.; Moles, M.; del Olmo, A.; Perea, J.; Prada, F.; Quintana, J. M.

    2018-01-01

    We present a technique that permits the analysis of stellar population gradients in a relatively low-cost way compared to integral field unit (IFU) surveys. We developed a technique to analyze unresolved stellar populations of spatially resolved galaxies based on photometric multi-filter surveys. This technique allows the analysis of vastly larger samples and out to larger galactic radii. We derived spatially resolved stellar population properties and radial gradients by applying a centroidal Voronoi tessellation and performing a multicolor photometry spectral energy distribution fitting. This technique has been successfully applied to a sample of 29 massive (M⋆ > 1010.5M⊙) early-type galaxies at z < 0.3 from the ALHAMBRA survey. We produced detailed 2D maps of stellar population properties (age, metallicity, and extinction), which allow us to identify galactic features. Radial structures were studied, and luminosity-weighted and mass-weighted gradients were derived out to 2-3.5 Reff. We find that the spatially resolved stellar population mass, age, and metallicity are well represented by their integrated values. We find the gradients of early-type galaxies to be on average flat in age (∇log AgeL = 0.02 ± 0.06 dex/Reff) and negative in metallicity (∇[Fe/H]L = -0.09 ± 0.06 dex/Reff). Overall,the extinction gradients are flat (∇Av = -0.03 ± 0.09 mag/Reff ) with a wide spread. These results are in agreement with previous studies that used standard long-slit spectroscopy, and with the most recent IFU studies. According to recent simulations, these results are consistent with a scenario where early-type galaxies were formed through major mergers and where their final gradients are driven by the older ages and higher metallicity of the accreted systems. We demonstrate the scientific potential of multi-filter photometry to explore the spatially resolved stellar populations of local galaxies and confirm previous spectroscopic trends from a complementary

  5. Measuring star formation rates in blue galaxies

    NASA Technical Reports Server (NTRS)

    Gallagher, John S., III; Hunter, Deidre A.

    1987-01-01

    The problems associated with measurements of star formation rates in galaxies are briefly reviewed, and specific models are presented for determinations of current star formation rates from H alpha and Far Infrared (FIR) luminosities. The models are applied to a sample of optically blue irregular galaxies, and the results are discussed in terms of star forming histories. It appears likely that typical irregular galaxies are forming stars at nearly constant rates, although a few examples of systems with enhanced star forming activity are found among HII regions and luminous irregular galaxies.

  6. Quasar Feedback at the Peak of Galaxy Formation Epoch

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Zakamska, Nadia L.; Strauss, Michael A.; Greene, Jenny E.; Alexandroff, Rachael

    2013-02-01

    The correlations between properties of supermassive black holes and stellar spheroids in galaxies imply a physical connection between these two components in spite of their vastly different masses and physical scales. Using Gemini GMOS IFU, we demonstrated that powerful ionized gas winds are a ubiquitous feature in luminous radio-quiet obscured z 0.5 quasars. We now plan to extend this discovery to the era of peak galaxy formation and quasar activity - to the epoch when feedback was most prominent and the galaxy vs. black hole correlations were established. We propose a GMOS IFU survey to map the spatial distribution and the kinematics of Ly(alpha) and N sc v 1240Å emission around 5 obscured quasars at z=3-3.4. We will use Ly(alpha) observations to directly probe the effects of ionizing radiation of obscured quasars on their large-scale environments and N sc v observations to look for signatures of unbound quasar-driven outflows. We will observe in the g-band on sub-galactic and galaxy- wide scales (spatial resolution 3-6 kpc, field of view 40times50 kpc^2 at z=3). Obscured quasars likely constitute the majority of the quasar population and may represent the relatively early enshrouded phase of black hole growth; thus, luminous obscured quasars are the most likely sites of quasar ionization- and wind-feedback, as we found at low redshifts. Our proposed GMOS observations will provide a definitive probe of the effects of quasars on their galaxy-wide and large-scale environments close to the peak of galaxy formation epoch.

  7. An intriguing young-looking dwarf galaxy

    NASA Image and Video Library

    2015-03-16

    The bright streak of glowing gas and stars in this NASA/ESA Hubble Space Telescope image is known as PGC 51017, or SBSG 1415+437. It is type of galaxy known as a blue compact dwarf. This particular dwarf is well studied and has an interesting star formation history. Astronomers initially thought that SBS 1415+437 was a very young galaxy currently undergoing its very first burst of star formation, but more recent studies have suggested that the galaxy is in fact a little older, containing stars over 1.3 billion years old. Starbursts are an area of ongoing research for astronomers — short-lived and intense periods of star formation, during which huge amounts of gas within a galaxy are hungrily used up to form newborn stars. They have been seen in gas-rich disc galaxies, and in some lower-mass dwarfs. However, it is still unclear whether all dwarf galaxies experience starbursts as part of their evolution. It is possible that dwarf galaxies undergo a star formation cycle, with bursts occurring repeatedly over time. SBS 1415+437 is an interesting target for another reason. Dwarf galaxies like this are thought to have formed early in the Universe, producing some of the very first stars before merging together to create more massive galaxies. Dwarf galaxies which contain very few of the heavier elements formed from having several generations of stars, like SBS 1415+437, remain some of the best places to study star-forming processes similar to those thought to occur in the early Universe. However, it seems that our nearby patch of the Universe may not contain any galaxies that are currently undergoing their first burst of star formation. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Nick Rose.

  8. The SAMI Galaxy Survey: spatially resolving the environmental quenching of star formation in GAMA galaxies

    NASA Astrophysics Data System (ADS)

    Schaefer, A. L.; Croom, S. M.; Allen, J. T.; Brough, S.; Medling, A. M.; Ho, I.-T.; Scott, N.; Richards, S. N.; Pracy, M. B.; Gunawardhana, M. L. P.; Norberg, P.; Alpaslan, M.; Bauer, A. E.; Bekki, K.; Bland-Hawthorn, J.; Bloom, J. V.; Bryant, J. J.; Couch, W. J.; Driver, S. P.; Fogarty, L. M. R.; Foster, C.; Goldstein, G.; Green, A. W.; Hopkins, A. M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, A. R.; Lorente, N. P. F.; Owers, M. S.; Sharp, R.; Sweet, S. M.; Taylor, E. N.; van de Sande, J.; Walcher, C. J.; Wong, O. I.

    2017-01-01

    We use data from the Sydney-AAO Multi-Object Integral Field Spectrograph Galaxy Survey and the Galaxy And Mass Assembly (GAMA) survey to investigate the spatially resolved signatures of the environmental quenching of star formation in galaxies. Using dust-corrected measurements of the distribution of Hα emission, we measure the radial profiles of star formation in a sample of 201 star-forming galaxies covering three orders of magnitude in stellar mass (M*; 108.1-1010.95 M⊙) and in fifth nearest neighbour local environment density (Σ5; 10-1.3-102.1 Mpc-2). We show that star formation rate gradients in galaxies are steeper in dense (log10(Σ5/Mpc2) > 0.5) environments by 0.58 ± 0.29 dex re^{-1} in galaxies with stellar masses in the range 10^{10} < M_{*}/M_{⊙} < 10^{11} and that this steepening is accompanied by a reduction in the integrated star formation rate. However, for any given stellar mass or environment density, the star formation morphology of galaxies shows large scatter. We also measure the degree to which the star formation is centrally concentrated using the unitless scale-radius ratio (r50,Hα/r50,cont), which compares the extent of ongoing star formation to previous star formation. With this metric, we find that the fraction of galaxies with centrally concentrated star formation increases with environment density, from ˜5 ± 4 per cent in low-density environments (log10(Σ5/Mpc2) < 0.0) to 30 ± 15 per cent in the highest density environments (log10(Σ5/Mpc2) > 1.0). These lines of evidence strongly suggest that with increasing local environment density, the star formation in galaxies is suppressed, and that this starts in their outskirts such that quenching occurs in an outside-in fashion in dense environments and is not instantaneous.

  9. Early chemo-dynamical evolution of dwarf galaxies deduced from enrichment of r-process elements

    NASA Astrophysics Data System (ADS)

    Hirai, Yutaka; Ishimaru, Yuhri; Saitoh, Takayuki R.; Fujii, Michiko S.; Hidaka, Jun; Kajino, Toshitaka

    2017-04-01

    The abundance of elements synthesized by the rapid neutron-capture process (r-process elements) of extremely metal-poor (EMP) stars in the Local Group galaxies gives us clues to clarify the early evolutionary history of the Milky Way halo. The Local Group dwarf galaxies would have similarly evolved with building blocks of the Milky Way halo. However, how the chemo-dynamical evolution of the building blocks affects the abundance of r-process elements is not yet clear. In this paper, we perform a series of simulations using dwarf galaxy models with various dynamical times and total mass, which determine star formation histories. We find that galaxies with dynamical times longer than 100 Myr have star formation rates less than 10-3 M⊙ yr-1 and slowly enrich metals in their early phase. These galaxies can explain the observed large scatters of r-process abundance in EMP stars in the Milky Way halo regardless of their total mass. On the other hand, the first neutron star merger appears at a higher metallicity in galaxies with a dynamical time shorter than typical neutron star merger times. The scatters of r-process elements mainly come from the inhomogeneity of the metals in the interstellar medium whereas the scatters of α-elements are mostly due to the difference in the yield of each supernova. Our results demonstrate that the future observations of r-process elements in EMP stars will be able to constrain the early chemo-dynamical evolution of the Local Group galaxies.

  10. The Comparative Observational Study of Timescale of Feedback by Bar Structure in Late-type Galaxies

    NASA Astrophysics Data System (ADS)

    Woong-bae Woong-bae Zee, Galaxy; Yoon, Suk-jin

    2018-01-01

    We investigate star formation activities of ~400 barred and ~1400 unbarred faced-on late-type galaxies from the SDSS DR13. We find that gas-poor and barred galaxies are considerably show enhanced high central star formation activities, while there is no difference among gas-rich barred and unbarred galaxies regardless of their HI gas content. This seems counter-intuitive given that gas contents simply represent the total star formation rate of galaxies and suggests that there is a time delation between the central gas migration/consumption through bar structures and the enhancement of star formation activity at the centre. We analysed the distribution of the stellar population of specific galaxies with MaNGA (Mapping Nearby Galaxies at APO) IFU survey among the total samples. The gas-poor and barred galaxies show the flatter gradient in metallicity and age with respect to the stellar mass than other types of galaxies, in that their centre is more metal-rich and younger. There is an age difference, about 5-6 Gyrs, between centrally star-forming gas-poor barred galaxies and gas-rich galaxies and this value is a plausible candidate of the longevity of bar feedback. The results indicate that the gas migration/mixing driven by bar structure plays a significant role in the evolution of galaxies in a specific of timescale.

  11. The dark nemesis of galaxy formation: why hot haloes trigger black hole growth and bring star formation to an end

    NASA Astrophysics Data System (ADS)

    Bower, Richard G.; Schaye, Joop; Frenk, Carlos S.; Theuns, Tom; Schaller, Matthieu; Crain, Robert A.; McAlpine, Stuart

    2017-02-01

    Galaxies fall into two clearly distinct types: `blue-sequence' galaxies which are rapidly forming young stars, and `red-sequence' galaxies in which star formation has almost completely ceased. Most galaxies more massive than 3 × 1010 M⊙ follow the red sequence, while less massive central galaxies lie on the blue sequence. We show that these sequences are created by a competition between star formation-driven outflows and gas accretion on to the supermassive black hole at the galaxy's centre. We develop a simple analytic model for this interaction. In galaxies less massive than 3 × 1010 M⊙, young stars and supernovae drive a high-entropy outflow which is more buoyant than any tenuous corona. The outflow balances the rate of gas inflow, preventing high gas densities building up in the central regions. More massive galaxies, however, are surrounded by an increasingly hot corona. Above a halo mass of ˜1012 M⊙, the outflow ceases to be buoyant and star formation is unable to prevent the build-up of gas in the central regions. This triggers a strongly non-linear response from the black hole. Its accretion rate rises rapidly, heating the galaxy's corona, disrupting the incoming supply of cool gas and starving the galaxy of the fuel for star formation. The host galaxy makes a transition to the red sequence, and further growth predominantly occurs through galaxy mergers. We show that the analytic model provides a good description of galaxy evolution in the EAGLE hydrodynamic simulations. So long as star formation-driven outflows are present, the transition mass scale is almost independent of subgrid parameter choice.

  12. Star Formation Intensities Of Non-Isolated Galaxies With The Califa Survey

    NASA Astrophysics Data System (ADS)

    Morales Vargas, Abdías; Torres-Papaqui, Juan Pablo; Rosales-Ortega, Fernando Fabián; Sánchez, Sebastián F.; Chow-Martínez, Marcel; Ortega-Minakata, René Alberto; Romero-Cruz, Fernando J.; Trejo-Alonso, Josué de Jesús; Neri-Larios, Daniel Marcos; Robleto-Orús Aitor, Carlos

    2017-08-01

    Poster presented at the conference Galaxy Evolution Across Time, 12-16 June, Paris, France. The influence of interactions on the star formation (SF) is investigated by studying a sample of 34 CALIFA survey non-isolated galaxies. We use the instantaneous star formation rate intensity (SFRI) obtained from the Halpha recombination line emission normalized by a unit of projected area. We explore the SFRI, stellar mass and stellar age annulus structures (split by morphology group), also for a control population of star-forming isolated galaxies observed with the CALIFA survey likewise. By morphology groups, the SF efficiency of early type spirals (ETSs) results magnified likely because of angular momentum loss. The SFRI of the non-isolated sample is then compared with that one of the isolated sample. It is found statistically and moderately enhanced in the non-isolated sample by a factor of at most 2. We also find the SFRI as to be a function of the degree of tidal perturbation what might consequently suggest interactions as to facilitate the gas transport to central regions. Contrasting behaviors of the SFRI structures, a gradual quench with clear outer presence of SF (isolated sample) while a steeper decrease from the center with poor SFRIs outwards (non-isolated one) are found. Similitudes in a variety of stellar population properties support the closeness of companions as to be the cause of the SFRI differences between samples.

  13. The SLUGGS Survey: A Catalog of Over 4000 Globular Cluster Radial Velocities in 27 Nearby Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Forbes, Duncan A.; Alabi, Adebusola; Brodie, Jean P.; Romanowsky, Aaron J.; Strader, Jay; Foster, Caroline; Usher, Christopher; Spitler, Lee; Bellstedt, Sabine; Pastorello, Nicola; Villaume, Alexa; Wasserman, Asher; Pota, Vincenzo

    2017-03-01

    Here, we present positions and radial velocities for over 4000 globular clusters (GCs) in 27 nearby early-type galaxies from the SLUGGS survey. The SLUGGS survey is designed to be representative of elliptical and lenticular galaxies in the stellar mass range 10 < log {M}* /M ⊙ < 11.7. The data have been obtained over many years, mostly using the very stable multi-object spectrograph DEIMOS on the Keck II 10 m telescope. Radial velocities are measured using the calcium triplet lines, with a velocity accuracy of ±10-15 km s-1. We use phase space diagrams (I.e., velocity-position diagrams) to identify contaminants such as foreground stars and background galaxies, and to show that the contribution of GCs from neighboring galaxies is generally insignificant. Likely ultra-compact dwarfs are tabulated separately. We find that the mean velocity of the GC system is close to that of the host galaxy systemic velocity, indicating that the GC system is in overall dynamical equilibrium within the galaxy potential. We also find that the GC system velocity dispersion scales with host galaxy stellar mass, in a similar manner to the Faber-Jackson relation for the stellar velocity dispersion. Publication of these GC radial velocity catalogs should enable further studies in many areas, such as GC system substructure, kinematics, and host galaxy mass measurements.

  14. Dark Influences at the Threshold of Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael

    As the faintest, lowest-luminosity, and most dark-matter-dominated extremes of the galaxy population, dwarf galaxies present unique opportunities for studying galaxy formation and the properties of dark matter. Accordingly, they have been observed in detail from the ground and (by NASA missions) from space with the hopes of unraveling how dwarf galaxies form, the effects of reionization on galaxy formation, and whether signatures of the particle nature of dark matter (DM) interactions can be observed. Such work has gained in importance as efforts to directly detect DM have so far yielded only upper limits to the interaction between DM and normal matter, leaving astrophysical tests as the primary means of investigating the nature of DM. We propose to undertake an extensive yet focused program of cosmological hydrodynamic simulations aimed at understanding the formation of dwarf galaxies. We will focus on the interplay between galaxy formation and dark matter in these galaxies, pointing toward specific observables to disentangle the effects of galaxy formation physics from the effects of DM physics. Our simulation suite will explore collisionless Cold Dark Matter (CDM) and broad classes of alternatives, where DM has a nonnegligible free-streaming length and / or self-scattering cross section. The novel aspects of the proposed work will include: (1) a modern treatment of baryonic physics using GIZMO, a new code that uses accurate meshless methods for hydrodynamics; (2) Feedback In Realistic Environments (FIRE), a suite of galaxy formation parametrizations with well-tested, explicit implementations of stellar feedback; (3) an exploration of realistic models of DM beyond CDM based on an effective theory of structure formation, with full baryonic physics; and (4) detailed mock observations of the simulations in order to identify specific, distinguishing tests for CDM and its alternatives. Our research will provide a framework within which astrophysical inferences about

  15. 3D-HST+CANDELS: The Evolution of the Galaxy Size-Mass Distribution since z = 3

    NASA Astrophysics Data System (ADS)

    van der Wel, A.; Franx, M.; van Dokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; Ferguson, H. C.; Holden, B. P.; Barro, G.; Koekemoer, A. M.; Chang, Yu-Yen; McGrath, E. J.; Häussler, B.; Dekel, A.; Behroozi, P.; Fumagalli, M.; Leja, J.; Lundgren, B. F.; Maseda, M. V.; Nelson, E. J.; Wake, D. A.; Patel, S. G.; Labbé, I.; Faber, S. M.; Grogin, N. A.; Kocevski, D. D.

    2014-06-01

    Spectroscopic+photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and we find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, R effvprop(1 + z)-1.48, and moderate evolution for the late-type population, R effvprop(1 + z)-0.75. The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, R_{eff}\\propto M_*^{0.22}, for late-type galaxies with stellar mass >3 × 109 M ⊙, and steep, R_{eff}\\propto M_*^{0.75}, for early-type galaxies with stellar mass >2 × 1010 M ⊙. The intrinsic scatter is lsim0.2 dex for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric but is skewed toward small sizes: at all redshifts and masses, a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (~1011 M ⊙), compact (R eff < 2 kpc) early-type galaxies increases from z = 3 to z = 1.5-2 and then strongly decreases at later cosmic times.

  16. A multi-wavelength study of the evolution of early-type galaxies in groups: the ultraviolet view

    NASA Astrophysics Data System (ADS)

    Rampazzo, R.; Mazzei, P.; Marino, A.; Bianchi, L.; Plana, H.; Trinchieri, G.; Uslenghi, M.; Wolter, A.

    2018-04-01

    The ultraviolet-optical colour magnitude diagram of rich galaxy groups is characterised by a well developed Red Sequence, a Blue Cloud and the so-called Green Valley. Loose, less evolved groups of galaxies which are probably not virialised yet may lack a well defined Red Sequence. This is actually explained in the framework of galaxy evolution. We are focussing on understanding galaxy migration towards the Red Sequence, checking for signatures of such a transition in their photometric and morphological properties. We report on the ultraviolet properties of a sample of early-type (ellipticals+S0s) galaxies inhabiting the Red Sequence. The analysis of their structures, as derived by fitting a Sérsic law to their ultraviolet luminosity profiles, suggests the presence of an underlying disk. This is the hallmark of dissipation processes that still must have a role to play in the evolution of this class of galaxies. Smooth particle hydrodynamic simulations with chemo-photometric implementations able to match the global properties of our targets are used to derive their evolutionary paths through ultraviolet-optical colour magnitude diagrams, providing some fundamental information such as the crossing time through the Green Valley, which depends on their luminosity. The transition from the Blue Cloud to the Red Sequence takes several Gyrs, being about 3-5 Gyr for the brightest galaxies and longer for fainter ones, if occurring. The photometric study of nearby galaxy structures in the ultraviolet is seriously hampered by either the limited field of view of the cameras (e.g., in Hubble Space Telescope) or by the low spatial resolution of the images (e.g., in the Galaxy Evolution Explorer). Current missions equipped with telescopes and cameras sensitive to ultraviolet wavelengths, such as Swift- UVOT and Astrosat-UVIT, provide a relatively large field of view and a better resolution than the Galaxy Evolution Explorer. More powerful ultraviolet instruments (size, resolution

  17. Structure and Formation of Elliptical and Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Fisher, David B.; Cornell, Mark E.; Bender, Ralf

    2009-05-01

    New surface photometry of all known elliptical galaxies in the Virgo cluster is combined with published data to derive composite profiles of brightness, ellipticity, position angle, isophote shape, and color over large radius ranges. These provide enough leverage to show that Sérsic log I vprop r 1/n functions fit the brightness profiles I(r) of nearly all ellipticals remarkably well over large dynamic ranges. Therefore, we can confidently identify departures from these profiles that are diagnostic of galaxy formation. Two kinds of departures are seen at small radii. All 10 of our ellipticals with total absolute magnitudes MVT <= -21.66 have cuspy cores—"missing light"—at small radii. Cores are well known and naturally scoured by binary black holes (BHs) formed in dissipationless ("dry") mergers. All 17 ellipticals with -21.54 <= MVT <= -15.53 do not have cores. We find a new distinct component in these galaxies: all coreless ellipticals in our sample have extra light at the center above the inward extrapolation of the outer Sérsic profile. In large ellipticals, the excess light is spatially resolved and resembles the central components predicted in numerical simulations of mergers of galaxies that contain gas. In the simulations, the gas dissipates, falls toward the center, undergoes a starburst, and builds a compact stellar component that, as in our observations, is distinct from the Sérsic-function main body of the elliptical. But ellipticals with extra light also contain supermassive BHs. We suggest that the starburst has swamped core scouring by binary BHs. That is, we interpret extra light components as a signature of formation in dissipative ("wet") mergers. Besides extra light, we find three new aspects to the ("E-E") dichotomy into two types of elliptical galaxies. Core galaxies are known to be slowly rotating, to have relatively anisotropic velocity distributions, and to have boxy isophotes. We show that they have Sérsic indices n > 4 uncorrelated

  18. X-ray binary formation in low-metallicity blue compact dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Brorby, M.; Kaaret, P.; Prestwich, A.

    2014-07-01

    X-rays from binaries in small, metal-deficient galaxies may have contributed significantly to the heating and reionization of the early Universe. We investigate this claim by studying blue compact dwarfs (BCDs) as local analogues to these early galaxies. We constrain the relation of the X-ray luminosity function (XLF) to the star formation rate (SFR) using a Bayesian approach applied to a sample of 25 BCDs. The functional form of the XLF is fixed to that found for near-solar metallicity galaxies and is used to find the probability distribution of the normalization that relates X-ray luminosity to SFR. Our results suggest that the XLF normalization for low-metallicity BCDs (12+log(O/H) < 7.7) is not consistent with the XLF normalization for galaxies with near-solar metallicities, at a confidence level 1-5 × 10- 6. The XLF normalization for the BCDs is found to be 14.5± 4.8 ({M}_{⊙}^{-1} yr), a factor of 9.7 ± 3.2 higher than for near-solar metallicity galaxies. Simultaneous determination of the XLF normalization and power-law index result in estimates of q = 21.2^{+12.2}_{-8.8} ({M}_{⊙}^{-1} yr) and α = 1.89^{+0.41}_{-0.30}, respectively. Our results suggest a significant enhancement in the population of high-mass X-ray binaries in BCDs compared to the near-solar metallicity galaxies. This suggests that X-ray binaries could have been a significant source of heating in the early Universe.

  19. SDSS-IV MaNGA: The Spatially Resolved Stellar Initial Mass Function in ˜400 Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Parikh, Taniya; Thomas, Daniel; Maraston, Claudia; Westfall, Kyle B.; Goddard, Daniel; Lian, Jianhui; Meneses-Goytia, Sofia; Jones, Amy; Vaughan, Sam; Andrews, Brett H.; Bershady, Matthew; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Emsellem, Eric; Law, David R.; Newman, Jeffrey A.; Roman-Lopes, Alexandre; Wake, David; Yan, Renbin; Zheng, Zheng

    2018-03-01

    MaNGA provides the opportunity to make precise spatially resolved measurements of the IMF slope in galaxies owing to its unique combination of spatial resolution, wavelength coverage and sample size. We derive radial gradients in age, element abundances and IMF slope analysing optical and near-infrared absorption features from stacked spectra out to the half-light radius of 366 early-type galaxies with masses 9.9 - 10.8 log M/M⊙. We find flat gradients in age and [α/Fe] ratio, as well as negative gradients in metallicity, consistent with the literature. We further derive significant negative gradients in the [Na/Fe] ratio with galaxy centres being well enhanced in Na abundance by up to 0.5 dex. Finally, we find a gradient in IMF slope with a bottom-heavy IMF in the centre (typical mass excess factor of 1.5) and a Milky Way-type IMF at the half-light radius. This pattern is mass-dependent with the lowest mass galaxies in our sample featuring only a shallow gradient around a Milky Way IMF. Our results imply the local IMF-σ relation within galaxies to be even steeper than the global relation and hint towards the local metallicity being the dominating factor behind the IMF variations. We also employ different stellar population models in our analysis and show that a radial IMF gradient is found independently of the stellar population model used. A similar analysis of the Wing-Ford band provides inconsistent results and further evidence of the difficulty in measuring and modelling this particular feature.

  20. A massive galaxy in its core formation phase three billion years after the Big Bang

    NASA Astrophysics Data System (ADS)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha Förster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-09-01

    Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of solar masses per year. The star-forming gas has a velocity dispersion of 317 +/- 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z ~ 2 (refs 8, 9, 10, 11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  1. A massive galaxy in its core formation phase three billion years after the Big Bang.

    PubMed

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha Förster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; Leja, Joel; Rix, Hans-Walter; Skelton, Rosalind; van der Wel, Arjen; Whitaker, Katherine; Wuyts, Stijn

    2014-09-18

    Most massive galaxies are thought to have formed their dense stellar cores in early cosmic epochs. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes, but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we report a candidate core in the process of formation 11 billion years ago, at redshift z = 2.3. This galaxy, GOODS-N-774, has a stellar mass of 100 billion solar masses, a half-light radius of 1.0 kiloparsecs and a star formation rate of solar masses per year. The star-forming gas has a velocity dispersion of 317 ± 30 kilometres per second. This is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, which are compact quiescent galaxies at z ≈ 2 (refs 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 seem to be rare; however, from the star formation rate and size of this galaxy we infer that many star-forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  2. Star formation rates in isolated galaxies selected from the Two-Micron All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Melnyk, O.; Karachentseva, V.; Karachentsev, I.

    2015-08-01

    We have considered the star formation properties of 1616 isolated galaxies from the 2MASS XSC (Extended Source Catalog) selected sample (2MIG) with the far-ultraviolet GALEX magnitudes. This sample was then compared with corresponding properties of isolated galaxies from the Local Orphan Galaxies (LOG) catalogue and paired galaxies. We found that different selection algorithms define different populations of isolated galaxies. The population of the LOG catalogue, selected from non-clustered galaxies in the Local Supercluster volume, mostly consists of low-mass spiral and late-type galaxies. The specific star formation rate (SSFR) upper limit in isolated and paired galaxies does not exceed the value of ˜dex(-9.4). This is probably common for galaxies of differing activity and environment (at least at z < 0.06). The fractions of quenched galaxies are nearly twice as high in the paired galaxy sample as in the 2MIG isolated galaxy sample. From the behaviour of (S)SFR versus M* relations we deduced that the characteristic value influencing evolutionary processes is the galaxy mass. However, the environmental influence is notable: paired massive galaxies with logM* > 11.5 have higher (S)SFR than isolated galaxies. Our results suggest that the environment helps to trigger the star formation in the highest mass galaxies. We found that the fraction of AGN in the paired sample is only a little higher than in our isolated galaxy sample. We assume that AGN phenomenon is probably defined by secular galaxy evolution.

  3. Detection of CO (J=1-0) in the dwarf elliptical galaxy NGC 185

    NASA Technical Reports Server (NTRS)

    Wiklind, Tommy; Rydbeck, Gustaf

    1987-01-01

    The detection of CO (J = 1-0) emission in the dwarf elliptical galaxy NGC 185 is reported. The presence of massive molecular clouds in this early-type galaxy supports the idea of recent or ongoing stellar formation indicated by the population of blue stars in the center. The CO was detected in two positions in the galaxy, the center, and a prominent dustcloud. The emission profile has two peaks, roughly centered around the systemic velocity. It is found that NGC 185 is overluminous in blue light for its CO luminosity compared with Sc galaxies. This might indicate a higher star-formation efficiency for NGC 185 than for the late-type galaxies.

  4. Detailed Quantitative Classifications of Galaxy Morphology

    NASA Astrophysics Data System (ADS)

    Nair, Preethi

    2018-01-01

    Understanding the physical processes responsible for the growth of galaxies is one of the key challenges in extragalactic astronomy. The assembly history of a galaxy is imprinted in a galaxy’s detailed morphology. The bulge-to-total ratio of galaxies, the presence or absence of bars, rings, spiral arms, tidal tails etc, all have implications for the past merger, star formation, and feedback history of a galaxy. However, current quantitative galaxy classification schemes are only useful for broad binning. They cannot classify or exploit the wide variety of galaxy structures seen in nature. Therefore, comparisons of observations with theoretical predictions of secular structure formation have only been conducted on small samples of visually classified galaxies. However large samples are needed to disentangle the complex physical processes of galaxy formation. With the advent of large surveys, like the Sloan Digital Sky Survey (SDSS) and the upcoming Large Synoptic Survey Telescope (LSST) and WFIRST, the problem of statistics will be resolved. However, the need for a robust quantitative classification scheme will still remain. Here I will present early results on promising machine learning algorithms that are providing detailed classifications, identifying bars, rings, multi-armed spiral galaxies, and Hubble type.

  5. Bar Evolution and Bar Properties from Disc Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Hutchinson-Smith, Tenley; Simmons, Brooke

    2017-01-01

    Bars in disc galaxies indicate a large collection of stars in a specific configuration of orbits that give the galaxy center a rectangular looking feature. Astronomers have discovered that these bars affect the distribution of matter in galaxies, and are also related to galaxy stellar mass and star formation history. Little is known about the specifics of how bars evolve and drive the evolution of their host galaxies because only a handful of bars have been studied in detail so far. I have examined a sample of 8,221 barred galaxies from the early universe to identify and examine correlations with galaxy properties. The data comes from Galaxy Zoo, an online citizen science project that allows anyone to classify and measure detailed properties of galaxies. I present results including the fraction of galaxies in the sample that have bars, and the variation of galaxy properties with bar length, including galaxy color and stellar mass. I also compare these results to barred galaxies in the local universe. I will discuss the implications of these results in the context of galaxy evolution overall, including the effect of dark matter on bars and galaxy evolution.

  6. Topology of Large-Scale Structure by Galaxy Type: Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Gott, J. Richard, III; Cen, Renyue; Ostriker, Jeremiah P.

    1996-07-01

    The topology of large-scale structure is studied as a function of galaxy type using the genus statistic. In hydrodynamical cosmological cold dark matter simulations, galaxies form on caustic surfaces (Zeldovich pancakes) and then slowly drain onto filaments and clusters. The earliest forming galaxies in the simulations (defined as "ellipticals") are thus seen at the present epoch preferentially in clusters (tending toward a meatball topology), while the latest forming galaxies (defined as "spirals") are seen currently in a spongelike topology. The topology is measured by the genus (number of "doughnut" holes minus number of isolated regions) of the smoothed density-contour surfaces. The measured genus curve for all galaxies as a function of density obeys approximately the theoretical curve expected for random- phase initial conditions, but the early-forming elliptical galaxies show a shift toward a meatball topology relative to the late-forming spirals. Simulations using standard biasing schemes fail to show such an effect. Large observational samples separated by galaxy type could be used to test for this effect.

  7. Understanding the physical processes driving galaxy evolution in clusters : a case study of two z~0.5 galaxy clusters

    NASA Astrophysics Data System (ADS)

    Moran, Sean M.

    Clusters of galaxies represent the largest laboratories in the universe for testing the incredibly chaotic physics governing the collapse of baryons into the stars, galaxies, groups, and diffuse clouds that we see today. Within the cluster environment, there are a wide variety of physical processes that may be acting to transform galaxies.In this thesis, we combine extensive Keck spectroscopy with wide-field HST imaging to perform a detailed case study of two intermediate redshift galaxy clusters, Cl 0024+1654 (z=0.395) and MS 0451-03 (z=0.540). Leveraging a comprehensive multiwavelength data set that spans the X-ray to infrared, and with spectral-line measurements serving as the key to revealing both the recent star-formation histories and kinematics of infalling galaxies, we aim to shed light on the environmental processes that could be acting to transform galaxies in clusters.We adopt a strategy to make maximal use of our HST-based morphologies by splitting our sample of cluster galaxies according to morphological type, characterizing signs of recent evolution in spirals and early types separately. This approach proves to be powerful in identifying galaxies that are currently being altered by an environmental interaction: early-type galaxies that have either been newly transformed or prodded back into an active phase, and spiral galaxies where star formation is being suppressed or enhanced all stand out in our sample.We begin by using variations in the early-type galaxy population as indicators of recent activity. Because ellipticals and S0s form such a homogeneous class in the local universe, we are sensitive to even very subtle signatures of recent and current environmental interactions. This study has yielded two key results: By constructing the Fundamental Plane (FP) of Cl 0024, we observe that elliptical and S0 galaxies exhibit a high scatter in their FP residuals, which occurs only among galaxies in the cluster core, suggesting a turbulent assembly history

  8. Are star formation rates of galaxies bimodal?

    NASA Astrophysics Data System (ADS)

    Feldmann, Robert

    2017-09-01

    Star formation rate (SFR) distributions of galaxies are often assumed to be bimodal with modes corresponding to star-forming and quiescent galaxies, respectively. Both classes of galaxies are typically studied separately, and SFR distributions of star-forming galaxies are commonly modelled as lognormals. Using both observational data and results from numerical simulations, I argue that this division into star-forming and quiescent galaxies is unnecessary from a theoretical point of view and that the SFR distributions of the whole population can be well fitted by zero-inflated negative binomial distributions. This family of distributions has three parameters that determine the average SFR of the galaxies in the sample, the scatter relative to the star-forming sequence and the fraction of galaxies with zero SFRs, respectively. The proposed distributions naturally account for (I) the discrete nature of star formation, (II) the presence of 'dead' galaxies with zero SFRs and (III) asymmetric scatter. Excluding 'dead' galaxies, the distribution of log SFR is unimodal with a peak at the star-forming sequence and an extended tail towards low SFRs. However, uncertainties and biases in the SFR measurements can create the appearance of a bimodal distribution.

  9. Star Formation Histories of z ∼ 1 Galaxies in LEGA-C

    NASA Astrophysics Data System (ADS)

    Chauke, Priscilla; van der Wel, Arjen; Pacifici, Camilla; Bezanson, Rachel; Wu, Po-Feng; Gallazzi, Anna; Noeske, Kai; Straatman, Caroline; Muños-Mateos, Juan-Carlos; Franx, Marijn; Barišić, Ivana; Bell, Eric F.; Brammer, Gabriel B.; Calhau, Joao; van Houdt, Josha; Labbé, Ivo; Maseda, Michael V.; Muzzin, Adam; Rix, Hans-Walter; Sobral, David

    2018-07-01

    Using high-resolution spectra from the VLT Large Early Galaxy Astrophysics Census (LEGA-C) program, we reconstruct the star formation histories (SFHs) of 607 galaxies at redshifts z = 0.6–1.0 and stellar masses ≳1010 M ⊙ using a custom full spectrum fitting algorithm that incorporates the emcee and FSPS packages. We show that the mass-weighted age of a galaxy correlates strongly with stellar velocity dispersion (σ *) and ongoing star formation (SF) activity, with the stellar content in higher-σ * galaxies having formed earlier and faster. The SFHs of quiescent galaxies are generally consistent with passive evolution since their main SF epoch, but a minority show clear evidence of a rejuvenation event in their recent past. The mean age of stars in galaxies that are star-forming is generally significantly younger, with SF peaking after z < 1.5 for almost all star-forming galaxies in the sample: many of these still have either constant or rising SFRs on timescales >100 Myr. This indicates that z > 2 progenitors of z ∼ 1 star-forming galaxies are generally far less massive. Finally, despite considerable variance in the individual SFHs, we show that the current SF activity of massive galaxies (>L *) at z ∼ 1 correlates with SF levels at least 3 Gyr prior: SFHs retain “memory” on a large fraction of the Hubble time. Our results illustrate a novel approach to resolve the formation phase of galaxies, and, by identifying their individual evolutionary paths, one can connect progenitors and descendants across cosmic time. This is uniquely enabled by the high-quality continuum spectroscopy provided by the LEGA-C survey.

  10. Probing Magnetic Fields of Early Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-06-01

    How do magnetic fields form and evolve in early galaxies? A new study has provided some clever observations to help us answer this question.The Puzzle of Growing FieldsDynamo theory is the primary model describing how magnetic fields develop in galaxies. In this picture, magnetic fields start out as weak seed fields that are small and unordered. These fields then become ordered and amplified by large-scale rotation and turbulence in galaxy disks and halos, eventually leading to the magnetic fields we observe in galaxies today.Schematic showinghow to indirectly measure protogalactic magnetic fields. The measured polarization of a background quasar is altered by the fields in a foreground protogalaxy. Click for a closer look! [Farnes et al. 2017/Adolf Schaller/STSCI/NRAO/AUI/NSF]To test this model, we need observations of the magnetic fields in young protogalaxies. Unfortunately, we dont have the sensitivity to be able to measure these fields directly but a team of scientists led by Jamie Farnes (Radboud University in the Netherlands) have come up with a creative alternative.The key is to find early protogalaxies that absorb the light of more distant background objects. If a protogalaxy lies between us and a distant quasar, then magnetic fields of the protogalaxy if present will affect the polarization measurements of the background quasar.Observing Galactic Building BlocksTop: Redshift distribution for the background quasars in the authors sample. Bottom: Redshift distribution for the foreground protogalaxies the authors are exploring. [Farnes et al. 2017]Farnes and collaborators examined two types of foreground protogalaxies: Damped Lyman-Alpha Absorbers (DLAs) and Lyman Limit Systems (LLSs). They obtained polarimetric data for a sample of 114 distant quasars with nothing in the foreground (the control sample), 19 quasars with DLAs in the foreground, and 27 quasars with LLSs in the foreground. They then used statistical analysis techniques to draw conclusions about

  11. SDSS IV MaNGA - Properties of AGN Host Galaxies

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Avila-Reese, V.; Hernandez-Toledo, H.; Cortes-Suárez, E.; Rodríguez-Puebla, A.; Ibarra-Medel, H.; Cano-Díaz, M.; Barrera-Ballesteros, J. K.; Negrete, C. A.; Calette, A. R.; de Lorenzo-Cáceres, A.; Ortega-Minakata, R. A.; Aquino, E.; Valenzuela, O.; Clemente, J. C.; Storchi-Bergmann, T.; Riffel, R.; Schimoia, J.; Riffel, R. A.; Rembold, S. B.; Brownstein, J. R.; Pan, K.; Yates, R.; Mallmann, N.; Bitsakis, T.

    2018-04-01

    We present the characterization of the main properties of a sample of 98 AGN host galaxies, both type-II and type-I, in comparison with those of ≍2700 non-active galaxies observed by the MaNGA survey. We found that AGN hosts are morphologically early-type or early-spirals. AGN hosts are, on average, more massive, more compact, more centrally peaked and more pressure-supported systems. They are located in the intermediate/transition region between starforming and non-star-forming galaxies (i.e., the so-called green valley). We consider that they are in the process of halting/quenching the star formation. The analysis of the radial distributions of different properties shows that the quenching happens from inside-out involving both a decrease of the effciency of the star formation and a deficit of molecular gas. The data-products of the current analysis are distributed as a Value Added Catalog within the SDSS-DR14.

  12. Nature vs. nurture in the low-density environment: structure and evolution of early-type dwarf galaxies in poor groups

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Grützbauch, R.; Rampazzo, R.; Bressan, A.; Zeilinger, W. W.

    2011-04-01

    We present the stellar population properties of 13 dwarf galaxies residing in poor groups (low-density environment, LDE) observed with VIMOS at VLT. Ages, metallicities, and [α/Fe] ratios were derived within an r < re/2 aperture from the Lick indices Hβ, Mgb, Fe5270, and Fe5335 through comparison with our simple stellar population (SSP) models that account for variable [α/Fe] ratios. For a fiducial subsample of 10 early-type dwarfs, we derived median values and scatters around the medians of 5.7 ± 4.4 Gyr, -0.26 ± 0.28, and -0.04 ± 0.33 for age, log Z/Z⊙, and [α/Fe] , respectively. For a selection of bright early-type galaxies (ETGs) from an earlier sample residing in a comparable environment, we derive median values of 9.8 ± 4.1 Gyr, 0.06 ± 0.16, and 0.18 ± 0.13 for the same stellar population parameters. It follows that dwarfs are on average younger, less metal rich, and less enhanced in the α-elements than giants, in agreement with the extrapolation to the low-mass regime of the scaling relations derived for giant ETGs. From the total (dwarf + giant) sample, we find that age ∝ σ0.39 ± 0.22, Z ∝ σ0.80 ± 0.16, and α/Fe ∝ σ0.42 ± 0.22. We also find correlations with morphology, in the sense that the metallicity and the [α/Fe] ratio increase with the Sersic index n or with the bulge-to-total light fraction B/T. The presence of a strong morphology-[α/Fe] relation appears to contradict the possible evolution along the Hubble sequence from low B/T (low n) to high B/T (high n) galaxies. We also investigate the role played by environment by comparing the properties of our LDE dwarfs with those of Coma red passive dwarfs from the literature. We find possible evidence that LDE dwarfs experienced more prolonged star formations than Coma dwarfs, however larger data samples are needed to draw firmer conclusions. Based on observations obtained at the European Southern Observatory, La Silla, Chile.

  13. Creating lenticular galaxies with mergers

    NASA Astrophysics Data System (ADS)

    Querejeta, Miguel; Eliche-Moral, M. Carmen; Tapia, Trinidad; Borlaff, Alejandro; van de Ven, Glenn; Lyubenova, Mariya; Martig, Marie; Falcón-Barroso, Jesús; Méndez-Abreu, Jairo; Zamorano, Jaime; Gallego, Jesús

    2017-03-01

    Lenticular galaxies (S0s) represent the majority of early-type galaxies in the local Universe, but their formation channels are still poorly understood. While galaxy mergers are obvious pathways to suppress star formation and increase bulge sizes, the marked parallelism between spiral and lenticular galaxies (e.g. photometric bulge-disc coupling) seemed to rule out a potential merger origin. Here, we summarise our recent work in which we have shown, through N-body numerical simulations, that disc-dominated lenticulars can emerge from major mergers of spiral galaxies, in good agreement with observational photometric scaling relations. Moreover, we show that mergers simultaneously increase the light concentration and reduce the angular momentum relative to their spiral progenitors. This explains the mismatch in angular momentum and concentration between spirals and lenticulars recently revealed by CALIFA observations, which is hard to reconcile with simple fading mechanisms (e.g. ram-pressure stripping).

  14. Spiral-like star-forming patterns in CALIFA early-type galaxies

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.; Vílchez, J. M.; Kehrig, C.; Iglesias-Páramo, J.; Breda, I.; Lehnert, M. D.; Sánchez, S. F.; Ziegler, B.; Dos Reis, S. N.; Bland-Hawthorn, J.; Galbany, L.; Bomans, D. J.; Rosales-Ortega, F. F.; Walcher, C. J.; García-Benito, R.; Márquez, I.; Del Olmo, A.; Mollá, M.; Marino, R. A.; Catalán-Torrecilla, C.; González Delgado, R. M.; López-Sánchez, Á. R.; Califa Collaboration

    2016-01-01

    Based on a combined analysis of SDSS imaging and CALIFA integral field spectroscopy data, we report on the detection of faint (24 <μr mag/□″< 26) star-forming spiral-arm-like features in the periphery of three nearby early-type galaxies (ETGs). These features are of considerable interest because they document the still ongoing inside-out growth of some local ETGs and may add valuable observational insight into the origin and evolution of spiral structure in triaxial stellar systems. A characteristic property of the nebular component in the studied ETGs, classified I+, is a two-radial-zone structure, with the inner zone that displays faint (EW(Hα) ≃ 1 Å) low-ionization nuclear emission-line region (LINER) properties, and the outer one (3 Å type I+ ETGs with single-fiber spectroscopic data. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie (MPIA) and the Instituto de Astrofísica de Andalucía (CSIC).

  15. A Massive Galaxy in Its Core Formation Phase Three Billion Years After the Big Bang

    NASA Technical Reports Server (NTRS)

    Nelson, Erica; van Dokkum, Pieter; Franx, Marijn; Brammer, Gabriel; Momcheva, Ivelina; Schreiber, Natascha M. Forster; da Cunha, Elisabete; Tacconi, Linda; Bezanson, Rachel; Kirkpatrick, Allison; hide

    2014-01-01

    Most massive galaxies are thought to have formed their dense stellar cores at early cosmic epochs. However, cores in their formation phase have not yet been observed. Previous studies have found galaxies with high gas velocity dispersions or small apparent sizes but so far no objects have been identified with both the stellar structure and the gas dynamics of a forming core. Here we present a candidate core in formation 11 billion years ago, at z = 2.3. GOODS-N-774 has a stellar mass of 1.0 × 10 (exp 11) solar mass, a half-light radius of 1.0 kpc, and a star formation rate of 90 (sup +45 / sub -20) solar mass/yr. The star forming gas has a velocity dispersion 317 plus or minus 30 km/s, amongst the highest ever measured. It is similar to the stellar velocity dispersions of the putative descendants of GOODS-N-774, compact quiescent galaxies at z is approximately equal to 2 (exp 8-11) and giant elliptical galaxies in the nearby Universe. Galaxies such as GOODS-N-774 appear to be rare; however, from the star formation rate and size of the galaxy we infer that many star forming cores may be heavily obscured, and could be missed in optical and near-infrared surveys.

  16. Hidden Active Galactic Nuclei in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Paggi, Alessandro; Fabbiano, Giuseppina; Civano, Francesca; Pellegrini, Silvia; Elvis, Martin; Kim, Dong-Woo

    2016-06-01

    We present a stacking analysis of the complete sample of early-type galaxies (ETGs) in the Chandra COSMOS (C-COSMOS) survey, to explore the nature of the X-ray luminosity in the redshift and stellar luminosity ranges 0\\lt z\\lt 1.5 and {10}9\\lt {L}K/{L}⊙ \\lt {10}13. Using established scaling relations, we subtract the contribution of X-ray binary populations to estimate the combined emission of hot ISM and active galactic nuclei (AGNs). To discriminate between the relative importance of these two components, we (1) compare our results with the relation observed in the local universe {L}X,{gas}\\propto {L}K4.5 for hot gaseous halos emission in ETGs, and (2) evaluate the spectral signature of each stacked bin. We find two regimes where the non-stellar X-ray emission is hard, consistent with AGN emission. First, there is evidence of hard, absorbed X-ray emission in stacked bins including relatively high z (˜1.2) ETGs with average high X-ray luminosity ({L}X {- {LMXB}}≳ 6× {10}42 {{erg}} {{{s}}}-1). These luminosities are consistent with the presence of highly absorbed “hidden” AGNs in these ETGs, which are not visible in their optical-IR spectra and spectral energy distributions. Second, confirming the early indication from our C-COSMOS study of X-ray detected ETGs, we find significantly enhanced X-ray luminosity in lower stellar mass ETGs ({L}K≲ {10}11{L}⊙ ), relative to the local {L}X,{gas}\\propto {L}K4.5 relation. The stacked spectra of these ETGs also suggest X-ray emission harder than expected from gaseous hot halos. This emission is consistent with inefficient accretion {10}-5-{10}-4{\\dot{M}}{Edd} onto {M}{BH}˜ {10}6-{10}8 {M}⊙ .

  17. The RSA survey of dwarf galaxies, 1: Optical photometry

    NASA Technical Reports Server (NTRS)

    Vader, J. Patricia; Chaboyer, Brian

    1994-01-01

    merger candidates. Merger events may lead to anisotropic velocity distributions in systems of any luminosity, including dwarfs. The RSA sample of dwarf galaxies is more likely to contain mergers because, in contrast to earlier dwarf galaxy surveys that have focused on clusters and rich groups of galaxies, the RSA dwarfs are typically located in low density environments. The occurrence of mergers among dwarf galaxies is of interest in connection with the rapid evolution of faint blue galaxy counts at redshift z less than 1 which suggests that dwarf galaxies were about five times more numerous in the recent past. Finally, our sample contains several examples of late-type dwarfs and 'transition' types that are potential precursors of nucleated early-type dwarfs. All the above processes--mass loss, mergers, astration--are likely to have contributed to the formation of the current population of diffuse early-type dwarfs. A few new redshifts of dwarf galaxies are reported in this paper.

  18. Galaxy interactions and star formation: Results of a survey of global H-alpha emission in spiral galaxies in 8 clusters

    NASA Technical Reports Server (NTRS)

    Moss, C.

    1990-01-01

    Kennicutt and Kent (1983) have shown that the global H alpha emission from a spiral galaxy is an indicator of the formation rate of massive stars. Moss, Whittle and Irwin (1988) have surveyed two clusters (Abell 347 and 1367) for galaxies with H alpha emission using a high dispersion objective prism technique. The purpose of the survey is to investigate environmental effects on star formation in spiral galaxies, and in particular to ascertain whether star formation is enhanced in cluster spirals. Approximately 20 percent of CGCG galaxies were detected in emission. Two plates of excellent quality were obtained for each of the two clusters, and galaxies were only identified to have emission if this was detected on both plates of a plate pair. In this way, plate flaws and other spurious identifications of emission could be rejected, and weak emission confirmed. The results of this survey have been discussed by Moss (1987). The detected galaxies are of types SO-a and later. The frequency with which galaxies are detected in emission increases towards later morphological type as expected (cf. Kennicutt and Kent 1983). There is no evidence of any dependence of the frequency of detected emission on the absolute magnitude of the galaxy (cf. Moss and Whittle 1990), but there is a strong correlation between a disturbed morphological appearance of the galaxy and the detection of emission. Furthermore it is found that the emission is more centrally concentrated in those galaxies which show a disturbed morphology. It may be noted that the objective prism plate gives a spectrum of a 400 A region around rest wavelength H alpha, but superposed on this is the H alpha emission from the galaxy which, because the light is essentially monochromatic, results in a true two-dimensional image of the H alpha distribution. The visual appearance of the emission on the prism plates was classified according to its diffuseness on a 5 point scale (very diffuse, diffuse, intermediate, compact, and

  19. Validating Semi-analytic Models of High-redshift Galaxy Formation Using Radiation Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Côté, Benoit; Silvia, Devin W.; O’Shea, Brian W.; Smith, Britton; Wise, John H.

    2018-05-01

    We use a cosmological hydrodynamic simulation calculated with Enzo and the semi-analytic galaxy formation model (SAM) GAMMA to address the chemical evolution of dwarf galaxies in the early universe. The long-term goal of the project is to better understand the origin of metal-poor stars and the formation of dwarf galaxies and the Milky Way halo by cross-validating these theoretical approaches. We combine GAMMA with the merger tree of the most massive galaxy found in the hydrodynamic simulation and compare the star formation rate, the metallicity distribution function (MDF), and the age–metallicity relationship predicted by the two approaches. We found that the SAM can reproduce the global trends of the hydrodynamic simulation. However, there are degeneracies between the model parameters, and more constraints (e.g., star formation efficiency, gas flows) need to be extracted from the simulation to isolate the correct semi-analytic solution. Stochastic processes such as bursty star formation histories and star formation triggered by supernova explosions cannot be reproduced by the current version of GAMMA. Non-uniform mixing in the galaxy’s interstellar medium, coming primarily from self-enrichment by local supernovae, causes a broadening in the MDF that can be emulated in the SAM by convolving its predicted MDF with a Gaussian function having a standard deviation of ∼0.2 dex. We found that the most massive galaxy in the simulation retains nearby 100% of its baryonic mass within its virial radius, which is in agreement with what is needed in GAMMA to reproduce the global trends of the simulation.

  20. The critical density for star formation in HII galaxies

    NASA Technical Reports Server (NTRS)

    Taylor, Christopher L.; Brinks, Elias; Skillman, Evan D.

    1993-01-01

    The star formation rate (SFR) in galaxies is believed to obey a power law relation with local gas density, first proposed by Schmidt (1959). Kennicutt (1989) has shown that there is a threshold density above which star formation occurs, and for densities at or near the threshold density, the DFR is highly non-linear, leading to bursts of star formation. Skillman (1987) empirically determined this threshold for dwarf galaxies to be approximately 1 x 10(exp 21) cm(exp -2), at a linear resolution of 500pc. During the course of our survey for HI companion clouds to HII galaxies, we obtained high resolution HI observations of five nearby HII galaxies. HII galaxies are low surface brightness, rich in HI, and contain one or a few high surface brightness knots whose optical spectra resemble those of HII regions. These knots are currently experiencing a burst of star formation. After Kennicutt (1989) we determine the critical density for star formation in the galaxies, and compare the predictions with radio and optical data.

  1. SDSS IV MaNGA: the global and local stellar mass assemby histories of galaxies

    NASA Astrophysics Data System (ADS)

    Ibarra-Medel, Héctor J.; Sánchez, Sebastián F.; Avila-Reese, Vladimir; Hernández-Toledo, Héctor M.; González, J. Jesús; Drory, Niv; Bundy, Kevin; Bizyaev, Dmitry; Cano-Díaz, Mariana; Malanushenko, Elena; Pan, Kaike; Roman-Lopes, Alexandre; Thomas, Daniel

    2016-12-01

    Using the fossil record method implemented through Pipe3D, we reconstruct the global and radial stellar mass growth histories (MGHs) of a large sample of galaxies, ranging from dwarf to giant objects, from the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. We confirm that the main driver of the global MGHs is mass, with more massive galaxies assembling earlier (downsizing), though for a given mass, the global MGHs segregate by colour, specific star formation rate and morphological type. From the inferred radial mean MGHs, we find that at fractions of assembled mass larger than ˜80 per cent, the innermost regions formed stars, on average, in the inside-out mode. At earlier epochs, when the age estimation of the method becomes poor, the MGHs seem to be spatially homogeneous or even in the outside-in mode, especially for the red/quiescent/early-type galaxies. The innermost MGHs are, in general, less scattered around the mean than the outermost MGHs. For dwarf and low-mass galaxies, we do not find evidence of an outside-in formation mode; instead, their radial MGHs are very diverse most of the time, with periods of outside-in and inside-out modes (or strong radial migration), suggesting this is an episodic star formation history. Blue/star-forming/late-type galaxies present, on average, a significantly more pronounced inside-out formation mode than red/quiescent/early-type galaxies, independently of mass. We discuss our results in the light of the processes of galaxy formation, quenching and radial migration. We also discuss the uncertainties and biases of the fossil record method and how these could affect our results.

  2. The Role of Feedback in Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Martin, C. L.

    2004-12-01

    Our understanding of galaxy formation is founded on the well-understood principle of gravitational amplification of structure but lacks the astrophysical knowledge needed to predict the properties of galaxies and small scale properties of the intergalactic medium. While gas cooling and galaxy merging are now modeled with reasonable accuracy, the complex process of gas reheating by massive stars and active nuclei is described by simple empirical "feedback" recipes. Chandra and XMM-Newton observations now provide direct imaging of this hot gas in nearby starburst galaxies; and outflow speeds -- of cooler gas entrained in hot galactic winds -- have been measured over a large range of galaxy masses and formation epochs. My talk will describe how these empirical studies help us understand the dynamics of galactic winds and discuss the consequences for the shape of the galaxy luminosity function and the enrichment of the intergalactic medium with metals. Funding from NASA, the Alfred P. Sloan Foundation, and the David and Lucile Packard Foundation made much of this work possible.

  3. Dry minor mergers and size evolution of high-z compact massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao

    2012-09-01

    Recent observations show evidence that high-z (z ~ 2 - 3) early-type galaxies (ETGs) are quite compact than that with comparable mass at z ~ 0. Dry merger scenario is one of the most probable one that can explain such size evolution. However, previous studies based on this scenario do not succeed to explain both properties of high-z compact massive ETGs and local ETGs, consistently. We investigate effects of sequential, multiple dry minor (stellar mass ratio M2/M1<1/4) mergers on the size evolution of compact massive ETGs. We perform N-body simulations of the sequential minor mergers with parabolic and head-on orbits, including a dark matter component and a stellar component. We show that the sequential minor mergers of compact satellite galaxies are the most efficient in the size growth and in decrease of the velocity dispersion of the compact massive ETGs. The change of stellar size and density of the merger remnant is consistent with the recent observations. Furthermore, we construct the merger histories of candidates of high-z compact massive ETGs using the Millennium Simulation Database, and estimate the size growth of the galaxies by dry minor mergers. We can reproduce the mean size growth factor between z = 2 and z = 0, assuming the most efficient size growth obtained in the case of the sequential minor mergers in our simulations.

  4. Galaxy evolution in protoclusters

    NASA Astrophysics Data System (ADS)

    Muldrew, Stuart I.; Hatch, Nina A.; Cooke, Elizabeth A.

    2018-01-01

    We investigate galaxy evolution in protoclusters using a semi-analytic model applied to the Millennium Simulation, scaled to a Planck cosmology. We show that the model reproduces the observed behaviour of the star formation history (SFH) both in protoclusters and the field. The rate of star formation peaks ∼0.7 Gyr earlier in protoclusters than in the field and declines more rapidly afterwards. This results in protocluster galaxies forming significantly earlier: 80 per cent of their stellar mass is already formed by z = 1.4, but only 45 per cent of the field stellar mass has formed by this time. The model predicts that field and protocluster galaxies have similar average specific star-formation rates (sSFR) at z > 3, and we find evidence of an enhancement of star formation in the dense protoclusters at early times. At z < 3, protoclusters have lower sSFRs, resulting in the disparity between the SFHs. We show that the stellar mass functions of protoclusters are top-heavy compared with the field due to the early formation of massive galaxies, and the disruption and merging of low-mass satellite galaxies in the main haloes. The fundamental cause of the different SFHs and mass functions is that dark matter haloes are biased tracers of the dark matter density field: the high density of haloes and the top-heavy halo mass function in protoclusters result in the early formation then rapid merging and quenching of galaxies. We compare our results with observations from the literature and highlight which observables provide the most informative tests of galaxy formation.

  5. AGN feedback and the origin of the α enhancement in early-type galaxies - insights from the GAEA model

    NASA Astrophysics Data System (ADS)

    De Lucia, Gabriella; Fontanot, Fabio; Hirschmann, Michaela

    2017-03-01

    We take advantage of our recently published model for GAlaxy Evolution and Assembly (GAEA) to study the origin of the observed correlation between [α/Fe] and galaxy stellar mass. In particular, we analyse the role of radio-mode active galactic nuclei (AGN) feedback, which recent work has identified as a crucial ingredient to reproduce observations. In GAEA, this process introduces the observed trend of star formation histories extending over shorter time-scales for more massive galaxies, but does not provide a sufficient condition to reproduce the observed α enhancements of massive galaxies. In the framework of our model, this is possible only by assuming that any residual star formation is truncated for galaxies more massive than 1010.5 M⊙. This results, however, in even shorter star formation time-scales for the most massive galaxies, which translate in total stellar metallicities significantly lower than observed. Our results demonstrate that (I) trends of [α/Fe] ratios cannot be simply converted into relative time-scale indicators; and (II) AGN feedback cannot explain alone the positive correlation between [α/Fe] and galaxy mass/velocity dispersion. Reproducing simultaneously the mass-metallicity relation and the α enhancements observed pose a challenge for hierarchical models, unless more exotic solutions are adopted such as metal-rich winds or a variable initial mass function.

  6. The formation of submillimetre-bright galaxies from gas infall over a billion years.

    PubMed

    Narayanan, Desika; Turk, Matthew; Feldmann, Robert; Robitaille, Thomas; Hopkins, Philip; Thompson, Robert; Hayward, Christopher; Ball, David; Faucher-Giguère, Claude-André; Kereš, Dušan

    2015-09-24

    Submillimetre-bright galaxies at high redshift are the most luminous, heavily star-forming galaxies in the Universe and are characterized by prodigious emission in the far-infrared, with a flux of at least five millijanskys at a wavelength of 850 micrometres. They reside in haloes with masses about 10(13) times that of the Sun, have low gas fractions compared to main-sequence disks at a comparable redshift, trace complex environments and are not easily observable at optical wavelengths. Their physical origin remains unclear. Simulations have been able to form galaxies with the requisite luminosities, but have otherwise been unable to simultaneously match the stellar masses, star formation rates, gas fractions and environments. Here we report a cosmological hydrodynamic galaxy formation simulation that is able to form a submillimetre galaxy that simultaneously satisfies the broad range of observed physical constraints. We find that groups of galaxies residing in massive dark matter haloes have increasing rates of star formation that peak at collective rates of about 500-1,000 solar masses per year at redshifts of two to three, by which time the interstellar medium is sufficiently enriched with metals that the region may be observed as a submillimetre-selected system. The intense star formation rates are fuelled in part by the infall of a reservoir gas supply enabled by stellar feedback at earlier times, not through major mergers. With a lifetime of nearly a billion years, our simulations show that the submillimetre-bright phase of high-redshift galaxies is prolonged and associated with significant mass buildup in early-Universe proto-clusters, and that many submillimetre-bright galaxies are composed of numerous unresolved components (for which there is some observational evidence).

  7. On the formation mechanisms of compact elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Ferré-Mateu, Anna; Forbes, Duncan A.; Romanowsky, Aaron J.; Janz, Joachim; Dixon, Christopher

    2018-01-01

    In order to investigate the formation mechanisms of the rare compact elliptical (cE) galaxies, we have compiled a sample of 25 cEs with good SDSS spectra, covering a range of stellar masses, sizes and environments. They have been visually classified according to the interaction with their host, representing different evolutionary stages. We have included clearly disrupted galaxies, galaxies that despite not showing signs of interaction are located close to a massive neighbour (thus are good candidates for a stripping process), and cEs with no host nearby. For the latter, tidal stripping is less likely to have happened and instead they could simply represent the very low-mass, faint end of the ellipticals. We study a set of properties (structural parameters, stellar populations, star formation histories and mass ratios) that can be used to discriminate between an intrinsic or stripped origin. We find that one diagnostic tool alone is inconclusive for the majority of objects. However, if we combine all the tools a clear picture emerges. The most plausible origin, as well as the evolutionary stage and progenitor type, can be then determined. Our results favour the stripping mechanism for those galaxies in groups and clusters that have a plausible host nearby, but favours an intrinsic origin for those rare cEs without a plausible host and that are located in looser environments.

  8. AKARI OBSERVATION OF THE NORTH ECLIPTIC POLE (NEP) SUPERCLUSTER AT z = 0.087: MID-INFRARED VIEW OF TRANSITION GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Jongwan; Im, Myungshin; Lee, Hyung Mok

    2012-02-01

    We present the mid-infrared (MIR) properties of galaxies within a supercluster in the north ecliptic pole region at z {approx} 0.087 observed with the AKARI satellite. We use data from the AKARI NEP-Wide (5.4 deg{sup 2}) IR survey and the CLusters of galaxies EVoLution studies (CLEVL) mission program. We show that near-IR (3 {mu}m)-mid-IR (11 {mu}m) color can be used as an indicator of the specific star formation rate and the presence of intermediate-age stellar populations. From the MIR observations, we find that red-sequence galaxies consist not only of passively evolving red early-type galaxies, but also of (1) 'weak-SFGs' (disk-dominatedmore » star-forming galaxies that have star formation rates lower by {approx}4 Multiplication-Sign than blue-cloud galaxies) and (2) 'intermediate-MXGs' (bulge-dominated galaxies showing stronger MIR dust emission than normal red early-type galaxies). These two populations can be a set of transition galaxies from blue, star-forming, late-type galaxies evolving into red, quiescent, early-type ones. We find that the weak-SFGs are predominant at intermediate masses (10{sup 10} M{sub Sun} < M{sub *} < 10{sup 10.5} M{sub Sun }) and are typically found in local densities similar to the outskirts of galaxy clusters. As much as 40% of the supercluster member galaxies in this mass range can be classified as weak-SFGs, but their proportion decreases to <10% at larger masses (M{sub *} > 10{sup 10.5} M{sub Sun }) at any galaxy density. The fraction of the intermediate-MXG among red-sequence galaxies at 10{sup 10} M{sub Sun} < M{sub *} < 10{sup 11} M{sub Sun} also decreases as the density and mass increase. In particular, {approx}42% of the red-sequence galaxies with early-type morphologies are classified as intermediate-MXGs at intermediate densities. These results suggest that the star formation activity is strongly dependent on the stellar mass, but that the morphological transformation is mainly controlled by the environment.« less

  9. 3D-HST + CANDELS: the Evolution of the Galaxy Size-mass Distribution Since Z=3

    NASA Technical Reports Server (NTRS)

    VanDerWel, A.; Franx, M.; vanDokkum, P. G.; Skelton, R. E.; Momcheva, I. G.; Whitaker, K. E.; Brammer, G. B.; Bell, E. F.; Rix, H.-W.; Wuyts, S.; hide

    2014-01-01

    Spectroscopic and photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift (z) range 0 < z < 3. Separating early- and late-type galaxies on the basis of star-formation activity, we confirm that early-type galaxies are on average smaller than late-type galaxies at all redshifts, and find a significantly different rate of average size evolution at fixed galaxy mass, with fast evolution for the early-type population, effective radius is in proportion to (1 + z) (sup -1.48), and moderate evolution for the late-type population, effective radius is in proportion to (1 + z) (sup -0.75). The large sample size and dynamic range in both galaxy mass and redshift, in combination with the high fidelity of our measurements due to the extensive use of spectroscopic data, not only fortify previous results, but also enable us to probe beyond simple average galaxy size measurements. At all redshifts the slope of the size-mass relation is shallow, effective radius in proportion to mass of a black hole (sup 0.22), for late-type galaxies with stellar mass > 3 x 10 (sup 9) solar masses, and steep, effective radius in proportion to mass of a black hole (sup 0.75), for early-type galaxies with stellar mass > 2 x 10 (sup 10) solar masses. The intrinsic scatter is approximately or less than 0.2 decimal exponents for all galaxy types and redshifts. For late-type galaxies, the logarithmic size distribution is not symmetric, but skewed toward small sizes: at all redshifts and masses a tail of small late-type galaxies exists that overlaps in size with the early-type galaxy population. The number density of massive (approximately 10 (sup 11) solar masses), compact (effective radius less than 2 kiloparsecs) early-type galaxies increases from z = 3 to z = 1.5 - 2 and then strongly decreases at later cosmic times.

  10. Far-infrared emission and star formation in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Trinchieri, G.; Fabbiano, G.; Bandiera, R.

    1989-01-01

    The correlations between the emission in the far-IR, H-alpha, and blue in a sample of normal spiral galaxies are investigated. It is found that the luminosities in these three bands are all tightly correlated, although both the strength of the correlations and their functional dependencies are a function of the galaxies' morphological types. The best-fit power laws to these correlations are different for the comparison of different quantities and deviate significantly from linearity in some cases, implying the presence of additional emission mechanisms not related to the general increase of luminosity with galactic mass. Clear evidence is found of two independent effects in the incidence of warm far-IR emission in late-type spirals. One is a luminosity effect shown by the presence of excess far-IR relative to H-alpha or optical emission in the more luminous galaxies. The other is a dependence on widespread star-formation activity.

  11. The Effects of Galaxy Interactions on Star Formation

    NASA Astrophysics Data System (ADS)

    Beverage, Aliza; Weiner, Aaron; Ramos Padilla, Andres; Ashby, Matthew; Smith, Howard A.

    2018-01-01

    Galaxy interactions are key events in galaxy evolution, and are widely thought to trigger significant increases in star formation. However, the mechanisms and timescales for these increases are still not well understood. In order to probe the effects of mergers, we undertook an investigation based on the Spitzer Interacting Galaxies Survey (SIGS), a sample of 102 nearby galaxies in 48 systems ranging from weakly interacting to near coalescence. Our study is unique in that we use both broadband photometry and a large sample of objects chosen to be statistically meaningful. Our data come from 32 broad bands ranging from the UV to far-IR, and we model spectral energy distributions (SEDs) using the Code for Investigating Galaxy Emission (CIGALE) to estimate physical characteristics for each galaxy. We find marginal statistical correlations between galaxy interaction strength and dust luminosity and the distribution of dust mass as a function of heating intensity. The specific star formation rates, however, do not show any enhancement across the interaction stages. This result challenges conventional wisdom that mergers induce star formation throughout galaxy interaction.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  12. Star Formation Histories of Dwarf Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Skillman, Evan

    1995-07-01

    We propose to obtain deep WFPC2 `BVI' color-magnitude diagrams {CMDs} for the dwarf irregular {dI} Local Group galaxies GR 8, Leo A, Pegasus, and Sextans A. In addition to resolved stars, we will use star clusters, and especially any globulars, to probe the history of intense star formation. These data will allow us to map the Pop I and Pop II stellar components, and thereby construct the first detailed star formation histories for non-interacting dI galaxies. Our results will bear on a variety of astrophysical problems, including the evolution of small galaxies, distances in the Local Group, age-metallicity distributions in small galaxies, ages of dIs, and the physics of star formation. The four target galaxies are typical dI systems in terms of luminosity, gas content, and H II region abundance, and represent a range in current star forming activity. They are sufficiently near to allow us to reach to stars at M_V = 0, have 0.1 of the luminosity of the SMC and 0.25 of its oxygen abundance. Unlike the SMC, these dIs are not near giant galaxies. This project will allow the extension of our knowledge of stellar populations in star forming galaxies from the spirals in the Local Group down to its smallest members. We plan to take maximum advantage of the unique data which this project will provide. Our investigator team brings extensive and varied experience in studies of dwarf galaxies, stellar populations, imaging photometry, and stellar evolution to this project.

  13. VizieR Online Data Catalog: Type 2 AGN host galaxies in Chandra-COSMOS (Suh+, 2017)

    NASA Astrophysics Data System (ADS)

    Suh, H.; Civano, F.; Hasinger, G.; Lusso, E.; Lanzuisi, G.; Marchesi, S.; Trakhtenbrot, B.; Allevato, V.; Cappelluti, N.; Capak, P. L.; Elvis, M.; Griffiths, R. E.; Laigle, C.; Lira, P.; Riguccini, L.; Rosario, D. J.; Salvato, M.; Schawinski, K.; Vignali, C.

    2018-01-01

    We investigate the star formation properties of a large sample of ~2300 X-ray-selected Type 2 Active Galactic Nuclei (AGNs) host galaxies out to z~3 in the Chandra COSMOS Legacy Survey in order to understand the connection between the star formation and nuclear activity. Making use of the existing multi-wavelength photometric data available in the COSMOS field, we perform a multi-component modeling from far-infrared to near-ultraviolet using a nuclear dust torus model, a stellar population model and a starburst model of the spectral energy distributions (SEDs). Through detailed analyses of SEDs, we derive the stellar masses and the star formation rates (SFRs) of Type 2 AGN host galaxies. The stellar mass of our sample is in the range of 9Type 2 AGN host galaxies have, on average, similar SFRs compared to the normal star-forming galaxies with similar Mstellar and redshift ranges, suggesting no significant evidence for enhancement or quenching of star formation. This could be interpreted in a scenario, where the relative massive galaxies have already experienced substantial growth at higher redshift (z>3), and grow slowly through secular fueling processes hosting moderate-luminosity AGNs. (1 data file).

  14. Identification of old tidal dwarfs near early-type galaxies from deep imaging and H I observations

    NASA Astrophysics Data System (ADS)

    Duc, Pierre-Alain; Paudel, Sanjaya; McDermid, Richard M.; Cuillandre, Jean-Charles; Serra, Paolo; Bournaud, Frédéric; Cappellari, Michele; Emsellem, Eric

    2014-05-01

    It has recently been proposed that the dwarf spheroidal galaxies located in the Local Group discs of satellites (DoSs) may be tidal dwarf galaxies (TDGs) born in a major merger at least 5 Gyr ago. Whether TDGs can live that long is still poorly constrained by observations. As part of deep optical and H I surveys with the Canada-France-Hawaii Telescope (CFHT) MegaCam camera and Westerbork Synthesis Radio Telescope made within the ATLAS3D project, and follow-up spectroscopic observations with the Gemini-North telescope, we have discovered old TDG candidates around several early-type galaxies. At least one of them has an oxygen abundance close to solar, as expected for a tidal origin. This confirmed pre-enriched object is located within the gigantic, but very low surface brightness, tidal tail that emanates from the elliptical galaxy, NGC 5557. An age of 4 Gyr estimated from its SED fitting makes it the oldest securely identified TDG ever found so far. We investigated the structural and gaseous properties of the TDG and of a companion located in the same collisional debris, and thus most likely of tidal origin as well. Despite several Gyr of evolution close to their parent galaxies, they kept a large gas reservoir. Their central surface brightness is low and their effective radius much larger than that of typical dwarf galaxies of the same mass. This possibly provides us with criteria to identify tidal objects which can be more easily checked than the traditional ones requiring deep spectroscopic observations. In view of the above, we discuss the survival time of TDGs and question the tidal origin of the DoSs.

  15. Galaxies in the act of quenching star formation

    NASA Astrophysics Data System (ADS)

    Quai, Salvatore; Pozzetti, Lucia; Citro, Annalisa; Moresco, Michele; Cimatti, Andrea

    2018-04-01

    Detecting galaxies when their star-formation is being quenched is crucial to understand the mechanisms driving their evolution. We identify for the first time a sample of quenching galaxies selected just after the interruption of their star formation by exploiting the [O III] λ5007/Hα ratio and searching for galaxies with undetected [O III]. Using a sample of ˜174000 star-forming galaxies extracted from the SDSS-DR8 at 0.04 ≤ z < 0.21,we identify the ˜300 quenching galaxy best candidates with low [O III]/Hα, out of ˜26 000 galaxies without [O III] emission. They have masses between 10^{9.7} and 10^{10.8} M_{⊙},consistently with the corresponding growth of the quiescent population at these redshifts. Their main properties (i.e. star-formation rate, colours and metallicities) are comparable to those of the star-forming population, coherently with the hypothesis of recent quenching, but preferably reside in higher-density environments.Most candidates have morphologies similar to star-forming galaxies, suggesting that no morphological transformation has occurred yet. From a survival analysis we find a low fraction of candidates (˜ 0.58% of the star-forming population), leading to a short quenching timescale of tQ ˜ 50 Myr and an e-folding time for the quenching history of τQ ˜ 90 Myr, and their upper limits of tQ < 0.76 Gyr and τQ <1.5 Gyr, assuming as quenching galaxies 50% of objects without [O III] (˜7.5%).Our results are compatible with a 'rapid' quenching scenario of satellites galaxies due to the final phase of strangulation or ram-pressure stripping. This approach represents a robust alternative to methods used so far to select quenched galaxies (e.g. colours, specific star-formation rate, or post-starburst spectra).

  16. Galaxy Evolution Across The Redshift Desert

    NASA Astrophysics Data System (ADS)

    Kotulla, Ralf

    2010-01-01

    GALEV evolutionary synthesis models are an ideal tool to study the formation and evolution of galaxies. I present a large model grid that contains undisturbed E and Sa-Sd type galaxies as well as a wide range of models undergoing starbursts of various strengths and at different times and also includes the subsequent post-starburst phases for these galaxies. This model grid not only allows to describe and refine currently used color selection criteria for Lyman Break Galaxies, BzK galaxies, Extremely Red Objects (ERO) and both Distant and Luminous Red Galaxies (DRG, LRG). It also gives accurate stellar masses, gas fractions, star formation rates, metallicities and burst strengths for an unprecedentedly large sample of galaxies with multi-band photometry. We find, amongst other things, that LBGs are most likely progenitors of local early type spiral galaxies and low-mass ellipticals. We are for the first time able to reproduce E+A features in EROs by post-starbursts as an alternative to dusty starforming galaxies and predict how to discriminate between these scenarios. Our results from photometric analyses perfectly agree with all available spectroscopic information and open up a much wider perspective, including the bulk of the less luminous and more typical galaxy population, in the redshift desert and beyond. All model data are available online at http://www.galev.org.

  17. Predicting galaxy star formation rates via the co-evolution of galaxies and haloes

    NASA Astrophysics Data System (ADS)

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; Becker, Matthew R.; Behroozi, Peter S.; Skibba, Ramin A.; Reyes, Reinabelle; Zentner, Andrew R.; van den Bosch, Frank C.

    2015-01-01

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy of fixed stellar mass is determined by its dark matter halo formation history, e.g. more quiescent galaxies reside in older haloes. We present new Sloan Digital Sky Survey measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star-forming galaxy samples to test this simple model. We find that our age matching model is in excellent agreement with these new measurements. We also find that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an ˜r-.15 slope, independent of environment. These accurate predictions are intriguing given that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.

  18. The rapid formation of a large rotating disk galaxy three billion years after the Big Bang.

    PubMed

    Genzel, R; Tacconi, L J; Eisenhauer, F; Schreiber, N M Förster; Cimatti, A; Daddi, E; Bouché, N; Davies, R; Lehnert, M D; Lutz, D; Nesvadba, N; Verma, A; Abuter, R; Shapiro, K; Sternberg, A; Renzini, A; Kong, X; Arimoto, N; Mignoli, M

    2006-08-17

    Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks--the primary components of present-day galaxies--were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger.

  19. Mapping Extinction and Star Formation Rates of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Ridenour, Anthony; Takamiya, M.

    2010-01-01

    Star Formation Rate (SFR) is a physical characteristic of galaxies vital to our understanding of such problems as the evolution of the Universe. In computing SFRs obscuring dust systematically lowers them at shorter wavelengths compared to longer wavelengths. This issue of dust extinction has been handled well by multi-wavelength studies of nearby galaxies. Star Formation Rate measurements of distant galaxies are currently reliant on the emission of visible spectroscopic lines like Hα and [OII] after correction for extinction. However, if the visible light is completely obscured an incorrect assumption may be drawn; namely that there is neither SFR nor extinction. The work purposed here is to calibrate the SFR ascertained from Hα emission in nearby galaxies and compare it to radio and infrared emission. The Balmer decrement, or the ratio of Hβ to Hα emission, used to determine extinction, will also be studied and compared to infrared images. 30 nearby galaxies will be sampled and 2-D maps and Balmer decrements will be formed to do two things: measure SFRs and determine differences between Hα and infrared emission, and explore in what ways this difference corresponds with such things as the radio SFR, galaxy luminosity and morphological type. The accuracy of Hα as a SFR indicator and its determination as a sound tool in measuring SFRs of distant galaxies can both be quantified by interpreting these maps. Dr. Marianne Takamiya, the principal investigator and my mentor, secured funds through a grant to the University of Hawai'i at Hilo from The Research Corporation for Science Advancement Cottrell College Science Awards for this research.

  20. The Formation of Galaxies and Clusters.

    ERIC Educational Resources Information Center

    Gregory, Stephen; Morrison, Nancy D.

    1985-01-01

    Summarizes recent research on the formation of galaxies and clusters, focusing on research examining how the materials in galaxies seen today separated from the universal expansion and collapsed into stable bodies. A list of six nontechnical books and articles for readers with less background is included. (JN)

  1. Galaxy and Mass Assembly (GAMA): Impact of the Group Environment on Galaxy Star Formation

    NASA Astrophysics Data System (ADS)

    Barsanti, S.; Owers, M. S.; Brough, S.; Davies, L. J. M.; Driver, S. P.; Gunawardhana, M. L. P.; Holwerda, B. W.; Liske, J.; Loveday, J.; Pimbblet, K. A.; Robotham, A. S. G.; Taylor, E. N.

    2018-04-01

    We explore how the group environment may affect the evolution of star-forming galaxies. We select 1197 Galaxy And Mass Assembly groups at 0.05 ≤ z ≤ 0.2 and analyze the projected phase space (PPS) diagram, i.e., the galaxy velocity as a function of projected group-centric radius, as a local environmental metric in the low-mass halo regime 1012 ≤ (M 200/M ⊙) < 1014. We study the properties of star-forming group galaxies, exploring the correlation of star formation rate (SFR) with radial distance and stellar mass. We find that the fraction of star-forming group members is higher in the PPS regions dominated by recently accreted galaxies, whereas passive galaxies dominate the virialized regions. We observe a small decline in specific SFR of star-forming galaxies toward the group center by a factor ∼1.2 with respect to field galaxies. Similar to cluster studies, we conclude for low-mass halos that star-forming group galaxies represent an infalling population from the field to the halo and show suppressed star formation.

  2. Dust formation in a galaxy with primitive abundances.

    PubMed

    Sloan, G C; Matsuura, M; Zijlstra, A A; Lagadec, E; Groenewegen, M A T; Wood, P R; Szyszka, C; Bernard-Salas, J; van Loon, J Th

    2009-01-16

    Interstellar dust plays a crucial role in the evolution of galaxies. It governs the chemistry and physics of the interstellar medium. In the local universe, dust forms primarily in the ejecta from stars, but its composition and origin in galaxies at very early times remain controversial. We report observational evidence of dust forming around a carbon star in a nearby galaxy with a low abundance of heavy elements, 25 times lower than the solar abundance. The production of dust by a carbon star in a galaxy with such primitive abundances raises the possibility that carbon stars contributed carbonaceous dust in the early universe.

  3. Dark-ages Reionization and Galaxy Formation Simulation - XIV. Gas accretion, cooling, and star formation in dwarf galaxies at high redshift

    NASA Astrophysics Data System (ADS)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2018-06-01

    We study dwarf galaxy formation at high redshift (z ≥ 5) using a suite of high-resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling, and star formation in this work by isolating the relevant process from reionization and supernova feedback, which will be further discussed in a companion paper. We apply the SAM to halo merger trees constructed from a collisionless N-body simulation sharing identical initial conditions to the hydrodynamic suite, and calibrate the free parameters against the stellar mass function predicted by the hydrodynamic simulations at z = 5. By making comparisons of the star formation history and gas components calculated by the two modelling techniques, we find that semi-analytic prescriptions that are commonly adopted in the literature of low-redshift galaxy formation do not accurately represent dwarf galaxy properties in the hydrodynamic simulation at earlier times. We propose three modifications to SAMs that will provide more accurate high-redshift simulations. These include (1) the halo mass and baryon fraction which are overestimated by collisionless N-body simulations; (2) the star formation efficiency which follows a different cosmic evolutionary path from the hydrodynamic simulation; and (3) the cooling rate which is not well defined for dwarf galaxies at high redshift. Accurate semi-analytic modelling of dwarf galaxy formation informed by detailed hydrodynamical modelling will facilitate reliable semi-analytic predictions over the large volumes needed for the study of reionization.

  4. The Peculiarities in O-Type Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Panko, E. A.; Emelyanov, S. I.

    We present the results of analysis of 2D distribution of galaxies in galaxy cluster fields. The Catalogue of Galaxy Clusters and Groups PF (Panko & Flin) was used as input observational data set. We selected open rich PF galaxy clusters, containing 100 and more galaxies for our study. According to Panko classification scheme open galaxy clusters (O-type) have no concentration to the cluster center. The data set contains both pure O-type clusters and O-type clusters with overdence belts, namely OL and OF types. According to Rood & Sastry and Struble & Rood ideas, the open galaxy clusters are the beginning stage of cluster evolution. We found in the O-type clusters some types of statistically significant regular peculiarities, such as two crossed belts or curved strip. We suppose founded features connected with galaxy clusters evolution and the distribution of DM inside the clusters.

  5. Inclination Dependence of Estimated Galaxy Masses and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Hernandez, Betsy; Maller, Ariyeh; McKernan, Barry; Ford, Saavik

    2016-01-01

    We examine the inclination dependence of inferred star formation rates and galaxy mass estimates in the Sloan Digital Sky Survey by combining the disk/bulge de-convolved catalog of Simard et al 2011 with stellar mass estimates catalog of Mendel et al 2014 and star formation rates measured from spectra by Brinchmann et al 2004. We know that optical star formation indicators are reddened by dust, but calculated star formation rates and stellar mass estimates should account for this. However, we find that face-on galaxies have a higher calculated average star formation rates than edge-on galaxies. We also find edge-on galaxies have ,on average, slightly smaller but similar estimated masses to face-on galaxies, suggesting that there are issues with the applied dust corrections for both models.

  6. Statistical analysis of ALFALFA galaxies: Insights in galaxy formation & near-field cosmology

    NASA Astrophysics Data System (ADS)

    Papastergis, Emmanouil

    2013-03-01

    The Arecibo Legacy Fast ALFA (ALFALFA) survey is a blind, extragalactic survey in the 21cm emission line of atomic hydrogen (HI). Presently, sources have been cataloged over ≈4,000 deg2 of sky (~60% of its final area), resulting in the largest HI-selected sample to date. We use the rich ALFALFA dataset to measure the statistical properties of HI-bearing galaxies, such as their mass distribution and clustering characteristics. These statistical distributions are determined by the properties of darkmatter on galactic scales, and by the complex baryonic processes through which galaxies form over cosmic time. As a result, detailed studies of these distributions can lead to important insights in galaxy formation & evolution and near-field cosmology. In particular, we measure the space density of HI-bearing galaxies as a function of the width of their HI profile (i.e. the velocity width function of galaxies), and find substantial disagreement with the distribution expected in a lambda cold dark matter (ΛCDM) universe. In particular, the number of galaxies with maximum rotational velocities upsilonrot ≈ 35 kms--1 (as judged by their HI velocity width) is about an order of magnitude lower than what predicted based on populating ΛCDM halos with modeled galaxies. We identify two possible solutions to the discrepancy: First, an alternative dark matter scenario in which the formation of low-mass halos is heavily suppressed (e.g. a warm dark matter universe with keV-scale dark matter particles). Secondly, we consider the possibility that rotational velocitites of dwarf galaxies derived from HI velocity widths may systematically underestimate the true mass of the host halo, due to the shape of their rotation curves. In this latter scenario, quantitative predictions for the internal kinematics of dwarf galaxies can be made, which can be checked in the future to probe the nature of dark matter. Furthermore, we take advantage of the overlap of ALFALFA with the Sloan Digital

  7. THE ACS LCID PROJECT: ON THE ORIGIN OF DWARF GALAXY TYPES—A MANIFESTATION OF THE HALO ASSEMBLY BIAS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallart, Carme; Monelli, Matteo; Aparicio, Antonio

    We discuss how knowledge of the whole evolutionary history of dwarf galaxies, including details on the early star formation events, can provide insight on the origin of the different dwarf galaxy types. We suggest that these types may be imprinted by the early conditions of formation rather than only being the result of a recent morphological transformation driven by environmental effects. We present precise star formation histories of a sample of Local Group dwarf galaxies, derived from color–magnitude diagrams reaching the oldest main-sequence turnoffs. We argue that these galaxies can be assigned to two basic types: fast dwarfs that startedmore » their evolution with a dominant and short star formation event and slow dwarfs that formed a small fraction of their stars early and have continued forming stars until the present time (or almost). These two different evolutionary paths do not map directly onto the present-day morphology (dwarf spheroidal versus dwarf irregular). Slow and fast dwarfs also differ in their inferred past location relative to the Milky Way and/or M31, which hints that slow dwarfs were generally assembled in lower-density environments than fast dwarfs. We propose that the distinction between a fast and slow dwarf galaxy primarily reflects the characteristic density of the environment where they form. At a later stage, interaction with a large host galaxy may play a role in the final gas removal and ultimate termination of star formation.« less

  8. Low-mass galaxy assembly in simulations: regulation of early star formation by radiation from massive stars

    NASA Astrophysics Data System (ADS)

    Trujillo-Gomez, Sebastian; Klypin, Anatoly; Colín, Pedro; Ceverino, Daniel; Arraki, Kenza S.; Primack, Joel

    2015-01-01

    Despite recent success in forming realistic present-day galaxies, simulations still form the bulk of their stars earlier than observations indicate. We investigate the process of stellar mass assembly in low-mass field galaxies, a dwarf and a typical spiral, focusing on the effects of radiation from young stellar clusters on the star formation (SF) histories. We implement a novel model of SF with a deterministic low efficiency per free-fall time, as observed in molecular clouds. Stellar feedback is based on observations of star-forming regions, and includes radiation pressure from massive stars, photoheating in H II regions, supernovae and stellar winds. We find that stellar radiation has a strong effect on the formation of low-mass galaxies, especially at z > 1, where it efficiently suppresses SF by dispersing cold and dense gas, preventing runaway growth of the stellar component. This behaviour is evident in a variety of observations but had so far eluded analytical and numerical models without radiation feedback. Compared to supernovae alone, radiation feedback reduces the SF rate by a factor of ˜100 at z ≲ 2, yielding rising SF histories which reproduce recent observations of Local Group dwarfs. Stellar radiation also produces bulgeless spiral galaxies and may be responsible for excess thickening of the stellar disc. The galaxies also feature rotation curves and baryon fractions in excellent agreement with current data. Lastly, the dwarf galaxy shows a very slow reduction of the central dark matter density caused by radiation feedback over the last ˜7 Gyr of cosmic evolution.

  9. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2x3, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>lO, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  10. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan F.; Barbier, L. M.; Barthelmy, S. D.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D. D.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; hide

    2006-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2-6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 27 microns. In addition to JWST s ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  11. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z>6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  12. Resolved Star Formation in Galaxies Using Slitless Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pirzkal, Norbert; Finkelstein, Steven L.; Larson, Rebecca L.; Malhotra, Sangeeta; Rhoads, James E.; Ryan, Russell E.; Tilvi, Vithal; FIGS Team

    2018-06-01

    The ability to spatially resolve individual star-formation regions in distant galaxies and simultaneously extract their physical properties via emission lines is a critical step forward in studying the evolution of galaxies. While efficient, deep slitless spectroscopic observations offer a blurry view of the summed properties of galaxies. We present our studies of resolved star formation over a wide range of redshifts, including high redshift Ly-a sources. The unique capabilities of the WFC3 IR Grism and our two-dimensional emission line method (EM2D) allows us to accurately identify the specific spatial origin of emission lines in galaxies, thus creating a spatial map of star-formation sites in any given galaxy. This method requires the use of multiple position angles on the sky to accurately derive both the location and the observed wavelengths of these emission lines. This has the added benefit of producing better defined redshifts for these sources. Building on our success in applying the EM2D method towards galaxies with [OII]. [OIII], and Ha emission lines, we have also applied EM2D to high redshift (z>6) Ly-a emitting galaxies. We are also able to produce accurate 2D emission line maps (MAP2D) of the Ly-a emission in WFC3 IR grism observations, looking for evidence that a significant amount of resonant scattering is taking place in high redshift galaxies such as in a newly identified z=7.5 Faint Infrared Galaxy Survey (FIGS) Ly-a galaxy.

  13. The extended epoch of galaxy formation: Age dating of 3600 galaxies with 2 < z < 6.5 in the VIMOS Ultra-Deep Survey

    NASA Astrophysics Data System (ADS)

    Thomas, R.; Le Fèvre, O.; Scodeggio, M.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pforr, J.; Tasca, L. A. M.; Zamorani, G.; Bardelli, S.; Hathi, N. P.; Tresse, L.; Zucca, E.; Koekemoer, A. M.

    2017-06-01

    In this paper we aim at improving constraints on the epoch of galaxy formation by measuring the ages of 3597 galaxies with reliable spectroscopic redshifts 2 ≤ z ≤ 6.5 in the VIMOS Ultra Deep Survey (VUDS). We derive ages and other physical parameters from the simultaneous fitting with the GOSSIP+ software of observed UV rest-frame spectra and photometric data from the u band up to 4.5 μm using model spectra from composite stellar populations. We perform extensive simulations and conclude that at z ≥ 2 the joint analysis of spectroscopy and photometry, combined with restricted age possibilities when taking the age of the Universe into account, substantially reduces systematic uncertainties and degeneracies in the age derivation; we find that age measurements from this process are reliable. We find that galaxy ages range from very young with a few tens of million years to substantially evolved with ages up to 1.5 Gyr or more. This large age spread is similar for different age definitions including ages corresponding to the last major star formation event, stellar mass-weighted ages, and ages corresponding to the time since the formation of 25% of the stellar mass. We derive the formation redshift zf from the measured ages and find galaxies that may have started forming stars as early as zf 15. We produce the formation redshift function (FzF), the number of galaxies per unit volume formed at a redshift zf, and compare the FzF in increasing observed redshift bins finding a remarkably constant FzF. The FzF is parametrized with (1 + z)ζ, where ζ ≃ 0.58 ± 0.06, indicating a smooth increase of about 2 dex from the earliest redshifts, z 15, to the lowest redshifts of our sample at z 2. Remarkably, this observed increase in the number of forming galaxies is of the same order as the observed rise in the star formation rate density (SFRD). The ratio of the comoving SFRD with the FzF gives an average SFR per galaxy of 7-17M⊙/yr at z 4-6, in agreement with the

  14. Spiral Arm Morphology of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae; Lee, Hyun-Rok

    2013-06-01

    We analyze the spiral structure of 1725 nearby spiral galaxies with redshift less than 0.02. We use the color images provided by the Sloan Digital Sky Survey. We determine the arm classes (grand design, multiple-arm, flocculent) and the broad Hubble types (early, intermediate, late) as well as the bar types (SA, SAB, SB) by visual inspection. We find that flocculent galaxies are mostly of late Hubble type while multiple-arm galaxies are likely to be of early Hubble type. The fractional distribution of grand design galaxies is nearly constant along the Hubble type. The dependence of arm class on bar type is not as strong as that of the Hubble type. However, there is about a three times larger fraction of grand design spirals in SB galaxies than in SA galaxies, with nearly constant fractions of multiple-arm galaxies. However, if we consider the Hubble type and bar type together, grand design spirals are more frequent in early types than in late types for SA and SAB galaxies, while they are almost constant along the Hubble type for SB galaxies. There are clear correlations between spiral structures and the local background density: strongly barred, early-type, grand design spirals favor high-density regions, while non-barred, late-type, flocculent galaxies are likely to be found in low-density regions.

  15. DEMOGRAPHICS OF THE GALAXIES HOSTING SHORT-DURATION GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, W.; Berger, E.; Chornock, R.

    We present observations of the afterglows and host galaxies of three short-duration gamma-ray bursts (GRBs): 100625A, 101219A, and 110112A. We find that GRB 100625A occurred in a z = 0.452 early-type galaxy with a stellar mass of Almost-Equal-To 4.6 Multiplication-Sign 10{sup 9} M{sub Sun} and a stellar population age of Almost-Equal-To 0.7 Gyr, and GRB 101219A originated in a star-forming galaxy at z = 0.718 with a stellar mass of Almost-Equal-To 1.4 Multiplication-Sign 10{sup 9} M{sub Sun }, a star formation rate of Almost-Equal-To 16 M{sub Sun} yr{sup -1}, and a stellar population age of Almost-Equal-To 50 Myr. We alsomore » report the discovery of the optical afterglow of GRB 110112A, which lacks a coincident host galaxy to i {approx}> 26 mag, and we cannot conclusively identify any field galaxy as a possible host. From afterglow modeling, the bursts have inferred circumburst densities of Almost-Equal-To 10{sup -4}-1 cm{sup -3} and isotropic-equivalent gamma-ray and kinetic energies of Almost-Equal-To 10{sup 50}-10{sup 51} erg. These three events highlight the diversity of galactic environments that host short GRBs. To quantify this diversity, we use the sample of 36 Swift short GRBs with robust associations to an environment ({approx}1/2 of 68 short bursts detected by Swift to 2012 May) and classify bursts originating from four types of environments: late-type ( Almost-Equal-To 50%), early-type ( Almost-Equal-To 15%), inconclusive ( Almost-Equal-To 20%), and ''host-less'' (lacking a coincident host galaxy to limits of {approx}> 26 mag; Almost-Equal-To 15%). To find likely ranges for the true late- and early-type fractions, we assign each of the host-less bursts to either the late- or early-type category using probabilistic arguments and consider the scenario that all hosts in the inconclusive category are early-type galaxies to set an upper bound on the early-type fraction. We calculate most likely ranges for the late- and early-type fractions of Almost

  16. The Mass Distribution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Courteau, Stéphane; Dutton, Aaron A.

    We present the relative fraction of baryons and dark matter at various radii in galaxies. For spiral galaxies, this fraction measured in a galaxy's inner parts is typically baryon-dominated (maximal) and dark-matter dominated (sub-maximal) in the outskirts. The transition from maximal to sub-maximal baryons occurs within the inner parts of low-mass disk galaxies (with V tot <= 200 km s-1) and in the outer disk for more massive systems. The mean mass fractions for late- and early-type galaxies vary significantly at the same fiducial radius and circular velocity, suggesting a range of galaxy formation mechanisms. A more detailed discussion, and resolution of the so-called ``maximal disk problem'', is presented in Courteau & Dutton, ApJL, 801, 20.

  17. Predicting Galaxy Star Formation Rates via the Co-evolution of Galaxies and Halos

    DOE PAGES

    Watson, Douglas F.; Hearin, Andrew P.; Berlind, Andreas A.; ...

    2014-03-06

    In this paper, we test the age matching hypothesis that the star formation rate (SFR) of a galaxy is determined by its dark matter halo formation history, and as such, that more quiescent galaxies reside in older halos. This simple model has been remarkably successful at predicting color-based galaxy statistics at low redshift as measured in the Sloan Digital Sky Survey (SDSS). To further test this method with observations, we present new SDSS measurements of the galaxy two-point correlation function and galaxy-galaxy lensing as a function of stellar mass and SFR, separated into quenched and star forming galaxy samples. Wemore » find that our age matching model is in excellent agreement with these new measurements. We also employ a galaxy group finder and show that our model is able to predict: (1) the relative SFRs of central and satellite galaxies, (2) the SFR-dependence of the radial distribution of satellite galaxy populations within galaxy groups, rich groups, and clusters and their surrounding larger scale environments, and (3) the interesting feature that the satellite quenched fraction as a function of projected radial distance from the central galaxy exhibits an approx r -.15 slope, independent of environment. The accurate prediction for the spatial distribution of satellites is intriguing given the fact that we do not explicitly model satellite-specific processes after infall, and that in our model the virial radius does not mark a special transition region in the evolution of a satellite, contrary to most galaxy evolution models. The success of the model suggests that present-day galaxy SFR is strongly correlated with halo mass assembly history.« less

  18. Progress and Challenges in SPH Simulations of Disk Galaxy Formation: The Combined Role of Resolution and the Star Formation Density Threshold

    NASA Astrophysics Data System (ADS)

    Mayer, L.

    2012-07-01

    We review progress in cosmological SPH simulations of disk galaxy formation. We discuss the role of numerical resolution and sub-grid recipes of star formation and feedback from supernovae, higlighting the important role of a high star formation density threshold comparable to that of star forming molecular gas phase. Two recent succesfull examples, in simulations of the formation of gas-rich bulgeless dwarf galaxies and in simulations of late-type spirals (the ERIS simulations), are presented and discussed. In the ERIS simulations, already in the progenitors at z = 3 the resolution is above the threshold indicated by previous idealized numerical experiments as necessary to minimize numerical angular momentum loss (Kaufmann et al. 2007). A high star formation density threshold maintains an inhomogeneous interstellar medium, where star formation is clustered, and thus the local effect of supernovae feedback is enhanced. As a result, outflows are naturally generated removing 2/3 of the baryons in galaxies with Vvir˜50 km/s and ˜ 30% of the baryons in galaxies with (Vvir ˜ 150 km/s). Low angular momentum baryons are preferentially removed since the strongest bursts of star formation occur predominantly near the center, especially after a merger event. This produces pure exponential disks or small bulges depending on galaxy mass, and, correspondingly, slowly rising or nearly flat rotation curves that match those of observed disk galaxies. In dwarfs the rapid mass removal by outflows generates a core-like distribution in the dark matter. Furthermore, contrary to the common picture, in the ERIS spiral galaxies a bar/pseudobulge forms rapidly, and not secularly, as a result of mergers and interactions at high-z.

  19. A possible formation scenario for dwarf spheroidal galaxies - III. Adding star formation histories to the fiducial model

    NASA Astrophysics Data System (ADS)

    Alarcón Jara, A. G.; Fellhauer, M.; Matus Carrillo, D. R.; Assmann, P.; Urrutia Zapata, F.; Hazeldine, J.; Aravena, C. A.

    2018-02-01

    Dwarf spheroidal galaxies are regarded as the basic building blocks in the formation of larger galaxies and are the most dark matter dominated systems in the Universe, known so far. There are several models that attempt to explain their formation and evolution, but they have problems modelling the formation of isolated dwarf spheroidal galaxies. Here, we will explain a possible formation scenario in which star clusters form inside the dark matter halo of a dwarf spheroidal galaxy. These star clusters suffer from low star formation efficiency and dissolve while orbiting inside the dark matter halo. Thereby, they build the faint luminous components that we observe in dwarf spheroidal galaxies. In this paper, we study this model by adding different star formation histories to the simulations and compare the results with our previous work and observational data to show that we can explain the formation of dwarf spheroidal galaxies.

  20. High mass star formation in the galaxy

    NASA Technical Reports Server (NTRS)

    Scoville, N. Z.; Good, J. C.

    1987-01-01

    The Galactic distributions of HI, H2, and HII regions are reviewed in order to elucidate the high mass star formation occurring in galactic spiral arms and in active galactic nuclei. Comparison of the large scale distributions of H2 gas and radio HII regions reveals that the rate of formation of OB stars depends on (n sub H2) sup 1.9 where (n sub H2) is the local mean density of H2 averaged over 300 pc scale lengths. In addition the efficiency of high mass star formation is a decreasing function of cloud mass in the range 200,000 to 3,000,000 solar mass. These results suggest that high mass star formation in the galactic disk is initiated by cloud-cloud collisions which are more frequent in the spiral arms due to orbit crowding. Cloud-cloud collisions may also be responsible for high rates of OB star formation in interacting galaxies and galactic nuclei. Based on analysis of the Infrared Astronomy Satellite (IRAS) and CO data for selected GMCs in the Galaxy, the ratio L sub IR/M sub H2 can be as high as 30 solar luminosity/solar mass for GMCs associated with HII regions. The L sub IR/M sub H2 ratios and dust temperature obtained in many of the high luminosity IRAS galaxies are similar to those encountered in galactic GMCs with OB star formation. High mass star formation is therefore a viable explanation for the high infrared luminosity of these galaxies.

  1. Aperture Effects in the Long Slit Spectrophotometry of the Polar Ring Galaxy IIZw71

    NASA Astrophysics Data System (ADS)

    Pérez-Montero, E.; García-Benito, R.; Díaz, Á. I.; Pérez, E.; Kehrig, C.

    2008-10-01

    Polar ring galaxies are composed by an early type galaxy and a polar ring rotating around it and which is rich in gas, dust and star formation. IIZw71 is catalogued as a blue compact dwarf galaxy and as a probable polar ring galaxy (Whitmore et al. 1990). The formation of the polar ring and the very luminous bursts of star formation along it, is a consequence of the interaction with a close companion, IIZw70, situated at 18.1 kpc (Cox et al. 2001). We have carried out spectrophotometric observations of the bursts of star formation along the polar ring in order to study differences in the physical properties or the star formation histories between the knots

  2. Modeling spatially and spectrally resolved observations to diagnose the formation of elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Snyder, Gregory Frantz

    2013-03-01

    morphologies across cosmic time. In the final chapter, I outline an approach to build a "mock observatory" from cosmological hydrodynamical simulations, with which observations of all types, including at high spatial and spectral resolutions, can be brought to bear in directly constraining the physics of galaxy formation and evolution.

  3. Relationships between HI Gas Mass, Stellar Mass and Star Formation Rate of HICAT+WISE Galaxies

    NASA Astrophysics Data System (ADS)

    Parkash, Vaishali; Brown, Michael J. I.

    2018-01-01

    Galaxies grow via a combination of star formation and mergers. In this thesis, I have studied what drives star formation in nearby galaxies. Using archival WISE, Galex, 21-cm data and new IFU observations, I examine the HI content, Hα emission, stellar kinematics, and gas kinematics of three sub-classes of galaxies: spiral galaxies, shell galaxies and HI galaxies with unusually low star formation rates (SFR). In this dissertation talk, I will focus on the scaling relations between atomic (HI) gas, stellar mass and SFR of spiral galaxies. Star formation is fuelled by HI and molecular hydrogen, therefore we expect correlations between HI mass, stellar mass and SFR. However, the measured scaling relationships vary in the prior literature due to sample selection or low completeness. I will discuss new scaling relationships determined using HI Parkes All Sky-Survey Catalogue (HICAT) and the Wide-field Infrared Survey Explorer (WISE). The combination of the local HICAT survey with sensitive WISE mid-infrared imaging improves the stellar masses, SFRs and completeness relative to previous literature. Of the 3,513 HICAT sources, we find 3.4 μm counterparts for 2,824 sources (80%), and provide new WISE matched aperture photometry for these galaxies. For a stellar mass selected sample of z ≤ 0.01 spiral galaxies, we find HI detections for 94% of the galaxies, enabling us to accurately measure HI mass as a function of stellar mass. In contrast to HI-selected galaxy samples, we find that star formation efficiency of spiral galaxies is constant at 10-9.5 yr‑1 with a scatter of 0.5 dex for stellar masses above 109.5 solar masses. We find HI mass increases with stellar mass for spiral galaxies, but the scatter is 1.7 dex for all spiral galaxies and 0.6 dex for galaxies with the T-type 5 to 7. We find an upper limit on HI mass that depends on stellar mass, which is consistent with this limit being dictated by the halo spin parameter.

  4. The formation of bulges and black holes: lessons from a census of active galaxies in the SDSS.

    PubMed

    Kauffmann, Guinevere; Heckman, Timothy M

    2005-03-15

    We examine the relationship between galaxies, supermassive black holes and AGN using a sample of 23,000 narrow-emission-line ('type 2') active galactic nuclei (AGN) drawn from a sample of 123,000 galaxies from the Sloan Digital Sky Survey. We have studied how AGN host properties compare with those of normal galaxies and how they depend on the luminosity of the active nucleus. We find that AGN reside in massive galaxies and have distributions of sizes and concentrations that are similar to those of the early-type galaxies in our sample. The host galaxies of low-luminosity AGN have stellar populations similar to normal early types. The hosts of high- luminosity AGN have much younger mean stellar ages, and a significant fraction have experienced recent starbursts. High-luminosity AGN are also found in lower-density environments. We then use the stellar velocity dispersions of the AGN hosts to estimate black hole masses and their [OIII]lambda5007 emission-line luminosities to estimate black hole accretion rates. We find that the volume averaged ratio of star formation to black hole accretion is approximately 1000 for the bulge-dominated galaxies in our sample. This is remarkably similar to the observed ratio of stellar mass to black hole mass in nearby bulges. Most of the present-day black hole growth is occurring in black holes with masses less than 3 x 10(7)M(3). Our estimated accretion rates imply that low-mass black holes are growing on a time-scale that is comparable with the age of the Universe. Around 50% this growth takes place in AGN that are radiating within a factor of five of the Eddington luminosity. Such systems are rare, making up only 0.2% of the low-mass black hole population at the present day. The remaining growth occurs in lower luminosity AGN. The growth time-scale increases by more than an order of magnitude for the most massive black holes in our sample. We conclude that the evolution of the AGN luminosity function documented in recent optical

  5. Galaxy Alignments: Theory, Modelling & Simulations

    NASA Astrophysics Data System (ADS)

    Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais

    2015-11-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

  6. Formation Stellaire Aux Échelles Des Galaxies

    NASA Astrophysics Data System (ADS)

    Boissier, S.

    2012-12-01

    Star Formation is at the very core of the evolution of galaxies. From their gas reservoir (filled by infall or fusions), stars form at the "Star Formation Rate" (SFR), with an enormous impact on many aspects of the evolution of galaxies. This HDR presents first the formalism concerning star formation (SFR, IMF), some theoretical suggestions on physical processes that may affect star formation on various galactic scales, and the methods used to determine the SFR from observations. A large part is dedicated to the "Star Formation Laws" (e.g. Schmidt law) on various scales (local, radial, and global law). Finally, the last part concerns the largest scales (evolution of the "cosmic" SFR and effect of the environment).

  7. Luminous Blue Compact Galaxies: Probes of galaxy assembly

    NASA Astrophysics Data System (ADS)

    Newton, Cassidy Louann

    The life cycles of galaxies over cosmic time is yet to be fully understood. How did galaxies evolve from their formative stages to the structures we observe today? This dissertation details the identification and analysis of a sample of Luminous Blue Compact Galaxies (LBCGs), a class of galaxy in the local (z < 0.05) universe exhibiting blue colors, high surface brightness, and high star formation rates. These systems appear to be very similar in their global properties to the early evolutionary phases of most galaxies, however their locality permits detailed investigation over a broad range of the electromagnetic spectrum in contrast to the smaller angular sizes and extreme faintness of distant galaxies. We use a combination of optical, ultraviolet, and infrared data to investigate a sample of LBCGs utilizing space and ground-based data.

  8. Origin of the Galaxy Mass-Metallicity-Star Formation Relation

    NASA Astrophysics Data System (ADS)

    Harwit, Martin; Brisbin, Drew

    2015-02-01

    We describe an equilibrium model that links the metallicity of low-redshift galaxies to stellar evolution models. It enables the testing of different stellar initial mass functions and metal yields against observed galaxy metallicities. We show that the metallicities of more than 80,000 Sloan Digital Sky Survey galaxies in the low-redshift range 0.07 <= z <= 0.3 considerably constrain stellar evolution models that simultaneously relate galaxy stellar mass, metallicity, and star formation rates to the infall rate of low-metallicity extragalactic gas and outflow of enriched matter. A feature of our model is that it encompasses both the active star forming phases of a galaxy and epochs during which the same galaxy may lie fallow. We show that the galaxy mass-metallicity-star formation relation can be traced to infall of extragalactic gas mixing with native gas from host galaxies to form stars of observed metallicities, the most massive of which eject oxygen into extragalactic space. Most consequential among our findings is that, on average, extragalactic infall accounts for one half of the gas required for star formation, a ratio that is remarkably constant across galaxies with stellar masses ranging at least from M* = 2 × 109 to 6 × 1010 M ⊙. This leads us to propose that star formation is initiated when extragalactic infall roughly doubles the mass of marginally stable interstellar clouds. The processes described may also account quantitatively for the metallicity of extragalactic space, though to check this the fraction of extragalactic baryons will need to be more firmly established.

  9. Age bimodality in the central region of pseudo-bulges in S0 galaxies

    NASA Astrophysics Data System (ADS)

    Mishra, Preetish K.; Barway, Sudhanshu; Wadadekar, Yogesh

    2017-11-01

    We present evidence for bimodal stellar age distribution of pseudo-bulges of S0 galaxies as probed by the Dn(4000) index. We do not observe any bimodality in age distribution for pseudo-bulges in spiral galaxies. Our sample is flux limited and contains 2067 S0 and 2630 spiral galaxies drawn from the Sloan Digital Sky Survey. We identify pseudo-bulges in S0 and spiral galaxies, based on the position of the bulge on the Kormendy diagram and their central velocity dispersion. Dividing the pseudo-bulges of S0 galaxies into those containing old and young stellar populations, we study the connection between global star formation and pseudo-bulge age on the u - r colour-mass diagram. We find that most old pseudo-bulges are hosted by passive galaxies while majority of young bulges are hosted by galaxies that are star forming. Dividing our sample of S0 galaxies into early-type S0s and S0/a galaxies, we find that old pseudo-bulges are mainly hosted by early-type S0 galaxies while most of the pseudo-bulges in S0/a galaxies are young. We speculate that morphology plays a strong role in quenching of star formation in the disc of these S0 galaxies, which stops the growth of pseudo-bulges, giving rise to old pseudo-bulges and the observed age bimodality.

  10. BUDHIES II: a phase-space view of H I gas stripping and star formation quenching in cluster galaxies

    NASA Astrophysics Data System (ADS)

    Jaffé, Yara L.; Smith, Rory; Candlish, Graeme N.; Poggianti, Bianca M.; Sheen, Yun-Kyeong; Verheijen, Marc A. W.

    2015-04-01

    We investigate the effect of ram-pressure from the intracluster medium on the stripping of H I gas in galaxies in a massive, relaxed, X-ray bright, galaxy cluster at z = 0.2 from the Blind Ultra Deep H I Environmental Survey (BUDHIES). We use cosmological simulations, and velocity versus position phase-space diagrams to infer the orbital histories of the cluster galaxies. In particular, we embed a simple analytical description of ram-pressure stripping in the simulations to identify the regions in phase-space where galaxies are more likely to have been sufficiently stripped of their H I gas to fall below the detection limit of our survey. We find a striking agreement between the model predictions and the observed location of H I-detected and non-detected blue (late-type) galaxies in phase-space, strongly implying that ram-pressure plays a key role in the gas removal from galaxies, and that this can happen during their first infall into the cluster. However, we also find a significant number of gas-poor, red (early-type) galaxies in the infall region of the cluster that cannot easily be explained with our model of ram-pressure stripping alone. We discuss different possible additional mechanisms that could be at play, including the pre-processing of galaxies in their previous environment. Our results are strengthened by the distribution of galaxy colours (optical and UV) in phase-space, that suggests that after a (gas-rich) field galaxy falls into the cluster, it will lose its gas via ram-pressure stripping, and as it settles into the cluster, its star formation will decay until it is completely quenched. Finally, this work demonstrates the utility of phase-space diagrams to analyse the physical processes driving the evolution of cluster galaxies, in particular H I gas stripping.

  11. Galaxy Formation from the Primordial Black Holes

    NASA Astrophysics Data System (ADS)

    Morikawa, Masahiro

    2017-12-01

    Supermassive black hole (SMBH) of size MBH = 106-10M⊙ is common in the Universe and it defines the center of the galaxy. A galaxy and the SMBH are generally thought to have co-evolved. However, the SMBH cannot evolve so fast as commonly observed even at redshift z > 6. Therefore, we explore a natural hypothesis that the SMBH has been already formed mature at z ⪆ 10 before stars and galaxies. The SMBH forms energetic jets and out-flows which trigger massive star formation in the ambient gas. They eventually construct globular clusters and classical bulge as well as the body of elliptical galaxies. We propose simple models which implement these processes. We point out that the globular clusters and classical bulges have a common origin but are in different phases. The same is true for the elliptical and spiral galaxies. Physics behind these phase division is the runaway star formation process with strong feedback to SMBH. This is similar to the forest-fire model that displays self-organized criticality.

  12. The VIMOS Public Extragalactic Redshift Survey (VIPERS):. A quiescent formation of massive red-sequence galaxies over the past 9 Gyr

    NASA Astrophysics Data System (ADS)

    Fritz, A.; Scodeggio, M.; Ilbert, O.; Bolzonella, M.; Davidzon, I.; Coupon, J.; Garilli, B.; Guzzo, L.; Zamorani, G.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Branchini, E.; Cappi, A.; Cucciati, O.; De Lucia, G.; de la Torre, S.; Franzetti, P.; Fumana, M.; Granett, B. R.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.

    2014-03-01

    We explore the evolution of the colour-magnitude relation (CMR) and luminosity function (LF) at 0.4 < z < 1.3 from the VIMOS Public Extragalactic Redshift Survey (VIPERS) using ~45 000 galaxies with precise spectroscopic redshifts down to i'AB < 22.5 over ~10.32 deg2 in two fields. From z = 0.5 to z = 1.3 the LF and CMR are well defined for different galaxy populations and M*B evolves by ~1.04(1.09) ± 0.06(0.10) mag for the total (red) galaxy sample. We compare different criteria for selecting early-type galaxies: (1) a fixed cut in rest-frame (U - V) colours, (2) an evolving cut in (U - V) colours, (3) a rest-frame (NUV - r') - (r' - K) colour selection, and (4) a spectral-energy-distribution classification. The completeness and contamination varies for the different methods and with redshift, but regardless of the method we measure a consistent evolution of the red-sequence (RS). Between 0.4 < z < 1.3 we find a moderate evolution of the RS intercept of Δ(U - V) = 0.28 ± 0.14 mag, favouring exponentially declining star formation (SF) histories with SF truncation at 1.7 ≤ z ≤ 2.3. Together with the rise in the number density of red galaxies by 0.64 dex since z = 1, this suggests a rapid build-up of massive galaxies (M⋆ > 1011 M⊙) and expeditious RS formation over a short period of ~1.5 Gyr starting before z = 1. This is supported by the detection of ongoing SF in early-type galaxies at 0.9 < z < 1.0, in contrast with the quiescent red stellar populations of early-type galaxies at 0.5 < z < 0.6. There is an increase in the observed CMR scatter with redshift, which is two times larger than observed in galaxy clusters and at variance with theoretical model predictions. We discuss possible physical mechanisms that support the observed evolution of the red galaxy population. Our findings point out that massive galaxies have experienced a sharp SF quenching at z ~ 1 with only limited additional merging. In contrast, less-massive galaxies experience a mix of SF

  13. NGC 5291: Implications for the Formation of Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Malphrus, Benjamin K.; Simpson, Caroline E.; Gottesman, S. T.; Hawarden, Timothy G.

    1997-01-01

    The possible formation and evolution of dwarf irregular galaxies from material derived from perturbed evolved galaxies is addressed via an H I study of a likely example, the peculiar system NGC 5291. This system, located in the western outskirts of the cluster Abell 3574, contains the lenticular galaxy NGC 5291 which is in close proximity to a disturbed companion and is flanked by an extensive complex of numerous knots extending roughly 4 min north and 4 min south of the galaxy. In an initial optical and radio study, Longmore et al. (1979, MNRAS, 188, 285) showed that these knots have the spectra of vigorous star-forming regions, and suggested that some may in fact be young dwarf irregular galaxies. High resolution 21-cm line observations taken with the VLA are presented here and reveal that the H I distribution associated with this system encompasses not only the entire N-S complex of optical knots, but also forms an incomplete ring or tail that extends approximately 3 min to the west. The H I associated with NGC 5291 itself shows a high velocity range; the Seashell is not detected. The formation mechanism for this unusual system is unclear and two models - a large, low-luminosity ram-swept disk, and a ram-swept interaction-are discussed. The H I in the system contains numerous concentrations, mostly along the N-S arc of the star-forming complexes, which generally coincide with one or more optical knots; the larger H I features contain several x 10(exp 9) solar mass of gas. Each of the knots is compared to a set of criteria designed to determine if these objects are bound against their own internal kinetic energy and are tidally stable relative to the host galaxy. An analysis of the properties of the H I concentrations surrounding the optical star-forming complexes indicates that at least the largest of these is a bound system; it also possesses a stellar component. It is suggested that this object is a genuinely young dwarf irregular galaxy that has evolved from

  14. Hα3: an Hα imaging survey of HI selected galaxies from ALFALFA. II. Star formation properties of galaxies in the Virgo cluster and surroundings

    NASA Astrophysics Data System (ADS)

    Gavazzi, G.; Fumagalli, M.; Fossati, M.; Galardo, V.; Grossetti, F.; Boselli, A.; Giovanelli, R.; Haynes, M. P.

    2013-05-01

    Context. We present the analysis of Hα3, an Hα narrow-band imaging follow-up survey of 409 galaxies selected from the HI Arecibo Legacy Fast ALFA Survey (ALFALFA) in the Local Supercluster, including the Virgo cluster, in the region 11h < RA < 16h ; 4o < Dec < 16°; 350 < cz < 2000 km s-1. Aims: Taking advantage of Hα3, which provides the complete census of the recent massive star formation rate (SFR) in HI-rich galaxies in the local Universe and of ancillary optical data from SDSS we explore the relations between the stellar mass, the HI mass, and the current, massive SFR of nearby galaxies in the Virgo cluster. We compare these with those of isolated galaxies in the Local Supercluster, and we investigate the role of the environment in shaping the star formation properties of galaxies at the present cosmological epoch. Methods: By using the Hα hydrogen recombination line as a tracer of recent star formation, we investigated the relationships between atomic neutral gas and newly formed stars in different environments (cluster and field), for many morphological types (spirals and dwarfs), and over a wide range of stellar masses (107.5 to 1011.5 M⊙). To quantify the degree of environmental perturbation, we adopted an updated calibration of the HI deficiency parameter which we used to divide the sample into three classes: unperturbed galaxies (DefHI ≤ 0.3), perturbed galaxies (0.3 < DefHI < 0.9), and highly perturbed galaxies (DefHI ≥ 0.9). Results: Studying the mean properties of late-type galaxies in the Local Supercluster, we find that galaxies in increasing dense local galaxy conditions (or decreasing projected angular separation from M 87) show a significant decrease in the HI content and in the mean specific SFR, along with a progressive reddening of their stellar populations. The gradual quenching of the star formation occurs outside-in, consistently with the predictions of the ram pressure model. Once considered as a whole, the Virgo cluster is

  15. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z greater than 6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z greater than 10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (less than 50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems, and discuss recent progress in constructing the observatory.

  16. Diffuse gas properties and stellar metallicities in cosmological simulations of disc galaxy formation

    NASA Astrophysics Data System (ADS)

    Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker; Simpson, Christine M.

    2014-08-01

    We analyse the properties of the circumgalactic medium and the metal content of the stars comprising the central galaxy in eight hydrodynamical `zoom-in' simulations of disc galaxy formation. We use these properties as a benchmark for our model of galaxy formation physics implemented in the moving-mesh code AREPO, which succeeds in forming quite realistic late-type spirals in the set of `Aquarius' initial conditions of Milky-Way-sized haloes. Galactic winds significantly influence the morphology of the circumgalactic medium and induce bipolar features in the distribution of heavy elements. They also affect the thermodynamic properties of the circumgalactic gas by supplying an energy input that sustains its radiative losses. Although a significant fraction of the heavy elements are transferred from the central galaxy to the halo, and even beyond the virial radius, enough metals are retained by stars to yield a peak in their metallicity distributions at about Z⊙. All our default runs overestimate the stellar [O/Fe] ratio, an effect that we demonstrate can be rectified by an increase of the adopted Type Ia supernova rate. Nevertheless, the models have difficulty in producing stellar metallicity gradients of the same strength as observed in the Milky Way.

  17. Dark-ages reionization and galaxy formation simulation - IV. UV luminosity functions of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Liu, Chuanwu; Mutch, Simon J.; Angel, P. W.; Duffy, Alan R.; Geil, Paul M.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2016-10-01

    In this paper, we present calculations of the UV luminosity function (LF) from the Dark-ages Reionization And Galaxy-formation Observables from Numerical Simulations project, which combines N-body, semi-analytic and seminumerical modelling designed to study galaxy formation during the Epoch of Reionization. Using galaxy formation physics including supernova feedback, the model naturally reproduces the UV LFs for high-redshift star-forming galaxies from z ˜ 5 through to z ˜ 10. We investigate the luminosity-star formation rate (SFR) relation, finding that variable SFR histories of galaxies result in a scatter around the median relation of 0.1-0.3 dex depending on UV luminosity. We find close agreement between the model and observationally derived SFR functions. We use our calculated luminosities to investigate the LF below current detection limits, and the ionizing photon budget for reionization. We predict that the slope of the UV LF remains steep below current detection limits and becomes flat at MUV ≳ -14. We find that 48 (17) per cent of the total UV flux at z ˜ 6 (10) has been detected above an observational limit of MUV ˜ -17, and that galaxies fainter than MUV ˜ -17 are the main source of ionizing photons for reionization. We investigate the luminosity-stellar mass relation, and find a correlation for galaxies with MUV < -14 that has the form M_{ast } ∝ 10^{-0.47M_UV}, in good agreement with observations, but which flattens for fainter galaxies. We determine the luminosity-halo mass relation to be M_vir ∝ 10^{-0.35M_UV}, finding that galaxies with MUV = -20 reside in host dark matter haloes of 1011.0±0.1 M⊙ at z ˜ 6, and that this mass decreases towards high redshift.

  18. New lessons from the H I size-mass relation of galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Koribalski, Bärbel S.; Serra, Paolo; van der Hulst, Thijs; Roychowdhury, Sambit; Kamphuis, Peter; Chengalur, Jayaram N.

    2016-08-01

    We revisit the H I size-mass (D_{H I}-MH I) relation of galaxies with a sample of more than 500 nearby galaxies covering over five orders of magnitude in H I mass and more than 10 B-band magnitudes. The relation is remarkably tight with a scatter σ ˜ 0.06 dex, or 14 per cent. The scatter does not change as a function of galaxy luminosity, H I richness or morphological type. The relation is linked to the fact that dwarf and spiral galaxies have a homogeneous radial profile of H I surface density in the outer regions when the radius is normalized by DH I. The early-type disc galaxies typically have shallower H I radial profiles, indicating a different gas accretion history. We argue that the process of atomic-to-molecular gas conversion or star formation cannot explain the tightness of the DH I-MH I relation. This simple relation puts strong constraints on simulation models for galaxy formation.

  19. Primordial random motions and angular momenta of galaxies and galaxy clusters.

    NASA Technical Reports Server (NTRS)

    Silk, J.; Lea, S.

    1973-01-01

    We study the decay of primordial random motions of galaxies and galaxy clusters in an expanding universe by solving a kinetic equation for the relaxation of differential energy spectra N(E, t). Systematic dissipative energy losses are included, involving gravitational drag by, and accretion of, intergalactic matter, as well as the effect of collisions with other systems. Formal and numerical solutions are described for two distinct modes of galaxy formation in a turbulent medium, corresponding to formation at a distinct epoch and to continuous formation of galaxies. We show that any primordial random motions of galaxies at the present epoch can amount to at most a few km/sec, and that collisions at early epochs can lead to the acquisition of significant amounts of primordial angular momentum.

  20. A galaxy formation cookbook: Recipes and utensils

    NASA Astrophysics Data System (ADS)

    Katz, Neal Steven

    Numerical simulations of hierarchial galaxy formation including gas dynamics are presented. These simulations are conducted using a general-purpose program for evolving self-gravitating systems in three dimensions. The gravitational forces are calculated using a hierarchial tree algorithm while the gas dynamic properties are determined using smoothed particle hydrodynamics. Since in this method the complete thermodynamic state of the gas is known everywhere, dissipational effects can be included by allowing the gas to cool radiatively, using standard cooling curves, and star formation can be prescribed in a physical manner. The simulations model the collapse of isolated constant density perturbations, made of dark and baryonic matter in a 10 to 1 ratio, initially in solid rotation and in Hubble flow. Small scale power is added using the Zel'dovich approximation assuming a power law slope of either -2.5 or 0. The simulations are successful in making systems that resemble spirals and ellipticals. Of the parameters that are investigated - the small scale power amplitude, the initial angular momentum, and the star formation rate - it is the amplitude of the small scale power that is most important in determining the final Hubble type. Systems form through the merger of sub-clumps. The systems with larger small scale power have clumps with higher central densities. Higher density clumps retain their identities longer than lower density clumps and are able to lose more angular momentum. These systems form ellipticals. Spirals form when these clumps are not very distinct and little angular momentum transport occurs. Since the Hubble type is determined by how much small scale power is present when compared to the height of the galaxy-sized peak, the density-morphology relation is easily explained. The formation and equilibrium characteristics of systems formed through dissipationless collapse using similar initial conditions are also studied.

  1. The co-evolution of total density profiles and central dark matter fractions in simulated early-type galaxies

    NASA Astrophysics Data System (ADS)

    Remus, Rhea-Silvia; Dolag, Klaus; Naab, Thorsten; Burkert, Andreas; Hirschmann, Michaela; Hoffmann, Tadziu L.; Johansson, Peter H.

    2017-01-01

    We present evidence from cosmological hydrodynamical simulations for a co-evolution of the slope of the total (dark and stellar) mass density profile, γtot, and the dark matter fraction within the half-mass radius, fDM, in early-type galaxies. The relation can be described as γtot = A fDM + B for all systems at all redshifts. The trend is set by the decreasing importance of gas dissipation towards lower redshifts and for more massive systems. Early-type galaxies are smaller, more concentrated, have lower fDM and steeper γtot at high redshifts and at lower masses for a given redshift; fDM and γtot are good indicators for growth by `dry' merging. The values for A and B change distinctively for different feedback models, and this relation can be used as a test for such models. A similar correlation exists between γtot and the stellar mass surface density Σ*. A model with weak stellar feedback and feedback from black holes is in best agreement with observations. All simulations, independent of the assumed feedback model, predict steeper γtot and lower fDM at higher redshifts. While the latter is in agreement with the observed trends, the former is in conflict with lensing observations, which indicate constant or decreasing γtot. This discrepancy is shown to be artificial: the observed trends can be reproduced from the simulations using observational methodology to calculate the total density slopes.

  2. Star Formation in Undergraduate ALFALFA Team Galaxy Groups and Clusters

    NASA Astrophysics Data System (ADS)

    Koopmann, Rebecca A.; Durbala, Adriana; Finn, Rose; Haynes, Martha P.; Coble, Kimberly A.; Craig, David W.; Hoffman, G. Lyle; Miller, Brendan P.; Crone-Odekon, Mary; O'Donoghue, Aileen A.; Troischt, Parker; Undergraduate ALFALFA Team; ALFALFA Team

    2017-01-01

    The Undergraduate ALFALFA Team (UAT) Groups project is a coordinated study of gas and star formation properties of galaxies in and around 36 nearby (z<0.03) groups and clusters of varied richness, morphological type mix, and X-ray luminosity. By studying a large range of environments and considering the spatial distributions of star formation, we probe mechanisms of gas depletion and morphological transformation. The project uses ALFALFA HI observations, optical observations, and digital databases like SDSS, and incorporates work undertaken by faculty and students at different institutions within the UAT. Here we present results from our wide area Hα and broadband R imaging project carried out with the WIYN 0.9m+MOSAIC/HDI at KPNO, including an analysis of radial star formation rates and extents of galaxies in the NGC 5846, Abell 779, NRGb331, and HCG 69 groups/clusters. This work has been supported by NSF grant AST-1211005 and AST-1637339.

  3. Formation and evolution of dwarf elliptical galaxies - II. Spatially resolved star formation histories

    NASA Astrophysics Data System (ADS)

    Koleva, Mina; de Rijcke, Sven; Prugniel, Philippe; Zeilinger, Werner W.; Michielsen, Dolf

    2009-07-01

    We present optical Very Large Telescope spectroscopy of 16 dwarf elliptical galaxies (dEs) comparable in mass to NGC 205, and belonging to the Fornax cluster and to nearby groups of galaxies. Using full-spectrum fitting, we derive radial profiles of the SSP-equivalent ages and metallicities. We make a detailed analysis with ULYSS and STECKMAP of the star formation history in the core of the galaxies and in an aperture of one effective radius. We resolved the history into one to four epochs. The statistical significance of these reconstructions was carefully tested; the two programs give remarkably consistent results. The old stellar population of the dEs, which dominates their mass, is likely coeval with that of massive ellipticals or bulges, but the star formation efficiency is lower. Important intermediate age (1-5 Gyr) populations and frequently tails of star formation until recent times are detected. These histories are reminiscent of their lower mass dwarf spheroidal counterparts of the Local Group. Most galaxies (10/16) show significant metallicity gradients, with metallicity declining by 0.5 dex over one half-light radius on average. These gradients are already present in the old population. The flattened (or discy), rotating objects (6/16) have flat metallicity profiles. This may be consistent with a distinct origin for these galaxies or it may be due to their geometry. The central single stellar population equivalent age varies between 1 and 6 Gyr, with the age slowly increasing with radius in the vast majority of objects. The group and cluster galaxies have similar radial gradients and star formation histories. The strong and old metallicity gradients place important constraints on the possible formation scenarios of dEs. Numerical simulations of the formation of spherical low-mass galaxies reproduce these gradients, but they require a longer time for them to build up. A gentle depletion of the gas, by ram pressure stripping or starvation, could drive the

  4. Observational constraints on disc galaxy formation

    NASA Astrophysics Data System (ADS)

    Syer, D.; Mao, Shude; Mo, H. J.

    1999-04-01

    We use data from the literature to constrain theoretical models of galaxy formation. We show how to calculate the dimensionless spin parameter lambda of the haloes of disc galaxies, and we compare the distribution of lambda with that observed in cosmological N-body simulations. The agreement is excellent, which provides strong support for the hierarchical picture of galaxy formation. Assuming only that the radial surface density distribution of discs is exponential, we estimate crudely the maximum-disc mass-to-light ratio in the I band, and obtain < Upsilon_I> <~ 3.56 h, for a Hubble constant of 100 h km s^-1 Mpc^-1. We discuss this result and its limitations in relation to other independent determinations of Upsilon_I. We also define a dimensionless form of the Tully-Fisher relation, and use it to derive a value of the baryon fraction in disc galaxies; the median value is m_d = 0.084 (Upsilon_I3.56 h). Assuming that the gas fraction in galactic haloes is at most as large as that in clusters, we also conclude that < Upsilon_I> <~ 2.56 h^-1/2.

  5. Formation des etoiles massives dans les galaxies spirales

    NASA Astrophysics Data System (ADS)

    Lelievre, Mario

    Le but de cette thèse est de décrire la formation des étoiles massives dans les galaxies spirales appartenant à divers types morphologiques. L'imagerie Hα profonde combinée à une robuste méthode d'identification des régions HII ont permis de détecter et de mesurer les propriétés (position, taille, luminosité, taux de formation d'étoiles) de plusieurs régions HII situées dans le disque interne (R < R25) de dix galaxies mais aussi à leur périphérie (R ≥ R 25). De façon générale, la répartition des régions HII ne montre aucune évidence de structure morphologique à R < R25 (bras spiraux, anneau, barre) à moins de limiter l'analyse aux régions HII les plus grosses ou les plus lumineuses. La répartition des régions HII, de même que leur taille et leur luminosité, sont toutefois sujettes à de forts effets de sélection qui dépendent de la distance des galaxies et qu'il faut corriger en ramenant l'échantillon à une résolution spatiale commune. Les fonctions de luminosité montrent que les régions HII les plus brillantes ont tendance à se former dans la portion interne du disque. De plus, l'analyse des pentes révèle une forte corrélation linéaire par rapport au type morphologique. Aucun pic n'est observé dans les fonctions de luminosité à log L-37 qui révèlerait la transition entre les régions HII bornées par l'ionisation et par la densité. Une relation cubique est obtenue entre la taille et la luminosité des régions HII, cette relation variant toutefois de façon significative entre le disque interne et la périphérie d'une même galaxie. La densité et la dynamique du gaz et des étoiles pourraient influencer de façon significative la stabilité des nuages moléculaires face à l'effondrement gravitationnel. D'une part, l'étendue du disque de régions HII pour cinq galaxies de l'échantillon coïncide avec celle de l'hydrogène atomique. D'autre part, en analysant la stabilité des disques galactiques, on conclue

  6. Curious Case of a Stripped Elliptical Galaxy

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    direction.All of these features are signs that this galaxy is being ram-pressurestripped as it falls into the center of the cluster. The star-forming blobs, for example, are exhibiting classic ram-pressure-stripping behavior: as a galaxy falls into the cluster center, streams of ionized gas blow downwind, and stars (which dont respond as easily to the force of the wind) are left behind in a stream pointing upwind.Gas from a Merger?An example of a tidal tail drawn out from a disrupted late-type galaxy. The disrupted galaxy in Abell 2670 is, in contrast, an early-type, elliptical galaxy that should be gas-poor. [H. Ford, JHU/M. Clampin, STScI/G. Hartig, STScI/G. Illingworth, UCO, Lick/ACS Science Team/ESA/NASA]But if this is an elliptical galaxy, where did the gas come from for the tails and the galactic-center star formation? To rule out the obvious, the authors first check that this galaxy really is an early-type elliptical. The galaxys color (reddened), morphology (elliptical and no sign of a stellar disk), and stellar velocities (no sign of stellar rotation) all confirm this.The authors therefore speculate that the galaxy recently underwent a wet merger a merger with a companion galaxy that was gas-rich. Much of this gas was driven to the center of the elliptical galaxy in the merger, and its now responsible for the starbursts there.Well hopefully be able to draw stronger conclusions about this unusual galaxy after additional investigation into the amount of gas it contains and the galaxys star formation rate. In the meantime, this stripped elliptical makes for an intriguing puzzle!CitationYun-Kyeong Sheen et al 2017 ApJL 840 L7. doi:10.3847/2041-8213/aa6d79

  7. Wing galaxies: A formation mechanism of the clumpy irregular galaxy Markarian 297

    NASA Technical Reports Server (NTRS)

    Taniguchi, Yoshiaki; Noguchi, Masafumi

    1990-01-01

    In order to contribute to an understanding of collision-induced starburst activities, the authors present a detailed case study on the starburst galaxy Markarian 297 (= NGC 6052 = Arp 209; hereafter Mrk 297). This galaxy is classified as a clumpy irregular galaxy (CIG) according to its morphological properties (cf. Heidmann, 1987). Two major clumps and many small clumps are observed in the entire region of Mrk 297 (Hecquet, Coupinot, and Maucherat 1987). The overall morphology of Mrk 297 is highly chaotic and thus it seems difficult to determine possible orbits of galaxy-galaxy collision. However, the authors have serendipitously found a possible orbit during a course of numerical simulations for a radial-penetration collision between galaxies. The radial-penetration collision means that an intruder penetrates a target galaxy radially passing by its nucleus. This kind of collision is known to explain a formation mechanism of ripples around disk galaxies (Wallin and Struck-Marcell 1988). Here, the authors show that the radial-penetration collision between galaxies successfully explains both overall morphological and kinematical properties of Mrk 297. The authors made two kinds of numerical simulations for Mrk 297. One is N-body (1x10(exp 4) particles) simulations in which effects of self gravity of the stellar disk are taken into account. These simulations are used to study detailed morphological feature of Mrk 297. The response of gas clouds are also investigated in order to estimate star formation rates in such collisions. The other is test-particle simulations, which are utilized to obtain a rough picture of Mrk 297 and to analyze the velocity field of Mrk 297. The techniques of the numerical simulations are the same as those in Noguchi (1988) and Noguchi and Ishibashi (1986). In the present model, an intruding galaxy with the same mass of a target galaxy moves on a rectilinear orbit which passes the center of the target.

  8. Morphology of Dwarf Galaxies in Isolated Satellite Systems

    NASA Astrophysics Data System (ADS)

    Ann, Hong Bae

    2017-08-01

    The environmental dependence of the morphology of dwarf galaxies in isolated satellite systems is analyzed to understand the origin of the dwarf galaxy morphology using the visually classified morphological types of 5836 local galaxies with z ≲ 0.01. We consider six sub-types of dwarf galaxies, dS0, dE, dE_{bc}, dSph, dE_{blue}, and dI, of which the first four sub-types are considered as early-type and the last two as late-type. The environmental parameters we consider are the projected distance from the host galaxy (r_{p}), local and global background densities, and the host morphology. The spatial distributions of dwarf satellites of early-type galaxies are much different from those of dwarf satellites of late-type galaxies, suggesting the host morphology combined with r_{p} plays a decisive role on the morphology of the dwarf satellite galaxies. The local and global background densities play no significant role on the morphology of dwarfs in the satellite systems hosted by early-type galaxies. However, in the satellite system hosted by late-type galaxies, the global background densities of dE and dSph satellites are significantly different from those of dE_{bc}, dE_{blue}, and dI satellites. The blue-cored dwarf satellites (dE_{bc}) of early-type galaxies are likely to be located at r_{p} > 0.3 Mpc to keep their cold gas from the ram pressure stripping by the hot corona of early-type galaxies. The spatial distribution of dE_{bc} satellites of early-type galaxies and their global background densities suggest that their cold gas is intergalactic material accreted before they fall into the satellite systems.

  9. The rate and efficiency of high-mass star formation along the Hubble sequence

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas A.; Young, Judith S.

    1991-01-01

    Data obtained with IRAS are used to compare and contrast the global star formation rates for a galactic sample which represents essentially all known noninteracting spiral and lenticular galaxies within 40 Mpc. The distribution of 60 micron luminosity is similar for spirals of types Sa-Scd inclusively, although the luminosities of the very early and very late types are, on average, one order of magnitude lower. High-mass star formation rates are similar for early, intermediate, and late type spirals, and the average high-mass star formation rate per unit molecular gas mass is independent of type for spiral galaxies. A remarkable homogeneity exists in the high-mass star-forming capabilities of spiral galaxies, particularly among the Sa-Scd types. The Hubble sequence is therefore not a sequence in the present-day rate or production efficiency of high-mass stars.

  10. Galaxy And Mass Assembly (GAMA): The mechanisms for quiescent galaxy formation at z < 1

    NASA Astrophysics Data System (ADS)

    Rowlands, K.; Wild, V.; Bourne, N.; Bremer, M.; Brough, S.; Driver, S. P.; Hopkins, A. M.; Owers, M. S.; Phillipps, S.; Pimbblet, K.; Sansom, A. E.; Wang, L.; Alpaslan, M.; Bland-Hawthorn, J.; Colless, M.; Holwerda, B. W.; Taylor, E. N.

    2018-01-01

    One key problem in astrophysics is understanding how and why galaxies switch off their star formation, building the quiescent population that we observe in the local Universe. From the Galaxy And Mass Assembly and VIsible MultiObject Spectrograph Public Extragalactic Redshift surveys, we use spectroscopic indices to select quiescent and candidate transition galaxies. We identify potentially rapidly transitioning post-starburst (PSB) galaxies and slower transitioning green-valley galaxies. Over the last 8 Gyr, the quiescent population has grown more slowly in number density at high masses ({M}_\\ast >10^{11}{M_{⊙}) than at intermediate masses ({M}_\\ast >10^{10.6}{M_{⊙}). There is evolution in both the PSB and green-valley stellar mass functions, consistent with higher mass galaxies quenching at earlier cosmic times. At intermediate masses ({M}_\\ast >10^{10.6}{M_{⊙}), we find a green-valley transition time-scale of 2.6 Gyr. Alternatively, at z ∼ 0.7, the entire growth rate could be explained by fast-quenching PSB galaxies, with a visibility time-scale of 0.5 Gyr. At lower redshift, the number density of PSBs is so low that an unphysically short visibility window would be required for them to contribute significantly to the quiescent population growth. The importance of the fast-quenching route may rapidly diminish at z < 1. However, at high masses ({M}_\\ast >10^{11}{M_{⊙}), there is tension between the large number of candidate transition galaxies compared to the slow growth of the quiescent population. This could be resolved if not all high-mass PSB and green-valley galaxies are transitioning from star forming to quiescent, for example if they rejuvenate out of the quiescent population following the accretion of gas and triggering of star formation, or if they fail to completely quench their star formation.

  11. The spatially resolved star formation history of CALIFA galaxies. Cosmic time scales

    NASA Astrophysics Data System (ADS)

    García-Benito, R.; González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; Cortijo-Ferrero, C.; López Fernández, R.; de Amorim, A. L.; Lacerda, E. A. D.; Vale Asari, N.; Sánchez, S. F.

    2017-12-01

    This paper presents the mass assembly time scales of nearby galaxies observed by CALIFA at the 3.5 m telescope in Calar Alto. We apply the fossil record method of the stellar populations to the complete sample of the 3rd CALIFA data release, with a total of 661 galaxies, covering stellar masses from 108.4 to 1012M⊙ and a wide range of Hubble types. We apply spectral synthesis techniques to the datacubes and process the results to produce the mass growth time scales and mass weighted ages, from which we obtain temporal and spatially resolved information in seven bins of galaxy morphology (E, S0, Sa, Sb, Sc, and Sd) and six bins of stellar mass and stellar mass surface density. We use three different tracers of the spatially resolved star formation history (mass assembly curves, ratio of half mass to half light radii, and mass-weighted age gradients) to test if galaxies grow inside-out, and its dependence with galaxy stellar mass, stellar mass surface density, and morphology. Our main results are as follows: (a) the innermost regions of galaxies assemble their mass at an earlier time than regions located in the outer parts; this happens at any given stellar mass (M⋆), stellar mass surface density (Σ⋆), or Hubble type, including the lowest mass systems in our sample. (b) Galaxies present a significant diversity in their characteristic formation epochs for lower-mass systems. This diversity shows a strong dependence of the mass assembly time scales on Σ⋆ and Hubble type in the lower-mass range (108.4 to 1010.4), but a very mild dependence in higher-mass bins. (c) The lowest half mass radius (HMR) to half light radius (HLR) ratio is found for galaxies between 1010.4 and 1011.1M⊙, where galaxies are 25% smaller in mass than in light. Low-mass galaxies show the largest ratio with HMR/HLR 0.89. Sb and Sbc galaxies present the lowest HMR/HLR ratio (0.74). The ratio HMR/HLR is always, on average, below 1, indicating that galaxies grow faster in mass than in light

  12. The edge of galaxy formation - I. Formation and evolution of MW-satellite analogues before accretion

    NASA Astrophysics Data System (ADS)

    Macciò, Andrea V.; Frings, Jonas; Buck, Tobias; Penzo, Camilla; Dutton, Aaron A.; Blank, Marvin; Obreja, Aura

    2017-12-01

    The satellites of the Milky Way and Andromeda represent the smallest galaxies we can observe in our Universe. In this series of papers, we aim to shed light on their formation and evolution using cosmological hydrodynamical simulations. In this first paper, we focus on the galaxy properties before accretion, by simulating 27 haloes with masses between 5 × 108 and 1010 M⊙. Out of this set 19 haloes successfully form stars, while 8 remain dark. The simulated galaxies match quite well present day observed scaling relations between stellar mass, size and metallicity, showing that such relations are in place before accretion. Our galaxies show a large variety of star formation histories, from extended star formation periods to single bursts. As in more massive galaxies, large star formation bursts are connected with major mergers events, which greatly contribute to the overall stellar mass build up. The intrinsic stochasticity of mergers induces a large scatter in the stellar mass-halo mass relation, up to two orders of magnitude. Despite the bursty star formation history, on these mass scales baryons are very ineffective in modifying the dark matter profiles, and galaxies with a stellar mass below ≈106 M⊙ retain their cuspy central dark matter distribution, very similar to results from pure N-body simulations.

  13. Large Binocular Telescope/LUCIFER spectroscopy: kinematics of a compact early-type galaxy at z ≃ 1.4

    NASA Astrophysics Data System (ADS)

    Longhetti, M.; Saracco, P.; Gargiulo, A.; Tamburri, S.; Lonoce, I.

    2014-04-01

    We present a high signal-to-noise ratio (S/N > 10) medium-resolution (R = 2000) Large Binocular Telescope/LUCIFER spectrum of the early-type galaxy (ETG) S2F1-142 at z ≃ 1.4. By means of the CaT line at 8662 Å, we measured its redshift z = 1.386 ± 0.001 and we estimated its velocity dispersion σ v=340^{-60}_{+120} km s-1. Its corresponding virial mass is 3.9 × 1011 M⊙, compatible with the stellar mass estimates obtained assuming initial mass functions (IMFs) less dwarf rich than the Salpeter one. S2F1-142 is a compact galaxy with Re = 3.1 ± 0.2 kpc, i.e. an effective radius more than three times smaller than the average Re of ETGs with the same mass in the local Universe. At the same time, we found local and high-redshift galaxies with a similar mass content and similar effective radius confirming that it is fully consistent with the already available measures of Re and σv both in the local and in the distant Universe. Considering the distribution of Re and σv as a function of the stellar mass content of ETGs, both in the local and in the distant Universe, we noticed that the measured velocity dispersions of the more compact galaxies are on average slightly lower than expected on the basis of their compactness and the virial theorem, suggesting that (i) their dark matter content is lower than in the more diffuse galaxies and/or (ii) their luminosity profiles are steeper than in the more diffuse galaxies and/or (iii) their larger compactness is an apparent effect caused by the overestimate of their stellar mass content (due to bottom lighter IMF and/or systematic affecting the stellar mass estimates).

  14. The spatial extent of star formation in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Moreno, Jorge

    2015-08-01

    We employ a suite of 75 simulations of galaxies in idealized major mergers (stellar mass ratio ˜2.5:1), with a wide range of orbital parameters, to investigate the spatial extent of interaction-induced star formation. Although the total star formation in galaxy encounters is generally elevated relative to isolated galaxies, we find that this elevation is a combination of intense enhancements within the central kpc and moderately suppressed activity at larger galactocentric radii. The radial dependence of the star formation enhancement is stronger in the less massive galaxy than in the primary, and is also more pronounced in mergers of more closely aligned disc spin orientations. Conversely, these trends are almost entirely independent of the encounter’s impact parameter and orbital eccentricity. Our predictions of the radial dependence of triggered star formation, and specifically the suppression of star formation beyond kpc-scales, will be testable with the next generation of integral-field spectroscopic surveys.Co-authors: Paul Torrey, Sara Ellison, David Patton, Asa Bluck, Gunjan Bansal & Lars Hernquist

  15. Galaxy formation in an intergalactic medium dominated by explosions

    NASA Technical Reports Server (NTRS)

    Ostriker, J. P.; Cowie, L. L.

    1981-01-01

    The evolution of galaxies in an intergalactic medium dominated by explosions of star systems is considered analogously to star formation by nonlinearly interacting processes in the interstellar medium. Conditions for the existence of a hydrodynamic instability by which galaxy formation leads to more galaxy formation due to the propagation of the energy released at the death of massive stars are examined, and it is shown that such an explosive amplification is possible at redshifts less than about 5 and stellar system masses between 10 to the 8th and 10 to the 12th solar masses. Explosions before a redshift of about 5 are found to lead primarily to the formation of massive stars rather than galaxies, while those at a redshift close to 5 will result in objects of normal galactic scale. The model also predicts a dusty interstellar medium preventing the detection of objects of redshift greater than 3, numbers and luminosities of protogalaxies comparable to present observations, unvirialized groups of galaxies lying on two-dimensional surfaces, and a significant number of black holes in the mass range 1000-10,000 solar masses.

  16. STAR FORMATION ACTIVITY IN A YOUNG GALAXY CLUSTER AT Z = 0.866

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laganá, T. F.; Martins, L. P.; Ulmer, M. P.

    2016-07-10

    The galaxy cluster RX J1257+4738 at z = 0.866 is one of the highest redshift clusters with a richness of multi-wavelength data, and is thus a good target to study the star formation–density relation at early epochs. Using a sample of spectroscopically confirmed cluster members, we derive the star-formation rates (SFRs) of our galaxies using two methods: (1) the relation between SFR and total infrared luminosity extrapolated from the observed Spitzer Multiband Imaging Photometer for Spitzer 24 μ m imaging data; and (2) spectral energy distribution fitting using the MAGPHYS code, including eight different bands. We show that, for thismore » cluster, the SFR–density relation is very weak and seems to be dominated by the two central galaxies and the SFR presents a mild dependence on stellar mass, with more massive galaxies having higher SFR. However, the specific SFR (SSFR) decreases with stellar mass, meaning that more massive galaxies are forming fewer stars per unit of mass, and thus suggesting that the increase in star-forming members is driven by cluster assembly and infall. If the environment is somehow driving the star formation, one would expect a relation between the SSFR and the cluster centric distance, but that is not the case. A possible scenario to explain this lack of correlation is the contamination by infalling galaxies in the inner part of the cluster, which may be on their initial pass through the cluster center. As these galaxies have higher SFRs for their stellar mass, they enhance the mean SSFR in the center of the cluster.« less

  17. The role of black holes in galaxy formation and evolution.

    PubMed

    Cattaneo, A; Faber, S M; Binney, J; Dekel, A; Kormendy, J; Mushotzky, R; Babul, A; Best, P N; Brüggen, M; Fabian, A C; Frenk, C S; Khalatyan, A; Netzer, H; Mahdavi, A; Silk, J; Steinmetz, M; Wisotzki, L

    2009-07-09

    Virtually all massive galaxies, including our own, host central black holes ranging in mass from millions to billions of solar masses. The growth of these black holes releases vast amounts of energy that powers quasars and other weaker active galactic nuclei. A tiny fraction of this energy, if absorbed by the host galaxy, could halt star formation by heating and ejecting ambient gas. A central question in galaxy evolution is the degree to which this process has caused the decline of star formation in large elliptical galaxies, which typically have little cold gas and few young stars, unlike spiral galaxies.

  18. SUSTAINING STAR FORMATION RATES IN SPIRAL GALAXIES: SUPERNOVA-DRIVEN TURBULENT ACCRETION DISK MODELS APPLIED TO THINGS GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vollmer, Bernd; Leroy, Adam K., E-mail: bvollmer@astro.u-strasbg.fr

    2011-01-15

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproducedmore » by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M{sub sun}) {approx}< 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.« less

  19. Sustaining Star Formation Rates in Spiral Galaxies Supernova-driven Turbulent Accretion Disk Models Applied to THINGS Galaxies

    NASA Astrophysics Data System (ADS)

    Vollmer, Bernd; Leroy, Adam K.

    2011-01-01

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproduced by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M ⊙) <~ 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.

  20. Numerical simulation of the formation of a spiral galaxy

    NASA Astrophysics Data System (ADS)

    Williams, P. R.; Nelson, A. H.

    2001-08-01

    A simulation is described in which the numerical galaxy formed compares favourably in every measurable respect with contemporary bright spiral galaxies, including the formation of a distinct stellar bulge and large scale spiral arm shocks in the gas component. This is achieved in spite of the fact that only idealized proto-galactic initial conditions were used, and only simple phenomenological prescriptions for the physics of the interstellar medium (ISM) and star formation were implemented. In light of the emphasis in recent literature on the importance of the link between galaxy formation and models of the universe on cosmological scales, on the details of the physics of the ISM and star formation, and on apparent problems therein, the implications of this result are discussed.

  1. THE RELATION BETWEEN GALAXY STRUCTURE AND SPECTRAL TYPE: IMPLICATIONS FOR THE BUILDUP OF THE QUIESCENT GALAXY POPULATION AT 0.5 < z < 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Michael; Kriek, Mariska; Wel, Arjen van der

    We present the relation between galaxy structure and spectral type, using a K-selected galaxy sample at 0.5 < z < 2.0. Based on similarities between the UV-to-NIR spectral energy distributions (SEDs), we classify galaxies into 32 spectral types. The different types span a wide range in evolutionary phases, and thus—in combination with available CANDELS/F160W imaging—are ideal to study the structural evolution of galaxies. Effective radii (R{sub e}) and Sérsic parameters (n) have been measured for 572 individual galaxies, and for each type, we determine R{sub e} at fixed stellar mass by correcting for the mass-size relation. We use the rest-frame U − V versus V − J diagrammore » to investigate evolutionary trends. When moving into the direction perpendicular to the star-forming sequence, in which we see the Hα equivalent width and the specific star formation rate (sSFR) decrease, we find a decrease in R{sub e} and an increase in n. On the quiescent sequence we find an opposite trend, with older redder galaxies being larger. When splitting the sample into redshift bins, we find that young post-starburst galaxies are most prevalent at z > 1.5 and significantly smaller than all other galaxy types at the same redshift. This result suggests that the suppression of star formation may be associated with significant structural evolution at z > 1.5. At z < 1, galaxy types with intermediate sSFRs (10{sup −11.5}–10{sup −10.5} yr{sup −1}) do not have post-starburst SED shapes. These galaxies have similar sizes as older quiescent galaxies, implying that they can passively evolve onto the quiescent sequence, without increasing the average size of the quiescent galaxy population.« less

  2. Two new confirmed massive relic galaxies: red nuggets in the present-day Universe

    NASA Astrophysics Data System (ADS)

    Ferré-Mateu, Anna; Trujillo, Ignacio; Martín-Navarro, Ignacio; Vazdekis, Alexandre; Mezcua, Mar; Balcells, Marc; Domínguez, Lilian

    2017-05-01

    We confirm two new local massive relic galaxies, I.e. untouched survivors of the early Universe massive population: Mrk 1216 and PGC 032873. Both show early and peaked formation events within very short time-scales (<1 Gyr) and thus old mean mass-weighted ages (˜13 Gyr). Their star formation histories remain virtually unchanged out to several effective radii, even when considering the steeper initial-mass-function values inferred out to ˜3 effective radii. Their morphologies, kinematics and density profiles are like those found in the z > 2 massive population, setting them apart from the typical z ˜ 0 massive early-type galaxies. We find that there seems to exist a degree of relic that is related to how far into the path, to become one of these typical z ˜ 0 massive galaxies, the compact relic has moved. This path is partly dictated by the environment the galaxy lives in. For galaxies in rich environments, such as the previously reported relic galaxy NGC 1277, the most extreme properties (e.g. sizes, short formation time-scales, larger supermassive black holes) are expected, while lower density environments will have galaxies with delayed and/or extended star formations, slightly larger sizes and not that extreme black hole masses. The confirmation of three relic galaxies up to a distance of 106 Mpc, implies a lower limit in the number density of these red nuggets in the local Universe of 6 × 10-7 Mpc3, which is within the theoretical expectations.

  3. A photometrically and spectroscopically confirmed population of passive spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin A.; Dolley, Tim; Crossett, Jacob P.; Bonne, Nicolas J.

    2016-10-01

    We have identified a population of passive spiral galaxies from photometry and integral field spectroscopy. We selected z < 0.035 spiral galaxies that have WISE colours consistent with little mid-infrared emission from warm dust. Matched aperture photometry of 51 spiral galaxies in ultraviolet, optical and mid-infrared show these galaxies have colours consistent with passive galaxies. Six galaxies form a spectroscopic pilot study and were observed using the Wide-Field Spectrograph to check for signs of nebular emission from star formation. We see no evidence of substantial nebular emission found in previous red spiral samples. These six galaxies possess absorption-line spectra with 4000 Å breaks consistent with an average luminosity-weighted age of 2.3 Gyr. Our photometric and integral field spectroscopic observations confirm the existence of a population of local passive spiral galaxies, implying that transformation into early-type morphologies is not required for the quenching of star formation.

  4. Strong gravitational lensing and the stellar IMF of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Leier, Dominik; Ferreras, Ignacio; Saha, Prasenjit; Charlot, Stéphane; Bruzual, Gustavo; La Barbera, Francesco

    2016-07-01

    Systematic variations of the initial mass function (IMF) in early-type galaxies, and their connection with possible drivers such as velocity dispersion or metallicity, have been much debated in recent years. Strong lensing over galaxy scales combined with photometric and spectroscopic data provides a powerful method to constrain the stellar mass-to-light ratio and hence the functional form of the IMF. We combine photometric and spectroscopic constraints from the latest set of population synthesis models of Charlot & Bruzual, including a varying IMF, with a non-parametric analysis of the lens masses of 18 ETGs from the SLACS survey, with velocity dispersions in the range 200-300 km s-1. We find that very bottom-heavy IMFs are excluded. However, the upper limit to the bimodal IMF slope (μ ≲ 2.2, accounting for a dark matter fraction of 20-30 per cent, where μ = 1.3 corresponds to a Kroupa-like IMF) is compatible at the 1σ level with constraints imposed by gravity-sensitive line strengths. A two-segment power-law parametrization of the IMF (Salpeter-like for high masses) is more constrained (Γ ≲ 1.5, where Γ is the power index at low masses) but requires a dark matter contribution of ≳25 per cent to reconcile the results with a Salpeter IMF. For a standard Milky Way-like IMF to be applicable, a significant dark matter contribution is required within 1Re. Our results reveal a large range of allowed IMF slopes, which, when interpreted as intrinsic scatter in the IMF properties of ETGs, could explain the recent results of Smith et al., who find Milky Way-like IMF normalizations in a few massive lensing ETGs.

  5. Sharing Gravity's Microscope: Star Formation and Galaxy Evolution for Underserved Arizonans

    NASA Astrophysics Data System (ADS)

    Knierman, Karen A.; Monkiewicz, Jacqueline A.; Bowman, Catherine DD; Taylor, Wendy

    2016-01-01

    Learning science in a community is important for children of all levels and especially for many underserved populations. This project combines HST research of galaxy evolution using gravitationally lensed galaxies with hands-on activities and the Starlab portable planetarium to link astronomy with families, teachers, and students. To explore galaxy evolution, new activities were developed and evaluated using novel evaluation techniques. A new set of galaxy classification cards enable inquiry-based learning about galaxy ages, evolution, and gravitational lensing. Activities using new cylinder overlays for the Starlab transparent cylinder will enable the detailed examination of star formation and galaxy evolution as seen from the viewpoint inside of different types of galaxies. These activities were presented in several Arizona venues that enable family and student participation including ASU Earth and Space Open House, Arizona Museum of Natural History Homeschooling Events, on the Salt River Pima-Maricopa Indian Community, and inner city Phoenix schools serving mainly Hispanic populations. Additional events targeted underserved families at the Phoenix Zoo, in Navajo County, and for the Pascua Yaqui Tribe. After evaluation, the activities and materials will also be shared with local teachers and nationally.

  6. Star Formation Rate Distribution in the Galaxy NGC 1232

    NASA Astrophysics Data System (ADS)

    Araújo de Souza, Alexandre; Martins, Lucimara P.; Rodríguez-Ardila, Alberto; Fraga, Luciano

    2018-06-01

    NGC 1232 is a face-on spiral galaxy and a great laboratory for the study of star formation due to its proximity. We obtained high spatial resolution Hα images of this galaxy, with adaptive optics, using the SAM instrument at the SOAR telescope, and used these images to study its H II regions. These observations allowed us to produce the most complete H II region catalog for it to date, with a total of 976 sources. This doubles the number of H II regions previously found for this object. We used these data to construct the H II luminosity function, and obtained a power-law index lower than the typical values found for Sc galaxies. This shallower slope is related to the presence of a significant number of high-luminosity H II regions (log L > 39 dex). We also constructed the size distribution function, verifying that, as for most galaxies, NGC 1232 follows an exponential law. We also used the Hα luminosity to calculate the star formation rate. An extremely interesting fact about this galaxy is that X-ray diffuse observations suggest that NGC 1232 recently suffered a collision with a dwarf galaxy. We found an absence of star formation around the region where the X-ray emission is more intense, which we interpret as a star formation quenching due to the collision. Along with that, we found an excess of star-forming regions in the northeast part of the galaxy, where the X-ray emission is less intense.

  7. The ATLAS3D project - I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele; Emsellem, Eric; Krajnović, Davor; McDermid, Richard M.; Scott, Nicholas; Verdoes Kleijn, G. A.; Young, Lisa M.; Alatalo, Katherine; Bacon, R.; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Serra, Paolo; Weijmans, Anne-Marie

    2011-05-01

    The ATLAS3D project is a multiwavelength survey combined with a theoretical modelling effort. The observations span from the radio to the millimetre and optical, and provide multicolour imaging, two-dimensional kinematics of the atomic (H I), molecular (CO) and ionized gas (Hβ, [O III] and [N I]), together with the kinematics and population of the stars (Hβ, Fe5015 and Mg b), for a carefully selected, volume-limited (1.16 × 105 Mpc3) sample of 260 early-type (elliptical E and lenticular S0) galaxies (ETGs). The models include semi-analytic, N-body binary mergers and cosmological simulations of galaxy formation. Here we present the science goals for the project and introduce the galaxy sample and the selection criteria. The sample consists of nearby (D < 42 Mpc, |δ- 29°| < 35°, |b| > 15°) morphologically selected ETGs extracted from a parent sample of 871 galaxies (8 per cent E, 22 per cent S0 and 70 per cent spirals) brighter than MK < -21.5 mag (stellar mass M★≳ 6 ×109 M⊙). We analyse possible selection biases and we conclude that the parent sample is essentially complete and statistically representative of the nearby galaxy population. We present the size-luminosity relation for the spirals and ETGs and show that the ETGs in the ATLAS3D sample define a tight red sequence in a colour-magnitude diagram, with few objects in the transition from the blue cloud. We describe the strategy of the SAURON integral field observations and the extraction of the stellar kinematics with the pPXF method. We find typical 1σ errors of ΔV≈ 6 km s-1, Δσ≈ 7 km s-1, Δh3≈Δh4≈ 0.03 in the mean velocity, the velocity dispersion and Gauss-Hermite (GH) moments for galaxies with effective dispersion σe≳ 120 km s-1. For galaxies with lower σe (≈40 per cent of the sample) the GH moments are gradually penalized by pPXF towards zero to suppress the noise produced by the spectral undersampling and only V and σ can be measured. We give an overview of the

  8. Field spheroid-dominated galaxies in a Λ-CDM Universe

    NASA Astrophysics Data System (ADS)

    Rosito, M. S.; Pedrosa, S. E.; Tissera, P. B.; Avila-Reese, V.; Lacerna, I.; Bignone, L. A.; Ibarra-Medel, H. J.; Varela, S.

    2018-06-01

    Context. Understanding the formation and evolution of early-type, spheroid-dominated galaxies is an open question within the context of the hierarchical clustering scenario, particularly in low-density environments. Aims: Our goal is to study the main structural, dynamical, and stellar population properties and assembly histories of field spheroid-dominated galaxies formed in a Λ-cold dark matter (Λ-CDM) scenario to assess to what extent they are consistent with observations. Methods: We selected spheroid-dominated systems from a Λ-CDM simulation that includes star formation (SF), chemical evolution, and supernova feedback. The sample is made up of 18 field systems with MStar ≲ 6 × 1010M⊙ that are dominated by the spheroid component. For this sample we estimated the fundamental relations of ellipticals and compared them with current observations. Results: The simulated spheroid galaxies have sizes that are in good agreement with observations. The bulges follow a Sersic law with Sersic indexes that correlate with the bulge-to-total mass ratios. The structural-dynamical properties of the simulated galaxies are consistent with observed Faber-Jackson, fundamental plane, and Tully-Fisher relations. However, the simulated galaxies are bluer and with higher star formation rates (SFRs) than the observed isolated early-type galaxies. The archaeological mass growth histories show a slightly delayed formation and more prominent inside-out growth mode than observational inferences based on the fossil record method. Conclusions: The main structural and dynamical properties of the simulated spheroid-dominated galaxies are consistent with observations. This is remarkable since our simulation has not been calibrated to match them. However, the simulated galaxies are blue and star-forming, and with later stellar mass growth histories compared to observational inferences. This is mainly due to the persistence of extended discs in the simulations. The need for more efficient

  9. The fraction of quiescent massive galaxies in the early Universe

    NASA Astrophysics Data System (ADS)

    Fontana, A.; Santini, P.; Grazian, A.; Pentericci, L.; Fiore, F.; Castellano, M.; Giallongo, E.; Menci, N.; Salimbeni, S.; Cristiani, S.; Nonino, M.; Vanzella, E.

    2009-07-01

    Aims: We attempt to compile a complete, mass-selected sample of galaxies with low specific star-formation rates, and compare their properties with theoretical model predictions. Methods: We use the f(24 μ m})/f(K) flux ratio and the SED fitting to the 0.35-8.0 μm spectral distribution, to select quiescent galaxies from z≃ 0.4 to z≃ 4 in the GOODS-MUSIC sample. Our observational selection can be translated into thresholds in specific star-formation rate dot{M}/M_*, which can be compared with theoretical predictions. Results: In the framework of the well-known global decline in quiescent galaxy fraction with redshift, we find that a non-negligible fraction {≃ 15-20% of massive galaxies with low specific star-formation rate exists up to z≃ 4, including a tail of “red and dead” galaxies with dot{M}/M_*<10-11 yr-1. Theoretical models vary to a large extent in their predictions for the fraction of galaxies with low specific star-formation rates, but are unable to provide a global match to our data.

  10. Galactic chemical evolution in hierarchical formation models

    NASA Astrophysics Data System (ADS)

    Arrigoni, Matias

    2010-10-01

    The chemical properties and abundance ratios of galaxies provide important information about their formation histories. Galactic chemical evolution has been modelled in detail within the monolithic collapse scenario. These models have successfully described the abundance distributions in our Galaxy and other spiral discs, as well as the trends of metallicity and abundance ratios observed in early-type galaxies. In the last three decades, however, the paradigm of hierarchical assembly in a Cold Dark Matter (CDM) cosmology has revised the picture of how structure in the Universe forms and evolves. In this scenario, galaxies form when gas radiatively cools and condenses inside dark matter haloes, which themselves follow dissipationless gravitational collapse. The CDM picture has been successful at predicting many observed properties of galaxies (for example, the luminosity and stellar mass function of galaxies, color-magnitude or star formation rate vs. stellar mass distributions, relative numbers of early and late-type galaxies, gas fractions and size distributions of spiral galaxies, and the global star formation history), though many potential problems and open questions remain. It is therefore interesting to see whether chemical evolution models, when implemented within this modern cosmological context, are able to correctly predict the observed chemical properties of galaxies. With the advent of more powerfull telescopes and detectors, precise observations of chemical abundances and abundance ratios in various phases (stellar, ISM, ICM) offer the opportunity to obtain strong constraints on galaxy formation histories and the physics that shapes them. However, in order to take advantage of these observations, it is necessary to implement detailed modeling of chemical evolution into a modern cosmological model of hierarchical assembly.

  11. Galaxy formation through hierarchical clustering

    NASA Astrophysics Data System (ADS)

    White, Simon D. M.; Frenk, Carlos S.

    1991-09-01

    Analytic methods for studying the formation of galaxies by gas condensation within massive dark halos are presented. The present scheme applies to cosmogonies where structure grows through hierarchical clustering of a mixture of gas and dissipationless dark matter. The simplest models consistent with the current understanding of N-body work on dissipationless clustering, and that of numerical and analytic work on gas evolution and cooling are adopted. Standard models for the evolution of the stellar population are also employed, and new models for the way star formation heats and enriches the surrounding gas are constructed. Detailed results are presented for a cold dark matter universe with Omega = 1 and H(0) = 50 km/s/Mpc, but the present methods are applicable to other models. The present luminosity functions contain significantly more faint galaxies than are observed.

  12. THE STELLAR AGES AND MASSES OF SHORT GAMMA-RAY BURST HOST GALAXIES: INVESTIGATING THE PROGENITOR DELAY TIME DISTRIBUTION AND THE ROLE OF MASS AND STAR FORMATION IN THE SHORT GAMMA-RAY BURST RATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leibler, C. N.; Berger, E.

    2010-12-10

    We present multi-band optical and near-infrared observations of 19 short {gamma}-ray burst (GRB) host galaxies, aimed at measuring their stellar masses and population ages. The goals of this study are to evaluate whether short GRBs track the stellar mass distribution of galaxies, to investigate the progenitor delay time distribution, and to explore any connection between long and short GRB progenitors. Using single stellar population models we infer masses of log(M{sub *}/M{sub sun}) {approx} 8.8-11.6, with a median of (log(M{sub *}/M{sub sun})) {approx} 10.1, and population ages of {tau}{sub *} {approx} 0.03-4.4 Gyr with a median of ({tau}{sub *}) {approx} 0.3more » Gyr. We further infer maximal masses of log(M{sub *}/M{sub sun}) {approx} 9.7-11.9 by assuming stellar population ages equal to the age of the universe at each host's redshift. Comparing the distribution of stellar masses to the general galaxy mass function, we find that short GRBs track the cosmic stellar mass distribution only if the late-type hosts generally have maximal masses. However, there is an apparent dearth of early-type hosts compared to the equal contribution of early- and late-type galaxies to the cosmic stellar mass budget. Similarly, the short GRB rate per unit old stellar mass appears to be elevated in the late-type hosts. These results suggest that stellar mass may not be the sole parameter controlling the short GRB rate, and raise the possibility of a two-component model with both mass and star formation playing a role (reminiscent of the case for Type Ia supernovae). If short GRBs in late-type galaxies indeed track the star formation activity, the resulting typical delay time is {approx}0.2 Gyr, while those in early-type hosts have a typical delay of {approx}3 Gyr. Using the same stellar population models, we fit the broadband photometry for 22 long GRB host galaxies in a similar redshift range and find that they have significantly lower masses and younger population ages, with

  13. Dusty starburst galaxies in the early Universe as revealed by gravitational lensing.

    PubMed

    Vieira, J D; Marrone, D P; Chapman, S C; De Breuck, C; Hezaveh, Y D; Weiβ, A; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Fomalont, E B; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Gullberg, B; Halverson, N W; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Hunter, T R; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Mocanu, L M; Murphy, E J; Natoli, T; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Sharon, K; Schaffer, K K; Shaw, L; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R

    2013-03-21

    In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.

  14. The Wolf-Rayet star population in the dwarf galaxy NGC 625

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Walsh, J. R.; Iglesias-Páramo, J.; Sandin, C.; Relaño, M.; Pérez-Montero, E.; Vílchez, J.

    2017-07-01

    Context. Quantifying the number, type, and distribution of Wolf-Rayet (W-R) stars is a key component in the context of galaxy evolution, since they put constraints on the age of the star formation bursts. Nearby galaxies (distances ≲5 Mpc) are particularly relevant in this context since they fill the gap between studies in the Local Group, where individual stars can be resolved, and galaxies in the Local Volume and beyond. Aims: We intend to characterise the W-R star population in one of these systems, NGC 625, which is a low-metallicity dwarf galaxy suffering a currently declining burst of star formation. Methods: Optical integral field spectroscopy (IFS) data have been obtained with the VIMOS-IFU and the HR_Orange and HR_Blue gratings at the Very Large Telescope covering the starburst region of NGC 625. Ancillary Hubble Space Telescope (HST) images in the F555W and F814W bands are also used for comparison. We estimate the number of W-R stars using a linear combination of three W-R templates: one early-type nitrogen (WN) star, one late-type WN star, and one carbon-type (WC) star (or oxygen-type (WO) star). Fits using several ensembles of templates were tested. Results were confronted with I) high spatial resolution HST photometry; II) numbers of W-R stars in nearby galaxies; and III) model predictions. Results: The W-R star population is spread over the main body of the galaxy and is not necessarily coincident with the overall stellar distribution. Our best estimation for the number of W-R stars yields a total of 28 W-R stars in the galaxy, out of which 17 are early-type WN, six are late-type WN, and five are WC stars. The width of the stellar features nicely correlates with the dominant W-R type found in each aperture. The distribution of the different types of WR in the galaxy is roughly compatible with the way star formation has propagated in the galaxy, according to previous findings using high spatial resolution with the HST. Fits using templates at the

  15. The formation and evolution of high-redshift dusty galaxies

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Gonzalez, Anthony H.; Ge, Jian; Vieira, Joaquin D.; Prochaska, Jason X.; Spilker, Justin; Strandet, Maria; Ashby, Matthew; Noterdaeme, Pasquier; Lundgren, Britt; Zhao, Yinan; Ji, Tuo; Zhang, Shaohua; Caucal, Paul; SPT SMG Collaboration

    2017-01-01

    Star formation and chemical evolution are among the biggest questions in galaxy formation and evolution. High-redshift dusty galaxies are the best sites to investigate mass assembly and growth, star formation rates, star formation history, chemical enrichment, and physical conditions. My thesis is based on two populations of high-redshift dusty galaxies, submillimeter galaxies (SMGs) and quasar 2175 Å dust absorbers, which are selected by dust emission and dust absorption, respectively.For the SMG sample, I have worked on the gravitationally lensed dusty, star-forming galaxies (DSFGs) at 2.8 < z < 5.7, which were first discovered by the South Pole Telescope (SPT) and further confirmed by ALMA. My thesis is focused on the stellar masses and star formation rates of these objects by means of multi-wavelength spectral energy distribution (SED) modelling. The data include HST/WFC3, Spitzer/IRAC, Herschel/PACS, Herschel/SPIRE, APEX/Laboca and SPT. Compared to the star-forming main sequence (MS), these DSFGs have specific SFRs that lie above the MS, suggesting that we are witnessing ongoing strong starburst events that may be driven by major mergers. SPT0346-52 at z = 5.7, the most extraordinary source in the SPT survey for which we obtained Chandra X-ray and ATCA radio data, was confirmed to have the highest star formation surface density of any known galaxy at high-z.The other half of my thesis is focused on a new population of quasar absorption line systems, 2175 Å dust absorbers, which are excellent probes of gas and dust properties, chemical evolution and physical conditions in the absorbing galaxies. This sample was selected from the SDSS and BOSS surveys and followed up with the Echelle Spectrographs and Imager on the Keck-II telescope, the Red & Blue Channel Spectrograph on the Multiple Mirror Telescope, and the Ultraviolet and Visible Echelle Spectrograph onboard the Very Large Telescope. We found a correlation between the presence of the 2175 Å bump and other

  16. The origin of diverse α-element abundances in galaxy discs

    NASA Astrophysics Data System (ADS)

    Mackereth, J. Ted; Crain, Robert A.; Schiavon, Ricardo P.; Schaye, Joop; Theuns, Tom; Schaller, Matthieu

    2018-04-01

    Spectroscopic surveys of the Galaxy reveal that its disc stars exhibit a spread in [α/Fe] at fixed [Fe/H], manifest at some locations as a bimodality. The origin of these diverse, and possibly distinct, stellar populations in the Galactic disc is not well understood. We examine the Fe and α-element evolution of 133 Milky Way-like galaxies from the EAGLE simulation, to investigate the origin and diversity of their [α/Fe]-[Fe/H] distributions. We find that bimodal [α/Fe] distributions arise in galaxies whose gas accretion histories exhibit episodes of significant infall at both early and late times, with the former fostering more intense star formation than the latter. The shorter characteristic consumption timescale of gas accreted in the earlier episode suppresses its enrichment with iron synthesised by Type Ia SNe, resulting in the formation of a high-[α/Fe] sequence. We find that bimodality in [α/Fe] similar to that seen in the Galaxy is rare, appearing in approximately 5 percent of galaxies in our sample. We posit that this is a consequence of an early gas accretion episode requiring the mass accretion history of a galaxy's dark matter halo to exhibit a phase of atypically-rapid growth at early epochs. The scarcity of EAGLE galaxies exhibiting distinct sequences in the [α/Fe]-[Fe/H] plane may therefore indicate that the Milky Way's elemental abundance patterns, and its accretion history, are not representative of the broader population of ˜L⋆ disc galaxies.

  17. THE EFFECT OF SECOND-GENERATION POPULATIONS ON THE INTEGRATED COLORS OF METAL-RICH GLOBULAR CLUSTERS IN EARLY-TYPE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul; Lee, Sang-Yoon; Yoon, Suk-Jin

    2013-05-20

    The mean color of globular clusters (GCs) in early-type galaxies is in general bluer than the integrated color of halo field stars in host galaxies. Metal-rich GCs often appear more associated with field stars than metal-poor GCs, yet show bluer colors than their host galaxy light. Motivated by the discovery of multiple stellar populations in Milky Way GCs, we present a new scenario in which the presence of second-generation (SG) stars in GCs is responsible for the color discrepancy between metal-rich GCs and field stars. The model assumes that the SG populations have an enhanced helium abundance as evidenced bymore » observations, and it gives a good explanation of the bluer optical colors of metal-rich GCs than field stars as well as strong Balmer lines and blue UV colors of metal-rich GCs. Ours may be complementary to the recent scenario suggesting the difference in stellar mass functions (MFs) as an origin for the GC-to-star color offset. A quantitative comparison is given between the SG and MF models.« less

  18. Reconstructing Star Formation Histories of Galaxies

    NASA Astrophysics Data System (ADS)

    Fritze-v. Alvensleben, U.; Lilly, T.

    2007-12-01

    We present a methodological study to find out how far back and to what precision star formation histories of galaxies can be reconstructed from CMDs, from integrated spectra and Lick indices, and from integrated multi-band photometry. Our evolutionary synthesis models GALEV allow to describe the evolution of galaxies in terms of all three approaches and we have assumed typical observational uncertainties for each of them and then investigated to what extent and accuracy different star formation histories can be discriminated. For a field in the LMC bar region with both a deep CMD from HST observations and a trailing slit spectrum across exactly the same field of view we could test our modelling results against real data.

  19. The Intricate Role of Cold Gas and Dust in Galaxy Evolution at Early Cosmic Epochs

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; Capak, Peter L.; Carilli, Christopher L.

    Cold molecular and atomic gas plays a central role in our understanding of early galaxy formation and evolution. It represents the component of the interstellar medium (ISM) that stars form out of, and its mass, distribution, excitation, and dynamics provide crucial insight into the physical processes that support the ongoing star formation and stellar mass buildup. We here present results that demonstrate the capability of the Atacama Large (sub-)Millimeter Array (ALMA) to detect the cold ISM and dust in ``normal'' galaxies at redshifts z=5-6. We also show detailed studies of the ISM in massive, dust-obscured starburst galaxies out to z>6 with ALMA, the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the Plateau de Bure Interferometer (PdBI), and the Karl G. Jansky Very Large Array (VLA). These observations place some of the most direct constraints on the dust-obscured fraction of the star formation history of the universe at z>5 to date, showing that ``typical'' galaxies at these epochs have low dust content, but also that highly-enriched, dusty starbursts already exist within the first billion years after the Big Bang.

  20. Tidal distortions in pairs of early-type galaxies

    NASA Technical Reports Server (NTRS)

    Prugniel, Philippe; Davoust, E.

    1990-01-01

    The authors are conducting an imaging survey of pairs of elliptical galaxies which has already produced interesting results. Some pairs present a common pattern of distortion interpreted in terms of tidal effects (Davoust and Prugniel, 1988; Prugniel et al., 1989). Other examples drawn from the literature (Borne and Hoessel, 1988; Colina and Perez-Fournon, 1990) share the same morphology. New cases and lists of the characteristics of 24 such systems. The authors' pairs are drawn from a sample of binary and multiple galaxies which has in turn been extracted from the CGCG, UGC (Nilson, 1973) and VV (Vorontsov-Velyaminov, 1959) catalogues. This sample includes that of Karachentsev (1972). It contains 1800 pairs, among which 700 are S - S or mixed morphology pairs. The authors are working on the remainder to produce a sample of close physical pairs of elliptical galaxies (they also include bulge dominated SO's since the morphological discrimination from ellipticals is often ambiguous, in particular for interacting galaxies). One of the interests of this work is to provide a sample selected on purely optical criteria, at variance with other works (e.g., Valentijn and Casertano, 1988). This will allow statistical studies of non-optical properties of these pairs (in particular radio emission). The authors have so far obtained charge-coupled device (CCD) images of 125 pairs with a 2m telescope and velocities' differences of 78 pairs were obtained using the 1.93 meter telescope of Observatoire de Haute Provence and from the literature. One is an optical pair (VV 190). Eighteen of our pairs present the morphological effect described in Davoust and Prugniel (1988): the external parts of each member are stretched in opposite senses in a direction rougly perpendicular to the pair axis. The proportion of 15 plus or minus 4 percent distorted pairs confirms previous estimates. Except for a few cases involving flattened galaxies with nearly aligned major axes which deserve careful

  1. Galaxy Zoo: evidence for rapid, recent quenching within a population of AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.

    2016-12-01

    We present a population study of the star formation history of 1244 Type 2 active galactic nuclei (AGN) host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualize the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.

  2. The Cold Side of Galaxy Formation: Dense Gas Through Cosmic Time

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; ngVLA Galaxy Assembly through Cosmic Time Science Working Group, ngVLA Galaxy Ecosystems Science Working Group

    2018-01-01

    The processes that lead to the formation and evolution of galaxies throughout the history of the Universe involve the complex interplay between hierarchical merging of dark matter halos, accretion of primordial and recycled gas, transport of gas within galaxy disks, accretion onto central super-massive black holes, and the formation of molecular clouds which subsequently collapse and fragment. The resulting star formation and black hole accretion provide large sources of energy and momentum that light up galaxies and lead to feedback. The ngVLA will be key to further understand how gas is accreted onto galaxies, and the processes that regulate the growth of galaxies through cosmic history. It will reveal how and on which timescales star formation and black hole accretion impact the gas in galaxies, and how the physical properties and chemical state of the gas change as gas cycles between different phases for different galaxy populations over a broad range in redshifts. The ngVLA will have the capability to carry out unbiased, large cosmic volume surveys at virtually any redshift down to an order of magnitude lower gas masses than currently possible in the critical low-level CO lines, thus exposing the evolution of gaseous reservoirs from the earliest epochs to the peak of the cosmic history of star formation. It will also image routinely and systematically the sub-kiloparsec scale distribution and kinematic structure of molecular gas in both normal main-sequence galaxies and large starbursts. The ngVLA thus is poised to revolutionize our understanding of galaxy evolution through cosmic time.

  3. Morphological Perspectives on Galaxy Evolution since z~1.5

    NASA Astrophysics Data System (ADS)

    Rutkowski, Michael

    Galaxies represent a fundamental catalyst in the "lifecycle'' of matter in the Universe, and the study of galaxy assembly and evolution provides unique insight into the physical processes governing the transformation of matter from atoms to gas to stars. With the Hubble Space Telescope, the astrophysical community is able to study the formation and evolution of galaxies, at an unrivaled spatial resolution, over more than 90% of cosmic time. Here, I present results from two complementary studies of galaxy evolution in the local and intermediate redshift Universe which used new and archival HST images. First, I use archival broad-band HST WFPC2 optical images of local (d < 63 Mpc) Seyfert-type galaxies to test the observed correlation between visually-classified host galaxy dust morphology and AGN class. Using quantitative parameters for classifying galaxy morphology, I do not measure a strong correlation between the galaxy morphology and AGN class. This result could imply that the Unified Model of AGN provides a sufficient model for the observed diversity of AGN, but this result could also indicate the quantitative techniques are insufficient for characterizing the dust morphology of local galaxies. To address the latter, I develop a new automated method using an inverse unsharp masking technique coupled to Source Extractor to detect and measure dust morphology. I measure no strong trends with dust-morphology and AGN class using this method, and conclude that the Unified Model remains sufficient to explain the diversity of AGN. Second, I use new UV-optical-near IR broad-band images obtained with the HST WFC3 in the Early Release Science (ERS) program to study the evolution of massive, early-type galaxies. These galaxies were once considered to be "red and dead'', as a class uniformly devoid of recent star formation, but observations of these galaxies in the local Universe at UV wavelengths have revealed a significant fraction (30%) of ETGs to have recently formed a

  4. The Physics of AGN Feedback During Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Quataert, Eliot

    A key lesson in our modern understanding of how galaxies form is that the release of energy by newly formed stars and accreting black holes -- in the form of both radiation and powerful outflows -- has a dramatic effect on the process of star formation and black hole growth itself. As a result, developing more realistic treatments of these stellar and black hole feedback processes is one of the primary challenges facing predictive models of galaxy formation. This proposal centers on understanding the dynamics of gas in galactic nuclei, with an emphasis on how black holes at the centers of galaxies grow and the resulting effects of black hole feedback on the scale of individual galaxies. Some of the calculations we propose will also have direct application to feedback by star formation. Our proposed work consists of two interrelated sets of projects. In the first, we will study in detail the mechanisms by which radiation and outflows from an accreting black hole interact with surrounding gas: this is the key science question at the heart of understanding black hole feedback. It is also important, however, to place this understanding of the key feedback processes in the broader context of gas dynamics in galaxies. With this in mind, we will carry out numerical simulations of gas in galactic nuclei and study, for the first time, the competition between gas inflow, star formation, and stellar and black hole feedback at the radii that the accretion rate onto a central black hole is determined and that galaxy-scale outflows of gas are likely initiated. Our work bears directly on, and will be applied to, observations by current NASA missions such as HST, Chandra, GALEX, Xmm-Newton, Herschel, and NuSTAR, and future missions such as JWST.

  5. Galaxy and Mass Assembly (GAMA): Morphological transformation of galaxies across the green valley

    NASA Astrophysics Data System (ADS)

    Bremer, M. N.; Phillipps, S.; Kelvin, L. S.; De Propris, R.; Kennedy, Rebecca; Moffett, Amanda J.; Bamford, S.; Davies, L. J. M.; Driver, S. P.; Häußler, B.; Holwerda, B.; Hopkins, A.; James, P. A.; Liske, J.; Percival, S.; Taylor, E. N.

    2018-05-01

    We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and on to the red sequence. We select Galaxy And Mass Assembly (GAMA) survey galaxies with 10.25 < log(M*/M⊙) < 10.75 and z < 0.2 classified according to their intrinsic u* - r* colour. From single component Sérsic fits, we find that the stellar mass-sensitive K-band profiles of red and green galaxy populations are very similar while g-band profiles indicate more disc-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disc components and that the blue to red evolution is driven by colour change in the disc. Together, these strongly suggest that galaxies evolve from blue to red through secular disc fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical time-scale for traversing the green valley ˜1-2 Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a rôle in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disc galaxies that are insufficiently supplied with gas to maintain previous levels of disc star formation, eventually attaining passive colours. No single event is needed to quench their star formation.

  6. ECO and RESOLVE: Galaxy Disk Growth in Environmental Context

    NASA Astrophysics Data System (ADS)

    Moffett, Amanda J.; Kannappan, Sheila J.; Berlind, Andreas A.; Eckert, Kathleen D.; Stark, David V.; Hendel, David; Norris, Mark A.; Grogin, Norman A.

    2015-10-01

    We study the relationships between galaxy environments and galaxy properties related to disk (re)growth, considering two highly complete samples that are approximately baryonic mass limited into the high-mass dwarf galaxy regime, the Environmental COntext catalog (data release herein) and the B-semester region of the REsolved Spectroscopy Of a Local VolumE survey. We quantify galaxy environments using both group identification and smoothed galaxy density field methods. We use by-eye and quantitative morphological classifications plus atomic gas content measurements and estimates. We find that blue early-type (E/S0) galaxies, gas-dominated galaxies, and UV-bright disk host galaxies all become distinctly more common below group halo mass ˜ {10}11.5 {M}⊙ , implying that this low group halo mass regime may be a preferred regime for significant disk growth activity. We also find that blue early-type and blue late-type galaxies inhabit environments of similar group halo mass at fixed baryonic mass, consistent with a scenario in which blue early-types can regrow late-type disks. In fact, we find that the only significant difference in the typical group halo mass inhabited by different galaxy classes is for satellite galaxies with different colors, where at fixed baryonic mass red early- and late-types have higher typical group halo masses than blue early- and late-types. More generally, we argue that the traditional morphology-environment relation (i.e., that denser environments tend to have more early-types) can be largely attributed to the morphology-galaxy mass relation for centrals and the color-environment relation for satellites.

  7. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    NASA Technical Reports Server (NTRS)

    Toft, S.; Smolcic, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; hide

    2014-01-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts.With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42(sup+40) -29 Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  8. Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies

    NASA Astrophysics Data System (ADS)

    Toft, S.; Smolčić, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; Wuyts, S.; Sanders, D.; Man, A. W. S.; Lutz, D.; Staguhn, J.; Berta, S.; Mccracken, H.; Krpan, J.; Riechers, D.

    2014-02-01

    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42^{+40}_{-29} Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  9. The Sagittarius Dwarf Galaxy Survey (SDGS) - II. The stellar content and constraints on the star formation history

    NASA Astrophysics Data System (ADS)

    Bellazzini, M.; Ferraro, F. R.; Buonanno, R.

    1999-08-01

    A detailed study of the star formation history of the Sagittarius dwarf spheroidal galaxy is performed through the analysis of data from the Sagittarius Dwarf Galaxy Survey (SDGS). Accurate statistical decontamination of the SDGS colour-magnitude diagrams (CMDs) allows us to obtain many useful constraints on the age and metal content of the Sgr stellar populations in three different regions of the galaxy. A coarse metallicity distribution of Sgr stars is derived, ranging from [Fe/H]~-2.0 to [Fe/H]~-0.7, the upper limit being somewhat higher in the central region of the galaxy. A qualitative global fit to all the observed CMD features is attempted, and a general scheme for the star formation history of the Sgr dSph is derived. According to this scheme, star formation began at a very early time from a low metal content interstellar medium and lasted for severalGyr, coupled with progressive chemical enrichment. The star formation rate (SFR) had a peak from 8 to 10Gyr ago, when the mean metallicity was in the range -1.3<=[Fe/H]<=-0.7. After that maximum, the SFR rapidly decreased and a very low rate of star formation took place until ~1-0.5Gyr ago.

  10. CHARACTERISTICS OF SPIRAL ARMS IN LATE-TYPE GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honig, Z. N.; Reid, M. J., E-mail: mreid@cfa.harvard.edu

    2015-02-10

    We have measured the positions of large numbers of H II regions in four nearly face-on, late-type, spiral galaxies: NGC 628 (M74), NGC 1232, NGC 3184, and NGC 5194 (M51). Fitting log-periodic spiral models to segments of each arm yields local estimates of spiral pitch angle and arm width. While pitch angles vary considerably along individual arms, among arms within a galaxy, and among galaxies, we find no systematic trend with galactocentric distance. We estimate the widths of the arm segments from the scatter in the distances of the H II regions from the spiral model. All major arms in these galaxies show spiralmore » arm width increasing with distance from the galactic center, similar to the trend seen in the Milky Way. However, in the outermost parts of the galaxies, where massive star formation declines, some arms reverse this trend and narrow. We find that spiral arms often appear to be composed of segments of ∼5 kpc length, which join to form kinks and abrupt changes in pitch angle and arm width; these characteristics are consistent with properties seen in the large N-body simulations of D'Onghia et al. and others.« less

  11. Circumnuclear Molecular Disks in Early-type Galaxies: Physical Properties and Precision Black Hole Mass Measurements

    NASA Astrophysics Data System (ADS)

    Boizelle, Benjamin

    2018-01-01

    ALMA is now capable of providing the most precise determinations of the masses of supermassive black holes in early-type galaxies (ETGs). In ALMA Cycle 2 we began a program to map the molecular gas kinematics in nearby ETGs that host central dust disks as seen in Hubble Space Telescope imaging. These initial observations targeted CO(2-1) emission at ~0.3" resolution, corresponding roughly to the projected radii of influence of the central black holes. In all cases we detect significant (~108 M⊙) molecular gas reservoirs that are in dynamically cold rotation, providing the most sensitive probes of the inner gravitational potentials of luminous ETGs. Using these gas kinematics, we verify that these molecular disks are formally stable against gravitational fragmentation and collapse. In several galaxies we detect central high-velocity gas rotation that provides direct kinematic evidence for a black hole. For two of these targets, NGC 1332 and NGC 3258, we have obtained higher-resolution observations (0.044" and 0.09") in Cycles 3 and 4 that more fully map out the gas rotation within the gravitational sphere of influence. We present dynamical modeling results for these targets, demonstrating that ALMA observations can enable black hole mass measurements at a precision of 10% or better, with minimal susceptibility to the systematic uncertainties that affect other methods of black hole mass measurement in ETGs. We discuss the impact of future high-resolution ALMA observations on black hole demographics and their potential to refine the high-mass end of the black hole-host galaxy scaling relationships.

  12. Ultracompact Blue Dwarfs: Galaxy Formation in the Local Universe?

    NASA Astrophysics Data System (ADS)

    Corbin, Michael

    2004-07-01

    Recent observations suggest that very low-mass galaxies in the local universe are still in the process of formation. To investigate this issue we propose to obtain deep ACS HRC images in the U, V and I bands of a sample of 11 "ultracompact" blue dwarf galaxies {UCBDs} identified in the Sloan Digital Sky Survey. These objects are nearby {z < 0.009}, actively star-forming, and have extremely small angular and physical sizes {d < 6" and D < 1 kpc}. They also tend to reside in voids. Our WFPC2 images of the prototype object of this class, POX 186, reveal this tiny object to have a highly disturbed morphlogy indicative of a recent {within 10^8 yr} collision between two small { 100 pc} clumps of stars that could represent the long-sought building blocks predicted by the Press-Schechter model of hierarchical galaxy formation. This collision has also triggered the formation of a "super" star cluster {SSC} at the object's core that may be the progenitor of a globular cluster. POX 186 thus appears to be a very small dwarf galaxy in the process of formation. This exciting discovery strongly motivates HST imaging of a full sample of UCBDs in order to determine if they have morphologies similar to POX 186. HST images are essential for resolving the structure of these objects, including establishing the presence of SSCs. HST also offers the only way to determine their morphologies in the near UV. The spectra of the objects available from the SDSS will also allow us to measure their star formation rates, dust content and metallicities. In addition to potentially providing the first direct evidence of Press-Schechter building blocks, these data could yield insight into the relationship between galaxy and globular cluster formation, and will serve as a test of the recent "downsizing" model of galaxy formation in which the least massive objects are the last to form.

  13. Modeling for Stellar Feedback in Galaxy Formation Simulations

    NASA Astrophysics Data System (ADS)

    Núñez, Alejandro; Ostriker, Jeremiah P.; Naab, Thorsten; Oser, Ludwig; Hu, Chia-Yu; Choi, Ena

    2017-02-01

    Various heuristic approaches to model unresolved supernova (SN) feedback in galaxy formation simulations exist to reproduce the formation of spiral galaxies and the overall inefficient conversion of gas into stars. Some models, however, require resolution-dependent scalings. We present a subresolution model representing the three major phases of supernova blast wave evolution—free expansion, energy-conserving Sedov-Taylor, and momentum-conserving snowplow—with energy scalings adopted from high-resolution interstellar-medium simulations in both uniform and multiphase media. We allow for the effects of significantly enhanced SN remnant propagation in a multiphase medium with the cooling radius scaling with the hot volume fraction, {f}{hot}, as {(1-{f}{hot})}-4/5. We also include winds from young massive stars and AGB stars, Strömgren sphere gas heating by massive stars, and a mechanism that limits gas cooling that is driven by radiative recombination of dense H II regions. We present initial tests for isolated Milky Way-like systems simulated with the Gadget-based code SPHgal with improved SPH prescription. Compared to pure thermal SN input, the model significantly suppresses star formation at early epochs, with star formation extended both in time and space in better accord with observations. Compared to models with pure thermal SN feedback, the age at which half the stellar mass is assembled increases by a factor of 2.4, and the mass-loading parameter and gas outflow rate from the galactic disk increase by a factor of 2. Simulation results are converged for a variation of two orders of magnitude in particle mass in the range (1.3-130) × 104 solar masses.

  14. Quenching of Star-formation Activity of High-redshift Galaxies in Cluster and Field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Kook; Im, Myungshin; Kim, Jae-Woo; Lotz, Jennifer; McPartland, Conor; Peth, Michael; Koekemoer, Anton M.

    2015-08-01

    How the galaxy evolution differs at different environment is one of intriguing questions in the study of structure formation. At local, galaxy properties are well known to be clearly different in different environments. However, it is still an open question how this environment-dependent trend has been shaped.In this presentation, we will present the results of our investigation about the evolution of star-formation properties of galaxies over a wide redshift range, from z~ 2 to z~0.5, focusing its dependence on their stellar mass and environment. In the UKIDSS/UDS region, covering ~2800 arcmin2, we estimated photometric redshifts and stellar population properties, such as stellar masses and star-formation rates, using the deep optical and near-infrared data available in this field. Then, we identified galaxy cluster candidates within the given redshift range.Through the analysis and comparison of star-formation (SF) properties of galaxies in clusters and in field, we found interesting results regarding the evolution of SF properties of galaxies: (1) regardless of redshifts, stellar mass is a key parameter controlling quenching of star formation in galaxies; (2) At z<1, environmental effects become important at quenching star formation regardless of stellar mass of galaxies; and (3) However, the result of the environmental quenching is prominent only for low mass galaxies (M* < 1010 M⊙) since the star formation in most of high mass galaxies are already quenched at z > 1.

  15. A Model Connecting Galaxy Masses, Star Formation Rates, and Dust Temperatures across Cosmic Time

    NASA Astrophysics Data System (ADS)

    Imara, Nia; Loeb, Abraham; Johnson, Benjamin D.; Conroy, Charlie; Behroozi, Peter

    2018-02-01

    We investigate the evolution of dust content in galaxies from redshifts z = 0 to z = 9.5. Using empirically motivated prescriptions, we model galactic-scale properties—including halo mass, stellar mass, star formation rate, gas mass, and metallicity—to make predictions for the galactic evolution of dust mass and dust temperature in main-sequence galaxies. Our simple analytic model, which predicts that galaxies in the early universe had greater quantities of dust than their low-redshift counterparts, does a good job of reproducing observed trends between galaxy dust and stellar mass out to z ≈ 6. We find that for fixed galaxy stellar mass, the dust temperature increases from z = 0 to z = 6. Our model forecasts a population of low-mass, high-redshift galaxies with interstellar dust as hot as, or hotter than, their more massive counterparts; but this prediction needs to be constrained by observations. Finally, we make predictions for observing 1.1 mm flux density arising from interstellar dust emission with the Atacama Large Millimeter Array.

  16. Evidence of a Bottom-heavy Initial Mass Function in Massive Early-type Galaxies from Near-infrared Metal Lines

    NASA Astrophysics Data System (ADS)

    Lagattuta, David J.; Mould, Jeremy R.; Forbes, Duncan A.; Monson, Andrew J.; Pastorello, Nicola; Persson, S. Eric

    2017-09-01

    We present new evidence for a variable stellar initial mass function (IMF) in massive early-type galaxies, using high-resolution, near-infrared spectroscopy from the Folded-port InfraRed Echellette spectrograph (FIRE) on the Magellan Baade Telescope at Las Campanas Observatory. In this pilot study, we observe several gravity-sensitive metal lines between 1.1 and 1.3 μm in eight highly luminous (L˜ 10{L}* ) nearby galaxies. Thanks to the broad wavelength coverage of FIRE, we are also able to observe the Ca II triplet feature, which helps with our analysis. After measuring the equivalent widths (EWs) of these lines, we notice mild to moderate trends between EW and central velocity dispersion (σ), with some species (K I, Na I, Mn I) showing a positive EW-σ correlation and others (Mg I, Ca II, Fe I) a negative one. To minimize the effects of metallicity, we measure the ratio R = [EW(K I)/EW(Mg I)], finding a significant systematic increase in this ratio with respect to σ. We then probe for variations in the IMF by comparing the measured line ratios to the values expected in several IMF models. Overall, we find that low-mass galaxies (σ ˜ 100 km s-1) favor a Chabrier IMF, while high-mass galaxies (σ ˜ 350 km s-1) are better described with a steeper (dwarf-rich) IMF slope. While we note that our galaxy sample is small and may suffer from selection effects, these initial results are still promising. A larger sample of galaxies will therefore provide an even clearer picture of IMF trends in this regime. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  17. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Martin, D. Christopher; Gonçalves, Thiago S.; Darvish, Behnam; Seibert, Mark; Schiminovich, David

    2017-06-01

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observed colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.

  18. Early-type galaxies: mass-size relation at z ˜ 1.3 for different environments

    NASA Astrophysics Data System (ADS)

    Raichoor, A.; Mei, S.; Stanford, S. A.; Holden, B. P.; Nakata, F.; Rosati, P.; Shankar, F.; Tanaka, M.; Ford, H.; Huertas-Company, M.; Illingworth, G.; Kodama, T.; Postman, M.; Rettura, A.; Blakeslee, J. P.; Demarco, R.; Jee, M. J.; White, R. L.

    2011-12-01

    We combine multi-wavelength data of the Lynx superstructure and GOODS/CDF-S to build a sample of 75 visually selected early-type galaxies (ETGs), spanning different environments (cluster/group/field) at z ˜ 1.3. By estimating their mass, age (SED fitting, with a careful attention to the stellar population model used) and size, we are able to probe the dependence on the environment of the mass-size relation. We find that, for ETGs with 10^{10} < M / M_⊙ < 10^{11.5}, (1) the mass-size relation in the field did not evolve overall from z ˜ 1.3 to present; (2) the mass-size relation in cluster/group environments at z ˜ 1.3 lies at smaller sizes than the local mass-size relation (R_{e,z ˜ 1.3}/R_{e,z = 0} ˜ 0.6-0.8).

  19. CO in Hickson compact group galaxies with enhanced warm H2 emission: Evidence for galaxy evolution?

    NASA Astrophysics Data System (ADS)

    Lisenfeld, U.; Appleton, P. N.; Cluver, M. E.; Guillard, P.; Alatalo, K.; Ogle, P.

    2014-10-01

    Context. Galaxies in Hickson Compact Groups (HCGs) are believed to experience morphological transformations from blue, star-forming galaxies to red, early-type galaxies. Galaxies with a high ratio between the luminosities of the warm H2 to the 7.7 μm PAH emission (so-called Molecular Hydrogen Emission Galaxies, MOHEGs) are predominantly in an intermediate phase, the green valley. Their enhanced H2 emission suggests that the molecular gas is affected in the transition. Aims: We study the properties of the molecular gas traced by CO in galaxies in HCGs with measured warm H2 emission in order to look for evidence of the perturbations affecting the warm H2 in the kinematics, morphology and mass of the molecular gas. Methods: We observed the CO(1-0) emission of 20 galaxies in HCGs and complemented our sample with 11 CO(1-0) spectra from the literature. Most of the galaxies have measured warm H2 emission, and 14 of them are classified as MOHEGs. We mapped some of these galaxies in order to search for extra-galactic CO emission. We analyzed the molecular gas mass derived from CO(1-0), MH2, and its kinematics, and then compared it to the mass of the warm molecular gas, the stellar mass and star formation rate (SFR). Results: Our results are the following. (i) The mass ratio between the CO-derived and the warm H2 molecular gas is in the same range as found for field galaxies. (ii) Some of the galaxies, mostly MOHEGs, have very broad CO linewidths of up to 1000 km s-1 in the central pointing. The line shapes are irregular and show various components. (iii) In the mapped objects we found asymmetric distributions of the cold molecular gas. (iv) The star formation efficiency (=SFR/MH2) of galaxies in HCGs is very similar to isolated galaxies. No significant difference between MOHEGs and non-MOHEGs or between early-type and spiral galaxies has been found. In a few objects the SFE is significantly lower, indicating the presence of molecular gas that is not actively forming stars

  20. IMF and [Na/Fe] abundance ratios from optical and NIR spectral features in early-type galaxies

    NASA Astrophysics Data System (ADS)

    La Barbera, F.; Vazdekis, A.; Ferreras, I.; Pasquali, A.; Allende Prieto, C.; Röck, B.; Aguado, D. S.; Peletier, R. F.

    2017-01-01

    We present a joint analysis of the four most prominent sodium-sensitive features (Na D, Na I λ8190Å, Na I λ1.14 μm, and Na I λ2.21 μm), in the optical and near-infrared spectral ranges, of two nearby, massive (σ ˜ 300 km s-1), early-type galaxies (named XSG1 and XSG2). Our analysis relies on deep Very Large Telescope/X-Shooter long-slit spectra, along with newly developed stellar population models, allowing for [Na/Fe] variations, up to ˜1.2 dex, over a wide range of age, total metallicity, and initial mass function (IMF) slope. The new models show that the response of the Na-dependent spectral indices to [Na/Fe] is stronger when the IMF is bottom heavier. For the first time, we are able to match all four Na features in the central regions of massive early-type galaxies finding an overabundance of [Na/Fe] in the range 0.5-0.7 dex and a bottom-heavy IMF. Therefore, individual abundance variations cannot be fully responsible for the trends of gravity-sensitive indices, strengthening the case towards a non-universal IMF. Given current limitations of theoretical atmosphere models, our [Na/Fe] estimates should be taken as upper limits. For XSG1, where line strengths are measured out to ˜0.8 Re, the radial trend of [Na/Fe] is similar to [α/Fe] and [C/Fe], being constant out to ˜0.5 Re, and decreasing by ˜0.2-0.3 dex at ˜0.8 Re, without any clear correlation with local metallicity. Such a result seems to be in contrast to the predicted increase of Na nucleosynthetic yields from asymptotic giant branch stars and Type II supernovae. For XSG1, the Na-inferred IMF radial profile is consistent, within the errors, with that derived from TiO features and the Wing-Ford band presented in a recent paper.

  1. The Star Formation Reference Survey - II. Activity demographics and host-galaxy properties for infrared-selected galaxies

    NASA Astrophysics Data System (ADS)

    Maragkoudakis, A.; Zezas, A.; Ashby, M. L. N.; Willner, S. P.

    2018-04-01

    We present activity demographics and host-galaxy properties of infrared-selected galaxies in the local Universe, using the representative Star Formation Reference Survey (SFRS). Our classification scheme is based on a combination of optical emission-line diagrams (BPT) and infrared (IR)-colour diagnostics. Using the weights assigned to the SFRS galaxies based on its parent sample, a far-IR-selected sample comprises 71 per cent H II galaxies, 13 per cent Seyferts, 3 per cent transition objects (TOs), and 13 per cent low-ionization nuclear emission-line regions (LINERs). For the SFRS H II galaxies, we derive nuclear star formation rates and gas-phase metallicities. We measure host-galaxy metallicities for all galaxies with available long-slit spectroscopy and abundance gradients for a subset of 12 face-on galaxies. The majority of H II galaxies show a narrow range of metallicities, close to solar, and flat metallicity profiles. Based on their host-galaxy and nuclear properties, the dominant ionizing source in the far-infrared selected TOs is star-forming activity. LINERs are found mostly in massive hosts (median of 1010.5 M⊙), median L(60 μm) = 109 L⊙, median dust temperatures of F60/F100 = 0.36, and median LH α surface density of 1040.2 erg s-1kpc-2, indicating older stellar populations as their main ionizing source rather than active galactic nucleus activity.

  2. The E-MOSAICS project: simulating the formation and co-evolution of galaxies and their star cluster populations

    NASA Astrophysics Data System (ADS)

    Pfeffer, Joel; Kruijssen, J. M. Diederik; Crain, Robert A.; Bastian, Nate

    2018-04-01

    We introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS incorporates models describing the formation, evolution, and disruption of star clusters into the EAGLE galaxy formation simulations, enabling the examination of the co-evolution of star clusters and their host galaxies in a fully cosmological context. A fraction of the star formation rate of dense gas is assumed to yield a cluster population; this fraction and the population's initial properties are governed by the physical properties of the natal gas. The subsequent evolution and disruption of the entire cluster population are followed accounting for two-body relaxation, stellar evolution, and gravitational shocks induced by the local tidal field. This introductory paper presents a detailed description of the model and initial results from a suite of 10 simulations of ˜L⋆ galaxies with disc-like morphologies at z = 0. The simulations broadly reproduce key observed characteristics of young star clusters and globular clusters (GCs), without invoking separate formation mechanisms for each population. The simulated GCs are the surviving population of massive clusters formed at early epochs (z ≳ 1-2), when the characteristic pressures and surface densities of star-forming gas were significantly higher than observed in local galaxies. We examine the influence of the star formation and assembly histories of galaxies on their cluster populations, finding that (at similar present-day mass) earlier-forming galaxies foster a more massive and disruption-resilient cluster population, while galaxies with late mergers are capable of forming massive clusters even at late cosmic epochs. We find that the phenomenological treatment of interstellar gas in EAGLE precludes the accurate modelling of cluster disruption in low-density environments, but infer that simulations incorporating an explicitly modelled cold interstellar gas phase will overcome

  3. A Study of Two Dwarf Irregular Galaxies with Asymmetrical Star Formation Distributions

    NASA Astrophysics Data System (ADS)

    Hunter, Deidre A.; Gallardo, Samavarti; Zhang, Hong-Xin; Adamo, Angela; Cook, David O.; Oh, Se-Heon; Elmegreen, Bruce G.; Kim, Hwihyun; Kahre, Lauren; Ubeda, Leonardo; Bright, Stacey N.; Ryon, Jenna E.; Fumagalli, Michele; Sacchi, Elena; Kennicutt, R. C.; Tosi, Monica; Dale, Daniel A.; Cignoni, Michele; Messa, Matteo; Grebel, Eva K.; Gouliermis, Dimitrios A.; Sabbi, Elena; Grasha, Kathryn; Gallagher, John S., III; Calzetti, Daniela; Lee, Janice C.

    2018-03-01

    Two dwarf irregular galaxies, DDO 187 and NGC 3738, exhibit a striking pattern of star formation: intense star formation is taking place in a large region occupying roughly half of the inner part of the optical galaxy. We use data on the H I distribution and kinematics and stellar images and colors to examine the properties of the environment in the high star formation rate (HSF) halves of the galaxies in comparison with the low star formation rate halves. We find that the pressure and gas density are higher on the HSF sides by 30%–70%. In addition we find in both galaxies that the H I velocity fields exhibit significant deviations from ordered rotation and there are large regions of high-velocity dispersion and multiple velocity components in the gas beyond the inner regions of the galaxies. The conditions in the HSF regions are likely the result of large-scale external processes affecting the internal environment of the galaxies and enabling the current star formation there.

  4. Star formation and mass assembly in high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Santini, P.; Fontana, A.; Grazian, A.; Salimbeni, S.; Fiore, F.; Fontanot, F.; Boutsia, K.; Castellano, M.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Giallongo, E.; Menci, N.; Nonino, M.; Paris, D.; Pentericci, L.; Vanzella, E.

    2009-09-01

    Aims: The goal of this work is to infer the star formation properties and the mass assembly process of high redshift (0.3 ≤ z < 2.5) galaxies from their IR emission using the 24 μm band of MIPS-Spitzer. Methods: We used an updated version of the GOODS-MUSIC catalog, which has multiwavelength coverage from 0.3 to 24 μm and either spectroscopic or accurate photometric redshifts. We describe how the catalog has been extended by the addition of mid-IR fluxes derived from the MIPS 24 μm image. We compared two different estimators of the star formation rate (SFR hereafter). One is the total infrared emission derived from 24 μm, estimated using both synthetic and empirical IR templates. The other one is a multiwavelength fit to the full galaxy SED, which automatically accounts for dust reddening and age-star formation activity degeneracies. For both estimates, we computed the SFR density and the specific SFR. Results: We show that the two SFR indicators are roughly consistent, once the uncertainties involved are taken into account. However, they show a systematic trend, IR-based estimates exceeding the fit-based ones as the star formation rate increases. With this new catalog, we show that: a) at z>0.3, the star formation rate is correlated well with stellar mass, and this relationship seems to steepen with redshift if one relies on IR-based estimates of the SFR; b) the contribution to the global SFRD by massive galaxies increases with redshift up to ≃ 2.5, more rapidly than for galaxies of lower mass, but appears to flatten at higher z; c) despite this increase, the most important contributors to the SFRD at any z are galaxies of about, or immediately lower than, the characteristic stellar mass; d) at z≃ 2, massive galaxies are actively star-forming, with a median {SFR} ≃ 300 M_⊙ yr-1. During this epoch, our targeted galaxies assemble a substantial part of their final stellar mass; e) the specific SFR (SSFR) shows a clear bimodal distribution. Conclusions

  5. Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993

    NASA Astrophysics Data System (ADS)

    Palmese, A.; Hartley, W.; Tarsitano, F.; Conselice, C.; Lahav, O.; Allam, S.; Annis, J.; Lin, H.; Soares-Santos, M.; Tucker, D.; Brout, D.; Banerji, M.; Bechtol, K.; Diehl, H. T.; Fruchter, A.; García-Bellido, J.; Herner, K.; Levan, A. J.; Li, T. S.; Lidman, C.; Misra, K.; Sako, M.; Scolnic, D.; Smith, M.; Abbott, T. M. C.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Doel, P.; Drlica-Wagner, A.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kron, R.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; McMahon, R. G.; Menanteau, F.; Miller, C. J.; Miquel, R.; Neilsen, E.; Ogando, R. L. C.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sanchez, E.; Schindler, R.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Thomas, R. C.; Walker, A. R.; Weller, J.; Zhang, Y.; Zuntz, J.

    2017-11-01

    We present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an I-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as {R}{NSM}{gal}={5.7}-3.3+0.57× {10}-6{{yr}}-1. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is {0.038}-0.022+0.004, as opposed to ˜0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer ≲ 200 Myr prior to the BNS coalescence.

  6. Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmese, A.; et al.

    2017-11-09

    We present a study of NGC 4993, the host galaxy of the GW170817 gravitational wave event, the GRB170817A short gamma-ray burst (sGRB) and the AT2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC4993 is a nearby (40 Mpc) early-type galaxy, withmore » $i$$-band S\\'ersic index $$n=4.0$ and low asymmetry ($$A=0.04\\pm 0.01$$). These properties are unusual for sGRB hosts. However, NGC4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no on-going star formation in either spatially-resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as $$R_{NSM}^{gal}= 5.7^{+0.57}_{-3.3} \\times 10^{-6} {\\rm yr}^{-1}$$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is $$0.038^{+0.004}_{-0.022}$$, as opposed to $$\\sim 0.5$$ from all galaxy types. Hypothesizing that the binary system formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred $$t_{\\rm mer}\\lesssim 200~{\\rm Myr}$$ prior to the BNS coalescence.« less

  7. Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmese, A.; Hartley, W.; Tarsitano, F.

    Here, we present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an i-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, asmore » $${R}_{\\mathrm{NSM}}^{\\mathrm{gal}}={5.7}_{-3.3}^{+0.57}\\times {10}^{-6}{\\mathrm{yr}}^{-1}$$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is $${0.038}_{-0.022}^{+0.004}$$, as opposed to ~0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer $$\\lesssim$$ 200 Myr prior to the BNS coalescence.« less

  8. Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993

    DOE PAGES

    Palmese, A.; Hartley, W.; Tarsitano, F.; ...

    2017-11-09

    Here, we present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an i-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, asmore » $${R}_{\\mathrm{NSM}}^{\\mathrm{gal}}={5.7}_{-3.3}^{+0.57}\\times {10}^{-6}{\\mathrm{yr}}^{-1}$$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is $${0.038}_{-0.022}^{+0.004}$$, as opposed to ~0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer $$\\lesssim$$ 200 Myr prior to the BNS coalescence.« less

  9. Calibrating Star Formation: The Link between Feedback and Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela

    2005-07-01

    Stellar feedback - the return of mass and energy from star formation to the interstellar medium - is one of the primary engines of galaxy evolution. Yet, the theoretical foundation of mechanical feedback is, to date, unconstrained by observations. We propose to investigate this fundamental aspect of star formation on a sample of two local actively star-forming galaxies, NGC4449, and Holmberg II. The two galaxies have been selected to occupy an unexplored, yet crucial for quantifying mechanical feedback, niche in the two-parameter space of star formation intensity and galaxy mass. ACS/WFC and WFPC2 narrow-band observations in the light of H-beta, [OIII], H-alpha, and [NII] will be obtained for both galaxies, in order to: {1} discriminate the feedback-induced shock fronts from the photoionization regions; {2} map the shocks inside and around the starburst regions; and {3} measure the energy budget of the star-formation-produced shocks. These observations, complemented by existing data, will yield: {1} the efficiency of the feedback, i.e. the fraction of the star formation's mechanical energy that is transported out of the starburst volume rather than confined or radiated away; {2} the dependence of this efficiency on the two fundamental parameters of star formation intensity and stellar mass. The high angular resolution of HST is crucial for separating the spatially narrow shock fronts { 5 pc, 0.25" at 4 Mpc} from the more extended photoionization fronts. The legacy from this project will be the most complete quantitative measurement of the energetics associated with feedback processes. We will secure the first milestone for placing feedback mechanisms on a solid physical ground, and for understanding quantitatively their role on the energetics, structure, and star formation history of galaxies at all redshifts.

  10. The evolutionary sequence of post-starburst galaxies

    NASA Astrophysics Data System (ADS)

    Wilkinson, C. L.; Pimbblet, K. A.; Stott, J. P.

    2017-12-01

    There are multiple ways in which to select post-starburst galaxies in the literature. In this work, we present a study into how two well-used selection techniques have consequences on observable post-starburst galaxy parameters, such as colour, morphology and environment, and how this affects interpretations of their role in the galaxy duty cycle. We identify a master sample of H δ strong (EWH δ > 3Å) post-starburst galaxies from the value-added catalogue in the seventh data release of the Sloan Digital Sky Survey (SDSS DR7) over a redshift range 0.01 < z < 0.1. From this sample we select two E+A subsets, both having a very little [O II] emission (EW_[O II] > -2.5 Å) but one having an additional cut on EWHα (>-3 Å). We examine the differences in observables and AGN fractions to see what effect the H α cut has on the properties of post-starburst galaxies and what these differing samples can tell us about the duty cycle of post-starburst galaxies. We find that H δ strong galaxies peak in the 'blue cloud', E+As in the 'green valley' and pure E+As in the 'red sequence'. We also find that pure E+As have a more early-type morphology and a higher fraction in denser environments compared with the H δ strong and E+A galaxies. These results suggest that there is an evolutionary sequence in the post-starburst phase from blue discy galaxies with residual star formation to passive red early-types.

  11. Les galaxies

    NASA Astrophysics Data System (ADS)

    Combes, Francoise

    2016-08-01

    Considerable progress has been made on galaxy formation and evolution in recent years, and new issues. The old Hubble classification according to the tuning fork of spirals, lenticulars and ellipticals, is still useful but has given place to the red sequence, the blue cloud and the green valley, showing a real bimodality of types between star forming galaxies (blue) and quenched ones (red). Large surveys have shown that stellar mass and environment density are the two main factors of the evolution from blue to red sequences. Evolution is followed directly with redshift through a look-back time of more than 12 billion years. The most distant galaxy at z=11. has already a stellar mass of a billion suns. In an apparent anti-hierarchical scenario, the most massive galaxies form stars early on, while essentially dwarf galaxies are actively star-formers now. This downsizing feature also applies to the growth of super-massive black holes at the heart of each bulgy galaxy. The feedback from active nuclei is essential to explain the distribution of mass in galaxies, and in particular to explain why the fraction of baryonic matter is so low, lower by more than a factor 5 than the baryonic fraction of the Universe. New instruments just entering in operation, like MUSE and ALMA, provide a new and rich data flow, which is developed in this series of articles.

  12. Hot Gas Halos in Galaxies

    NASA Astrophysics Data System (ADS)

    Mulchaey, John

    Most galaxy formation models predict that massive low-redshift disk galaxies are embedded in extended hot halos of externally accreted gas. Such gas appears necessary to maintain ongoing star formation in isolated spirals like the Milky Way. To explain the large population of red galaxies in rich groups and clusters, most galaxy evolution models assume that these hot gas halos are stripped completely when a galaxy enters a denser environment. This simple model has been remarkably successful at reproducing many observed properties of galaxies. Although theoretical arguments suggest hot gas halos are an important component in galaxies, we know very little about this gas from an observational standpoint. In fact, previous observations have failed to detect soft X-ray emission from such halos in disk galaxies. Furthermore, the assumption that hot gas halos are stripped completely when a galaxy enters a group or cluster has not been verified. We propose to combine proprietary and archival XMM-Newton observations of galaxies in the field, groups and clusters to study how hot gas halos are impacted by environment. Our proposed program has three components: 1) The deepest search to date for a hot gas halo in a quiescent spiral galaxy. A detection will confirm a basic tenet of disk galaxy formation models, whereas a non-detection will seriously challenge these models and impose new constraints on the growth mode and feedback history of disk galaxies. 2) A detailed study of the hot gas halos properties of field early-type galaxies. As environmental processes such as stripping are not expected to be important in the field, a study of hot gas halos in this environment will allow us to better understand how feedback and other internal processes impact hot gas halos. 3) A study of hot gas halos in the outskirts of groups and clusters. By comparing observations with our suite of simulations we can begin to understand what role the stripping of hot gas halos plays in galaxy

  13. Demographics of Isolated Galaxies along the Hubble Sequence

    NASA Astrophysics Data System (ADS)

    Khim, Hong-geun; Park, Jongwon; Seo, Seong-Woo; Lee, Jaehyun; Smith, Rory; Yi, Sukyoung K.

    2015-09-01

    Isolated galaxies in low-density regions are significant in the sense that they are least affected by the hierarchical pattern of galaxy growth and interactions with perturbers, at least for the last few gigayears. To form a comprehensive picture of the star-formation history of isolated galaxies, we constructed a catalog of isolated galaxies and their comparison sample in relatively denser environments. The galaxies are drawn from the Sloan Digital Sky Survey Data Release 7 in the redshift range of 0.025\\lt z\\lt 0.044. We performed a visual inspection and classified their morphology following the Hubble classification scheme. For the spectroscopic study, we make use of the catalog provided by Oh et al. in 2011. We confirm most of the earlier understanding on isolated galaxies. The most remarkable additional results are as follows. Isolated galaxies are dominantly late type with the morphology distribution (E:S0:S:Irr) = (9.9:11.3:77.6:1.2)%. The frequency of elliptical galaxies among isolated galaxies is only a third of that of the comparison sample. Most of the photometric and spectroscopic properties are surprisingly similar between the isolated and comparison samples. However, early-type isolated galaxies are less massive by 50% and younger (by Hβ) by 20% than their counterparts in the comparison sample. This can be explained as a result of different merger and star-formation histories for differing environments in the hierarchical merger paradigm. We provide an online catalog for the list and properties of our sample galaxies.

  14. Suppression of star formation in dwarf galaxies by photoelectric grain heating feedback.

    PubMed

    Forbes, John C; Krumholz, Mark R; Goldbaum, Nathan J; Dekel, Avishai

    2016-07-28

    Photoelectric heating--heating of dust grains by far-ultraviolet photons--has long been recognized as the primary source of heating for the neutral interstellar medium. Simulations of spiral galaxies have shown some indication that photoelectric heating could suppress star formation; however, simulations that include photoelectric heating have typically shown that it has little effect on the rate of star formation in either spiral galaxies or dwarf galaxies, which suggests that supernovae are responsible for setting the gas depletion time in galaxies. This result is in contrast with recent work indicating that a star formation law that depends on galaxy metallicity--as is expected with photoelectric heating,but not with supernovae--reproduces the present-day galaxy population better than does a metallicity-independent one. Here we report a series of simulations of dwarf galaxies, the class of galaxy in which the effects of both photoelectric heating and supernovae are expected to be strongest. We simultaneously include space and time-dependent photoelectric heating in our simulations, and we resolve the energy-conserving phase of every supernova blast wave, which allows us to directly measure the relative importance of feedback by supernovae and photoelectric heating in suppressing star formation. We find that supernovae are unable to account for the observed large gas depletion times in dwarf galaxies. Instead, photoelectric heating is the dominant means by which dwarf galaxies regulate their star formation rate at any given time,suppressing the rate by more than an order of magnitude relative to simulations with only supernovae.

  15. EFFECTS OF HOT HALO GAS ON STAR FORMATION AND MASS TRANSFER DURING DISTANT GALAXY–GALAXY ENCOUNTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Jeong-Sun; Park, Changbom, E-mail: jshwang@kias.re.kr, E-mail: cbp@kias.re.kr

    2015-06-01

    We use N-body/smoothed particle hydrodynamics simulations of encounters between an early-type galaxy (ETG) and a late-type galaxy (LTG) to study the effects of hot halo gas on the evolution for a case with the mass ratio of the ETG to LTG of 2:1 and the closest approach distance of ∼100 kpc. We find that the dynamics of the cold disk gas in the tidal bridge and the amount of the newly formed stars depend strongly on the existence of a gas halo. In the run of interacting galaxies not having a hot gas halo, the gas and stars accreted into themore » ETG do not include newly formed stars. However, in the run using the ETG with a gas halo and the LTG without a gas halo, a shock forms along the disk gas tidal bridge and induces star formation near the closest approach. The shock front is parallel to a channel along which the cold gas flows toward the center of the ETG. As a result, the ETG can accrete star-forming cold gas and newly born stars at and near its center. When both galaxies have hot gas halos, a shock is formed between the two gas halos somewhat before the closest approach. The shock hinders the growth of the cold gas bridge to the ETG and also ionizes it. Only some of the disk stars transfer through the stellar bridge. We conclude that the hot halo gas can give significant hydrodynamic effects during distant encounters.« less

  16. Purely Dry Mergers do not Explain the Observed Evolution of Massive Early-type Galaxies since z ~ 1

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2014-05-01

    Several studies have suggested that the observed size evolution of massive early-type galaxies (ETGs) can be explained as a combination of dry mergers and progenitor bias, at least since z ~ 1. In this paper we carry out a new test of the dry-merger scenario based on recent lensing measurements of the evolution of the mass density profile of ETGs. We construct a theoretical model for the joint evolution of the size and mass density profile slope γ' driven by dry mergers occurring at rates given by cosmological simulations. Such dry-merger model predicts a strong decrease of γ' with cosmic time, inconsistent with the almost constant γ' inferred from observations in the redshift range 0 < z < 1. We then show with a simple toy model that a modest amount of cold gas in the mergers—consistent with the upper limits on recent star formation in ETGs—is sufficient to reconcile the model with measurements of γ'. By fitting for the amount of gas accreted during mergers, we find that models with dissipation are consistent with observations of the evolution in both size and density slope, if ~4% of the total final stellar mass arises from the gas accreted since z ~ 1. Purely dry merger models are ruled out at >99% CL. We thus suggest a scenario where the outer regions of massive ETGs grow by accretion of stars and dark matter, while small amounts of dissipation and nuclear star formation conspire to keep the mass density profile constant and approximately isothermal.

  17. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D. Christopher; Darvish, Behnam; Seibert, Mark

    We introduce a new methodology for the direct extraction of galaxy physical parameters from multiwavelength photometry and spectroscopy. We use semianalytic models that describe galaxy evolution in the context of large-scale cosmological simulation to provide a catalog of galaxies, star formation histories, and physical parameters. We then apply models of stellar population synthesis and a simple extinction model to calculate the observable broadband fluxes and spectral indices for these galaxies. We use a linear regression analysis to relate physical parameters to observed colors and spectral indices. The result is a set of coefficients that can be used to translate observedmore » colors and indices into stellar mass, star formation rate, and many other parameters, including the instantaneous time derivative of the star formation rate, which we denote the Star Formation Acceleration (SFA), We apply the method to a test sample of galaxies with GALEX photometry and SDSS spectroscopy, deriving relationships between stellar mass, specific star formation rate, and SFA. We find evidence for a mass-dependent SFA in the green valley, with low-mass galaxies showing greater quenching and higher-mass galaxies greater bursting. We also find evidence for an increase in average quenching in galaxies hosting an active galactic nucleus. A simple scenario in which lower-mass galaxies accrete and become satellite galaxies, having their star-forming gas tidally and/or ram-pressure stripped, while higher-mass galaxies receive this gas and react with new star formation, can qualitatively explain our results.« less

  18. Quenching of Star-formation Activity of High-redshift Galaxies in Clusters and Field

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Kook; Im, Myungshin; Kim, Jae-Woo; Lotz, Jennifer; McPartland, Conor; Peth, Michael; Koekemoer, Anton

    At local, galaxy properties are well known to be clearly different in different environments. However, it is still an open question how this environment-dependent trend has been shaped. We present the results of our investigation about the evolution of star-formation properties of galaxies over a wide redshift range, from z ~ 2 to z ~ 0.5, focusing its dependence on their stellar mass and environment (Lee et al. 2015). In the UKIDSS/UDS region, covering ~2800 square arcmin, we estimated photometric redshifts and stellar population properties, such as stellar masses and star-formation rates, using the deep optical and near-infrared data available in this field. Then, we identified galaxy cluster candidates within the given redshift range. Through the analysis and comparison of star-formation (SF) properties of galaxies in clusters and in field, we found interesting results regarding the evolution of SF properties of galaxies: (1) regardless of redshifts, stellar mass is a key parameter controlling quenching of star formation in galaxies; (2) At z < 1, environmental effects become important at quenching star formation regardless of stellar mass of galaxies; and (3) However, the result of the environmental quenching is prominent only for low mass galaxies (M* < 1010 M⊙) since the star formation in most of high mass galaxies are already quenched at z > 1.

  19. Galaxy formation and physical bias

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1992-01-01

    We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe to include, not only the dynamics of dark matter (with a standard PM code), and the hydrodynamics of the gaseous component (including detailed collisional and radiative processes), but also galaxy formation on a heuristic but plausible basis. If, within a cell the gas is Jeans' unstable, collapsing, and cooling rapidly, it is transformed to galaxy subunits, which are then followed with a collisionless code. After grouping them into galaxies, we estimate the relative distributions of galaxies and dark matter and the relative velocities of galaxies and dark matter. In a large scale CDM run of 80/h Mpc size with 8 x 10 exp 6 cells and dark matter particles, we find that physical bias b is on the 8/h Mpc scale is about 1.6 and increases towards smaller scales, and that velocity bias is about 0.8 on the same scale. The comparable HDM simulation is highly biased with b = 2.7 on the 8/h Mpc scale. Implications of these results are discussed in the light of the COBE observations which provide an accurate normalization for the initial power spectrum. CDM can be ruled out on the basis of too large a predicted small scale velocity dispersion at greater than 95 percent confidence level.

  20. The Cosmological Impact of Luminous TeV Blazars. III. Implications for Galaxy Clusters and the Formation of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Pfrommer, Christoph; Chang, Philip; Broderick, Avery E.

    2012-06-01

    A subset of blazars are powerful TeV emitters, dominating the extragalactic component of the very high energy gamma-ray universe (E >~ 100 GeV). These TeV gamma rays generate ultrarelativistic electron-positron pairs via pair production with the extragalactic background light. While it has generally been assumed that the kinetic energy of these pairs cascades to GeV gamma rays via inverse Compton scattering, we have argued in Broderick et al. (Paper I in this series) that plasma beam instabilities are capable of dissipating the pairs' energy locally on timescales short in comparison to the inverse Compton cooling time, heating the intergalactic medium (IGM) with a rate that is independent of density. This dramatically increases the entropy of the IGM after redshift z ~ 2, with a number of important implications for structure formation: (1) this suggests a scenario for the origin of the cool core (CC)/non-cool core (NCC) bimodality in galaxy clusters and groups. Early-forming galaxy groups are unaffected because they can efficiently radiate the additional entropy, developing a CC. However, late-forming groups do not have sufficient time to cool before the entropy is gravitationally reprocessed through successive mergers—counteracting cooling and potentially raising the core entropy further. This may result in a population of X-ray dim groups/clusters, consistent with X-ray stacking analyses of optically selected samples. Hence, blazar heating works differently than feedback by active galactic nuclei, which we show can balance radiative cooling but is unable to transform CC into NCC clusters on the buoyancy timescale due to the weak coupling between the mechanical energy to the cluster gas. (2) We predict a suppression of the Sunyaev-Zel'dovich (SZ) power spectrum template on angular scales smaller than 5' due to the globally reduced central pressure of groups and clusters forming after z ~ 1. This allows for a larger rms amplitude of the density power spectrum,

  1. THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. III. IMPLICATIONS FOR GALAXY CLUSTERS AND THE FORMATION OF DWARF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfrommer, Christoph; Chang, Philip; Broderick, Avery E., E-mail: christoph.pfrommer@h-its.org, E-mail: aeb@cita.utoronto.ca, E-mail: pchang@cita.utoronto.ca

    2012-06-10

    A subset of blazars are powerful TeV emitters, dominating the extragalactic component of the very high energy gamma-ray universe (E {approx}> 100 GeV). These TeV gamma rays generate ultrarelativistic electron-positron pairs via pair production with the extragalactic background light. While it has generally been assumed that the kinetic energy of these pairs cascades to GeV gamma rays via inverse Compton scattering, we have argued in Broderick et al. (Paper I in this series) that plasma beam instabilities are capable of dissipating the pairs' energy locally on timescales short in comparison to the inverse Compton cooling time, heating the intergalactic mediummore » (IGM) with a rate that is independent of density. This dramatically increases the entropy of the IGM after redshift z {approx} 2, with a number of important implications for structure formation: (1) this suggests a scenario for the origin of the cool core (CC)/non-cool core (NCC) bimodality in galaxy clusters and groups. Early-forming galaxy groups are unaffected because they can efficiently radiate the additional entropy, developing a CC. However, late-forming groups do not have sufficient time to cool before the entropy is gravitationally reprocessed through successive mergers-counteracting cooling and potentially raising the core entropy further. This may result in a population of X-ray dim groups/clusters, consistent with X-ray stacking analyses of optically selected samples. Hence, blazar heating works differently than feedback by active galactic nuclei, which we show can balance radiative cooling but is unable to transform CC into NCC clusters on the buoyancy timescale due to the weak coupling between the mechanical energy to the cluster gas. (2) We predict a suppression of the Sunyaev-Zel'dovich (SZ) power spectrum template on angular scales smaller than 5' due to the globally reduced central pressure of groups and clusters forming after z {approx} 1. This allows for a larger rms amplitude of the

  2. The origin of diverse α-element abundances in galaxy discs

    NASA Astrophysics Data System (ADS)

    Mackereth, J. Ted; Crain, Robert A.; Schiavon, Ricardo P.; Schaye, Joop; Theuns, Tom; Schaller, Matthieu

    2018-07-01

    Spectroscopic surveys of the Galaxy reveal that its disc stars exhibit a spread in [α/Fe] at fixed [Fe/H], manifest at some locations as a bimodality. The origin of these diverse, and possibly distinct, stellar populations in the Galactic disc is not well understood. We examine the Fe and α-element evolution of 133 Milky Way-like galaxies from the EAGLE simulation, to investigate the origin and diversity of their [α/Fe]-[Fe/H] distributions. We find that bimodal [α/Fe] distributions arise in galaxies whose gas accretion histories exhibit episodes of significant infall at both early and late times, with the former fostering more intense star formation than the latter. The shorter characteristic consumption time-scale of gas accreted in the earlier episode suppresses its enrichment with iron synthesized by Type Ia SNe, resulting in the formation of a high-[α/Fe] sequence. We find that bimodality in [α/Fe] similar to that seen in the Galaxy is rare, appearing in approximately 5 per cent of galaxies in our sample. We posit that this is a consequence of an early gas accretion episode requiring the mass accretion history of a galaxy's dark matter halo to exhibit a phase of atypically rapid growth at early epochs. The scarcity of EAGLE galaxies exhibiting distinct sequences in the [α/Fe]-[Fe/H] plane may therefore indicate that the Milky Way's elemental abundance patterns, and its accretion history, are not representative of the broader population of ˜L⋆ disc galaxies.

  3. Star Formation of Merging Disk Galaxies with AGN Feedback Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jongwon; Smith, Rory; Yi, Sukyoung K., E-mail: jw.park@yonsei.ac.kr

    2017-08-20

    Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Coxmore » et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.« less

  4. Sub-mm galaxies as progenitors of compact quiescent galaxies

    NASA Astrophysics Data System (ADS)

    Toft, Sune

    2015-08-01

    Three billion years after the big bang (at redshift z=2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts which produce dense remnants. Sub-millimetre selected galaxies (SMGs) are prime examples of intense, gas-rich, starbursts. With a new, mass-complete spectroscopic sample of compact quiescent galaxies at z=2 and a statistically well-understood sample of SMGs, we show that z = 3 -6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42 (+40/-29) Myr (consistent with independent estimates), indicating that the bulk of stars in these massive galaxies were formed in a major, early surge of star-formation. These results suggests a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star-formation through their appearance as high stellardensity galaxy cores and to their ultimate fate as giant ellipticals.If time permits i will show novel, spatially resolved spectroscopic observations of the inner regions (rgalaxies at z>2, allowing for strong new constraints on their formation and evolutionary path

  5. Cosmic strings and galaxy formation

    NASA Technical Reports Server (NTRS)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  6. HI-Selected Galaxies in Hierarchical Models of Galaxy Formation and Evolution

    NASA Astrophysics Data System (ADS)

    Zoldan, Anna

    2017-07-01

    This poster presents the main results of a statistical study of HI-selected galaxies based on six different semi-analytic models, all run on the same cosmological N-body simulation. One of these models includes an explicit treatment for the partition of cold gas into atomic and molecular hydrogen. All models considered agree nicely with the measured HI mass function in the local Universe and with the measured scaling relations between HI and galaxy stellar mass. Most models also reproduce the observed 2-point correlation function for HI rich galaxies, with the exception of one model that predicts very little HI associated with galaxies in haloes above 10^12 Msun. We investigated the influence of satellite treatment on the final HI content and found that it introduces large uncertainties at low HI masses. We found that the assumption of instantaneous stripping of hot gas in satellites does not translate necessarily in lower HI masses. We demonstrate that the assumed stellar feedback, combined with star formation, also affect significantly the gas content of satellite galaxies. Finally, we also analyse the origin of the correlation between HI content of model galaxies and the spin of the parent haloes. Zoldan et al., 2016, MNRAS, 465, 2236

  7. Polar ring galaxies in the Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Finkelman, Ido; Funes, José G.; Brosch, Noah

    2012-05-01

    We report observations of 16 candidate polar-ring galaxies (PRGs) identified by the Galaxy Zoo project in the Sloan Digital Sky Survey (SDSS) data base. Deep images of five galaxies are available in the SDSS Stripe82 data base, while to reach similar depth we observed the remaining galaxies with the 1.8-m Vatican Advanced Technology Telescope. We derive integrated magnitudes and u-r colours for the host and ring components and show continuum-subtracted Hα+[N II] images for seven objects. We present a basic morphological and environmental analysis of the galaxies and discuss their properties in comparison with other types of early-type galaxies. Follow-up photometric and spectroscopic observations will allow a kinematic confirmation of the nature of these systems and a more detailed analysis of their stellar populations.

  8. The Environmental Impact of Intra-Cluster Medium on the Interstellar Medium in Early Type Galaxies

    NASA Technical Reports Server (NTRS)

    Trinchieri, Ginevra

    1997-01-01

    High resolution X-ray images of three early type galaxies observed with the ROSAT HRI are presented. Data for NGC 1553 and NGC 5846 indicate that the emission is highly irregular, with interesting features on scales from a few arcsec to a few arcmin. The gas temperatures also vary both with the galactocentric radius and in correspondence to regions of higher emission and denser material. Strikingly similar features are observed in the X-ray and H(alpha) morphologies of NGC 1553 and NGC 5846, while smoother, more regular isophotes are observed in NGC 4649 at both wavelengths. A connection between these two kinds of emission therefore seems likely. In the light of our observations we discuss possible scenarios that can and account for the connection between X-ray and H(alpha) emissions.

  9. History and destiny of an emerging early-type galaxy. New IFU insights on the major-merger remnant NGC 7252

    NASA Astrophysics Data System (ADS)

    Weaver, J.; Husemann, B.; Kuntschner, H.; Martín-Navarro, I.; Bournaud, F.; Duc, P.-A.; Emsellem, E.; Krajnović, D.; Lyubenova, M.; McDermid, R. M.

    2018-06-01

    Context. The merging of galaxies is one key aspect in our favourite hierarchical ΛCDM Universe and is an important channel leading to massive quiescent elliptical galaxies. Understanding this complex transformational process is ongoing. Aims: We aim to study NGC 7252, which is one of the nearest major-merger galaxy remnants, observed 1 Gyr after the collision of presumably two gas-rich disc galaxies. It is therefore an ideal laboratory to study the processes inherent to the transformation of disc galaxies to ellipticals. Methods: We obtained wide-field IFU spectroscopy with the VLT-VIMOS integral-field spectrograph covering the central 50'' × 50'' of NGC 7252 to map the stellar and ionised gas kinematics, and the distribution and conditions of the ionised gas, revealing the extent of ongoing star formation and recent star formation history. Results: Contrary to previous studies, we find the inner gas disc not to be counter-rotating with respect to the stars. In addition, the stellar kinematics appear complex with a clear indication of a prolate-like rotation component which suggests a polar merger configuration. The ongoing star formation rate is 2.2 ± 0.6 M⊙ yr-1 and implies a typical depletion time of 2 Gyr given the molecular gas content. Furthermore, the spatially resolved star formation history suggests a slight radial dependence, moving outwards at later times. We confirm a large AGN-ionised gas cloud previously discovered 5 kpc south of the nucleus, and find a higher ionisation state of the ionised gas at the galaxy centre relative to the surrounding gas disc. Although the higher ionisation towards the centre is potentially degenerate within the central star forming ring, it may be associated with a low-luminosity AGN. Conclusions: Although NGC 7252 has been classified as post-starburst galaxy at the centre, the elliptical-like major-merger remnant still appears very active. A central kpc-scale gas disc has presumably re-formed quickly within the last

  10. Galaxy formation in Lambda greater than 0 Friedmann models: Consequences for the number counts versus redshift test

    NASA Technical Reports Server (NTRS)

    Martel, Hugo

    1994-01-01

    We study the effect of the cosmological constant Lambda on galaxy formation using a simple spherical top-hat overdensity model. We consider models with Omega(sub 0) = 0.2, lambda(sub 0) = 0, and Omega(sub 0) = 0.2, lambda(sub 0) = 0.8 (where Omega(sub 0) is the density parameter, and lambda(sub 0) identically equal Lambda/3 H(sub 0 exp 2) where H(sub 0) is the Hubble constant). We adjust the initial power spectrum amplitude so that both models reproduce the same large-scale structures. The galaxy formation era in the lambda(sub 0) = 0 model occurs early (z approximately 6) and is very short, whereas in the lambda(sub 0) = 0.8 model the galaxy formation era starts later (z approximately 4), and last much longer, possibly all the way to the present. Consequently, galaxies at low redshift (z less than 1) are significantly more evolved in the lambda(sub 0) = 0 model than in the lambda(sub 0) = 0.8 model. This result implies that previous attempts to determine Lambda using the number counts versus redshift test are probably unreliable.

  11. Past and future star formation in disk galaxies

    NASA Astrophysics Data System (ADS)

    Kennicutt, Robert C., Jr.; Tamblyn, Peter; Congdon, Charles E.

    1994-11-01

    We have combined H-alpha and UBV measurements of 210 nearby Sa-Irr galaxies with new photometric synthesis models to reanalyze the past and future star formation timescales in disks. The integrated photoionization rates and colors of disks are best fitted by a stellar initial mass function (IMF) which is enriched in massive stars by a factor of 2-3 relative to the Scalo solar neighborhood IMF. We have used published surface photometry of spiral galaxies to analyze the star formation histories of disks independent of their bulge properties. The ratio of the current star formation rate (SFR) to the average past rate increases from of order 0.01 in Sa galaxies to 1 in Sc-Irr disks. This confirms that the pronounced change in the photometric properties of spiral galaxies along the Hubble sequence is predominantly due to changes in the star formation histories of disks, and only secondarily to changes in the bulge/disk ratio. A comparison of current SFRs and gas masses of the sample yields median timescales for gas consumption of approximately 3 Gyr, in the absence of stellar recycling. However, a proper time-dependent treatment of the gas return from stars shows that recycling extends the gas lifetimes of disks by factors of 1.5-4 for typical disk parameters. Consequently the current SFRs in many (but not all) disks can be sustained for periods comparable to the Hubble time.

  12. Significant Enhancement of H2 Formation in Disk Galaxies under Strong Ram Pressure

    NASA Astrophysics Data System (ADS)

    Henderson, Benjamin; Bekki, Kenji

    2016-05-01

    We show for the first time that H2 formation on dust grains can be enhanced in disk galaxies under strong ram pressure (RP). We numerically investigate how the time evolution of H I and H2 components in disk galaxies orbiting a group/cluster of galaxies can be influenced by the hydrodynamical interaction between the gaseous components of the galaxies and the hot intracluster medium. We find that compression of H I caused by RP increases H2 formation in disk galaxies before RP rapidly strips H I, cutting off the fuel supply and causing a drop in H2 density. We also find that the level of this H2 formation enhancement in a disk galaxy under RP depends on the mass of its host cluster dark matter halo, the initial positions and velocities of the disk galaxy, and the disk inclination angle with respect to the orbital plane. We demonstrate that dust growth is a key factor in the evolution of the H I and H2 mass in disk galaxies under strong RP. We discuss how the correlation between H2 fractions and surface gas densities of disk galaxies evolves with time in the galaxies under RP. We also discuss whether galaxy-wide star formation rates (SFRs) in cluster disk galaxies can be enhanced by RP if the SFRs depend on H2 densities.

  13. Undergraduate ALFALFA Team: Star Formation in the NGC 5846 Group of Galaxies

    NASA Astrophysics Data System (ADS)

    Viani, Lucas; Koopmann, R. A.; Darling, H.; ALFALFA Team

    2013-01-01

    We examine gas and star formation properties of galaxies in the NGC 5846 group. Narrowband Halpha and broadband R images for a sample of galaxies were obtained at the KPNO WIYN 0.9m with MOSAIC and the SMARTS 0.9m telescope at CTIO. Neutral hydrogen data from the Arecibo Legacy Fast ALFA (ALFALFA) survey trace the cold neutral gas content. The amounts and extents of star formation in a subsample of galaxies are compared as a function of cold gas content and position in the group. The typical star formation rates and extents of NGC 5846 galaxies are less than those of isolated galaxies and similar to those of galaxies located in the Virgo Cluster and other group environments. This work is part of the Undergraduate ALFALFA (Arecibo Legacy Fast ALFA) Team Groups Project, a collaborative undertaking of faculty and undergraduates at 11 institutions, aimed at investigating properties of galaxy groups surveyed by the ALFALFA blind HI survey.

  14. A massive, dead disk galaxy in the early Universe.

    PubMed

    Toft, Sune; Zabl, Johannes; Richard, Johan; Gallazzi, Anna; Zibetti, Stefano; Prescott, Moire; Grillo, Claudio; Man, Allison W S; Lee, Nicholas Y; Gómez-Guijarro, Carlos; Stockmann, Mikkel; Magdis, Georgios; Steinhardt, Charles L

    2017-06-21

    At redshift z = 2, when the Universe was just three billion years old, half of the most massive galaxies were extremely compact and had already exhausted their fuel for star formation. It is believed that they were formed in intense nuclear starbursts and that they ultimately grew into the most massive local elliptical galaxies seen today, through mergers with minor companions, but validating this picture requires higher-resolution observations of their centres than is currently possible. Magnification from gravitational lensing offers an opportunity to resolve the inner regions of galaxies. Here we report an analysis of the stellar populations and kinematics of a lensed z = 2.1478 compact galaxy, which-surprisingly-turns out to be a fast-spinning, rotationally supported disk galaxy. Its stars must have formed in a disk, rather than in a merger-driven nuclear starburst. The galaxy was probably fed by streams of cold gas, which were able to penetrate the hot halo gas until they were cut off by shock heating from the dark matter halo. This result confirms previous indirect indications that the first galaxies to cease star formation must have gone through major changes not just in their structure, but also in their kinematics, to evolve into present-day elliptical galaxies.

  15. Interactions of galaxies outside clusters and massive groups

    NASA Astrophysics Data System (ADS)

    Yadav, Jaswant K.; Chen, Xuelei

    2018-06-01

    We investigate the dependence of physical properties of galaxies on small- and large-scale density environment. The galaxy population consists of mainly passively evolving galaxies in comparatively low-density regions of Sloan Digital Sky Survey (SDSS). We adopt (i) local density, ρ _{20}, derived using adaptive smoothing kernel, (ii) projected distance, r_p, to the nearest neighbor galaxy and (iii) the morphology of the nearest neighbor galaxy as various definitions of environment parameters of every galaxy in our sample. In order to detect long-range interaction effects, we group galaxy interactions into four cases depending on morphology of the target and neighbor galaxies. This study builds upon an earlier study by Park and Choi (2009) by including improved definitions of target and neighbor galaxies, thus enabling us to better understand the effect of "the nearest neighbor" interaction on the galaxy. We report that the impact of interaction on galaxy properties is detectable at least up to the pair separation corresponding to the virial radius of (the neighbor) galaxies. This turns out to be mostly between 210 and 360 h^{-1}kpc for galaxies included in our study. We report that early type fraction for isolated galaxies with r_p > r_{vir,nei} is almost ignorant of the background density and has a very weak density dependence for closed pairs. Star formation activity of a galaxy is found to be crucially dependent on neighbor galaxy morphology. We find star formation activity parameters and structure parameters of galaxies to be independent of the large-scale background density. We also exhibit that changing the absolute magnitude of the neighbor galaxies does not affect significantly the star formation activity of those target galaxies whose morphology and luminosities are fixed.

  16. THE INFLUENCE OF RED SPIRAL GALAXIES ON THE SHAPE OF THE LOCAL K-BAND LUMINOSITY FUNCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonne, Nicolas J.; Brown, Michael J. I.; Jones, Heath

    2015-02-01

    We have determined K-band luminosity functions for 13,325 local universe galaxies as a function of morphology and color (for K {sub tot} ≤ 10.75). Our sample is drawn from the Two Micron All Sky Survey Extended Source Catalog, with all sample galaxies having measured morphologies and distances (including 4219 archival redshift-independent distances). The luminosity function for our total sample is in good agreement with previous works, but is relatively smooth at faint magnitudes (due to bulk flow distance corrections). We investigated the differences due to morphological and color selection using 5417 sample galaxies with NASA Sloan Atlas optical colors and find thatmore » red spirals comprise 20%-50% of all spirals with –25 ≤ M{sub K}  < –20. Fainter than M{sub K} = –24, red spirals are as common as early types, explaining the different faint end slopes (α = –0.87 and –1.00 for red and early-types, respectively). While we find red spirals comprise more than 50% of all M{sub K}  < –25 spiral galaxies, they do not dominate the bright end of the overall red galaxy luminosity function, which is dominated by early-type galaxies. The brightest red spirals have ongoing star formation and those without are frequently misclassified as early-types. The faintest ones have an appearance and Sérsic indices consistent with faded disks, rather than true bulge-dominated galaxies.« less

  17. Spectroscopic Observations of the Star Formation Regions in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Kong, X.; Lin, L.; Li, J. R.; Zhou, X.; Zou, H.; Li, H. Y.; Chen, F. Z.; Du, W.; Fan, Z.; Mao, Y. W.; Wang, J.; Zhu, Y. N.; Zhou, Z. M.

    2014-01-01

    During the late 1990s and the first decade of the 21st century, the 8˜10 m scale ground-based telescopes are helping astronomers learn much more about how galaxies develop. The existing 2˜4 m scale telescopes become less important for astrophysical researches. To use the existing 2˜4 m scale telescopes to address important issues in cosmology and extragalactic and galactic astronomy, we have to consider very carefully which kind of things we can do, and which we can not. For this reason, the Time Allocation Committee (TAC) of the National Astronomical Observatories of China (NAOC) 2.16 m telescope decides to support some key projects since 2013. Nearby galaxies supply us with the opportunity to study galaxy dynamics and star formation on large scales, yet are close enough to reveal the details. Star formation regions in nearby galaxies provide an excellent laboratory to study the star formation processes, the evolution of massive stars, and the properties of the surrounding interstellar medium. A wealth of information can be obtained from the spectral analysis of the bright emission lines and the stellar continuum. Considering these, we proposed a long-term project ``Spectroscopic Observations of the Star Formation Regions in Nearby Galaxies'', and it becomes the key project of the NAOC 2.16 m telescope since 2013, supported with 30 dark/grey nights per year. The primary goal of this project is to observe the spectroscopy of star formation regions in 20 nearby galaxies, with the NAOC 2.16 m telescope and the Hectospec/MMT (Multiple Mirror Telescope) multifiber spectrograph by Telescope Access Program (TAP). With the spectra of a large sample of star formation regions, combining multi-wavelength data from UV to IR, we can investigate, understand, and quantify the nature of the deviation from the starbursts' IRX-β (the IR/UV ratio ``IRX'' versus the UV color ``β'') correlation. It will be important for a better understanding of the interaction of dust and

  18. Origin of 12 micrometer Emission Across Galaxy Populations from Wise and ADSS Surveys

    NASA Technical Reports Server (NTRS)

    Donso, E.; Yan, Lin; Tsai, C.; Eisenhardt, P; Stern, D.; Assef, R. J.; Leisawitz, D.; Jarrett, T. H.; Stanford, S. A.

    2012-01-01

    We cross-matched Wide-field Infrared Survey Explorer sources brighter than 1 mJy at 12 micron with the Sloan Digital Sky Survey galaxy spectroscopic catalog to produce a sample of approx. 10(exp 5) galaxies at z = 0.08, the largest of its kind. This sample is dominated (70%) by star-forming (SF) galaxies from the blue sequence, with total IR luminosities in the range approx 10(exp 8)-10(exp 12) Solar L. We identify which stellar populations are responsible for most of the 12 micron emission. We find that most (approx 80%) of the 12 micron emission in SF galaxies is produced by stellar populations younger than 0.6 Gyr. In contrast, the 12 micron emission in weak active galactic nuclei (AGNs; L [O iii] < 10(exo 7) solar L ) is produced by older stars, with ages of approx 1-3 Gyr. We find that L(sub 12 micron) linearly correlates with stellar mass for SF galaxies. At fixed 12 micron luminosity, weak AGNs deviate toward higher masses since they tend to be hosted by massive, early-type galaxies with older stellar populations. SF galaxies and weak AGNs follow different L(sub 12 micron) - SFR (star formation rate) relations, with weak AGNs showing excess 12 micron emission at low SFR (0.02-1 solar M /yr). This is likely due to dust grains heated by older stars. While the specific star formation rate (SSFR) of SF galaxies is nearly constant, the SSFR of weak AGNs decreases by approx 3 orders of magnitude, reflecting the very different star formation efficiencies between SF galaxies and massive, early-type galaxies. Stronger type II AGNs in our sample (L(sub [O iii]) > 10(exp 7) solar L ), act as an extension of massive SF galaxies, connecting the SF and weak AGN sequences. This suggests a picture where galaxies form stars normally until an AGN (possibly after a starburst episode) starts to gradually quench the SF activity. We also find that 4.6-12 micron color is a useful first-order indicator of SF activity in a galaxy when no other data are available.

  19. Quenching histories of galaxies and the role of AGN feedback

    NASA Astrophysics Data System (ADS)

    Smethurst, Rebecca Jane; Lintott, Chris; Simmons, Brooke; Galaxy Zoo Team

    2016-01-01

    Two open issues in modern astrophysics are: (i) how do galaxies fully quench their star formation and (ii) how is this affected - or not - by AGN feedback? I present the results of a new Bayesian-MCMC analysis of the star formation histories of over 126,000 galaxies across the colour magnitude diagram showing that diverse quenching mechanisms are instrumental in the formation of the present day red sequence. Using classifications from Galaxy Zoo we show that the rate at which quenching can occur is morphologically dependent in each of the blue cloud, green valley and red sequence. We discuss the nature of these possible quenching mechanisms, considering the influence of secular evolution, galaxy interactions and mergers, both with and without black hole activity. We focus particularly on the relationship between these quenched star formation histories and the presence of an AGN by using this new Bayesian method to show a population of type 2 AGN host galaxies have recently (within 2 Gyr) undergone a rapid (τ < 1 Gyr) drop in their star formation rate. With this result we therefore present the first statistically supported observational evidence that AGN feedback is an important mechanism for the cessation of star formation in this population of galaxies. The diversity of this new method also highlights that such rapid quenching histories cannot account fully for all the quenching across the current AGN host population. We demonstrate that slower (τ > 2 Gyr) quenching rates dominate for high stellar mass (log10[M*/M⊙] > 10.75) hosts of AGN with both early- and late-type morphology. We discuss how these results show that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes across the entirety of the colour magnitude diagram.

  20. Galaxy clusters in the cosmic web

    NASA Astrophysics Data System (ADS)

    Acebrón, A.; Durret, F.; Martinet, N.; Adami, C.; Guennou, L.

    2014-12-01

    Simulations of large scale structure formation in the universe predict that matter is essentially distributed along filaments at the intersection of which lie galaxy clusters. We have analysed 9 clusters in the redshift range 0.4galaxies likely to be in the cluster redshift range and studied their spatial distribution. We detect a number of structures and filaments around several clusters, proving that colour-magnitude diagrams are a reliable method to detect filaments around galaxy clusters. Since this method excludes blue (spiral) galaxies at the cluster redshift, we also apply the LePhare software to compute photometric redshifts from BVRIZ images to select galaxy cluster members and study their spatial distribution. We then find that, if only galaxies classified as early-type by LePhare are considered, we obtain the same distribution than with a red sequence selection, while taking into account late-type galaxies just pollutes the background level and deteriorates our detections. The photometric redshift based method therefore does not provide any additional information.