The nature of water: excerpts from Pythagoras, Xenophanes, Heraclitus and Parmenides.
Bisaccia, Carmela; De Santo, Rosa Maria; Bilancio, Giancarlo; Anastasio, Pietro; Perna, Alessandra; De Santo, Luca Salvatore
2009-01-01
Water was a prominent substance with Pythagoras, Xenophanes, Heraclitus and Parmenides, who flourished in the years 530-490 bc. The basic Pythagorean elements were earth and fire, and between them there were 2 intermediate entities (water and air), which were instrumental and indispensable components of specific solids. All things are a blend of different elements. For Xenophanes, "All things that come into being and grow are earth and water," "We all originated from earth and water" and "And in certain caves water drips down."For Heraclitus water is an ambivalent substance: "One cannot bathe in the same river on two occasions." "The sea is the safest and the most polluted water, for fish it is healthy and gives life, for men it is unhealthy and causes death." "Fire experiences the death of earth, air experiences that of fire, water experiences the death of air and the earth that of water." Parmenides was a man who sought the truth through reasoning and was, according to Hegel, the founder of Western philosophy. He built a dualist theory of the cosmos based on heat and cold, fire and earth - the former as a cause, the latter as substrate. The former unified, the latter separated. According to Aristotle, Parmenides considered air and water as mixtures of earth and fire.
Earth, Air, Fire and Water in Our Elements
ERIC Educational Resources Information Center
Lievesley, Tara
2007-01-01
The idea that everything is made of the four "elements", earth, air, fire and water, goes back to the ancient Greeks. In this article, the author talks about the origins of ideas about the elements. The author provides an account that attempts to summarise thousands of years of theoretical development of the elements in a thousand words or so.
ERIC Educational Resources Information Center
Lee, Ronald T., Ed.
This resource guide is intended to aid practitioners in the design of new curriculum units or the enrichment of existing units by suggesting activities and resources in the topic areas of earth, air, fire, and water. Special projects and trips relating to these topic areas are proposed. A sample arts networking system used to integrate various…
ERIC Educational Resources Information Center
Damonte, Kathleen
2004-01-01
Earth's surface is always changing. Much of that change happens because of air, wind, water, and temperature differences. If you have ever observed mud and rocks being carried along by a stream of water after a heavy rain, you have observed the Earth being changed. This month's Science Shorts will investigate how the Earth changes through a…
Eight Year Climatologies from Observational (AIRS) and Model (MERRA) Data
NASA Technical Reports Server (NTRS)
Hearty, Thomas; Savtchenko, Andrey; Won, Young-In; Theobalk, Mike; Vollmer, Bruce; Manning, Evan; Smith, Peter; Ostrenga, Dana; Leptoukh, Greg
2010-01-01
We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert. The AIRS and MERRA data are available from the Goddard Earth Sciences Data and Information Services Center (GES DISC). The AIRS climatologies we used are available for analysis with the GIOVANNI data exploration tool. (see, http://disc.gsfc.nasa.gov).
Water Innovations and Lessons Learned From Water Recycling in Space
NASA Technical Reports Server (NTRS)
Flynn, Michael
2013-01-01
This Presentation will cover technology and knowledge transfers from space exploration to earth and the tourism industry, for example, water and air preservation, green buildings and sustainable cities.
ERIC Educational Resources Information Center
TERC, Cambridge, MA.
This educator's guide discusses whether there is water on the planet Mars. The activities, written for grades 9-12, concern physical, earth, and space sciences. By experimenting with water as it changes state and investigating some effects of air pressure, students not only learn core ideas in physical science but can also deduce the water…
Energetic Ionic Liquids Based on Anionic Rare Earth Nitrate Complexes (Preprint)
2008-07-10
a glass transition temperature (Tg) at -46 oC. However, it is only stable in dry air, and thus must be protected from water. At 75 oC, clear weight...involved highly toxic and corrosive chemicals, N2O4 and NOCl. Ligands which coordinate via oxygen atoms to a rare earth metal ion give rise to stable...complexes. Thus higher air and thermal stabilities may be obtained by introducing rare earth metal nitrates as main components of ionic liquids. We
Change in Water Cycle- Important Issue on Climate Earth System
NASA Astrophysics Data System (ADS)
Singh, Pratik
Change in Water Cycle- Important Issue on Climate Earth System PRATIK KUMAR SINGH1 1BALDEVRAM MIRDHA INSTITUTE OF TECHNOLOGY,JAIPUR (RAJASTHAN) ,INDIA Water is everywhere on Earth and is the only known substance that can naturally exist as a gas, liquid, and solid within the relatively small range of air temperatures and pressures found at the Earth's surface.Changes in the hydrological cycle as a consequence of climate and land use drivers are expected to play a central role in governing a vast range of environmental impacts.Earth's climate will undergo changes in response to natural variability, including solar variability, and to increasing concentrations of green house gases and aerosols.Further more, agreement is widespread that these changes may profoundly affect atmospheric water vapor concentrations, clouds and precipitation patterns.As we know that ,a warmer climate, directly leading to increased evaporation, may well accelerate the hydrological cycle, resulting in an increase in the amount of moisture circulating through the atmosphere.The Changing Water Cycle programmer will develop an integrated, quantitative understanding of the changes taking place in the global water cycle, involving all components of the earth system, improving predictions for the next few decades of regional precipitation, evapotranspiration, soil moisture, hydrological storage and fluxes.The hydrological cycle involves evaporation, transpiration, condensation, precipitation, and runoff. NASA's Aqua satellite will monitor many aspects of the role of water in the Earth's systems, and will do so at spatial and temporal scales appropriate to foster a more detailed understanding of each of the processes that contribute to the hydrological cycle. These data and the analyses of them will nurture the development and refinement of hydrological process models and a corresponding improvement in regional and global climate models, with a direct anticipated benefit of more accurate weather and climate forecasts. Aqua is a major mission of the Earth Observing System (EOS), an international program centered in NASA's Earth Science Enterprise to study the Earth in detail from the unique vantage point of space. Focused on key measurements identified by a consensus of U.S. and international scientists, EOS is further enabling studies of the complex interactions amongst the Earth's land, ocean, air, ice and biological systems. Aqua's contributions to monitoring water in the Earth's environment will involve all six of Aqua's instruments: the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU), the Humidity Sounder for Brazil (HSB), the Advanced Microwave Scanning Radiometer- Earth Observing System (AMSR-E), the Moderate Resolution Imaging Spectroradiometer (MODIS), and Clouds and the Earth's Radiant Energy System (CERES). Frozen water in the oceans, in the form of sea ice, will be examined with both AMSR-E and MODIS data, the former allowing routine monitoring of sea ice at a coarse resolution and the latter providing greater spatial resolution but only under cloud-free conditions. Sea ice can insulate the underlying liquid water against heat loss to the often frigid overlying polar atmosphere and also reflects sunlight that would otherwise be available to warm the ocean. AMSR-E measurements will allow the routine derivation of sea ice concentrations in both polar regions, through taking advantage of the marked contrast in microwave emissions of sea ice and liquid water. This will continue, with improved resolution and accuracy, a 22-year satellite record of changes in the extent of polar ice. MODIS, with its finer resolution, will permit the identification of individual ice flows, when unobscured by clouds. AMSR-E and MODIS will also provide monitoring, the AIRS/AMSU/HSB combination will provide more-accurate space-based measurements of atmospheric temperature and water vapor than have ever been obtained before, with the highest vertical resolution to date as well. Since water vapor is the Earth's primary greenhouse gas and contributes significantly to uncertainties in projections of future global warming, it is critical to understand how it varies in the Earth system. We should concern for these drastic changes and should protect it. Keywords-Hydrological cycle,Climate models,Aqua’s instruments
Dishwasher For Earth Or Outer Space
NASA Technical Reports Server (NTRS)
Tromble, Jon D.
1991-01-01
Dishwashing machine cleans eating utensils in either Earth gravity or zero gravity of outer space. Cycle consists of three phases: filling, washing, and draining. Rotation of tub creates artificial gravity aiding recirculation of water during washing phase in absence of true gravity. Centrifugal air/water separator helps system function in zero gravity. Self-cleaning filter contains interdigitating blades catching solid debris when water flows between them. Later, blades moved back and forth in scissor-like manner to dislodge debris, removed by backflow of water.
NASA Technical Reports Server (NTRS)
Estes, Sue; Haynes, John; Omar, Ali
2013-01-01
Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.
NASA Technical Reports Server (NTRS)
Estes, Sue; Haynes, John; Omar, Ali
2012-01-01
Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.
Global Change. Teaching Activities on Global Change for Grades 4-6.
ERIC Educational Resources Information Center
Geological Survey (Dept. of Interior), Reston, VA.
This packet contains a series of teaching guides on global change. The series includes lessons on dendrochronology; land, air, and water; and island living. Included is information such as : laws of straws; where land, air, and water meet; and Earth as home. Each section provides an introductory description of the activity, the purpose of the…
NASA's Aqua Satellite Celebrates 10th Annivesary
2017-12-08
NASA's Aqua Satellite Celebrates 10th Anniversary The Aqua satellite mission has proved to be a major component of the Earth Observing System (EOS) for its ability to gather unprecedented amounts of information on Earth’s water cycle, including measurements on water vapor, clouds, precipitation, ice, and snow. Aqua data has helped improve weather prediction, detection of forest fires, volcanic ash, and sandstorms. In addition, Aqua data have been used to detect and monitor such greenhouse gases as carbon dioxide, water vapor, and methane, and to examine the energy imbalance at the top of the Earth's atmosphere and the various components of it. With these uses of Aqua data, scientists have been able to better understand our Earth over the course of the past ten years. Aqua is a major international Earth Science satellite mission centered at NASA. Launched on May 4, 2002, the satellite has six different Earth-observing instruments on board and is named for the large amount of information being obtained about water in the Earth system from its stream of approximately 89 Gigabytes of data a day. The water variables being measured include almost all elements of the water cycle and involve water in its liquid, solid, and vapor forms. Additional variables being measured include radiative energy fluxes, aerosols, vegetation cover on the land, phytoplankton and dissolved organic matter in the oceans, and air, land, and water temperatures. For more information about NASA's Aqua satellite, visit: aqua.nasa.gov ------------ Caption: Artist rendition of the NASA's Aqua satellite, which carries the MODIS and AIRS instruments. Credit: NASA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Seasonal air and water mass redistribution effects on LAGEOS and Starlette
NASA Technical Reports Server (NTRS)
Gutierrez, Roberto; Wilson, Clark R.
1987-01-01
Zonal geopotential coefficients have been computed from average seasonal variations in global air and water mass distribution. These coefficients are used to predict the seasonal variations of LAGEOS' and Starlette's orbital node, the node residual, and the seasonal variation in the 3rd degree zonal coefficient for Starlette. A comparison of these predictions with the observed values indicates that air pressure and, to a lesser extent, water storage may be responsible for a large portion of the currently unmodeled variation in the earth's gravity field.
War: The Global Battlefield. Our Only Earth. A Curriculum for Global Problem Solving.
ERIC Educational Resources Information Center
MacRae-Campbell, Linda; McKisson, Micki
Both humanity and nature have suffered greatly from human insensitivity. Not only are the natural resources of the earth being depleted and its air, land, and water polluted, the financial resources of humanity are being wasted on destructive expenditures. The "Our Only Earth" series is an integrated science, language arts, and social studies…
Our Troubled Skies. Our Only Earth. A Curriculum for Global Problem Solving.
ERIC Educational Resources Information Center
MacRae-Campbell, Linda; McKisson, Micki
Both humanity and nature have suffered greatly from human insensitivity. Not only are the natural resources of the earth being depleted and its air, land and water polluted, the financial resources of humanity are being wasted on destructive expenditures. The "Our Only Earth" series is an integrated science, language arts, and social studies…
The Ocean Crisis. Our Only Earth Series. A Curriculum for Global Problem Solving.
ERIC Educational Resources Information Center
MacRae-Campbell, Linda; And Others
Both humanity and nature have suffered greatly from human insensitivity. Not only are the natural resources of the earth being depleted and its air, land and water polluted, the financial resources of humanity are being wasted on destructive expenditures. The "Our Only Earth" series is an integrated science, language arts, and social studies…
Observation of the water cycle from space with the Atmospheric Infrared Sounder (AIRS)
NASA Astrophysics Data System (ADS)
Chahine, M. T.; Waliser, D. E.; Fetzer, E. J.; Olsen, E. T.
2007-12-01
AIRS is one of six instruments on board the Aqua satellite, part of NASA's Earth Observing System launched in a sun synchronous near polar orbit on May 4, 2002. AIRS and its partner microwave instrument, AMSU A, provide high quality data facilitating studies of the global water and energy cycles, climate variation and trends, and the response of the climate system to increased greenhouse gases. The exceptional stability of the AIRS instrument provides a climate record of thermal infrared radiance spectra spanning the 3.74 15.4 mm spectral band with 2378 channels at a nominal resolution of 1/1200. (Chahine et al, in BAMS, July 2006) Accurate knowledge of the vertical distribution of water vapor in the atmosphere is critically important to the determination of the warming the Earth will experience as a result of anthropogenic forcing. Comparison of the AIRS specific humidity product to state of the art climate models has shown most models exhibit a pattern of drier than observed (by 10 25%) in the tropics below 800 hPa and moister than observed (by 25 100%) between 300 and 600 hPa in the extra tropics (Pierce et al, GRL 2006). The AIRS water vapor measurements also reveal tropospheric moisture perturbations that are much larger than those depicted in previous NCAR/NCEP reanalysis and ECMWF analysis datasets, both of which have been widely used as observations to validate models. This suggests that the impact of convection induced downdrafts on the atmospheric boundary layer is significantly underestimated in both ECMWF and NCEP reanalysis (Fu et al., GRL 2006). AIRS data have led to the discovery of significant differences in the lower troposphere moisture and temperature fields during the spatial temporal evolution of the Madden Julian Oscillation (MJO). The anomalous lower troposphere temperature structure is observed in detail by AIRS for the Indian and western Pacific Oceans, while it remains much less well defined in the NCEP temperature fields (Tian et al,GRL 2007). Information about the AIRS mission, products and research may be found at the AIRS Project web site: http://airs.jpl.nasa.gov. AIRS data products are freely accessible world wide at the Goddard Earth Sciences Data and Information Services Center (GES DISC) web site for AIRS support: http://disc.gsfc.nasa.gov/AIRS/.
Overview of the Environmental Control and Life Support System (ECLSS) Testing At MSFC
NASA Technical Reports Server (NTRS)
Traweek, Mary S.; Tatara, James D.
1998-01-01
Previously, almost all water used by the crew during space flight has been transported from earth or generated in-flight as a by-product of fuel cells. Additionally, this water has been stored and used for relatively short periods. To achieve the United States' commitment to a permanent manned presence in space, more innovative techniques are demanded. Over 20,000 pounds of water and large quantities of air would have to be transported to the International Space Station (ISS) every 90 days with a corresponding amount of waste returned to earth, for an 8-person crew. This approach results in prohibitive logistics costs, and necessitates near complete recovery and recycling of water. The potential hazards associated with long-term reuse of reclaimed water and revitalized air resulted in the recognition that additional characterization of closed-loop systems and products is essential. Integrated physical/chemical systems have been designed, assembled, and operated to provide air and potable water meeting ISS quality specifications. The purpose of the Environmental Control and Life Support System (ECLSS) test program at NASA's Marshall Space Flight Center is to conduct research related to the performance of the ISS and its Environmental Control components. The ECLSS Test Program encompasses the Water Recovery Test (WRT), the Integrated Air Revitalization Test (IART), and Life Testing, which permits ECLSS design evaluation. These subsystems revitalize air and reclaim waste waters representative of those to be generated on-orbit. This paper provides an overview of MSFC's 1997 ECLSS testing. Specific tests include: the Stage 10 Water Recovery Test; the Contaminant Injection Test; the Performance Enhancement Test and Life Testing of the Four Bed Molecular Sieve; the Oxygen Generator Assembly Life Test; and the ISS Water Distribution Biofilm Life Test.
Earth Battery: An Approach for Reducing the Carbon and Water Intensity of Energy
NASA Astrophysics Data System (ADS)
Buscheck, T. A.; Bielicki, J. M.; Randolph, J.
2016-12-01
Mitigating climate change requires a range of measures, including increased use of renewable and low-carbon energy and reducing the CO2 intensity of fossil energy use. Our approach, called the Earth Battery, uses the storage of supercritical CO2, N2, or pressurized air to enable utility-scale energy storage needed for increased use of variable renewable energy and low-carbon baseload power. When deployed with CO2, the Earth Battery is designed to address the major deployment barriers to CO2 capture, utilization, and storage (CCUS) by managing overpressure and creating a business case for CO2 storage. We use the huge fluid and thermal storage capacity of the earth, together with overpressure driven by CO2, N2, or pressurized air storage, to harvest, store, and dispatch energy from subsurface (geothermal) and surface (solar, fossil) thermal resources, as well as excess energy from electric grids. The storage of CO2, N2, or air enables the earth to function as a low-carbon energy-system hub. Stored CO2, N2, or air plays three key roles: (1) as a supplemental fluid that creates pressure to efficiently recirculate working fluids that store and recover energy, (2) as a working fluid for efficient, low-water-intensity electricity conversion, and (3) as a shock absorber to allow diurnal and seasonal recharge/discharge cycles with minimal pressure oscillations, providing large pressure-storage capacity, with reduced risk of induced seismicity or leakage of stored CO2. To keep reservoir pressures in a safe range, a portion of the produced brine is diverted to generate water. Concentric rings of injection and production wells create a hydraulic divide to store pressure, CO2, N2/air, and thermal energy. Such storage can take excess power from the grid and excess thermal energy, and dispatch that energy when it is demanded. The system is pressurized and heated when power supply exceeds demand and depressurized when demand exceeds supply. The Earth Battery is designed for locations where a permeable geologic formation is overlain by an impermeable formation that constrains migration of buoyant CO2, N2/air, and heated brine. Such geologic conditions exist over half of the contiguous United States. This work was performed under the auspices of the USDOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA's Earth Venture-1 (EV-1) Airborne Science Investigations
NASA Technical Reports Server (NTRS)
Guillory, A.; Denkins, T.; Allen, B. Danette; Braun, Scott A.; Crawford, James H.; Jensen, Eric J.; Miller, Charles E.; Moghaddam, Mahta; Maring, Hal
2011-01-01
In 2010, NASA announced the first Earth Venture (EV-1) selections in response to a recommendation made by the National Research Council for low-cost investigations fostering innovation in Earth science. The five EV-1 investigations span the Earth science focus areas of atmosphere, weather, climate, water and energy and, carbon and represent earth science researchers from NASA as well as other government agencies, academia and industry from around the world. The EV-1 missions are: 1) Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS), 2) Airborne Tropical Tropopause Experiment (ATTREX), 3) Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 4) Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ), and 5) Hurricane And Severe Storm Sentinel (HS3). The Earth Venture missions are managed out of the Earth System Science Pathfinder (ESSP) Program Office (Allen, et. al. 2010b)
1983-12-01
clarifiers, activated sludge units, trickling filters, aerobic and anaerobic digesters, and various dowatering devices and recommendations for...for locations of water- bearing fractures. Additional responsibilities included drilling with mud and air rotary drilling rigs as well as bucket auger...interpretation. Also conducted earth resistivity surveys in Georgia and Alabama Piedmont Provinces for locations of water- bearing fractures. Additional
Promoting Sustainable Development Through Engagement.
1999-01-30
address development problems. In June 1992, the United Nations convened an international conference in Rio de Janeiro , commonly called the Earth... River or polluted air and water in the Central and Eastern European countries, nations are failing to provide their population potable water...situation in Central and Eastern Europe (CEE) provide us some examples. First, there is the health impact. Air pollution appears to be the cause of
ERIC Educational Resources Information Center
McKisson, Micki; MacRae-Campbell, Linda
Both humanity and nature have suffered greatly from human insensitivity. Not only are the natural resources of the earth being depleted and its air, land and water polluted, the financial resources of humanity are being wasted on destructive expenditures. The "Our Only Earth" series is an integrated science, language arts, and social studies…
ERIC Educational Resources Information Center
McKisson, Micki; MacRae-Campbell, Linda
Both humanity and nature have suffered greatly from human insensitivity. Not only are the natural resources of the earth being depleted and its air, land and water polluted, the financial resources of humanity are being wasted on destructive expenditures. The "Our Only Earth" series is an integrated science, language arts, and social…
ERIC Educational Resources Information Center
White, Timothy; Wymore, Adam; Dere, Ashlee; Hoffman, Adam; Washburne, James; Conklin, Martha
2017-01-01
Earth's critical zone (CZ) is the uppermost layer of Earth's continents, which supports ecosystems and humans alike. CZ science aims to understand how interactions among rock, soil, water, air, and terrestrial organisms influence Earth as a habitable system. Thus, CZ science provides the framework for a holistic-systems approach to teaching Earth…
Some Scientists Think There's a Melon inside
ERIC Educational Resources Information Center
Primary Science Review, 2007
2007-01-01
The Ancient Greeks saw the world as earth, air, fire and water. This article presents some children's ideas about what makes up the Earth. Children were asked to share what they thought the Earth was made of, how old it is, how long it took to create, and what is inside it. The answers indicate that they often have emerging though vague ideas…
ERIC Educational Resources Information Center
McKisson, Micki; MacRae-Campbell, Linda
Both humanity and nature have suffered greatly from human insensitivity. Not only are the natural resources of the earth being depleted and its air, land and water polluted, the financial resources of humanity are being wasted on destructive expenditures. The "Our Only Earth" series is an integrated science, language arts, and social studies…
2013-06-24
ISS036-E-011843 (24 June 2013) --- Gravity waves and sunglint on Lake Superior are featured in this image photographed by an Expedition 36 crew member on the International Space Station. From the vantage point of the space station, crew members frequently observe Earth atmospheric and surface phenomena in ways impossible to view from the ground. Two such phenomena?gravity waves and sunglint?are illustrated in this photograph of northeastern Lake Superior. The Canadian Shield of southern Ontario (bottom) is covered with extensive green forest canopy typical of early summer. Offshore, and to the west and southwest of Pukaskwa National Park several distinct sets of parallel cloud bands are visible. Gravity waves are produced when moisture-laden air encounters imbalances in air density, such as might be expected when cool air flows over warmer air; this can cause the flowing air to oscillate up and down as it moves, causing clouds to condense as the air rises (cools) and evaporate away as the air sinks (warms). This produces parallel bands of clouds oriented perpendicular to the wind direction. The orientation of the cloud bands visible in this image, parallel to the coastlines, suggests that air flowing off of the land surfaces to the north is interacting with moist, stable air over the lake surface, creating gravity waves. The second phenomenon?sunglint?effects the water surface around and to the northeast of Isle Royale (upper right). Sunglint is caused by light reflection off a water surface; some of the reflected light travels directly back towards the observer, resulting in a bright mirror-like appearance over large expanses of water. Water currents and changes in surface tension (typically caused by presence of oils or surfactants) alter the reflective properties of the water, and can be highlighted by sunglint. For example, surface water currents are visible to the east of Isle Royale that are oriented similarly to the gravity waves ? suggesting that they too are the product of winds moving off of the land surface.
NASA Astrophysics Data System (ADS)
Khachan, Joe
2018-02-01
The ancient Greeks believed that all matter was composed of four elements: earth, water, air, and fire. By a remarkable coincidence (or perhaps not), today we know that there are four states of matter: solids (e.g. earth), liquids (e.g. water), gasses (e.g. air) and plasma (e.g. ionized gas produced by fire). The plasma state is beyond the scope of this book and we will only look at the first three states. Although on the microscopic level all matter is made from atoms or molecules, everyday experience tells us that the three states have very different properties. The aim of this book is to examine some of these properties and the underlying physics.
EPA through statutory mandates has monitored air, water, land and human health for the past several decades. The design of the ambient air monitoring networks, for the most part, has been loosely tied single-pollutant networks focused on large urban areas. These networks supply t...
Technologies for Humans in Space with Terrestrial Application for Testing in :envihab
NASA Astrophysics Data System (ADS)
Belz, Stefan; Henn, Norbert
Technologies for humans in space and for a sustainable resource management on Earth are faced to similar recycling challenges. The main differences between life support systems (LSS) in human spaceflight and Earth’s environment are the buffer capacities and enormous diversity of material and organisms in Earth. Thus, LSS in space as a small-scale set-up show quickly the problems of artificial cycle management. Such a cycle management becomes more and more important with increase on world’s population and enlargement of (mega-)cities, in order to provide clean air, clean water and no wasting the environment. There is a need of technologies on Earth and for crewed long-term missions in space focusing on efficient and clean electricity generation, as well as on air, water, food, and waste management at lowest power demand. Existing technologies shall be adapted, and new technologies shall be developed for enhancing quality of life on Earth. The poster demonstrates some significant activities in Germany in the field of air revitalization, biomass and food production by microalgae cultivation, biological water regeneration, synergetic use of fuel cells and electrolyzers, respectively hydrogen and oxygen, in life support and energy systems. These technologies make a strong contribution to higher cycle closures, especially combined in an overall system configuration. The facility of :envihab (Environment and Habitat) in Cologne/Germany enables a unique testbed for integrative experiments from component level to system level, in order to demonstrate and investigate compatibilities, required peripherals devices and diagnostic tools.
Winter Cloud Streets, North Atlantic
2017-12-08
NASA image acquired January 24, 2011 What do you get when you mix below-freezing air temperatures, frigid northwest winds from Canada, and ocean temperatures hovering around 39 to 40 degrees Fahrenheit (4 to 5 degrees Celsius)? Paved highways of clouds across the skies of the North Atlantic. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite collected this natural-color view of New England, the Canadian Maritimes, and coastal waters at 10:25 a.m. U.S. Eastern Standard Time on January 24, 2011. Lines of clouds stretch from northwest to southeast over the North Atlantic, while the relatively cloudless skies over land afford a peek at the snow that blanketed the Northeast just a few days earlier. Cloud streets form when cold air blows over warmer waters, while a warmer air layer—or temperature inversion—rests over top of both. The comparatively warm water of the ocean gives up heat and moisture to the cold air mass above, and columns of heated air—thermals—naturally rise through the atmosphere. As they hit the temperature inversion like a lid, the air rolls over like the circulation in a pot of boiling water. The water in the warm air cools and condenses into flat-bottomed, fluffy-topped cumulus clouds that line up parallel to the wind. Though they are easy to explain in a broad sense, cloud streets have a lot of mysteries on the micro scale. A NASA-funded researcher from the University of Wisconsin recently observed an unusual pattern in cloud streets over the Great Lakes. Cloud droplets that should have picked up moisture from the atmosphere and grown in size were instead shrinking as they moved over Lake Superior. Read more in an interview at What on Earth? NASA image by Jeff Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center. Caption by Michael Carlowicz. Instrument: Terra - MODIS Credit: NASA Earth Observatory NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
Explanatory Identities and Conceptual Change
NASA Astrophysics Data System (ADS)
Thagard, Paul
2014-07-01
Although mind-brain identity remains controversial, many other identities of ordinary things with scientific ones are well established. For example, air is a mixture of gases, water is H2O, and fire is rapid oxidation. This paper examines the history of 15 important identifications: air, blood, cloud, earth, electricity, fire, gold, heat, light, lightning, magnetism, salt, star, thunder, and water. This examination yields surprising conclusions about the nature of justification, explanation, and conceptual change.
Battle Management/Command and Control, and Communications (BM/C3), Environmental Assessment
1987-08-01
Highway 94 outside the base (39). This addition can be mitigated through the use of van pools and other conservation measures. 3-4 Water Quality All...Facility Description Miller, Jim MS Earth Resources Reviewer Milliken, Larry BS Earth Resources Project Description Morelan, Edward A. MS Earth...1987. Telephone conversation with Edward A. Morelan. 11. Dennary, Andy, Civil Engineering Department, Peterson Air Force Base, Colorado. 21 May 1987
Explanatory Identities and Conceptual Change
ERIC Educational Resources Information Center
Thagard, Paul
2014-01-01
Although mind-brain identity remains controversial, many other identities of ordinary things with scientific ones are well established. For example, air is a mixture of gases, water is H[subscript 2]O, and fire is rapid oxidation. This paper examines the history of 15 important identifications: air, blood, cloud, earth, electricity, fire, gold,…
OZONE DEPLETION AND THE AIR-SEA EXCHANGE OF GREENHOUSE AND CHEMICALLY REACTIVE TRACE GASES
One of the most important aspects of global change is that of stratospheric ozone depletion and the resulting increase in UV radiation reaching the surface of the Earth. Some 70% of the Earth surface is covered by water containing an extremely complicated milieu of organic and in...
Teaching the practice of geophysics: A prototype world wide web environment for conceptual learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, T.M.; Romig, P.R.
1996-11-01
The history of the United States has been driven by a surplus of resources (energy, materials, air, water, open space). Today we are entering an era when there will no longer be more resources than people. This transition from a resource-rich to a resource-limited environment is responsible for many of the changes occurring within our society today, including the restructuring of industry and government. With regard to the earth sciences, one of the dominant issues of the 21st century will be how to use a finite earth to support a burgeoning global Population. We must continue to provide the rawmore » materials needed to feed, clothe, house, and provide a reasonable standard of living for all humans on earth. We must learn to extract and use resources and dispose of the waste products of that activity without poisoning the air we breathe and the water we drink. The quality of life of future generations depends on the earth sciences being equal to this challenge.« less
NASA Technical Reports Server (NTRS)
Greeley, R. S. (Principal Investigator); Ward, E. A.; Elliott, J. C.; Friedman, E. J.; Riley, E. L.; Stryker, S.
1974-01-01
The author has identified the following significant results. Land use change, water quality, and air quality indices have been calculated from analysis of ERTS-1 multispectral scanning imagery and computer compatible tapes. Specifications have been developed and discussed for an ERTS-1 environmental monitoring system which help to serve the information needs of environmental managers at the Federal, state, regional, and local level. General conclusions of the investigation are that ERTS-1 data is very useful in land use mapping and updating to 10-15 categories, and can provide an overall measure of air and water turbidity; however, more and better ground truth and possibly additional spacecraft sensors will be required if specific air and water pollutants are to be quantified from satellite data.
2004-07-15
KENNEDY SPACE CENTER, FLA. - With rockets and main engine firing, the Boeing Delta II launch vehicle leaps off the pad at NASA’s Space Complex 2 on Vandenberg Air Force Base, Calif., carrying the Aura spacecraft. Aura, a mission dedicated to the health of Earth's atmosphere, successfully launched today at 3:01:59 a.m. Pacific Time. Spacecraft separation occurred at 4:06 a.m. Pacific Time, inserting Aura into a 438-mile orbit. NASA’s latest Earth-observing satellite, Aura will help us understand and protect the air we breathe. Aura will also help scientists understand how the composition of the atmosphere affects and responds to Earth's changing climate. The results from this mission will help scientists better understand the processes that connect local and global air quality. With the launch of Aura, the first series of NASA’s Earth Observing System satellites is complete. The other satellites are Terra, which monitors land, and Aqua, which observes Earth’s water cycle. [Photo: Boeing/Thom Baur
2004-07-15
KENNEDY SPACE CENTER, FLA. - - With rockets and main engine firing, the Boeing Delta II launch vehicle leaps off the pad at NASA’s Space Complex 2 on Vandenberg Air Force Base, Calif., carrying the Aura spacecraft. Aura, a mission dedicated to the health of Earth's atmosphere, successfully launched today at 3:01:59 a.m. Pacific Time. Spacecraft separation occurred at 4:06 a.m. Pacific Time, inserting Aura into a 438-mile orbit. NASA’s latest Earth-observing satellite, Aura will help us understand and protect the air we breathe. Aura will also help scientists understand how the composition of the atmosphere affects and responds to Earth's changing climate. The results from this mission will help scientists better understand the processes that connect local and global air quality. With the launch of Aura, the first series of NASA’s Earth Observing System satellites is complete. The other satellites are Terra, which monitors land, and Aqua, which observes Earth’s water cycle. [Photo: Boeing/Thom Baur
Habitable zone limits for dry planets.
Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H; Zahnle, Kevin J
2011-06-01
Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago.
ERIC Educational Resources Information Center
National Audubon Society, New York, NY.
This set of teaching aids consists of seven Audubon Nature Bulletins, providing the teacher and student with informational reading on various topics in conservation. The bulletins have these titles: Plants as Makers of Soil, Water Pollution Control, The Ground Water Table, Conservation--To Keep This Earth Habitable, Our Threatened Air Supply,…
Aquarius SAC-D Post-Launch Briefing
2011-06-10
Hector Timerman, Foreign Minister of Argentina, Buenos Aires, left, Michael Freilich, NASA Earth Science Division Director, NASA Headquarters, Washington, center, and Conrado Varotto, CONAE Executive and Technical Director, Buenos Aires, laugh at the start of the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
Terra II--A Spaceship Earth Simulation for the Middle Grades
ERIC Educational Resources Information Center
Mastrude, Peggy
1972-01-01
The unit of study consists of four lessons based on the concept that the earth is a large system made up of many small systems (air, food, water, man, etc.). Complete procedures are included to study the environment, examine developing countries, determine interaction between peoples and nations. The problem solving excercise is an inquiry…
Paramagnetism Paradoxes: Projectable Demonstrations
ERIC Educational Resources Information Center
Sauls, Frederick C.; Vitz, Ed
2008-01-01
Drops of oil in Mn(SO[subscript 4])(aq) and drops of the solution in oil show opposite effects when brought near a rare earth magnet. Oxygen, nitrogen, and air bubbles atop water show expected attraction, repulsion, and null behavior, respectively. Air bubbles atop aqueous Mn(SO[subscript 4]) show paradoxical behavior because the magnet's…
Human Exploration Missions - Maturing Technologies to Sustain Crews
NASA Technical Reports Server (NTRS)
Mukai, Chiaki; Koch, Bernhard; Reese, Terrence G.
2012-01-01
Human exploration missions beyond low earth orbit will be long duration with abort scenarios of days to months. Providing crews with the essentials of life such as clean air and potable water means recycling human metabolic wastes back to useful products. Individual technologies are under development for such things as CO2 scrubbing, recovery of O2 from CO2, turning waste water into potable water, and so on. But in order to fully evaluate and mature technologies fully they must be tested in a relevant, high-functionality environment; a systems environment where technologies are challenged with real human metabolic wastes. It is for this purpose that an integrated systems ground testing capability at the Johnson Space Center is being readied for testing. The relevant environment will include deep space habitat human accommodations, sealed atmosphere of 8 psi total pressure and 32% oxygen concentration, life support systems (food, air, water), communications, crew accommodations, medical, EVA, tools, etc. Testing periods will approximate those of the expected missions (such as a near Earth asteroid, Earth ]Moon L2 or L1, the moon, and Mars). This type of integrated testing is needed not only for research and technology development but later during the mission design, development, test, and evaluation phases of preparing for the mission.
Cloud Streets over the Atlantic Ocean
2017-12-08
In the midst of a cold snap that sent temperatures 20–40°F (11–22°C) below normal across much of the United States, the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite captured this image of cloud streets over the Atlantic Ocean on January 7, 2014. Cloud streets—long parallel bands of cumulus clouds—form when cold air blows over warmer waters and a warmer air layer (or temperature inversion) rests over the top of both. The comparatively warm water gives up heat and moisture to the cold air above, and columns of heated air called thermals naturally rise through the atmosphere. The temperature inversion acts like a lid, so when the rising thermals hit it, they roll over and loop back on themselves, creating parallel cylinders of rotating air. As this happens, the moisture cools and condenses into flat-bottomed, fluffy-topped cumulus clouds that line up parallel to the direction of the prevailing wind. On January 7, the winds were predominantly out of the northwest. Cloud streets can stretch for hundreds of kilometers if the land or water surface underneath is uniform. Sea surface temperature need to be at least 40°F (22°C) warmer than the air for cloud streets to form. More info: earthobservatory.nasa.gov/NaturalHazards/view.php?id=82800 NASA Earth Observatory image courtesy Jeff Schmaltz LANCE/EOSDIS MODIS Rapid Response Team, GSFC. Caption by Adam Voiland. Instrument: Terra - MODIS Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Ibrahim, A. I.; Tutwiler, R.; Zakey, A.; Shokr, M. E.; Ahmed, Y.; Jereidini, D.; Eid, M.
2014-12-01
Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science Note: This presentation is a PEER project sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htmwebsite: http://CleanAirEgypt.orgLinks to cited work: Core Curriculum Course: http://bit.ly/FutureLife Citizen Science Project: Quality of Air, Drinking Water, and U.V. Level in Greater Cairo: Map 1: http://bit.ly/AirWaterLightMap1 Map 2: http://bit.ly/AirWaterLightMap2 Short Documentaries Student Projects: https://vimeo.com/science2society/videos Project video: http://CleanAirEgypt.org
Wood Made from Water?: An Introduction to Photosynthesis Based on a Historical Error
ERIC Educational Resources Information Center
Wrigley, Colin
2012-01-01
Three and a half centuries ago, a five-year experiment was conducted involving the growth of a willow tree in a pot which received only water. The conclusion, that a tree is therefore made solely from water, was not so ridiculous when there was still general acceptance of the Aristotelian view of only four "elements": water, earth, fire and air.…
ERIC Educational Resources Information Center
NatureScope, 1985
1985-01-01
Provides (1) background information showing how the sun, earth, air, and water work together to create weather; (2) six activities on this topic; and (3) a ready-to-copy coloring page on the water cycle. Each activity includes an objective, list of materials needed, recommended age level(s), subject area(s), and instructional strategies. (JN)
K-4 Keepers Collection: A Service Learning Teacher Professional Development Program
NASA Astrophysics Data System (ADS)
Schwerin, T. G.; Blaney, L.; Myers, R. J.
2011-12-01
This poster focuses on the K-4 Keepers Collection, a service-learning program developed for the Earth System Science Education Alliance (ESSEA). ESSEA is a NOAA-, NASA- and NSF-supported program of teacher professional development that increases teachers' pedagogical content knowledge of climate-related Earth system science. The ESSEA program -- whether used in formal higher education courses or frequented by individual teachers who look for classroom activities in the environmental sciences -- provides a full suite of activities, lessons and units for teachers' use. The ESSEA network consists of 45 universities and education centers addressing climate and environment issues. K-4 Keepers Collection - ESSEA K-4 module collections focus on five specific themes of content development: spheres, Polar Regions, oceans, climate and service learning. The K-4 Keepers collection provides the opportunity for teachers to explore topics and learning projects promoting stewardship of the Earth's land, water, air and living things. Examination of the impacts of usage and pollution on water, air, land and living things through service-learning projects allows students to become informed stewards. All of the modules include short-term sample projects that either educate or initiate action involving caring for the environment. The K-4 Keepers course requires teachers to develop similar short or long-term projects for implementation in their classrooms. Objectives include: 1. Increase elementary teachers' environmental literacy addressing ocean, coastal, Great Lakes, stewardship, weather and climate science standards and using NOAA and NASA resources. 2. Develop elementary teachers' efficacy in employing service learning projects focused on conserving and preserving Earth's land, air, water and living things. 3. Prepare college faculty to incorporate service learning and environmental literacy into their courses through professional development and modules on the ESSEA website.
Aquarius SAC-D Post-Launch Briefing
2011-06-10
From left, George Diller, NASA Public Affairs Officer; Charles Gay, Deputy Associate Administrator, NASA Science Mission Directorate; Hector Timerman, Foreign Minister of Argentina, Buenos Aires; Michael Freilich, NASA Earth Science Division Director, NASA Headquarters; and Conrado Varotto, CONAE Executive and Technical Director, Buenos Aires, are seen at the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
Aquarius SAC-D Post-Launch Briefing
2011-06-10
Seated from left, George Diller, NASA Public Affairs Officer; Charles Gay, Deputy Associate Administrator, NASA Science Mission Directorate; Hector Timerman, Foreign Minister of Argentina, Buenos Aires; Michael Freilich, NASA Earth Science Division Director, NASA Headquarters; and Conrado Varotto, CONAE Executive and Technical Director, Buenos Aires, are seen at the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
Evaluation of Vertically Resolved Water Winds from AIRS using Hurricane Katrina
NASA Technical Reports Server (NTRS)
Aumann, Hartmut H.; Dobkowski, Edwin C.; Gregorich, David T.
2005-01-01
The knowledge of wind velocity as a function of altitude is key to weather forecast improvements. The ability of hyperspectral sounders in principle to measure vertically resolved water winds, which has long been recognized, has been tested with Atmospheric Infrared Sounder (AIRS) data. AIRS retrievals of total column water above 300 mb have been correlated with the radiosonde upper-tropospheric wind velocity and moisture data. The excellent correlation is illustrated with results obtained from hurricane Katrina and from the western United States. AIRS is a hyperspectral infrared sounder in low Earth orbit. It was launched in May 2002. We illustrate the use of AIRS data for the measurement of upper tropospheric water by using the 2387/cm CO2 R-branch channel and the 1551/cm water vapor channel. The 2387/cm channel measures the temperature at 300 mb totally independent of water vapor. The weighting function of the 1551/cm channel peaks at 300 mb only under moist conditions; the peak shifts downward (higher temperature) for less water and upward (lower temperature) for more water. The difference between the brightness temperatures bt2387 and bt1551 cancels the local several degree weather related variability of the temperature and measures the component due to the water vapor at 300 mb.
Use Of The Operational Air Quality Monitor (AQM) For In-Flight Water Testing Project
NASA Technical Reports Server (NTRS)
Macatangay, Ariel
2014-01-01
A primary requirement for manned spaceflight is Environmental Health which ensures air and water contaminants, acoustic profiles, microbial flora, and radiation exposures within the cabin are maintained to levels needed for crew health and for vehicle system functionality. The reliance on ground analyses of returned samples is a limitation in the current environmental monitoring strategy that will prevent future Exploration missions beyond low-Earth orbit. This proposal attempts to address this shortcoming by advancing in-flight analyses of water and air. Ground analysis of in-flight, air and water samples typically employ vapor-phase analysis by gas chromatography-mass spectrometry (GC-MS) to identify and quantify organic compounds present in the samples. We envision the use of newly-developed direct ionization approaches as the most viable avenue leading towards an integrated analytical platform for the monitoring of water, air, and, potentially bio-samples in the cabin environment. Development of an in-flight instrument capable of analyzing air and water samples would be the logical next step to meeting the environmental monitoring needs of Exploration missions. Currently, the Air Quality Monitor (AQM) on-board ISS provides this specific information for a number of target compounds in the air. However, there is a significant subset of common target compounds between air and water. Naturally, the following question arises, "Can the AQM be used for both air and water quality monitoring?" Previous directorate-level IR&D funding led to the development of a water sample introduction method for mass spectrometry using electrothermal vaporization (ETV). This project will focus on the integration of the ETV with a ground-based AQM. The capabilities of this integrated platform will be evaluated using a subset of toxicologically important compounds.
NASA Astrophysics Data System (ADS)
Galewsky, Joseph; Rella, Christopher; Sharp, Zachary; Samuels, Kimberly; Ward, Dylan
2011-09-01
Simultaneous, real-time measurements of atmospheric water vapor mixing ratio and isotopic composition (δD and δ18O) were obtained using cavity ringdown spectroscopy on the arid Chajnantor Plateau in the subtropical Chilean Andes (elevation 5080 m or 550 hPa; latitude 23°S) during July and August 2010. The measurements show surface water vapor mixing ratio as low as 215 ppmv, δD values as low as -540‰, and δ18O values as low as -68‰, which are the lowest atmospheric water vapor δ values reported from Earth's surface. The results are consistent with previous measurements from the base of the tropical tropopause layer (TTL) and suggest large-scale subsidence of air masses from the upper troposphere to the Earth's surface. The range of measurements is consistent with condensation under conditions of ice supersaturation and mixing with moister air from the lower troposphere that has been processed through shallow convection. Diagnostics using reanalysis data show that the extreme aridity of the Chajnantor Plateau is controlled by condensation in the upper tropical troposphere.
Ames Research Center SR&T program and earth observations
NASA Technical Reports Server (NTRS)
Poppoff, I. G.
1972-01-01
An overview is presented of the research activities in earth observations at Ames Research Center. Most of the tasks involve the use of research aircraft platforms. The program is also directed toward the use of the Illiac 4 computer for statistical analysis. Most tasks are weighted toward Pacific coast and Pacific basin problems with emphasis on water applications, air applications, animal migration studies, and geophysics.
Surveys of the earth's resources and environment by satellites
NASA Technical Reports Server (NTRS)
Nordberg, W.; Tiedemann, H.; Bohn, C.
1975-01-01
The potential and promise of observing the earth from the vantage point of space is discussed. The systematic surveying of processes and phenomena occurring on the surface of the earth by Landsat 1 and Nimbus 5 is considered to be useful in the following areas: assessment of water resources; mineral and petroleum exploration; land use planning; crop, forest, and rangeland inventory; assessment of flood, earthquake, and other environmental hazards; monitoring coastal processes; environmental effects of industrial effluents and of air pollution; mapping the distribution and types of ice covering the earth's polar caps and global soil moisture distributions.
NASA Astrophysics Data System (ADS)
Ibrahim, Alaa; Ahmed, Yasmin
2015-04-01
Fulfilling the broader impact of a research project in Earth and environmental sciences is an excellent opportunity for educational and outreach activities that connect scientists and society and enhance students and community engagement in STEM fields in general and in Earth, space, and environmental sciences in particular. Here we present the experience developed in this endeavor as part of our Partnerships for Enhanced Engagement in Research (PEER) project sponsored by USAID/NSF/NAS. The project introduced educational and outreach activities that included core curriculum course development for university students from all majors, community-based learning projects, citizen science and outreach programs to school students and community members. Through these activities, students worked with the project scientists on a variety of activities that ranged from citizen science and undergraduate research to run mass experiments that measure the quality of air, drinking water, and ultraviolet level in greater Cairo, Egypt, to community awareness campaigns through the production of short documentaries and communicating them with stakeholders and target groups, including schools and TV stations. The activities enhanced students learning and the public awareness on climate change and the underlying role of human activities. It also connected effectively the project scientists with college and university students a well as the wider segments of the society, which resulted in a host of benefits including better scientific literacy and appreciation to the role of scientists, promoting scientists as role models, sharing the values of science, and motivating future generations to puruse a career in science This work is part of the PEER research project 2-239 sponsored by USAID/NSF/NAS Project Link (at National Academies website): http://sites.nationalacademies.org/PGA/dsc/peerscience/PGA_084046.htm website: http://CleanAirEgypt.org Links to cited work: Core Curriculum Course: http://bit.ly/FutureLife Citizen Science Project: Quality of Air, Drinking Water, and U.V. Level in Greater Cairo: Map 1: http://bit.ly/AirWaterLightMap1 Map 2: http://bit.ly/AirWaterLightMap2 Short Documentaries Student Projects: https://vimeo.com/science2society/videos Project video: https://vimeo.com/100427525
Earth resources data acquisition sensor study
NASA Technical Reports Server (NTRS)
Grohse, E. W.
1975-01-01
The minimum data collection and data processing requirements are investigated for the development of water monitoring systems, which disregard redundant and irrelevant data and process only those data predictive of the onset of significant pollution events. Two approaches are immediately suggested: (1) adaptation of a presently available ambient air monitoring system developed by TVA, and (2) consideration of an air, water, and radiological monitoring system developed by the Georgia Tech Experiment Station. In order to apply monitoring systems, threshold values and maximum allowable rates of change of critical parameters such as dissolved oxygen and temperature are required.
Energy from Ocean Waves, River Currents, and Wind
NASA Astrophysics Data System (ADS)
Guha, Shyamal
2006-05-01
The earth we live in is surrounded by fluids, which are in perpetual motion. There is air in the atmosphere, water in lakes, oceans and rivers. The air and water around us form our natural environment. Much of the fluid medium is in constant motion. The kinetic energy of this moving fluid is astronomical in magnitude. Over the years, I considered methods of converting a fraction of the vast reserve of this kinetic energy into electro-mechanical energy. I conceived a few schemes of such conversion. The fluids whose kinetic energy can be converted into electro-mechanical energy are: ocean waters, river current and atmospheric air. In a book to be published in 2006, I have described different techniques of energy conversion. In the APS meeting, I plan to discuss some of these techniques.
Harvesting Water from Air: Using Anhydrous Salt with Sunlight.
Li, Renyuan; Shi, Yusuf; Shi, Le; Alsaedi, Mossab; Wang, Peng
2018-05-01
Atmospheric water is an abundant alternative water resource, equivalent to 6 times the water in all rivers on Earth. This work screens 14 common anhydrous and hydrated salt couples in terms of their physical and chemical stability, water vapor harvesting, and release capacity under relevant application scenarios. Among the salts screened, copper chloride (CuCl 2 ), copper sulfate (CuSO 4 ), and magnesium sulfate (MgSO 4 ) distinguish themselves and are further made into bilayer water collection devices, with the top layer being the photothermal layer, while the bottom layer acts as a salt-loaded fibrous membrane. The water collection devices are capable of capturing water vapor out of the air with low relative humidity (down to 15%) and releasing water under regular and even weakened sunlight (i.e., 0.7 kW/m 2 ). The work shines light on the potential use of anhydrous salt toward producing drinking water in water scarce regions.
Bacterial Community in Water and Air of Two Sub-Alpine Lakes in Taiwan.
Tandon, Kshitij; Yang, Shan-Hua; Wan, Min-Tao; Yang, Chia-Chin; Baatar, Bayanmunkh; Chiu, Chih-Yu; Tsai, Jeng-Wei; Liu, Wen-Cheng; Tang, Sen-Lin
2018-04-21
Very few studies have attempted to profile the microbial communities in the air above freshwater bodies, such as lakes, even though freshwater sources are an important part of aquatic ecosystems and airborne bacteria are the most dispersible microorganisms on earth. In the present study, we investigated microbial communities in the waters of two high mountain sub-alpine montane lakes-located 21 km apart and with disparate trophic characteristics-and the air above them. Although bacteria in the lakes had locational differences, their community compositions remained constant over time. However, airborne bacterial communities were diverse and displayed spatial and temporal variance. Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria were dominant in both lakes, with different relative abundances between lakes, and Parcubacteria (OD1) was dominant in air samples for all sampling times, except two. We also identified certain shared taxa between lake water and the air above it. The results obtained on these communities in the present study provide putative candidates to study how airborne communities shape lake water bacterial compositions and vice versa.
Report of the panel on earth rotation and reference frames, section 7
NASA Technical Reports Server (NTRS)
Dickey, Jean O.; Dickman, Steven R.; Eubanks, Marshall T.; Feissel, Martine; Herring, Thomas A.; Mueller, Ivan I.; Rosen, Richard D.; Schutz, Robert E.; Wahr, John M.; Wilson, Charles R.
1991-01-01
Objectives and requirements for Earth rotation and reference frame studies in the 1990s are discussed. The objectives are to observe and understand interactions of air and water with the rotational dynamics of the Earth, the effects of the Earth's crust and mantle on the dynamics and excitation of Earth rotation variations over time scales of hours to centuries, and the effects of the Earth's core on the rotational dynamics and the excitation of Earth rotation variations over time scales of a year or longer. Another objective is to establish, refine and maintain terrestrial and celestrial reference frames. Requirements include improvements in observations and analysis, improvements in celestial and terrestrial reference frames and reference frame connections, and improved observations of crustal motion and mass redistribution on the Earth.
ATTREX Data and Information Page
Atmospheric Science Data Center
2017-02-17
... payload is designed to address the following three science objectives: 1) the role of stratospheric water vapor in Earth's energy ... of tropospheric air entering the stratosphere; and 3) the physical processes and chemical composition of the Tropical Tropopause Layer ...
Time reversal communication system
Candy, James V.; Meyer, Alan W.
2008-12-02
A system of transmitting a signal through a channel medium comprises digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. The channel medium may be air, earth, water, tissue, metal, and/or non-metal.
NASA Astrophysics Data System (ADS)
Conlan, Hilary; Grant, Rachel
2013-04-01
When tectonic stresses build up in the Earth's crust, highly mobile electronic charge carriers are activated which cause a range of follow-on reactions when they arrive at the Earth's surface, primarily air ionization and at the rock-water interface oxidation of water to hydrogen peroxide. Anecdotal reports of many earthworms appearing at the ground surface and behavioural changes in toads before earthquakes suggests that these animals may be reacting to environmental changes. This paper reports the results of experimental work, with subterranean and semi-aquatic invertebrates, simulating these pre-earthquake changes.
A study of Minnesota forests and lakes using data from earth resources technology satellites
NASA Technical Reports Server (NTRS)
1972-01-01
This project is to foster and develop new applications of remote sensing under an interdisciplinary effort. Seven reports make up the specific projects presently being conducted throughout the State of Minnesota in cooperation with several agencies and municipalities. These are included under the general headings of: (1) applications of aerial photography and ERTS-1 data to agricultural, forest, and water resources management; (2) classification and dynamics of water and wetland resources of Minnesota; (3) studies of Lake Superior Bay; and (4) feasibility of detecting major air pollutants by earth-oriented satellite-borne sensors.
JPL-20180522-GRACFOf-0001-Twin Spacecraft Launch to Track Earth's Water Movement
2018-05-22
A U.S./German space mission to track the continuous movement of water and other changes in Earth's mass on and beneath the planet's surface successfully launched at 12:47 p.m. PDT, May 22, 2018, from the California coast. The twin spacecraft of the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO), a joint NASA/German Research Centre for Geosciences (GFZ) mission, lifted off on a SpaceX Falcon 9 rocket from Space Launch Complex-4E at Vandenberg Air Force Base in California, sharing their ride into space with five Iridium NEXT communications satellites.
The airborne infrared scanner as a geophysical research tool
Friedman, Jules D.
1970-01-01
The infrared scanner is proving to be an effective anomaly-mapping tool, albeit one which depicts surface emission directly and heat mass transfer from depths only indirectly and at a threshold level 50 to 100 times the normal conductive heat flow of the earth. Moreover, successive terrain observations are affected by time-dependent variables such as the diurnal and seasonal warming and cooling cycle of a point on the earth's surface. In planning precise air borne surveys of radiant flux from the earth's surface, account must be taken of background noise created by variations in micrometeorological factors and emissivity of surface materials, as well as the diurnal temperature cycle. The effect of the diurnal cycle may be minimized by planning predawn aerial surveys. In fact, the diurnal change is very small for most water bodies and the emissivity factor for water (e) =~ 1 so a minimum background noise is characteristic of scanner records of calm water surfaces.
Children's Health Curriculum Lesson 9: All Together Now - Air, Water, Food, and Shelter
This lesson sums up everything the kids have learned about how interconnected the earth is. It also helps them make individual, group, and family pledges to help create a safer and healthier environment.
Report on the search for atmospheric holes using airs image data
NASA Technical Reports Server (NTRS)
Reinleitner, Lee A.
1991-01-01
Frank et al (1986) presented a very controversial hypothesis which states that the Earth is being bombarded by water-vapor clouds resulting from the disruption and vaporization of small comets. This hypothesis was based on single-pixel intensity decreases in the images of the earth's dayglow emissions at vacuum-ultraviolet (VUV) wavelengths using the DE-1 imager. These dark spots, or atmospheric holes, are hypothesized to be the result of VUV absorption by a water-vapor cloud between the imager and the dayglow-emitting region. Examined here is the VUV data set from the Auroral Ionospheric Remote Sensor (AIRS) instrument that was flown on the Polar BEAR satellite. AIRS was uniquely situated to test this hypothesis. Due to the altitude of the sensor, the holes should show multi-pixel intensity decreases in a scan line. A statistical estimate indicated that sufficient 130.4-nm data from AIRS existed to detect eight to nine such holes, but none was detected. The probability of this occurring is less than 1.0 x 10(exp -4). A statistical estimate indicated that sufficient 135.6-nm data from AIRS existed to detect approx. 2 holes, and two ambiguous cases are shown. In spite of the two ambiguous cases, the 135.6-nm data did not show clear support for the small-comet hypothesis. The 130.4-nm data clearly do not support the small-comet hypothesis.
In 1970, President Richard Nixon and Congress established the U.S. EPA in response to the growing public demand for cleaner water, air, and land. EPA was tasked with monitoring, standard-setting ,and enforcement activities to help protect our environment and to help Americans mak...
Cost analysis of water recovery systems
NASA Technical Reports Server (NTRS)
Yakut, M. M.
1972-01-01
Cost and performance data from Gemini, Skylab, and other aerospace and biotechnology programs were analyzed to identify major cost elements required to establish cost estimating relationships for advanced life support subsystems for long range planning in support of earth orbital programs. Cost analysis are presented for five leading water reclamation systems; (1) RITE waste management-water system;(2) reverse osmosis system;(3) multifiltration system;(4) vapor compression system; and(5) closed air evaporation system with electrolytic pretreatment.
Non-Seismic Pre-Earthquake Phenomena and their Effects on the Biosphere
NASA Astrophysics Data System (ADS)
Freund, Friedemann; Stolc, Viktor
2013-04-01
Earthquakes occur when tectonic stresses build up deep in the Earth and reach the threshold of catastrophic rupture. During the build-up of stress, long before rupture, processes occur in the Earth crust that lead to the activation of highly mobile electronic charge carriers. One remarkable property of these charge carriers is that they are able to flow out of the stressed rock volume into surrounding rocks. Such an outflow constitutes an electric current, which generates electromagnetic (EM) signals. If the outflow occurs in bursts, the EM signals will consist of short EM pulses. If the outflow is continuous, the currents are likely to fluctuate, generating EM emissions over a wide frequency range. Only the ultralow and extremely low frequency (ULF/ELF) waves can travel through kilometers of rock and reach the Earth surface. These ULF/ELF emissions can last for hours or days. In a companion poster we report on their effects on crucial biochemical reactions in living organisms. Another remarkable property of the outflowing charge carriers is that they are (i) positively charged and (ii) highly oxidizing. When they reach the Earth surface from below, they build up microscopic but very steep electric fields, strong enough to field-ionize air molecules, i.e. rip an electron off air molecules. As a result the air above the epicenter of an impending major earthquake often becomes heavily laden with positive airborne ions. Medical research has long shown that positive airborne ions cause changes in the stress hormone level in animals and humans. Therefore, positive airborne ions are a likely cause for unusual reactions among animals and humans. When the outflowing charge carriers cross from rocks into water, they oxidize the water to hydrogen peroxide. This process, plus oxidation reactions involving dissolved organic compounds in the ground water, are likely candidates for causing behavioral changes, even death, among aquatic animals.
Nature of Pre-Earthquake Phenomena and their Effects on Living Organisms
Freund, Friedemann; Stolc, Viktor
2013-01-01
Simple Summary Earthquakes are invariably preceded by a period when stresses increase deep in the Earth. Animals appear to be able to sense impending seismic events. During build-up of stress, electronic charge carriers are activated deep below, called positive holes. Positive holes have unusual properties: they can travel fast and far into and through the surrounding rocks. As they flow, they generate ultralow frequency electromagnetic waves. When they arrive at the Earth surface, they can ionize the air. When they flow into water, they oxidize it to hydrogen peroxides. All these physical and chemical processes can have noticeable effects on animals. Abstract Earthquakes occur when tectonic stresses build up deep in the Earth before catastrophic rupture. During the build-up of stress, processes that occur in the crustal rocks lead to the activation of highly mobile electronic charge carriers. These charge carriers are able to flow out of the stressed rock volume into surrounding rocks. Such outflow constitutes an electric current, which generates electromagnetic (EM) signals. If the outflow occurs in bursts, it will lead to short EM pulses. If the outflow is continuous, the currents may fluctuate, generating EM emissions over a wide frequency range. Only ultralow and extremely low frequency (ULF/ELF) waves travel through rock and can reach the Earth surface. The outflowing charge carriers are (i) positively charged and (ii) highly oxidizing. When they arrive at the Earth surface from below, they build up microscopic electric fields, strong enough to field-ionize air molecules. As a result, the air above the epicentral region of an impending major earthquake often becomes laden with positive airborne ions. Medical research has long shown that positive airborne ions cause changes in stress hormone levels in animals and humans. In addition to the ULF/ELF emissions, positive airborne ions can cause unusual reactions among animals. When the charge carriers flow into water, they oxidize water to hydrogen peroxide. This, plus oxidation of organic compounds, can cause behavioral changes among aquatic animals. PMID:26487415
NASA Technical Reports Server (NTRS)
Evans, Diane
2012-01-01
Objective 2.1.1: Improve understanding of and improve the predictive capability for changes in the ozone layer, climate forcing, and air quality associated with changes in atmospheric composition. Objective 2.1.2: Enable improved predictive capability for weather and extreme weather events. Objective 2.1.3: Quantify, understand, and predict changes in Earth s ecosystems and biogeochemical cycles, including the global carbon cycle, land cover, and biodiversity. Objective 2.1.4: Quantify the key reservoirs and fluxes in the global water cycle and assess water cycle change and water quality. Objective 2.1.5: Improve understanding of the roles of the ocean, atmosphere, land and ice in the climate system and improve predictive capability for its future evolution. Objective 2.1.6: Characterize the dynamics of Earth s surface and interior and form the scientific basis for the assessment and mitigation of natural hazards and response to rare and extreme events. Objective 2.1.7: Enable the broad use of Earth system science observations and results in decision-making activities for societal benefits.
2016-09-07
A United Launch Alliance Atlas V rocket is reflected in the water as it rolls out of the Vertical Integration Facility on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) - Total Water
NASA Technical Reports Server (NTRS)
2004-01-01
Born in the Atlantic, Hurricane Frances became a category 4 hurricane on August 31, 2004. Expectations are the hurricane will hit the Space Coast of Florida in Brevard County early Sunday morning. This movie is a time-series of maps that show AIRS observations of the total amount of water vapor present in the atmospheric column above each point of the Earth's surface. If all the water vapor in the column were forced to fall as rain, the depth of the resulting puddle on the surface at that point is equal to the value shown on the map. Fifty millimeters (mm) is about 2 inches. The large band of maximum water vapor in the neighborhood of the equator is the Intertropical Convergence Zone (ITCZ), a region of strong convection and powerful thunderstorms. This movie shows the total precipitable water vapor from August 23 through September 2, 2004. You can see Hurricane Frances as it moves through the Caribbean toward Florida, and the changes in intensity are visible. The eye has been marked with a red spot. The water vapor encompassed by the hurricane is also the result of the very strong convection which is an integral part of the formation and intensification of tropical storms. If you look at the last frame of the movie in the lower right corner, you can see the emergence of a new tropical storm. Ivan makes its debut in the Atlantic. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.A Mechanism for Recent Production of Liquid Water on Mars
NASA Technical Reports Server (NTRS)
Hecht, M. H.; Bridges, N. T.
2003-01-01
Though Mars is a cold, dry planet, with respect to the thermal stability of liquid water at low altitudes it is not terribly different from comparably cold places on Earth. In dry air such water would evaporate faster on Mars, at a rate comparable to a 60 C hot spring on Earth, but the heat loss associated with that evaporation would be mitigated by the poor thermal convection in the thin Martian air. Even at higher altitudes where the atmospheric pressure does not reach the triple point of water, liquid water might theoretically exist in a low-vapor pressure form such as wet soil, in a briny solution, or simply under a layer of dust or snow. The theoretical stability of liquid water does not suggest its occurrence, either on Mars or in Antarctica. In fact, global models have suggested that locations capable of providing sufficient heat for melting are, precisely for that reason, too dry for water to be present. However, the temperature of irregular local structures such as trenches or craters can be markedly warmer than those of the uniform surfaces of global models. The work described here suggests a plausible scenario in which seasonal liquid water might be produced locally, in sheltered locations, through a process of condensation, cold-trapping, buffering, and melting. While the amounts produced in the present climate would be small, copious amounts of meltwater may have been produced at other phases of the orbital cycle, as recently as 20,000 years ago.
Science Highlights and Lessons Learned from the Atmospheric Infrared Sounder (AIRS)
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.; Fetzer, Eric J.; Suda, Jarrod; Licata, Steve
2011-01-01
The Atmospheric Infrared Sounder (AIRS) and companion instrument, the Advanced Microwave Sounding Unit (AMSU) on the NASA Earth Observing System Aqua spacecraft are facility instruments designed to support measurements of atmospheric temperature, water vapor and a wide range of atmospheric constituents in support of weather forecasting and scientific research in climate and atmospheric chemistry. This paper is an update to the science highlights from a paper by the authors released last year and also looks back at the lessons learned and future needs of the scientific community. These lessons not only include requirements on the measurements, but scientific shortfalls as well. Results from the NASA Science Community Workshop in IR and MW Sounders relating to AIRS and AMSU requirements and concerns are covered and reflect much of what has been learned and what is needed for future atmospheric sounding from Low Earth Orbit.
Understanding the Role of Air-Sea Interaction on Extreme Rainfall in Aquaplanet and Earth-like CESM2
NASA Astrophysics Data System (ADS)
Benedict, J. J.; Clement, A. C.; Medeiros, B.
2017-12-01
Extreme precipitation events are associated with anomalous, latitudinally dependent dynamical and convective weather systems. For example, plumes of excessive poleward water vapor transport and topographical effects drive extreme precipitation events in the midlatitudes, while intense tropical precipitation is associated with organized convective systems. In both cases, air-sea fluxes have the potential to contribute significantly to the moisture budget of these storms, but the roles of surface fluxes and upper-ocean processes and their impact on precipitation extremes have yet to be explored in sufficient detail. To examine such mechanisms, we implement a climate model hierarchy that encompasses a spectrum of ocean models, from prescribed-SST to fully dynamic, as well as both aquaplanet and Earth-like lower boundary types within version 2 of the Community Earth System Model (CESM2). Using the CESM2 hierarchy and comparing to observations, we identify key moisture processes and related air-sea interactions that drive extreme precipitation events across different latitudes in Earth-like models and then generalize the analyses in aquaplanet configurations to highlight the most salient features. The analyses are applied to both present-day and global warming conditions to investigate how these fundamental mechanisms might change extreme precipitation events in the future climate.
Hurricane Isabel, Amount of Atmospheric Water Vapor Observed By AIRS
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] Figure 1 These false-color images show the amount of atmospheric water vapor observed by AIRS two weeks prior to the passage of Hurricane Isabel, and then when it was a Category 5 storm. The region shown includes parts of South America and the West Indies. Puerto Rico is the large island below the upper left corner. Total water vapor represents the depth of a layer if all the water vapor in the atmosphere were to condense and fall to the surface. The color bar on the right sides of the plots give the thickness of this layer in millimeters (mm). The first image, from August 28, shows typical tropical water vapor amounts over the ocean: between roughly 25 and 50 mm, or 1 to 2 inches. The highest values of roughly 80 mm, seen as a red blob over South America, corresponds to intense thunderstorms. Thunderstorms pull in water vapor from surrounding regions and concentrate it, with much of it then falling as rain. Figure 1 shows total water during the passage of Hurricane Isabel on September 13. The storm is apparent: the ring of moderate values surrounding a very strong maximum of 100 mm. Total water of more than 80 mm is unusual, and these values correspond to the intense thunderstorms contained within Isabel. The thunderstorms--and the large values of total water--are fed by evaporation from the ocean in the hurricane's high winds. The water vapor near the center of the storm does not remain there long, since hurricane rain rates as high 50 mm (2 inches) per hour imply rapid cycling of the water we observe. Away from the storm the amount of total water vapor is rather low, associated with fair weather where air that ascended near the storm's eye returns to earth, having dropped its moisture as rain. Also seen in the second images are two small regions of about 70 mm of total water over south America. These are yet more thunderstorms, though likely much more benign than those in Isabel. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
Pagano, Thomas
2003-01-01
Aqua measures the Earth's water cycle, energy fluxes, vegetation and temperatures. The Atmospheric Infrared Sounder (AIRS), Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder for Brazil (HSB) were launched on the EOS Aqua spacecraft in May 2002. AIRS has had good radiometric and spectral sensitivity, stability, and accuracy and is suitable for climate studies. Temperature products compare well with radiosondes and models over the limited test range (|LAT| less than 40 degrees). Early trace gas products demonstrate the potential of AIRS. NASA is developing the next generation of hyperspectral IR imagers. JPL is ready to participate with US government agencies and US industry to transfer AIRS technology and science experience.
NASA Technical Reports Server (NTRS)
Stolz, A.; Larden, D. R.
1980-01-01
The seasonal deformation normal to the Earth's surface was calculated at stations involved or interested in very long baseline interferometry (VLBI) geodesy and at hypothetical sites in Australia and Brazil using global atmospheric pressure data, values for groundwater storage, and load Love numbers deduced from current Earth models. It was found that the annual range of deformation approached the centimeter level measuring potential of the VLBI technqiue at Greenbank, Haystack, and the Brazil site.
Use of an automatic resistivity system for detecting abandoned mine workings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, W.R.; Burdick, R.G.
1983-01-01
A high-resolution earth resistivity system has been designed and constructed for use as a means of detecting abandoned coal mine workings. The automatic pole-dipole earth resistivity technique has already been applied to the detection of subsurface voids for military applications. The hardware and software of the system are described, together with applications for surveying and mapping abandoned coal mine workings. Field tests are presented to illustrate the detection of both air-filled and water-filled mine workings.
ERIC Educational Resources Information Center
Reynolds, Karen
1996-01-01
Presents ideas on the use of rainy weather for activities in the earth, life, and physical sciences. Topics include formation and collision of raindrops, amount and distribution of rain, shedding of water by plants, mapping puddles and potholes, rainbow formation, stalking storms online, lightning, and comparing particles in the air before and…
Earth Trek...Explore Your Environment.
ERIC Educational Resources Information Center
Schneider, Gerald
This publication introduces children to water, air, and noise pollution, solid waste disposal, and pesticide use problems. Several pollution problems are explained and the importance of solving them is stressed. Some concepts such as recycling, closed systems, and environments that are related to pollution problems are also introduced. Each…
Element Cycles: An Environmental Chemistry Board Game
ERIC Educational Resources Information Center
Pippins, Tracy; Anderson, Cody M.; Poindexter, Eric F.; Sultemeier, S. Whitney; Schultz, Linda D.
2011-01-01
"Element Cycles" is an activity designed to reinforce correlation of essential elements and their different forms in the ecosystem. Students are assigned essential elements to research as homework, then share results, and construct game boards with four ecosphere sections: geosphere (earth), hydrosphere (water), atmosphere (air), and biosphere…
1. Credit USAF, ca. 1942. Original housed in the Muroc ...
1. Credit USAF, ca. 1942. Original housed in the Muroc Flight Test Base, Unit History, 1 September 1942 - 30 June 1945. Alfred F. Simpson Historical Research Agency. United States Air Force. Maxwell AFB, Alabama. Historical view looks west southwest at construction of Building 4317, Deluge Water Pumping Station (then designated Pump House No. 3). This in-ground structure houses fire pumps which draw water from an in-ground reservoir, Building 4316 (See HAER photos CA-170-I). Pumping station was built in-ground to take advantage of gravity, since water flows from reservoir to prime the pumps, and fire system piping is underground. Opening in far wall is to stairs leading up to ground level. Earth mound in background is part of water reservoir construction (Building 4316). - Edwards Air Force Base, North Base, Deluge Water Pumping Station, Near Second & D Streets, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Jakhar, O. P.; Sharma, Chandra Shekhar; Kukana, Rajendra
2018-05-01
The Earth Air Tunnel Heat Exchanger System is a passive air-conditioning system which has no side effect on earth climate and produces better cooling effect and heating effect comfortable to human body. It produces heating effect in winter and cooling effect in summer with the minimum power consumption of energy as compare to other air-conditioning devices. In this research paper Temperature Analysis was done on the two systems of Earth Air Tunnel Heat Exchanger experimentally for summer cooling purpose. Both the system was installed at Mechanical Engineering Department Government Engineering College Bikaner Rajasthan India. Experimental results concludes that the Average Air Temperature Difference was found as 11.00° C and 16.27° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively. The Maximum Air Temperature Difference was found as 18.10° C and 23.70° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively. The Minimum Air Temperature Difference was found as 5.20° C and 11.70° C for the Simple and Hybrid Earth Air Tunnel Heat Exchanger in Series Connection System respectively.
Molecular adsorption steers bacterial swimming at the air/water interface.
Morse, Michael; Huang, Athena; Li, Guanglai; Maxey, Martin R; Tang, Jay X
2013-07-02
Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Airborne rotary air separator study
NASA Technical Reports Server (NTRS)
Acharya, A.; Gottzmann, C. F.; Nowobilski, J. J.
1990-01-01
Several air breathing propulsion concepts for future earth-to-orbit transport vehicles utilize air collection and enrichment, and subsequent storage of liquid oxygen for later use in the vehicle emission. Work performed during the 1960's established the feasibility of substantially reducing weight and volume of a distillation type air separator system by operating the distillation elements in high 'g' fields obtained by rotating the separator assembly. This contract studied the capability test and hydraulic behavior of a novel structured or ordered distillation packing in a rotating device using air and water. Pressure drop and flood points were measured for different air and water flow rates in gravitational fields of up to 700 g. Behavior of the packing follows the correlations previously derived from tests at normal gravity. The novel ordered packing can take the place of trays in a rotating air separation column with the promise of substantial reduction in pressure drop, volume, and system weight. The results obtained in the program are used to predict design and performance of rotary separators for air collection and enrichment systems of interest for past and present concepts of air breathing propulsion (single or two-stage to orbit) systems.
Temporal soil bulk density following tillage
USDA-ARS?s Scientific Manuscript database
Soil is the medium for air, energy, water, and chemical transport between the atmosphere and the solid earth. Soil bulk density is a key variable impacting the rate at which this transport occurs. Typically, soil bulk density is measured by the gravimetric method, where a sample of known volume is t...
Project Earth, A Curriculum Guide, Kindergarten-Primary-Intermediate.
ERIC Educational Resources Information Center
Rogers, Arnold R., Ed.
This conservation curriculum guide contains units on the air, water, soil, plants, and animals. The guide is organized by grade levels--kindergarten, primary, intermediate. Objectives and concepts are listed and suggested activities are complete with a statement of procedure and necessary materials. A resource appendix includes books, films, and…
Plants and their microbial assistants: Nature's answer to Earth's environmental pollution problems
NASA Technical Reports Server (NTRS)
Wolverton, B. C.
1990-01-01
The utilization of higher plants and their associated microorganisms to solve environmental pollution problems on Earth and in future space applications is briefly reviewed. If man is sealed inside closed facilities, he becomes a polluter of the environment. It is also common knowledge to most people that man cannot survive on Earth without green photosynthesizing plants and microorganisms. Therefore, it is vitally important to have a better understanding of the interactions of man with plants and microorganisms. Biosphere 2 and other related studies presently being conducted or planned, hopefully, will supply data that will help save planet Earth from impending environmental disaster. The development of means to utilize both air and water pollution as a nutrient source for growing green plants is examined.
Tropical Storm Ernesto over Cuba
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Microwave Image
These infrared, microwave, and visible images were created with data retrieved by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite. Infrared Image Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). Microwave Image In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity. Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned the color blue. Therefore deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. Land appears much warmer due to its high radiation emissivity. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.Performance of the cometary experiment MUPUS on the body Earth
NASA Astrophysics Data System (ADS)
Marczewski, W.; Usowicz, B.; Schröer, K.; Seiferlin, K.; Spohn, T.
2003-04-01
Thermal experiment MUPUS for the Rosetta mission was extensively experience in field and laboratory conditions to predict its performance under physical processes available on the Earth. The goal was not guessing a cometary material in the ground but available behavior of thermal sensor responses monitoring mass and energy transfer. The processes expected on a comet are different in composition and environmental from those met on the Earth but basically similar in physics. Nature of energy powering the processes is also essentially the same - solar radiation. Several simple laboratory experiments with freezing and thawing with water ice, with mixture of water and oil and water layers strongly diverged by salinity revealed capability of recognition layered structure of the medium under test. More over effects of slow convection and latent heat related to the layers are also observed well. Cometary environment without atmosphere makes process of sublimation dominant. Open air conditions on the Earth may also offer a change of state in matter but between different phases. Learning temperature gradient in snow layers under thawing show that effects stimulated by a cause of daily cycling may be detected thermally. Results from investigations in snow made on Spitzbergen are good proofs on capability of the method. Relevance of thermal effects to heat powered processes of mass transport in the matter of ground is meaningful for the cometary experiment of MUPUS and for Earth sciences much concerned on water, gas and solid matter transport in the terrestrial ground. Results leading to energy balance studied on the Earth surface may be interesting also for the experiment on the comet and are to be discussed.
The Chesapeake Bay impact structure
Powars, David S.; Edwards, Lucy E.; Gohn, Gregory S.; Horton, J. Wright
2015-10-28
About 35 million years ago, during late Eocene time, a 2-mile-wide asteroid or comet smashed into Earth in what is now the lower Chesapeake Bay in Virginia. The oceanic impact vaporized, melted, fractured, and (or) displaced the target rocks and sediments and sent billions of tons of water, sediments, and rocks into the air. Glassy particles of solidified melt rock rained down as far away as Texas and the Caribbean. Models suggest that even up to 50 miles away the velocity of the intensely hot air blast was greater than 1,500 miles per hour, and ground shaking was equivalent to an earthquake greater than magnitude 8.0 on the Richter scale. Large tsunamis affected most of the North Atlantic basin. The Chesapeake Bay impact structure is among the 20 largest known impact structures on Earth.
Aquarius SAC-D Post-Launch Briefing
2011-06-10
Hector Timerman, Foreign Minister of Argentina, Buenos Aires, talks during the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
Rapid variability of Antarctic Bottom Water transport into the Pacific Ocean inferred from GRACE
NASA Astrophysics Data System (ADS)
Mazloff, Matthew R.; Boening, Carmen
2016-04-01
Air-ice-ocean interactions in the Antarctic lead to formation of the densest waters on Earth. These waters convect and spread to fill the global abyssal oceans. The heat and carbon storage capacity of these water masses, combined with their abyssal residence times that often exceed centuries, makes this circulation pathway the most efficient sequestering mechanism on Earth. Yet monitoring this pathway has proven challenging due to the nature of the formation processes and the depth of the circulation. The Gravity Recovery and Climate Experiment (GRACE) gravity mission is providing a time series of ocean mass redistribution and offers a transformative view of the abyssal circulation. Here we use the GRACE measurements to infer, for the first time, a 2003-2014 time series of Antarctic Bottom Water export into the South Pacific. We find this export highly variable, with a standard deviation of 1.87 sverdrup (Sv) and a decorrelation timescale of less than 1 month. A significant trend is undetectable.
AIRS Storm Front Approaching California (animation)
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Click on the image for the AIRS Storm Front Approaching California Animation NASA's Atmospheric Infrared Sounder instrument is able to peel back cloud cover to reveal 3-D structure of a storm's water vapor content, information that can be used to improve weather forecast models. In this animation the initial visible cloud image series shows a front moving toward the West Coast of the United States as a low pressure area moves into the Pacific Northwest. The 'Pineapple Express,' a stream of moisture that originates in the tropics South of Hawaii and usually crosses Mexico to enter New Mexico and Texas, has shifted Westward and is also visible moving into Baja California. The area preceding the front appears to be relatively clear in the visible images. As the view shifts from the visible to the infrared wavelengths which highlight water vapor, we see both cloud areas contain heavy burdens of moisture. The area which appears clear in the visible images is seen to contain water vapor near the coastline as well. The viewpoint then rotates so that we can see the vertical cross section of the fronts. The variability of the vertical extent of water vapor and the amount is now clearly visible. The storm moving in from the Gulf of Alaska is more heavily laden with water vapor than that moving in from the Southwest. The moisture is concentrated in the lower atmosphere. The colors indicate the amount of water vapor present. Blue areas denote low water vapor content; green areas are medium water vapor content; red areas signify high water vapor content. The vertical grid for the final frame ranges from 250 millibar pressure at the top to 1000 millibar pressure at the bottom. The top is about 10 km (6.2 miles) above the surface of the Earth. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.NASA's Current Earth Science Program
NASA Technical Reports Server (NTRS)
Charles, Leslie Bermann
1998-01-01
NASA's Earth science program is a scientific endeavor whose goal is to provide long-term understanding of the Earth as an integrated system of land, water, air and life. A highly developed scientific knowledge of the Earth system is necessary to understand how the environment affects humanity, and how humanity may be affecting the environment. The remote sensing technologies used to gather the global environmental data used in such research also have numerous practical applications. Current applications of remote sensing data demonstrate their practical benefits in areas such as the monitoring of crop conditions and yields, natural disasters and forest fires; hazardous waste clean up; and tracking of vector-borne diseases. The long-term availability of environmental data is essential for the continuity of important research and applications efforts. NASA's Earth observation program has undergone many changes in the recent past.
NASA Technical Reports Server (NTRS)
Revis, Nathaniel; Holdsworth, George
1990-01-01
In addition to having applications for waste management issues on planet Earth, microbial systems have application in reducing waste volumes aboard spacecraft. A candidate for such an application is the space station. Many of the planned experiments generate aqueous waste. To recycle air and water the contaminants from previous experiments must be removed before the air and water can be used for other experiments. This can be achieved using microorganisms in a bioreactor. Potential bioreactors (inorganics, organics, and etchants) are discussed. Current technologies that may be applied to waste treatment are described. Examples of how biological systems may be used in treating waste on the space station.
How, when and where Life will begin on another planet after Earth by Duky’s Theory
NASA Astrophysics Data System (ADS)
Deol, Satveer; Singh Nafria, Amritpal
2017-01-01
Our Sun is a Red Giant Star and in distant future it will engulf Mercury, Venus and probably Earth and Mars. This paper shows that in distant future due to increasing size & luminosity of the Sun life will begin on one of the planet after 1 duky’s Unit. 1 duky's Unit is the time from now to the time when Mercury would get merged in Sun. At that time Venus would be first planet & due to closeness to Sun, its upper atmosphere would get heated up by solar wind. In a continuous process the clouds of sulfuric acid would escape its gravity. Eventually it would get drifted off into space and it become Mercury twin. On Earth after few million years moisture in air would become very good to trap infra red radiation. As it will warms up, oceans would evaporate even more & in few million years it would get covered with blanket of water vapours. Due to increasing temperature & pressure, volcanoes on Earth would become active then volcanic eruption would blast billions of tons of sulfur high into atmosphere there sulfur would mix with water vapors & form conc. Sulfuric acids. In a continuous process of few more million years whole Earth would get covered with sulphuric acids cloud. As Earth’s moon is receding away from Earth, so before 1 DU, Moon will have been gone away from Earth. As a result it would get started slow down one spin about 1 million year. These would lead to massive outpouring of CO2 & other greenhouse gasses. At that Earth would become Venus Twin. Now it's Mars turn, according to scientists after 50 millions years from now phobo will crash onto the surface of Mars. When that would happen, Mars would have one moon like Earth. This collision would be so hard & strong that phobo would get totally immersed in the surface of Mars as a results it's possible that Mars would get tilted at about 23.5 degree. Due to collision molten lava would come out. When temperature & pressure would rise then water ice would become water. When water would get enriched with minerals, microbial life would emerge. Then under water bacteria would begin to use water, CO2 and Sun’s energy to produce carbohydrate to survive that will inject vast amount of O2 into sea water & eventually in our atmosphere. Mars would become Earth's twin.
Recent Theoretical Advances in Analysis of AIRS/AMSU Sounding Data
NASA Technical Reports Server (NTRS)
Susskind, Joel
2007-01-01
AIRS was launched on EOS Aqua on May 4,2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. This paper describes the AIRS Science Team Version 5.0 retrieval algorithm. Starting in early 2007, the Goddard DAAC will use this algorithm to analyze near real time AIRS/AMSU observations. These products are then made available to the scientific community for research purposes. The products include twice daily measurements of the Earth's three dimensional global temperature, water vapor, and ozone distribution as well as cloud cover. In addition, accurate twice daily measurements of the earth's land and ocean temperatures are derived and reported. Scientists use this important set of observations for two major applications. They provide important information for climate studies of global and regional variability and trends of different aspects of the earth's atmosphere. They also provide information for researchers to improve the skill of weather forecasting. A very important new product of the AIRS Version 5 algorithm is accurate case-by-case error estimates of the retrieved products. This heightens their utility for use in both weather and climate applications. These error estimates are also used directly for quality control of the retrieved products. Version 5 also allows for accurate quality controlled AIRS only retrievals, called "Version 5 AO retrievals" which can be used as a backup methodology if AMSU fails. Examples of the accuracy of error estimates and quality controlled retrieval products of the AIRS/AMSU Version 5 and Version 5 AO algorithms are given, and shown to be significantly better than the previously used Version 4 algorithm. Assimilation of Version 5 retrievals are also shown to significantly improve forecast skill, especially when the case-by-case error estimates are utilized in the data assimilation process.
NASA Astrophysics Data System (ADS)
Rolf, Christian; Vogel, Bärbel; Hoor, Peter; Günther, Gebhard; Krämer, Martina; Müller, Rolf; Müller, Stephan; Riese, Martin
2017-04-01
Water vapor plays a key role in determining the radiative balance in the upper troposphere and lower stratosphere (UTLS) and thus the climate of the Earth (Forster and Shine, 2002; Riese et al., 2012). Therefore a detailed knowledge about transport pathways and exchange processes between troposphere and stratosphere is required to understand the variability of water vapor in this region. The Asian monsoon anticyclone caused by deep convection over and India and east Asia is able to transport air masses from the troposphere into the nothern extra-tropical stratosphere (Müller et al. 2016, Vogel et al. 2016). These air masses contain pollution but also higher amounts of water vapor. An increase in water vapor of about 0.5 ppmv in the extra-tropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 by in-situ instrumentation above the European northern hemisphere during the HALO aircraft mission TACTS. Here, we investigated the origin of this water vapor increase with the help of the 3D Lagrangian chemistry transport model CLaMS (McKenna et al., 2002). We can assign an origin of the moist air masses in the Asian region (North and South India and East China) with the help of model origin tracers. Additionally, back trajectories of these air masses with enriched water vapor are used to differentiate between transport from the Asia monsoon anticyclone and the upwelling of moister air in the tropics particularly from the Pacific and Southeast Asia.
The USEPA's SITE Program conducted a demonstration of the Enhanced In Situ Bioremediation Process at the ITT Industries Night Vision Facility in Roanoke, VA. The biostimulation process, developed by the USEOE and licensed to Earth Tech, Inc., involves injecting a mixture of air, ...
The Elements: A Model of Mindful Supervision
ERIC Educational Resources Information Center
Sturm, Deborah C.; Presbury, Jack; Echterling, Lennis G.
2012-01-01
Mindfulness, based on an ancient spiritual practice, is a core quality and way of being that can deepen and enrich the supervision of counselors. This model of mindful supervision incorporates Buddhist and Hindu conceptualizations of the roles of the five elements--space, earth, water, fire, air--as they relate to adhikara or studentship, the…
The Four Elements: New Models for a Subversive Dramaturgy.
ERIC Educational Resources Information Center
Rudakoff, Judith
2003-01-01
Characterizes dramaturgy as where an artist conceives and germinates individualized artistic processes to facilitate and instigate the transmission of creativity. Explains a process, which can be used to create a new work or analyze existing plays that begins with a detailed examination of the Four Elements--Air, Earth, Water, and Fire. Notes that…
ERIC Educational Resources Information Center
Kim, Hanna
2011-01-01
This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were…
2016-09-07
The United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
2016-09-07
After leaving the Vertical Integration Facility, a United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
2016-09-07
The United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth. Photo credit: NASA/Kim Shiflett
Aquarius SAC-D Post-Launch Briefing
2011-06-10
Michael Freilich, NASA Earth Science Division Director, NASA Headquarters, talks during the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
Robertson, Darrel; Wheeler, Lorien; Mathias, Donovan
2017-01-01
If an asteroid is discovered to be on a collision course with Earth and there is insufficient time for a deflection effort to make it miss Earth completely, should it be redirected to a land or ocean impact? While distance from densely populated areas should obviously be maximized, the differing ability of air blast, seismic waves, and tsunami waves to cause damage at distance does not make the choice between land and ocean impacts an immediately obvious one. More broadly this work is a step towards improving damage models from asteroid impacts. This extended abstract follows the hypothetical scenario of the 2017 IAA Planetary Defense Conference where a 100-250m diameter asteroid is on a potential impact course with Earth. A hydrocode was used to simulate impacts into the most sparsely populated areas along the eastern end of the hypothetical impact corridor- specifically in the Gobi Desert, in the shallow waters of the Sea of Japan, and in the deep waters of the Japan Trench in the Pacific Ocean.
NASA Technical Reports Server (NTRS)
Ding, Feng; Fang, Fan; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Lynnes, Christopher
2014-01-01
The Atmospheric Infrared Sounder (AIRS) mission is entering its 13th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing long-wave radiation, cloud properties, and trace gases. Thus AIRS data have been widely used, among other things, for short-term climate research and observational component for model evaluation. One instance is the fifth phase of the Coupled Model Intercomparison Project (CMIP5) which uses AIRS version 5 data in the climate model evaluation. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the AIRS mission. The GES DISC, in collaboration with the AIRS Project, released data from the version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. The ongoing Earth System Grid for next generation climate model research project, a collaborative effort of GES DISC and NASA JPL, will bring temperature and humidity profiles from AIRS version 6. The AIRS version 6 product adds a new "TqJoint" data group, which contains data for a common set of observations across water vapor and temperature at all atmospheric levels and is suitable for climate process studies. How different may the monthly temperature and humidity profiles in "TqJoint" group be from the "Standard" group where temperature and water vapor are not always valid at the same time? This study aims to answer the question by comprehensively comparing the temperature and humidity profiles from the "TqJoint" group and the "Standard" group. The comparison includes mean differences at different levels globally and over land and ocean. We are also working on examining the sampling differences between the "TqJoint" and "Standard" group using MERRA data.
Investigation of environmental indices from the Earth Resources Technology Satellite
NASA Technical Reports Server (NTRS)
Greeley, R. S. (Principal Investigator); Riley, E. L.; Stryker, S.; Ward, E. A.
1973-01-01
The author has identified the following significant results. Land use, quality, and air quality trends are being deduced from both ERTS-1 MSS and computer compatible tapes. The data analysis plan and the preliminary data analysis phase were conducted in January 1973. Results from these two phases are: (1) Method of analysis has been selected and checked out. (2) Land use for two dates have been generated for one test site. (3) Water quality for one date has been produced partially. (4) Air quality for three has been produced and compared with ground truth. (5) One of the two DCP stations is in operation; the second station will be installed in March 1973. Land use classification exceeds pre-launch expectations. Water quality (turbidity) is not progressing as expected. Finally, mesoscale air quality results have shown correlation with NOAA/EPA turbidity network. If air quality correlations continue to show favorable results, a rapid means of global turbidity may be available from ERTS-1 MSS observations.
Critical Zone Science as a Multidisciplinary Framework for Teaching Earth Science and Sustainability
NASA Astrophysics Data System (ADS)
Wymore, A.; White, T. S.; Dere, A. L. D.; Hoffman, A.; Washburne, J. C.; Conklin, M. H.
2016-12-01
The Earth's Critical Zone (CZ) is the terrestrial portion of the continents ranging from the top of the vegetative canopy down through soil and bedrock to the lowest extent of freely circulating groundwater. The primary objective of CZ science is to characterize and understand how the reciprocal interactions among rock, soil, water, air and terrestrial organisms influence the Earth as a habitable environment. Thus it is a highly multidisciplinary science that incorporates the biological, hydrological, geological and atmospheric sciences and provides a holistic approach to teaching Earth system science. Here we share highlights from a full-semester university curriculum that introduces upper-division Environmental Science, Geology, Hydrology and Earth Science students to CZ science. We emphasize how a CZ framework is appropriate to teach concepts across the scientific disciplines, concepts of sustainability, and how CZ science serves as a useful approach to solving humanities' grand challenges.
NASA Astrophysics Data System (ADS)
Kamal, Razia; Saifur Rahman, Md.
2018-04-01
The inspiration and concept for the Superadobe system originates not from the modern architecture design experience, but from the influence of traditional rural buildings and landscape, together with a 13th century Persian poet named Jala Ad-Din Muhammad Balkhi, Rumi. The poetry sprit of Rumi, connects and enlightens the architectural theme of Nader Khalili with natural resources that anybody in the world should be able to build a home for his or her family with the simplest of elements: Earth, Water, Air and Fire. Therefore, to build a human shelter that will give maximum safety with low financial budget and minimum environmental impact with natural disaster resilient a Superadobe Technology has been adopted. The Superadobe, a form of earth bag construction using sandbag and barbed wire technology, is an economical, time efficient, energy efficient and ecologically friendly system developed by Iranian-born architect “Nader Khalili”. The system connects the natural materials and rural traditions to create a new way to use natural materials such as mud, water, air and fire which can be finished in a short time without any large construction equipment. The goal of this study is to introduce the building system, analyse the ventilation, lighting and insulation of the prototype of Superadobe system replacing the contextual earth house in Bangladesh.
Downhole steam generator using low pressure fuel and air supply
Fox, Ronald L.
1983-01-01
An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.
Protecting Mother Earth: Hartman Seeks to Instill His Passion in Science Students
ERIC Educational Resources Information Center
Dea, Sarah
2010-01-01
Students at Fort Berthold Community College (FBCC) have spent their entire lives hearing about the environmental issues facing the Three Affiliated Tribes (Mandan, Hidatsa, and Arikara). Located on the high plains of northwestern North Dakota, the area contains rich coal and oil resources, the development of which can damage air and water quality.…
ERIC Educational Resources Information Center
Kahn, Peter H., Jr.; Lourenco, Orlando
This study contributes to an emerging body of research on the development of the human relationship with nature. One hundred and twenty participants from four grade levels (fifth, eighth, eleventh, and college) were interviewed about their environmental conceptions and values. Results showed that participants valued many aspects of nature and…
Audubon Ecology Study Program.
ERIC Educational Resources Information Center
National Audubon Society, New York, NY.
The materials in the set include a student reader "The Story of Ecology," a leaders' guide, and a large, pictorial wall chart. The student reader is divided into 10 units relating to a definition of ecology, the sun and life, air and the water cycle, major divisions of the earth, plants and food chains, distribution of plants and animals,…
Journey to Planet Earth: The Urban Explosion. The Public Television Series. [Videotape].
ERIC Educational Resources Information Center
1999
This videotape attempts to show students how the uncontrolled development of the world's major cities has led to a series of problems such as air pollution, water pollution, limited room for waste disposal, housing shortages, and loss of farmland. The videotape profiles four mega-cities: Mexico City, Shanghai, Istanbul, and New York City. Students…
Forest-related ecosystem services
Sandra Luque; Louis Iverson
2016-01-01
Forests are a crucial element not only of landscapes but also of human living conditions. Covering nearly a third of the earth's land surtace, they stabilize surface soil, prevent erosion and play an essential role in water resource management at the watershed and local levels. They regulate climate and improve air quality. At the same time they are an important...
Science Crafts for Kids: 50 Fantastic Things To Invent & Create.
ERIC Educational Resources Information Center
Diehn, Gwen; Krautwurst, Terry
This resource book provides 48 science crafts that involve children in creative and inventive learning experiences. The opening chapter focuses on the construction of a science log that will be used in the colorfully illustrated activities that follow. Four broad topics provide the organization for the text: (1) Earth; (2) Air; (3) Water; and (4)…
Synthetic and Biomass Alternate Fueling in Aviation
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Bushnell, Dennis M.
2009-01-01
Must use earth's most abundant natural resources - Biomass, Solar, Arid land (43%), Seawater (97%) with nutrients (80%) plus brackish waters and nutrients resolve environmental triangle of conflicts energy-food-freshwater and ultrafine particulate hazards. Requires Paradigm Shift - Develop and Use Solar* for energy; Biomass for aviation and hybrid-electric-compressed air mobility fueling with transition to hydrogen long term.
Aquarius SAC-D Post-Launch Briefing
2011-06-10
Conrado Varotto, CONAE Executive and Technical Director, Buenos Aires, talks during the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
Aquarius SAC-D Post-Launch Briefing
2011-06-10
Conrado Varotto, CONAE Executive and Technical Director, Buenos Aires, looks on as other panelest speak during the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
1991-02-01
analysis of water, soil, and/or sediment samples, are required. Careful documentation and quality control procedures in accordance with CERCLA/SARA...I III-1 I I Northern Piedmont * AI Southern Piedmont a’.3 Cahaba Valley... ...... Coosa ValleyI Fall Line Hills Aluvial Plain Black Prairie3 Cu enu e...no surface outlet; (b) A drainage basin or river basin; (c) A low area in the Earth’s crust, of tectonic origin, in which sediments have accumulated
2013-01-25
VANDENBERG AIR FORCE BASE, Calif. ---The payload faring containing the Landsat Data Continuity Mission LDCM spacecraft is lifted to the top of Space Launch Complex-3E at Vandenberg Air Force Base where it will be hoisted atop a United Launch Alliance Atlas V for launch. LDCM is the eighth satellite in the Landsat Program series of Earth-observing missions jointly managed by NASA and the U.S. Geological Survey. LDCM will continue the program’s critical role in monitoring, understanding and managing the resources needed for human sustainment such as food, water and forests. Photo credit: NASA/VAFB
2013-01-25
VANDENBERG AIR FORCE BASE, Calif. ---The payload faring containing the Landsat Data Continuity Mission LDCM spacecraft is lifted from a transporter at Vandenberg Air Force Base's Space Launch Complex-3E where it will be hoisted atop a United Launch Alliance Atlas V for launch. LDCM is the eighth satellite in the Landsat Program series of Earth-observing missions jointly managed by NASA and the U.S. Geological Survey. LDCM will continue the program’s critical role in monitoring, understanding and managing the resources needed for human sustainment such as food, water and forests. Photo credit: NASA/VAFB
2013-01-25
VANDENBERG AIR FORCE BASE, Calif. --- Loaded on a transporter, the payload faring containing the Landsat Data Continuity Mission LDCM spacecraft arrives at Vandenberg Air Force Base's Space Launch Complex-3E where it will be hoisted atop a United Launch Alliance Atlas V for launch. LDCM is the eighth satellite in the Landsat Program series of Earth-observing missions jointly managed by NASA and the U.S. Geological Survey. LDCM will continue the program’s critical role in monitoring, understanding and managing the resources needed for human sustainment such as food, water and forests. Photo credit: NASA/VAFB
2013-01-25
VANDENBERG AIR FORCE BASE, Calif. --- Loaded on a transporter, the payload faring containing the Landsat Data Continuity Mission LDCM spacecraft arrives at Vandenberg Air Force Base's Space Launch Complex-3E where it will be hoisted atop a United Launch Alliance Atlas V for launch. LDCM is the eighth satellite in the Landsat Program series of Earth-observing missions jointly managed by NASA and the U.S. Geological Survey. LDCM will continue the program’s critical role in monitoring, understanding and managing the resources needed for human sustainment such as food, water and forests. Photo credit: NASA/VAFB
2013-01-25
VANDENBERG AIR FORCE BASE, Calif. ---The payload faring containing the Landsat Data Continuity Mission LDCM spacecraft is lifted to the top of Space Launch Complex-3E at Vandenberg Air Force Base where it will be hoisted atop a United Launch Alliance Atlas V for launch LDCM is the eighth satellite in the Landsat Program series of Earth-observing missions jointly managed by NASA and the U.S. Geological Survey. LDCM will continue the program’s critical role in monitoring, understanding and managing the resources needed for human sustainment such as food, water and forests. Photo credit: NASA/VAFB
Downhole steam generator using low-pressure fuel and air supply
Fox, R.L.
1981-01-07
For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)
The Ocean-Atmosphere Hydrothermohaline Conveyor Belt
NASA Astrophysics Data System (ADS)
Döös, Kristofer; Kjellsson, Joakim; Zika, Jan; Laliberté, Frédéric; Brodeau, Laurent
2015-04-01
The ocean thermohaline circulation is linked to the hydrothermal circulation of the atmosphere. The ocean thermohaline circulation is expressed in potential temperature-salinity space and comprises a tropical upper-ocean circulation, a global conveyor belt cell and an Antarctic Bottom Water cell. The atmospheric hydrothermal circulation in a potential temperature-specific humidity space unifies the tropical Hadley and Walker cells as well as the midlatitude eddies into a single, global circulation. Superimposed, these thermohaline and hydrothermal stream functions reveal the possibility of a close connection between some parts of the water and air mass conversions. The exchange of heat and fresh water through the sea surface (precipiation-evaporation) and incoming solar radiation act to make near-surface air warm and moist while making surface water warmer and saltier as both air and water travel towards the Equator. In the tropics, air masses can undergo moist convection releasing latent heat by forming precipitation, thus acting to make warm surface water fresher. We propose that the Clausius-Clapeyron relationship for moist near-surface air acts like a lower bound for the atmospheric hydrothermal cell and an upper bound for the ocean thermohaline Conveyor-Belt cell. The analysis is made by combining and merging the overturning circulation of the ocean and atmosphere by relating the salinity of the ocean to the humidity of the atmosphere, where we set the heat and freshwater transports equal in the two stream functions By using simulations integrated with our Climate-Earth system model EC-Earth, we intend to produce the "hydrothermohaline" stream function of the coupled ocean-atmosphere overturning circulation in one single picture. We explore how the oceanic thermohaline Conveyor Belt can be linked to the global atmospheric hydrothermal circulation and if the water and air mass conversions in humidity-temperature-salinity space can be related and linked to each other along a "line" corresponding to the Clausius-Clapeyron relationship. A geographical description of how and where this occurs together with this new hydrothermohaline stream function will be searched for. The net heat and freshwater transport of the ocean and atmosphere can aslo be calculated from the thermohaline and hydrothermal stream functions. The heat transport across isohumes in the atmosphere and isohalines in the ocean as well as the freshwater transport across isotherms in both the atmosphere and ocean are computed. The maximum heat transport is about 16 PW in the atmosphere, while that of the ocean is just about 1 PW. The freshwater transport across isotherms in the atmosphere and ocean are shown to be tightly connected with a net maximum freshwater transport of 4 SV in the atmosphere and 2 Sv in the ocean.
NASA's East and Southeast Asia Initiatives: BASE-ASIA and EAST-AIRE
NASA Technical Reports Server (NTRS)
Tsay, S.; Maring, H.
2005-01-01
Airborne dust from northern China influences air quality and regional climate in Asia during springtime. However, with the economic growth in China, increased emission of particulate air pollutants from industrial and vehicular sources will not only impact the earth's radiation balance, but also adversely affect human health year round. In addition, both of dust and aerosol pollutants can be transported swiftly across the Pacific affecting North America within a few days. Asian dust and pollutant aerosols can be detected by their colored appearance using current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and by sunphotometers deployed on the surface of the earth. Biomass burning has been a regular practice for land clearing and conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Globally significant sources of greenhouse gases (eg., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3Br), and atmospheric aerosols are produced by biomass burning. These gases influence the Earth-atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play a role in determining cloud lifetime and precipitation, altering the earth's radiation and water budgets. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds; the hydrological cycle; land surface reflectivity and emissivity; and ecosystem biodiversity and stability. Two NASA initiatives, EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) and BASE-ASIA (Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment) will be presented. The objectives of these initiatives is to develop a better understanding of the impacts of aerosols on regional-to-global climate, hydrological and carbon cycles, and tropospheric chemistry.
Clear-Sky Longwave Irradiance at the Earth's Surface--Evaluation of Climate Models.
NASA Astrophysics Data System (ADS)
Garratt, J. R.
2001-04-01
An evaluation of the clear-sky longwave irradiance at the earth's surface (LI) simulated in climate models and in satellite-based global datasets is presented. Algorithm-based estimates of LI, derived from global observations of column water vapor and surface (or screen air) temperature, serve as proxy `observations.' All datasets capture the broad zonal variation and seasonal behavior in LI, mainly because the behavior in column water vapor and temperature is reproduced well. Over oceans, the dependence of annual and monthly mean irradiance upon sea surface temperature (SST) closely resembles the observed behavior of column water with SST. In particular, the observed hemispheric difference in the summer minus winter column water dependence on SST is found in all models, though with varying seasonal amplitudes. The analogous behavior in the summer minus winter LI is seen in all datasets. Over land, all models have a more highly scattered dependence of LI upon surface temperature compared with the situation over the oceans. This is related to a much weaker dependence of model column water on the screen-air temperature at both monthly and annual timescales, as observed. The ability of climate models to simulate realistic LI fields depends as much on the quality of model water vapor and temperature fields as on the quality of the longwave radiation codes. In a comparison of models with observations, root-mean-square gridpoint differences in mean monthly column water and temperature are 4-6 mm (5-8 mm) and 0.5-2 K (3-4 K), respectively, over large regions of ocean (land), consistent with the intermodel differences in LI of 5-13 W m2 (15-28 W m2).
NASA Technical Reports Server (NTRS)
2007-01-01
Location: The coast of Mexico from Manzanillo to Mazatlan Categorization: Tropical Depression Sustained Winds: 35 mph (56 km/hr) [figure removed for brevity, see original site] [figure removed for brevity, see original site] Infrared ImageMicrowave Image [figure removed for brevity, see original site] Click on the image to access AIRS Weather Snapshot for Hurricane Dean Infrared Images Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). Microwave Images In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity. Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned the color blue. Therefore deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. Land appears much warmer due to its high radiation emissivity. Visible/Near-Infrared Images The AIRS instrument suite contains a sensor that captures radiation in four bands of the visible/near-infrared portion of the electromagetic spectrum. Data from three of these bands are combined to create 'visible' images similar to a snapshot taken with your camera. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.NASA Technical Reports Server (NTRS)
2007-01-01
[figure removed for brevity, see original site] Microwave Image These infrared and microwave images were created with data retrieved by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite, and show the remnants of the former Hurricane Felix over Central America. Infrared Images Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). Microwave Images In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity. Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned the color blue. Therefore deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. Land appears much warmer due to its high radiation emissivity. Visible/Near-Infrared Images The AIRS instrument suite contains a sensor that captures radiation in four bands of the visible/near-infrared portion of the electromagetic spectrum. Data from three of these bands are combined to create 'visible' images similar to a snapshot taken with your camera. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.Soil Moisture Active Passive (SMAP) Media Briefing
2015-01-09
Christine Bonniksen, SMAP program executive with the Science Mission Directorate’s Earth Science Division at NASA Headquarters speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)
2016-09-07
A United Launch Alliance Atlas V rocket begins to roll out of the Vertical Integration Facility to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
2016-09-07
After leaving the Vertical Integration Facility, a United Launch Alliance Atlas V rocket is on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
2016-09-07
In a view from above, a United Launch Alliance Atlas V rocket begins to roll out of the Vertical Integration Facility to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
2016-09-07
A United Launch Alliance Atlas V rocket rolls out of the Vertical Integration Facility on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
2016-09-07
A United Launch Alliance Atlas V rocket has left the Vertical Integration Facility and is on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
2016-09-07
The United Launch Alliance Atlas V rocket has made the trek from the Vertical Integration Facility to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
2016-09-07
A United Launch Alliance Atlas V rocket rolled out of the Vertical Integration Facility and is on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
KSC-20160908-RV-ANG01_0001-OSIRIS_REx_Launch_Broadcast_UCS_3_ISO-3126827
2016-09-08
Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
KSC-20160908-RV-GEB01_0001-OSIRIS_REx_Launch_Broadcast_Van_1_People_Cutaways_ISO-3126827
2016-09-08
Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
KSC-20160908-RV-CSH01_0001-OSIRIS_REx_Launch_Broadcast_Van_2_NASA_Causeway_ISO-3126827
2016-09-08
Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
KSC-20160908-RV-GMM01_0003-OSIRIS_REx_Launch_Broadcast_Ground_ISO-3126827
2016-09-08
Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
KSC-20160908-RV-GMM01_0002-OSIRIS_REx_Launch_Broadcast_VIF_ISO-3126827
2016-09-08
Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
KSC-20160908-RV-GMM01_0001-OSIRIS_REx_Launch_Broadcast_VAB_Roof_ISO-3126827
2016-09-08
Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
KSC-20160908-RV-ULA01_0001-OSIRIS_REx_Launch_Broadcast_Rocket_Cam_Ascent_ISO-3126827
2016-09-08
Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
In-Flight Performance of the TES Loop Heat Pipe Rejection System: Seven Years in Space
NASA Technical Reports Server (NTRS)
Rodriquez, Jose I.; Na-Nakornpanom, Arthur
2012-01-01
The Tropospheric Emission Spectrometer (TES) is an infrared, high spectral resolution Fourier transform spectrometer with a 3.3 to 15.4 micron wavelength coverage. TES is a scanning instrument intended for determining the chemical state of the Earth's lower atmosphere (troposphere) from the surface to 30+ km. TES produces vertical profiles of important pollutant and greenhouse gases such as carbon monoxide, ozone, methane, and water vapor on a global scale every other day. TES was launched into orbit onboard NASA's earth Observing System Aura spacecraft on July 15, 2004 from Vandenberg Air Force Base, California.
Development of flight experiments for remote measurement of pollution
NASA Technical Reports Server (NTRS)
Keafer, L. S., Jr.; Kopia, L. P.
1973-01-01
The status as of February 1973 of several NASA-sponsored development projects is reported concerning flight experiments for remote measurement of pollution. Eight passive multispectral instruments for remotely sensing air and water pollutants are described, as well as two active (laser radar) measuring techniques. These techniques are expected to add some new dimensions to the remote sensing of water quality, oceanographic parameters, and earth resources. Multiple applications in these fields are generally possible. Successful completion of the flight demonstration tests and comparisons with simultaneously obtained surface truth measurements may establish these techniques as valid water quality monitoring tools.
Propagation effects on radio range and noise in earth-space telecommunications
NASA Technical Reports Server (NTRS)
Flock, W. L.; Slobin, S. D.; Smith, E. K.
1982-01-01
Attention is given to the propagation effects on radio range and noise in earth-space telecommunications. The use of higher frequencies minimizes ionospheric effects on propagation, but tropospheric effects often increase or dominate. For paths of geostationary satellites, and beyond, the excess range delay caused by the ionosphere and plasmasphere is proportional to the total electron content along the path and inversely proportional to frequency squared. The delay due to dry air is usually of the order of a few meters while the delay due to water vapor (a few tens of centimeters) is responsible for most of the temporal variation in the range delay for clean air. For systems such as that of the Voyager spacecraft, and for attenuation values up to about 10 dB, increased sky noise degrades the received signal-to-noise ratio more than does the reduction in signal level due to attenuation.
NASA Technical Reports Server (NTRS)
Toll, David L.
2011-01-01
With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its projects under five functional themes. I) Streamflow and Flood Forecasting 2) Water Supply and Irrigation (includes evapotranspiration) 3) Drought 4) Water Quality 5) Climate and Water Resources. To maximize this activity NASA Water Resources Program works closely with other government agencies (e.g., the National Oceanic and Atmospheric Administration (NOAA); the U.S. Department of Agriculture (USDA); the U.S. Geological Survey (USGS); the Environmental Protection Agency (EPA), USAID, the Air Force Weather Agency (AFWA)), universities, non-profit national and international organizations, and the private sector. The NASA Water Resources program currently is funding 21 active projects under the functional themes (http://wmp.gsfc.nasa.gov & http://science.nasa.gov/earth-science/applied-sciences/).
Cloud Streets over the Bering Sea
2017-12-08
NASA image captured January 4, 2012 Most of us prefer our winter roads free of ice, but one kind of road depends on it: a cloud street. Such streets formed over the Bering Sea in early January 2012, thanks to snow and ice blanketing the nearby land, and sea ice clinging to the shore. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this natural-color image of the cloud streets on January 4, 2012. Air blowing over frigid ice then warmer ocean water can lead to the development of parallel cylinders of spinning air. Above the upward cycle of these cylinders (rising air), small clouds form. Along the downward cycle (descending air), skies are clear. The resulting cloud formations resemble streets. This image shows that some of the cloud streets begin over the sea ice, but most of the clouds hover over the open ocean water. These streets are not perfectly straight, but curve to the east and west after passing over the sea ice. By lining up along the prevailing wind direction, the tiny clouds comprising the streets indicate the wind patterns around the time of their formation. NASA images courtesy LANCE/EOSDIS MODIS Rapid Response Team at NASA GSFC. Caption by Michon Scott. Instrument: Terra - MODIS Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24 A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005. In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the AIRS retrieved total water vapor product as a region of depressed water vapor (brown in the images) migrating slowly Westward toward the Caribbean. The SAL phenomenon inhibits the formation of tropical cyclones and thus has given the West Indies and the East Coast of the US a respite from hurricanes. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.Nanometric Surface Oscillation Spectroscopy of Water-Poor Microemulsions.
Corti, Mario; Raudino, Antonio; Cantù, Laura; Theisen, Johannes; Pleines, Maximilian; Zemb, Thomas N
2018-06-18
Selectively exchanging metal complexes between emulsified water-poor microemulsions and concentrated solutions of mixed electrolytes is the core technology for strategic metal recycling. Nanostructuration triggered by solutes present in the organic phase is understood, but little is known about fluctuations of the microemulsion-water interface. We use here a modified version of an opto-electric device initially designed for air bubbles, in order to evidence resonant electrically induced surface waves of an oily droplet suspended in an aqueous phase. Resonant waves of nanometer amplitude of a millimeter-sized microemulsion droplet containing a common ion-specific extractant diluted by dodecane and suspended in a solution of rare earth nitrate are evidenced for the first time with low excitation fields (5 V/cm). From variation of the surface wave spectrum with rare earth concentration, we evidence up-take of rare-earth ions at the interface and at higher concentration the formation of a thin "crust" of liquid crystal forming at unusually low concentration, indicative of a surface induced phase transition. The effect of the liquid crystal structure on the resonance spectrum is backed up by a model, which is used to estimate crust thickness.
Adam, Jennifer C.; Stephens, Jennie C.; Chung, Serena H.; ...
2014-04-24
Uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (e.g., land, air, water, and economics). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and “usability” of EaSMs. BioEarth is a research initiative currently under development with a focus on the U.S. Pacific Northwest region thatmore » explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a bottom-up approach for its land surface model that preserves fine spatial-scale sensitivities and lateral hydrologic connectivity, which makes it unique among many regional EaSMs. Here, we describe the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.« less
ERIC Educational Resources Information Center
Ferderbar, Catherine A.
2013-01-01
To develop sustainable solutions to remediate the complex ecological problems of earth's soil, water, and air degradation requires the talents and skills of knowledgeable, motivated people (UNESCO, 1977; UNESCO, 2010). Researchers historically emphasized that time spent in outdoor, nature activities (Wells & Lekies, 2006), particularly with an…
Plant Structure & Growth. Plant Life in Action[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
What if you could build a machine that could make it's own fuel, adapt to changing conditions, and generate priceless products like air and water? Over millions of years, vascular plants have developed roots, stems and leaves that work together to perform these feats, as well as provide energy for every living thing on Earth! In Plant Structure…
Pinpointing Watershed Pollution on a Virtual Globe
ERIC Educational Resources Information Center
Saunders, Cheston; Taylor, Amy
2014-01-01
Pollution is not a problem we just read about anymore. It affects the air we breathe, the land we live on, and the water we consume. After noticing a lack of awareness in students, a lesson was developed that used Google Earth to pinpoint sources of pollution in the local area and in others across the country, and their effects on the surrounding…
Chlorine-containing salts as water ice nucleating particles on Mars
NASA Astrophysics Data System (ADS)
Santiago-Materese, D. L.; Iraci, L. T.; Clapham, M. E.; Chuang, P. Y.
2018-03-01
Water ice cloud formation on Mars largely is expected to occur on the most efficient ice nucleating particle available. Salts have been observed on the Martian surface and have been known to facilitate water cloud formation on Earth. We examined heterogeneous ice nucleation onto sodium chloride and sodium perchlorate substrates under Martian atmospheric conditions, in the range of 150 to 180 K and 10-7 to 10-5 Torr water partial pressure. Sub-155 K data for the critical saturation ratio (Scrit) suggests an exponential model best describes the temperature-dependence of nucleation onset of water ice for all substrates tested. While sodium chloride does not facilitate water ice nucleation more easily than bare silicon, sodium perchlorate does support depositional nucleation at lower saturation levels than other substrates shown and is comparable to smectite-rich clay in its ability to support cloud initiation. Perchlorates could nucleate water ice at partial pressures up to 40% lower than other substrates examined to date under Martian atmospheric conditions. These findings suggest air masses on Mars containing uplifted salts such as perchlorates could form water ice clouds at lower saturation ratios than in air masses absent similar particles.
NASA Technical Reports Server (NTRS)
2007-01-01
Location: The Atlantic Ocean 210 miles south of Galveston, Texas Categorization: Tropical Storm Sustained Winds: 40 mph (60 km/hr) [figure removed for brevity, see original site] [figure removed for brevity, see original site] Infrared ImageMicrowave Image Infrared Images Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). Microwave Images In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity. Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned the color blue. Therefore deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. Land appears much warmer due to its high radiation emissivity. Visible/Near-Infrared Images The AIRS instrument suite contains a sensor that captures radiation in four bands of the visible/near-infrared portion of the electromagetic spectrum. Data from three of these bands are combined to create 'visible' images similar to a snapshot taken with your camera. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.NASA Astrophysics Data System (ADS)
Gronewold, A.; Bruxer, J.; Smith, J.; Hunter, T.; Fortin, V.; Clites, A. H.; Durnford, D.; Qian, S.; Seglenieks, F.
2015-12-01
Resolving and projecting the water budget of the North American Great Lakes basin (Earth's largest lake system) requires aggregation of data from a complex array of in situ monitoring and remote sensing products that cross an international border (leading to potential sources of bias and other inconsistencies), and are relatively sparse over the surfaces of the lakes themselves. Data scarcity over the surfaces of the lakes is a particularly significant problem because, unlike Earth's other large freshwater basins, the Great Lakes basin water budget is (on annual scales) comprised of relatively equal contributions from runoff, over-lake precipitation, and over-lake evaporation. Consequently, understanding drivers behind changes in regional water storage and water levels requires a data management framework that can reconcile uncertainties associated with data scarcity and bias, and propagate those uncertainties into regional water budget projections and historical records. Here, we assess the development of a historical hydrometeorological database for the entire Great Lakes basin with records dating back to the late 1800s, and describe improvements that are specifically intended to differentiate hydrological, climatological, and anthropogenic drivers behind recent extreme changes in Great Lakes water levels. Our assessment includes a detailed analysis of the extent to which extreme cold winters in central North America in 2013-2014 (caused by the anomalous meridional upper air flow - commonly referred to in the public media as the "polar vortex" phenomenon) altered the thermal and hydrologic regimes of the Great Lakes and led to a record setting surge in water levels between January 2014 and December 2015.
Hurwitz, Shaul; Sohn, Robert A.; Luttrell, Karen; Manga, Michael
2014-01-01
We analyze intervals between eruptions (IBEs) data acquired between 2001 and 2011 at Daisy and Old Faithful geysers in Yellowstone National Park. We focus our statistical analysis on the response of these geysers to stress perturbations from within the solid earth (earthquakes and earth tides) and from weather (air pressure and temperature, precipitation, and wind). We conclude that (1) the IBEs of these geysers are insensitive to periodic stresses induced by solid earth tides and barometric pressure variations; (2) Daisy (pool geyser) IBEs lengthen by evaporation and heat loss in response to large wind storms and cold air; and (3) Old Faithful (cone geyser) IBEs are not modulated by air temperature and pressure variations, wind, and precipitation, suggesting that the subsurface water column is decoupled from the atmosphere. Dynamic stress changes of 0.1−0.2 MPa resulting from the 2002 M-7.9 Denali, Alaska, earthquake surface waves caused a statistically significant shortening of Daisy geyser's IBEs. Stresses induced by other large global earthquakes during the study period were at least an order of magnitude smaller. In contrast, dynamic stresses of >0.5 MPa from three large regional earthquakes in 1959, 1975, and 1983 caused lengthening of Old Faithful's IBEs. We infer that most subannual geyser IBE variability is dominated by internal processes and interaction with other geysers. The results of this study provide quantitative bounds on the sensitivity of hydrothermal systems to external stress perturbations and have implications for studying the triggering and modulation of volcanic eruptions by external forces.
NASA Technical Reports Server (NTRS)
Smith, Cosmo
2011-01-01
The seasonal freezing and thawing of Earth's cryosphere (the portion of Earth's surface permanently or seasonally frozen) has an immense impact on Earth's climate as well as on its water, carbon and energy cycles. During the spring, snowmelt and the transition between frozen and non-frozen states lowers Earth's surface albedo. This change in albedo causes more solar radiation to be absorbed by the land surface, raising surface soil and air temperatures as much as 5 C within a few days. The transition of ice into liquid water not only raises the surface humidity, but also greatly affects the energy exchange between the land surface and the atmosphere as the phase change creates a latent energy dominated system. There is strong evidence to suggest that the thawing of the cryosphere during spring and refreezing during autumn is correlated to local atmospheric conditions such as cloud structure and frequency. Understanding the influence of land surface freeze/thaw cycles on atmospheric structure can help improve our understanding of links between seasonal land surface state and weather and climate, providing insight into associated changes in Earth's water, carbon, and energy cycles that are driven by climate change.Information on both the freeze/thaw states of Earth's land surface and cloud characteristics is derived from data sets collected by NOAA's Special Sensor Microwave/Imager (SSM/I), the Advanced Microwave Scanning Radiometer on NASA's Earth Observing System(AMSR-E), NASA's CloudSat, and NASA's SeaWinds-on-QuickSCAT Earth remote sensing satellite instruments. These instruments take advantage of the microwave spectrum to collect an ensemble of atmospheric and land surface data. Our analysis uses data from radars (active instruments which transmit a microwave signal toward Earth and measure the resultant backscatter) and radiometers (passive devices which measure Earth's natural microwave emission) to accurately characterize salient details on Earth's surface and atmospheric states. By comparing the cloud measurements and the surface freeze-thaw data sets, a correlation between the two phenomena can be developed.
Insights on How NASA's Earth Observing System (EOS) Monitors Our World Environment
NASA Technical Reports Server (NTRS)
King, Michael D.
2000-01-01
The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover and land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using EOS data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.
Pérez-Díaz, J L; Álvarez-Valenzuela, M A; Rodríguez-Celis, F
2016-01-01
Freezing, melting, evaporation and condensation of water are essential ingredients for climate and eventually life on Earth. In the present work, we show how surface freezing of supercooled water in an open container is conditioned and triggered-exclusively-by humidity in air. Additionally, a change of phase is demonstrated to be triggered on the water surface forming surface ice crystals prior to freezing of bulk. The symmetry of the surface crystal, as well as the freezing point, depend on humidity, presenting at least three different types of surface crystals. Humidity triggers surface freezing as soon as it overpasses a defined value for a given temperature, generating a plurality of nucleation nodes. An evidence of simultaneous nucleation of surface ice crystals is also provided.
Porous media matric potential and water content measurements during parabolic flight
NASA Technical Reports Server (NTRS)
Norikane, Joey H.; Jones, Scott B.; Steinberg, Susan L.; Levine, Howard G.; Or, Dani
2005-01-01
Control of water and air in the root zone of plants remains a challenge in the microgravity environment of space. Due to limited flight opportunities, research aimed at resolving microgravity porous media fluid dynamics must often be conducted on Earth. The NASA KC-135 reduced gravity flight program offers an opportunity for Earth-based researchers to study physical processes in a variable gravity environment. The objectives of this study were to obtain measurements of water content and matric potential during the parabolic profile flown by the KC-135 aircraft. The flight profile provided 20-25 s of microgravity at the top of the parabola, while pulling 1.8 g at the bottom. The soil moisture sensors (Temperature and Moisture Acquisition System: Orbital Technologies, Madison, WI) used a heat-pulse method to indirectly estimate water content from heat dissipation. Tensiometers were constructed using a stainless steel porous cup with a pressure transducer and were used to measure the matric potential of the medium. The two types of sensors were placed at different depths in a substrate compartment filled with 1-2 mm Turface (calcined clay). The ability of the heat-pulse sensors to monitor overall changes in water content in the substrate compartment decreased with water content. Differences in measured water content data recorded at 0, 1, and 1.8 g were not significant. Tensiometer readings tracked pressure differences due to the hydrostatic force changes with variable gravity. The readings may have been affected by changes in cabin air pressure that occurred during each parabola. Tensiometer porous membrane conductivity (function of pore size) and fluid volume both influence response time. Porous media sample height and water content influence time-to-equilibrium, where shorter samples and higher water content achieve faster equilibrium. Further testing is needed to develop these sensors for space flight applications.
2017-10-26
NASA is working with the Robert Wood Johnson Foundation (RWJF) to sponsor the Earth and Space Air Prize competition for a solution that could improve air quality and health in space and on Earth. This project is a technology innovation challenge to promote the development of robust, durable, inexpensive, efficient, lightweight, and easy-to-use aerosol sensors for space and Earth environments.
Zheng, Xuerong; Han, Xiaopeng; Liu, Hui; Chen, Jianjun; Fu, Dongju; Wang, Jihui; Zhong, Cheng; Deng, Yida; Hu, Wenbin
2018-04-25
The development of earth-abundant, highly active, and corrosion-resistant electrocatalysts to promote the oxygen reduction reaction (ORR) and oxygen and hydrogen evolution reactions (OER/HER) for rechargeable metal-air batteries and water-splitting devices is urgently needed. In this work, Ni x Se (0.5 ≤ x ≤ 1) nanocrystals with different crystal structures and compositions have been controllably synthesized and investigated as potential electrocatalysts for multifunctional ORR, OER, and HER in alkaline conditions. A novel hot-injection process at ambient pressure was developed to control the phase and composition of a series of Ni x Se by simply adjusting the added molar ratio of the nickel resource to triethylenetetramine. Electrochemical analysis reveals that Ni 0.5 Se nanocrystalline exhibits superior OER activity compared to its counterparts and is comparable to RuO 2 in terms of the low overpotential required to reach a current density of 10 mA cm -2 (330 mV), which may benefit from the pyrite-type crystal structure and Se enrichment in Ni 0.5 Se. For the ORR and HER, Ni 0.75 Se nanoparticles achieve the best performance including lower overpotentials and larger apparent current densities. Further investigations demonstrate that Ni 0.75 Se could not only provide an enhanced electrochemical active area but also facilitate electron transfer during the electrocatalytic process, thus contributing to the remarkable catalytic activity. As a practical application, the Ni 0.75 Se electrode enables rechargeable Zn-air battery with a considerable performance including a long cycling lifetime (200 cycles), high specific capacity (609 mA h g -1 based on the consumed Zn), and low overpotential (0.75 V) at 10 mA cm -2 . Meanwhile, the water-splitting cell setup with an anode of Ni 0.5 Se for the HER and a cathode of Ni 0.75 Se for the OER exhibits a considerable performance with low decay in activity of 12.9% under continuous polarization for 10 h. These results suggest the promising potential of nickel selenide nanocrystals as earth-abundant and high-performance electrocatalysts for metal-air batteries and alkaline water splitting.
Spectral Longwave Cloud Radiative Forcing as Observed by AIRS
NASA Technical Reports Server (NTRS)
Blaisdell, John M.; Susskind, Joel; Lee, Jae N.; Iredell, Lena
2016-01-01
AIRS V6 products contain the spectral contributions to Outgoing Longwave Radiation (OLR), clear-sky OLR (OLR(sub CLR)), and Longwave Cloud Radiative Forcing (LWCRF) in 16 bands from 100 cm(exp -1) to 3260 cm(exp -1). We show climatologies of selected spectrally resolved AIRS V6 products over the period of September 2002 through August 2016. Spectrally resolved LWCRF can better describe the response of the Earth system to cloud and cloud feedback processes. The spectral LWCRF enables us to estimate the fraction of each contributing factor to cloud forcing, i.e.: surface temperature, mid to upper tropospheric water vapor, and tropospheric temperature. This presentation also compares the spatial characteristics of LWCRF from AIRS, CERES_EBAF Edition-2.8, and MERRA-2. AIRS and CERES LWCRF products show good agreement. The OLR bias between AIRS and CERES is very close to that of OLR(sub CLR). This implies that both AIRS and CERES OLR products accurately account for the effect of clouds on OLR.
Understanding the Role of Biology in the Global Environment: NASA'S Mission to Planet Earth
NASA Technical Reports Server (NTRS)
Townsend, William F.
1996-01-01
NASA has long used the unique perspective of space as a means of expanding our understanding of how the Earth's environment functions. In particular, the linkages between land, air, water, and life-the elements of the Earth system-are a focus for NASA's Mission to Planet Earth. This approach, called Earth system science, blends together fields like meteorology, biology, oceanography, and atmospheric science. Mission to Planet Earth uses observations from satellites, aircraft, balloons, and ground researchers as the basis for analysis of the elements of the Earth system, the interactions between those elements, and possible changes over the coming years and decades. This information is helping scientists improve our understanding of how natural processes affect us and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, an enhanced ability to predict how the climate will change in the future. NASA has designed Mission to Planet Earth to focus on five primary themes: Land Cover and Land Use Change; Seasonal to Interannual Climate Prediction; Natural Hazards; Long-Term Climate Variability; and Atmosphere Ozone.
2016-09-07
In a view from ground level looking up, a United Launch Alliance Atlas V rocket begins to roll out of the Vertical Integration Facility to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
Aqua's First 10 Years: An Overview
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
2012-01-01
NASA's Aqua spacecraft was launched at 2:55 a.m. on May 4, 2002, from Vandenberg Air Force Base in California, into a near-polar, sun-synchronous orbit at an altitude of 705 km. Aqua carries six Earth-observing instruments to collect data on water in all its forms (liquid, vapor, and solid) and on a wide variety of additional Earth system variables (Parkinson 2003). The design lifetime for Aqua's prime mission was 6 years, and Aqua is now well into its extended mission, approaching 10 years of successful operations. The Aqua data have been used for hundreds of scientific studies and continue to be used for scientific discovery and numerous practical applications.
OSIRIS-REx Atlas V Wet Dress Rehearsal
2016-08-25
The booster and Centaur upper stage of a United Launch Alliance Atlas V vent gaseous propellant during a “wet dress rehearsal” test at Space Launch Complex 41 on Florida’s Cape Canaveral Air Force Station. The rocket will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Targeted for liftoff Sept. 8, 2016, OSIRIS-REx will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
Constraints on the Profiles of Total Water PDF in AGCMs from AIRS and a High-Resolution Model
NASA Technical Reports Server (NTRS)
Molod, Andrea
2012-01-01
Atmospheric general circulation model (AGCM) cloud parameterizations generally include an assumption about the subgrid-scale probability distribution function (PDF) of total water and its vertical profile. In the present study, the Atmospheric Infrared Sounder (AIRS) monthly-mean cloud amount and relative humidity fields are used to compute a proxy for the second moment of an AGCM total water PDF called the RH01 diagnostic, which is the AIRS mean relative humidity for cloud fractions of 0.1 or less. The dependence of the second moment on horizontal grid resolution is analyzed using results from a high-resolution global model simulation.The AIRS-derived RH01 diagnostic is generally larger near the surface than aloft, indicating a narrower PDF near the surface, and varies with the type of underlying surface. High-resolution model results show that the vertical structure of profiles of the AGCM PDF second moment is unchanged as the grid resolution changes from 200 to 100 to 50 km, and that the second-moment profiles shift toward higher values with decreasing grid spacing.Several Goddard Earth Observing System, version 5 (GEOS-5), AGCM simulations were performed with several choices for the profile of the PDF second moment. The resulting cloud and relative humidity fields were shown to be quite sensitive to the prescribed profile, and the use of a profile based on the AIRS-derived proxy results in improvements relative to observational estimates. The AIRS-guided total water PDF profiles, including their dependence on underlying surface type and on horizontal resolution, have been implemented in the version of the GEOS-5 AGCM used for publicly released simulations.
Science Writer's Guide to Landsat 7
NASA Technical Reports Server (NTRS)
1999-01-01
The Earth Observing System (EOS), the centerpiece of NASA's Earth science program, is a suite of spacecraft and interdisciplinary science investigations dedicated to advancing our understanding of global change. The flagship EOS satellite, Terra (formerly EOS AM-1), scheduled for launch in July 1999, will provide key measurements of the physical and radiative properties of clouds; air-land and air-sea exchanges of energy, carbon, and water; trace gases; and volcanoes. Flying in formation with Terra, Landsat 7 will make global high spatial resolution measurements of land surface and surrounding coastal regions. Other upcoming EOS missions and instruments include QuikSCAT, to collect sea surface wind data; the Stratospheric Gas and Aerosol Experiment (SAGE III), to create global profiles of key atmospheric gases; and the Active Cavity Radiometer Irradiance Monitors (ACRIM) to measure the energy output of the Sun. The second of the major, multi-instrument EOS platforms, PM-1, is scheduled for launch in 2000. Interdisciplinary research projects sponsored by EOS use specific Earth science data sets for a broader investigation into the function of Earth systems. Current EOS research spans a wide range of sciences, including atmospheric chemistry, hydrology, land use, and marine ecosystems. The EOS program has been managed since 1990 by the Goddard Space Flight Center in Greenbelt, Md., for NASA's Office of Earth Science in Washington, D. C. Additional information on the program can be found on the EOS Project Science Office Web site (http://eospso.gsfc.nasa.gov).
Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy.
Stiopkin, Igor V; Weeraman, Champika; Pieniazek, Piotr A; Shalhout, Fadel Y; Skinner, James L; Benderskii, Alexander V
2011-06-08
The air-water interface is perhaps the most common liquid interface. It covers more than 70 per cent of the Earth's surface and strongly affects atmospheric, aerosol and environmental chemistry. The air-water interface has also attracted much interest as a model system that allows rigorous tests of theory, with one fundamental question being just how thin it is. Theoretical studies have suggested a surprisingly short 'healing length' of about 3 ångströms (1 Å = 0.1 nm), with the bulk-phase properties of water recovered within the top few monolayers. However, direct experimental evidence has been elusive owing to the difficulty of depth-profiling the liquid surface on the ångström scale. Most physical, chemical and biological properties of water, such as viscosity, solvation, wetting and the hydrophobic effect, are determined by its hydrogen-bond network. This can be probed by observing the lineshape of the OH-stretch mode, the frequency shift of which is related to the hydrogen-bond strength. Here we report a combined experimental and theoretical study of the air-water interface using surface-selective heterodyne-detected vibrational sum frequency spectroscopy to focus on the 'free OD' transition found only in the topmost water layer. By using deuterated water and isotopic dilution to reveal the vibrational coupling mechanism, we find that the free OD stretch is affected only by intramolecular coupling to the stretching of the other OD group on the same molecule. The other OD stretch frequency indicates the strength of one of the first hydrogen bonds encountered at the surface; this is the donor hydrogen bond of the water molecule straddling the interface, which we find to be only slightly weaker than bulk-phase water hydrogen bonds. We infer from this observation a remarkably fast onset of bulk-phase behaviour on crossing from the air into the water phase.
Earth Observations taken by the Expedition 15 Crew
2007-04-28
ISS015-E-05481 (28 April 2007) --- Patuxent River Naval Air Station, Maryland is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. The Patuxent River Naval Air Station - or NAS Patuxent River -- is located on a small peninsula, bordered by the Patuxent River to the north-northeast and Chesapeake Bay to the east and southeast. The air station was commissioned in 1943, replacing farmlands that had occupied the peninsula less than a year earlier. The primary purpose of "Pax River" (as the site is known by the US Navy) was to consolidate geographically-dispersed air testing facilities that existed in the US prior to World War II into a central location. The NAS Patuxent River is now the primary center for naval air technology research, development, testing, and support, as well as being the location of the Navy Test Pilot School. The NAS Patuxent River is used frequently as a geographic reference point and training target by station crews. This view illustrates why --the distinctive pattern of the airfield runways and the station's location in Chesapeake Bay make it easy to spot from orbit, and provides sharp land cover boundaries for camera focusing practice. This particular image also captures surface water current patterns around the peninsula. Wind and wave-roughened water surfaces appear silver-gray due to increased reflectance of light back towards the camera (sunglint), whereas dark blue water patches indicate water smoothed by the presence of oils and surfactants. A zone of mixing from converging shoreline currents extends northeast into the bay from Cedar Point.
NASA Astrophysics Data System (ADS)
Huang, T.; Samal, N. R.; Wollheim, W. M.; Stewart, R. J.; Zuidema, S.; Prousevitch, A.; Glidden, S.
2015-12-01
The thermal response of streams and rivers to changing climate will influence aquatic habitat. This study examines the impact that changing climate has on stream temperatures in the Merrimack River, NH/MA USA using the Framework for Aquatic Modeling in the Earth System (FrAMES), a spatially distributed river network model driven by air temperature, air humidity, wind speed, precipitation, and solar radiation. Streamflow and water temperatures are simulated at a 45-second (latitude x longitude) river grid resolution for 135 years under historical and projected climate variability. Contemporary streamflow (Nash-Sutcliffe Coefficient = 0.77) and river temperatures (Nash-Sutcliffe Coefficient = 0.89) matched at downstream USGS gauge data well. A suite of model runs were made in combination with uniformly increased daily summer air temperatures by 2oC, 4 oC and 6 oC as well as adjusted precipitation by -40%, -30%, -20%, -10% and +10% as a sensitivity analysis to explore a broad range of potential future climates. We analyzed the summer stream temperatures and the percent of river length unsuitable for cold to warm water fish habitats. Impacts are greatest in large rivers due to the accumulation of river temperature warming throughout the entire river network. Cold water fish (i.e. brook trout) are most strongly affected while, warm water fish (i.e. largemouth bass) aren't expected to be impacted. The changes in stream temperatures under various potential climate scenarios will provide a better understanding of the specific impact that air temperature and precipitation have on aquatic thermal regimes and habitat.
Sulfur Dioxide Plume from Mt. Etna Eruption 2002 as Detected with AIRS Data
NASA Technical Reports Server (NTRS)
2007-01-01
Mt. Etna, a volcano on the island of Sicily, erupted on October 26, 2002. Preliminary analysis of data taken by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on October 28 shows the instrument can provide an excellent means to study the evolution and structure of the sulfur dioxide plume emitted from volcanoes. These data also demonstrate that AIRS can be used to obtain the total mass of sulfur dioxide injected into the atmosphere during a volcanic event, information that may help us to better understand these dangerous natural occurrences in the future. The image clearly shows the sulfur dioxide plume. This image was created by comparing data taken at two different frequencies, or channels, and creating one image that highlights the differences between these two channels. Both channels are sensitive to water vapor, but one of the channels is also sensitive to sulfur dioxide. By subtracting out the common water vapor signal in both channels, the sulfur dioxide feature remains and shows up as an enhancement in the difference image. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.Energy from Ocean Waves, River Currents, and Wind
NASA Astrophysics Data System (ADS)
Guha, Shyamal
2006-03-01
The Earth we live in is surrounded by fluids, which are in perpetual motion. The air in the atmosphere and water found in lakes, ocean, and rivers form our natural environment. Much of the fluid medium is in constant motion. The kinetic energy of this moving fluid is astronomical in magnitude. Over the years, I have considered methods of converting a fraction of the vast reserve of this kinetic energy into electro-mechanical energy. I have conceived a few schemes of such conversions. The fluids whose kinetic energy can be converted into electro-mechanical energy are the following: ocean waters, river currents and atmospheric air. In a book to be published in the spring of 2006, I have described different techniques of energy conversion. In the upcoming APS meeting, I plan to discuss some of these techniques.
Typhoon Ioke in the Western Pacific
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] Microwave ImageVisible Light Image
These infrared, microwave, and visible images were created with data retrieved by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite. Infrared Image Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). Microwave Image In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity. In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity. Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned the color blue. Therefore deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. Land appears much warmer due to its high radiation emissivity. Vis/NIR Image The AIRS instrument suite contains a sensor that captures radiation in four bands of the visible/near-infrared portion of the electromagetic spectrum. Data from three of these bands are combined to create 'visible' images similar to a snapshot taken with your camera. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review
Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang
2013-01-01
Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697
Patterns and properties of polarized light in air and water
Cronin, Thomas W.; Marshall, Justin
2011-01-01
Natural sources of light are at best weakly polarized, but polarization of light is common in natural scenes in the atmosphere, on the surface of the Earth, and underwater. We review the current state of knowledge concerning how polarization and polarization patterns are formed in nature, emphasizing linearly polarized light. Scattering of sunlight or moonlight in the sky often forms a strongly polarized, stable and predictable pattern used by many animals for orientation and navigation throughout the day, at twilight, and on moonlit nights. By contrast, polarization of light in water, while visible in most directions of view, is generally much weaker. In air, the surfaces of natural objects often reflect partially polarized light, but such reflections are rarer underwater, and multiple-path scattering degrades such polarization within metres. Because polarization in both air and water is produced by scattering, visibility through such media can be enhanced using straightforward polarization-based methods of image recovery, and some living visual systems may use similar methods to improve vision in haze or underwater. Although circularly polarized light is rare in nature, it is produced by the surfaces of some animals, where it may be used in specialized systems of communication. PMID:21282165
Earth Observations taken by the Expedition 16 Crew
2008-02-05
ISS016-E-027426 (5 Feb. 2008) --- Cumulonimbus Cloud over Africa is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. Deemed by many meteorologists as one of the most impressive of cloud formations, cumulonimbus (from the Latin for "puffy" and "dark") clouds form due to vigorous convection of warm and moist unstable air. Surface air warmed by the Sun-heated ground surface rises, and if sufficient atmospheric moisture is present, water droplets will condense as the air mass encounters cooler air at higher altitudes. The air mass itself also expands and cools as it rises due to decreasing atmospheric pressure, a process known as adiabatic cooling. This type of convection is common in tropical latitudes year-round and during the summer season at higher latitudes. As water in the rising air mass condenses and changes from a gaseous to a liquid state, it releases energy to its surroundings, further heating the surrounding air and leading to more convection and rising of the cloud mass to higher altitudes. This leads to the characteristic vertical "towers" associated with cumulonimbus clouds, an excellent example of which is visible in this image (right). If enough moisture is present to condense and continue heating the cloud mass through several convective cycles, a tower can rise to altitudes of approximately 10 kilometers at high latitudes to 20 kilometers in the tropics -- before encountering a region of the atmosphere known as the tropopause. The tropopause is characterized by a strong temperature inversion where the atmosphere is dryer and no longer cools with altitude. This halts further vertical motion of the cloud mass, and causes flattening and spreading of the cloud tops into an anvil-shaped cloud as illustrated by this oblique photograph. The view direction is at an angle from the vertical, rather than straight "down" towards the Earth's surface. The image, photographed while the International Space Station was passing over western Africa near the Senegal-Mali border, shows a fully-formed anvil cloud with numerous smaller cumulonimbus towers rising near it. The high energetics of these storm systems typically make them hazardous due to associated heavy precipitation, lightning, high wind speeds and possible tornadoes.
NASA Astrophysics Data System (ADS)
Rolf, Christian; Vogel, Bärbel; Hoor, Peter; Afchine, Armin; Günther, Gebhard; Krämer, Martina; Müller, Rolf; Müller, Stefan; Spelten, Nicole; Riese, Martin
2018-03-01
The impact of air masses originating in Asia and influenced by the Asian monsoon anticyclone on the Northern Hemisphere stratosphere is investigated based on in situ measurements. A statistically significant increase in water vapor (H2O) of about 0.5 ppmv (11 %) and methane (CH4) of up to 20 ppbv (1.2 %) in the extratropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 during the HALO aircraft missions Transport and Composition in the UT/LMS (TACTS) and Earth System Model Validation (ESMVal). We investigate the origin of the increased water vapor and methane using the three-dimensional Chemical Lagrangian Model of the Stratosphere (CLaMS). We assign the source of the moist air masses in the Asian region (northern and southern India, eastern China, southeast Asia, and the tropical Pacific) based on tracers of air mass origin used in CLaMS. The water vapor increase is correlated with an increase of the simulated Asian monsoon air mass contribution from about 10 % in August to about 20 % in September, which corresponds to a doubling of the influence from the Asian monsoon region. Additionally, back trajectories starting at the aircraft flight paths are used to differentiate transport from the Asian monsoon anticyclone and other source regions by calculating the Lagrangian cold point (LCP). The geographic location of the LCPs, which indicates the region where the set point of water vapor mixing ratio along these trajectories occurs, can be predominantly attributed to the Asian monsoon region.
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] Figure 1: AIRS infrared channel 2333 (2616 cm-1)
[figure removed for brevity, see original site] Figure 2: Total Water Vapor retrieved from AIRS infrared and AMSU-A microwave data September 18, 2003 These two false-color images show Hurricane Isabel viewed by the AIRS and AMSU-A instruments at 1:30 EDT in the morning of Thursday September 18, 2003. Isabel will be ashore within 12 hours, bringing widespread flooding and destructive winds. In figure 1 on the left, data retrieved by the AIRS infrared sensor shows the hurricane's eye as the small ring of pale blue near the upper left corner of the image. The dark blue band around the eye shows the cold tops of hundreds of powerful thunderstorms. These storms are embedded in the 120 mile per hour winds swirling counterclockwise around Isabel's eye. Cape Hatteras is the finger of land north-northwest of the eye. Isabel's winds will soon push ashore a 4- to 8-foot high mound of 'storm surge' and accompanying high surf, leading to flooding of Cape Hatteras and other islands of North Carolina's Outer Banks. Also seen in the image are several organized bands of cold, (blue) thunderstorm tops being pulled into the storm center. Other thunderstorm are forming north of the islands of Jamaica, Cuba, Hispaniola and Puerto Rico near the bottom of the picture. Figure 2 shows the geographical distribution and total amount of atmospheric water vapor associated with Isabel as inferred by AIRS and AMSU-A. Very humid areas appear deep red and surround the storm's eye in the ring of thunderstorms, as seen above. The enhancement of atmospheric water vapor in the storm is maintained by evaporation from the wind-churned sea surface. In turn, the water vapor powers the thunderstorms by condensing as rain and releasing the ocean's warmth into the atmosphere to drive strong convection. This makes Isabel and other hurricanes 'heat engines,' converting ocean water's warmth into atmospheric gales. Isabel is weakening as it move ashore and loses its supply of energy from warm water, but not before raining an expected 6-12 inch thick layer of its water over an area extending from South Carolina and New England to the midwest and southern Canada. Paler blue areas in the water vapor image show less humid heights of the atmosphere, which are associated with the colder thunderstorm tops seen in the infrared image. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in PasadenaOptical remote sensing of atmospheric compounds
NASA Astrophysics Data System (ADS)
Vazquez, Gabriel J.
1996-02-01
Human activities are altering the earth system at the local, regional, and global scales. It is therefore of the utmost importance to track the workings of mother earth in order to detect any changes at their early stages so that appropriate actions are taken to understand, assess, control or prevent the adverse effects. A number of deleterious effects to the environment can, at least in part, be ascribed to air pollution, namely, the thinning of the ozone layer, the related increase in the occurrence of skin cancer, the warming of the earth system, photochemical smog, acid rain/fog, acidification of soils and waters, forest decline, etc. It is therefore necessary to monitor the most relevant processes of the earth's atmosphere, namely, the energy input, the dynamics and the chemistry. In this contribution I mainly focus on the latter, specifically, on the measurement/monitoring of atmospheric compounds. To understand atmospheric chemistry and air pollution it is necessary to have reliable and accurate values of the mixing ratios of the numerous atmospheric gases and of their diurnal/seasonal variations and long-term trends. In this contribution I present an overview of the most relevant optical remote sensing techniques that are rapidly becoming the methods of choice to probe the chemical composition and physical state of the atmosphere, especially when high selectivity, sensitivity and fast-time response are required.
NASA Astrophysics Data System (ADS)
Jones, Alexander
The structure, composition, and long-term history of the cosmos were prominent topics in many ancient Greek philosophical systems. Philosophers and philosophically informed astronomers differed over whether the cosmos was finite or infinite, eternal or transient, and composed of discrete particles or continuous, homogeneous elements. The Aristotelian cosmology preferred by astronomers following Ptolemy assumed a finite, spherical shell of eternally unalterable matter enclosing a terrestrial globe composed of earth, water, air, and fire.
Launch Preparation and Rocket Launching
1991-05-23
which do not exceed several hundred kilometers. In the USA MBR and heavy rocket carriers to distant distances are transported predominantly on air or...Balloon for transportation of MBR "Minuteman" (drawing): - balloon; 2 - rocket. DOC = 91032701 PAGE 34 Page 20. Thus, for the protection from the axial g...launching is suitable for rockets, launched from surface of the earth (water), or from silo (submarine in submerged state). The selection of
Flying fish accelerate at 5 G to leap from the water surface
NASA Astrophysics Data System (ADS)
Yang, Patricia; Phonekeo, Sulisay; Xu, Ke; Chang, Shui-Kai; Hu, David
2013-11-01
Flying fish can both swim underwater and glide in air. Transitioning from swimming to gliding requires penetration of the air-water interface, or breaking the ``surface tension barrier,'' a formidable task for juvenile flying fish measuring 1 to 5 cm in length. In this experimental investigation, we use high-speed videography to characterize the kinematics of juvenile flying fish as they leap from the water surface. During this process, which lasts 0.05 seconds, flying fish achieve body accelerations of 5 times earth's gravity and gliding speeds of 1.3 m/s, an order of magnitude higher than their steady swimming speed. We rationalize this anomalously high speed on the basis of the hydrodynamic and surface tension forces and torques experienced by the fish. Specifically, leaping fish experience skin friction forces only on the submerged part of their body, permitting them to achieve much higher speeds than in steady underwater swimming. We also perform experiments using a towed flying fish mimc to determine optimality of various parameters in this process, including body angle and start position with respect to the water surface.
NASA Astrophysics Data System (ADS)
Huertas, I. Emma; Flecha, Susana; Figuerola, Jordi; Costas, Eduardo; Morris, Edward P.
2017-07-01
Wetlands are productive ecosystems that play an important role in the Earth's carbon cycle and thus global carbon budgets. Climate variability affects amount of material entering and the metabolic balance of wetlands, thereby modifying carbon dynamics. This study presents spatiotemporal changes in air-water CO2 exchange in the vast wetlands of Doñana (Spain) in relation to different hydrological cycles. Water sources feeding Doñana, including groundwater and streams, ultimately depend on the fluctuating balance between annual precipitation and evapotranspiration. Hence, in order to examine the contribution of the rainfall pattern to the emission/capture of CO2 by a range of aquatic habitats in Doñana, we took monthly measurements during severely wet, dry, and normal hydrological years (2010-2013). During wet hydrological cycles, CO2 outgassing from flooded marshes markedly decreased in comparison to that observed during subsequent dry-normal cycles, with mean values of 25.84 ± 19 and 5.2 ± 8 mmol m-2 d-1, respectively. Under drier meteorological conditions, air-water CO2 fluxes also diminished in permanent floodplains and ponds, which even behaved as mild sinks for atmospheric CO2 during certain periods. Increased inputs of dissolved CO2 from the underground aquifer and the stream following periods of high rainfall are believed to be behind this pattern. Large lagoons with a managed water supply from an adjacent estuary took up atmospheric CO2 nearly permanently. Regional air-water carbon transport was 15.2 GgC yr-1 under wet and 1.24 GgC yr-1 under dry meteorological conditions, well below the estimated net primary production for Doñana wetlands, indicating that the ecosystem acts as a large CO2 sink.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, J. C.; Stephens, J. C.; Chung, Serena
As managers of agricultural and natural resources are confronted with uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (land, air, water, economics, etc). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and "usability" of EaSMs. BioEarth is a current research initiative with a focusmore » on the U.S. Pacific Northwest region that explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a "bottom-up" approach, upscaling a catchment-scale model to basin and regional scales, as opposed to the "top-down" approach of downscaling global models utilized by most other EaSM efforts. This paper describes the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.« less
Earth observations taken from Space Shuttle Columbia during STS-80 mission
1996-11-23
STS080-709-094 (19 Nov.-7 Dec. 1996) --- This is a view of the western portion of the Florida Keys. The view shows the city of Key West, bottom mid-right, with Marathon Key, near top middle left, and the edge of the Straits of Florida, the dark water on the right edge. Clouds form over the cooler waters of the strait. The runways at Boca Chica Key Naval Air Station are seen near Key West. The bottom can be seen clearly in the shallow water, the deeper water has depths of over a half a mile. The thin line of the Overseas Highway can be traced east from Key West. Prior to a hurricane in 1935, this route was a railway line.
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is positioned for movement into NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is offloaded from the transporter at NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft arrives at NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is offloaded from a C-5 aircraft after arrival at Vandenberg Air Force Base Airfield in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – Workers move the NOAA-N Prime spacecraft into NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is offloaded from a C-5 aircraft after arrival at Vandenberg Air Force Base Airfield in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2013-01-25
VANDENBERG AIR FORCE BASE, Calif. --- Loaded on a transporter, the payload faring containing the Landsat Data Continuity Mission LDCM spacecraft departs the Astrotech processing facility at Vandenberg Air Force Base in California and heads toward the launch pad at Space Launch Complex-3E. There it will be hoisted atop a United Launch Alliance Atlas V for launch. LDCM is the eighth satellite in the Landsat Program series of Earth-observing missions jointly managed by NASA and the U.S. Geological Survey. LDCM will continue the program’s critical role in monitoring, understanding and managing the resources needed for human sustainment such as food, water and forests. Photo credit: NASA/VAFB
Water Treatment Systems Make a Big Splash
NASA Technical Reports Server (NTRS)
2004-01-01
In the 1960s, NASA's Manned Space Center (now known as Johnson Space Center) and the Garrett Corporation, Air Research Division, conducted a research program to develop a small, lightweight water purifier for the Apollo spacecraft that would require minimal power and would not need to be monitored around-the-clock by astronauts in orbit. The 9-ounce purifier, slightly larger than a cigarette pack and completely chlorine-free, dispensed silver ions into the spacecraft s water supply to successfully kill off bacteria. A NASA Technical Brief released around the time of the research reported that the silver ions did not impart an unpleasant taste to the water. NASA s ingenuity to control microbial contamination in space caught on quickly, opening the doors for safer methods of controlling water pollutants on Earth.
NASA Astrophysics Data System (ADS)
Hauber, E.; Sassenroth, C.; De Vera, J.-P.; Schmitz, N.; Reiss, D.; Hiesinger, H.; Johnsson, A.
2017-09-01
Most studies using Antarctica as a Mars analogue have focused on the McMurdo Dry Valleys, which are among the coldest and driest places on Earth. However, other ice-free areas in continental Antarctica also display landforms that can inform the study of the possible geomorphic impact of water in a polar desert. Here we present a new analogue site in the interior of the Transantarctic Mountains in Northern Victoria Land. Gullies show unambiguous evidence for debris flows, and water tracks act as shallow subsurface pathways of water on top of the permafrost tale. Both processes are driven by meltwater from glacier ice and snow in an environ-ment which never experiences rainfall and in which the air temperatures probably never exceed 0°C.
Comparative habitability of the Earth, Venus and Mars in the young solar system.
NASA Astrophysics Data System (ADS)
Nisbet, E. G.
2008-09-01
Abstract To be habitable, a planet must be suitable at all scales [1]. The setting in relation to the star must be right, so that surface temperatures can sustain liquid water. The planetary inventory must be suitable, providing surface water, rocks, and accessible thermodynamic disequilibrium. There must be physical habitat, especially mud and hydrothermal systems around volcanoes. Planets are not static: they evolve. Habitability must evolve with the planet. On accretion, the processes of impact and formation of volatile inventory must be suitable. Tectonics and volcanism must supply redox contrasts and biochemical substrates capable not only of starting life but of sustaining it. Mud or soft sediment may be essential: it is unlikely that early life can sustain itself in open water or air. This requirement for mud has tectonic implications. Once life starts, it immediately alters its own environment, by consuming nutrient. Until photosynthesis evolves, inorganic sources must supply sustained redox contrast to the local environment. But life changes its setting, both by risky alterations to the atmospheric greenhouse (drawing down CO2, emitting CH4), and by partitioning reductants (e.g. as dead bodies) and oxidants (waste). Somehow the planet must avoid both freezing and boiling. Early in the history of the solar system, a passing galactic tourist might have rated Venus as the likeliest habitat for life, Mars next, and Earth last of the three. Venus was warm and hospitable, Mars clement, and Earth had been though an impact episode powerful enough to make a silicate atmosphere. By comparison with Earth there are many potential environmental settings on Mars in which life may once have occurred, or may even continue to exist. Perhaps Mars seeded earth? Yet today the reverse order of habitability is the case. Earth today is safeguarded by a reworked atmosphere that is 99% of biological construction, maintained in active disequilibrium with the surface. Mars, in contrast, is chilly oxidised permafrost where kinetics alone would make life difficult. Venus has achieved sustainable equilibrium, where equilibrium, being the opposite of life, equals death. Geologically, how and why did this happen? Earth was not necessarily the Goldilocks planet, neither too warm not too cold. But it did have a degree of locally-accessible disequilibrium, to sustain early life. Life itself, especially the enzyme rubisco, that mediates carbon transfer from air to organism, then actively managed to rework the surface of Earth. From the moment life began, it remade its house to maintain habitability. Life, if ever present on Mars, may have simply died from lack of resources. Any life on Venus would have died of dehydration or by being cooked. However, terraforming may now be worth attempting on both planets: as on Earth it may be self-sustaining, even after the terraforming species becomes extinct. [1] Nisbet, E.G. Zahnle, K., Gersimov, M., Helbert, J., Jaumann, R., Hofmann, B., Benzerara, K, Westall, F., Spc. Sci. Rev. (2007), 129, 79-121.
Crossing turbulent boundaries: interfacial flux in environmental flows.
Grant, Stanley B; Marusic, Ivan
2011-09-01
Advances in the visualization and prediction of turbulence are shedding new light on mass transfer in the turbulent boundary layer. These discoveries have important implications for many topics in environmental science and engineering, from the transport of earth-warming CO2 across the sea-air interface, to nutrient processing and sediment erosion in rivers, lakes, and the ocean, to pollutant removal in water and wastewater treatment systems. In this article we outline current understanding of turbulent boundary layer flows, with particular focus on coherent turbulence and its impact on mass transport across the sediment-water interface in marine and freshwater systems.
NASA Technical Reports Server (NTRS)
Flock, W. L.
1981-01-01
When high precision is required for range measurement on Earth space paths, it is necessary to correct as accurately as possible for excess range delays due to the dry air, water vapor, and liquid water content of the atmosphere. Calculations based on representative values of atmospheric parameters are useful for illustrating the order of magnitude of the expected delays. Range delay, time delay, and phase delay are simply and directly related. Doppler frequency variations or noise are proportional to the time rate of change of excess range delay. Tropospheric effects were examined as part of an overall consideration of the capability of precision two way ranging and Doppler systems.
NASA Astrophysics Data System (ADS)
Nehr, Sascha; Franzen-Reuter, Isabelle; Kucejko, Catharina
2017-10-01
Man-made activities have caused unexampled changes of our environment during the last two centuries. Due to emissions of a vast number of pollutants the composition of the Earth's atmosphere is continuously changing, and the consequences for humans and for ecosystems are only partly understood at present. Once released to the atmosphere, the emitted substances undergo physical and chemical degradation. Many of the substances detected in ambient air are toxic or carcinogenic and might cause respiratory and cardiovascular diseases. Furthermore, air pollutants are influencing acidification, eutrophication, global warming, and biodiversity. Therefore soil quality, water quality, air quality, ecosystem exposure to pollutant deposition, biodiversity, and climate change are coupled problems (Schlesinger, 1997; Steffen et al., 2005; Ehlers et al., 2006; Rockström et al., 2009).
Closed-system freezing of soils in linings and earth embankment dams
NASA Astrophysics Data System (ADS)
Jones, C. W.
1981-03-01
A brief review of studies of closed-system freezing (no source of water except that in voids) of compacted soil canal linings, laboratory and field test results show that under certain soil and temperature conditions, freezing decreases soil density near the surface, but increases density at depth. In two linings, the average density increased slightly during a 20-year period. Frost penetration measurements made during the 1978-79 winter on a 1,5-thick reservoir lining, on three earth dams under construction, and on the Teton Dam remnant are shown along with associated soil conditions, air freezing indexes, and insulating effects of snow and, for one dam, a loose soil cover.
Managing for biodiversity from the electric utilities' perspective
NASA Astrophysics Data System (ADS)
Heydlauff, Dale E.
1996-11-01
The quality and sustainability of the natural environment is a matter of inestimable value and is critical to public health and welfare. All species have a purpose, and they exist for the betterment of other species. It is, therefore, incumbent on all humans to do their part in the preservation of this vast, diverse ecosystem called Earth. All humans are the beneficiaries, the ultimate customers, of a sound environment—water that is safe to drink, air that can be breathed, and soil that will sustain crops. There must be a commitment to leaving a clean and healthy planet for generations to follow, an earth which is enhanced, not diminished, by humans' presence.
NASA Astrophysics Data System (ADS)
Altenau, E. H.; Pavelsky, T.; Andreadis, K.; Bates, P. D.; Neal, J. C.
2017-12-01
Multichannel rivers continue to be challenging features to quantify, especially at regional and global scales, which is problematic because accurate representations of such environments are needed to properly monitor the earth's water cycle as it adjusts to climate change. It has been demonstrated that higher-complexity, 2D models outperform lower-complexity, 1D models in simulating multichannel river hydraulics at regional scales due to the inclusion of the channel network's connectivity. However, new remote sensing measurements from the future Surface Water and Ocean Topography (SWOT) mission and it's airborne analog AirSWOT offer new observations that can be used to try and improve the lower-complexity, 1D models to achieve accuracies closer to the higher-complexity, 2D codes. Here, we use an Ensemble Kalman Filter (EnKF) to assimilate AirSWOT water surface elevation (WSE) measurements from a 2015 field campaign into a 1D hydrodynamic model along a 90 km reach of Tanana River, AK. This work is the first to test data assimilation methods using real SWOT-like data from AirSWOT. Additionally, synthetic SWOT observations of WSE are generated across the same study site using a fine-resolution 2D model and assimilated into the coarser-resolution 1D model. Lastly, we compare the abilities of AirSWOT and the synthetic-SWOT observations to improve spatial and temporal model outputs in WSEs. Results indicate 1D model outputs of spatially distributed WSEs improve as observational coverage increases, and improvements in temporal fluctuations in WSEs depend on the number of observations. Furthermore, results reveal that assimilation of AirSWOT observations produce greater error reductions in 1D model outputs compared to synthetic SWOT observations due to lower measurement errors. Both AirSWOT and the synthetic SWOT observations significantly lower spatial and temporal errors in 1D model outputs of WSEs.
NASA Astrophysics Data System (ADS)
Chung, Duk Ho; Cho, Kyu Seong; Hong, Deok Pyo; Park, Kyeong Jin
2016-04-01
This study aimed to investigate the perception of earth system thinking of science gifted students in future problem solving (FPS) in relation to climate changes. In order to this study, the research problem associated with climate changes was developed through a literature review. The thirty seven science gifted students participated in lessons. The ideas in problem solving process of science gifted students were analyzed using the semantic network analysis method. The results are as follows. In the problem solving processes, science gifted students are ''changes of the sunlight by water layer'', ''changes of the Earth''s temperature'', ''changes of the air pressure'', '' change of the wind and weather''were represented in order. On other hand, regard to earth system thinking for climate changes, while science gifted students were used sub components related to atmospheres frequently, they were used sub components related to biosphere, geosphere, and hydrosphere a little. But, the analytical results of the structural relationship between the sub components related to earth system, they were recognised that biosphere, geosphere, and hydrosphere used very important in network structures. In conclusion, science gifted students were understood well that components of the earth system are influencing each other. Keywords : Science gifted students, Future problem solving, Climate change, Earth system thinking
Application of far infrared rare earth mineral composite materials to liquefied petroleum gas.
Zhu, Dongbin; Liang, Jinsheng; Ding, Yan; Xu, Anping
2010-03-01
Far infrared rare earth mineral composite materials were prepared by the coprecipitation method using tourmaline, cerium acetate, and lanthanum acetate as raw materials. The results of Fourier transform infrared spectroscopy show that tourmaline modified with the rare earths La and Ce has a better far infrared emitting performance. Through XRD analysis, we attribute the improved far infrared emission properties of the tourmaline to the unit cell shrinkage of the tourmaline arising from La enhancing the redox properties of nano-CeO2. The effect of the composite materials on the combustion of liquefied petroleum gas (LPG) was studied by the flue gas analysis and water boiling test. Based on the results, it was found that the composite materials could accelerate the combustion of LPG, and that the higher the emissivity of the rare earth mineral composite materials, the better the effects on combustion of LPG. In all activation styles, both air and LPG to be activated has a best effect, indicating the activations having a cumulative effect.
Welcome to NASA's Earth Science Enterprise: Educational CD-ROM Activity Supplement
NASA Technical Reports Server (NTRS)
1999-01-01
Since its inception in 1958, NASA has been studying the Earth and its changing environment by observing the atmosphere, oceans, land, ice, and snow, and their influence on weather and climate. We now understand that the key to gaining a better understanding of the global environment is exploring how the Earth's systems of air, land, water, and life interact with each other. This approach-called Earth Systems Science-blends together fields like meteorology, oceanography, geology, and biology. In 1991, NASA launched a more comprehensive program to study the Earth as an integrated environmental system. They call it NASA's Earth Science Enterprise. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). EOS is series of satellites to be launched over the next two decades that will be used to intensively study the Earth, with the hopes of expanding our under- standing of how natural processes affect us, and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, the ability to predict how the climate will change in the future. Today's program is laying the foundation for long-term environmental and climate monitoring and prediction. Potentially, this will provide the understanding needed in the future to support difficult decisions regarding the Earth's environment.
Earth observations taken from shuttle orbiter Columbia
1995-10-21
STS073-723-054 (21 October 1995) --- Central Turkey dominates this north-looking panorama, with the long fingered island of Cyprus lower left, surrounded by the deep blue waters of the Mediterranean Sea. Turkey's capital, Ankara, lies just north of the white bed of a dry lake in the center of the view. The city is supplied with water from the neighboring blue lake. The coast of Syria and Lebanon appear bottom right. Man-made lakes on the upper Euphrates River in eastern Turkey appear extreme right. According to scientists studying the STS-73 photo collection, the striking difference in visibility to north and south of Turkey suggests a pollution event over the Black Sea. Air pollution from East European industry flows down into the Black Sea basin, especially at the west end (haze top left) as shown in this view (compare clearer air top right).
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.; Olsen, Edward T.
2012-01-01
The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 microns to 15.4 microns and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy, water vapor profiles (20%/2km), infrared cloud height and fraction, and trace gas amounts for CO2, CO, SO2, O3 and CH4 in the mid to upper troposphere. AIRS wide swath(cedilla) +/-49.5 deg , enables daily global daily coverage for over 95% of the Earth's surface. AIRS data are used for weather forecasting, validating climate model distribution and processes, and observing long-range transport of greenhouse gases. In this study, we examine the large scale and regional horizontal variability in the AIRS Mid-tropospheric Carbon Dioxide product as a function of season and associate the observed variability with known atmospheric transport processes, and sources and sinks of CO2.
Making Waves in the Sky off of Africa
2017-12-08
On June 26, 2016, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image of cloud gravity waves off the coast of Angola and Namibia. “I [regularly] look at this area on Worldview because you quite often have these gravity waves,” said Bastiaan Van Diedenhoven, a researcher for Columbia University and NASA's Goddard Institute for Space Studies interested in cloud formations. “On this day, there was so much going on—so many different waves from different directions—that they really started interfering.” A distinctive criss-cross pattern formed in unbroken stretches hundreds of kilometers long. Similar to a boat’s wake, which forms as the water is pushed upward by the boat and pulled downward again by gravity, these clouds are formed by the rise and fall of colliding air columns. Off of west Africa, dry air coming off the Namib desert—after being cooled by the night—moves out under the balmy, moist air over the ocean and bumps it upwards. As the humid air rises to a higher altitude, the moisture condenses into droplets, forming clouds. Gravity rolls these newly formed clouds into a wave-like shape. When moist air goes up, it cools, and then gravity pushes it down again. As it plummets toward the earth, the moist air is pushed up again by the dry air. Repeated again and again, this process creates gravity waves. Clouds occur at the upward wave motions, while they evaporate at the downward motions. Such waves will often propagate in the morning and early afternoon, said Van Diedenhoven. During the course of the day, the clouds move out to sea and stretch out, as the dry air flowing off the land pushes the moist ocean air westward. NASA Earth Observatory image by Jesse Allen, using data from the Land Atmosphere Near real-time Capability for EOS (LANCE). via @NASAEarth go.nasa.gov/29Btxcy NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Concept for Mars Volcanic Emission Life Scout
NASA Technical Reports Server (NTRS)
2004-01-01
This artist's rendition depicts a concept for a Mars orbiter that would scrutinize the martian atmosphere for chemical traces of life or environments supportive of life that might be present anywhere on the planet. The concept is named the Mars Volcanic Emission and Life Scout, or Marvel. It would equip a Mars orbiter with two types of instruments proven useful in studying Earth's atmosphere from Earth orbit. One, a solar occultation infrared spectrometer, would look sideways through Mars' atmosphere toward the setting or rising Sun for an extremely sensitive reading of what chemicals are in the air that sunlight passes through before hitting the instrument. The other, a submillimeter spectrometer would survey the atmosphere continuously, including during dust storms and polar night, to seek localized surface sources of the chemicals of interest. The infrared spectrometer has very high sensitivity for one chemical of great interest: methane, which is produced by many types of microbes, as well as by some volcanic sources. The submillimeter spectrometer has very high sensitivity for water vapor. Localized concentrations of water vapor in the atmosphere could identify places where subsurface water sources may be venting.Utility of AIRS Retrievals for Climate Studies
NASA Technical Reports Server (NTRS)
Molnar, Guyla I.; Susskind, Joel
2007-01-01
Satellites provide an ideal platform to study the Earth-atmosphere system on practically all spatial and temporal scales. Thus, one may expect that their rapidly growing datasets could provide crucial insights not only for short-term weather processes/predictions but into ongoing and future climate change processes as well. Though Earth-observing satellites have been around for decades, extracting climatically reliable information from their widely varying datasets faces rather formidable challenges. AIRS/AMSU is a state of the art infrared/microwave sounding system that was launched on the EOS Aqua platform on May 4, 2002, and has been providing operational quality measurements since September 2002. In addition to temperature and atmospheric constituent profiles, outgoing longwave radiation and basic cloud parameters are also derived from the AIRS/AMSU observations. However, so far the AIRS products have not been rigorously evaluated and/or validated on a large scale. Here we present preliminary assessments of monthly and 8-day mean AIRS "Version 4.0" retrieved products (available to the public through the DAAC at NASA/GSFC) to assess their utility for climate studies. First we present "consistency checks" by evaluating the time series of means, and "anomalies" (relative to the first 4 full years' worth of AIRS "climate statistics") of several climatically important retrieved parameters. Finally, we also present preliminary results regarding interrelationships of some of these geophysical variables, to assess to what extent they are consistent with the known physics of climate variability/change. In particular, we find at least one observed relationship which contradicts current general circulation climate (GCM) model results: the global water vapor climate feedback which is expected to be strongly positive is deduced to be slightly negative (shades of the "Lindzen effect"?). Though the current AIRS climatology covers only -4.5 years, it will hopefully extend much further into the future.
2011-06-09
A Delta II rocket launches with the Aquarius/SAC-D spacecraft payload from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. on Friday, June 10, 2011. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
An Apparatus for Coating Ceramic Monofilaments Via Chemical Vapor Deposition
1992-05-01
scrubber consists of sodium hydroxide suspended on diatomaceous earth particle and must be moistened before use. There is a water reservoir inside through...which an inert gas can be directed to moisturize the adsorbent . This will also help purge residual air from the scrubber. Both columns in the scrubber...The exhaust scrubber also should be serviced at regular intervals. The adsorbent canisters must be monitored to ensure that they are not completely
1997-05-01
air and in water Brian T. Hefner and Phillip L. Marston 340 Material property measurements via GHz interferometry H. Spetzler, et al. PAGE 361...temperature scale Michael R. Moldover 464 Cheap acoustic gas analyzers Matthew Golden, et al. 502 Measurements of relaxation processes in gases and Henry E... expected behavior based on measurements of earth materials. Birch (4) first proposed a simple linear relation between compressional velocity and
DOE ZERH Case Study: TC Legend Homes, Bellingham Power House, Bellingham, WA
DOE Office of Scientific and Technical Information (OSTI.GOV)
none,
Case study of a DOE 2015 Housing Innovation Award winning custom home in the marine climate that got HERS 34 without PV or HERS -12 with PV, with 6” SIP walls and 10” SIP roof; R-28 ICF around slab, R-20 rigid foam under slab; radiant floor heat and passive design; air-to-water heat pump COP 4.4; HRV; earth tube ventilation; triple-pane windows, 100% LED.
Endo, J; Nakamura, T
1995-01-01
It has been said that the tridosha theory in Ayurveda originated from the theory of the three elements of the universe. The names of these three doshas, which are roughly equivalent to humour, are vata (wind), pitta (bile), and Kapha (phlegm), corresponding to the three elements of the universe: air, fire, and water. On the other hand, Buddhist medicine which has a close relation to Ayurveda is based on the theory of the four elements of the universe which includes the earth as well as the three elements mentioned above. Greek medicine on the other hand, is founded on the theory of the four humours, i.e. blood, yellow bile, black bile, and phlegm. Furthermore, even in Ayurveda, like in "Sushruta Samhita", the theory of the four humours can be found: this includes the above-mentioned tridosha plus blood as the fourth humour. "Timaios" by Plato also mentions this. We compared these various theories and pointed out that the tridosha theory had its origin in the theory of the four elements of the universe. The process of the formation of the tridosha theory is considered as follows: (1) "Earth" was segregated from the four elements of the universe owing to its solid properties, and was rearranged into the seven elements of the body called "dhatu"; and the other three elements. "water", "fire", and "air", were integrated as the tridosha theory, namely, the theory of the three humours, owing to their properties of fluid; (2) "Blood", assigned to the element of "earth", was segregated from the tridosha because "blood" was considered to be comprised of the properties of every humour without having its own peculiar properties. Therefore, the diseases caused by deranged "blood" were regarded as an aggregate disease caused by the other three deranged humours. Then the category of the disease, caused by deranged "earth", did not appear.
Seasat--A 25-Year Legacy of Success
NASA Technical Reports Server (NTRS)
Evans, Diane L.; Alpers, Werner; Cazenave, Anny; Elachi, Charles; Farr, Tom; Glackin, David; Holt, Benjamin; Jones, Linwood; Liu, W. Timothy; McCandless, Walt;
2005-01-01
Thousands of scientific publications and dozens of textbooks include data from instruments derived from NASA's Seasat. The Seasat mission was launched on June 26, 1978, on an Atlas-Agena rocket from Vandenberg Air Force Base. It was the first Earth-orbiting satellite to carry four complementary microwave experiments--the Radar Altimeter (ALT) to measure ocean surface topography by measuring spacecraft altitude above the ocean surface; the Seasat-A Satellite Scatterometer (SASS), to measure wind speed and direction over the ocean; the Scanning Multichannel Microwave Radiometer (SMMR) to measure surface wind speed, ocean surface temperature, atmospheric water vapor content, rain rate, and ice coverage; and the Synthetic Aperture Radar (SAR), to image the ocean surface, polar ice caps, and coastal regions. While originally designed for remote sensing of the Earth's oceans, the legacy of Seasat has had a profound impact in many other areas including solid earth science, hydrology, ecology and planetary science.
NASA scientists are flying over Alaska
2017-08-29
As part of the Arctic Boreal Vulnerability Experiment (ABoVE), NASA scientists are flying over Alaska and Canada, measuring the elevation of rivers and lakes to study how thawing permafrost affects hydrology in the landscape. This view of was taken from NASA’s DC-8 “flying laboratory” as part of the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) experiment. Scientists on NASA’s Air Surface, Water and Ocean Topography (AirSWOT) mission have been flying over the same location, investigating how water levels in the Arctic landscape change as permafrost thaws. Under typical conditions, the frozen layer of soil keeps water from sinking into the ground and percolating away. As permafrost thaws, the water has new ways to move between rivers and lakes, which can raise or lower the elevation of the bodies of water. These changes in water levels will have effects on Arctic life— plants, animals, and humans—in the near future. Credit: NASA/Peter Griffith NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Remote Sensing of Niches for Thermotropic Life.
NASA Astrophysics Data System (ADS)
Muller, A. W.
2002-12-01
The recognized biological energy sources are light and food. Mechanical systems can gain free energy from heat using a temperature difference or thermal cycling. Imagine that biological systems could also live on heat. Call the process `thermosynthesis' and let it occur in a thermal gradient or convection cell. Many candidate niches for thermosynthesizers then exist. Temperature differences are present across many interfaces: soil/air, rock/air, natural water (ocean, lake, river)/air, ice (also snow)/air, soil/snow, water (ocean,lake)/surface-ice. Within natural waters large temperature gradients are found; thermoclines separate the warm surface from the cold deep. Convection occurs in hot springs, in many other natural waters, and in the Earth's atmosphere. On Earth, organism presence is conspicuous in all these candidate niches. The Solar System contains many candidate niches as well. They should be detectable by IR methods. They can be categorized in five types: (1) Convection. Convecting oceans (Mars and Venus in the past) or atmospheres (Venus, Big Outer Planets). (2) Convecting Aquifer (Mars). (3) Surface-Ice Cover. Some of the Moons of the Outer Planets. (4) Shaded Crater Iterior. The poles of Mercury and The Moon. (5) Spinners. Small objects rotating in the sunlight: ice-covered meteorites, asteroids, comets. They could transport thermosynthesizers within the Solar System. How plausible is thermosynthesis? It can be shown that thermosynthesis (1) could be effected using parts of the contemporary photosynthetic machinery, and (2) may have supported early evolution. The standard biological energy carrier, ATP, would be synthesized during thermal cycling of a progenitor of the F1 moiety of the contemporary ATPsynthase enzyme; this progenitor is thermally folded/unfolded during the cycle. Contemporary ATPsynthase works according to the `binding change mechanism': substrates are bound in a local, dehydrated enzymatic cleft, where they condense to form a bound product with a high-energy phosphate bond, released upon an external work input. The first ATPsynthases are proposed to have similarly synthesized a bound peptide bond product during thermal cycling, released upon the thermal unfolding. In a simple model for the origin of life the first ATPsynthases, the first replicators, synthesize randomly constituted daughter polypeptides of which a small fraction has the same synthetic capabilities as their mothers. Hence thermosynthesis is not implausible, the Solar System may be teeming with thermosynthesizers, and IR remote sensing methods should permit to locate their niches.
2004-08-30
Born in the Atlantic, Hurricane Frances became a category 4 hurricane on August 31, 2004, as seen by the Atmospheric Infrared Sounding System AIRS on NASA Aqua. Expectations are the hurricane will hit the Space Coast of Florida in Brevard County early Sunday morning. This frame from a movie is a time-series of maps that show AIRS observations of the total amount of water vapor present in the atmospheric column above each point of the Earth's surface. If all the water vapor in the column were forced to fall as rain, the depth of the resulting puddle on the surface at that point is equal to the value shown on the map. Fifty millimeters (mm) is about 2 inches. The large band of maximum water vapor in the neighborhood of the equator is the Intertropical Convergence Zone (ITCZ), a region of strong convection and powerful thunderstorms. The movie (see PIA00433) shows the total precipitable water vapor from August 23 through September 2, 2004. You can see Hurricane Frances as it moves through the Caribbean toward Florida, and the changes in intensity are visible. The eye has been marked with a red spot. The water vapor encompassed by the hurricane is also the result of the very strong convection which is an integral part of the formation and intensification of tropical storms. If you look at the last frame of the movie in the lower right corner, you can see the emergence of a new tropical storm. Ivan makes its debut in the Atlantic. http://photojournal.jpl.nasa.gov/catalog/PIA00433
Environmental Consequences of Big Nasty Impacts on the Early Earth
NASA Astrophysics Data System (ADS)
Zahnle, K. J.
2015-12-01
The geological record of the Archean Earth is spattered with impact spherules from a dozen or so major cosmic collisions involving Earth and asteroids or comets (Lowe, Byerly 1986, 2015). Extrapolation of the documented deposits suggests that most of these impacts were as big or bigger than the Chicxulub event that famously ended the reign of the thunder lizards. As the Archean impacts were greater, the environmental effects were also greater. The number and magnitude of the impacts is bounded by the lunar record. There are no lunar craters bigger than Chicxulub that date to Earth's mid-to-late Archean. Chance dictates that Earth experienced ~10 impacts bigger than Chicxulub between 2.5 Ga and 3.5 Ga, the biggest of which were ~30-100X more energetic than Chicxulub. To quantify the thermal consequences of big impacts on old Earth, we model the global flow of energy from the impact into the environment. The model presumes that a significant fraction of the impact energy goes into ejecta that interact with the atmosphere. Much of this energy is initially in rock vapor, melt, and high speed particles. (i) The upper atmosphere is heated by ejecta as they reenter the atmosphere. The mix of hot air, rock vapor, and hot silicates cools by thermal radiation. Rock raindrops fall out as the upper atmosphere cools. (ii) The energy balance of the lower atmosphere is set by radiative exchange with the upper atmosphere and with the surface, and by evaporation of seawater. Susequent cooling is governed by condensation of water vapor. (iii) The oceans are heated by thermal radiation and rock rain and cooled by evaporation. Surface waters become hot and salty; if a deep ocean remains it is relatively cool. Subsequently water vapor condenses to replenish the oceans with hot fresh water (how fresh depending on continental weathering, which might be rather rapid under the circumstances). (iv) The surface temperature of dry land is presumed to be the same as the lower atmosphere. A thermal wave propagates into the land at a rate set by conduction. Impacts larger than Chicxulub can raise the surface temperature by tens, hundreds, or even thousands of degrees, and evaporate meters to hundreds of meters of water. The biggest should have vitrified exposed dry land. More results - including shock chemistry - are for the talk, as here we have run out of space.
Analysis of Critical Earth Observation Priorities for Societal Benefit
NASA Astrophysics Data System (ADS)
Zell, E. R.; Huff, A. K.; Carpenter, A. T.; Friedl, L.
2011-12-01
To ensure that appropriate near real-time (NRT) and historical Earth observation data are available to benefit society and meet end-user needs, the Group on Earth Observations (GEO) sponsored a multi-disciplinary study to identify a set of critical and common Earth observations associated with 9 Societal Benefit Areas (SBAs): Agriculture, Biodiversity, Climate, Disasters, Ecosystems, Energy, Health, Water, and Weather. GEO is an intergovernmental organization working to improve the availability, access, and use of Earth observations to benefit society through a Global Earth Observation System of Systems (GEOSS). The study, overseen by the GEO User Interface Committee, focused on the "demand" side of Earth observation needs: which users need what types of data, and when? The methodology for the study was a meta-analysis of over 1,700 publicly available documents addressing Earth observation user priorities, under the guidance of expert advisors from around the world. The result was a ranking of 146 Earth observation parameters that are critical and common to multiple SBAs, based on an ensemble of 4 statistically robust methods. Within the results, key details emerged on NRT observations needed to serve a broad community of users. The NRT observation priorities include meteorological parameters, vegetation indices, land cover and soil property observations, water body and snow cover properties, and atmospheric composition. The results of the study and examples of NRT applications will be presented. The applications are as diverse as the list of priority parameters. For example, NRT meteorological and soil moisture information can support monitoring and forecasting for more than 25 infectious diseases, including epidemic diseases, such as malaria, and diseases of major concern in the U.S., such as Lyme disease. Quickly evolving events that impact forests, such as fires and insect outbreaks, can be monitored and forecasted with a combination of vegetation indices, fuel moisture content, burn scars, and meteorological parameters. Impacts to public health and livelihoods due to food insecurity, algal blooms, and air pollution can be addressed through NRT monitoring of specific events utilizing land cover, atmospheric composition, water quality, and meteorological observations. More broadly, the assessment of water availability for drinking and agriculture and the development of floods and storms rely on continuous feeds of NRT meteorological and atmospheric composition observations. Overall, this multi-disciplinary study of user needs for NRT data and products can inform the design and operation of NRT data systems. Follow-on work for this study will also be presented, focusing on the availability of current and future satellite measurements (including NRT) of the 30 most critical Earth observation priorities, as well as a detailed analysis of users' needs for precipitation data. The results of this study summarize the priorities for critical Earth observations utilized globally for societal benefit.
Lunar base CELSS: A bioregenerative approach
NASA Technical Reports Server (NTRS)
Easterwood, G. W.; Street, J. J.; Sartain, J. B.; Hubbell, D. H.; Robitaille, H. A.
1992-01-01
During the twenty-first century, human habitation of a self-sustaining lunar base could become a reality. To achieve this goal, the occupants will have to have food, water, and an adequate atmosphere within a carefully designed environment. Advanced technology will be employed to support terrestrial life-sustaining processes on the Moon. One approach to a life support system based on food production, waste management and utilization, and product synthesis is outlined. Inputs include an atmosphere, water, plants, biodegradable substrates, and manufacutured materials such as fiberglass containment vessels from lunar resources. Outputs include purification of air and water, food, and hydrogen (H2) generated from methane (CH4). Important criteria are as follows: (1) minimize resupply from Earth; and (2) recycle as efficiently as possible.
2011-06-10
A Delta II rocket launches with the Aquarius/SAC-D spacecraft payload from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. on Friday, June 10, 2011. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, set to launch June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
ERIC Educational Resources Information Center
Bia, Fred; And Others
Presented in five chapters, book 1 of the Rough Rock fourth grade Navajo social studies program text is written in Navajo and English. The first chapter is on the community of Rough Rock (Arizona) illustrated by photographs of the community and people. Chapter II discusses the four elements (air, water, earth, and fire) the community needs to…
Advanced Life Support Research and Technology Development
NASA Technical Reports Server (NTRS)
Kliss, Mark
2001-01-01
A videograph outlining life support research. The Human Exploration and Development of Space (HEDS) Enterprise's goals are to provide life support self-sufficiency for human beings to carry out research and exploration productively in space, to open the door for planetary exploration, and for benefits on Earth. Topics presented include the role of NASA Ames, funding, and technical monitoring. The focused research areas discussed include air regeneration, carbon dioxide removal, Mars Life Support, water recovery, Vapor Phase Catalytic Ammonia Removal (VPCAR), solid waste treatment, and Supercritical Water Oxidation (SCWC). Focus is placed on the utilization of Systems Integration, Modeling and Analysis (SIMA) and Dynamic Systems Modeling in this research.
Ground air: A first approximation of the Earth's second largest reservoir of carbon dioxide gas.
Baldini, James U L; Bertram, Rachel A; Ridley, Harriet E
2018-03-01
It is becoming increasingly clear that a substantial reservoir of carbon exists in the unsaturated zone of aquifers, though the total size of this reservoir on a global scale remains unquantified. Here we provide the first broad estimate of the amount of carbon dioxide gas found in this terrestrial reservoir. We calculate that between 2 and 53 PgC exists as gaseous CO 2 in aquifers worldwide, generated by the slow microbial oxidation of organic particles transported into aquifers by percolating groundwater. Importantly, this carbon reservoir is in the form of CO 2 gas, and is therefore transferable to the Earth's atmosphere without any phase change. On a coarse scale, water table depths are partially controlled by local sea level; sea level lowering therefore allows slow carbon sequestration into the reservoir and sea level increases force rapid CO 2 outgassing from this reservoir. High-resolution cave air pCO 2 data demonstrate that sea level variability does affect CO 2 outgassing rates from the unsaturated zone, and that the CO 2 outgassing due to sea level rise currently occurs on daily (tidal) timescales. We suggest that global mean water table depth must modulate the global unsaturated zone volume and the size of this carbon reservoir, potentially affecting atmospheric CO 2 on geological timescales. Copyright © 2017 Elsevier B.V. All rights reserved.
2009-03-06
CAPE CANAVERAL, Fla. – The gantry on Launch Pad 17-B at Cape Canaveral Air Force Station in Florida shows the various logos of NASA's Kepler spacecraft launch. Kepler is a spaceborne telescope designed to search the nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is the region around a star where temperatures permit water to be liquid on a planet's surface. The challenge for Kepler is to look at a large number of stars in order to statistically estimate the total number of Earth-size planets orbiting sun-like stars in the habitable zone. Kepler will survey more than 100,000 stars in our galaxy. Photo credit: NASA/Jack Pfaller
NASA Astrophysics Data System (ADS)
Külah, Elçin; Marot, Laurent; Steiner, Roland; Romanyuk, Andriy; Jung, Thomas A.; Wäckerlin, Aneliia; Meyer, Ernst
2017-03-01
Rare-earth (RE) oxide surfaces are of significant importance for catalysis and were recently reported to possess intrinsic hydrophobicity. The surface chemistry of these oxides in the low temperature regime, however, remains to a large extent unexplored. The reactions occurring at RE surfaces at room temperature (RT) in real air environment, in particular, in presence of polycyclic aromatic hydrocarbons (PAHs), were not addressed until now. Discovering these reactions would shed light onto intermediate steps occurring in automotive exhaust catalysts before reaching the final high operational temperature and full conversion of organics. Here we first address physical properties of the RE oxide, nitride and fluoride surfaces modified by exposure to ambient air and then we report a room temperature reaction between PAH and RE oxide surfaces, exemplified by tetracene (C18H12) on a Gd2O3. Our study evidences a novel effect - oxidation of higher hydrocarbons at significantly lower temperatures (~300 K) than previously reported (>500 K). The evolution of the surface chemical composition of RE compounds in ambient air is investigated and correlated with the surface wetting. Our surprising results reveal the complex behavior of RE surfaces and motivate follow-up studies of reactions between PAH and catalytic surfaces at the single molecule level.
Air electrode composition for solid oxide fuel cell
Kuo, Lewis; Ruka, Roswell J.; Singhal, Subhash C.
1999-01-01
An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell.
Air electrode composition for solid oxide fuel cell
Kuo, L.; Ruka, R.J.; Singhal, S.C.
1999-08-03
An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO{sub 3}. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell. 3 figs.
A Fine-Tuned Metal-Organic Framework for Autonomous Indoor Moisture Control.
AbdulHalim, Rasha G; Bhatt, Prashant M; Belmabkhout, Youssef; Shkurenko, Aleksander; Adil, Karim; Barbour, Leonard J; Eddaoudi, Mohamed
2017-08-09
Conventional adsorbents, namely zeolites and silica gel, are often used to control humidity by adsorbing water; however, adsorbents capable of the dual functionality of humidification and dehumidification, offering the desired control of the moisture level at room temperature, have yet to be explored. Here we report Y-shp-MOF-5, a hybrid microporous highly connected rare-earth-based metal-organic framework (MOF), with dual functionality for moisture control within the recommended range of relative humidity (45%-65% RH) set by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). Y-shp-MOF-5 exhibits exceptional structural integrity, robustness, and unique humidity-control performance, as confirmed by the large number (thousand) of conducted water vapor adsorption-desorption cycles. The retained structural integrity and the mechanism of water sorption were corroborated using in situ single-crystal X-ray diffraction (SCXRD) studies. The resultant working water uptake of 0.45 g·g -1 is solely regulated by a simple adjustment of the relative humidity, positioning this hydrolytically stable MOF as a prospective adsorbent for humidity control in confined spaces, such as space shuttles, aircraft cabins, and air-conditioned buildings.
Using NASA Products of the Water Cycle for Improved Water Resources Management
NASA Astrophysics Data System (ADS)
Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.
2010-12-01
NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network (FEWSNET) being expanded for famine relief to many developing nations of the world using a NASA Land Data Assimilation System (LDAS); 2) Air Force Weather Agency (AFWA) global hydrology mapping program that extends their global hydrology to much finer resolutions through use of an optimized LDAS; 3) 'SERVIR' a visualization and monitoring center of Earth science information in Central America and East Africa with plans for additional locations in developing countries of the world; 4) installing NASA Water Information System Platforms (WISPs) strategically located throughout the Middle East and North Africa (MENA) in partnerships with USAID and the World Bank; and 5) Latin American capacity building efforts within GEO.
NASA Astrophysics Data System (ADS)
Friedl, L. A.; Cox, L.
2008-12-01
The NASA Applied Sciences Program collaborates with organizations to discover and demonstrate applications of NASA Earth science research and technology to decision making. The desired outcome is for public and private organizations to use NASA Earth science products in innovative applications for sustained, operational uses to enhance their decisions. In addition, the program facilitates the end-user feedback to Earth science to improve products and demands for research. The Program thus serves as a bridge between Earth science research and technology and the applied organizations and end-users with management, policy, and business responsibilities. Since 2002, the Applied Sciences Program has sponsored over 115 applications-oriented projects to apply Earth observations and model products to decision making activities. Projects have spanned numerous topics - agriculture, air quality, water resources, disasters, public health, aviation, etc. The projects have involved government agencies, private companies, universities, non-governmental organizations, and foreign entities in multiple types of teaming arrangements. The paper will examine this set of applications projects and present specific examples of successful use of Earth science in decision making. The paper will discuss scientific, organizational, and management factors that contribute to or impede the integration of the Earth science research in policy and management. The paper will also present new methods the Applied Sciences Program plans to implement to improve linkages between science and end users.
A Study of Pattern Prediction in the Monitoring Data of Earthen Ruins with the Internet of Things.
Xiao, Yun; Wang, Xin; Eshragh, Faezeh; Wang, Xuanhong; Chen, Xiaojiang; Fang, Dingyi
2017-05-11
An understanding of the changes of the rammed earth temperature of earthen ruins is important for protection of such ruins. To predict the rammed earth temperature pattern using the air temperature pattern of the monitoring data of earthen ruins, a pattern prediction method based on interesting pattern mining and correlation, called PPER, is proposed in this paper. PPER first finds the interesting patterns in the air temperature sequence and the rammed earth temperature sequence. To reduce the processing time, two pruning rules and a new data structure based on an R-tree are also proposed. Correlation rules between the air temperature patterns and the rammed earth temperature patterns are then mined. The correlation rules are merged into predictive rules for the rammed earth temperature pattern. Experiments were conducted to show the accuracy of the presented method and the power of the pruning rules. Moreover, the Ming Dynasty Great Wall dataset was used to examine the algorithm, and six predictive rules from the air temperature to rammed earth temperature based on the interesting patterns were obtained, with the average hit rate reaching 89.8%. The PPER and predictive rules will be useful for rammed earth temperature prediction in protection of earthen ruins.
Helioclimatology of the Americas
NASA Astrophysics Data System (ADS)
Nurtaev, B. S.; Yakubov, M.; Shermatov, E.
2013-05-01
During the last 4 billion years, the Earth's climate has changed many times. There have been periods of warming and there have been ice ages. These large-scale climatic changes are shaped by factors like the tilt of the Earth's axis and tectonic plate movement. These major changes were driven by cyclical changes in the Earth's orbit, which altered the distribution of solar energy between the seasons and across the Earth. Milankovitch cycles explain well changes in climate over periods hundreds of thousands of years and are related to ice age cycles, but these cycles cannot explain the current rapid warming. The Sun is the most driving force for causing climate change. Much of the Sun energy evaporates water and causes atmospheric convection. Solar radiation, general circulation of atmosphere, geographical location of continents, oceans and the largest forms of a relief are the primary factors influencing on climate of lands. The purpose of this study is to identify contribution of the Sun on climate variability in the two continents, North and South America during instrumental records of air temperature. There were compared air temperatures of different weather stations in dependence from solar activity during the period 1878-1996. The high correlation between averaged temperature and solar activity was found for many weather stations of Americas. Air temperature in dependence from solar activity over the period 1878-1996 can be described by following equations: In Buenos Aires: T° = 0,04W+ 15,05, r-0,9; Caracas, Venezuela: T° = 0,03W + 18,88, r-0,73; Cordoba, Argentina: T° = 0,03W + 16,16, r-0,93; New York, Central Park: T° = 0,04W + 9,86, r-0,82; Toronto, T = 0,03W+ 6,66, r-0,81; Santiago Pudahuel, T= 0,019W + 13, 01, r - 0, 91; Rio de Janeiro:T°= 0,02W + 21,95, r= 0,88; Mexico over 1923-1986, T°= 0,021W+ 14,05, r-0,78; Miami over 1902-1996, T = 0,012W + 12,87 r-0,75; In our study, we used stations with reasonably long, consistently measured time records after GISS homogeneity adjustment from National Aeronautics and Space Administration web site.
Atmosphere Resource Recovery and Environmental Monitoring
NASA Technical Reports Server (NTRS)
Roman, Monsi; Howard, David
2015-01-01
Atmosphere Resource Recovery and Environmental Monitoring (ARREM) is a project focused on evolving existing and maturing emerging 'closed loop' atmosphere revitalization (AR) life support systems that produce clean, breathable air for crewmembers, and developing a suite of low mass, low power environmental monitors to detect and measure air- and waterborne constituents and contaminants. The objective is to improve reliability and efficiency, reduce mass and volume, and increase recovery of oxygen from carbon dioxide created by human metabolism from 43% to greater than 90%. The technology developments under ARREM are vital to extending human space missions from low-Earth orbit like the International Space Station to destinations deeper into space such as Mars where dependency on Earth for resupply of maintenance items and critical life support elements such as water and oxygen is not possible. The primary goal of the ARREM project is to demonstrate that systems meet the more stringent performance parameters for deep space exploration and are compatible with other systems within closed loop life support through a series of integrated tests performed in an environmental test chamber capable of simulating human metabolic activities and measuring systems outputs.
Anthropogenic and natural disturbances of carbon, nitrogen and water cycles and their global effects
NASA Astrophysics Data System (ADS)
Tian, H.; Melillo, J.; Virji, H.; Fu, C.; Dickinson, R.; Running, S.; Liu, J.; Wang, Q.; Reilly, J.
2006-05-01
Monsoon Asia includes the Indian sub-continent, Southeast Asia and East Asia. Monsoon Asia is home to more than one-half of the world population, but the total land area in this region is only about 16% of earth's land surface. This region is covered by a range of ecosystems from tropical forests in Southeast Asia to boreal forests in the northern Asia, and from temperate forests in Eastern Asia to deserts in western Asia and tundra in the Himalayan Mountains. These ecosystems account for about one fourth of the potential global terrestrial net primary productivity and for a similar fraction of the carbon stored in land ecosystems. The structure and functioning of these ecosystems are being affected by a complex set of multiple human-induced stresses including air pollution and land transformation. The unprecedented combination of economic and population growth has led to a dramatic land transformation and air pollution across monsoon Asia. The large-scale land transformation and air pollution have important implications for the cycles of carbon, nitrogen and water at regional and global scales. Clearly, monsoon Asia is of critical importance to the understanding of how changing climates and human impacts interact to influence the structure and functioning of ecosystems and the biosphere. In this study, we have reviewed recent advances in the understanding of human-induced changes in biogeochemical and hydrological cycles in Monsoon Asia, including the human-monsoon interactions and the linkage of Asian monsoon to global climate. Finally we have discussed gaps and limitations in existing information that need to be investigated in the future to improve our understanding of human/nature dynamics in monsoon Asia and its linkage to the Earth system.
Local Air Quality Conditions and Forecasts
... Monitor Location Archived Maps by Region Canada Air Quality Air Quality on Google Earth Links A-Z About AirNow AirNow International Air Quality Action Days / Alerts AirCompare Air Quality Index (AQI) ...
NASA Astrophysics Data System (ADS)
Makarieva, A. M.; Gorshkov, V. G.; Sheil, D.; Nobre, A. D.; Li, B.-L.
2013-01-01
Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 °C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the global mean power at which this potential energy is released by condensation is around one per cent of the global solar power - this is similar to the known stationary dissipative power of general atmospheric circulation. We conclude that condensation and evaporation merit attention as major, if previously overlooked, factors in driving atmospheric dynamics.
Several problems in regard to national land management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Wenlang
1983-09-21
This article examines several problems with regard to land management in China. National land management is defined as development of the territorial land (including the earth's surface and underground), territorial waters and territorial air space under the jurisdiction of a sovereign country. The Chinese State Council established the Bureau of National Land Management in 1981. Areas of concern include natural resources, or land resources (including continental land, rivers and lakes, territorial waters and what is beneath the waters and the airspace above the waters, also the continental shelves), mineral resources and biological resources; social resources, which include human resources, intellectualmore » resources, social and cultural traditions, and the material and technical foundations of a society. Untapped resources of land, waters, forests, grasslands and minerals are to be developed through reclamation, mining, and engineering projects. Geography and national land economics are the theoretical and applied sciences directly related to national land management.« less
Cost analysis of water recovery systems
NASA Technical Reports Server (NTRS)
Yakut, M. M.
1973-01-01
A methodology was developed to predict the relevant contributions of the more intangible cost elements encountered in the development of flight-qualified hardware based on an extrapolation of past hardware development experience. Major items of costs within water recovery systems were identified and related to physical and/or performance criteria. Cost and performance data from Gemini, Skylab, and other aerospace and biotechnology programs were analyzed to identify major cost elements required to establish cost estimating relationships for advanced water recovery systems. The results of the study are expected to assist NASA in long-range planning and allocation of resources in a cost effective manner in support of earth orbital programs. This report deals with the cost analysis of the five leading water reclamation systems, namely: (1) RITE waste management-water system, (2) reverse osmosis system, (3) multifiltration system, (4) vapor compression system, and (5) closed air evaporation system with electrolytic pretreatment.
Studies of water storage and other contributions to changes in the rotation of the Earth
NASA Technical Reports Server (NTRS)
Wilson, Clark R.
1991-01-01
The effects were determined of the global redistribution of water mass on various geodetic observables, especially polar motion, and complementary observables such as geodetic satellite positions. The effect of water mass redistribution has been and continues to be less well known and more difficult to observe than effects of air mass distribution, yet the water contribution is potentially significant over a large range of periods. The current understanding is reviewed of the contribution of polar drift, decadal polar motion, Chandler and annual wobbles, and higher frequency polar motion, as determined through the efforts of the funded work within the NASA Crustal Dynamics Project, and in the context of the general literature on the subject. Water mass redistribution is either demonstrably important to the excitation of each of these, or is probably important given a lack of other likely excitation sources.
North Atlantic variability and its links to European climate over the last 3000 years.
Moffa-Sánchez, Paola; Hall, Ian R
2017-11-23
The subpolar North Atlantic is a key location for the Earth's climate system. In the Labrador Sea, intense winter air-sea heat exchange drives the formation of deep waters and the surface circulation of warm waters around the subpolar gyre. This process therefore has the ability to modulate the oceanic northward heat transport. Recent studies reveal decadal variability in the formation of Labrador Sea Water. Yet, crucially, its longer-term history and links with European climate remain limited. Here we present new decadally resolved marine proxy reconstructions, which suggest weakened Labrador Sea Water formation and gyre strength with similar timing to the centennial cold periods recorded in terrestrial climate archives and historical records over the last 3000 years. These new data support that subpolar North Atlantic circulation changes, likely forced by increased southward flow of Arctic waters, contributed to modulating the climate of Europe with important societal impacts as revealed in European history.
The Breath of Planet Earth: Atmospheric Circulation. Assimilation of Surface Wind Observations
NASA Technical Reports Server (NTRS)
Atlas, Robert; Bloom, Stephen; Otterman, Joseph
2000-01-01
Differences in air pressure are a major cause of atmospheric circulation. Because heat excites the movement of atoms, warm temperatures cause, air molecules to expand. Because those molecules now occupy a larger space, the pressure that their weight exerts is decreased. Air from surrounding high-pressure areas is pushed toward the low-pressure areas, creating circulation. This process causes a major pattern of global atmosphere movement known as meridional circulation. In this form of convection, or vertical air movement, heated equatorial air rises and travels through the upper atmosphere toward higher latitudes. Air just above the equator heads toward the North Pole, and air just below the equator moves southward. This air movement fills the gap created where increased air pressure pushes down cold air. The ,cold air moves along the surface back toward the equator, replacing the air masses that rise there. Another influence on atmospheric. circulation is the Coriolis force. Because of the Earth's rotation, large-scale wind currents move in the direction of this axial spin around low-pressure areas. Wind rotates counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. just as the Earth's rotation affects airflow, so too does its surface. In the phenomenon of orographic lifting, elevated topographic features such as mountain ranges lift air as it moves up their surface.
2011-06-08
The Delta II rocket with it's Aquarius/SAC-D spacecraft payload is seen shortly after the service structure is rolled back on Thursday, June 9, 2011, at Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, set to launch June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
2011-06-08
The Delta II rocket with it's Aquarius/SAC-D spacecraft payload is seen as the service structure is rolled back on Thursday, June 9, 2011, at Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, set to launch June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
Data Visualization and Analysis for Climate Studies using NASA Giovanni Online System
NASA Technical Reports Server (NTRS)
Rui, Hualan; Leptoukh, Gregory; Lloyd, Steven
2008-01-01
With many global earth observation systems and missions focused on climate systems and the associated large volumes of observational data available for exploring and explaining how climate is changing and why, there is an urgent need for climate services. Giovanni, the NASA GES DISC Interactive Online Visualization ANd ANalysis Infrastructure, is a simple to use yet powerful tool for analysing these data for research on global warming and climate change, as well as for applications to weather. air quality, agriculture, and water resources,
Measuring Ancient Air Pressure Using Fossilized Cyanobacteria
NASA Astrophysics Data System (ADS)
Silverman, S. N.; Som, S. M.; Gordon, R.; Bebout, B.
2016-12-01
The evolution of Earth's atmosphere has been governed by biological evolution. The dominant air component, nitrogen, has undergone substantial variation over geological time. Today, the partial pressure of nitrogen is 0.79 bar, but this value could have been much higher during early Earth1. The nitrogen partial pressure is postulated to have dropped to a maximum of 0.5 bar before the Great Oxidation Event 2.4 billion years ago, and subsequently recovered to the 0.8 bar value of our modern atmosphere over the next 330 million years2. We are placing constraints on the trajectory of this recovery by investigating how nitrogen partial pressure influences the morphology of a certain species of filamentous cyanobacteria that has been found fossilized in 2 billion year old rocks. These filamentous cyanobacteria convert nitrogen from its dissolved gaseous state (N2) to a biologically useful state (i.e. NH3) when the latter is present at growth-limiting concentrations in their aquatic environment. Such cyanobacteria develop heterocysts (specialized, visually distinct cells), which fix the nitrogen and laterally distribute it to neighboring cells along the one-dimensional filament. We suggest that the distance between heterocysts reflects the nitrogen partial pressure dissolved in water, which is related to atmospheric pN2 by Henry's law. In the laboratory, we are quantifying the relationship between heterocyst distance, variance and covariance to atmospheric pN2 by subjecting cyanobacteria (in media devoid of nitrate) to different partial pressures of N2 at a constant temperature and lighting for the representative species Anabaena variabilis. As far as we know, such experiments have not been previously conducted. This new geobarometer will complement existing methods of quantifying ancient nitrogen partial pressure. 1Goldblatt, Colin, et al. "Nitrogen-enhanced greenhouse warming on early Earth." Nature Geoscience 2 (2009): 891-896. 2Som, S., et al. "Earth's air pressure 2.7 billion years ago constrained to less than half of modern levels." Nature Geoscience 9 (2016): 448-451.
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina
2010-01-01
Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).
Concept for Mars Volcanic Emission Life Scout (3-D)
NASA Technical Reports Server (NTRS)
2004-01-01
This artist's rendition depicts a concept for a Mars orbiter that would scrutinize the martian atmosphere for chemical traces of life or environments supportive of life that might be present anywhere on the planet. The illustration is presented as a three-dimensional stereo view. The concept is named the Mars Volcanic Emission and Life Scout, or Marvel. It would equip a Mars orbiter with two types of instruments proven useful in studying Earth's atmosphere from Earth orbit. One, a solar occultation infrared spectrometer, would look sideways through Mars' atmosphere toward the setting or rising Sun for an extremely sensitive reading of what chemicals are in the air that sunlight passes through before hitting the instrument. The other, a submillimeter spectrometer would survey the atmosphere continuously, including during dust storms and polar night, to seek localized surface sources of the chemicals of interest. The infrared spectrometer has very high sensitivity for one chemical of great interest: methane, which is produced by many types of microbes, as well as by some volcanic sources. The submillimeter spectrometer has very high sensitivity for water vapor. Localized concentrations of water vapor in the atmosphere could identify places where subsurface water sources may be venting.Resolution Enhancement of Spaceborne Radiometer Images
NASA Technical Reports Server (NTRS)
Krim, Hamid
2001-01-01
Our progress over the last year has been along several dimensions: 1. Exploration and understanding of Earth Observatory System (EOS) mission with available data from NASA. 2. Comprehensive review of state of the art techniques and uncovering of limitations to be investigated (e.g. computational, algorithmic ...). and 3. Preliminary development of resolution enhancement algorithms. With the advent of well-collaborated satellite microwave radiometers, it is now possible to obtain long time series of geophysical parameters that are important for studying the global hydrologic cycle and earth radiation budget. Over the world's ocean, these radiometers simultaneously measure profiles of air temperature and the three phases of atmospheric water (vapor, liquid, and ice). In addition, surface parameters such as the near surface wind speed, the sea surface temperature, and the sea ice type and concentration can be retrieved. The special sensor microwaves imager SSM/I has wide application in atmospheric remote sensing over the ocean and provide essential inputs to numerical weather-prediction models. SSM/I data has also been used for land and ice studies, including snow cover classification measurements of soil and plant moisture contents, atmospheric moisture over land, land surface temperature and mapping polar ice. The brightness temperature observed by SSM/I is function of the effective brightness temperature of the earth's surface and the emission scattering and attenuation of the atmosphere. Advanced Microwave Scanning Radiometer (AMSR) is a new instrument that will measure the earth radiation over the spectral range from 7 to 90 GHz. Over the world's ocean, it will be possible to retrieve the four important geographical parameters SST, wind speed, vertically integrated water vapor, vertically integrated cloud liquid water L.
Dust Mitigation for Martian Exploration
NASA Technical Reports Server (NTRS)
Williams, Blakeley Shay
2011-01-01
One of the efforts of the In-Situ Resource Utilization project is to extract oxygen, fuel, and water from the Martian air. However, the surface of Mars is covered in a layer of dust, which is uploaded into the atmosphere by dust devils and dust storms. This atmospheric dust would be collected along with the air during the conversion process. Thus, it is essential to extract the dust from the air prior to commencing the conversion. An electrostatic precipitator is a commonly used dust removal technology on earth. Using this technology, dust particles that pass through receive an electrostatic charge by means of a corona discharge. The particles are then driven to a collector in a region of high electric field at the center of the precipitator. Experiments were conducted to develop a precipitator that will function properly in the Martian atmosphere, which has a very low pressure and is made up . of primarily carbon dioxide.
The active liquid Earth - importance of temporal and spatial variability
NASA Astrophysics Data System (ADS)
Arheimer, Berit
2016-04-01
The Planet Earth is indeed liquid and active - 71 percent of its surface is water-covered and this water never rests. Thanks to the water cycle, our planet's water supply is constantly moving from one place to another and from one form to another. Only 2.5% of the water is freshwater and it exists in the air as water vapor; it hits the ground as rain and snow; it flows on the surface from higher to lower altitudes in rivers, lakes, and glaciers; and it flows in the ground in soil, aquifers, and in all living organisms until it reaches the sea. On its way over the Earth's crust, some returns quickly to vapor again, while some is trapped and exposed to many "fill and spill" situations for a long journey. The variability in the water balance is crucial for hydrological understanding and modelling. The water cycle may appear simple, but magnitudes and rates in fluxes are very different from one place to another, resulting from variable drivers such as solar energy, precipitation and gravity in co-evolution with geology, soil, vegetation and fauna. The historical evolution, the temporal fluxes and diversity in space continue to fascinate hydrological scientists. Specific physical processes may be well known, but their boundary conditions, interactions and rate often remain unknown at a specific site and are difficult to monitor in nature. This results in mysterious features where trends in drivers do not match runoff, like the Sahelian Paradox or discharge to the Arctic Ocean. Humans have always interfered with the water cycle and engineering is fundamental for water regulation and re-allocation. Some 80% of the river flow from the northern part of the Earth is affected by fragmentation of the river channels by dams. In water management, there is always a tradeoff between upstream and downstream activities, not only regarding total water quantities but also for temporal patterns and water quality aspects. Sharing a water resource can generate conflicts but geopolitical research also shows that it is often a reason for collaboration, which stabilizes turbulent regions politically. The Planet Earth has now entered the new geological era 'Anthropocene' when humans do not only affect the water as such, but also the key drivers such as climate, vegetation, topography, and soils. The challenge for hydrological scientists today is thus not only to predict present conditions from poorly known boundary conditions, but also the effect of simultaneous changes in these unknown boundary conditions. We face global warming, population growth, rapid urbanization, and demand of higher living standards for the poor. For a sustainable development, we need to progress humans from consumers to care-takers of the Planet. In this, we must secure agricultural and industrial production, water consumption in new and rapidly growing cities, protection from intense precipitation and flooding, and retain good ecological status. Adaptive management, international agreements and local participation will be the means, and the Earth Science community has a great potential to contribute with knowledge and innovations from new open-data sources and observations, advanced IT and interdisciplinary collaboration. Resilience to changes is based on diversity. Let's embrace diversity in science and in temporal and spatial patterns of the Liquid Planet, to enter the Anthropocene in resilience.
Airborne rotary separator study
NASA Astrophysics Data System (ADS)
Drnevich, R. F.; Nowobilski, J. J.
1992-12-01
Several air breathing propulsion concepts for future earth-to-orbit transport vehicles utilize air collection and enrichment, and subsequent storage of liquid oxygen for later use in the vehicle mission. Work performed during the 1960's established the feasibility of substantially reducing weight and volume of a distillation type air separator system by operating the distillation elements in high 'g' fields obtained by rotating the separator assembly. The purpose of this study was to evaluate various fuels and fuel combinations with the objective of minimizing the weight and increase the ready alert capability of the plane. Fuels will be used to provide energy as well as act as heat sinks for the on-board heat rejection system. Fuel energy was used to provide power for air separation as well as to produce refrigeration for liquefaction of oxygen enriched air, besides its primary purpose of vehicle propulsion. The heat generated in the cycle was rejected to the fuel and water which is also carried on board the vehicle.The fuels that were evaluated include JP4, methane, and hydrogen. Hydrogen served as a comparison to the JP4 and methane cases.
2017-12-08
Bands of lake effect snow drift eastward from the western Great Lakes in this true-color image captured by the NOAA/NASA Suomi NPP satellite's Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on January 5, 2017. National Weather Service forecasters expect light to moderate lake effect snow showers to continue throughout the day today and into Saturday (1/7). Lake-effect snow forms when cold air passes over the warmer waters of a lake. This causes some lake water to evaporate into the air and warm it. This warmer, wetter air rises and cools as it moves away from the lake. When it cools, it releases that moisture and, if it’s cold enough, that moisture turns into snow. Although true-color images like this may appear to be photographs of Earth, they aren't. They are created by combining data from the three color channels on the VIIRS instrument sensitive to the red, green and blue (or RGB) wavelengths of light into one composite image. In addition, data from several other channels are often also included to cancel out or correct atmospheric interference that may blur parts of the image. Credit: NOAA/NASA/Suomi NPP via NOAA's Environmental Visualization Laboratory
NASA Technical Reports Server (NTRS)
Willis, Charles E. (Editor)
1987-01-01
The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.
Indefinitely stable iron(IV) cage complexes formed in water by air oxidation
NASA Astrophysics Data System (ADS)
Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.
2017-01-01
In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.
Indefinitely stable iron(IV) cage complexes formed in water by air oxidation.
Tomyn, Stefania; Shylin, Sergii I; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O
2017-01-19
In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.
Working Toward a Healthy Planet
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.
2003-01-01
Using information from NASA s Earth Science Public Health Applications Program, Dr. Maynard will address how remote sensing data and associated technologies can be used toward a better understanding of the links among human health, the environment and weather/climate - and, how this increased understanding plus improved information sharing can empower local health and environmental decision-makers to better predict climate-related health problems, take preventive measures, and improve response actions. Remotely-sensed data and observations are providing powerful new tools for addressing climate and environment-related human health problems through increased capabilities for monitoring and surveillance of parameters useful to such problems as infectious and vector-borne diseases, air and water quality, harmful algal blooms, UV radiation, contaminant and pathogen transport in air and water, and thermal stress. NASA s multi-disciplinary scientific team is demonstrating how satellites from their unique vantage point in space can serve as sentinels for weather, climate, and health problems through studies on asthma, malaria, Rift Valley Fever, Asian and African dust, and West Nile Virus
Indefinitely stable iron(IV) cage complexes formed in water by air oxidation
Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.
2017-01-01
In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge. PMID:28102364
Measurement of the spectral absorption of liquid water in melting snow with an imaging spectrometer
NASA Technical Reports Server (NTRS)
Green, Robert O.; Dozier, Jeff
1995-01-01
Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. We present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation, the air temperature did not drop below freezing the night of May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.
The Water-Mist Fire Suppression Experiment (Mist): Preliminary Results From The STS-107 Mission
NASA Technical Reports Server (NTRS)
Abbud-Madrid, Angel; McKinnon, J. Thomas; Amon, Francine; Gokoglu, Suleyman
2003-01-01
An investigation of the effect of water mists on premixed flame propagation has been conducted onboard the Space Shuttle to take advantage of the prolonged microgravity environment to study the effect of uniformly distributed clouds of polydisperse water mists on the speed and shape of propagating propane-air premixed flames. The suspension of a quiescent and uniform water mist cloud was confirmed during the microgravity tests. Preliminary results show good agreement with trends obtained by the numerical predictions of a computational model that uses a hybrid Eulerian-Lagrangian formulation to simulate the two-phase, flame/mist interaction. Effective flame suppression is observed at progressively higher water loadings and smaller water droplet sizes. Other unusual flame behavior, such as flame front breakup and pulsating flames, is still under investigation. The promising results from the microgravity tests will be used to assess the feasibility of using water mists as fire suppressants on Earth and on spacecraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, W.R.; Campbell, T.M.; Sturdivant, V.R.
1980-09-26
Shallow underground voids resulting from early coal mining and other resource recovery activities over the past several decades are now being recognized as a significant cause of ground subsidence problems in developing urban areas. Uncertain knowledge of abandoned coal mines also imposes potential hazards in coal excavation operations since water inundation or the release of methane gas is a principal hazard when mine excavation operations break into an abandoned mine. US Army requirements for an effective method for detecting and mapping subversive abandoned tunnels have resulted in a surface-operated automatic earth resistivity survey system with a digital computer data processingmore » system. Field tests aimed at demonstrating the system performance resulted in successful detection of tunnels having depth-to-diameter ratios up to 15 to 1. Under the sponsorship of the Bureau of Mines, a similar system was designed and constructed for use in the detection of coal mine workings. This report discusses the hardware and software aspects of the system and the application of the high-resolution earth resistivity method to the survey and mapping of abandoned coal mine workings. In the field tests reported, the targets of interest were both air- and water-filled workings.« less
2009-03-06
CAPE CANAVERAL, Fla. – The Delta II 7925 rocket stands ready for launch following rollback of the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station. Atop the rocket is NASA's Kepler spacecraft. Kepler is a spaceborne telescope designed to search the nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is the region around a star where temperatures permit water to be liquid on a planet's surface. The challenge for Kepler is to look at a large number of stars in order to statistically estimate the total number of Earth-size planets orbiting sun-like stars in the habitable zone. Kepler will survey more than 100,000 stars in our galaxy. Photo credit: NASA/Jack Pfaller
2009-02-03
CAPE CANAVERAL, Fla. – Inside Inside the Hazardous Processing Facility at Astrotech in Titusville, Fla., NASA's Kepler spacecraft is being moved to another stand for fueling. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. The liftoff of Kepler aboard a Delta II rocket is currently planned for 10:48 p.m. EST March 5 from Space Launch Complex 17 on Cape Canaveral Air Force Station. Photo credit: NASA/Tim Jacobs
2009-03-06
CAPE CANAVERAL, Fla. – After rollback of the mobile service tower on Cape Canaveral Air Force Station's Launch Pad 17-B, in Florida, NASA's Kepler spacecraft sits poised for launch atop the United Launch Alliance Delta II 7925 rocket. Kepler is a spaceborne telescope designed to search the nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is the region around a star where temperatures permit water to be liquid on a planet's surface. The challenge for Kepler is to look at a large number of stars in order to statistically estimate the total number of Earth-size planets orbiting sun-like stars in the habitable zone. Kepler will survey more than 100,000 stars in our galaxy. Photo credit: NASA/Jack Pfaller
2009-02-21
CAPE CANAVERAL, Fla. – On Launch pad 17-B at Cape Canaveral Air Force Station in Florida, workers move NASA's Kepler spacecraft into the mobile service tower where it will be mated with the Delta II rocket for launch. The liftoff of Kepler is currently scheduled for 10:48 p.m. EST March 5. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. Photo credit: NASA/Jack Pfaller
2009-02-16
CAPE CANAVERAL, Fla. – At the Hazardous Processing Facility at Astrotech in Titusville, Fla., workers position the Kepler spacecraft onto a Delta II third stage. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. The liftoff of Kepler aboard a Delta II rocket is currently targeted for 10:48 p.m. EST March 5 from Space Launch Complex 17 on Cape Canaveral Air Force Station. Photo credit: NASA/Troy Cryder
2009-02-21
CAPE CANAVERAL, Fla. – On Launch pad 17-B at Cape Canaveral Air Force Station in Florida, workers prepare to move NASA's Kepler spacecraft into the mobile service tower where it will be mated with the Delta II rocket for launch. The liftoff of Kepler is currently scheduled for 10:48 p.m. EST March 5. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. Photo credit: NASA/Jack Pfaller
2009-02-16
CAPE CANAVERAL, Fla. – At the Hazardous Processing Facility at Astrotech in Titusville, Fla., workers guide the suspended Kepler spacecraft onto a Delta II third stage. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. The liftoff of Kepler aboard a Delta II rocket is currently targeted for 10:48 p.m. EST March 5 from Space Launch Complex 17 on Cape Canaveral Air Force Station. Photo credit: NASA/Troy Cryder
2009-02-03
CAPE CANAVERAL, Fla. – Inside the Hazardous Processing Facility at Astrotech in Titusville, Fla., NASA's Kepler spacecraft is being moved to another stand for fueling. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. The liftoff of Kepler aboard a Delta II rocket is currently planned for 10:48 p.m. EST March 5 from Space Launch Complex 17 on Cape Canaveral Air Force Station. Photo credit: NASA/Tim Jacobs
2009-02-03
CAPE CANAVERAL, Fla. – Inside the Hazardous Processing Facility at Astrotech in Titusville, Fla., NASA's Kepler spacecraft is lowered onto a stand for fueling. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. The liftoff of Kepler aboard a Delta II rocket is currently planned for 10:48 p.m. EST March 5 from Space Launch Complex 17 on Cape Canaveral Air Force Station. Photo credit: NASA/Tim Jacobs
2009-02-13
CAPE CANAVERAL, Fla. – At the Hazardous Processing Facility at Astrotech in Titusville, Fla., workers check the Kepler spacecraft as it is lifted for weighing. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. The liftoff of Kepler aboard a Delta II rocket is currently targeted for 10:48 p.m. EST March 5 from Space Launch Complex 17 on Cape Canaveral Air Force Station. Photo credit: NASA/Jim Grossmann
2009-03-06
CAPE CANAVERAL, Fla. – After rollback of the mobile service tower on Cape Canaveral Air Force Station's Launch Pad 17-B in Florida, NASA's Kepler spacecraft sits poised for launch atop the United Launch Alliance Delta II 7925 rocket. Kepler is a spaceborne telescope designed to search the nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is the region around a star where temperatures permit water to be liquid on a planet's surface. The challenge for Kepler is to look at a large number of stars in order to statistically estimate the total number of Earth-size planets orbiting sun-like stars in the habitable zone. Kepler will survey more than 100,000 stars in our galaxy. Photo credit: NASA/Jack Pfaller
2009-03-06
CAPE CANAVERAL, Fla. – United Launch Alliance's Delta II rocket roars into the night sky carrying NASA's Kepler spacecraft. Liftoff from Launch Pad 17-B at Cape Canaveral Air Force Station in Florida was on time at 10:49 p.m. EST. Kepler is a spaceborne telescope designed to search the nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is the region around a star where temperatures permit water to be liquid on a planet's surface. The challenge for Kepler is to look at a large number of stars in order to statistically estimate the total number of Earth-size planets orbiting sun-like stars in the habitable zone. Kepler will survey more than 100,000 stars in our galaxy. Photo credit: NASA/Jack Pfaller
2009-03-06
CAPE CANAVERAL, Fla. – After rollback of the mobile service tower on Cape Canaveral Air Force Station's Launch Pad 17-B in Florida, NASA's Kepler spacecraft sits poised for launch atop the United Launch Alliance Delta II 7925 rocket. Kepler is a spaceborne telescope designed to search the nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is the region around a star where temperatures permit water to be liquid on a planet's surface. The challenge for Kepler is to look at a large number of stars in order to statistically estimate the total number of Earth-size planets orbiting sun-like stars in the habitable zone. Kepler will survey more than 100,000 stars in our galaxy. Photo credit: NASA/Jack Pfaller
2009-03-06
CAPE CANAVERAL, Fla. – The Delta II 7925 rocket stands ready for launch following rollback of the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station in Florida. Atop the rocket is NASA's Kepler spacecraft. Kepler is a spaceborne telescope designed to search the nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is the region around a star where temperatures permit water to be liquid on a planet's surface. The challenge for Kepler is to look at a large number of stars in order to statistically estimate the total number of Earth-size planets orbiting sun-like stars in the habitable zone. Kepler will survey more than 100,000 stars in our galaxy. Photo credit: NASA/Jack Pfaller
2009-03-06
CAPE CANAVERAL, Fla. – The Delta II 7925 rocket stands ready for launch following rollback of the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station in Florida. Atop the rocket is NASA's Kepler spacecraft. Kepler is a spaceborne telescope designed to search the nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is the region around a star where temperatures permit water to be liquid on a planet's surface. The challenge for Kepler is to look at a large number of stars in order to statistically estimate the total number of Earth-size planets orbiting sun-like stars in the habitable zone. Kepler will survey more than 100,000 stars in our galaxy. Photo credit: NASA/Jack Pfaller
2009-03-06
CAPE CANAVERAL, Fla. – On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the engines on United Launch Alliance's Delta II rocket carrying NASA's Kepler spacecraft ignite. Liftoff was on time at 10:49 p.m. EST. Kepler is a spaceborne telescope designed to search the nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is the region around a star where temperatures permit water to be liquid on a planet's surface. The challenge for Kepler is to look at a large number of stars in order to statistically estimate the total number of Earth-size planets orbiting sun-like stars in the habitable zone. Kepler will survey more than 100,000 stars in our galaxy. Photo credit: NASA/Tony Gray
2009-03-06
CAPE CANAVERAL, Fla. – The Delta II 7925 rocket stands ready for launch following rollback of the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station. Atop the rocket is NASA's Kepler spacecraft. Kepler is a spaceborne telescope designed to search the nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is the region around a star where temperatures permit water to be liquid on a planet's surface. The challenge for Kepler is to look at a large number of stars in order to statistically estimate the total number of Earth-size planets orbiting sun-like stars in the habitable zone. Kepler will survey more than 100,000 stars in our galaxy. Photo credit: NASA/Jack Pfaller
Hunt, Randall J.; Westenbroek, Stephen M.; Walker, John F.; Selbig, William R.; Regan, R. Steven; Leaf, Andrew T.; Saad, David A.
2016-08-23
Potential future changes in air temperature drivers were consistently upward regardless of General Circulation Model and emission scenario selected; thus, simulated stream temperatures are forecast to increase appreciably with future climate. However, the amount of temperature increase was variable. Such uncertainty is reflected in temperature model results, along with uncertainty in the groundwater/surface-water interaction itself. The estimated increase in annual average temperature ranged from approximately 3 to 6 degrees Celsius by 2100 in the upper reaches of Black Earth Creek and 2 to 4 degrees Celsius in reaches farther downstream. As with all forecasts that rely on projections of an unknowable future, the results are best considered to approximate potential outcomes of climate change given the underlying uncertainty.
Developing an Earth system Inverse model for the Earth's energy and water budgets.
NASA Astrophysics Data System (ADS)
Haines, K.; Thomas, C.; Liu, C.; Allan, R. P.; Carneiro, D. M.
2017-12-01
The CONCEPT-Heat project aims at developing a consistent energy budget for the Earth system in order to better understand and quantify global change. We advocate a variational "Earth system inverse" solution as the best methodology to bring the necessary expertise from different disciplines together. L'Ecuyer et al (2015) and Rodell et al (2015) first used a variational approach to adjust multiple satellite data products for air-sea-land vertical fluxes of heat and freshwater, achieving closed budgets on a regional and global scale. However their treatment of horizontal energy and water redistribution and its uncertainties was limited. Following the recent work of Liu et al (2015, 2017) which used atmospheric reanalysis convergences to derive a new total surface heat flux product from top of atmosphere fluxes, we have revisited the variational budget approach introducing a more extensive analysis of the role of horizontal transports of heat and freshwater, using multiple atmospheric and ocean reanalysis products. We find considerable improvements in fluxes in regions such as the North Atlantic and Arctic, for example requiring higher atmospheric heat and water convergences over the Arctic than given by ERA-Interim, thereby allowing lower and more realistic oceanic transports. We explore using the variational uncertainty analysis to produce lower resolution corrections to higher resolution flux products and test these against in situ flux data. We also explore the covariance errors implied between component fluxes that are imposed by the regional budget constraints. Finally we propose this as a valuable methodology for developing consistent observational constraints on the energy and water budgets in climate models. We take a first look at the same regional budget quantities in CMIP5 models and consider the implications of the differences for the processes and biases active in the models. Many further avenues of investigation are possible focused on better valuing the uncertainties in observational flux products and setting requirement targets for future observation programs.
Earth observations taken during STS-136
1995-07-04
STS071-745-006 (27 June-7 July 1995) --- This view shows a ship track, probably in the northern Pacific Ocean, where a ship has caused clouds to form more thickly directly above the path of this ship. This track is therefore visible even though the ship itself is not. Ship tracks are thought to be caused by particles thrown up into the air by the ship, from smokestack emissions and from water particles generated by the ship moving through the sea. Under favorable weather conditions, water condenses around these particles to form clouds, in this case thicker "popcorn" clouds than already exists in the area. Ongoing studies are attempting to understand this phenomenon better.
NASA Astrophysics Data System (ADS)
Lefer, B. L.; Crawford, J. H.; Pierce, R. B.; Berkoff, T.; Swap, R.; Janz, S. J.; Ahn, J.; Al-Saadi, J. A.
2017-12-01
With the launch over the virtual constellation of earth observing satellites for atmospheric composition (e.g., TROPOMI, GEMS, TEMPO, and Sentinel-4) over the next several years, we have a unique opportunity to develop an Integrated Observing System (IOS) for air quality in the northern hemisphere. Recently, NASA's Tropospheric Composition Program (TCP) has participated in several different air quality related field campaigns as an effort to explore various prototypes of the IOS for Air Quality. The IOS for air quality could be a system were space-based observations of air quality (generally, column abundances of NO2, HCHO, O3, SO2, and AOD) are given added "value" by being integrated with: a) long-term ground-based observations;b) regional and global air quality and chemical transport models; as well as c) measurements from targeted airborne field campaigns. The recent Korea-US Air Quality Study (KORUS-AQ), the Lake Michigan Ozone Study 2017 (LMOS), and the Ozone Water-Land Environmental Transition Study (OWLETS) field campaigns were held in different locations and made measurements over different scale. However, all of these provide an opportunity to learn about how a future integrated air quality observing system can be implemented to serve a variety of air quality related objectives. NASA TCP is also exploring enchancements to our routine observations to strengthen the IOS for air quality in the future.
Demonstration of Nautilus Centripetal Capillary Condenser Technology
NASA Technical Reports Server (NTRS)
Wheeler, RIchard; Tang, Linh; Wambolt, Spencer; Golliher, Eric; Agui, Juan
2016-01-01
This paper describes the results of a proof of concept effort for development of a Nautilus Centripetal Capillary Condenser (NCCC or NC3) used for microgravity compatible water recovery from moist air with integral passive phase separation. Removal of liquid condensate from the air stream exiting a condenser is readily performed here on Earth. In order to perform this function in space however, without gravity or mechanical action, other tactics including utilization of inertial, drag and capillary forces are required. Within the NC3, liquid water forms via condensation on cold condenser surfaces as humid air passes along multiple spiral channels, each in its own plane, all together forming a stacked plate assembly. Non-mechanical inertial forces are employed to transfer condensate, as it forms, via centripetal action to the outer perimeter of each channel. A V-shaped groove, constructed on this outer edge of the spiral channel, increases local capillary forces thereby retaining the liquid. Air drag then pulls the liquid along to a collection region near the center of the device. Dry air produced by each parallel spiral channel is combined in a common orthogonal, out-of-plane conduit passing down the axial center of the stacked device. Similarly, the parallel condensate streams are combined and removed from the condenser/separator through yet another out-of-plane axial conduit. NC3 is an integration of conventional finned condenser operation, combined with static phase separation and capillary transport phenomena. A Mars' transit mission would be a logical application for this technology where gravity is absent and the use of vibrating, energy-intensive, motor-driven centrifugal separators is undesired. Here a vapor stream from either the Heat Melt Compactor or the Carbon dioxide Reduction Assembly, for example, would be dried to a dew point of 10 deg using a passive NC3 condenser/separator with the precious water condensate recycled to the water bus.
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; McQuillan, Jeffrey
2010-01-01
Life Support and Habitation Systems (LSHS) is one of 10 Foundational Domains as part of the National Aeronautics and Space Administration s proposed Enabling Technology Development and Demonstration (ETDD) Program. LSHS will develop and mature technologies to sustain life on long duration human missions beyond Low Earth Orbit that are reliable, have minimal logistics supply and increase self-sufficiency. For long duration exploration missions, further closure of life support systems is paramount, including focus on key technologies for atmosphere revitalization, water recovery, waste management, thermal control and crew accommodation that recover additional consumable mass, reduce requirements for power, volume, heat rejection, crew involvement, and which have increased reliability and capability. Other areas of focus include technologies for radiation protection, environmental monitoring and fire protection. Beyond LEO, return to Earth will be constrained. The potability of recycled water and purity of regenerated air must be measured and certified aboard the spacecraft. Missions must be able to recover from fire events through early detection, use of non-toxic suppression agents, and operation of recovery systems that protect on-board Environmental Control and Life Support (ECLS) hardware. Without the protection of the Earth s geomagnetic field, missions beyond LEO must have improved radiation shielding and dosimetry, as well as warning systems to protect the crew against solar particle events. This paper will describe plans for the new LSHS Foundational Domain and mission factors that will shape its technology development portfolio.
2017-12-08
As the northern hemisphere experiences the heat of summer, ice moves and melts in the Arctic waters and the far northern lands surrounding it. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of sea ice off Greenland on July 16, 2015. Large chunks of melting sea ice can be seen in the sea ice off the coast, and to the south spirals of ice have been shaped by the winds and currents that move across the Greenland Sea. Along the Greenland coast, cold, fresh melt water from the glaciers flows out to the sea, as do newly calved icebergs. Frigid air from interior Greenland pushes the ice away from the shoreline, and the mixing of cold water and air allows some sea ice to be sustained even at the height of summer. According to observations from satellites, 2015 is on track to be another low year for arctic summer sea ice cover. The past ten years have included nine of the lowest ice extents on record. The annual minimum typically occurs in late August or early September. The amount of Arctic sea ice cover has been dropping as global temperatures rise. The Arctic is two to three times more sensitive to temperature changes as the Earth as a whole. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
A Survey of Environmental Microbial Flora During Closed Chamber Studies
NASA Technical Reports Server (NTRS)
Ott, C. Mark; Groves, Theron O.; Bell-Robinson, Denetia; Pierson, Duane L.; Paloski, W. H. (Technical Monitor)
1999-01-01
Services, Inc. and NASA Johnson Space Center, Houston, TX As NASA prepares for long-term missions aboard the International Space Station and the eventual exploration of Mars, closed-environment chambers on Earth have become important test beds for systems evaluations. During 2 separate studies of a selfcontained ecosystem containing 4 crewmembers, microbial surveys of samples from 13 surface and 3 air sites were performed. Microbial concentration of samples from surface sites with frequent water contact (e.g., urinal, sink) did not indicate significantly higher levels of contamination than drier areas, though surface cleaning by the crew may have influenced this conclusion. Changes in bacterial diversity on surface sites implied that the number of transient species was high, suggesting movement by crew activities, aerosols, or both. A non-linear relationship between bacterial diversity and enumeration from surface samples indicated that a rapid increase occurred in the number of species as cell concentration increased to 5 CFU/sq cm. Above this concentration, the number of different bacterial species varied between 11 and 16. Airborne bacteria and fungi averaged only 160 and 1 CFU/m3, respectively. Microbial contamination of the potable water system primarily consisted of 3 species of Gram negative bacteria; however, after 60 days during one study, several species of Bacillus became the dominant flora. This study suggests that under these conditions, microbial contamination in the air and water was suppressed by the life-support systems, though contamination was possible. Conversely, the crew and their activities controlled microbial levels on surfaces. Understanding the factors that affect microbial control will improve the design of microbial testing both during space flight and in analogous Earth-based environments.
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel
2008-01-01
Hyperspectral infrared atmospheric sounders (e.g., the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on Met Op) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1 km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.
NASA Astrophysics Data System (ADS)
Li, J.; Menzel, W.; Sun, F.; Schmit, T.
2003-12-01
The Moderate-Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS) Aqua satellite will enable global monitoring of the distribution of clouds. MODIS is able to provide at high spatial resolution (1 ~ 5km) the cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud water path (CWP). AIRS is able to provide CTP, ECA, CPS, and CWP within the AIRS footprint with much better accuracy using its greatly enhanced hyperspectral remote sensing capability. The combined MODIS / AIRS system offers the opportunity for cloud products improved over those possible from either system alone. The algorithm developed was applied to process the AIRS longwave cloudy radiance measurements; results are compared with MODIS cloud products, as well as with the Geostationary Operational Environmental Satellite (GOES) sounder cloud products, to demonstrate the advantage of synergistic use of high spatial resolution MODIS cloud products and high spectral resolution AIRS sounder radiance measurements for optimal cloud retrieval. Data from ground-based instrumentation at the Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Test Bed (CART) in Oklahoma were used for the validation; results show that AIRS improves the MODIS cloud products in certain cases such as low-level clouds.
The East and Southeast Asia Initiatives: Aerosol Column Measurements
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Hsu, Christina N.; Li, Zhanqing
2003-01-01
Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during spring- time. However, with the economical growth in China, increases in the emission of air pollutants generated from industrial and vehicular sources will not only impact the radiation balance, but adverse health effects to humans all year round. In addition, both of these dust and air pollution clouds can transport swiftly across the Pacific reaching North America within a few days, possessing an even larger scale effect. The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network. Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the unique climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3,Br), and atmospheric aerosols are produced by biomass burning processes. These gases influence the Earth- atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play an important role in determining cloud lifetime and precipitation, hence, altering the earth's radiation and water budget. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds from the soil to the atmosphere; the hydrological cycle (i.e., run off and evaporation); land surface reflectivity and emissivity; as well as ecosystem biodiversity and stability. Two new initiatives, EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) and BASE-ASIA (Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment) will be presented and discussed their contribution to better understand the impacts of aerosols on regional-to- global climate, hydrological and carbon cycles, and tropospheric chemistry.
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee
2004-01-01
Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during spring-time. However, with the economical growth in China, increases in the emission of air pollutants generated from industrial and vehicular sources will not only impact the radiation balance, but adverse health effects to humans all year round. In addition, both of these dust and air pollution clouds can transport swiftly across the Pacific reaching North America within a few days, possessing an even larger scale effect. The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network. Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the unique climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3Br), and atmospheric aerosols are produced by biomass burning processes. These gases influence the Earth-atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play an important role in determining cloud lifetime and precipitation, hence, altering the earth's radiation and water budget. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds from the soil to the atmosphere; the hydrological cycle (i.e., run off and evaporation); land surface reflectivity and emissivity; as well as ecosystem biodiversity and stability. Two new initiatives, EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) and BASE-ASIA (Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment) will be presented and discussed their contribution to better understand the impacts of aerosols on regional-to-global climate, hydrological and carbon cycles, and tropospheric chemistry.
NASA Advanced Explorations Systems: Advancements in Life Support Systems
NASA Technical Reports Server (NTRS)
Shull, Sarah A.; Schneider, Walter F.
2016-01-01
The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies rely largely on sending environmental samples back to Earth. The LSS project is developing onboard analysis capabilities that will replace the need to return air and water samples from space for ground analysis. Air Revitalization- The air revitalization task is comprised of work in carbon dioxide removal, oxygen generation and recovery and trace contamination and particulate control. The CO2 Removal and associated air drying development efforts under the LSS project are focused both on improving the current SOA technology on the ISS and assessing and examining the viability of other sorbents and technologies available in academia and industry. The Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an effort to supply O2 to the crew at the required conditions, to recover O2 from metabolic CO2, and to recycle recovered O2 back to the cabin environment. Current state-of-the-art oxygen generation systems aboard space station are capable of generating or recovering approximately 40% of required oxygen; for exploration missions this percentage needs to be greatly increased. A spacecraft cabin trace contaminant and particulate control system serves to keep the environment below the spacecraft maximum allowable concentration (SMAC) for chemicals and particulates. Both passive (filters) and active (scrubbers) methods contribute to the overall TC & PC design. Work in the area of trace contamination and particulate control under the LSS project is focused on making improvements to the SOA TC & PC systems on ISS to improve performance and reduce consumables. Wastewater Processing and Water Management- A major goal of the LSS project is the development of water recovery systems to support long duration human exploration beyond LEO. Current space station wastewater processing and water management systems distill urine and wastewater to recover water from urine and humidity condensate in the spacecraft at a approximately 74% recovery rate. For longer, farther missions into deep space, that recovery rate must be greatly increased so that astronauts can journey for months without resupply cargo ships from Earth.
The AIRS Applications Pipeline, from Identification to Visualization to Distribution
NASA Astrophysics Data System (ADS)
Ray, S. E.; Pagano, T. S.; Fetzer, E. J.; Lambrigtsen, B.; Teixeira, J.
2014-12-01
The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. AIRS provides observations of temperature and water vapor along the atmospheric column and is sensitive to many atmospheric constituents in the mid-troposphere, including carbon monoxide, carbon dioxide and ozone. With a 12-year data record and daily, global observations in near real-time, we are finding that AIRS data can play a role in applications that fall under most of the NASA Applied Sciences focus areas. Currently in development are temperature inversion maps that can potentially correlate to respiratory health problems, dengue fever and West Nile virus outbreak prediction maps, maps that can be used to make assessments of air quality, and maps of volcanic ash burden. This poster will communicate the Project's approach and efforts to date of its applications pipeline, which includes identifying applications, utilizing science expertise, hiring outside experts to assist with development and dissemination, visualization along application themes, and leveraging existing NASA data frameworks and organizations to facilitate archiving and distribution. In addition, a new web-based browse tool being developed by the AIRS Project for easy access to application product imagery will also be described.
NASA Astrophysics Data System (ADS)
Pagano, T. S.
2017-12-01
Hyperspectral infrared sounding of the atmosphere has become a vital element in the observational system for weather forecast prediction at National Weather Prediction (NWP) centers worldwide. The NASA Atmospheric Infrared Sounder (AIRS) instrument was the pathfinder for the hyperspectral infrared observations and was designed to provide accurate atmospheric temperature and water vapor profile information in support of weather prediction, climate processes and weather related applications. AIRS was launched in 2002 and continues to operate well. JPL NASA is offering an alternate hyperspectral IR sounder architecture for the future involving CubeSats under the Earth Science Technology Office (ESTO) In-flight Validation of Earth Science Technologies (InVEST) program. The latest technology in large format focal plane assemblies, wide field optics and active cryocoolers enables a reduction in size, mass and cost of the legacy sounders and offer new orbit configurations. The CubeSat Infrared Atmospheric Sounder (CIRAS) employs an MWIR spectrometer operating from 4.08-5.13 µm with 625 channels and spectral resolution of 1.2-2.0 cm-1 to achieve lower tropospheric temperature and water vapor profiles. The CIRAS is packaged in a 6U CubeSat and uses less than 14 W. CIRAS is under development at NASA JPL and scheduled for launch in 2019. This presentation will discuss the CIRAS measurement approach, development status and the plan to demonstrate, in-orbit, higher spatial resolution IR sounding to support new science involving regional weather prediction, applications and weather process studies.
A Satellite View of Global Water and Energy Cycling
NASA Astrophysics Data System (ADS)
Houser, P. R.
2012-12-01
The global water cycle describes liquid, solid and vapor water dynamics as it moves through the atmosphere, oceans and land. Life exists because of water, and civilization depends on adapting to the constraints imposed by water availability. The carbon, water and energy cycles are strongly interdependent - energy is moved through evaporation and condensation, and photosynthesis is closely related to transpiration. There are significant knowledge gaps about water storage, fluxes and dynamics - we currently do not really know how much water is stored in snowpacks, groundwater or reservoirs. The view from space offers a vision for water science advancement. This vision includes observation, understanding, and prediction advancements that will improve water management and to inform water-related infrastructure that planning to provide for human needs and to protect the natural environment. The water cycle science challenge is to deploy a series of coordinated earth observation satellites, and to integrate in situ and space-borne observations to quantify the key water-cycle state variables and fluxes. The accompanying societal challenge is to integrate this information along with water cycle physics, and ecosystems and societal considerations as a basis for enlightened water resource management and to protect life and property from effects of water cycle extremes. Better regional to global scale water-cycle observations and predictions need to be readily available to reduce loss of life and property caused by water-related hazards. To this end, the NASA Energy and Water cycle Study (NEWS) has been documenting the satellite view of the water cycle with a goal of enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. NEWS has fostered broad interdisciplinary collaborations to study experimental and operational satellite observations and has developed analysis tools for characterizing air/sea fluxes, ocean circulation, atmospheric states, radiative balances, land surface states, sub-surface hydrology, snow and ice. This presentation will feature an overview of recent progress towards this challenge, and lay out the plan for coordination with complementary international efforts.
Environmental Consequences of Big Nasty Impacts on the Early Earth
NASA Technical Reports Server (NTRS)
Zahnle, Kevin
2015-01-01
The geological record of the Archean Earth is spattered with impact spherules from a dozen or so major cosmic collisions involving Earth and asteroids or comets (Lowe, Byerly 1986, 2015). Extrapolation of the documented deposits suggests that most of these impacts were as big or bigger than the Chicxulub event that famously ended the reign of the thunder lizards. As the Archean impacts were greater, the environmental effects were also greater. The number and magnitude of the impacts is bounded by the lunar record. There are no lunar craters bigger than Chicxulub that date to Earth's mid-to-late Archean. Chance dictates that Earth experienced no more than approximately 10 impacts bigger than Chicxulub between 2.5 billion years and 3.5 billion years, the biggest of which were approximately 30-100 times more energetic, comparable to the Orientale impact on the Moon (1x10 (sup 26) joules). To quantify the thermal consequences of big impacts on old Earth, we model the global flow of energy from the impact into the environment. The model presumes that a significant fraction of the impact energy goes into ejecta that interact with the atmosphere. Much of this energy is initially in rock vapor, melt, and high speed particles. (i) The upper atmosphere is heated by ejecta as they reenter the atmosphere. The mix of hot air, rock vapor, and hot silicates cools by thermal radiation. Rock raindrops fall out as the upper atmosphere cools. (ii) The energy balance of the lower atmosphere is set by radiative exchange with the upper atmosphere and with the surface, and by evaporation of seawater. Susequent cooling is governed by condensation of water vapor. (iii) The oceans are heated by thermal radiation and rock rain and cooled by evaporation. Surface waters become hot and salty; if a deep ocean remains it is relatively cool. Subsequently water vapor condenses to replenish the oceans with hot fresh water (how fresh depending on continental weathering, which might be rather rapid under the circumstances). (iv) The surface temperature of dry land is presumed to be the same as the lower atmosphere. A thermal wave propagates into the land at a rate set by conduction. Impacts not greatly larger than Chicxulub can raise the surface temperature by tens, hundreds, or even thousands of degrees, and evaporate meters to hundreds of meters of water. The biggest should have vitrified exposed dry land. More results are for the talk, as here we have run out of space.
Environmental Consequences of Big Nasty Impacts on the Early Earth
NASA Technical Reports Server (NTRS)
Zahnle, Kevin
2015-01-01
The geological record of the Archean Earth is spattered with impact spherules from a dozen or so major cosmic collisions involving Earth and asteroids or comets (Lowe, Byerly 1986, 2015). Extrapolation of the documented deposits suggests that most of these impacts were as big or bigger than the Chicxulub event that famously ended the reign of the thunder lizards. As the Archean impacts were greater, the environmental effects were also greater. The number and magnitude of the impacts is bounded by the lunar record. There are no lunar craters bigger than Chicxulub that date to Earth's mid-to-late Archean. Chance dictates that Earth experienced no more than approximately 10 impacts bigger than Chicxulub between 2.5 billion years and 3.5 2.5 billion years, the biggest of which were approximately30-100 times more energetic, comparable to the Orientale impact on the Moon (1x10 (sup 26) joules). To quantify the thermal consequences of big impacts on old Earth, we model the global flow of energy from the impact into the environment. The model presumes that a significant fraction of the impact energy goes into ejecta that interact with the atmosphere. Much of this energy is initially in rock vapor, melt, and high speed particles. (i) The upper atmosphere is heated by ejecta as they reenter the atmosphere. The mix of hot air, rock vapor, and hot silicates cools by thermal radiation. Rock raindrops fall out as the upper atmosphere cools. (ii) The energy balance of the lower atmosphere is set by radiative exchange with the upper atmosphere and with the surface, and by evaporation of seawater. Susequent cooling is governed by condensation of water vapor. (iii) The oceans are heated by thermal radiation and rock rain and cooled by evaporation. Surface waters become hot and salty; if a deep ocean remains it is relatively cool. Subsequently water vapor condenses to replenish the oceans with hot fresh water (how fresh depending on continental weathering, which might be rather rapid under the circumstances). (iv) The surface temperature of dry land is presumed to be the same as the lower atmosphere. A thermal wave propagates into the land at a rate set by conduction. Impacts not greatly larger than Chicxulub can raise the surface temperature by tens, hundreds, or even thousands of degrees, and evaporate meters to hundreds of meters of water. The biggest should have vitrified exposed dry land. More results are for the talk, as here we have run out of space.
Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators
NASA Astrophysics Data System (ADS)
Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; Delay, Michael; Driks, Adam; Sahin, Ozgur
2015-06-01
Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air-water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.
Cloud Imagers Offer New Details on Earth's Health
NASA Technical Reports Server (NTRS)
2009-01-01
A stunning red sunset or purple sunrise is an aesthetic treat with a scientific explanation: The colors are a direct result of the absorption or reflectance of solar radiation by atmospheric aerosols, minute particles (either solid or liquid) in the Earth s atmosphere that occur both naturally and because of human activity. At the beginning or end of the day, the Sun s rays travel farther through the atmosphere to reach an observer s eyes and more green and yellow light is scattered, making the Sun appear red. Sunset and sunrise are especially colorful when the concentration of atmospheric particles is high. This ability of aerosols to absorb and reflect sunlight is not just pretty; it also determines the amount of radiation and heat that reaches the Earth s surface, and can profoundly affect climate. In the atmosphere, aerosols are also important as nuclei for the condensation of water droplets and ice crystals. Clouds with fewer aerosols cannot form as many water droplets (called cloud particles), and consequently, do not scatter light well. In this case, more sunlight reaches the Earth s surface. When aerosol levels in clouds are high, however, more nucleation points can form small liquid water droplets. These smaller cloud particles can reflect up to 90 percent of visible radiation to space, keeping the heat from ever reaching Earth s surface. The tendency for these particles to absorb or reflect the Sun s energy - called extinction by astronomers - depends on a number of factors, including chemical composition and the humidity and temperature in the surrounding air; because cloud particles are so small, they are affected quickly by minute changes in the atmosphere. Because of this sensitivity, atmospheric scientists study cloud particles to anticipate patterns and shifts in climate. Until recently, NASA s study of atmospheric aerosols and cloud particles has been focused primarily on satellite images, which, while granting large-scale atmospheric analysis, limited scientists ability to acquire detailed information about individual particles. Now, experiments with specialized equipment can be flown on standard jets, making it possible for researchers to monitor and more accurately anticipate changes in Earth s atmosphere and weather patterns.
ESSEA K-4 Online Course: Polar Connections
NASA Astrophysics Data System (ADS)
Blaney, L.; Myers, R. J.; Schwerin, T.
2007-12-01
The Earth System Science Education Alliance (ESSEA) is a National Science Foundation-supported program implemented by the Institute for Global Environmental Strategies (IGES) to improve the quality of geoscience instruction for pre-service, middle, and high school teachers. ESSEA increases teachers' access to quality materials, standards-based instructional methods and content knowledge. Started in 2000 and based on a trio of online courses (for elementary, middle, and high school teachers), the courses have been used by 40 faculty at 20 institutions educating over 1,700 teachers in Earth system science. Program evaluation of original course participants indicated that the courses had significant impact on teachers Earth system content knowledge and beliefs about teaching and learning. Seventeen of the original participating institutions have continued to use the courses and many have developed new programs that incorporate the courses in Earth science education opportunities for teachers. Today the ESSEA program lists nearly 40 colleges and universities as participants. The original K-4 course and modules have been revised to include topics and resources focusing on the International Polar Year. The new K-4 Land, Living Things, Water and Air modules contain inquiry-based investigations exploring our polar regions. Each module lists a set of essential questions that guide teachers and their students as they build content knowledge. The course structure requires teachers to work individually and in teams to build content knowledge and pedagogical understanding of how their students learn. This group investigation approach and a "Teacher as Researcher" theme promote reflection and collaboration to develop criteria for effective concept building. By exploring the characteristics of polar landscapes, atmosphere, and polar life, teachers and their students will develop new understandings about the interactions and dependencies of the Earth spheres and our polar regions. Changes in climate, air, water, and land quality and animal and plant populations make the news everyday. The K-4 course will help teachers inform rather than frighten their students as they learn more about the characteristics and importance of our polar regions. One goal of IPY 2007-2008 is to increase the awareness, understanding and interest of school-age children in polar conditions and research. The inclusion of polar topics in the K-4 course contributes to the achievement of that goal.
Visualizing Rhizosphere Soil Structure Around Living Roots
NASA Astrophysics Data System (ADS)
Menon, M.; Berli, M.; Ghezzehei, T. A.; Nico, P.; Young, M. H.; Tyler, S. W.
2008-12-01
The rhizosphere, a thin layer of soil (0 to 2 mm) surrounding a living root, is an important interface between bulk soil and plant root and plays a critical role in root water and nutrient uptake. In this study, we used X-ray Computerized Microtomography (microCT) to visualize soil structure around living roots non-destructively and with high spatial resolution. Four different plant species (Helianthus annuus, Lupinus hartwegii, Vigna radiata and Phaseolus lunatus), grown in four different porous materials (glass beads, medium and coarse sand, loam aggregates), were scanned with 10 ìm spatial resolution, using the microtomography beamline 8.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA. Sample cross section images clearly show contacts between roots and soil particles, connecting water films, air-water interfaces as well as some cellular features of the plants taproots. We found with a simulation experiment, inflating a cylindrical micro-balloon in a pack of air-dry loam aggregates, that soil fracturing rather than compaction might occur around a taproot growing in dry soil. Form these preliminary experiments, we concluded that microCT has potential as a tool for a more process-based understanding of the role of rhizosphere soil structure on soil fertility, plant growth and the water balance at the earth-atmosphere interface.
Visualizing the impact of living roots on rhizosphere soil structure using X-ray microtomography
NASA Astrophysics Data System (ADS)
Menon, M.; Berli, M.; Ghezzehei, T. A.; Nico, P.; Young, M. H.; Tyler, S. W.
2009-04-01
The rhizosphere is an interface between bulk soil and plant root and plays a critical role in root water and nutrient uptake. In this study, we used X-ray Computerized Microtomography (microCT) to visualize soil structure around living roots non-destructively and with high spatial resolution. Four different plant species (Helianthus annuus, Lupinus hartwegii, Vigna radiata and Phaseolus lunatus), grown in four different porous materials (glass beads, medium and coarse sand, loam aggregates), were scanned with 10 μm spatial resolution, using the microtomography beamline 8.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA. Sample cross section images clearly show contacts between roots and soil particles, connecting water films, air-water interfaces as well as some cellular features of the plants taproots. We found with a simulation experiment, inflating a cylindrical micro-balloon in a pack of air-dry loam aggregates, that soil fracturing rather than compaction might occur around a taproot growing in dry soil. Form these preliminary experiments, we concluded that microCT has potential as a tool for a more process-based understanding of the role of rhizosphere soil structure on soil fertility, plant growth and the water balance at the earth-atmosphere interface.
Engendering Cyber-Mindedness in the United States Air Force Cyber Officer Corps
2011-06-01
Transforming For Joint Operations, 4. 3 Walter McDougall , …the Heavens and the Earth : A Political History of the Space Age (New York: Basic Books, 1985...1998), 53. 5 Walter McDougall , …the Heavens and the Earth , 107. 6 David N. Spires, Beyond Horizons: A Half Century of Air Force Space...reputation as a political mastermind and 24 Walter McDougall , …the Heavens and the Earth , 143. 25
Pasek, Matthew A; Lauretta, Dante S
2005-08-01
We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO(3), the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.
NASA Astrophysics Data System (ADS)
Brent, L. C.; He, H.; Arkinson, H. L.; Stehr, J. W.; Ring, A.; Marufu, L.; Reiner, J.; Sander, L. C.; Dickerson, R. R.
2014-12-01
Routine, light aircraft air-monitoring conducted in MD provides insight into atmospheric photochemical processing as a function of altitude in the boundary layer and lower free troposphere. We present correlations between the optical properties and chemical composition of aerosols at ~1 km altitude over Maryland. Data were collected during the peak smog day and a dissipation day during an air quality episode studied in DISCOVER-AQ, July 2011. Post flight filter sample analysis shows a positive trend between measurable carboxylate concentrations and particle size with a recirculating, aged, urban air mass influenced with southeasterly marine winds (peak day). A westerly influx of air from the Ohio River Valley on the dissipation day was depleted in carboxylates compared with samples collected over the same location two days prior. These samples contained quantifiable concentrations of cis-pinonic acid, a reaction product of pinene after ozonation and photochemical oxidation. New techniques were developed to improve airborne data collection and analysis of water soluble organic acids (WSOA), a frequently dominant fraction of particulate matter (PM). An ion chromatographic mass spectrometric method was developed using NIST Standard Referencing Material 1649b, Urban Dust, as a surrogate material to achieve separation and resolution of at least 34 organic acids. Analysis of aircraft filter samples resulted in detection of 16 organic acids of which 12 were quantified. Eight inorganic species were also quantified. Aged, re-circulated metropolitan air showed a greater number of dicarboxylic acids than new transport air from the west and may provide a useful test of SOA formation theory.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... title V of the Clean Air Act (Act) by WildEarth Guardians (Petitioner), to object to CDPHE's December 28.... EPA received a petition from WildEarth Guardians dated March 24, 2011, requesting that EPA object to...
Bechy-Loizeau, Anne-Laure; Flandrois, Jean-Pierre; Abaibou, Hafid
2015-07-01
On the ISS, as on Earth, water is an essential element for life and its quality control on a regular basis allows to ensure the health of the crew and the integrity of equipment. Currently, microbial water analysis onboard ISS still relies on the traditional culture-based microbiology methods. Molecular methods based on the amplification of nucleic acids for microbiological analysis of water quality show enormous potential and are considered as the best alternative to culture-based methods. For this reason, the Midass, a fully integrated and automated prototype was designed conjointly by ESA and bioMérieux for a rapid monitoring of the microbiological quality of air. The prototype allows air sampling, sample processing and the amplification/detection of nucleic acids. We describe herein the proof of principle of an analytical approach based on molecular biology that could fulfill the ESA's need for a rapid monitoring of the microbiological quality of recycled water onboard ISS. Both concentration and recovery of microorganisms are the main critical steps when the microfiltration technology is used for water analysis. Among filters recommended standards for monitoring the microbiological quality of the water, the polycarbonate filter was fully in line with the requirements of the ISO 7704-1985 standard in terms of efficacy of capture and recovery of bacteria. Moreover, this filter does not retain nucleic acids on the surface and has no inhibitory effect on their downstream processing steps such as purification and amplification/detection. Although the Midass system was designed for the treatment of air samples, the first results on the integration of PC filters were encouraging. Nevertheless, system modifications are needed to better adapt the Midass system for the monitoring of the microbiological water quality. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
McCoy, LaShelle E.
2013-01-01
The next step in human exploration of space is beyond low Earth orbit and possibly to sites such as the Moon and Mars. Resupply of critical life support components for missions such as these are difficult or impossible. Life support processes for closing the loop of water, oxygen and carbon have to be identified. Currently, there are many technologies proposed for terrestrial missions for waste, water, air processing. and the creation of consumables. There are a variety of different approaches, but few address all of these issues simultaneously. One candidate is pyrolysis; a method where waste streams can be heated in the absence of oxygen to undergo a thermochemical conversion producing a series of bioproducts. Bioproducts like biochar made from non-edible biomass and human solid waste can possibly provide valuable benefits such as waste reduction, regolith fertilization for increased food production, and become a consumable for water processing and air revitalization systems. Syngas containing hydrogen, carbon monoxide and carbon dioxide, can be converted to methane and dimethyl ether to create propellants. Bio-oils can be utilized as a heating fuel or fed to bioreactors that utilize oil-eating microbes.
Increasing the Use of Earth Science Data and Models in Air Quality Management.
Milford, Jana B; Knight, Daniel
2017-04-01
In 2010, the U.S. National Aeronautics and Space Administration (NASA) initiated the Air Quality Applied Science Team (AQAST) as a 5-year, $17.5-million award with 19 principal investigators. AQAST aims to increase the use of Earth science products in air quality-related research and to help meet air quality managers' information needs. We conducted a Web-based survey and a limited number of follow-up interviews to investigate federal, state, tribal, and local air quality managers' perspectives on usefulness of Earth science data and models, and on the impact AQAST has had. The air quality managers we surveyed identified meeting the National Ambient Air Quality Standards for ozone and particulate matter, emissions from mobile sources, and interstate air pollution transport as top challenges in need of improved information. Most survey respondents viewed inadequate coverage or frequency of satellite observations, data uncertainty, and lack of staff time or resources as barriers to increased use of satellite data by their organizations. Managers who have been involved with AQAST indicated that the program has helped build awareness of NASA Earth science products, and assisted their organizations with retrieval and interpretation of satellite data and with application of global chemistry and climate models. AQAST has also helped build a network between researchers and air quality managers with potential for further collaborations. NASA's Air Quality Applied Science Team (AQAST) aims to increase the use of satellite data and global chemistry and climate models for air quality management purposes, by supporting research and tool development projects of interest to both groups. Our survey and interviews of air quality managers indicate they found value in many AQAST projects and particularly appreciated the connections to the research community that the program facilitated. Managers expressed interest in receiving continued support for their organizations' use of satellite data, including assistance in retrieving and interpreting data from future geostationary platforms meant to provide more frequent coverage for air quality and other applications.
Surface based factory for the production of life support and technology support products
NASA Technical Reports Server (NTRS)
1987-01-01
The presence of a manned space colony on Mars may be expected to involve three phases in the utilization of planetary resources: (1) survival phase in which air, water, and food are produced, (2) self sufficiency phase in which chemicals, fuels, pharmaceuticals, polymers, and metals are produced, and (3) export to earth of materials and technology 1 phase in which the unique advantage of the extraterrestrial environment is fully exploited. The Advanced Design Project is administered as an interdisciplinary effort involving students and faculty throughout the College of Engineering. Senior students from Chemical, Civil, Electrical, and Mechanical Engineering are participating as a team. Multi discipline interfacing and coordination are stressed throughout the project. An interdisciplinary senior design course was developed and offered in the Spring of 1987. The first task of the survival phase is that of providing a supply of water and air adequate to support a ten person colony. The project has been divided into three subgroups: (1) design of a manufacturing and storage facility for air, (2) search and drill for water or water-bearing materials, and (3) retrieve, purify, and store potable water. The conceptual design phase has been completed and the project is being documented. The second task of the survival phase is that of providing a replenish able food supply. This task has two requirements: producing a supply of protein and providing an environment for growing plants for food. For the first requirement, we considered the design of a bioreactor system capable of growing beef cells for protein production. For the second, a design must be developed for a manufacturing system to produce materials needed to build a greenhouse farm.
Diversity of Approaches to Structuring University-Based Earth System Science Education
NASA Astrophysics Data System (ADS)
Aron, J.; Ruzek, M.; Johnson, D. R.
2004-12-01
Over the past quarter century, the "Earth system science" paradigm has emerged among the interdisciplinary science community, emphasizing interactions among components hitherto considered within separate disciplines: atmosphere (air); hydrosphere (water); biosphere (life); lithosphere (land); anthroposphere (human dimension); and exosphere (solar system and beyond). How should the next generation of Earth system scientists learn to contribute to this interdisciplinary endeavor? There is no one simple answer. The Earth System Science Education program, funded by NASA, has addressed this question by supporting faculty at U.S. universities who develop new courses, curricula and degree programs in their institutional contexts. This report demonstrates the diversity of approaches to structuring university-based Earth system science education, focusing on the 18 current grantees of the Earth System Science Education Program for the 21st Century (ESSE21). One of the most fundamental characteristics is the departmental structure for teaching Earth system science. The "home" departments of the Earth system science faculty range from Earth sciences and physics to agronomy and social work. A brand-new institution created an interdisciplinary Institute for Earth Systems Science and Policy without traditional "parent" departments. Some institutions create new degree programs as majors or as minors while others work within existing degree programs to add or revise courses. A university may also offer multiple strands, such as a degree in the Science of the Earth System and a degree in the Human Dimensions of the Earth System. Defining a career path is extremely important to students considering Earth system science programs and a major institutional challenge for all programs in Earth system science education. How will graduate programs assess prospective students? How will universities and government agencies assess prospective faculty and scientists? How will government agencies allocate funds to interdisciplinary Earth system science and technology? Finally, how should the Earth system science education community evolve?
Radiative transfer in a polluted urban planetary boundary layer
NASA Technical Reports Server (NTRS)
Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.
1977-01-01
Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.
AIRS Views of Anthropogenic and Biomass Burning CO: INTEX-B/MILAGRO and TEXAQS/GoMACCS
NASA Astrophysics Data System (ADS)
McMillan, W. W.; Warner, J.; Wicks, D.; Barnet, C.; Sachse, G.; Chu, A.; Sparling, L.
2006-12-01
Utilizing the Atmospheric InfraRed Sounder's (AIRS) unique spatial and temporal coverage, we present observations of anthropogenic and biomass burning CO emissions as observed by AIRS during the 2006 field experiments INTEX-B/MILAGRO and TEXAQS/GoMACCS. AIRS daily CO maps covering more than 75% of the planet demonstrate the near global transport of these emissions. AIRS day/night coverage of significant portions of the Earth often show substantial changes in 12 hours or less. However, the coarse vertical resolution of AIRS retrieved CO complicates its interpretation. For example, extensive CO emissions are evident from Asia during April and May 2006, but it is difficult to determine the relative contributions of biomass burning in Thailand vs. domestic and industrial emissions from China. Similarly, sometimes AIRS sees enhanced CO over and downwind of Mexico City and other populated areas. AIRS low information content and decreasing sensitivity in the boundary layer can result in underestimates of CO total columns and free tropospheric abundances. Building on our analyses of INTEX-A/ICARTT data from 2004, we present comparisons with INTEX-B/MILAGRO and TEXAQS/GoMACCS in situ aircraft measurements and other satellite CO observations. The combined analysis of AIRS CO, water vapor and O3 retrievals; MODIS aerosol optical depths; and forward trajectory computations illuminate a variety of dynamical processes in the troposphere.
Soil Moisture Active Passive (SMAP) Media Briefing
2015-01-09
Dara Entekhabi, SMAP science team lead, Massachusetts Institute of Technology, center, speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)
Soil Moisture Active Passive (SMAP) Media Briefing
2015-01-09
Dara Entekhabi, SMAP science team lead, Massachusetts Institute of Technology, speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)
NASA Technical Reports Server (NTRS)
Estes, Sue M.
2009-01-01
The Public Health application area focuses on Earth science applications to public health and safety, particularly regarding infectious disease, emergency preparedness and response, and environmental health issues. The application explores issues of toxic and pathogenic exposure, as well as natural and man-made hazards and their effects, for risk characterization/mitigation and improvements to health and safety. The program elements of the NASA Applied Sciences Program are: Agricultural Efficiency, Air Quality, Climate, Disaster Management, Ecological Forecasting, Water Resources, Weather, and Public Health.
Very high energy gamma-ray astronomy with HAWC
NASA Astrophysics Data System (ADS)
López-Coto, R.; HAWC Collaboration
2017-12-01
The High Altitude Water Cherenkov (HAWC) observatory is an air-shower array located in Mexico. It is sensitive to the highest energy photons we detect at the Earth, reaching energies of several tens of TeV. The observatory was completed more than one year ago and we are presenting in this contribution the first results about its performance. We also show the results of the first-year survey, the first flaring events detected by the observatory, its sensitivity to extended sources and the plans for the upgrade that is currently taking place.
Earth, air, fire and water: A targetry quartet
NASA Astrophysics Data System (ADS)
Valdovinos, Hector F.; Graves, Stephen; Ellison, Paul; Barnhart, Todd; Nickles, Robert J.
2017-05-01
Cyclotron targets have made steady progress in terms of current capabilities, automated handling and application to isotopically-enriched material. These advances have followed a distinct trajectory at the University of Wisconsin, with the emphasis on maximizing the yield of the desired radionuclide within the strict constraints of heat transfer of beam power and the ultimate recycling of precious target stock. This approach leads to four target families, each employed in the production of the positron-emitting transition metals of the 3d- and 4d-subshells, with importance now arising as targeted molecular imaging agents.
Aquarius SAC-D Post-Launch Briefing
2011-06-10
Charles Gay, Deputy Associate Administrator, NASA Science Mission Directorate, talks during the Aquarius/SAC-D post-launch press conference on Friday, June 10, 2011 at the NASA Resident Office, Vandenberg Air Force Base, Calif. The joint U.S./Argentinian Aquarius/Satélite de Aplicaciones Científicas (SAC)-D mission, launched earlier on Friday June 10, will map the salinity at the ocean surface, information critical to improving our understanding of two major components of Earth's climate system: the water cycle and ocean circulation. Photo Credit: (NASA/Bill Ingalls)
Burken, J.G.; Vroblesky, D.A.; Balouet, J.-C.
2011-01-01
As plants evolved to be extremely proficient in mass transfer with their surroundings and survive as earth's dominant biomass, they also accumulate and store some contaminants from surroundings, acting as passive samplers. Novel applications and analytical methods have been utilized to gain information about a wide range of contaminants in the biosphere soil, water, and air, with information available on both past (dendrochemistry) and present (phytoscreening). Collectively these sampling approaches provide rapid, cheap, ecologically friendly, and overall "green" tools termed "Phytoforensics". ?? 2011 American Chemical Society.
Soil Moisture Active Passive (SMAP) Media Briefing
2015-01-09
Christine Bonniksen, SMAP program executive with the Science Mission Directorate’s Earth Science Division, NASA Headquarters, left, Kent Kellogg, SMAP project manager, NASA Jet Propulsion Laboratory (JPL), second from left, Dara Entekhabi, SMAP science team lead, Massachusetts Institute of Technology, second from right, and Brad Doorn, SMAP applications lead, Science Mission Directorate’s Applied Sciences Program, NASA Headquarters, right, are seen during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)
NASA Astrophysics Data System (ADS)
Kim, Hanna
2011-12-01
This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were entering eighth grade attended an intensive, 1-week Inquiry-Based Science and Technology Enrichment Program which used a main theme, "Green Earth Enhanced with Inquiry and Technology." We used pre- and post-attitude surveys, pre- and post-science content knowledge tests, and selective interviews to collect data and measure changes in students' attitudes and content knowledge. The study results indicated that at the post-intervention measures, participants significantly improved their attitudes toward science and science-related careers and increased their content knowledge of selected science concepts ( p < .05).
2009-02-13
CAPE CANAVERAL, Fla. – At the Hazardous Processing Facility at Astrotech in Titusville, Fla., workers attach cables from the overhead crane onto the Kepler spacecraft. The crane will lift and weigh the spacecraft. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. The liftoff of Kepler aboard a Delta II rocket is currently targeted for 10:48 p.m. EST March 5 from Space Launch Complex 17 on Cape Canaveral Air Force Station. Photo credit: NASA/Jim Grossmann
2009-02-21
CAPE CANAVERAL, Fla. – In the mobile service tower on Launch pad 17-B at Cape Canaveral Air Force Station in Florida, the lower part of the metal transportation canister is removed from around NASA's Kepler spacecraft. The spacecraft was mated with the Delta II rocket for launch. The liftoff of Kepler is currently scheduled for 10:48 p.m. EST March 5. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. Photo credit: NASA/Jack Pfaller
2009-03-06
CAPE CANAVERAL, Fla. – United Launch Alliance's Delta II rocket, with NASA's Kepler spacecraft aboard, is bathed in light on Launch Pad 17-B at Cape Canaveral Air Force Station in Florida prior to launch. Liftoff is planned for 10:49 p.m. EST. Kepler is a spaceborne telescope designed to search the nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is the region around a star where temperatures permit water to be liquid on a planet's surface. The challenge for Kepler is to look at a large number of stars in order to statistically estimate the total number of Earth-size planets orbiting sun-like stars in the habitable zone. Kepler will survey more than 100,000 stars in our galaxy. Photo credit: NASA/Jack Pfaller
2009-02-13
CAPE CANAVERAL, Fla. – At the Hazardous Processing Facility at Astrotech in Titusville, Fla., workers prepare the crane and scale that will be used to weigh the Kepler spacecraft, in the background at right. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. The liftoff of Kepler aboard a Delta II rocket is currently targeted for 10:48 p.m. EST March 5 from Space Launch Complex 17 on Cape Canaveral Air Force Station. Photo credit: NASA/Jim Grossmann
2009-02-21
CAPE CANAVERAL, Fla. – In the mobile service tower on Launch pad 17-B at Cape Canaveral Air Force Station in Florida, the upper part of the metal transportation canister is removed from around NASA's Kepler spacecraft. The spacecraft was mated with the Delta II rocket for launch. The liftoff of Kepler is currently scheduled for 10:48 p.m. EST March 5. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. Photo credit: NASA/Jack Pfaller
2009-02-02
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, technicians secure the protective cover over NASA's Kepler spacecraft. Kepler will be moved to the Hazardous Processing Facility for fueling. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. The liftoff of Kepler aboard a Delta II rocket is currently planned for 10:48 p.m. EST March 5 from Space Launch Complex 17 on Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller
2009-02-21
CAPE CANAVERAL, Fla. – Covered by a protective cover, NASA's Kepler spacecraft on Launch pad 17-B at Cape Canaveral Air Force Station in Florida is lifted alongside the mobile service tower. It will be moved into the tower for mating with the Delta II rocket for launch. The liftoff of Kepler is currently scheduled for 10:48 p.m. EST March 5. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. Photo credit: NASA/Jack Pfaller
2009-02-02
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility, another protective cover is lowered over NASA's Kepler spacecraft. When covered, Kepler will be moved to the Hazardous Processing Facility for fueling. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. The liftoff of Kepler aboard a Delta II rocket is currently planned for 10:48 p.m. EST March 5 from Space Launch Complex 17 on Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller
2009-03-06
CAPE CANAVERAL, Fla. – Against the backdrop of the Atlantic Ocean, the Delta II 7925 rocket stands ready for launch following rollback of the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station. Atop the rocket is NASA's Kepler spacecraft. Kepler is a spaceborne telescope designed to search the nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is the region around a star where temperatures permit water to be liquid on a planet's surface. The challenge for Kepler is to look at a large number of stars in order to statistically estimate the total number of Earth-size planets orbiting sun-like stars in the habitable zone. Kepler will survey more than 100,000 stars in our galaxy. Photo credit: NASA/Jack Pfaller
2009-02-16
CAPE CANAVERAL, Fla. – At the Hazardous Processing Facility at Astrotech in Titusville, Fla., the Kepler spacecraft awaits the next step in its processing: mating to a Delta II third stage. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. The liftoff of Kepler aboard a Delta II rocket is currently targeted for 10:48 p.m. EST March 5 from Space Launch Complex 17 on Cape Canaveral Air Force Station. Photo credit: NASA/Troy Cryder
2009-02-21
CAPE CANAVERAL, Fla. – Covered by a protective cover, NASA's Kepler spacecraft arrives on Launch pad 17-B at Cape Canaveral Air Force Station in Florida. Kepler will be lifted into the mobile service tower for mating with the Delta II rocket for launch. The liftoff of Kepler is currently scheduled for 10:48 p.m. EST March 5. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. Photo credit: NASA/Jack Pfaller
NASA Astrophysics Data System (ADS)
Milne, Andrew; Amirfazli, Alidad
In free fall, the absence of gravity poses many challenges for fluid handling systems. One such example of this is condensers. On earth, the condensed liquid is removed from the tilted condenser plate by gravity forced shedding. In microgravity, proposed solutions include the use of surfaces with gradients in wettability [1], the use of electrowetting [2], and shearing airflow [3]. In this talk, shear shedding results for a variety of surface (hydrophilic to superhydrophobic (extremely water repelling)) will be presented. Surface science and aerodynamics are used to reveal fundamental parameters controlling incipient motion for drops exposed to shearing airflow. It is found that wetting parameters such as contact angle and surface tension are very influential in determining the minimum required air velocity for drop shedding. Based on experimental results for drops of water and hexadecane (0.5-100 l) on PMMA, Teflon, and a superhydrophobic aluminum surface, an exponential function is proposed that relates the critical air velocity for shedding to the ratio of drop base length to projected area. The results for the water systems can be collapsed to a self similar curve by normalization, which also explains results from other researchers. Since shedding from superhydrophobic surfaces (SHS) is seen to be easier compared to other surfaces, the behaviour of SHS is also probed in this talk. SHS have space-based applications to shedding, self cleaning, anti-icing (spacecraft launch/re-entry), anti-fouling, fluid actuation, and decreased fluid friction. The mechanism for SHS is understood to be the existence of an air layer between large portions of the drop and solid. The first concrete visual evidence of this was gained performing a parabolic flight experiment with the ESA. Results of this experi-ment will be discussed, showing the extreme water repelling potential of SHS in microgravity, and demonstrating how the wetting behaviours seen (partial penetration, transition of wetting states, unpredicted contact angle behaviour) affect models of superhydrophobicity and the use of SHS to both space and Earth based applications. 1) Darhuber, A. A.; Troian, S. M. Annual Review of Fluid Mechanics 2005, 425-455. 2) Berthier, J.; Dubois, P.; Clementz, P.; Claustre, P.; Peponnet, C.; Fouillet, Y. Sensors and Actuators A: Physical 2007, 134, 471-479. 3) Milne, A. J. B.; Amirfazli, A. Langmuir 2009, 25, 14155-14164.
Biosignatures as revealed by spectropolarimetry of Earthshine.
Sterzik, Michael F; Bagnulo, Stefano; Palle, Enric
2012-02-29
Low-resolution intensity spectra of Earth's atmosphere obtained from space reveal strong signatures of life ('biosignatures'), such as molecular oxygen and methane with abundances far from chemical equilibrium, as well as the presence of a 'red edge' (a sharp increase of albedo for wavelengths longer than 700 nm) caused by surface vegetation. Light passing through the atmosphere is strongly linearly polarized by scattering (from air molecules, aerosols and cloud particles) and by reflection (from oceans and land). Spectropolarimetric observations of local patches of Earth's sky light from the ground contain signatures of oxygen, ozone and water, and are used to characterize the properties of clouds and aerosols. When applied to exoplanets, ground-based spectropolarimetry can better constrain properties of atmospheres and surfaces than can standard intensity spectroscopy. Here we report disk-integrated linear polarization spectra of Earthshine, which is sunlight that has been first reflected by Earth and then reflected back to Earth by the Moon. The observations allow us to determine the fractional contribution of clouds and ocean surface, and are sensitive to visible areas of vegetation as small as 10 per cent. They represent a benchmark for the diagnostics of the atmospheric composition, mean cloud height and surfaces of exoplanets.
Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.
2004-01-01
Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.
NASA Astrophysics Data System (ADS)
Boutron, Claude
2009-02-01
This book is the eighth volume in the series of books published within the framework of the European Research Course on Atmospheres ("ERCA"). ERCA was initiated in 1993 by the University Joseph Fourier of Grenoble, in order to provide PhD students and scientists from Europe and the rest of the world with a multidisciplinary course, which covers especially: the climate system and climate change; the physics and chemistry of the Earth's atmosphere; the human dimensions of environmental change; the other planets and satellites in the solar system and beyond. Since 1993, sixteen sessions have been attended by more 800 participants from 50 countries. The seventeenth session will take place from 12 January to 13 February 2009. This new volume contains twenty two chapters dealing with a wide range of topics. The following subjects are covered: the human dimensions of global environmental change; climate change and cryospheric evolution in China; the projections of twenty-first century climate over Europe; the understanding of the health impacts of air pollutants; air quality and human welfare; photocatalytic self-cleaning materials; radiative transfer in the cloudy atmosphere; laboratory modelling of atmospheric dynamical processes; stratospheric ozone; the applications of stable isotope analysis to atmospheric trace gas budgets; nitrogen oxides in the troposphere; the observation of the solid Earth, the oceans and land waters; the surface mass balance of the Greenland ice sheet; sea surface salinity reconstruction as seen with foraminifera shells; sources markers in aerosols, oceanic particles and sediments; the nucleation of atmospheric particles; the characterization of atmospheric aerosol episodes in China; the solar magnetic activity; the present and past climates of planet Mars; the outer solar system; Titan as an analog of Earth's past and future; the detection and characterization of extrasolar planets.
Proposal for a zero-gravity toilet facility for the space station
NASA Technical Reports Server (NTRS)
Fleri, Edgar L., Jr.; Galliano, Paul A.; Harrison, Mark E.; Johnson, William B.; Meyer, Gregory J.
1989-01-01
This proposed toilet facility has a straightforward design. It has few moving parts and is easily maintained. Air and water flow provide sanitary movement of the waste. The toilet's chambers are coated with Teflon which, along with the water flow, makes it self-cleaning. An added disinfectant called Betadiene kills any bacteria that may form on the chamber walls. The chair is contoured to take into account the neutral body position and the necessary strain position for defecation. Restraints at the ankles, knees, and midsection hold the body in the chair. The waste is stored in discs of Gortex material which are inside a replaceable storage chamber. This chamber can be removed, capped and stored until eventual return to earth.
Regenerative life support systems--why do we need them?
Barta, D J; Henninger, D L
1994-11-01
Human exploration of the solar system will include missions lasting years at a time. Such missions mandate extensive regeneration of life support consumables with efficient utilization of local planetary resources. As mission durations extend beyond one or two years, regenerable human life support systems which supply food and recycle air, water, and wastes become feasible; resupply of large volumes and masses of food, water, and atmospheric gases become unrealistic. Additionally, reduced dependency on resupply or self sufficiency can be an added benefit to human crews in hostile environments far from the security of Earth. Comparisons of resupply and regeneration will be discussed along with possible scenarios for developing and implementing human life support systems on the Moon and Mars.
2010-10-30
CAPE CANAVERAL, Fla. -- Mikkel Vestergaard, the president of Vestergaard Frandsen in Lausanne, Switzerland, participates in a news conference at NASA's Kennedy Space Center in Florida following the "LAUNCH: Health" forum. During the two-day forum, 10 international participants showcased new innovations that could address health problems on Earth and in space. LAUNCH is a global initiative to identify and support innovative work that will contribute to a sustainable future. Through a series of forums focused on key challenge areas, including water, air, food, energy, mobility and sustainable cities, LAUNCH gives leaders an opportunity to present innovative ideas among peers and join in collaborative, solution-driven discussions. This is the second forum hosted at Kennedy. The first was "LAUNCH: Water" in March 2010. Photo credit: NASA/Kim Shiflett
Earth observations taken during STS-90 mission
1998-04-20
STS090-758-018 (17 April - 3 May 1998) --- The Space Shuttle Columbia was almost directly over the San Diego, California, area when this scene was captured with a 70mm handheld camera. In order for north to appear toward the top of the frame, it should be held with the Pacific Ocean waters to the left. The United States Naval Air Station, the United States Naval Training Center, United States Marine Corps (USMC) Recruit Depot and the United States Naval Station are all visible just left of center on or near the island and peninsula features. Among the many bodies of water visible in the photo are Mission Bay, San Diego Bay, Lower Otay Reservoir, Sweetwater Reservoir and El Capitan Reservoir.
JPL-20180522-GRACFOf-0001-NASAs GRACE FO Satellite Launches Aboard a SpaceX Falcon 9 Rocket
2018-05-22
3-2-1 liftoff of Falcon 9 with GRACE-FO! NASA's Gravity Recovery and Climate Experiment Follow-on, or GRACE-FO, launched from Vandenberg Air Force Base on California's Central Coast on May 22, 2018. The twin orbiters shared a ride to space with five Iridium NEXT communications satellites. GRACE-FO will continue a study begun by the original GRACE mission, which proved that water movement can be tracked with high precision by its effect on Earth's gravitational field. GRACE-FO will continue the record of regional variations in gravity, telling us about changes in glaciers, ground water, sea levels and the health of our planet as a whole. For more, visit https://gracefo.jpl.nasa.gov .
Closed-loop Habitation Air Revitalization Model for Regenerative Life Support Systems
NASA Technical Reports Server (NTRS)
Hart, Maxwell M.
1991-01-01
The primary function of any life support system is to keep the crew alive by providing breathable air, potable water, edible food, and for disposal of waste. In a well-balanced or regenerative life support system, the various components are each using what is available and producing what is needed by other components so that there will always be enough chemicals in the form in which they are needed. Humans are not just users, but also one of the participating parts of the system. If a system could continuously recycle the original chemicals, this would make it virtually a Closed-loop Habitation (CH). Some difficulties in trying to create a miniature version of a CH are briefly discussed. In a miniature CH, a minimal structure must be provided and the difference must be made up by artificial parts such as physicochemical systems that perform the conversions that the Earth can achieve naturally. To study the interactions of these parts, a computer model was designed that simulates a miniature CH with emphasis on the air revitalization part. It is called the Closed-loop Habitation Air Revitalization Model (CHARM).
Campbell, Gene K.
1983-01-01
A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.
2008-11-13
VANDENBERG AIR FORCE BASE, Calif. -- At the Orbital Sciences payload processing facility on Vandenberg Air Force Base in California, workers unstrap the newly arrived second (left) and first stage motors for the Glory spacecraft's Taurus XL rocket. Glory is a low-Earth orbit scientific research satellite designed to collect data on the properties and distributions of aerosols in the Earth's atmosphere and on solar irradiance for the long-term Earth climate record. Glory will be launched from Vandenberg aboard Orbital's Taurus XL 3110 launch vehicle. Photo credit: NASA/Randy Beaudoin, VAFB
2011-01-11
VANDENBERG AIR FORCE BASE, Calif. – The latest Earth-observing satellite developed by NASA, called Glory, is moved into the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California. An Orbital Sciences Taurus XL rocket is targeted to launch Glory into low Earth orbit Feb. 23 from Vandenberg's Space Launch Complex 576-E. Once in orbit, Glory will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Photo credit: NASA/Ed Henry, VAFB
2011-01-11
VANDENBERG AIR FORCE BASE, Calif. – The latest Earth-observing satellite developed by NASA, called Glory, arrives at the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California by tractor-trailer. An Orbital Sciences Taurus XL rocket is targeted to launch Glory into low Earth orbit Feb. 23 from Vandenberg's Space Launch Complex 576-E. Once in orbit, Glory will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Photo credit: NASA/Ed Henry, VAFB
2011-01-11
VANDENBERG AIR FORCE BASE, Calif. – The latest Earth-observing satellite developed by NASA, called Glory, arrives at the Astrotech Payload Processing Facility at Vandenberg Air Force Base in California by tractor-trailer. An Orbital Sciences Taurus XL rocket is targeted to launch Glory into low Earth orbit Feb. 23 from Vandenberg's Space Launch Complex 576-E. Once in orbit, Glory will collect data on the properties of aerosols and black carbon. It also will help scientists understand how the sun's irradiance affects Earth's climate. Photo credit: NASA/Ed Henry, VAFB
2008-11-13
VANDENBERG AIR FORCE BASE, Calif. -- At the Orbital Sciences payload processing facility on Vandenberg Air Force Base in California, the first stage motor for the Glory spacecraft's Taurus XL rocket waits to be moved inside. Glory is a low-Earth orbit scientific research satellite designed to collect data on the properties and distributions of aerosols in the Earth's atmosphere and on solar irradiance for the long-term Earth climate record. Glory will be launched from Vandenberg aboard Orbital's Taurus XL 3110 launch vehicle. Photo credit: NASA/Randy Beaudoin, VAFB
1962-01-01
S62-01145 (1961) --- Project Mercury astronaut M. Scott Carpenter practices manual control of a spacecraft in the Air Lubricated Free Attitude (ALFA) trainer located at NASA?s Langley Air Force Base, Virginia. This trainer allows the astronaut to see the image of Earth?s surface at his feet while manually controlling the spacecraft. Carpenter has been selected as the prime pilot of the United States? second orbital flight. Photo credit: NASA
2009-01-26
VANDENBERG AIR FORCE BASE, Calif. -- The avionics are mated to stage 2 of the Taurus XL launch vehicle for the Orbiting Carbon Observatory at Vandenberg Air Force Base in California. The OCO is a new Earth-orbiting mission sponsored by NASA's Earth System Science Pathfinder Program. The launch of OCO is scheduled for Feb. 23. Photo credit: NASA/VAFB
A Unique Perspective from Space on our Planet: Science, Technologies and Applications
NASA Technical Reports Server (NTRS)
Habib, Shaid
2006-01-01
The study of Planet earth is a very complex problem. It has many non-linear and chaotic systems operating in parallel and have interdependencies. In reality, these systems/phenomena s are not well understood or mathematically modeled because of our lack of knowledge of such intricate processes. However, in order to further the subject of Earth as an integrated system, space provides excellent vantage points to look at these processes in multidimensional framework. For example, we can make strives to understand the global water cycle, carbon cycle, atmospheric chemistry, biomass changes, oceans and solid Earth variations by making multitude of global measurements such as soil moisture, precipitation, tropospheric and stratospheric gases, aerosols, tropospheric winds, ocean salinity, ocean color, vegetation cover, crustal dynamics and many more. Such suites of measurements derive the coupled models so we may predict the changes due to natural and anthropogenic forcing. NASA along with other international space agencies have made tremendous investments in recent years in developing and flying remote sensing space borne sensors to enable these measurements. These science measurements and products are further used to address pressing issues such as coastal zone erosion, air quality, severe weather, water availability and quality, public health, fires, earthquakes, land slides and others for societal benefits. This presentation provides a comprehensive overview of NASA s science investigations, related technologies and satellites/sensors and applications.
Vroblesky, Don A.; Joshi, Manish; Morrell, Jeff; Peterson, J.E.
2003-01-01
During March-April 2002, the U.S. Geological Survey, Earth Tech, and EA Engineering, Science, and Technology, Inc., in cooperation with the Air Force Center for Environmental Excellence, tested diffusion samplers at Andersen Air Force Base, Guam. Samplers were deployed in three wells at the Main Base and two wells at Marianas Bonins (MARBO) Annex as potential ground-water monitoring alternatives. Prior to sampler deployment, the wells were tested using a borehole flowmeter to characterize vertical flow within each well. Three types of diffusion samplers were tested: passive diffusion bag (PDB) samplers, dialysis samplers, and nylon-screen samplers. The primary volatile organic compounds (VOCs) tested in ground water at Andersen Air Force Base were trichloroethene and tetrachloroethene. In most comparisons, trichloroethene and tetrachloroethene concentrations in PDB samples closely matched concentrations in pumped samples. Exceptions were in wells where the pumping or ambient flow produced vertical translocation of water in a chemically stratified aquifer. In these wells, PDB samplers probably would be a viable alternative sampling method if they were placed at appropriate depths. In the remaining three test wells, the trichloroethene or tetrachloroethene concentrations obtained with the diffusion samplers closely matched the result from pumped sampling. Chloride concentrations in nylon-screen samplers were compared with chloride concentrations in dialysis and pumped samples to test inorganic-solute diffusion into the samplers across a range of concentrations. The test showed that the results from nylon-screen samplers might have underestimated chloride concentrations at depths with elevated chloride concentrations. The reason for the discrepancy in this investigation is unknown, but may be related to nylon-screen-mesh size, which was smaller than that used in previous investigations.
NASA Astrophysics Data System (ADS)
Daei, Mohammad Ali; Daei, Manizheh; Daei, Bijan
2017-04-01
At many sub tropical places in the globe, including the Persian Gulf in the south of Iran, there is continuously a tremendous amount of steam in the air, but it fails to transform to cloud because of the surrounding overheated lands. Reduction in precipitation in these regions has been extraordinary in recent years. The most probable reason is the global warming phenomena. Many dried forest remains, in these regions are referring to much more precipitations not long ago. All around the Persian Gulf, Oman Sea, Arab sea, and red sea there are enough steam to produce good precipitation nearly year round. The main missed requirement in this zone is the coldness. This fact can be well understand from a narrow green strip in Dhofar which is indebted to a cold oceanic stream that approaches to local shore during four months yearly. This natural cold stream helps a better condensation of water vapor and more precipitation but only in a narrow mountainous land. Based on this natural phenomenon, we hypothesize a different design to cool the water vapor with the same result. Prevention of close contact between the water vapors and hot lands by shooting the steam directly into the atmosphere may help to produce more cloud and rain. Making multiple vertical tunnels in mountains for upright conducting of humid air into the atmosphere can be a solution. Fortunately there are a few high mountain ranges alongside of the coastline in south part of Iran. So excavation of drafting tunnels in these mountains seems reasonable. These structures act passively, but for long term do their work without consuming energy, and making pollution. These earth tubes in some aspects resemble to Kariz, another innovative structure which invented by ancient Iranians, thousands of years ago in order to extract water from dry lands in deserts. Up drafting earth channels can be supposed as a wide vertical kariz which conduct water vapor into the atmosphere from the hot land near a warm sea, something like passive cooling towers in power plants. Many experiments and practices are indicating that these simple, cheap, and environmentally friendly structures can work continuously and effectively without an operator. We expect hundreds of these structures alongside the coastline in the south, will be able to change the local climate positively forever. Also upright earth tubes may have extra benefits if we choose the right points for drilling. Chasing escaping streams, finding precious minerals and stones, producing well ventilated area for recreation are among of the probable opportunities. Almost certainly, these by-products, in majority of cases will compensate the costs. Key words: up drafting tunnels, conducting water vapor, steam, cloud and rain production, hot lands. Global warming
Moisture Fluxes Derived from EOS Aqua Satellite Data for the North Water Polynya Over 2003-2009
NASA Technical Reports Server (NTRS)
Boisvert, Linette N.; Markus, Thorsten; Parkinson, Claire L.; Vihma, Timo
2012-01-01
Satellite data were applied to calculate the moisture flux from the North Water polynya during a series of events spanning 2003-2009. The fluxes were calculated using bulk aerodynamic formulas with the stability effects according to the Monin-Obukhov similarity theory. Input parameters were taken from three sources: air relative humidity, air temperature, and surface temperature from the Atmospheric Infrared Sounder (AIRS) onboard NASA's Earth Observing System (EOS) Aqua satellite, sea ice concentration from the Advanced Microwave Scanning Radiometer (AMSR-E, also onboard Aqua), and wind speed from the ECMWF ERA-Interim reanalysis. Our results show the progression of the moisture fluxes from the polynya during each event, as well as their atmospheric effects after the polynya has closed up. These results were compared to results from studies on other polynyas, and fall within one standard deviation of the moisture flux estimates from these studies. Although the estimated moisture fluxes over the entire study region from AIRS are smaller in magnitude than ERA-Interim, they are more accurate due to improved temperature and relative humidity profiles and ice concentration estimates over the polynya. Error estimates were calculated to be 5.56 x10(exp -3) g/sq. m/ s, only 25% of the total moisture flux, thus suggesting that AIRS and AMSR-E can be used with confidence to study smaller scale features in the Arctic sea ice pack and can capture their atmospheric effects. These findings bode well for larger-scale studies of moisture fluxes over the entire Arctic Ocean and the thinning ice pack.
Figueiredo, A M G; Nogueira, C A; Saiki, M; Milian, F M; Domingos, M
2007-01-01
Tillandsia usneoides L. is an epiphytic bromeliad plant able to absorb water and nutrients directly from the air. For this reason this species was selected to carry out a monitoring study of air pollution in the metropolitan region of São Paulo, Brazil. Five consecutive transplantation experiments (8 weeks each) were performed in 10 sites of the city, submitted to different sources of air pollution (industrial, vehicular), using plants collected from an unpolluted area. After exposure, trace metals were analyzed in the plant by instrumental neutron activation analysis. Traffic-related elements such as Zn and Ba presented high concentrations in exposure sites near to heavy traffic avenues (cars, buses and trucks) and may be associated to vehicular sources. For Zn and Co the highest contents were related to industrial zones and can be associated to the presence of anthropogenic emission sources. The rare earth elements, Fe and Rb, probably have soil particles as main source.
Finite-difference numerical simulations of underground explosion cavity decoupling
NASA Astrophysics Data System (ADS)
Aldridge, D. F.; Preston, L. A.; Jensen, R. P.
2012-12-01
Earth models containing a significant portion of ideal fluid (e.g., air and/or water) are of increasing interest in seismic wave propagation simulations. Examples include a marine model with a thick water layer, and a land model with air overlying a rugged topographic surface. The atmospheric infrasound community is currently interested in coupled seismic-acoustic propagation of low-frequency signals over long ranges (~tens to ~hundreds of kilometers). Also, accurate and efficient numerical treatment of models containing underground air-filled voids (caves, caverns, tunnels, subterranean man-made facilities) is essential. In support of the Source Physics Experiment (SPE) conducted at the Nevada National Security Site (NNSS), we are developing a numerical algorithm for simulating coupled seismic and acoustic wave propagation in mixed solid/fluid media. Solution methodology involves explicit, time-domain, finite-differencing of the elastodynamic velocity-stress partial differential system on a three-dimensional staggered spatial grid. Conditional logic is used to avoid shear stress updating within the fluid zones; this approach leads to computational efficiency gains for models containing a significant proportion of ideal fluid. Numerical stability and accuracy are maintained at air/rock interfaces (where the contrast in mass density is on the order of 1 to 2000) via a finite-difference operator "order switching" formalism. The fourth-order spatial FD operator used throughout the bulk of the earth model is reduced to second-order in the immediate vicinity of a high-contrast interface. Current modeling efforts are oriented toward quantifying the amount of atmospheric infrasound energy generated by various underground seismic sources (explosions and earthquakes). Source depth and orientation, and surface topography play obvious roles. The cavity decoupling problem, where an explosion is detonated within an air-filled void, is of special interest. A point explosion source located at the center of a spherical cavity generates only diverging compressional waves. However, we find that shear waves are generated by an off-center source, or by a non-spherical cavity (e.g. a tunnel). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Technical Reports Server (NTRS)
2002-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: AIRS channel 2333 (2616 cm-1)Figure 2: HSB channel 2 (150 GHz) Three different Views of Hurricane Isidore from the Atmospheric Infrared Sounding System (AIRS) on Aqua. At the time Aqua passed over Isidore, it was classified as a Category 3 (possibly 4) hurricane, with minimum pressure of 934 mbar, maximum sustained wind speeds of 110 knots (gusting to 135) and an eye diameter of 20 nautical miles. Isidore was later downgraded to a Tropical Storm before gathering strength again. This is a visible/near-infrared image, made with the AIRS instrument. Its 2 km resolution shows fine details of the cloud structure, and can be used to help interpret the other images. For example, some relatively cloud-free regions in the eye of the hurricane can be distinguished. This image was made with wavelengths slightly different than those seen by the human eye, causing plants to appear very red. Figure 1 shows high and cold clouds in blue. Figure 2 shows heavy rain cells over Alabama in blue. This image shows the swirling clouds in white and the water of the Gulf of Mexico in blue. The eye of the hurricane is apparent in all three images. Figure 1 shows how the hurricane looks through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in clear regions. The lowest temperatures are over Alabama and are associated with high, cold cloud tops at the end of the cloud band streaming from the hurricane. Although the eye is visible, it does not appear to be completely cloud free. Figure 2 shows the hurricane as seen through a microwave channel of the Humidity Sounder for Brazil (HSB). This channel is sensitive to humidity, clouds and rain. Unlike the AIRS infrared channel, it can penetrate through cloud layers and therefore reveals some of the internal structure of the hurricane. In this image, the green and yellow colors indicate clouds and heavy moisture, while blue indicates scattering by precipitation in intense convection. Orange indicates warm, moist air near the surface. The ocean surface, could it be seen, would appear slightly colder (yellow to green) due to the relatively low emissivity of water. Three sets of eye walls are apparent, and a number of intense convective cells can also be distinguished. In the near future, weather data derived from these images will allow us to improve our forecasts and track the paths of hurricanes more accurately. The AIRS sounding system provides 2400 such images, or channels, continuously. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.Atmospheric Science Data Center
2018-06-15
... Theoretical Basis Document (ATBD) ADAM-M ADAM-M Information AirMISR AirMISR Home Page MISR Home Page Feature Article: Fiery Temperament KONVEX Information SAFARI Home Page AirMSPI Get Google Earth ...
NASA Astrophysics Data System (ADS)
Nakagawa, Takashi; Spiegelman, Marc W.
2017-04-01
We investigate the influence of the mantle water content in the early Earth on that in the present mantle using numerical convection simulations that include three processes for redistribution of water: dehydration, partitioning of water into partially molten mantle, and regassing assuming an infinite water reservoir at the surface. These models suggest that the water content of the present mantle is insensitive to that of the early Earth. The initial water stored during planetary formation is regulated up to 1.2 OMs (OM = Ocean Mass; 1.4 ×1021 kg), which is reasonable for early Earth. However, the mantle water content is sensitive to the rheological dependence on the water content and can range from 1.2 to 3 OMs at the present day. To explain the evolution of mantle water content, we computed water fluxes due to subducting plates (regassing), degassing and dehydration. For weakly water dependent viscosity, the net water flux is almost balanced with those three fluxes but, for strongly water dependent viscosity, the regassing dominates the water cycle system because the surface plate activity is more vigorous. The increased convection is due to enhanced lubrication of the plates caused by a weak hydrous crust for strongly water dependent viscosity. The degassing history is insensitive to the initial water content of the early Earth as well as rheological strength. The degassing flux from Earth's surface is calculated to be approximately O (1013) kg /yr, consistent with a coupled model of climate evolution and mantle thermal evolution.
Propagation of sound through the Earth's atmosphere
NASA Technical Reports Server (NTRS)
Meredith, R. W.; Becher, J.
1983-01-01
The data collected at a pressure of one atmosphere for the different temperatures and relative humidities of the air-water vapor mixtures is summarized. The dew point hygrometer used in these measurements did not give reliable results for dew points much above the ambient room temperature. For this reason measurements were not attempted at the higher temperatures and humidities. Viscous wall losses in the resonant tube at 0 C so dominate the molecular relaxation of nitrogen, in the air-water vapor mixture, that reliable data could not be obtained using the free decay method in a resonant tube at one atmosphere. In an effort to obtain viable data at these temperatures, measurements were performed at a pressure of 10 atmospheres. Since the molecular relaxation peak is proportional to the pressure and the viscous losses are proportional to the inverse square root of the pressure the peak height should be measurable at the higher pressure. The tradeoff here is that at 10 atmospheres; the highest relative humidity attainable is 10 percent. The data collected at 10 atmospheres is also summarized.
Measurement of the Spectral Absorption of Liquid Water in Melting Snow With an Imaging Spectrometer
NASA Technical Reports Server (NTRS)
Green, Robert O.; Dozier, Jeff
1995-01-01
Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the Earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. In this paper we present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation. the air temperature did not drop below freezing the night of the May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, M.B.
1994-07-01
Nuclear weapons production has contaminated parts of France, and measures to counter this contamination may be as much cover-up as cleanup. The nuclear weapons industry is trying to remedy some of the problems it created. But until France lifts military secrecy from weapons production matters that affect the environment, the public has no way to gauge the cleanup. No institution outside the Atomic Energy Commission (CEA) and the Ministry of Defense has control over waste disposal, decontamination, and dismantlement at military nuclear sites. The major generators of weapons production waste in France are the CEA and Cogema, one of itsmore » many subsidiaries. Regular operations in military production sites produce environmental contamination. The authors also discuss some accidents causing further contamination. The clean-up measures that the industry is known to be taking, diluting the waste and minimizing the amount of waste, are suspect. The earth`s atmosphere has been considered a prime medium for diluting waste by open air burning of radioactive materials. Releases of mercury to the atmosphere, 260 kilograms per year as of 1984, contributed to water pollution as rain washed the mercury out of the air. Ocean dumping was the CEA`s answer to disposal of sold as well as liquid wastes. Injection liquids into the soil has been a temptation at sites not near substantial bodies of water. Burial of solid wastes has been common. The nuclear industry and the military must make public where and in what form wastes are stored. They must allow independent experts and institutions to examine their research, fabrication, and waste disposal sites. 48 refs.« less
NASA Astrophysics Data System (ADS)
Zhao, P.; Xu, X.; Chen, F.; Guo, X.; Zheng, X.; Liu, L. P.; Hong, Y.; Li, Y.; La, Z.; Peng, H.; Zhong, L. Z.; Ma, Y.; Tang, S. H.; Liu, Y.; Liu, H.; Li, Y. H.; Zhang, Q.; Hu, Z.; Sun, J. H.; Zhang, S.; Dong, L.; Zhang, H.; Zhao, Y.; Yan, X.; Xiao, A.; Wan, W.; Zhou, X.
2016-12-01
The Third Tibetan Plateau atmospheric scientific experiment (TIPEX-III) was initiated jointly by the China Meteorological Administration, the National Natural Scientific Foundation, and the Chinese Academy of Sciences. This paper presents the background, scientific objectives, and overall experimental design of TIPEX-III. It was designed to conduct an integrated observation of the earth-atmosphere coupled system over the Tibetan Plateau (TP) from land surface, planetary boundary layer (PBL), troposphere, and stratosphere for eight to ten years by coordinating ground- and air-based measurement facilities for understanding spatial heterogeneities of complex land-air interactions, cloud-precipitation physical processes, and interactions between troposphere and stratosphere. TIPEX-III originally began in 2014, and is ongoing. It established multiscale land-surface and PBL observation networks over the TP and a tropospheric meteorological radiosonde network over the western TP, and executed an integrated observation mission for cloud-precipitation physical features using ground-based radar systems and aircraft campaigns and an observation task for atmospheric ozone, aerosol, and water vapor. The archive, management, and share policy of the observation data are also introduced herein. Some TIPEX-III data have been preliminarily applied to analyze the features of surface sensible and latent heat fluxes, cloud-precipitation physical processes, and atmospheric water vapor and ozone over the TP, and to improve the local precipitation forecast. Furthermore, TIPEX-III intends to promote greater scientific and technological cooperation with international research communities and broader organizations. Scientists working internationally are invited to participate in the field campaigns and to use the TIPEX-III data for their own research.
Satellites as Shared Resources for Caribbean Climate and Health Studies
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.
2002-01-01
Remotely-sensed data and observations are providing powerful new tools for addressing climate and environment-related human health problems through increased capabilities for monitoring, risk mapping, and surveillance of parameters useful to such problems as vector-borne and infectious diseases, air and water quality, harmful algal blooms, UV (ultraviolet) radiation, contaminant and pathogen transport in air and water, and thermal stress. Remote sensing, geographic information systems (GIS), global positioning systems (GPS), improved computational capabilities, and interdisciplinary research between the Earth and health science communities are being combined in rich collaborative efforts resulting in more rapid problem-solving, early warning, and prevention in global health issues. Collaborative efforts among scientists from health and Earth sciences together with local decision-makers are enabling increased understanding of the relationships between changes in temperature, rainfall, wind, soil moisture, solar radiation, vegetation, and the patterns of extreme weather events and the occurrence and patterns of diseases (especially, infectious and vector-borne diseases) and other health problems. This increased understanding through improved information and data sharing, in turn, empowers local health and environmental officials to better predict health problems, take preventive measure, and improve response actions. This paper summarizes the remote sensing systems most useful for climate, environment and health studies of the Caribbean region and provides several examples of interdisciplinary research projects in the Caribbean currently using remote sensing technologies. These summaries include the use of remote sensing of algal blooms, pollution transport, coral reef monitoring, vectorborne disease studies, and potential health effects of African dust on Trinidad and Barbados.
ERIC Educational Resources Information Center
Minneapolis Independent School District 275, Minn.
These six booklets in the "Give Earth a Chance Series" are titled, "Dirty Air,""Trash is Taking Over,""Sounds and Silence,""Pesticides are Perilous,""Tragedy in the Laundromat," and "Troublesome Tail Pipes." The booklets are suitable for elementary use, and are intended to…
The Jet Stream's Precursor of M7.7 Russia Earthquake on 2017/07/17
NASA Astrophysics Data System (ADS)
Wu, H. C.
2017-12-01
Before M>6.0 earthquakes occurred, jet stream in the epicenter area will interrupt or velocity flow lines cross. That meaning is that before earthquake happen, atmospheric pressure in high altitude suddenly dropped during 6 12 hours (Wu & Tikhonov, 2014; Wu et.al,2015). The 70 knots speed line in jet stream was crossed at the epicenter on 2017/07/13, and then M7.7 Russia earthquake happened on 2017/07/17. Lithosphere-atmosphere-ionosphere (LAI) coupling model may be explained this phenomenon : Ionization of the air produced by an increased emanation of radon at epicenter. The water molecules in the air react with these ions, and then release heat. The heat result in temperature rise and pressure drop in the air(Pulinets, Ouzounov, 2011), and then the speed line of jet stream was changed. ps.Russia earthquake:M7.7 2017-07-17 23:34:13 (UTC) 54.471°N 168.815°E 11.0 kmReference: H.C Wu, I.N. Tikhonov, 2014, "Jet streams anomalies as possible short-term precursors of earthquakes with M>6.0", Research in geophysics. H.C.Wu., Ivan N. Tikhonov, and Ariel R. Ćesped,2015, Multi-parametric analysis of earthquake precursors, Russ. J. Earth. Sci., 15, ES3002, doi:10.2205/2015ES000553 S Pulinets, D Ouzounov, 2011,"Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model-An unified concept for earthquake precursors validation", Journal of Asian Earth Sciences 41 (4), 371-382.
NASA Astrophysics Data System (ADS)
Cunliffe, Michael; Engel, Anja; Frka, Sanja; Gašparović, Blaženka; Guitart, Carlos; Murrell, J. Colin; Salter, Matthew; Stolle, Christian; Upstill-Goddard, Robert; Wurl, Oliver
2013-02-01
The sea surface microlayer (SML) covers more than 70% of the Earth's surface and is the boundary layer interface between the ocean and the atmosphere. This important biogeochemical and ecological system is critical to a diverse range of Earth system processes, including the synthesis, transformation and cycling of organic material, and the air-sea exchange of gases, particles and aerosols. In this review we discuss the SML paradigm, taking into account physicochemical and biological characteristics that define SML structure and function. These include enrichments in biogenic molecules such as carbohydrates, lipids and proteinaceous material that contribute to organic carbon cycling, distinct microbial assemblages that participate in air-sea gas exchange, the generation of climate-active aerosols and the accumulation of anthropogenic pollutants with potentially serious implications for the health of the ocean. Characteristically large physical, chemical and biological gradients thus separate the SML from the underlying water and the available evidence implies that the SML retains its integrity over wide ranging environmental conditions. In support of this we present previously unpublished time series data on bacterioneuston composition and SML surfactant activity immediately following physical SML disruption; these imply timescales of the order of minutes for the reestablishment of the SML following disruption. A progressive approach to understanding the SML and hence its role in global biogeochemistry can only be achieved by considering as an integrated whole, all the key components of this complex environment.
NASA Astrophysics Data System (ADS)
Bourges, F.; Genty, D.; Genthon, P.; Mangin, A.; D'Hulst, D.
2012-04-01
Cave climatic environment survey covers different sort of analyses on air and water, and has various interests from the conservation of prehistoric caves to the study of paleoclimates. Depending on the purpose, the cave monitoring can be entirely automatic or combine both automatic and manual data acquisitions. Apparatus are adapted to cave environment to measure specific parameters (i.e. drip rate, air humidity, CO2) and during the long-term monitorings, several generations of techniques have been used. We present here examples of cave monitoring (1996 →) from South-France: Chauvet, Orgnac (Ardèche), Esparros (Hautes-Pyrénées) and Villars (Dordogne). In all these sites, we obtained among the longest series of climatic parameters of inside the caves, coupled sometimes with geochemical and isotopic analyses on air and seepage water, which allow to better understand cave air circulation behaviour and their sensitivity to the external climatic and environmental variations. High precision temperature measurements in Orgnac and Chauvet caves, coupled with pCO2 and radon analyses, allowed the reconstruction of seasonal air circulation patterns in each cave. While the Chauvet and Esparros caves are quite confined environments with temperature changes mainly controlled by air pressure variations, the Orgnac cave, like most caves, shows a well marked summer/winter regime alternation. Quantification of air flows of known CO2 concentration allowed the calculation of carbon fluxes toward the earth atmosphere which is estimated to about 340 gm-2yr-1. Since 15 years, the monitoring made in the Villars cave at two different levels has shown that the air temperature displays small seasonal variations in the upper galleries while it is not detectable in the lower ones. Average annual temperature difference between these two levels is of more than 1°C, showing that local differences in a single cave can be significant. A global warming trend likely correlated with local external temperature changes is observed in both levels since the beginning of the monitoring in 1996 which is not the case in Chauvet and Esparros caves. The stable isotope composition of the seepage water of the Villars cave and drip rates measured under several stalactites give precious information about the mixture of the rainfall infiltration signal in the unsaturated zone; these long isotopic series are discussed and compared with the rainfall (quantity and isotopic composition) sampled at this site.
Satellites as Sentinels for Environment & Health
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.
2002-01-01
Satellites as Sentinels for Environment & Health Remotely-sensed data and observations are providing powerful new tools for addressing human and ecosystem health by enabling improved understanding of the relationships and linkages between health-related environmental parameters and society as well as techniques for early warning of potential health problems. NASA Office of Earth Science Applications Program has established a new initiative to utilize its data, expertise, and observations of the Earth for public health applications. In this initiative, lead by Goddard Space Flight Center, remote sensing, geographic information systems, improved computational capabilities, and interdisciplinary research between the Earth and health science communities are being combined in rich collaborative efforts resulting in more rapid problem-solving, early warning, and prevention in global health issues. This presentation provides a number of recent examples of applications of advanced remote sensing and other technologies to health.and security issues related to the following: infectious and vector-borne diseases; urban, regional and global air pollution; African and Asian airborne dust; heat stress; UV radiation; water-borne disease; extreme weather; contaminant pathways (ocean, atmosphere, ice)
2008-11-13
VANDENBERG AIR FORCE BASE, Calif. -- Workers move the second stage motor of the Taurus XL rocket for the launch of the Glory spacecraft in June 2009 into the Orbital Sciences payload processing facility on Vandenberg Air Force Base in California. Glory is a low-Earth orbit scientific research satellite designed to collect data on the properties and distributions of aerosols in the Earth's atmosphere and on solar irradiance for the long-term Earth climate record. Glory will be launched from Vandenberg aboard Orbital's Taurus XL 3110 launch vehicle. Photo credit: NASA/Randy Beaudoin, VAFB
2008-11-13
VANDENBERG AIR FORCE BASE, Calif. -- At the Orbital Sciences payload processing facility on Vandenberg Air Force Base in California, workers offload the third stage motor of the Taurus XL rocket for the launch of the Glory spacecraft in June 2009. Glory is a low-Earth orbit scientific research satellite designed to collect data on the properties and distributions of aerosols in the Earth's atmosphere and on solar irradiance for the long-term Earth climate record. Glory will be launched from Vandenberg aboard Orbital's Taurus XL 3110 launch vehicle. Photo credit: NASA/Randy Beaudoin, VAFB
2008-11-13
VANDENBERG AIR FORCE BASE, Calif. -- A truck arrives at the Orbital Sciences payload processing facility on Vandenberg Air Force Base in California carrying the first, second and third stage motors for the launch of the Glory spacecraft in June 2009. Glory is a low-Earth orbit scientific research satellite designed to collect data on the properties and distributions of aerosols in the Earth's atmosphere and on solar irradiance for the long-term Earth climate record. Glory will be launched from Vandenberg aboard Orbital's Taurus XL 3110 launch vehicle. Photo credit: NASA/Randy Beaudoin, VAFB
2008-11-13
VANDENBERG AIR FORCE BASE, Calif. -- At the Orbital Sciences payload processing facility on Vandenberg Air Force Base in California, workers offload the second (right) and third stage motors of the Taurus XL rocket for the launch of the Glory spacecraft in June 2009. Glory is a low-Earth orbit scientific research satellite designed to collect data on the properties and distributions of aerosols in the Earth's atmosphere and on solar irradiance for the long-term Earth climate record. Glory will be launched from Vandenberg aboard Orbital's Taurus XL 3110 launch vehicle. Photo credit: NASA/Randy Beaudoin, VAFB
2008-11-13
VANDENBERG AIR FORCE BASE, Calif. -- In the Orbital Sciences payload processing facility on Vandenberg Air Force Base in California, the first, second and third stage motors for the Glory spacecraft's Taurus XL rocket are lined up after arrival. Glory is a low-Earth orbit scientific research satellite designed to collect data on the properties and distributions of aerosols in the Earth's atmosphere and on solar irradiance for the long-term Earth climate record. Glory will be launched from Vandenberg aboard Orbital's Taurus XL 3110 launch vehicle. Photo credit: NASA/Randy Beaudoin, VAFB
Rare Earth Element Concentration of Wyoming Thermal Waters Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quillinan, Scott; Nye, Charles; Neupane, Hari
Updated version of data generated from rare earth element investigation of produced waters. These data represent major, minor, trace, isotopes, and rare earth element concentrations in geologic formations and water associated with oil and gas production.
Ten years research activities in Earth observation at the Cyprus University of Technology
NASA Astrophysics Data System (ADS)
Hadjimitsis, Diofantos G.; Themistocleous, Kyriacos; Agapiou, Athos; Mamouri, Rodanthi; Nisantzi, Argyro; Papoutsa, Christiana; Tzouvaras, Marios; Neoclous, Kyriacos; Mettas, Christodoulos; Michaelides, Silas
2017-09-01
This paper presents the achievements for the last 10 years of the Remote Sensing and Geo-Environment Laboratory of the Cyprus University of Technology in the Earth observation through the ERATOSTHENES Research Centre. Over the past 10 years, the Centre has secured competitive research funding from various sources, such as the European Commission, the Cyprus Research Promotion Foundation, as well as industrial partners, having participated either as a coordinator or as a partner in more than 60 research projects. The research activities of the Centre encompass remote sensing and GIS applications in the fields of Cultural Heritage, Agriculture, Water Resource Management, Environment, Infrastructure, Marine Spatial Planning, Atmospheric, Air Pollution and Coastal Applications, Natural Resource Management and Hazard Assessment. The aim of this paper is to map the existing activities and identify the future trends and goals of the Eratosthenes Research Centre for the next 15 years.
2009-03-06
CAPE CANAVERAL, Fla. – On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, United Launch Alliance's Delta II rocket carrying NASA's Kepler spacecraft rises through the exhaust cloud created by the firing of the rocket’s engines. Liftoff was on time at 10:49 p.m. EST. Kepler is a spaceborne telescope designed to search the nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is the region around a star where temperatures permit water to be liquid on a planet's surface. The challenge for Kepler is to look at a large number of stars in order to statistically estimate the total number of Earth-size planets orbiting sun-like stars in the habitable zone. Kepler will survey more than 100,000 stars in our galaxy. Photo credit: NASA/Regina Mitchell-Ryall, Tom Farrar
2009-03-06
CAPE CANAVERAL, Fla. – On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, exhaust clouds cascade around the base of United Launch Alliance's Delta II rocket carrying NASA's Kepler spacecraft as the rocket’s engines ignite. Liftoff was on time at 10:49 p.m. EST. Kepler is a spaceborne telescope designed to search the nearby region of our galaxy for Earth-size planets orbiting in the habitable zone of stars like our sun. The habitable zone is the region around a star where temperatures permit water to be liquid on a planet's surface. The challenge for Kepler is to look at a large number of stars in order to statistically estimate the total number of Earth-size planets orbiting sun-like stars in the habitable zone. Kepler will survey more than 100,000 stars in our galaxy. Photo credit: NASA/Sandra Joseph, Kevin O'Connell
SERVIR Science Applications for Capacity Building
NASA Technical Reports Server (NTRS)
Limaye, Ashutosh; Searby, Nancy D.; Irwin, Daniel
2012-01-01
SERVIR is a regional visualization and monitoring system using Earth observations to support environmental management, climate adaptation, and disaster response in developing countries. SERVIR is jointly sponsored by NASA and the U.S. Agency for International Development (USAID). SERVIR has been instrumental in development of science applications to support the decision-making and capacity building in the developing countries with the help of SERVIR Hubs. In 2011, NASA Research Opportunities in Space and Earth Sciences (ROSES) included a call for proposals to form SERVIR Applied Sciences Team (SERVIR AST) under Applied Sciences Capacity Building Program. Eleven proposals were selected, the Principal Investigators of which comprise the core of the SERVIR AST. The expertise on the Team span several societal benefit areas including agriculture, disasters, public health and air quality, water, climate and terrestrial carbon assessments. This presentation will cover the existing SERVIR science applications, capacity building components, overview of SERVIR AST projects, and anticipated impacts.
Microbiology and Crew Medical Events on the International Space Station
NASA Technical Reports Server (NTRS)
Oubre, Cherie M.; Charvat, Jacqueline M.; Kadwa, Biniafer; Taiym, Wafa; Ott, C. Mark; Pierson, Duane; Baalen, Mary Van
2014-01-01
The closed environment of the International Space Station (ISS) creates an ideal environment for microbial growth. Previous studies have identified the ubiquitous nature of microorganisms throughout the space station environment. To ensure safety of the crew, microbial monitoring of air and surface within ISS began in December 2000 and continues to be monitored on a quarterly basis. Water monitoring began in 2009 when the potable water dispenser was installed on ISS. However, it is unknown if high microbial counts are associated with inflight medical events. The microbial counts are determined for the air, surface, and water samples collected during flight operations and samples are returned to the Microbiology laboratory at the Johnson Space Center for identification. Instances of microbial counts above the established microbial limit requirements were noted and compared inflight medical events (any non-injury event such as illness, rashes, etc.) that were reported during the same calendar-quarter. Data were analyzed using repeated measures logistic regression for the forty-one US astronauts flew on ISS between 2000 and 2012. In that time frame, instances of microbial counts being above established limits were found for 10 times for air samples, 22 times for surface samples and twice for water. Seventy-eight inflight medical events were reported among the astronauts. A three times greater risk of a medical event was found when microbial samples were found to be high (OR = 3.01; p =.007). Engineering controls, crew training, and strict microbial limits have been established to mitigate the crew medical events and environmental risks. Due to the timing issues of sampling and the samples return to earth, identification of particular microorganisms causing a particular inflight medical event is difficult. Further analyses are underway.
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.; Olsen, Edward T.; Nguyen, Hai
2012-01-01
The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the Earth Observing System (EOS) Aqua Spacecraft, launched on May 4, 2002 into a near polar sun-synchronous orbit. AIRS has 2378 infrared channels ranging from 3.7 ?m to 15.4 ?m and a 13.5 km footprint at nadir. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2, CO, SO2, O3 and CH4. AIRS CO2 climatologies have been shown to be useful for identifying anomalies associated with geophysical events such as El Nino-Southern Oscillation or Madden-Julian oscillation. In this study, monthly representations of mid-tropospheric CO2 are constructed from 10 years of AIRS Version 5 monthly Level 3 data. We compare the AIRS mid-tropospheric CO2 representations to ground-based measurements from the Scripps and National Oceanic and Atmospheric Administration Climate Modeling and Diagnostics Laboratory (NOAA CMDL) ground networks to better understand the phase lag of the CO2 seasonal cycle between the surface and middle troposphere. Results show only a small phase lag in the tropics that grows to approximately two months in the northern latitudes.
NASA Astrophysics Data System (ADS)
Guenther, A. B.; Duhl, T.
2011-12-01
Increasing computational resources have enabled a steady improvement in the spatial resolution used for earth system models. Land surface models and landcover distributions have kept ahead by providing higher spatial resolution than typically used in these models. Satellite observations have played a major role in providing high resolution landcover distributions over large regions or the entire earth surface but ground observations are needed to calibrate these data and provide accurate inputs for models. As our ability to resolve individual landscape components improves, it is important to consider what scale is sufficient for providing inputs to earth system models. The required spatial scale is dependent on the processes being represented and the scientific questions being addressed. This presentation will describe the development a contiguous U.S. landcover database using high resolution imagery (1 to 1000 meters) and surface observations of species composition and other landcover characteristics. The database includes plant functional types and species composition and is suitable for driving land surface models (CLM and MEGAN) that predict land surface exchange of carbon, water, energy and biogenic reactive gases (e.g., isoprene, sesquiterpenes, and NO). We investigate the sensitivity of model results to landcover distributions with spatial scales ranging over six orders of magnitude (1 meter to 1000000 meters). The implications for predictions of regional climate and air quality will be discussed along with recommendations for regional and global earth system modeling.
Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California.
Sobron, Pablo; Alpers, Charles N
2013-03-01
The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.
State of Florida as seen from Skylab
1974-01-10
SL4-139-4029 (10 Jan. 1974) --- An oblique view of the State of Florida, looking northward up the peninsula, as photographed from the Skylab space station in Earth orbit by one of the Skylab 4 crewman. The camera used was a hand-held 70mm Hasselblad, with SO-368 medium-speed Ektachrome. This view shows almost the entire state, except the panhandle region. The Bahama Banks area appears in the southeast part of the picture as the light blue water. Andros Island in the Bahamas group is the island in the lower right corner. The Gulfstream flows between Florida and the Bahama Banks. This fast-moving, warm-water current transports energy from the tropics to the northern latitudes. The effect of the warmer Gulfstream waters on the atmosphere is seen as increased convection (caused by the warmer water heating the air from below) resulting in the fair weather cumulus seen confined primarily over the Gulfstream. A portion of Cuba is seen in the lower left corner of the picture. Photo credit: NASA
Raman spectroscopy of efflorescent sulfate salts from Iron Mountain Mine Superfund Site, California
Sobron, Pablo; Alpers, Charles N.
2013-01-01
The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination.
An Earth system view on boundaries for human perturbation of the N and P cycles
NASA Astrophysics Data System (ADS)
Cornell, Sarah; de Vries, Wim
2015-04-01
The appropriation and transformation of land, water, and living resources can alter Earth system functioning, and potentially undermine the basis for the sustainability of our societies. Human activities have greatly increased the flows of reactive forms of nitrogen (N) and phosphorus (P) in the Earth system. These non-substitutable nutrient elements play a fundamental role in the human food system. Furthermore, the current mode of social and economic globalization, and its effect on the present-day energy system, also has large effects including large NOx-N emissions through combustion. Until now, this perturbation of N and P cycles has been treated largely as a local/regional issue, and managed in terms of direct impacts (water, land or air pollution). However, anthropogenic N and P cycle changes affect physical Earth system feedbacks (through greenhouse gas and aerosol changes) and biogeochemical feedbacks (via ecosystem changes, links to the carbon cycle, and altered nutrient limitation) with impacts that can be far removed from the direct sources. While some form of N and P management at the global level seems likely to be needed for continued societal development, the current local-level and sectorial management is often problematically simplistic, as seen in the tensions between divergent N management needs for climate change mitigation, air pollution control, food production, and ecosystem conservation. We require a step change in understanding complex biogeochemical, physical and socio-economic interactions in order to analyse these effects together, and inform policy trade-offs to minimize emergent systemic risks. Planetary boundaries for N and P cycle perturbation have recently been proposed. We discuss the current status of these precautionary boundaries and how we may improve on these preliminary assessments. We present an overview of the human perturbation of the global biogeochemical cycles of N and P and its interaction with the functioning of the Earth system. There are various N and P impacts, which vary in space and time and are associated with multiple human drivers. There are multiple possible constraints that need to be considered; for P there is an issue with absolute availability, but not for N. The societal benefits (e.g. food production) and environmental impacts (e.g. eutrophication) are linked through stoichiometry, which differs in terrestrial and aquatic systems, presenting challenges for any global optimization approach. By setting out these features, we can better assess how to apply and improve our current analytic frameworks, models, and data for safer navigation of the biogeochemical complexities of global sustainability.
Teaching Soil Science in Primary and Secondary Schools
NASA Technical Reports Server (NTRS)
Levine, Elissa R.
1998-01-01
Earth's thin layer of soil is a fragile resource, made up of minerals, organic materials, air, water, and billions of living organisms. Soils plays a variety of critical roles that sustain life on Earth. If we think about soil, we tend to see it first as the source of most of the food we eat and the fibers we use, such as wood and cotton. Few students realize that soils also provide the key ingredients to many of the medicines (including antibiotics), cosmetics, and dyes that we use. Fewer still understand the importance of soils in integrating, controlling, and regulating the movement of air, water, materials, and energy between the hydrosphere, lithosphere, atmosphere, and biosphere. Because soil sustains life, it offers both a context and a natural laboratory for investigating these interactions. The enclosed poster, which integrates soil profiles with typical landscapes in which soils form, can also help students explore the interrelationships of Earth systems and gain an understanding of our soil resources. The poster, produced jointly by the American Geological Institute and the Soil Science Society of America, aims to increase awareness of the importance of soil, as does the GLOBE (Global Learning and Observations To Benefit the Environment) Program. Vice President Al Gore instituted the GLOBE Program on Earth Day of 1993 to increase environmental awareness of individuals throughout the world, contribute to a better scientific understanding of the Earth, and help all students reach higher levels of achievement in science and mathematics. GLOBE functions as a partnership between scientists, students, and teachers in which scientists design protocols for specific measurements they need for their research that can be performed by K-12 students. Teachers are trained in the GLOBE protocols and teach them to their students. Students make the measurements, enter data via the Internet to a central data archive, and the data becomes available to scientists and the general community. Students benefit by having a "hands-on"experience in science, math, and technology, using their local environment as a learning laboratory, as well as contact with scientists and other students around the world. Soil investigations have become an essential component of GLOBE. The protocols that have been developed so far within the GLOBE program include GPS Location, Atmosphere/Climate, Soil Characterization, Soil Moisture and Temperature, Land Cover/Biometry, Hydrology, and Satellite Image Classification. For the GLOBE Soil Characterization Protocol, students explore the physical. chemical, and morphological properties of the soil at their study site. They are asked to dig a pit or use an auger to about 1 meter at at least 2 sites.
2010-10-30
CAPE CANAVERAL, Fla. -- Dave Ferguson, the director of Global Development Common for the U.S. Agency for International Development, participates in a news conference at NASA's Kennedy Space Center in Florida following the "LAUNCH: Health" forum. During the two-day forum, 10 international participants showcased new innovations that could address health problems on Earth and in space. LAUNCH is a global initiative to identify and support innovative work that will contribute to a sustainable future. Through a series of forums focused on key challenge areas, including water, air, food, energy, mobility and sustainable cities, LAUNCH gives leaders an opportunity to present innovative ideas among peers and join in collaborative, solution-driven discussions. This is the second forum hosted at Kennedy. The first was "LAUNCH: Water" in March 2010. Photo credit: NASA/Kim Shiflett
2010-10-30
CAPE CANAVERAL, Fla. -- Dr. Jeff Davis, the director of Space and Life Sciences at NASA's Johnson Space Center in Houston, participates in a news conference at NASA's Kennedy Space Center in Florida following the "LAUNCH: Health" forum. During the two-day forum, 10 international participants showcased new innovations that could address health problems on Earth and in space. LAUNCH is a global initiative to identify and support innovative work that will contribute to a sustainable future. Through a series of forums focused on key challenge areas, including water, air, food, energy, mobility and sustainable cities, LAUNCH gives leaders an opportunity to present innovative ideas among peers and join in collaborative, solution-driven discussions. This is the second forum hosted at Kennedy. The first was "LAUNCH: Water" in March 2010. Photo credit: NASA/Kim Shiflett
1998-10-30
KENNEDY SPACE CENTER, FLA. -- On Pad 17A at Cape Canaveral Air Station, a Delta II rocket is maneuvered into position for launch on Dec. 10, 1998. The rocket is carrying the Mars Climate Orbiter which will head for Mars primarily to support its companion Mars Polar Lander spacecraft, which is planned for launch on Jan. 3, 1999. The orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (1.8 Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface
Soil Moisture Active Passive (SMAP) Media Briefing
2015-01-09
Brad Doorn, SMAP applications lead, Science Mission Directorate’s Applied Sciences Program at NASA Headquarters speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)
Soil Moisture Active Passive (SMAP) Media Briefing
2015-01-09
Kent Kellogg, SMAP project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, CA, speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)
NASA Technical Reports Server (NTRS)
Johnson, Howell K.; Green, Robert O.
1995-01-01
This paper serves as a brief overview of the AVIRIS instrument (Airborne Visible/Infrared Imaging Spectrometer). The AVIRIS sensor collects data that will be used for quantitative characterization of the Earth's surface and atmosphere from geometrically coherent spectroradiometric measurements. This data can be applied to studies in the fields of oceanography, environmental science, snow hydrology, geology, volcanology, soil and land management, atmospheric and aerosol studies, agriculture, and limnology. Applications under development include the assessment and monitoring of environmental hazards such as toxic waste, oil spills, and land/air/water pollution. Mission planning and flight operations are discussed, and recommendations are given regarding the deployment of ground truth experiments.
Gas liquid flow at microgravity conditions - Flow patterns and their transitions
NASA Technical Reports Server (NTRS)
Dukler, A. E.; Fabre, J. A.; Mcquillen, J. B.; Vernon, R.
1987-01-01
The prediction of flow patterns during gas-liquid flow in conduits is central to the modern approach for modeling two phase flow and heat transfer. The mechanisms of transition are reasonably well understood for flow in pipes on earth where it has been shown that body forces largely control the behavior observed. This work explores the patterns which exist under conditions of microgravity when these body forces are suppressed. Data are presented which were obtained for air-water flow in tubes during drop tower experiments and Learjet trajectories. Preliminary models to explain the observed flow pattern map are evolved.
Water inventories on Earth and Mars: Clues to atmosphere formation
NASA Technical Reports Server (NTRS)
Carr, M. H.
1992-01-01
Water is distributed differently on Earth and on Mars and the differences may have implications for the accretion of the two planets and the formation of their atmospheres. The Earth's mantle appears to contain at least several times the water content of the Martian mantle even accounting for differences in plate tectonics. One explanation is that the Earth's surface melted during accretion, as a result of development of a steam atmosphere, thereby allowing impact-devolitalized water at the surface to dissolve into the Earth's interior. In contrast, because of Mars' smaller size and greater distance from the Sun, the Martian surface may not have melted, so that the devolatilized water could not dissolve into the surface. A second possibility is suggested by the siderophile elements in the Earth's mantle, which indicates the Earth acquired a volatile-rich veneer after the core formed. Mars may have acquired a late volatile-rich veneer, but it did not get folded into the interior as with the Earth, but instead remained as a water rich veneer. This perception of Mars with a wet surface but dry interior is consistent with our knowledge of Mars' geologic history.
75 FR 74046 - Proposed Consent Decree, Clean Air Act Citizen Suit
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... WildEarth Guardians: WildEarth Guardians v. Jackson, Civil Action No. 1:10-cv- 01672-RPM (D. CO). On or about July 14, 2010, WildEarth Guardians filed a complaint alleging that EPA Administrator Jackson... schedule prescribed by the Court. On September 1, 2010, WildEarth Guardians filed a first amended complaint...
Re-Examining the Way We Teach: The Earth System Science Education Alliance Online Courses
NASA Astrophysics Data System (ADS)
Botti, J. A.; Myers, R. J.
2003-12-01
Science education reform has skyrocketed over the last decade thanks in large part to the technology of the Internet, opening up dynamic new online communities of learners. It has allowed educators worldwide to share thoughts about Earth system science and reexamine the way science is taught. The Earth System Science Education Alliance (ESSEA) is one positive offshoot of this reform effort. This developing partnership among universities, colleges, and science education organizations is led by the Institute for Global Environmental Strategies and the Center for Educational TechnologiesTM at Wheeling Jesuit University. ESSEA's mission is to improve Earth system science education. ESSEA has developed three Earth system science courses for K-12 teachers. These online courses guide teachers into collaborative, student-centered science education experiences. Not only do these courses support teachers' professional development, they also help teachers implement Earth systems science content and age-appropriate pedagogical methods into their classrooms. The ESSEA semester-long courses are open to elementary, middle school, and high school educators. After three weeks of introductory content, teachers develop content and pedagogical and technological knowledge in four three-week learning cycles. The elementary school course focuses on basic Earth system interactions between land, life, air, and water. The middle school course stresses the effects of real-world events-volcanic eruptions, hurricanes, rainforest destruction-on Earth's lithosphere, atmosphere, biosphere, and hydrosphere, using "jigsaw" to study the interactions between events, spheres, and positive and negative feedback loops. The high school course uses problem-based learning to examine critical areas of global change, such as coral reef degradation, ozone depletion, and climate change. This ESSEA presentation provides examples of learning environments from each of the three courses.
Large-Scale, Parallel, Multi-Sensor Data Fusion in the Cloud
NASA Astrophysics Data System (ADS)
Wilson, B. D.; Manipon, G.; Hua, H.
2012-12-01
NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time "matchups" between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, assemble merged datasets, and compute fused products for further scientific and statistical analysis. To efficiently assemble such decade-scale datasets in a timely manner, we are utilizing Elastic Computing in the Cloud and parallel map/reduce-based algorithms. "SciReduce" is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in the Cloud. Unlike Hadoop, in which simple tuples (keys & values) are passed between the map and reduce functions, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Thus, SciReduce uses the native datatypes (geolocated grids, swaths, and points) that geo-scientists are familiar with. We are deploying within SciReduce a versatile set of python operators for data lookup, access, subsetting, co-registration, mining, fusion, and statistical analysis. All operators take in sets of geo-located arrays and generate more arrays. Large, multi-year satellite and model datasets are automatically "sharded" by time and space across a cluster of nodes so that years of data (millions of granules) can be compared or fused in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP or webification URLs, thereby minimizing the size of the stored input and intermediate datasets. A typical map function might assemble and quality control AIRS Level-2 water vapor profiles for a year of data in parallel, then a reduce function would average the profiles in lat/lon bins (again, in parallel), and a final reduce would aggregate the climatology and write it to output files. We are using SciReduce to automate the production of multiple versions of a multi-year water vapor climatology (AIRS & MODIS), stratified by Cloudsat cloud classification, and compare it to models (ECMWF & MERRA reanalysis). We will present the architecture of SciReduce, describe the achieved "clock time" speedups in fusing huge datasets on our own nodes and in the Amazon Cloud, and discuss the Cloud cost tradeoffs for storage, compute, and data transfer.
Large-Scale, Parallel, Multi-Sensor Data Fusion in the Cloud
NASA Astrophysics Data System (ADS)
Wilson, B.; Manipon, G.; Hua, H.
2012-04-01
NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, AMSR-E, MODIS, MISR, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over periods of years to decades. However, moving from predominantly single-instrument studies to a multi-sensor, measurement-based model for long-duration analysis of important climate variables presents serious challenges for large-scale data mining and data fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another instrument (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over years of AIRS data. To perform such an analysis, one must discover & access multiple datasets from remote sites, find the space/time "matchups" between instruments swaths and model grids, understand the quality flags and uncertainties for retrieved physical variables, assemble merged datasets, and compute fused products for further scientific and statistical analysis. To efficiently assemble such decade-scale datasets in a timely manner, we are utilizing Elastic Computing in the Cloud and parallel map/reduce-based algorithms. "SciReduce" is a Hadoop-like parallel analysis system, programmed in parallel python, that is designed from the ground up for Earth science. SciReduce executes inside VMWare images and scales to any number of nodes in the Cloud. Unlike Hadoop, in which simple tuples (keys & values) are passed between the map and reduce functions, SciReduce operates on bundles of named numeric arrays, which can be passed in memory or serialized to disk in netCDF4 or HDF5. Thus, SciReduce uses the native datatypes (geolocated grids, swaths, and points) that geo-scientists are familiar with. We are deploying within SciReduce a versatile set of python operators for data lookup, access, subsetting, co-registration, mining, fusion, and statistical analysis. All operators take in sets of geo-arrays and generate more arrays. Large, multi-year satellite and model datasets are automatically "sharded" by time and space across a cluster of nodes so that years of data (millions of granules) can be compared or fused in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP or webification URLs, thereby minimizing the size of the stored input and intermediate datasets. A typical map function might assemble and quality control AIRS Level-2 water vapor profiles for a year of data in parallel, then a reduce function would average the profiles in bins (again, in parallel), and a final reduce would aggregate the climatology and write it to output files. We are using SciReduce to automate the production of multiple versions of a multi-year water vapor climatology (AIRS & MODIS), stratified by Cloudsat cloud classification, and compare it to models (ECMWF & MERRA reanalysis). We will present the architecture of SciReduce, describe the achieved "clock time" speedups in fusing huge datasets on our own nodes and in the Amazon Cloud, and discuss the Cloud cost tradeoffs for storage, compute, and data transfer.
2017-12-08
On October 17, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image of a thick haze hanging over eastern China. In the north, the large city of Beijing is completely obscured from view, as is much of the landscape. The haze thins slightly over the Bohai Sea. Further south, sediment pours into the East China Sea near the city of Shanghai. Heavy haze is common in this region, and tends to worsen in October through January, when cold, heavy air traps pollutants near the surface of the Earth. It is likely that this scene was caused by such a temperature inversion. Normally, air is warmest near the surface of the Earth. But sometimes a mass of warm air will move the cooler air, so the atmosphere actually warms with the altitude. Cool air does not have energy to rise through the warm air, vertical circulation slows and air becomes trapped near the surface. Any pollution that is emitted into the cooler air will also get trapped, increasing low-level air pollution and haze. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Water abundance and accretion history of terrestrial planets
NASA Technical Reports Server (NTRS)
Waenke, H.; Dreibus, G.
1994-01-01
According to a widespread believe, Earth's water was either added in form of a late volatile-rich veneer or as we have argued repeatedly that of all the water which was added to the Earth only that portion remained which was added towards the end of accretion when the mean oxygen fugacity of the accreting material became so high that metallic iron could not exist any longer. Prior to this moment, all the water in the latter scenario would have been used up for the oxidation of iron. Fe + H2O yields FeO + H2. Huge quantities of hydrogen would continuously be produced in this scenario which escaped. In the same moment the hydrogen on its way to the surface would lead to an efficient degassing of the growing Earth's mantle. The fact that - assuming C1 abundances - the amount of iridium in the Earth's mantle agrees, within a factor of two with the total water inventory of the Earth's mantle and crust is taken as evidence for the validity of such a scenario. In both scenarios, the Earth's mantle would remain dry and devoid of other volatiles. Some species soluble in metallic iron like carbon and hydrogen will probably partly enter the core in some portions. It is generally assumed that today a considerable portion of the earth's total water inventory resides in the mantle. It is also clear that over the history of the Earth the water of the Earth's oceans has been recycled many times through the mantle. This is the consequence of plate subduction. In a similar way mantle convection was probably responsible to being water into the originally dry mantle. As a consequence, today the Earth is wet both inside and outside.
1976-01-01
The LAGEOS I (Laser Geodynamics Satellite) was developed and launched by the Marshall Space Flight Center on May 4, 1976 from Vandenberg Air Force Base, California . The two-foot diameter satellite orbited the Earth from pole to pole and measured the movements of the Earth's surface.
NASA Astrophysics Data System (ADS)
Kanervo, Eira; Lehto, Kirsi; Ståhle, Kurt; Lehto, Harry; Mäenpää, Pirkko
2005-01-01
Efficient life support systems are needed to maintain adequate oxygen, water and food for humans in extraterrestrial conditions. On the near-Earth missions, these are supplied by transport from the Earth, and by physical and chemical cleaning and recycling, but on long-term missions to far-away destinations, such as Mars, on-site production of the consumables may be required. Molecular oxygen and organic biomass can be most efficiently produced biologically, i.e. by photosynthesis. The conditions on Mars are distinctly harsh, and they strictly limit the growth and survival of any photosynthetic organisms to artificially maintained containments. For obtaining most economical growth conditions, minimal parameters need to be determined which still allow efficient growth of photosynthetic organisms. In this work we are testing how reduced air pressures (hypobaria) and increased CO2 concentrations, i.e. features typical for Martian conditions, affect the durability, growth and photosynthesis of laboratory strains of cyanobacteria, a group of prokaryotic organisms capable of plant-like photosynthesis. Our preliminary results show that air pressures down to 0.1 atm or CO2 concentrations up to 20% have no harmful effect on the photosynthetic oxygen production or growth rate of the cyanobacterial model species, Synechocystis sp. PCC 6803.
Mohammed, Ibrahim Nourein; Bolten, John D; Srinivasan, Raghavan; Lakshmi, Venkat
2018-06-01
Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region's hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling.
Mohammed, Ibrahim Nourein; Bolten, John D.; Srinivasan, Raghavan; Lakshmi, Venkat
2018-01-01
Multiple satellite-based earth observations and traditional station data along with the Soil & Water Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River Basin region’s hydrological decision support system. A nearest neighbor approximation methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing for our hydrological decision support system. A software tool to access and format satellite-based earth observation systems of precipitation and minimum and maximum air temperatures was developed and is presented. Our results suggest that the model-simulated streamflow utilizing TRMM and IMERG forcing data was able to capture the variability of the observed streamflow patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation station data. We also present satellite-based and in-situ precipitation adjustment maps that can serve to correct precipitation data for the Lower Mekong region for use in other applications. The inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-based earth observations to pursue hydrologic modeling. PMID:29938116
A View of Earth's Aerosol System from Space to Your Office Chair
NASA Technical Reports Server (NTRS)
Colarco, Peter
2008-01-01
Aerosols are tiny particles and droplets suspended in the air. Each day you breathe in about 10 billion of them, about a half a million per breath. They are formed in nature by volcanoes, dust storms, sea spray, and emissions from vegetation. Humans create aerosols and alter their natural sources by burning fossil fuels and modifying land cover. Fires are another important source of aerosols; some are natural, such as wildfires started by lightning strikes, while others are from human-caused burning of vegetation for cooking, heating, and land clearing. Aerosols have complex effects on Earth's climate. In general, they cool the surface by reflecting (scattering) radiation from the sun back into space. Dust and smoke absorb solar radiation and heat the atmosphere where they are concentrated. Aerosols change the properties of clouds. Indeed, it would be very difficult to form clouds in the atmosphere without aerosols to act as 'seeds' for water to condense on. In aerosol polluted environments clouds tend to have smaller droplets than clouds formed in cleaner environments; these polluted clouds appear brighter from space because they reflect more sunlight, and they may persist longer and not rain as intensely. Aerosols also affect local air quality and visibility. Data collected by NASA satellites over the past decade have provided an unprecedented view of Earth's aerosol distribution and dramatically increased our understanding of where aerosols come from and just how far they travel in the atmosphere. In this talk I will discuss observations of aerosols from space and how they inform numerical transport models attempting to simulate the global aerosol system.
Refining Raindrop Paleobarometry: A Satus Report
NASA Astrophysics Data System (ADS)
Zimmerman, J. K.; Som, S. M.
2016-12-01
In the late Archaean eon, a sun that was approximately 20% dimmer than today's was still able to warm the Earth to the point where there was liquid water. This is known as the `Faint Young Sun' paradox. Explanations of this paradox include a denser atmosphere rich in nitrogen1 or higher greenhouse gas concentrations. Recent work has suggested that the partial pressure of nitrogen in the late Archean was less than modern values, up to a maximum of 0.5 bar 2.7 billion years ago2. In the current work, we have compiled several global datasets on modern raindrop size and rainfall rate. Together with existing scaling on how raindrop size affects the size of resultant craters3, we use the full distribution of fossilized raindrop craters found in the Ventersdorp Supergroup, South Africa to draw conclusions about the difference in terminal velocity through the Archaean atmosphere as compared to today, in addition to inferences on rainfall rate that formed the Ventersdorp imprints. The calculated value of the terminal velocity places bounds on the range of possible densities of the Archaean atmosphere during Ventersdorp deposition. 1 Goldblatt, C., et al. "Nitrogen-enhanced greenhouse warming on early Earth." Nature Geoscience 2 (2009): 891-896. 2 Som, S., et al. "Earth's air pressure 2.7 billion years ago constrained to less than half of modern levels." Nature Geoscience (2016). 3 Som, S., et al. "Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints." Nature 484.7394 (2012): 359-362.
Henry Cavendish (1731-1810): hydrogen, carbon dioxide, water, and weighing the world.
West, John B
2014-07-01
Henry Cavendish (1731-1810) was an outstanding chemist and physicist. Although he was not a major figure in the history of respiratory physiology he made important discoveries concerning hydrogen, carbon dioxide, atmospheric air, and water. Hydrogen had been prepared earlier by Boyle but its properties had not been recognized; Cavendish described these in detail, including the density of the gas. Carbon dioxide had also previously been studied by Black, but Cavendish clarified its properties and measured its density. He was the first person to accurately analyze atmospheric air and reported an oxygen concentration very close to the currently accepted value. When he removed all the oxygen and nitrogen from an air sample, he found that there was a residual portion of about 0.8% that he could not characterize. Later this was shown to be argon. He produced large amounts of water by burning hydrogen in oxygen and recognized that these were its only constituents. Cavendish also worked on electricity and heat. However, his main contribution outside chemistry was an audacious experiment to measure the density of the earth, which he referred to as "weighing the world." This involved determining the gravitational attraction between lead spheres in a specially constructed building. Although this was a simple experiment in principle, there were numerous complexities that he overcame with meticulous attention to experimental details. His result was very close to the modern accepted value. The Cavendish Experiment, as it is called, assures his place in the history of science. Copyright © 2014 the American Physiological Society.
AIRS-Light Instrument Concept and Critical Technology Development
NASA Technical Reports Server (NTRS)
Maschhoff, Kevin
2001-01-01
Understanding Earth's climate, atmospheric transport mechanisms, and the hydrologic cycle requires a precise knowledge of global atmospheric circulation, temperature profiles, and water vapor distribution. The accuracy of advanced sounders such as AIRS/AMSU/HSB on NASA's Aqua spacecraft can match radiosonde accuracy. It is essential to fold those capabilities fully into the NPOESS, enabling soundings of radiosonde accuracy, every 6 hours around the globe on an operational basis. However, the size, mass, power demands, and thermal characteristics of the Aqua sounding instrument suite cannot be accommodated on the NPOESS spacecraft. AIRS-Light is an instrument concept, developed under the Instrument Incubator Program, which provides IR sounding performance identical to the AIRS instrument, but uses advances in HgCdTe FPA technology and pulse tube cooler technology, as well as design changes to dramatically reduce the size, mass, and power demand, allowing AIRS-Light to meet all NPOESS spacecraft interface requirements. The instrument concept includes substantial re-use of AIRS component designs, including the complex AIRS FPA, to reduce development risk and cost. The AIRS-Light Instrument Incubator program fostered the development of photovoltaic-mode HgCdTe detector array technology for the 13.5-15.4 micron band covered by photoconductive-mode HgCdTe arrays in AIRS, achieved state of the art results in this band, and substantially reduced the development risk for this last new technology needed for AIRS-Light implementation, A demonstration of a prototype 14.5-15.4 micron band IRFPA in a reduced heat-load dewar together with the IMAS pulse tube cryocooler is in progress.
A Compound Model for the Origin of Earth's Water
NASA Astrophysics Data System (ADS)
Izidoro, A.; de Souza Torres, K.; Winter, O. C.; Haghighipour, N.
2013-04-01
One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In view of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using the D/H ratio, finding possible relative contributions from each source and focusing on planets formed in the habitable zone. We find that the compound model plays an important role by showing greater advantage in the amount and time of water delivery in Earth-like planets.
A COMPOUND MODEL FOR THE ORIGIN OF EARTH'S WATER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izidoro, A.; Winter, O. C.; De Souza Torres, K.
2013-04-10
One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In viewmore » of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using the D/H ratio, finding possible relative contributions from each source and focusing on planets formed in the habitable zone. We find that the compound model plays an important role by showing greater advantage in the amount and time of water delivery in Earth-like planets.« less
The breath of life: an essay on the earliest history of respiration: part ii.
Gandevia, B
1970-06-01
It is to ancient Greek civilization that we must look for the first groping steps towards a naturalistic concept of respiration, although we shall not, of course, expect to find one which is consistent with modern views. Nearly a millennium before Christ, Homer wrote of the gods as more less predictable and very human beings, deserving more of admiration and emulation than worship; they took a fairly commonsense view of man's earthly pursuits, and left him a measure of control over his own destiny. From this relatively disrespectful state-by comparison with primitive or Old Testament views-it is but a stage to a rationalistic view of the universe, that is, to science, and this step was taken about three centuries later (6th century B.C.) by Thales, Anaximander and Anaximenes. We cannot pause to consider their views in detail, nor can we digress, as strictly we should, to consider the emerging relationship between philosophy and science. Suffice it to say that these first philosopher-scientists sought to explain the universe and life in rational terms, basing their rationalizations-we might say extrapolations-on certain specific observations of natural phenomena. The latter were concerned, in the main, with the interrelationships of basic substances (ultimately regarded as the four elements) such as fire, earth, air and water. Water, for example, could be condensed to form earth, or rarefied to form mist and vapour. Copyright © 1970 Australian Physiotherapy Association. Published by . All rights reserved.
Geothermal as a heat sink application for raising air conditioning efficency
NASA Astrophysics Data System (ADS)
Ibrahim, Hesham Safwat Osman Mohamed
2016-04-01
Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied
AIRS Science Accomplishments Version 4.0/Plans for Version 5
NASA Technical Reports Server (NTRS)
Pagano, Thomas S.; Aumann, Hartmut; Elliott, Denis; Granger, Stephanie; Kahn, Brain; Eldering, Annmarie; Irion, Bill; Fetzer, Eric; Olsen, Ed; Lee, Sung-Yung;
2006-01-01
This talk is about accomplishments with AIRS data and what we have learned from almost three years of data what part of this is emerging in Version 4.0 what part we would like to see filtering into Version 5.0 and what part constitute limitations in the AIRS requirements, such as spectral and spatial resolution, which have to be deferred to the wish list for the next generation hyperspectral sounder. The AIRS calibration accuracy at the 1OOmK and stability at the 6 mK/year level are amazing. It establishes the unique capability of a cooled grating array spectrometer in Earth orbit for climate research. Data which are sufficiently clear to match the radiometric accuracy of the instrument, have a yield of less than 1%. This is OK for calibration. The 2616/cm window channel combined with the RTG.SST for tropical ocean allow excellent assessment radiometric calibration accuracy and stability. For absolute calibration verification 100mK is the limit due to cloud contamination. The 10 micron window channels can be used for stability assessment, but accuracy is limited at 300mK due to water continuum absorption uncertainties.
Maps showing water-level declines, land subsidence, and earth fissures in south-central Arizona
Laney, R.L.; Raymond, R.H.; Winikka, C.C.
1978-01-01
From 1915 to 1975, more than 109 million acre-feet of ground water was withdrawn from about 4,500 square miles in Pinal and Maricopa Counties in south-central Arizona. The volume of water withdrawn greatly exceeds the volume of natural recharge, and water levels have been declining since 1923. As a result of the water-level declines, the land surface has subsided, the alluvial deposits have been subjected to stress, and earth fissures have developed. Land subsidence and earth fissures have damaged public and private properties. Subsidence and fissures will continue to occur as long as ground water is being mined and water levels continue to decline. As urban development expands, land subsidence and earth fissures will have an increasing socioeconomic impact. Information on maps includes change in water levels, measurements of land subsidence, and location of earth fissures. A section showing land subsidence between Casa Grande and the Picacho Peak Interchange also is included. Scale 1:250,000. (Woodard-USGS)
Maltese, Antonino; Capodici, Fulvio; Ciraolo, Giuseppe; La Loggia, Goffredo
2015-03-19
Knowledge of soil water content plays a key role in water management efforts to improve irrigation efficiency. Among the indirect estimation methods of soil water content via Earth Observation data is the triangle method, used to analyze optical and thermal features because these are primarily controlled by water content within the near-surface evaporation layer and root zone in bare and vegetated soils. Although the soil-vegetation-atmosphere transfer theory describes the ongoing processes, theoretical models reveal limits for operational use. When applying simplified empirical formulations, meteorological forcing could be replaced with alternative variables when the above-canopy temperature is unknown, to mitigate the effects of calibration inaccuracies or to account for the temporal admittance of the soil. However, if applied over a limited area, a characterization of both dry and wet edges could not be properly achieved; thus, a multi-temporal analysis can be exploited to include outer extremes in soil water content. A diachronic empirical approach introduces the need to assume a constancy of other meteorological forcing variables that control thermal features. Airborne images were acquired on a Sicilian vineyard during most of an entire irrigation period (fruit-set to ripening stages, vintage 2008), during which in situ soil water content was measured to set up the triangle method. Within this framework, we tested the triangle method by employing alternative thermal forcing. The results were inaccurate when air temperature at airborne acquisition was employed. Sonic and aerodynamic air temperatures confirmed and partially explained the limits of simultaneous meteorological forcing, and the use of proxy variables improved model accuracy. The analysis indicates that high spatial resolution does not necessarily imply higher accuracies.
Maltese, Antonino; Capodici, Fulvio; Ciraolo, Giuseppe; La Loggia, Goffredo
2015-01-01
Knowledge of soil water content plays a key role in water management efforts to improve irrigation efficiency. Among the indirect estimation methods of soil water content via Earth Observation data is the triangle method, used to analyze optical and thermal features because these are primarily controlled by water content within the near-surface evaporation layer and root zone in bare and vegetated soils. Although the soil-vegetation-atmosphere transfer theory describes the ongoing processes, theoretical models reveal limits for operational use. When applying simplified empirical formulations, meteorological forcing could be replaced with alternative variables when the above-canopy temperature is unknown, to mitigate the effects of calibration inaccuracies or to account for the temporal admittance of the soil. However, if applied over a limited area, a characterization of both dry and wet edges could not be properly achieved; thus, a multi-temporal analysis can be exploited to include outer extremes in soil water content. A diachronic empirical approach introduces the need to assume a constancy of other meteorological forcing variables that control thermal features. Airborne images were acquired on a Sicilian vineyard during most of an entire irrigation period (fruit-set to ripening stages, vintage 2008), during which in situ soil water content was measured to set up the triangle method. Within this framework, we tested the triangle method by employing alternative thermal forcing. The results were inaccurate when air temperature at airborne acquisition was employed. Sonic and aerodynamic air temperatures confirmed and partially explained the limits of simultaneous meteorological forcing, and the use of proxy variables improved model accuracy. The analysis indicates that high spatial resolution does not necessarily imply higher accuracies. PMID:25808771
Application of universal kriging for prediction pollutant using GStat R
NASA Astrophysics Data System (ADS)
Nur Falah, Annisa; Subartini, Betty; Nurani Ruchjana, Budi
2017-10-01
In the universe, the air and water is a natural resource that is a very big function for living beings. The air is a gas mixture contained in a layer that surrounds the earth and the components of the gas mixture is not always constant. Also in river there is always a pollutant of chemistry concentration more than concentration limit. During the time a lot of air or water pollution caused by industrial waste, coal ash or chemistry pollution is an example of pollution that can pollute the environment and damage the health of humans. To solve this problem we need a method that is able to predict pollutant content in locations that are not observed. In geostatistics, we can use the universal kriging for prediction in a location that unobserved locations. Universal kriging is an interpolation method that has a tendency trend (drift) or a particular valuation method used to deal with non-stationary sample data. GStat R is a program based on open source R software that can be used to predict pollutant in a location that is not observed by the method of universal kriging. In this research, we predicted river pollutant content using trend (drift) equation of first order. GStat R application program in the prediction of river pollutants provides faster computation, more accurate, convenient and can be used as a recommendation for policy makers in the field of environment.
2017-12-08
The late winter sun shone brightly on a stunning scene of clouds and ice in the Davis Strait in late February, 2013. The Moderate Resolution Imaging Spectroradiometer aboard NASA’s Aqua satellite captured this true-color image on February 22 at 1625 UTC. The Davis Strait connects the Labrador Sea (part of the Atlantic Ocean) in the south with Baffin Bay to the north, and separates Canada, to the west, from Greenland to the east. Strong, steady winds frequently blow southward from the colder Baffin Bay to the warmer waters of the Labrador Sea. Over ice, the air is dry and no clouds form. However, as the Arctic air moves over the warmer, open water the rising moist air and the temperature differential gives rise to lines of clouds. In this image, the clouds are aligned in a beautiful, parallel pattern. Known as “cloud streets”, this pattern is formed in a low-level wind, with the clouds aligning in the direction of the wind. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
A unified model of bedforms in water, Earth and other planetary bodies
NASA Astrophysics Data System (ADS)
Duran Vinent, O.; Claudin, P.; Winter, C.; Andreotti, B.
2017-12-01
The emergence of bedforms as result of the coupling between a fluid flow and sediment transport is a remarkable example of self-organized natural patterns. Subaqueous bedforms generated by unidirectional water flows, like ripples, dunes or compound bedforms, have been shown to depend on grain size, water depth and flow velocity. However, this variety of morphologies, empirically classified according to their size, is still not understood in terms of mechanical and hydrodynamical mechanisms. We present a process-based model that simultaneously explain the scaling of bedforms for Water, Air, Mars and Venus, and can be potentially applied to other planetary bodies such as Titan or Pluto. The model couples hydrodynamics over a modulated bed to sediment transport and relaxation laws, and resolves pattern coarsening from initial to mature bedforms. We find two fundamental types of bedforms, called `laminar' and `turbulent' and analogous to water ripples and dunes, and the conditions leading to their formation. By relating morphology to hydrodynamic and sediment transport details, our model opens the way to extract hydrodynamic information from the stratigraphy record and shed a light to past and current planetary conditions.
Tropical Depression 6 (Florence) in the Atlantic
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] Microwave ImageVisible Light Image
These infrared, microwave, and visible images were created with data retrieved by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite. Infrared Image Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). Microwave Image AIRS data used to create the microwave images come from the microwave radiation emitted by Earth's atmosphere which is then received by the instrument. It shows where the heaviest rainfall is taking place (in blue) in the storm. Blue areas outside of the storm, where there are either some clouds or no clouds, indicate where the sea surface shines through. Vis/NIR Image The AIRS instrument suite contains a sensor that captures light in the visible/near-infrared portion of the electromagnetic spectrum. These 'visible' images are similar to a snapshot taken with your camera. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.NASA Astrophysics Data System (ADS)
Bohan, Richard J.; Vandegrift, Guy
2003-02-01
Warm air aloft is stable. This explains the lack of strong winds in a warm front and how nighttime radiative cooling can lead to motionless air that can trap smog. The stability of stratospheric air can be attributed to the fact that it is heated from above as ultraviolet radiation strikes the ozone layer. On the other hand, fluid heated from below is unstable and can lead to Bernard convection cells. This explains the generally turbulent nature of the troposphere, which receives a significant fraction of its heat directly from the Earth's warmer surface. The instability of cold fluid aloft explains the violent nature of a cold front, as well as the motion of Earth's magma, which is driven by radioactive heating deep within the Earth's mantle. This paper describes how both effects can be demonstrated using four standard beakers, ice, and a bit of food coloring.
The development status of candidate life support technology for a space station
NASA Technical Reports Server (NTRS)
Samonski, F. H., Jr.
1984-01-01
The establishment of a permanently-manned Space Station has recently been selected as the next major step in the U.S. space program. The requirements of a manned operations base in space appear to be best satisfied by on-board Environmental Control/Life Support Systems (ECLSS) which are free from, or have minimum dependence on, use of expendables and the frequent earth resupply missions which are part of systems using expendables. The present investigation is concerned with the range of regenerative life support system options which NASA is developing to be available for the Space Station designer. An air revitalization system is discussed, taking into account devices concerned with the carbon dioxide concentration, approaches of CO2 reduction, oxygen generation, trace contaminant control, and atmospheric quality monitoring. Attention is also given to an independent air revitalization system, nitrogen generation, a water reclamation system, a waste management system, applications of the technology, and future development requirements.
2015-01-28
VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett
2015-01-28
VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin
2015-01-28
VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett
2015-01-29
VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett
2015-01-28
VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett
2015-01-28
VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin
2015-01-28
VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin
2015-01-28
VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin
2015-01-28
VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett
2015-01-28
VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett
2015-01-28
VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at the Space Launch Complex 2 at Vandenberg Air Force Base, California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Kim Shiflett
2015-01-28
VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin
2015-01-28
VANDENBERG AIR FORCE BASE, Calif. – The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Soil Moisture Active Passive, or SMAP, satellite aboard, at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP is a remote sensing mission designed to measure and map the Earth's soil moisture distribution and freeze/thaw stat with unprecedented accuracy, resolution and coverage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin
Anomalous radon emission as precursor of medium to strong earthquakes
NASA Astrophysics Data System (ADS)
Zoran, Maria
2016-03-01
Anomalous radon (Rn222) emissions enhanced by forthcoming earthquakes is considered to be a precursory phenomenon related to an increased geotectonic activity in seismic areas. Rock microfracturing in the Earth's crust preceding a seismic rupture may cause local surface deformation fields, rock dislocations, charged particle generation and motion, electrical conductivity changes, radon and other gases emission, fluid diffusion, electrokinetic, piezomagnetic and piezoelectric effects as well as climate fluctuations. Space-time anomalies of radon gas emitted in underground water, soil and near the ground air weeks to days in the epicentral areas can be associated with the strain stress changes that occurred before the occurrence of medium and strong earthquakes. This paper aims to investigate temporal variations of radon concentration levels in air near or in the ground by the use of solid state nuclear track detectors (SSNTD) CR-39 and LR-115 in relation with some important seismic events recorded in Vrancea region, Romania.
4. Photographic copy of a photograph taken from pasteup negatives ...
4. Photographic copy of a photograph taken from paste-up negatives for U.S. Army Corps of Engineers document GF-500-MCP, entitled "Grand Forks Site RLS Army Operating Drawings, Master Composite Photographs for SAFEGUARD TSE Systems and Equipment," Page 9, dated 1 September 1974 (original document and negatives in possession of U.S. Army Corps of Engineers, Huntsville, AL). Photographer unknown. View of remote launch operations building exterior (southwest corner), prior to earth mounding. A,B,C, and D are heat exchangers HX-1102B, HX-1102A, HX-1101B, and HX-1101 A, respectively. The heat exchangers transferred heat from the cooling water to the outside air during the normal operating mode. On the far right is the air exhaust shaft - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Building, Near Service Road exit from Patrol Road, Nekoma, Cavalier County, ND
NASA Astrophysics Data System (ADS)
Briški, Felicita; Vuković Domanovac, Marija
2017-10-01
For most people, microorganisms are out of sight and therefore out of mind but they are large, extremely diverse group of organisms, they are everywhere and are the dominant form of life on planet Earth. Almost every surface is colonized by microorganisms, including our skin; however most of them are harmless to humans. Some microorganisms can live in boiling hot springs, whereas others form microbial communities in frozen sea ice. Among their many roles, microorganisms are necessary for biogeochemical cycling, soil fertility, decomposition of dead plants and animals and biodegradation of many complex organic compounds present in the environment. Environmental microbiology is concerned with the study of microorganisms in the soil, water and air and their application in bioremediation to reduce environmental pollution through the biological degradation of pollutants into non-toxic or less toxic substances. Field of environmental microbiology also covers the topics such as microbially induced biocorrosion, biodeterioration of constructing materials and microbiological quality of outdoor and indoor air.
Water in the Earth's Interior: Distribution and Origin
NASA Astrophysics Data System (ADS)
Peslier, Anne H.; Schönbächler, Maria; Busemann, Henner; Karato, Shun-Ichiro
2017-10-01
The concentration and distribution of water in the Earth has influenced its evolution throughout its history. Even at the trace levels contained in the planet's deep interior (mantle and core), water affects Earth's thermal, deformational, melting, electrical and seismic properties, that control differentiation, plate tectonics and volcanism. These in turn influenced the development of Earth's atmosphere, oceans, and life. In addition to the ubiquitous presence of water in the hydrosphere, most of Earth's "water" actually occurs as trace amounts of hydrogen incorporated in the rock-forming silicate minerals that constitute the planet's crust and mantle, and may also be stored in the metallic core. The heterogeneous distribution of water in the Earth is the result of early planetary differentiation into crust, mantle and core, followed by remixing of lithosphere into the mantle after plate-tectonics started. The Earth's total water content is estimated at 18_{-15}^{+81} times the equivalent mass of the oceans (or a concentration of 3900_{-3300}^{+32700} ppm weight H2O). Uncertainties in this estimate arise primarily from the less-well-known concentrations for the lower mantle and core, since samples for water analyses are only available from the crust, the upper mantle and very rarely from the mantle transition zone (410-670 km depth). For the lower mantle (670-2900 km) and core (2900-4500 km), the estimates rely on laboratory experiments and indirect geophysical techniques (electrical conductivity and seismology). The Earth's accretion likely started relatively dry because it mainly acquired material from the inner part of the proto-planetary disk, where temperatures were too high for the formation and accretion of water ice. Combined evidence from several radionuclide systems (Pd-Ag, Mn-Cr, Rb-Sr, U-Pb) suggests that water was not incorporated in the Earth in significant quantities until the planet had grown to ˜60-90% of its current size, while core formation was still on-going. Dynamic models of planet formation provide additional evidence for water delivery to the Earth during the same period by water-rich planetesimals originating from the asteroid belt and possibly beyond. This early delivered water may have been partly lost during giant impacts, including the Moon forming event: magma oceans can form in their aftermath, degas and be followed by atmospheric loss. More water may have been delivered and/or lost after core formation during late accretion of extraterrestrial material ("late-veneer"). Stable isotopes of hydrogen, carbon, nitrogen and some noble gases in Earth's materials show similar compositions to those in carbonaceous chondrites, implying a common origin for their water, and only allowing for minor water inputs from comets.
14 CFR 420.71 - Lightning protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Lightning protection. 420.71 Section 420.71 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth...
Data Assimilation and Regional Forecasts Using Atmospheric InfraRed Sounder (AIRS) Profiles
NASA Technical Reports Server (NTRS)
Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary
2009-01-01
In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to optimally assimilate AIRS thermodynamic profiles--obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm-into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses will be used to conduct a month-long series of regional forecasts over the continental U.S. The long-tern1 impact of AIRS profiles on forecast will be assessed against verifying radiosonde and stage IV precipitation data.
Data Assimilation and Regional Forecasts using Atmospheric InfraRed Sounder (AIRS) Profiles
NASA Technical Reports Server (NTRS)
Zabodsky, Brad; Chou, Shih-Hung; Jedlovec, Gary J.
2009-01-01
In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which, together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radionsondes. The purpose of this poster is to describe a procedure to optimally assimilate AIRS thermodynamic profiles, obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm, into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The poster focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses are used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impact of AIRS profiles on forecast will be assessed against NAM analyses and stage IV precipitation data.
A cloudiness transition in a marine boundary layer
NASA Technical Reports Server (NTRS)
Betts, Alan K.; Boers, Reinout
1990-01-01
Boundary layer cloudiness plays several important roles in the energy budget of the earth. Low level stratocumulus are highly reflective clouds which reduce the net incoming shortwave radiation at the earth's surface. Climatically, the transition to a small area fraction of scattered cumulus clouds occurs as the air flows over warmer water. Although these clouds reflect less sunlight, they still play an important role in the boundary layer equilibrium by transporting water vapor upwards, and enhancing the surface evaporation. The First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) included a marine stratocumulus experiment off the southern California coast from June 29 to July 19, 1987. The objectives of this experiment were to study the controls on fractional cloudiness, and to assess the role of cloud-top entrainment instability (CTEI) and mesoscale structure in determining cloud type. The focus is one research day, July 7, 1987, when coordinated aircraft missions were flown by four research aircraft, centered on a LANDSAT scene at 1830 UTC. The remarkable feature of this LANDSAT scene is the transition from a clear sky in the west through broken cumulus to solid stratocumulus in the east. The dynamic and thermodynamic structure of this transition in cloudiness is analyzed using data from the NCAR Electra. By averaging the aircraft data, the internal structure of the different cloud regimes is documented, and it is shown that the transition between broken cumulus and stratocumulus is associated with a change in structure with respect to the CTEI condition. However, this results not from sea surface temperature changes, but mostly from a transition in the air above the inversion, and the breakup appears to be at a structure on the unstable side of the wet virtual adiabat.
Tropical Storm Ernesto over Cuba
2006-08-28
This infrared image shows Tropical Storm Ernesto over Cuba, from the Atmospheric Infrared Sounder AIRS on NASA Aqua satellite in August, 2006. Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). http://photojournal.jpl.nasa.gov/catalog/PIA00510
Typhoon Ioke in the Western Pacific
2006-08-29
This infrared image shows Typhoon Ioke in the Western Pacific, from the Atmospheric Infrared Sounder AIRS on NASA Aqua satellite in August, 2006. Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red). http://photojournal.jpl.nasa.gov/catalog/PIA00511
Hurricane Ileana in the Eastern Pacific
2006-08-22
This is an infrared image of Hurricane Ileana in the Eastern Pacific, from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite on August 22, 2006. This AIRS image shows the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. The infrared signal does not penetrate through clouds. Where there are no clouds the AIRS instrument reads the infrared signal from the surface of the Earth, revealing warmer temperatures (red). http://photojournal.jpl.nasa.gov/catalog/PIA00509
Water and hydrogen are immiscible in Earth's mantle.
Bali, Enikő; Audétat, Andreas; Keppler, Hans
2013-03-14
In the deep, chemically reducing parts of Earth's mantle, hydrous fluids contain significant amounts of molecular hydrogen (H2). Thermodynamic models of fluids in Earth's mantle so far have always assumed that molecular hydrogen and water are completely miscible. Here we show experimental evidence that water and hydrogen can coexist as two separate, immiscible phases. Immiscibility between water and hydrogen may be the cause of the formation of enigmatic, ultra-reducing domains in the mantle that contain moissanite (SiC) and other phases indicative of extremely reducing conditions. Moreover, the immiscibility between water and hydrogen may provide a mechanism for the rapid oxidation of Earth's upper mantle immediately following core formation.
AIRS Ozone Burden During Antarctic Winter: Time Series from 8/1/2005 to 9/30/2005
NASA Technical Reports Server (NTRS)
2007-01-01
[figure removed for brevity, see original site] Click on the image for movie of AIRS Ozone Burden During Antarctic Winter AIRS provides a daily global 3-dimensional view of Earth's ozone layer. Since AIRS observes in the thermal infrared spectral range, it also allows scientists to view from space the Antarctic ozone hole for the first time continuously during polar winter. This image sequence captures the intensification of the annual ozone hole in the Antarctic Polar Vortex. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.Pöhlmann, Kevin; Koenigstein, Stefan; Alter, Katharina; Abele, Doris; Held, Christoph
2011-11-01
Climate warming involves not only a rise of air temperature means, but also more frequent heat waves in many regions on earth, and is predicted to intensify physiological stress especially in extremely changeable habitats like the intertidal. We investigated the heat-shock response (HSR) and enzymatic antioxidant defense levels of Patagonian shallow-water limpets, adapted to distinct tidal exposure conditions in the sub- and intertidal. Limpets were sampled in the temperate Northern Patagonia and the subpolar Magellan region. Expression levels of two Hsp70 genes and activities of the antioxidants superoxide dismutase (SOD) and catalase (CAT) were measured in submerged and 2- and 12-h air-exposed specimens. Air-exposed Patagonian limpets showed a tiered HSR increasing from South to North on the latitudinal gradient and from high to low shore levels on a tidal gradient. SOD activities in the Magellan region correlated with the tidal rhythm and were higher after 2 and 12 h when the tide was low at the experimental site compared to the 6 h value taken at high tide. This pattern was observed in intertidal and subtidal specimens, although subtidal individuals are little affected by tides. Our study shows that long-term thermal adaptation shapes the HSR in limpets, while the oxidative stress response is linked to the tidal rhythm. Close to the warm border of their distribution range, energy expenses to cope with stress might become overwhelming and represent one cause why the limpets are unable to colonize the shallow intertidal zone.
INTEGRATED EARTH OBSERVATIONS: APPLICATION TO AIR QUALITY AND HUMAN HEALTH
In February 2005, ministers from 60 countries and the European Commission met in Brussels, Belgium to endorse the 10-year plan for a Global Earth Observation System of Systems(GEOSS) prepared by the Group on Earth Observations (GEO), a partnership of nations and international org...
14 CFR 420.71 - Lightning protection.
Code of Federal Regulations, 2011 CFR
2011-01-01
... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by lightning. (1) Elements of a lighting protection system. Unless an... facilities shall have a lightning protection system to ensure explosives are not initiated by lightning. A...
14 CFR 420.71 - Lightning protection.
Code of Federal Regulations, 2012 CFR
2012-01-01
... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by lightning. (1) Elements of a lighting protection system. Unless an... facilities shall have a lightning protection system to ensure explosives are not initiated by lightning. A...
14 CFR 420.71 - Lightning protection.
Code of Federal Regulations, 2014 CFR
2014-01-01
... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by lightning. (1) Elements of a lighting protection system. Unless an... facilities shall have a lightning protection system to ensure explosives are not initiated by lightning. A...
14 CFR 420.71 - Lightning protection.
Code of Federal Regulations, 2013 CFR
2013-01-01
... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by lightning. (1) Elements of a lighting protection system. Unless an... facilities shall have a lightning protection system to ensure explosives are not initiated by lightning. A...
Accretion disc origin of the Earth's water.
Vattuone, Luca; Smerieri, Marco; Savio, Letizia; Asaduzzaman, Abu Md; Muralidharan, Krishna; Drake, Michael J; Rocca, Mario
2013-07-13
Earth's water is conventionally believed to be delivered by comets or wet asteroids after the Earth formed. However, their elemental and isotopic properties are inconsistent with those of the Earth. It was thus proposed that water was introduced by adsorption onto grains in the accretion disc prior to planetary growth, with bonding energies so high as to be stable under high-temperature conditions. Here, we show both by laboratory experiments and numerical simulations that water adsorbs dissociatively on the olivine {100} surface at the temperature (approx. 500-1500 K) and water pressure (approx. 10⁻⁸ bar) expected for the accretion disc, leaving an OH adlayer that is stable at least up to 900 K. This may result in the formation of many Earth oceans, provided that a viable mechanism to produce water from hydroxyl exists. This adsorption process must occur in all disc environments around young stars. The inevitable conclusion is that water should be prevalent on terrestrial planets in the habitable zone around other stars.
NASA Astrophysics Data System (ADS)
Abdullah, Warith; Reddy, Remata
From October 22nd to 30th, 2012 Hurricane Sandy was a huge storm of many abnormalities causing an estimated 50 billion dollars in damage. Tropical storm development states systems’ energy as product of warm sea surface temperatures (SST’s) and tropical cyclone heat potential (TCHP). Advances in Earth Observing (EO) technology, remote sensing and proxy remote sensing have allowed for accurate measurements of SST and TCHP information. In this study, we investigated rapid intensification of Sandy through EO applications for precipitable water vapor (PWAT), SST’s and TCHP during the period of October 27th. These data were obtained from NASA and NOAA satellites and NOAA National Buoy data center (NDBC). The Sensible Heat (Qs) fluxes were computed to determine available energy resulting from ocean-atmosphere interface. Buoy 41010, 120 NM east of Cape Canaveral at 0850 UTC measured 22.3 °C atmospheric temperatures and 27 °C SST, an interface of 4.7 °C. Sensible heat equation computed fluxes of 43.7 W/m2 at 982.0 mb central pressure. Sandy formed as late-season storm and near-surface air temperatures averaged > 21 °C according to NOAA/ESRL NCEP/NCAR reanalysis at 1000 mb and GOES 13 (EAST) geostationary water vapor imagery shows approaching cold front during October 27th. Sandy encountered massive dry air intrusion to S, SE and E quadrants of storm while travelling up U.S east coast but experienced no weakening. Cool, dry air intrusion was considered for PWAT investigation from closest sounding station during Oct. 27th 0900 - 2100 UTC at Charleston, SC station 72208. Measured PWAT totaled 42.97 mm, indicating large energy potential supply to the storm. The Gulf Stream was observed using NASA Short-term Prediction Research and Transition Center (SPoRT) MODIS SST analysis. The results show 5 °C warmer above average than surrounding cooler water, with > 25 °C water extent approximately 400 NM east of Chesapeake Bay and eddies > 26 °C. Results from sensible heat computations for atmospheric interface suggests unusual warmth associated with Gulf Stream current, such that it provided Sandy with enough kinetic energy to intensify at high latitude. The study further suggests that energy gained from Caribbean TCHP and Gulf Stream SST’s were largely retained by Sandy upon losing tropical-cyclone characteristics and merging with strong cold front and polar jet stream. Storms of Sandy’s magnitude and unusual source of energy resulting from Gulf Stream may indicate a building average for tropical cyclone development and intensity for North Atlantic, particularly as the GOM waters continue to warm on seasonal averages.
Combination gas producing and waste-water disposal well
Malinchak, Raymond M.
1984-01-01
The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.
Combination gas-producing and waste-water disposal well. [DOE patent application
Malinchak, R.M.
1981-09-03
The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.
2015-10-26
On October 17, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite captured this true-color image of a thick haze hanging over eastern China. In the north, the large city of Beijing is completely obscured from view, as is much of the landscape. The haze thins slightly over the Bohai Sea. Further south, sediment pours into the East China Sea near the city of Shanghai. Heavy haze is common in this region, and tends to worsen in October through January, when cold, heavy air traps pollutants near the surface of the Earth. It is likely that this scene was caused by such a temperature inversion. Normally, air is warmest near the surface of the Earth. But sometimes a mass of warm air will move the cooler air, so the atmosphere actually warms with the altitude. Cool air does not have energy to rise through the warm air, vertical circulation slows and air becomes trapped near the surface. Any pollution that is emitted into the cooler air will also get trapped, increasing low-level air pollution and haze. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team
Water cycling between ocean and mantle: Super-earths need not be waterworlds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, Nicolas B.; Abbot, Dorian S., E-mail: n-cowan@northwestern.edu
2014-01-20
Large terrestrial planets are expected to have muted topography and deep oceans, implying that most super-Earths should be entirely covered in water, so-called waterworlds. This is important because waterworlds lack a silicate weathering thermostat so their climate is predicted to be less stable than that of planets with exposed continents. In other words, the continuously habitable zone for waterworlds is much narrower than for Earth-like planets. A planet's water is partitioned, however, between a surface reservoir, the ocean, and an interior reservoir, the mantle. Plate tectonics transports water between these reservoirs on geological timescales. Degassing of melt at mid-ocean ridgesmore » and serpentinization of oceanic crust depend negatively and positively on seafloor pressure, respectively, providing a stabilizing feedback on long-term ocean volume. Motivated by Earth's approximately steady-state deep water cycle, we develop a two-box model of the hydrosphere and derive steady-state solutions to the water partitioning on terrestrial planets. Critically, hydrostatic seafloor pressure is proportional to surface gravity, so super-Earths with a deep water cycle will tend to store more water in the mantle. We conclude that a tectonically active terrestrial planet of any mass can maintain exposed continents if its water mass fraction is less than ∼0.2%, dramatically increasing the odds that super-Earths are habitable. The greatest source of uncertainty in our study is Earth's current mantle water inventory: the greater its value, the more robust planets are to inundation. Lastly, we discuss how future missions can test our hypothesis by mapping the oceans and continents of massive terrestrial planets.« less
Michael J. Furniss; Catherine F. Clifton; Kathryn L. Ronnenberg
2007-01-01
This conference was attended by nearly 450 Forest Service earth scientists representing hydrology, soil science, geology, and air. In addition to active members of the earth science professions, many retired scientists also attended and participated. These 60 peer-reviewed papers represent a wide spectrum of earth science investigation, experience, research, and...
Role of air-water interfaces in colloid transport in porous media: A review
NASA Astrophysics Data System (ADS)
Flury, Markus; Aramrak, Surachet
2017-07-01
Air-water interfaces play an important role in unsaturated porous media, giving rise to phenomena like capillarity. Less recognized and understood are interactions of colloids with the air-water interface in porous media and the implications of these interactions for fate and transport of colloids. In this review, we discuss how colloids, both suspended in the aqueous phase and attached at pore walls, interact with air-water interfaces in porous media. We discuss the theory of colloid/air-water interface interactions, based on the different forces acting between colloids and the air-water interface (DLVO, hydrophobic, capillary forces) and based on thermodynamic considerations (Gibbs free energy). Subsurface colloids are usually electrostatically repelled from the air-water interface because most subsurface colloids and the air-water are negatively charged. However, hydrophobic interactions can lead to attraction to the air-water interface. When colloids are at the air-water interface, capillary forces are usually dominant over other forces. Moving air-water interfaces are effective in mobilizing and transporting colloids from surfaces. Thermodynamic considerations show that, for a colloid, the air-water interface is the favored state as compared with the suspension phase, except for hydrophilic colloids in the nanometer size range. Experimental evidence indicates that colloid mobilization in soils often occurs through macropores, although matrix transport is also prevalent in absence of macropores. Moving air-water interfaces, e.g., occurring during infiltration, imbibition, or drainage, have been shown to scour colloids from surfaces and translocate colloids. Colloids can also be pinned to surfaces by thin water films and capillary menisci at the air-water-solid interface line, causing colloid retention and immobilization. Air-water interfaces thus can both mobilize or immobilize colloids in porous media, depending on hydrodynamics and colloid and surface chemistry.
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive, or SMAP, spacecraft, has been secured inside a transportation canister and secured onto a transporter for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians enclose a transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft in an environmentally protective wrap for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians secure a transportation canister around NASA's Soil Moisture Active Passive, or SMAP, spacecraft for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive, or SMAP, spacecraft, secured inside a transportation canister is lowered onto a transporter for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, a technician ensures the transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft is ready for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians enclose a transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft in an environmentally protective wrap for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
2014-12-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians secure a transportation canister around NASA's Soil Moisture Active Passive, or SMAP, spacecraft for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians enclose a transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft in an environmentally protective wrap for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive, or SMAP, spacecraft has had the appropriate logos affixed to its transportation canister before its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians monitor the transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft as it is lowered onto a transporter for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
Recent trends in nanomaterials applications in environmental monitoring and remediation.
Das, Sumistha; Sen, Biswarup; Debnath, Nitai
2015-12-01
Environmental pollution is one of the greatest problems that the world is facing today, and it is increasing with every passing year and causing grave and irreparable damage to the earth. Nanomaterials, because of their novel physical and chemical characteristics, have great promise to combat environment pollution. Nanotechnology is being used to devise pollution sensor. A variety of materials in their nano form like iron, titanium dioxide, silica, zinc oxide, carbon nanotube, dendrimers, polymers, etc. are increasingly being used to make the air clean, to purify water, and to decontaminate soil. Nanotechnology is also being used to make renewable energy cheaper and more efficient. The use of nanotechnology in agriculture sector will reduce the indiscriminate use of agrochemicals and thus will reduce the load of chemical pollutant. While remediating environment pollution with nanomaterials, it should also be monitored that these materials do not contribute further degradation of the environment. This review will focus broadly on the applications of nanotechnology in the sustainable development with particular emphasis on renewable energy, air-, water-, and soil-remediation. Besides, the review highlights the recent developments in various types of nanomaterials and nanodevices oriented toward pollution monitoring and remediation.
Environmental dust effects on aluminum surfaces in humid air ambient.
Yilbas, Bekir Sami; Hassan, Ghassan; Ali, Haider; Al-Aqeeli, Nasser
2017-04-05
Environmental dusts settle on surfaces and influence the performance of concentrated solar energy harvesting devices, such as aluminum troughs. The characteristics of environmental dust and the effects of mud formed from the dust particles as a result of water condensing in humid air conditions on an aluminum wafer surface are examined. The dissolution of alkaline and alkaline earth compounds in water condensate form a chemically active mud liquid with pH 8.2. Due to gravity, the mud liquid settles at the interface of the mud and the aluminum surface while forming locally scattered patches of liquid films. Once the mud liquid dries, adhesion work to remove the dry mud increases significantly. The mud liquid gives rise to the formation of pinholes and local pit sites on the aluminum surface. Morphological changes due to pit sites and residues of the dry mud on the aluminum surface lower the surface reflection after the removal of the dry mud from the surface. The characteristics of the aluminum surface can address the dust/mud-related limitations of reflective surfaces and may have implications for the reductions in the efficiencies of solar concentrated power systems.
Environmental dust effects on aluminum surfaces in humid air ambient
Yilbas, Bekir Sami; Hassan, Ghassan; Ali, Haider; Al-Aqeeli, Nasser
2017-01-01
Environmental dusts settle on surfaces and influence the performance of concentrated solar energy harvesting devices, such as aluminum troughs. The characteristics of environmental dust and the effects of mud formed from the dust particles as a result of water condensing in humid air conditions on an aluminum wafer surface are examined. The dissolution of alkaline and alkaline earth compounds in water condensate form a chemically active mud liquid with pH 8.2. Due to gravity, the mud liquid settles at the interface of the mud and the aluminum surface while forming locally scattered patches of liquid films. Once the mud liquid dries, adhesion work to remove the dry mud increases significantly. The mud liquid gives rise to the formation of pinholes and local pit sites on the aluminum surface. Morphological changes due to pit sites and residues of the dry mud on the aluminum surface lower the surface reflection after the removal of the dry mud from the surface. The characteristics of the aluminum surface can address the dust/mud-related limitations of reflective surfaces and may have implications for the reductions in the efficiencies of solar concentrated power systems. PMID:28378798
Satellites as Sentinels for Climate and Health
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.
2003-01-01
Remotely-sensed data and observations are providing powerful new tools for addressing climate and environment-related human health problems through increased capabilities for monitoring, risk mapping, and surveillance of parameters useful to such problems as vector- borne and infectious diseases, air and water quality,. harmful algal blooms, W radiation, contaminant and pathogen transport in air and water, and thermal stress. Remote sensing, geographic information systems (GIs), global positioning systems (GPS), improved computation capabilities, and interdisciplinary research between the Earth and health science communities, together with local knowledge, are being combined in rich collaborative efforts resulting in more rapid problem-solving, early warning, and prevention in global climate and health issues. These collaborative efforts are enabling increased understanding of the relationships among changes in temperature, rainfall, wind, soil moisture, solar radiation, vegetation, and the patterns of extreme weather events and health issues. This increased understanding and improved information and data sharing, in turn, empowers local health and environmental decision-makers to better predict climate-related health problems, decrease vulnerability, take preventive measures, and improve response actions. This paper provides a number of recent examples of how satellites - from their unique vantage point in space - can serve as sentinels for climate and health.
Use of modified diatomaceous earth for removal and recovery of viruses in water.
Farrah, S R; Preston, D R; Toranzos, G A; Girard, M; Erdos, G A; Vasuhdivan, V
1991-01-01
Diatomaceous earth was modified by in situ precipitation of metallic hydroxides. Modification decreased the negative charge on the diatomaceous earth and increased its ability to adsorb viruses in water. Electrostatic interactions were more important than hydrophobic interactions in virus adsorption to modified diatomaceous earth. Filters containing diatomaceous earth modified by in situ precipitation of a combination of ferric chloride and aluminum chloride adsorbed greater than 80% of enteroviruses (poliovirus 1, echovirus 5, and coxsackievirus B5) and coliphage MS2 present in tap water at ambient pH (7.8 to 8.3), even after filtration of 100 liters of tap water. Viruses adsorbed to the filters could be recovered by mixing the modified diatomaceous earth with 3% beef extract plus 1 M NaCl (pH 9). Images PMID:1768124
Sensor Calibration and Ocean Products for TRMM Microwave Radiometer
NASA Technical Reports Server (NTRS)
Wentz, Frank J.; Lawrence, Richard J. (Technical Monitor)
2003-01-01
During the three years of finding, we have carefully corrected for two sensor/platform problems, developed a physically based retrieval algorithm to calculate SST, wind speed, water vapor, cloud liquid water and rain rates, validated these variables, and demonstrated that satellite microwave radiometers can provide very accurate SST retrievals through clouds. Prior to this, there was doubt by some scientists that the technique of microwave SST retrieval from satellites is a viable option. We think we have put these concerns to rest, and look forward to making microwave SSTs a standard component of the Earth science data sets. Our TMI SSTs were featured on several network news broadcasts and were reported in Science magazine. Additionally, we have developed a SST algorithm for VIRS to facilitate IR/MW inter-comparisons and completed research into diurnal cycles and air-sea interactions.